
cs 239 Lecture 3: Readable Software Systems Handout 1

Course Overview

Location TR 2–3:50pm, Franz 1260
Instructor Eddie Kohler, Boelter 4531c, kohler@cs.ucla.edu
Office hours M 2–3pm or by appointment
Course Web page http://www.cs.ucla.edu/~kohler/class/04s-readable/

Tentative schedule
1. T 4/6 Introduction

Servers I
2. R 4/8 Servers II
3. T 4/13 Servers III
4. R 4/15 Measurement & profiling I
5. T 4/20 Measurement & profiling II

This week: Discuss project ideas with instructor
6. R 4/22 Networking stacks I
7. T 4/27 Networking stacks II

R 4/29 NO CLASS
8. T 5/4 Sensors I

Project proposals due
9. R 5/6 Sensors II

10. T 5/11 OS kernels I
11. R 5/13 OS kernels II
12. T 5/18 Network protocols I
13. R 5/20 Network protocols II
14. T 5/25 Security I
15. R 5/27 Security II
16. T 6/1 Topics I
17. R 6/3 Topics II

Projects due
18. T 6/8 Project presentations
19. R 6/10 Project presentations

Course goals

Speedy, reliable, flexible software systems must be easy to program, so that programmers
can analyze and improve the systems’ performance and correctness. This seminar will
look at recent systems literature, focusing on tractability, programmability, and ease of
analysis: in a word, readability.

We’ll concentrate on systems concerns, with occasional detours into programming lan-
guage techniques.

When you have completed the course, I want you to be able to evaluate a system – a
server, kernel, API, network protocol, or whatever else – on its programmability and per-
formance. I want you to have an idea of what systems interfaces and techniques have
worked, what problems systems currently face, and where programming language tech-
niques are most needed.

Assignments

The main assignment is a course project: a significant systems effort guided by read-
ability. One type of good project would be to take a software system important for your

Readable Software Systems, Spring 2004 4/6 1.1



research and use techniques learned throughout the term to make it more “readable”.
The project writeup would contain both code comparisons and in-depth measurements,
showing how the system improved its performance and/or reliability.

You will also be expected to read and present papers from the recent systems literature in
class, and there will be occasional assignments.

Grading

25% paper presentations and discussion, 75% assignments and projects. No midterm or
final exam.

Papers: Servers

These links will be made available on the course Web page.

Technical papers

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. “Flash: An efficient and portable Web
server.” In Proc. USENIX 1999. http://www.cs.princeton.edu/~vivek/flash99/

Matt Welsh, David Culler, and Eric Brewer. “SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services.” In Proc. 18th SOSP, 2001. http://www.eecs.harvard.edu/~mdw/
papers/seda-sosp01.pdf

Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer. “Capric-
cio: Scalable Threads for Internet Services.” In Proc. 19th SOSP, 2003. http://capriccio.cs.
berkeley.edu/pubs/capriccio-sosp-2003.pdf

Tim Brecht, David Pariag, and Louay Gammo. “accept()able Strategies for Improving Web
Server Performance.” To appear in Proc. USENIX 2004. http://www.cs.ucla.edu/~kohler/
class/04s-readable/acceptable.pdf – please do not redistribute this pre-publication ver-
sion.

Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. “Size-based
Scheduling to Improve Web Performance.” ACM Transactions on Computer Systems 21(2), May
2003, pp 207–233. http://www-2.cs.cmu.edu/~harchol/Papers/tocs257.ps

Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. “A Scalable and Explicit Event Deliv-
ery Mechanism for UNIX.” In Proc. USENIX 1999. http://www.cs.rice.edu/~gaurav/papers/
usenix99.ps

Position papers

John Ousterhout. “Why Threads are a Bad Idea (for most purposes).” Invited talk at USENIX
1996. http://www.softpanorama.org/People/Ousterhout/Threads/ or http://www.cc.gatech.
edu/ccg/people/rob/software/threads/ousterhout threads.html

Rob von Behren, Jeremy Condit, and Eric Brewer. “Why Events are a Bad Idea (for high-
concurrency servers).” In Proc. HotOS IX. http://capriccio.cs.berkeley.edu/pubs/threads-
hotos-2003.pdf

Frank Dabek, Nickolai Zeldovich, Franks Kaashoek, David Mazières, and Robert Morris.
“Event-Driven Programming for Robust Software.” In Proc. 2002 SIGOPS European Workshop.
http://www.pdos.lcs.mit.edu/papers/events:sigops/

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, and Deborah A. Wallach.
“Server Operating Systems.” In Proc. 1996 SIGOPS European Workshop. http://www.pdos.lcs.

Readable Software Systems, Spring 2004 4/6 1.2



mit.edu/papers/serverOS.html

Secondary references

Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert Morris, David Mazières, and
Frans Kaashoek. “Multiprocessor Support for Event-Driven Programs.” In Proc. USENIX
2003. http://www.pdos.lcs.mit.edu/papers/asyncmp/

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. “IO-Lite: A Unified I/O Buffering and
Caching System.” ACM Transactions on Computer Systems 18(1), Feb. 2000, pp 37–66. http://
www.cs.princeton.edu/~vivek/iol-tocs.ps.gz

Gaurav Banga, Peter Druschel, Jeffrey C. Mogul. “Resource containers: A new facility
for resource management in server systems.” In Proc. OSDI 1999. http://www.cs.rice.edu/
~gaurav/papers/osdi99.ps

Readable Software Systems, Spring 2004 4/6 1.3


