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Abstract

Click is a new software architecture for building flexible
and configurable routers. A Click router is assembled
from packet processing modules called elements. Indi-
vidual elements implement simple router functions like
packet classification, queueing, scheduling, and interfac-
ing with network devices. Complete configurations are
built by connecting elements into a graph; packets flow
along the graph’s edges. Several features make individ-
ual elements more powerful and complex configurations
easier to write, including pull processing, which mod-
els packet flow driven by transmitting interfaces, and
flow-based router context, which helps an element lo-
cate other interesting elements.

We demonstrate several working configurations, in-
cluding an IP router and an Ethernet bridge. These
configurations are modular—the IP router has 16 ele-
ments on the forwarding path—and easy to extend by
adding additional elements, which we demonstrate with
augmented configurations. On commodity PC hardware
running Linux, the Click IP router can forward 64-byte
packets at 73,000 packets per second, just 10% slower
than Linux alone.

1 Introduction

Routers are increasingly expected to do more than route
packets. Boundary routers, which lie on the borders be-
tween organizations, must often prioritize traffic, trans-
late network addresses, tunnel or filter packets, or act as
firewalls, among other things. Furthermore, fundamen-
tal router policies like packet dropping are still under
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active research [5, 11, 13], and initiatives like Differen-
tiated Services [3] are bringing the need for flexibility
closer to the core of the Internet.

Unfortunately, most routers have closed, static, and
inflexible designs. Network administrators may be able
to turn router functions on or off, but they cannot easily
specify or even identify the interactions of different func-
tions. Furthermore, network administrators and third
party software vendors cannot easily implement new
functions. Extensions require access to software inter-
faces in the router’s forwarding path, but these often
don’t exist, don’t exist at the right point, or aren’t pub-
lished.

This paper presents Click, a flexible, modular software
architecture for building routers. Click’s building blocks
are packet processing modules called elements. To build
a router configuration, the user connects a collection of
elements into a graph; packets move from element to ele-
ment along the graph’s edges. To extend a configuration,
the user can write new elements or compose existing ones
in new ways, much as UNIX allows one to build com-
plex applications directly or by composing simpler ones
using pipes.

Two specific features add power to this simple archi-
tecture. Pull processing models packet motion driven by
transmitting interfaces and makes packet schedulers easy
to compose, and flow-based router context examines the
router graph to help an element locate other interesting
elements. We present an element in Section 4.2 that, using
these features, implements four variants of the random
early detection dropping policy (RED) [11]—RED, RED
over multiple queues, weighted RED, and drop-from-
front RED—depending on its context in the router. This
would be difficult or impossible to achieve in previous
modular networking systems [12, 18, 25].

We have implemented this architecture on general-
purpose hardware (which is cheap and has good per-
formance) as an extension to Linux. A Click IP router
running on a 450 MHz Pentium III can forward 73,000
64-byte packets per second, and can forward 250-byte
packets (the average size seen on WAN links [28]) at
100 megabits per second.

In the next sections, we describe Click’s architecture in
detail, including the language used to describe configu-
rations (Section 2), present a functioning Click IP router



(Section 3), and outline some useful router extensions as
implemented in Click (Section 4). After summarizing our
implementation (Section 5), we evaluate its performance
on some of the presented routers (Section 6). Finally,
we describe related work (Section 7) and summarize our
conclusions (Section 8).

2 Architecture

A Click router configuration is a directed graph whose
nodes are called elements. A single element represents
a unit of router processing. An edge, or connection, be-
tween two elements represents a possible path for packet
transfer. This graph resembles a flowchart, except that
connections represent packet flow, not control flow, and
elements are actual objects that may maintain private
state. Inside a running router, each element is a C++ ob-
ject and connections are pointers to elements. The over-
head of passing a packet along a connection is a single
virtual function call.

The most important properties of an element are:

• Element class. Like objects in an object-oriented
program, each element has a class that determines
its behavior.

• Input and output ports. Ports are the endpoints of
connections between elements. An element can have
any number of input or output ports, which can
have different semantic meanings (a normal and an
error output, for example).

• Configuration string. Some element classes support
additional arguments, used to initialize per-element
state and fine-tune element behavior. The configura-
tion string contains these arguments.

Figure 1 shows how we diagram these properties for a
single element, Tee(2). ‘Tee’ is the element class; a Tee
copies each packet it receives from its single input port,
sending one copy to each output port. (The packet data is
not copied: Click packets are copy-on-write.) Configura-
tion strings are enclosed in parentheses: the ‘2’ in ‘Tee(2)’
is a configuration string that Tee interprets as a request
for two outputs.

Every action performed by a Click router’s software
is encapsulated in an element, from device reading and
writing to queueing, routing table lookups, and counting
packets. The user determines what a Click router does
by choosing the elements to be used and the connections
among them. Figure 2 shows a sample router that counts
incoming packets, then throws them all away.

Click provides two kinds of connections between ele-
ments, push and pull. In a push connection, the upstream
element hands a packet to the downstream element; in

Tee(2)input port output ports

element class

configuration string

Figure 1: A sample element. Triangular ports are inputs and rectan-

gular ports are outputs.

FromDevice(eth0) Counter Discard

Figure 2: A router configuration that throws away all packets.

a pull connection, the downstream element asks the up-
stream element to return a packet. Each kind of handoff
is implemented as a virtual function call. Packet arrival
usually initiates push processing, which stops when an
element discards the packet or stores it for later. Output
interfaces initiate pull processing when they are ready
to send a packet; processing flows backwards through
the graph until an element yields up a packet. Pull ele-
ments can simply and explicitly represent decisions that
should occur at packet transmission time, such as packet
scheduling.

The rest of this section discusses the Click architecture
in more detail, including push and pull processing, flow-
based router context, the implementation of an element,
and the Click language for specifying router configura-
tions.

2.1 Control flow and queues

When an element receives a packet from a push con-
nection, it must store it, discard it, or forward it to an-
other element for more processing. Most elements for-
ward packets by calling the next element’s push func-
tion. Since packet handoff is just a virtual function call,
a Click CPU scheduler could not stop packet processing
at arbitrary points—elements must cooperatively choose
to stop processing.

Packet storage must be implemented by the element it-
self; unlike some systems [18, 25], Click elements do not
have implicit queues on their input and output ports,
or the associated performance and complexity costs. In-
stead, Click queues are explicit objects, implemented by
a separate element (Queue). This enables valuable con-
figurations that are difficult to arrange otherwise—for
example, a single queue feeding multiple interfaces, or
a queue feeding a traffic shaper on the way to an in-
terface. Queue is the most common element that stops
packet processing, giving the system a chance to sched-
ule different work: it enqueues packets it receives rather
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return p return p

receive
packet p

enqueue p
transmit
complete
interruptdequeue p

and return it

send p

Figure 3: Push and pull control flow. This diagram shows functions

called as a packet moves through a simple router. The central el-

ement is a Queue. During the push, control flow moves forward

through the element graph starting at the receiving interface; during

the pull, control flow moves backward through the graph, starting

at the transmitting interface. The packet p always moves forward.

than passing them on. Thus, the placement of Queues
in a configuration determines that configuration’s execu-
tion profile. If a user wants to carefully manage packet
scheduling as soon as packets enter the system, she will
want Queues early in the graph.

2.2 Push and pull processing

Push and pull are duals of one another: the upstream
end of a connection initiates a push call, while the
downstream end initiates a pull call. Together, push and
pull allow the appropriate end of a connection to initi-
ate packet transfer, solving several router control flow
problems. For example, packet scheduling decisions—
choosing which queue to ask for a packet—are easily
expressed as composable pull elements, as we show in
Section 4.1. As another example, the system should not
send packets to a busy transmitting interface. If it did, the
interface would have to store the packet, and the router
would lose the ability to affect it later (to throw it away,
to modify its precedence, and so forth). This restriction
can be simply expressed by giving the transmitting inter-
face a pull input; then the interface is in control of packet
transfer, and can ask for packets only when it’s ready.

Figure 3 shows how this works in a simple router. In
our configuration diagrams, black ports are push and
white ports are pull. This particular configuration has
two Null elements, one push and one pull. Like many
elements, Null is agnostic, meaning it can work as either
push or pull depending on its context in the router. Ag-
nostic ports are shown in diagrams as push or pull ports
with a double outline.

The following invariants hold for all correctly config-
ured routers: Push outputs must be connected to push
inputs, and pull outputs must be connected to pull in-
puts. Each agnostic port must be used as push or pull
exclusively; furthermore, if packets can flow within an
element between an agnostic input and an agnostic out-

FromDevice

FromDevice

ToDevice
Counter

ToDevice

Figure 4: Some invariant violations. The top configuration has four

errors: (1) FromDevice’s push output connects to ToDevice’s pull in-

put; (2) more than one connection to FromDevice’s push output; (3)

more than one connection to ToDevice’s pull input; and (4) the ag-

nostic element Counter is in a mixed push/pull context. By contrast,

the bottom configuration is legal. In a properly configured router, the

port colors on either end of each connection will match.

put, both ports must be used in the same way (either push
or pull). Finally, push outputs and pull inputs must be
connected exactly once. (This ensures that each packet
handoff—pushing to an output port or pulling from an
input port—has a unique destination.) These invariants
are automatically checked by the system during router
initialization. Figure 4 demonstrates violations of each
of them.

The invariants are designed to catch intuitively invalid
configurations. For example, in Figure 4, the connection
in the figure from FromDevice to ToDevice is disallowed
by the invariants because FromDevice’s output is push
while ToDevice’s input is pull. But this connection should
be illegal: if it remained, ToDevice might receive packets
when it was not ready to send them. The Queue element,
which converts from push to pull, is also intuitively nec-
essary to provide the temporary packet storage required.

Every push call in a running router passes an actual
packet object, but pull calls can return a null pointer
if no packet is ready. In this case, the pulling element
must arrange to wake up when it makes sense to try
again. This can be done element-specifically—using a
timer, for example—but Click also includes a generic
mechanism called packet-upstream notification. During
initialization, each Queue uses flow-based router con-
text (described in more detail below) to find the elements
downstream of it that are interested in packet-upstream.
When the Queue becomes nonempty, it notifies these el-
ements of a packet-upstream event; they will soon react
by retrying the pull. The combination of pull process-
ing and packet-upstream notification resembles Clark’s
upcalls and arming calls [7].

2.3 Flow-based router context

Sometimes an element must find other elements that
might not be directly connected to it. For example, a
Queue must find the elements downstream of it that are
interested in packet-upstream notification; these might
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RED Classifier Discard

PullToPush

Strip

Figure 5: The elements downstream of RED, found by flow-based

router context with a filter that stops at Queues. The downstream

elements are colored grey.

be directly connected to the Queue, or they might be
separated from it by arbitrarily many elements. They are
related to the Queue not by direct connection, but by its
transitive closure, packet flow.

The Click architecture can provide any element with
packet flow information for the whole router, which we
call flow-based router context. For example, an element
can find the elements downstream of its first output, or
the elements upstream of its second input. These ques-
tions have a well-defined answer even in the presence of
cycles in the router configuration.

The flow-based router context algorithms accept an
optional filter that limits the search. If the filter matches
an element on a downstream search, then nothing down-
stream of that element will be returned (unless it is
reachable on another path), and similarly for upstream
searches. Filters can match arbitrary element classes and
interfaces, so searches can be stopped at Queues (and
subtypes of Queue) or at any element implementing a
hypothetical Queuelike interface. Figure 5 shows how
this works. With these filters and flow-based router con-
text, an element can find nearby elements that are known
to implement a specific interface; it can then manipulate
their exported variables and methods, gaining access to
information like queue lengths, interface addresses, and
so on.

2.4 Implementation

We implement elements as C++ objects. Each element
class corresponds to a C++ subclass of Element, which
has on the order of 20 virtual functions. Element pro-
vides reasonable default implementations for many of
these, allowing most subclasses to get away with over-
riding six of them or less. Only two virtual functions are
used during router operation, namely push and pull; the
others are used for identification, push and pull specifi-
cation, configuration, initialization, and statistics.

Subclasses of Element are easy to write, so we expect
users will have no problem writing new element classes
as needed. In fact, the complete implementation of a
simple working element class (Null, which passes packets

class NullElement : public Element {
public:
NullElement()

{ add_input(); add_output(); }
const char *class_name() const

{ return "Null"; }
PushOrPull default_processing() const

{ return AGNOSTIC; }
NullElement *clone() const

{ return new NullElement; }
void push(int port_number, Packet *p)

{ output(0).push(p); }
Packet *pull(int port_number)

{ return input(0).pull(); }
};

Figure 6: The complete implementation of a do-nothing element.

from its single input to its single output unchanged) takes
less than 20 lines of code; see Figure 6. Most elements
define functions for parsing configuration strings and
initialization in addition to those in Figure 6, and take
about 120 lines of code.

2.5 Language

Click configurations are written in a simple textual
language with two important constructs: declarations
and connections. A declaration says that an element
should be created; connections specify how those el-
ements should be connected. Syntactic sugar allows a
user to elide declarations and piggyback connections for
readability. The syntax is easy enough to learn from an
example; Figure 7 uses it to define a trivial router.

Configuration strings are opaque to the language.
They are sent uninterpreted to the elements themselves,
which are free to use them however they like. Most of
the elements we have written treat configuration strings
as comma-separated argument lists, using a common li-
brary to parse data like integers and IP addresses.

The language contains constructs that allow users to
define new element classes by composing existing ones.
Thus, any user can create a library of personalized ele-
ment classes; for example, a user could define MyQueue
to be a Queue followed by a Shaper, and use MyQueue
as if it was a Click primitive. These new classes, called
compound elements, are strictly compile-time constructs:
at run time, a compound element has exactly the same
representation as the corresponding collection of simple
elements. Thus, compound elements have no additional
run-time overhead.

Router configurations in the Click language can be
optimized using a preprocessor based on pattern match-
ing. The optimizer reads a router configuration and a
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# a trivial router that drops everything
src :: FromDevice(eth0);
ctr :: Counter;
sink :: Discard;
src -> ctr;
ctr -> sink;

# the same, with anonymous elements
FromDevice(eth0) -> Counter -> Discard;

Figure 7: The trivial router of Figure 2 specified in two ways.

file describing element patterns and their replacements;
it replaces patterns in the configuration until no more
changes can be made, then writes out the new configu-
ration. We plan to write other preprocessors, including
one that checks configurations using a static type system.
This would prevent users from sending Ethernet packets
to elements that expect IP packets, for example. Cur-
rently, Click configurations are not type checked, except
for the push and pull invariants described above.

3 An IP router

This section shows how a real router configuration—
an IP router that forwards unicast packets in nearly full
compliance with the standards [1, 23, 24]—can be writ-
ten in Click. Figure 8 shows a two-interface Click IP
router configuration. (The reader may want to refer to
Figure 9, a glossary of Click elements used in Figure 8 and
elsewhere in the paper.) The rest of this section describes
the IP router in more detail. Section 4 shows how to ex-
tend this router by changing its scheduling and queueing
behavior, and Section 6 evaluates its performance.

The IP forwarding tasks that are most natural in Click
are those that involve only local information. For exam-
ple, DecIPTTL decides if a packet’s TTL has expired.
If it has, it emits the packet on its second output (usu-
ally connected to an ICMPError element); if the TTL is
still valid, DecIPTTL decrements it, updates the packet’s
checksum, and emits the packet on its first output. These
actions depend only on the packet’s contents; they don’t
interact with decisions made elsewhere except as ex-
pressed in the packet’s path through the element graph.
Such self-contained elements compose easily—for exam-
ple, one could connect DecIPTTL’s “expired” output to
a Discard to avoid generating ICMP errors, or insert an
element that limits the rate at which errors are generated.

Some forwarding tasks require that information about
a packet be calculated in one place and used in another.
Click uses annotations to carry such information along.
(An annotation is a piece of information attached to a
packet that isn’t part of the packet data.) The annotations
used in the IP router include:

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(1.0.0.2, ...)

ToDevice(eth1)

ARPResponder
(2.0.0.1, ...)

ARPResponder
(1.0.0.2, ...)

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(1.0.0.2)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.2)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 8: The IP router configuration.
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Element Description
ARPQuerier(...) Encapsulates IP packets in Ethernet headers using ARP; 2nd input processes ARP responses
ARPResponder(x y) Responds to ARP queries for IP address x with static Ethernet address y
CheckIPHeader(...) Discards packets with invalid IP length or checksum fields
CheckPaint(p) Sends packets with paint annotation = p to both outputs; otherwise just to first
Classifier(...) Checks packet data against classifiers; sends packet to output for 1st classifier that matched
DecIPTTL Decrements IP packets’ time-to-live; sends to 2nd output iff TTL has expired
Discard Discards all packets
DropBroadcasts Discards packets that arrived as link-level broadcasts
EtherSpanTree(...) Implements the IEEE 802.1d spanning tree algorithm for Ethernet switches
EtherSwitch Learning, forwarding Ethernet switch
FixIPSrc(addr) Sets the IP header’s source field to addr if the Fix IP Source annotation is set
FromDevice(device) Outputs packets when they arrive from a Linux device driver
GetIPAddress(...) Copies the destination address from the IP header to the destination address annotation
HashDemux(...) Sends packet to one of n outputs, chosen by a hash of specified packet contents
ICMPError(type, code) Encapsulates IP packets in ICMP error packets, sets Fix IP Source annotation
IPEncap(...) Encapsulates packets in a statically specified IP header
IPFragmenter(mtu) Fragments IP packets larger than mtu; too-large packets with DF flag set go to 2nd output
IPGWOptions Handles IP Record Route, Timestamp options; packets with invalid options go to 2nd output
LookupIPRoute Looks up the destination annotation in a static routing table, choosing the output and setting

the annotation based on the result
Meter(r) Sends packets to 1st output if recent input rate averages < r, 2nd output otherwise
Paint(p) Sets the paint annotation to p
PrioSched Pulls a packet from one of n inputs; lower numbered inputs have priority
Queue(n) Stores at most n packets in a queue
RED(...) Drops packets probabilistically according to the Random Early Detection algorithm
RoundRobinSched Pulls a packet from one of n inputs, chosen by round-robin
SetIPDSCP(c) Sets the IP header’s diffserv code point field to c
Shaper(n) Simple pull traffic shaper: allows average of n packets per second
Strip(n) Deletes packets’ first n bytes
Suppressor Optionally drops packets arriving on particular inputs
Tee(n) Sends each packet to all n outputs
ToDevice(device) Hands packets to a Linux device driver for transmission
ToLinux Hands packets to Linux’s default network input software

Figure 9: Element glossary.

• Destination address. Elements that deal with a
packet’s destination address use this annotation
rather than the IP header field, allowing several
such elements to be chained together. GetIPAddress
copies the destination field from the IP header to
the annotation, LookupIPRoute replaces the an-
notation with the next-hop gateway’s address, and
ARPQuerier maps the annotation to the next-hop
Ethernet address.

• Paint. The Paint element marks a packet with an in-
teger “color”. CheckPaint emits every packet on its
first output, and a copy of any packet with a given
color on its second output. The IP router uses paint
to decide whether a packet is leaving the same in-
terface on which it arrived, and thus should prompt
an ICMP redirect.

• Link-level broadcast flag. FromDevice sets this flag
on packets that arrived as link-level broadcasts. The
IP router uses DropBroadcast to drop such packets
if they are about to be forwarded, but not if they are
destined for the router itself.

• ICMP Parameter Problem pointer. This is set by IP-
GWOptions on erroneous packets to specify the bad
IP header byte, and used by ICMPError when con-
structing an error message.

• Fix IP Source flag. The IP source address of an ICMP
error packet must be the address of the interface on
which the error is sent. ICMPError can’t predict this
interface, so it uses a default address and sets the Fix
IP Source annotation. After the ICMP packet has
been routed towards a particular interface, a FixIP-
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Src on that path will see the flag, insert the correct
source address, and recompute the IP checksum.

In a few cases elements require information of an in-
conveniently global nature. A router usually has a sep-
arate IP address on each attached network, and each
network usually has a separate IP broadcast address. All
of these addresses need to be known at multiple points in
the Click configuration: LookupIPRoute needs to know
how to decide if a packet is destined to the router itself,
CheckIPHeader must discard a packet with any of the IP
broadcast addresses as source address, ICMPError must
suppress responses to IP broadcasts, and IPGWOptions
must be able to recognize any of the router’s addresses
in an IP Timestamp option. Each of these elements takes
the complete list of addresses as part of its configuration
string, but ideally they would derive the list automati-
cally using flow-based router context.

Some of the elements in Figure 8 require more ex-
planation. CheckIPHeader checks the validity of the IP
length fields, the IP source address, and the IP check-
sum. IPGWOptions processes just the Record Route
and Timestamp options, since the source route options
should be processed only on packets addressed to the
router. IPFragmenter normally fragments packets larger
than the configured MTU, but sends unfragmentable too-
large packets to an error output instead. An ICMPError
element encapsulates most input packets in an ICMP er-
ror message and outputs the result; it drops broadcasts,
ICMP errors, fragments, and source-routed packets.

4 Extensions

This section presents Click configuration fragments that
implement several useful router extensions. We have
written elements that support RFC 2507-compatible
IP header compression and decompression, IP secu-
rity, communication with wireless radios, tunneling, and
many other specialized routing tasks, but this section fo-
cuses on scheduling and dropping policies, queueing re-
quirements, and Differentiated Services—and one non-IP
router, an Ethernet switch. The last subsection concludes
the discussion by presenting some of Click’s architectural
limitations.

4.1 Scheduling

With pull processing, a packet scheduler can be im-
plemented in Click as a single element that maintains
only local knowledge of the router configuration. Packet
scheduling is a kind of multiplexing—a scheduler decides
how a number of packet sources (usually queues) will
share a single output channel—and a Click scheduler is
a pull element with multiple inputs and one output. It re-
acts to requests for packets by choosing one of its inputs,

HashDemux RoundRobin...

Figure 10: A virtual queue implementing Stochastic Fairness

Queueing.

pulling a packet from it, and returning it. (If the chosen
input has no packets ready, the scheduler will usually try
other inputs.)

We have implemented two scheduler elements, Round-
RobinSched and PrioSched. RoundRobinSched pulls
from its inputs in round-robin order, returning the first
packet it finds (or no packet, if no input has a packet
ready). It always starts pulling on the input cyclically
following the last successful pull. PrioSched (for priority
scheduler) always tries its first input, then its second, and
so forth, returning the first packet it gets.

Both Queues and scheduling elements have a sin-
gle pull output, so to an element downstream, Queues
and schedulers are indistinguishable. We can exploit this
property to build virtual queues, compound elements
that look exactly like queues from the outside but im-
plement more complex behavior than FIFO queueing.
Figure 10 shows a virtual queue that implements a ver-
sion of Stochastic Fairness Queueing [15]: packets are
hashed by flow identifier into one of several queues that
are scheduled round-robin, providing some isolation be-
tween competing flows.

4.2 Dropping policies

The Queue element implements a simple dropping pol-
icy, namely a configurable maximum length beyond
which all packets are dropped. More complex drop poli-
cies can be created by combining Queues with other
elements. For example, we implement random early de-
tection [11] as an independent RED element contain-
ing only drop decision code. RED bases its decisions
on queue lengths—specifically, the lengths of the near-
est downstream Queues, which it finds using flow-based
router context. For example, in Figure 5 above, RED will
include the grey Queues in its queue length calculation.

If there is more than one downstream Queue, RED
adds all their lengths together before performing the drop
calculation. This simple generalization allows the user
to create useful RED variants like RED over multiple
queues by rearranging the configuration. Other variants
like weighted RED [5], where packets are dropped with
different probabilities depending on their priority, also
naturally follow from modular RED elements (see Fig-
ure 11). In addition, the RED element can be positioned
after the queue; in this case, it is a pull element and looks
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r1 :: RED

r2 :: RED

r3 :: RED

Classifier
prio 1

prio 2

prio 3

Figure 11: Weighted RED. The three RED elements can have differ-

ent RED parameters, allowing packets with different priorities to be

dropped with different probabilities when the router is under stress.

for upstream rather than downstream queues. This re-
sults in a strategy like drop-from-front [13], which re-
ports congestion back to senders more quickly than the
usual drop-from-tail.

4.3 Complex queueing

Imagine a router with the following requirements:

• two parallel T1 links to a backbone, between which
traffic should be load-balanced;

• division of traffic into two priority levels;

• fairness among the connections within each priority
level;

• RED dropping driven by the total number of packets
queued.

Figure 12 shows how to build this combination in Click.
Other router platforms provide these features individu-
ally, and perhaps in certain predefined combinations; in
Click, since the configuration consists of simple elements
composed together, many other configurations could be
built by rearrangement or by choosing different elements.

4.4 Differentiated Services

The Differentiated Services architecture [3] specifies
mechanisms for border and core routers to jointly man-
age aggregate traffic streams. Diffserv border routers
classify and tag packets according to traffic type, and
ensure that traffic enters the network no faster than al-
lowed. Core routers queue and schedule packets based
on their tags. The diffserv architecture envisions flexible
combinations of classification, tagging, shaping, drop-
ping, queuing, and scheduling functions. These compo-
nents naturally correspond to Click elements, and build-
ing them as elements gives the router administrator full
control over how they are arranged. For example, Fig-
ure 13 shows a Click configuration corresponding closely
to Figure 4 (“An Example Traffic Conditioning Block”)
in Bernet et al [2].

RED

Classifier

HashDemux

RoundRobin...

HashDemux

RoundRobin...

PrioSched

ToDevice(...) ToDevice(...)

high priority low priority

Figure 12: A complex combination of dropping, queueing, and

scheduling. The Classifier prioritizes input packets into two virtual

queues, each of which implements stochastic fair queueing (see

Figure 10). PrioSched implements priority scheduling on the virtual

queues, preferring packets from the left. The router is driving two

equivalent T1 lines that pull packets from the same sources, pro-

viding a form of load balancing. Finally, RED, at the top, implements

random early drop over all four Queues.

This configuration separates incoming traffic into 4
streams, based on the IP Differentiated Services Code
Point (DSCP) [20]. The first three streams are rate-
limited, while the fourth represents normal best-effort
delivery. The rate-limited streams are given priority over
the normal stream. From left to right in Figure 13, the
streams are (1) limited by dropping—whenever more
than 7500 packets per second are being sent on aver-
age, the stream is dropped; (2) shaped—at most 10,000
packets per second are allowed through the Shaper,
and any excess packets are queued; and (3) limited
by reclassification—whenever more than 12,500 pack-
ets per second are being sent, the stream is reclassified
as best-effort delivery and sent into the lower priority
queue.

4.5 Ethernet switch

The Click system is flexible enough to handle appli-
cations other than IP routing. For example, Figure 14
shows a functional Click configuration for an IEEE
802.1d-compliant Ethernet switch. It acts as a learn-
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Classifier(...)

Meter(7500)

D
iscard

Shaper(10000)

Meter(12500)

RoundRobin...

PrioSched

SetIP
D

SC
P

(4)

ToDevice(eth0)

1 2 3 4

Figure 13: A sample traffic conditioning block. Meters and Shapers

measure traffic rates; they are available in varieties that measure

bytes per second or packets per second. This example uses pack-

ets per second. 1, 2, 3, and 4 represent DSCP values.

ing bridge and participates with other 802.1d-compliant
bridges to determine a spanning tree for the network,
eliminating cycles in the LAN graph. The central element,
EtherSwitch, can be used alone as a simple, functional
learning bridge. The other infrastructure in the figure—
EtherSpanTree and the two Suppressors—is necessary
only to avoid cycles when multiple bridges are used in a
LAN.

EtherSpanTree implements the IEEE 802.1d protocol
for constructing a LAN-wide spanning tree. At a given
switch, forwarding only occurs among the ports that lie
on the spanning tree. EtherSpanTree controls the learn-
ing and forwarding behavior of EtherSwitch using two
generic Suppressor elements. Suppressor normally for-
wards packets from each input to the corresponding out-
put, but it exports methods to suppress and unsuppress
individual ports; packets arriving on a suppressed port
are dropped. EtherSpanTree uses the Suppressors to pre-
vent the EtherSwitch from learning from or forwarding
to inappropriate ports. The relevant Suppressors can-
not be found using flow-based router context, so the
user must currently specify the Suppressors by name in
EtherSpanTree’s configuration string.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ToDevice(eth0) ToDevice(eth1)

802.1d other 802.1d other

EtherSpanTree(...)

in :: Suppressor

out :: Suppressor

s :: EtherSwitch

Figure 14: The Ethernet switch configuration.

4.6 Limitations

A Click user will generally prefer small elements like
DecIPTTL to large ones like EtherSpanTree, since small
elements can be rearranged to create arbitrary configu-
rations. However, Click’s reliance on packet flow as an
organizational principle means that small elements are
not appropriate for all problems. Particularly, large el-
ements are required when control or data flow doesn’t
match the flow of packets: the control flow required to
process a protocol like 802.1d is too complex to split
into elements.

This also makes it difficult to implement shared ob-
jects that don’t participate in packet forwarding, such as
routing tables. In the configurations shown in this paper,
each routing table is encapsulated in a single packet-
forwarding element, which is its sole user. We plan to
investigate other ways to accommodate shared objects,
perhaps by using something like Scout’s typed ports [18].

We have not yet fully investigated how to schedule
CPU time among competing push and pull paths, a prob-
lem that arises whenever multiple devices simultaneously
receive or are ready to send packets. Currently, Linux
handles much of this scheduling, and the work list de-
scribed in the next section controls the rest. Eventually
all of it should be controlled by a single mechanism.
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5 Implementation

This section describes details of the Click implementa-
tion, including how Click coexists with a Linux kernel.
The implementation consists of about 17,000 non-blank
lines of C++ code. The code compiles into about 145,000
bytes of i386 instructions in the form of a loadable Linux
kernel module. (Click can also be compiled as a user-
level program that communicates with the network us-
ing BPF [14].) A simple element’s push or pull function
compiles into a few dozen i386 instructions.

5.1 System components

A running Click router contains five important object
classes: elements, a router, packets, timers, and a work
list.

• Elements. The system contains an element object for
each element in the current configuration, as well as
prototype objects for every kind of primitive element
that could be used.

• Router. The single router object collects informa-
tion relevant to a given router configuration, and
is mostly used at initialization time. It configures
the elements, checks that connections are valid, and
puts the router on line. The router breaks the ini-
tialization process into stages, making it possible to
allow cyclic configurations without enforcing any
initialization order on the graph. In the early stages,
elements can set object variables, add and remove
ports, and change whether they are push or pull. In
later stages, they can check their connections and
query flow-based router context. Errors can be re-
ported at any stage.

The most complex part of initialization is dealing
with push and pull. The router checks the invari-
ants and assigns agnostic ports their final push-or-
pull status in a single step. Agnostic ports cause
the problem: global context is necessary to deter-
mine what an agnostic port should be, since arbi-
trary numbers of agnostic elements can be strung
together. If the router decides that one of a string
of agnostic elements is push, that constraint must
propagate through the entire string.

• Packets. Click packet data is copy-on-write—when
copying a packet, the system copies the packet
header but not the data. Annotations are stored in
the packet header in a fixed static order; there is
currently no way to dynamically add a new kind of
annotation. In the Linux kernel, Click packet objects
are equivalent to sk_buffs (Linux’s packet abstrac-
tion).

• Timers. Some elements use timers to keep track of
periodic events. In the Linux kernel, Linux timer
queues are used, which on Intel PCs have .01-second
resolution.

• Work list. A lightweight work list can be used to
schedule Click elements for later processing. It is
effectively a simple, single-priority CPU scheduler,
and is run after every 8th input packet or when-
ever there are no more input packets. Queues and
Shapers currently use the work list to delay packet-
upstream notification (Section 2.2). This improves
i-cache performance: under high load, 8 packets will
be enqueued before the work list is run and pull pro-
cessing begins.

5.2 Linux kernel environment

The Linux networking code passes control to Click at
one of three points: when a packet arrives, when a net-
work interface becomes ready to send another packet, or
when a timer expires. Small changes to the kernel were
necessary to gain access to packet arrival and interface-
ready events. In all cases Linux runs Click code in a
bottom-half handler; bottom halves execute functions
that are too substantial to run during an interrupt, but
are not naturally associated with any user process. Linux
ensures that at most one bottom half is active at a time,
so element code need not be reentrant. Interrupts ordi-
narily take precedence over bottom halves, which always
take precedence over user processes. This organization
follows Linux’s own networking code (allowing a fair
comparison), but has performance implications detailed
in Section 6. We plan to implement a polling architecture
for future work.

When a Linux network device receives a packet, the
device hardware copies the packet into a Linux packet
buffer and interrupts. The Linux device interrupt code
appends the buffer to an input queue of packets wait-
ing to be processed, then allocates a buffer for the next
packet and wakes up the bottom half. When a Click
router is online, this bottom half passes packets from the
input queue directly to the appropriate FromDevice ele-
ment, bypassing normal Linux network processing. The
FromDevice then pushes each packet through the ele-
ment graph. The push processing typically stops when
the packet is enqueued at a Queue.

At some point an output hardware device will inter-
rupt to indicate that it can send more packets. The Linux
interrupt code wakes up the bottom half, which calls the
appropriate ToDevice element. The ToDevice initiates a
pull call which makes its way to the Queue. The ToDe-
vice passes the pulled packet directly to the Linux device
driver’s output routine, avoiding Linux’s output queues.
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The Click kernel module uses Linux’s /proc filesys-
tem to communicate with user processes. To bring a
router online, you create a configuration description in
the Click language and write it to /proc/click/config.
Reading this file returns the current configuration, and
writing subsequent descriptions causes the configuration
to change on the fly. When a router is active, a directory
is created under /proc/click for each element in its con-
figuration. Elements can easily add read and write access
points to their directories; we use this interface to provide
access to statistics like packet counts and queue lengths,
and to make parameters like maximum queue lengths
and RED probabilities reconfigurable at run time.

6 Evaluation

Click’s performance goals are to forward packets quickly
enough to keep typical access links busy, to impose a
low cost for incremental additions to configurations, and
to correctly implement complex behaviors like packet
scheduling. This section demonstrates that Click meets
these goals.

6.1 Experimental setup

The experimental setup consists of three Intel PCs run-
ning Linux 2.2.10: a source host, the router being tested,
and a destination host. The router has two 100 Mbit
Ethernet cards connected, by point-to-point links, to the
source and destination hosts. During a test, the source
generates an even flow of UDP packets addressed to the
destination; the router is expected to get them there.

The router hardware is a 450 MHz Intel Pentium III
CPU, an Intel 440BX PCI chip set, 256 megabytes of
SDRAM, and two DEC 21140 100 Mbit PCI Ethernet
controllers. The Pentium III has a 16 KB L1 instruction
cache, a 16 KB L1 data cache, and a 512 KB L2 uni-
fied cache. The source host has a 300 MHz Pentium II
CPU and a DEC 21140 Ethernet controller. The destina-
tion host has a 200 MHz PentiumPro CPU and an Intel
EtherExpress 10/100 Ethernet controller. The source-to-
router and router-to-destination links are point-to-point
full-duplex 100 Mbit Ethernet.

The source host generates UDP packets directly from
the kernel to avoid the expense of system calls. It pro-
duces packets at specified rates using busy loops, and can
generate up to 130,000 64-byte packets per second. The
destination host counts and discards the source’s UDP
packets at interrupt time in the device driver and can re-
ceive up to 130,000 64-byte packets per second. The 64
bytes include Ethernet, IP, and UDP headers. When the
64-bit preamble and 96-bit inter-frame gap are added,
a 100 Mbit Ethernet link can carry up to 148,800 such
packets per second.
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Figure 15: Forwarding rate as a function of input rate for 64-byte

packets. An ideal router that forwarded every packet would appear

as a straight line y = x. The Simple plot is the measured perfor-

mance of a Click configuration that does no processing other than

to emit each input packet. The Linux plot shows the performance

of a standard Linux IP router. The Click plot shows the performance

of the Click IP configuration in Figure 8.

6.2 Forwarding rates

We characterize performance by measuring the rate at
which a router can forward 64-byte packets over a range
of input rates. A plot of input and output rates indi-
cates both the maximum loss-free forwarding rate and
the router’s behavior under overload.

Figure 15 shows the results. An ideal router would
emit every input packet regardless of input rate, corre-
sponding to the line y = x. The line marked Click shows
the performance of the Click IP configuration in Figure 8.
Click forwards all packets for input rates up to 73,000
packets per second. Input rates above that exhibit receive
livelock [17]: an increasing amount of CPU time is spent
in input interrupt processing, leaving less and less time to
forward packets. Figure 15 shows that the Linux 2.2.10
IP forwarding system exhibits the same behavior under
overload, though Linux is faster than Click. The line
marked Simple shows the performance of a Click con-
figuration that forwards input directly to output with no
intervening processing.

Figure 16 shows the effect of packet size on forward-
ing rate. Each point is the maximum over all possible
input rates of the router’s throughput for packets of the
indicated Ethernet frame size. For packet sizes of 250
bytes or larger, both Linux and Click are limited only by
the 100 Mbit Ethernet. For smaller sizes the per-packet
CPU overhead limits the rate.

An otherwise idle Click IP router forwards 64-byte
packets with a one-way latency of 33 microseconds. This
number was calculated by measuring the round-trip ping
time through the router, subtracting the round-trip ping
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Figure 16: Effect of packet size on maximum forwarding rate.

time with the router replaced with a wire, and dividing
by two. 5.8 µs of the 33 are due to the time required to
transmit a 64-byte Ethernet packet at 100 megabits per
second. The latency of a router running standard Linux
IP code is 28 µs.

The simple test configuration used here shows both
Click and Linux in a better light than might be seen in a
real network. The tests did not involve fragmentation, IP
options, ICMP errors, or multiple destinations, though
Figure 8 has all the code needed to handle these. In-
creasing the number of hosts might slow Click down by
increasing the number of ARP table entries. Increasing
the number of network interfaces might decrease perfor-
mance by decreasing the number of packets processed
per interrupt. Increasing the routing table size would
also decrease performance, a problem existing work on
fast lookup in large tables could address [10, 29]. Despite
these issues, a simple benchmark is enough to show the
performance differences between Linux and Click that
are fundamentally due to the Click architecture.

6.2.1 Detailed forwarding cost

Table 1 breaks down the cost of forwarding an IP packet
into five categories. The costs are the amount of CPU
time spent in the relevant code divided by the number of
packets processed. The CPU times were obtained with
the Pentium cycle counter. The input load was 73,000
64-byte packets per second. Interrupts were turned off
for the duration of the Click and Linux IP processing
code so that the cycle counts would not include interrupt
times.

The 10.7 µs per-packet interrupt cost is a function
of the cost of an interrupt and the number of pack-
ets processed per interrupt. In this experiment the in-
put Ethernet device delivered an average of 1.5 packets
per interrupt. The average interrupt cost 1 µs for the

Linux Click
Phase (µs) (µs)

Interrupt 11.1 10.7
IP processing 1.4 2.4
Device send 1.0 1.0

Total 13.5 14.1

Table 1: Average CPU time cost for basic IP forwarding in microsec-

onds per packet.

CPU to save and restore its state, 6.7 µs for Linux to
coordinate with the interrupt controller chip and to dis-
patch the interrupt, and 8.3 µs to execute the Ethernet
device driver’s interrupt handler. The handler moves the
1.5 packets from the receive DMA list to Linux’s incom-
ing packet queue, and frees any outgoing packets whose
transmission has completed. A polling input architecture
[17] might eliminate the CPU and Linux parts of the
interrupt cost under high load, reducing the per-packet
cost from 10.7 to 8.3/1.5 = 5.53 µs. The difference in
interrupt costs between Linux and Click in Table 1 is an
artifact of interrupts being turned off while executing IP
forwarding code: Click leaves interrupts off for longer,
allowing more packets to accumulate for the next inter-
rupt.

The Linux IP processing line in Table 1 includes per-
forming IP forwarding tasks such as checksum compu-
tation and routing table lookup. The Click IP processing
line includes the cost of executing the elements in Fig-
ure 8, which perform the same tasks. The Device Send
line indicates the cost of placing a packet on the device’s
hardware DMA list.

Table 2 details the cost of each element on the forward-
ing path in Figure 8, obtained by repeated invocations
of that element alone. Every cost but that for Queue
includes the overhead of moving a packet from one el-
ement to the next. This overhead appears to be at least
30 nanoseconds, which indicates that at least 20% of the
Click IP processing cost of 2.4 µs is due to architectural
overhead rather than IP processing.

The microbenchmark times in Table 2 sum to 1.4 µs,
whereas the overall measured time to execute all the
Click code is 2.4 µs per packet. Part of the difference
is that Table 2 is missing the FromDevice and ToDe-
vice elements; these are hard to measure in isolation.
Another source of difference is that the microbench-
marks never experience instruction cache misses, while
the Pentium performance counters reveal that the com-
plete Click router (including device driver code as well as
Click elements) spends roughly 2 µs per packet waiting
for instruction fetches.

To help separate the costs of IP processing from el-
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Element Time (ns)

Paint 38
Classifier 95
Strip 54
CheckIPHeader 299
GetIPAddress 72
LookupIPRoute 66
DropBroadcasts 48
CheckPaint 50
IPGWOptions 59
FixIPSrc 49
DecIPTTL 101
IPFragmenter 62
ARPQuerier 257
Queue 145

Total 1400

Table 2: Microbenchmarks of individual elements involved in IP

forwarding, measured in nanoseconds per packet.

ement overhead, we wrote single elements that do the
work of common groups of IP routing elements, then
used the optimizer mentioned in Section 2.5 to replace
those groups in Figure 8 with the single combination ele-
ments. This new configuration is equivalent to Figure 8,
but has only eight elements on the forwarding path in-
stead of 16: it merges Paint, Strip, CheckIPHeader, and
GetIPAddress into a single input element, and Drop-
Broadcasts, CheckPaint, IPGWOptions, FixIPSrc, Dec-
IPTTL, and IPFragmenter into a single output element.
The new configuration processes an IP packet in 1.9 µs
instead of 2.4. When we add eight distinct no-op ele-
ments to the forwarding path of the new configuration,
the packet processing time rises to 2.3 µs. This suggests
that most of the reduction from 2.4 to 1.9 is due to fewer
inter-element calls and fewer instruction cache misses,
and not due to better compiler optimization of the larger
elements.

6.3 Cost of incremental complexity

Click makes it easy to create complex and potentially
slow configurations. Figure 17 shows the performance
of some of the example Click configurations described in
this paper, and demonstrates that small increases in com-
plexity incur small performance costs. The line marked
IP shows the performance of the basic IP configuration
in Figure 8. The line marked IP+RED corresponds to a
configuration in which a RED element is inserted before
each Queue in Figure 8. No packets were dropped by
RED in the performance test, since the router’s output
link is as fast as its input. The IP+SFQ line shows the
performance of Figure 8 with each Queue replaced with

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130

O
ut

pu
t 

ra
te

 (
K

pa
ck

et
s/

s)

Input rate (Kpackets/s)

Switch
IP

IP+RED
IP+SFQ

Figure 17: Forwarding rate as a function of input rate for some

sample Click configurations.

a copy of the fair queuing arrangement in Figure 10. The
Switch line corresponds to the Ethernet switch configu-
ration of Figure 14, which does much less work than the
IP router.

6.4 Differentiated Services evaluation

We tested the diffserv configuration in Figure 13 by
adding it to the IP router (Figure 8) in place of the
Queues. The source host generated four streams of data
simultaneously, each with a different DSCP correspond-
ing to one path through Figure 13. Figure 18 shows the
results. This graph clearly shows the different policing
behaviors of the four streams, and also demonstrates the
livelock behavior discussed in Section 6.2. As the input
rate grows large, Linux takes more and more interrupts
to service the receiving interface. Eventually, there is not
enough CPU time to handle the incoming packets, and
new packets are discarded at the interface itself. Since
packets are discarded early—before entering the Click
configuration—the Meters see a packet rate much smaller
than the true input rate. Thus, at the right edge of the
graph, the Meters switch back to their non-overload be-
havior. Again, this livelock problem could be alleviated
with a polling architecture.

6.5 Performance summary

Click performs well despite its modularity. Its 73,000
packet per second IP forwarding rate is 90% as fast as
Linux on the same hardware, and faster than that of
some low-end commercial routers. For example, Cisco
advertises the 2621, a router with about the same cost as
our hardware ($2000), as forwarding packets between
its two 100 Mbit ports at 25,000 packets per second [6].
Click uses only 16% of the total CPU cycles required
to forward a packet, the rest being consumed by device
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Figure 18: Performance of the diffserv configuration. Each num-

bered line corresponds to one DSCP; see Figure 13. The x axis

corresponds to the input rate for one DSCP, so the aggregate input

rate is four times this value. The performance peak is at roughly

72,000 aggregate packets per second. The line for DSCP 4 jumps

up at 12,500 packets per second because, at that rate, packets with

DSCP 3 are relabeled as DSCP 4.

drivers. Finally, adding a new element to the forwarding
path is cheap enough that it should not deter users from
taking advantage of Click’s flexibility.

7 Related work

Several previous projects have investigated composable
network software. These projects concentrated on end
nodes, where packet motion is vertical (between the net-
work and user level) rather than horizontal (between
interfaces), so they aren’t as well suited as Click for rout-
ing. None of them have pull processing, explicit queues,
or flow-based router context.

The x-kernel [12] is a framework for implementing
and composing network protocols. Like a Click router,
an x-kernel configuration is a graph of processing nodes,
and packets are passed between nodes through virtual
function calls. Unlike Click, an x-kernel configuration
graph is always acyclic and layered, as x-kernel nodes
were intended to represent protocols in a protocol stack.
This prevents cyclic configurations like the IP router (Fig-
ure 8). Connections between nodes are bidirectional—
packets travel up the graph to user level and down the
graph to the network. Packets pass alternately through
“protocol” nodes and “session” nodes, where the ses-
sion nodes correspond to end-to-end network connec-
tions like TCP sessions; session nodes are irrelevant to
most routers. The inter-node communication protocols
are more complex than Click’s. Lastly, many protocol
graph changes require recompilation.

Scout [18, 22] is better suited for routing than the
x-kernel; for example, there are no session objects and

cyclic configurations are partially supported. Execution
in Scout is centered on paths, sequences of nodes that are
run from beginning to end. Packets are classified into the
correct path as early as possible, so that, for example,
Ethernet packets containing MPEG data can be treated
differently as soon as they arrive. Each path is executed
by a thread. It is interesting to note that Click automat-
ically supports paths without enforcing them: an early
Classifier element can separate out MPEG-in-TCP-in-IP-
in-Ethernet traffic, creating a de facto path. Each Scout
path has implicit queues on its inputs and outputs. It is
not clear, therefore, how many queues would be involved
in a complex configuration like the IP router, which is not
amenable to linearization. Scout does have some features
Click currently lacks, namely a more interesting sched-
uler and explicit support for different kinds of inter-node
communication (not just packet flow).

The UNIX System V STREAMS system [25] also
provides composable packet processing modules. Every
STREAMS module includes implicit queuing by default.
Each module must be prepared for the next module’s
queue to fill up, and to respond by queuing or dis-
carding or deferring the processing of incoming pack-
ets. Modules with multiple inputs or outputs must also
make packet scheduling decisions. STREAMS’ tendency
to spread scheduling and queuing logic throughout the
configuration conflicts with a router’s need for precise
control over these functions.

The router plugins system [8, 9] is designed for packet
forwarding, but is only partially configurable. A router
plugin is a software module executed when a classifier
matches a particular flow. These classifiers can be in-
stalled at any of several gates, which are fixed points
in the IP forwarding path. Plugins do not allow control
over the path itself.

To the best of our knowledge, commercial routers are
difficult to extend, either because they use specialized
hardware [19, 21] or because their software is propri-
etary. Even open software is not enough, however. A net-
work administrator could, in principle, implement new
routing functions in Linux, but in practice, we expect few
administrators have the time or capability to modify an
operating system kernel. Kernel programming is harder
than extending a Click configuration.

The active networking research program allows any-
one to write code that will affect a router [26, 27]. How-
ever, this code is intended to teach the router new pro-
tocols, not to change core router properties like schedul-
ing or dropping policies. Click allows a trusted user to
change any aspect of a router; active networking allows
untrusted packets to decide how they should be routed.
The two approaches are complementary.

A number of research projects have built routers out
of off-the-shelf PC hardware and public-domain soft-
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ware [4, 30]. In many ways this trend towards commod-
ity hardware and software is a return to how routers
were constructed 15 years ago [16]. The parts of this
work that focused on making commodity routers fast
use techniques that could be applied to Click.

8 Conclusion

Click is an open, extensible, and configurable router
framework. Our IP router demonstrates that real routers
can be built by connecting small, modular elements, and
our performance analysis shows that this need not come
at unacceptable cost—the Click IP router is just 10%
slower than Linux 2.2.10, our base system. Interest-
ing scheduling and dropping policies, complex queueing,
and Differential Services can be added to the IP router
simply by adding a couple of elements, and Click is flex-
ible enough to support other applications as well. We
have made the Click system free software; it is avail-
able for download at http://www.pdos.lcs.mit.edu/
click/.
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