
Manageable Fine-Grained Information Flow

Petros Efstathopoulos and Eddie Kohler
UCLA Computer Science Department

{pefstath, kohler}@cs.ucla.edu

ABSTRACT

The continuing frequency and seriousness of security incidents un-
derlines the importance of application security. Decentralized in-
formation flow control (DIFC), a promising tool for improving ap-
plication security, gives application developers fine-grained control
over security policy and privilege management. DIFC developers
can partition much application functionality into untrusted com-
ponents bound by a kernel- or language-enforced security policy.
Unless a (usually smaller and less exposed) trusted component is
exploited, the effects of an application compromise are contained
by the policy.

Although system-based DIFC can simultaneously achieve high
performance and effective isolation, it offers a challenging pro-
gramming model. Fine-grained policy specifications are spread
over several application pieces. Common programming errors may
be indistinguishable from policy exploit attempts; the system can-
not expose developers to information about these errors, complicat-
ing debugging. Static checking (as in language-based DIFC) and
new system primitives can reduce these problems, but for dynamic
applications like web servers, they do not eliminate them.

In this paper we propose subsystems that make decentralized in-
formation flow more manageable. First, a policy description lan-

guage specifies an application-wide security policy in one localized
place; communication restrictions are compiled into lower-level la-
bels. Second, information flow-safe debugging mechanisms let de-
velopers debug DIFC applications without violating security poli-
cies. Although these mechanisms are preliminary, we demonstrate
their effectiveness using applications similar to those developed for
Asbestos and other DIFC systems.

Categories and Subject Descriptors:

D.4.6 [Operating Systems]: Security and Protection—Information

flow controls, Access controls; D.2.5 [Testing and Debugging]:
Debugging Aids

General Terms: Security, Design, Management

Keywords: decentralized information flow control, labels, policy
language, debugging

1 INTRODUCTION

Information flow control, or IFC, improves system security by en-
forcing mandatory policy restrictions. Bugs outside the trusted se-
curity kernel cannot violate the information flow policy [6, 7, 9, 15].
IFC’s label formalism can implement security policies such as se-
crecy protection (preventing protected information from escaping

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys’08, April 1–4, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM 978-1-60558-013-5/08/04 . . . $5.00.

a system) and integrity protection (preventing external information
from corrupting a system). Classical centralized IFC concentrates
all privilege—defined as the right to relabel information indepen-
dent of IFC policy—in the security kernel; all other subsystems are
completely constrained. This has security benefits, but important
application policies often require a form of privilege. For exam-
ple, consider a web server that responds to requests from different
application-defined users. The part of the web server that parses
user passwords is necessarily trusted by all users. However, we
might like to constrain other parts by a secrecy policy to prevent
large-scale password theft. A truly centralized IFC system would
seem to require either including the password parser in the system-
wide security kernel, or leaving user passwords unprotected.

Decentralized information flow control, or DIFC, addresses this
problem by decentralizing the notion of privilege [8, 11, 12, 14, 16].
No special privilege is required to create a new security policy; code
is privileged with respect to the policies it creates, while remaining
constrained by other policies’ information flow rules. This allows
applications to split themselves into privileged and unprivileged
pieces, and brings the security benefits of information flow control
to challenging applications like servers. While a conventionally-
designed application occupies a single security domain—a bug any-
where in the application can provide access to the application’s full
rights—the unprivileged parts of a DIFC application execute in re-
stricted domains, and are thus less security critical.

Unfortunately, privileged application code must still create the
relevant security policies by manipulating labels, and any applica-
tion must be debugged. In our experience with Asbestos’s system-
based DIFC [14], these management problems are difficult enough
to hamper adoption. Labels concisely express an application’s in-
formation flow constraints and privileges, but a label, which com-
bines the effects of all policies active on a process, is created piece-
meal using per-policy primitives like “transfer privilege” or “se-
lectively mark a message as secret.” These primitives are spread
throughout the code—in a privilege-separated application, most
communication crosses security domains. This diffuses the individ-
ual policies and obscures their combined effect. Policy debugging
is also daunting. A mistake in policy definition or implementation
often causes a process to have less privilege than it needs. When
it attempts to exercise this nonexistent privilege, the system sees an
attempted security policy violation indistinguishable from an actual
exploit. Debugging such a problem requires extracting information
from the process, but the bug itself prevents the process from ex-
porting this information: all process state is subject to information
flow rules.

In this paper, we describe enhancements to Asbestos that make
privilege-separated applications easier to design, build, and debug.
First, a new policy description language defines label-based secu-
rity policies via allowed process communication patterns (“A can
communicate with B, but not C”). This concentrates policy speci-
fication into one place, making policies easier to write and to rea-
son about. A parser translates the policy into labels, and option-
ally launches applications with the labels already in place. The lan-
guage can specify even complex application requirements, such as

1

Asbestos event processes (a process abstraction that combines iso-
lation and low memory overhead). Although communication pat-
terns are not perfect abstractions for information flow—for exam-
ple, non-transitive communication patterns have no mandatorily-
enforced Asbestos equivalents—they improve programmability for
our target applications, and provide a useful point for further re-
search. Second, debugging is supported by debug domains, which
safely extend the notion of privilege to include application debug-
ging. When a debug domain is given privilege for a given pol-
icy, problems involving that policy may be forwarded to a sepa-
rate debugging process, no matter where those problems occur. De-
bug domains combine information flow safety—debug domains do
not expose information they aren’t allowed to see—with usability.
Our evaluation shows that the development of previously-proposed
DIFC applications is simplified by our system management tools.

This work represents one of several approaches to improv-
ing DIFC’s manageability. The static checking characteristic of
language-based DIFC [4, 11, 12] simplifies application develop-
ment by reporting most errors at compile time. However, policies
are still spread throughout the application; the development pro-
cess is complicated by requirements to design information flow-
safe abstractions and to avoid unsafe idioms; and run-time checks
required for dynamic server applications can reintroduce manage-
ability problems [4]. A localized policy, possibly combined with a
more extensive label inference, might improve manageability. On
the other hand, Asbestos’s successors [8, 16] reduce the classes
of errors that cannot be reported to applications, but some errors
remain unsafe to report, and our debugging primitives would still
benefit programmers by collecting all problem reports in one place.
A fuller DIFC system would combine aspects of all these.

The rest of this paper is organized as follows: Section 2 presents
related work while Section 3 briefly describes some of the prop-
erties of Asbestos. Section 4 presents our policy description lan-
guage and its implementation. Section 5 introduces our approach
to debugging. Section 6 presents our experiences with the proposed
mechanisms, while Section 7 summarizes our plans for future work.

2 RELATED WORK

Many operating systems that implement Mandatory Access Con-
trol (MAC) have used label variants [6] to enforce security poli-
cies, including variants of mainstream operating systems such as
SELinux [9] and FreeBSD [15], and research operating systems
like Asbestos [14] and HiStar [16]. The strict isolation enforced
by these systems introduces system management challenges such
as those addressed here.

SELinux and TrustedBSD are two of the most popular operat-
ing systems that support multilevel security (MLS). They are both
based on implementations of the Flask MAC architecture [13],
which employs a special kernel component called the Security
Server (SS). Policies in these systems are defined in multiple files
using a policy description language that is compiled to a binary
format before it is passed on to the SS for enforcement. These poli-
cies have system-wide effect and are centrally managed by security
officers that are able to dynamically insert them into the kernel.
Debugging in this context is performed mainly through privileged
access to special system files (such as sysfs files) and the console.
This is very different from the decentralized IFC implemented by
Asbestos, where untrusted application developers may create and
manage their own set of compartments and implement policies that
will have to be enforced (by the kernel) within the context of the
application. This work attempts to facilitate system management
tasks such as policy description and debugging without requiring
extra system privilege.

The system management challenges we faced while developing
Asbestos applications such as the Asbestos web server [14] were
the main motivation for our work. HiStar mitigates some program-
ming issues by shifting the responsibility for most process label
changes to the process itself. This lets HiStar safely report most er-
rors to the calling application. However, errors are still generated
by widely separated application fragments, and policy specifica-
tion management remains a challenge. Although HiStar implements
an untrusted, user-level Unix emulation layer, applications running
on this layer are subject to Unix-type security policies; introduc-
ing more complex policies requires interacting with HiStar abstrac-
tions. For instance, running the ClamAV anti-virus application in
a HiStar isolated domain involves a special wrapper/launcher that
implements the necessary label initialization. Our work attempts to
provide a general solution to this wrapper/launcher problem, allow-
ing developers to express even complex security policies at a higher
level.

The Flume system [8] implements decentralized IFC for Linux
using a reference monitor. Flume abstractions go beyond HiStar’s
in supporting management. The promise of the system is to provide
IFC guarantees for Linux applications without requiring extensive
changes to application code. A wiki application using Flume was
implemented using a separate launcher application module for pol-
icy initialization. A policy language like the one we present could
replace such purpose-built launchers.

Jif [12] and JFlow [11] provide language level information flow
control by annotating (labeling) source code at the granularity of
variables and functions. These systems allow developers to express
very fine-grained policies through widespread code annotations,
whereas Asbestos labels enforce policies at the process level. Our
policy framework uses communication-based annotations, as op-
posed to label annotations, to define policies in one piece, minimiz-
ing the dispersion of trusted policy implementation code. Jif policy
checking and debugging is largely performed statically at compile
time, and the generated code is guaranteed to comply with the pol-
icy. This simplifies debugging. However, more complex server-type
applications, such as those in the more recent Jif projects SIF [4]
and the Swift framework [3], involve dynamic decisions by design,
and SIF and Swift allow for the dynamic creation of objects that
are labeled appropriately to adhere to the application policy. De-
bugging the resulting runtime behavior would seem to face similar
management challenges, and could benefit from ideas like our de-
bug domains.

3 DIFC MANAGEMENT CHALLENGES

In this section, we use a concrete example derived from the As-
bestos web server (AWS) [14] architecture to further motivate the
system management challenges addressed in this work, and briefly
introduce the Asbestos system.

Defining a DIFC policy involves deciding on the allowed and for-
bidden information flows among application modules and the rest
of the system, identifying the amount of privilege each operation re-
quires, and granting privilege to application modules accordingly.
It also often involves specifying a policy for dynamically changing
application elements, such as new processes created as users log in
and out of a server. Correctly defining and implementing the ap-
plication policy is of critical importance. With a too-broad policy,
most of the application has privilege, and the benefits of DIFC are
not achieved; with a too-narrow policy, an application will generally
not function (e.g., system components will not be able to commu-
nicate as needed).

Figure 1 presents a policy similar to that of the Asbestos web
server, which provides multiple users with services implemented

2

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

DN

DBP DBW

L
21

4 5

36

Figure 1: A representation of the explicit communication require-
ments in an AWS-like policy. Arrows represent expected commu-
nication patterns; single arrows denote one-way communication. In
the absence of arrows, a per-component default communication rule
applies: white components (N, D, DBP) are able to freely send and
receive information by default, lined components (W) are “receive
only” by default, and shaded components (L, DB) are isolated, un-
able to send or receive by default.

by isolated worker processes. Each box in the figure represents a
labeled application component, and arrows represent communica-
tion between components required for the application to be secure
and functional. The most important aspect of the policy in this ex-
ample is the requirement for confidentiality: a user’s information
must not escape to some other user, even in the presence of bugs in
worker processes. (Most of the figure’s other processes are part of
the server’s trusted computing base.) We examine how each of the
application processes should (not) communicate with the rest of the
system, and define the application policy accordingly.

The N process is the network daemon, a system process with per-
mission to access the network card. N is considered trusted by any
application accessing the network. When a new user connects to the
service through the network daemon, the connection is forwarded
by N to the demux process D (arrow 1 in Figure 1). This process
examines the connection, including possibly a username and pass-
word, and associates the connection with a corresponding user. As
a result, the demux, like the network daemon, is trusted.

After D has identified the incoming user (e.g. Alice), it notifies
N of the user’s identity. This allows N to mark the corresponding
connection with Alice’s identity, which both marks incoming data
as Alice-confidential and allows Alice-confidential data to escape
on that connection. Then D informs the system logger L of the new
connection. For security reasons, L is deliberately isolated and only
needs to receive information from D (arrow 2).

Once the connection has been logged, D forwards the request
to one of the untrusted worker processes W for execution. W thus
resembles a CGI script. W can access Alice’s data through the
database front-end DBP. In order to enforce our confidentiality pol-
icy and prevent Alice’s data from leaking—even if W is buggy—we
require that W can send information only to components that are
privileged to receive data belonging to Alice, such as N, D, and the
database front end DBP. Given that information flowing towards W
does not pose any threat to our confidentiality policy, we need to en-
sure that W may have two-way communication with N, D, and DBP
(arrows 3, 4 and 6) and receive-only communication otherwise.

The database front end DBP is responsible for marshalling all re-
quests going in and out of the database: it sanitizes requests, checks
privilege for writes, and labels, or contaminates, all outgoing data
according to DIFC requirements. Since DBP handles all user data
it is considered a trusted component. In our application DBP needs
to have two-way communication with W and the database DB (ar-
rows 4 and 5), but there is no fundamental policy reason to re-
strict DBP’s communication with other processes—given that it is
a trusted component, anyone needs to interface with in order to ac-
cess the database.

To ensure that all database accesses are marshalled we need to

isolate the database (DB) from the rest of the system, making it
accessible only through DBP.

An attempt by Alice to obtain Bob’s data through DBP will fail
since DBP marks Bob’s data in a way that Alice’s worker cannot
receive. Similarly, if Alice’s worker is buggy and tries to leak Al-
ice’s information through Bob’s network connection, the attempt
will fail since D has arranged that Bob’s network connection can
export Bob-confidential data, but not Alice-confidential data.

The arrows in Figure 1 represent the expected communication
patterns among application components. A complete policy must
also model the communication behavior of each component with
any processes not mentioned explicitly in the diagram. A simple
such model is a default rule that applies to any process pair not ex-
plicitly mentioned. Since N, D, and DBP are trusted components,
their communication behavior does not need to be limited by default
in this high-level policy. (These processes may, and do, limit their
own communication behavior to enforce finer-grained policies—for
instance, N may restrict access to certain communication endpoints,
requiring privilege to send information over to them.) This is repre-
sented in Figure 1 by placing N, D, and DBP in white boxes. In the
case of L and DB an “isolated” default applies, represented by the
shaded box; these processes should be prevented from communicat-
ing with other unprivileged processes. In the case of W a “receive-
only” default applies, represented by the box with diagonal lines. A
“send-only” default rule is also possible. In the absence of relevant
explicit rules, the communication between two processes with con-
trasting defaults is governed by the most restrictive default. For in-
stance, although D’s default rule is “unrestricted communication”,
D may not communicate with DB, since DB’s default rule is “iso-
lated”.

The IPC analogy underlying communication constraint diagrams
like Figure 1 is easy to understand. However, a direct implementa-
tion of such a diagram might generalize poorly to communication
over shared resources, such as files, or to processes created by pro-
cesses in the diagram. Information flow naturally generalizes com-
munication constraints to any flow of information, not just IPC. The
desired behavior is expressed in terms of process and object labels,
which naturally track information through non-IPC channels like
the file system. For example, a file created by DB should not be
directly readable by processes other than DB and D (and possi-
bly helper processes with the same labels); in fact, other processes
should not even be able to discover the new file’s existence.

Figure 1 can be translated into decentralized information flow
labels. For example, labels can prevent L from sending information
to other processes: L becomes “higher secrecy” than the other pro-
cesses in the diagram. Some aspects of communication diagrams
have no exact information flow equivalents. (For example, a full
implementation of the communication pattern W ↔ DBP ↔ DB
would prevent W from contacting DB directly independent of
DBP’s behavior, but Asbestos-like information flow cannot com-
pletely implement this constraint. If W can send to DB via a proxy
DBP, then DBP must be sufficiently privileged that it could grant
W the right to send to DB directly.) Nevertheless, communication
patterns are a useful starting point for investigating simplified spec-
ifications of information flow policies.

Unfortunately, the label translation of Figure 1 is not trivial: ini-
tializing the corresponding processes requires 20 label operations
in Asbestos. The issue is that a communication pattern like Fig-
ure 1 corresponds to several interacting information flow policies,
requiring separate privilege domains and privilege manipulations.
For instance, the relationship between W, DBP, and DB requires
policies that (1) prevent W from sending data to any outside pro-
cess, but (2) allow W to communicate with DBP, (3) prevent DB

3

from communicating with any outside process, and (4) allow DBP
to communicate with DB. Implementing this requires at least two
different kinds of contamination and the corresponding privilege.
First, DB is contaminated to prevent its communication with out-
side processes; however, DBP may remove this contamination, and
must thus hold the corresponding privilege. Second, W is also con-
taminated to prevent it from sending data to outside processes, but
since W and DB have different communication patterns, the con-
tamination governing W must differ from that governing DB.

These interactions are not easy to get right without debugging,
and to make matters worse, debugging an incorrect label configura-
tion is difficult itself. Plausible errors such as DBP lacking receiving
privilege for DB’s messages have effects indistinguishable from ex-
ploit attempts, so the kernel must hide even these errors’ existence
from applications.

3.1 Asbestos

To explain these issues more concretely, we now present an
overview of the Asbestos operating system. More detail has been
published elsewhere [14]. Asbestos is a message passing operating
system based on decentralized information flow control. The funda-
mental IPC primitive is a message sent from one process to another.
The kernel tracks the flow of information among processes by ma-
nipulating processes’ labels.

An Asbestos label is a function mapping opaque identifiers
called tags to sensitivity levels. To the kernel tags are opaque;
applications give them semantic meaning. Any process can allocate
a tag. This operation returns a previously unused member of the set
of 261 possible tags and gives the allocating process privilege over
that tag, meaning that the process can freely manipulate informa-
tion flow for that tag. Privilege is represented by a special level,
denoted ⋆. The other levels allow Asbestos to combine secrecy and
integrity tracking into a single namespace (more usually, systems
track secrecy and integrity using separate labels [8, 10]). These
levels, written 0 through 3, have the following meanings:

0 High integrity; 2 Low integrity;
1 Default integrity and secrecy; 3 High secrecy.

A label combines explicit levels for zero or more tags with a de-

fault level that applies to all tags not otherwise mentioned. For in-
stance, the label L = {a0,b⋆,c3,1} specifies L(a) = 0, L(b) = ⋆,
and L(c) = 3; for any other tag t, L(t) = 1.

Each process P has two labels, a tracking label and a clearance

label. The tracking label TP represents the information P has seen.
The default tracking label is {1}, a label with level 1 for every tag.

When a process allocates a new tag it acquires privilege with
respect to that tag. For instance, if P allocated tag t, its tracking la-
bel would become {t ⋆,1}. Receiving a message raises a process’s
tracking label to indicate the flow of information. For instance, if
P received a message from a process Q with tracking label TQ =
{u2,1}, its tracking label would change to TP = {t ⋆,u2,1}. This
least-upper-bound operation [5] is implemented as component-wise
maximum, except that privilege is preserved (i.e., components at
level ⋆ are preserved). The clearance label CP limits what informa-
tion a process can view. A process P cannot receive a message that
would increase its label above its clearance for any tag. The default
clearance label is {2}, allowing a process to receive low-integrity
information, but not high-secrecy information. For instance, if pro-
cesses P and R have TR = {v3,1} and CP = {2}, then P cannot
receive any message from R since TR(v) > CP(v). A process may
freely raise levels in its tracking label and lower levels in its clear-
ance label (as long as the tracking label remains no greater than the
clearance label), but lowering tracking levels and raising clearance

Process Tracking label TX Clearance label CX

N {w⋆,1} {w3,2}
D {l′ ⋆,w⋆,1} {w3,2}
L {l 3, l′ ⋆,1} {l 3, l′ 0,2}
W {w3,1} {w3,2}
DBP {w⋆,db⋆,db′ ⋆,1} {w3,db3,2}
DB {db3,db′ ⋆,1} {db3,db′ 0,2}

Figure 2: Asbestos labels implementing the policy of Figure 1.

levels requires the intervention of processes with privilege for the
relevant tags. Processes can apply additional labels when sending
messages, either to indicate additional contamination or to transfer
privilege when appropriate. Asbestos’s label changes contain covert
channels, but these are not fundamental to all dynamic DIFC sys-
tems [8, 16].

The label primitive serves multiple higher-level functions, in-
cluding contamination (where certain entities, such as processes
and/or files, have higher secrecy than default with respect to one or
more tags) and privilege (the ability to remove contamination, ef-
fectively declassifying information, by lowering its secrecy level).
All processes and/or objects with similar information flow charac-
teristics for some tag are informally described as being in a com-

partment; the policy language adopts this term. A process may cre-
ate arbitrarily many tags, and therefore may belong to or hold priv-
ilege for arbitrarily many compartments.

Figure 2 shows an example set of Asbestos labels that implement
the policy of Figure 1. For example, DB’s db3 tracking label com-
ponent prevents it from sending information to any process with
clearance less than db3; only DBP has the required clearance. If
the operations required to set up these labels are poorly designed or
implemented, the resulting system would be non-functioning, inse-
cure, or both. For instance, if DBP is not granted privilege to send
information to DB (db′ ⋆ tracking label component), the system will
not function. Similarly, if DB’s sending and receiving ability are not
restricted appropriately, the system may be insecure.

Expressing policies in Asbestos label terms is a difficult task,
especially when performed “from scratch.” Both the difficulty of
this process and the consequences of incorrectly defining and im-
plementing application policies underline the need for mechanisms
and tools that would make policy definition and implementation
easier to manage, more human friendly, less error prone, and easier
to understand.

Several other Asbestos features impact our designs for improv-
ing the DIFC manageability. First, Asbestos messages are sent to
Mach-style ports, whose names share the tag namespace. Applica-
tions can create arbitrarily many ports. Additionally, each port has
its own private clearance label, allowing applications to implement
capability-style security policies. Second, Asbestos’s file system [2]
allows applications to store labeled data on disk. Special files called
pickles are used to map tags, and privilege, to file names; the un-

pickle() operation can recover tag values and privilege from the
pickle files. Finally, a process-like abstraction called the event pro-

cess (EP) reduces the memory required to implement isolated server
applications. Event processes involve a specialized communication
pattern that must be reflected in our policy language. They are used
to represent child processes with different labels from the parent,
but whose memory state is expected to remain close to the par-
ent’s; various kernel resources are optimized for the case of small
deltas between parent and child. Each EP starts up inheriting its par-
ent’s labels and consequently all its privilege and restrictions. An
event process-based server application, such as the Asbestos web
server [14], can greatly reduce the memory burden for maintain-
ing memory caches of labeled data; the Asbestos web server uses

4

1. N can send to any process but L and DB. It can receive from any
process but L and DB.

2. D can send to any process but DB. It can receive from any process
but L and DB.

3. L can send to no process in the system, and can receive from no
process but D.

4. W can send to no process but N, D and DBP, and can receive from
any process but L and DB.

5. DBP can send to or receive from any process but L.

6. DB can send to or receive from no process but DBP.

Figure 3: Our example policy expressed as communication restrictions.

about 1.4 memory pages per differently labeled server instance. In
the AWS example of Figure 1, W and all worker processes would
be implemented using EPs.

4 POLICY MANAGEMENT

DIFC systems take on the responsibility of enforcing security poli-
cies, but shift the responsibility of policy definition and implemen-
tation to application developers. This allows developers to create
more interesting policies, but with current tools the policies them-
selves are difficult to construct. Practical reasons for this include
expressing policies directly in code, which spreads policy imple-
mentation across multiple code locations and complicates reading,
sharing, and debugging the policy, and the label abstraction, which
may be more difficult to engineer than process communication rela-
tionships. We therefore develop a prototype language to experiment
with expressing labels in terms of pairwise process communication
relationships. This requires ways to refer to components participat-
ing in pairwise communication and, most importantly, allowed and
forbidden communication behavior. Our proposed policy descrip-

tion language is capable of expressing application policies in terms
of communication constraints. We compile these constraints down
into the appropriate labels that implement the constraints.

4.1 Policy Description Language

The hypothesis underlying our policy description language is that
developers would prefer to express security policies in terms of
communication relationships rather than in labels. We thus de-
signed a language for expressing policies that resembles the rela-
tionships diagrammed in Figure 1 (and summarized in Figure 3),
but compiles to labels like those in Figure 2. The language spec-
ifies these relationships in one compact and intentionally simple
definition, rather than scattering necessary operations throughout
application code.

The main task of the policy language is to represent the prin-
cipals involved in the policy, which we call compartments, and to
specify the communication rules that constrain communication be-
tween those compartments. Additional constructs facilitate policy
instantiation and handling of dynamic policy-related requirements
at runtime.

First, a compartment represents a set of objects that should be
treated uniformly by the security policy. In Asbestos, these ob-
jects include application processes, process-like abstractions such
as event processes, system services such as the network daemon,
and files. Each compartment has a unique name and is defined by
the comp construct. Figure 4 presents a simplified version of our
Asbestos web server policy written in the policy description lan-
guage; lines 1–17 define the system’s 6 compartments.

Given a set of compartments, the system’s communication be-
havior can be defined pairwise: for any two compartments X and Y ,
the policy defines what communication is allowed between X and

1 comp N {

2 default <>

3 env NET_S NET_R

4 }

5 comp DB {

6 default !

7 unpickle /path/db_s /path/db_r

8 }

9 comp D DBP {

10 default <>

11 }

12 comp L {

13 default !

14 }

15 comp W {

16 default <

17 }

18

19 L < D

20 W <> N

21 W <> D

22 W <> DBP

23 DB <> DBP

Figure 4: A simplified implementation of our example policy in our
policy language. The parser will use this description to produce the
labels of Figure 2.

Y . The four possibilities for each pair are no communication, bidi-
rectional communication, and (less frequently) unidirectional com-
munication in either direction. We write these possibilities as X ! Y

(X and Y cannot communicate), X > Y (X can send to Y but not re-
ceive from Y), X < Y (X can receive from Y but not send to Y), and
X <> Y (X and Y can communicate freely). The last rule stated for
a given pair of compartments takes precedence. Lines 19–23 define
explicit communication rules for the AWS application.

To avoid the tedium of writing a full pairwise rule matrix, most
relationships are defined implicitly through default rules. Each
compartment is associated with a default communication pattern,
either bidirectional (<>), send-only (>), receive-only (<), or iso-
lated (!). In the absence of an explicit rule definition, the commu-
nication between X and Y is defined as the intersection of the cor-
responding defaults. For example, Figure 4 implies that W ! DB

(the intersection of W ’s default W < DB and DB’s default DB ! W).
The default communication pattern also constrains a compartment’s
communication with entities not explicitly mentioned in the policy.

The language is able to express all possible pairwise communi-
cation patterns, including patterns that have no sensible mandatory
DIFC equivalents. For example, information flow generally obeys
a transitive property: if A can send to B, and B can send to C, then
A can send directly to C. Asbestos can prevent A from sending di-
rectly to C only if B is trusted not to transfer its right to send to C.
This leaves the preservation of the communication pattern at B’s
discretion. Our current prototype does not generate warnings on
such cases, but rather spreads privilege as required to implement
a policy. (Alternately, B could lose the ability to communicate with
one compartment after sending a message to the other; in our policy
language, ≪ and ≫ communication operators support this pattern.)

4.1.1 Implementation

The basic task for the implementation of this simple language is
to calculate labels for each compartment’s processes and other en-
tities that, together, constrain communication as required by the
policy. However, since we intend the language to replace existing
error-prone label manipulations, the implementation should pro-

duce these labels at run time, rather than simply providing them
for the developer’s information. Several language features support
this launcher functionality, including definitions of application bi-
naries associated with each compartment; the launcher program can

5

X default TX CX

<> {1} {2}
! {x3,x′ ⋆,1} {x3,x′ 0,2}
< {x3,1} {x3,2}
> {x′ ⋆,1} {x′ 0,2}

Figure 5: The label implementations for X’s four possible default
communication behaviors. For instance, in the case of “!”, x3 in
TX prevents sending to any process that doesn’t have special x3
clearance, while x′ 0 in CX blocks all incoming messages unless the
sender has x′ ⋆ privilege. Note that TX must always be less than or
equal CX , for any tag. (The default tracking and clearance levels for
these tags in other processes are 1 and 2, respectively.)

then start these binaries with the correct labels. Advanced appli-
cation features require additional support. For example, server ap-
plications can create and destroy user compartments at run time,
as users join and leave the system. The policy language supports
this by allowing the user to dynamically parameterize compartment
properties at run time. In this section, we describe the labels gen-
erated for each combination of communication rules, then describe
more advanced implementation features.

The policy language implementation begins by defining two tags
per compartment, one for controlling sending information and one
for controlling receiving information. For compartment X , these are
written x (the “send tag”) and x′ (the “receive tag”), respectively.
Two tags per compartment are sufficient to implement any pair-
wise communication policy. Although two tags are not necessar-
ily minimal—some policies would require fewer than two tags for
some compartments—tags are not a limited resource and more tags
cause little performance penalty in practice [14].

Processes in compartment X have their label components for
x and x′ defined by X’s default communication pattern. Figure 5
presents the Asbestos label implementation of the four compart-
ment defaults for compartment X . Note that the unrestricted default
communication rule, <>, leaves a process’s labels unchanged from
the system-wide defaults.

A communication rule involving two compartments affects the
labels of processes in either compartment. Figure 6 demonstrates
partial labels for the sixteen possible combinations of rules and de-
faults. Our implementation chooses to implement rules of the form
X ? Y using X’s tags. Y ’s tags are involved only if the requested
communication differs from to Y ’s default; for example, imple-
menting a rule like X < Y , which allows Y to send to X , would
use the y and y′ tags only if Y ’s default were ! or <, which prevent
Y from sending by default.

We use the label fragments from Figure 6 to set up compartment
labels. First, the compartment tags implement the defaults of all
compartments, based on Figure 5’s translations. Then, for each rule,
we chose the table from Figure 6 that corresponds to the left-hand
compartment’s default and use it to look up the rule translation.
For instance, if X’s default is “<” (“receive-only”) and the rule is
X >Y , then we will use X’s compartment tags as shown on the third
line of the “default: <” table. If the rule operator violates the other
compartment’s default, we interpret the rule using its tags as well.

Having identified the translation rules that allow us to map de-
faults and rules to Asbestos labels, we built a parser capable of
translating the policy language to Asbestos label configurations.
Using Figure 6’s rules, the policy description of Figure 4 is trans-
lated to labels identical to Figure 2.

4.1.2 Launcher

An application launcher incorporated into the language parser in-
stantiates these labels at run time using additional language con-
structs.

Executables Using an exec block the developer may declare ap-
plication executables to be started in a given compartment, includ-
ing the path of the executable (“bin”), any arguments to be passed
(“args”), and any other compartments to which the processes will
belong (“belongs”). If an executable belongs in multiple compart-
ments, its process’s labels will be the combination of all compart-
ments’ calculated policy labels; if the compartments have conflict-
ing defaults (e.g., one is unrestricted while another is isolated),
then each of the defaults will be implemented in the process la-
bels, which effectively enforces the most restrictive default. As it
initializes a compartment, the launcher creates the compartment’s
send and receive tags. To start a process, the launcher effectively
forks, sets up the forked process’s labels, and executes the named
executable, much like a shell.

The language may also describe external compartments, which
contain processes that run independently of the launched applica-
tion. An example is the network daemon. The tags used to imple-
ment communication rules for external compartments are defined
by env or unpickle language statements, which tell the launcher to
examine environment variables or file system files, respectively, to
find the tag values. Our prototype launcher does not actually im-
plement the defined policy on external compartments; instead, it
assumes the external compartments are already acting correctly.

Event Processes EPs are modeled as forks of a base process, like
a “dynamic process” that may have multiple instances. A dynexec

declaration block nested within an exec block defines EP policy.
Since an EP is an executable instance, its declaration may specify
most of the properties of an executable, such as additional compart-
ments. Each new EP is hosted in a separate, dynamically created
compartment. The “source” property identifies the executable that
is responsible for spawning new EPs by sending the relevant mes-
sages to the base process.

The declarations inside the dynexec block are initialized at EP
creation time by the process responsible for creating the EP. That
process executes a special block of code generated by the policy
launcher; that generated code instantiates the policy. The code is
parameterized through environment variables at run time, allowing
the caller to customize each EP.

In our example, each of the EPs is “spawned” when D dispatches
a new user to W, and needs to be in a receive-only, per-user com-
partment. The automatically generated code ran by D upon creation
of a new EP expects to initialize the new EP compartment tags using
the environment variables USER S and USER R. Before calling the
code, D ensures that USER S and USER R have been initialized
appropriately to reflect the current user.

Using the generated code, the process spawning the EPs is able to
automatically implement application policy for each new EP, create
and transfer ports to bootstrap communication, and set EP environ-
ment variables all in one step.

Bootstrapping The port directive allows developers to declare
uniquely named ports for a process or EP. Also, since Asbestos
ports are labeled and can participate in the policy, we support the
declaration of compartments to which a port’s label belongs, there-
fore ensuring that the port label permits the reception of messages
that carry the contamination of those compartments. Moreover, de-
velopers can further specify the policy port labels implement by
declaring whether the port is “restricted” or “open”: a restricted
port’s label requires privilege with respect to the port for a message
to go through, while an “open” port’s label does not.

The env and env* properties declare environment variables ini-
tialized using process or EP port names, exporting port information

6

X default: <> TX CX TY CY

X <> Y {1} {2} {1} {2}
X ! Y {x2,1} {x′ 1,2} {x′ 2,1} {x1,2}
X < Y {x2,1} {2} {1} {x1,2}
X > Y {1} {x′ 1,2} {x′ 2,1} {2}

X default: ! TX CX TY CY

X <> Y {x3,x′ ⋆,1} {x3,x′ 0,2} {x⋆,x′ ⋆,1} {x3,2}
X ! Y {x3,x′ ⋆,1} {x3,x′ 0,2} {1} {2}
X < Y {x3,x′ ⋆,1} {x3,x′ 0,2} {x′ ⋆,1} {2}
X > Y {x3,x′ ⋆,1} {x3,x′ 0,2} {x⋆,1} {x3,2}

X default: < TX CX TY CY

X <> Y {x3,1} {x3,2} {x⋆,1} {x3,2}
X ! Y {x3,1} {x3,x′ 1,2} {x′ 2,1} {2}
X < Y {x3,1} {x3,2} {1} {2}
X > Y {x3,1} {x3,x′ 1,2} {x⋆,x′ 2,1} {x3,2}

X default: > TX CX TY CY

X <> Y {x′ ⋆,1} {x′ 0,2} {x′ ⋆,1} {2}
X ! Y {x2,x′ ⋆,1} {x′ 0,2} {1} {x1,2}
X < Y {x2,x′ ⋆,1} {x′ 0,2} {x′ ⋆,1} {x1,2}
X > Y {x′ ⋆,1} {x′ 0,2} {1} {2}

Figure 6: Mapping of X ? Y communication rules to labels. The label components corresponding to X’s default (Figure 5) are underlined; X
and Y ’s labels are further modified with respect to x and x′ according to the non-underlined elements. We assume Y ’s default is <>; other
defaults are analogous.

out from the launcher. The env* property also grants the launching
process privilege with respect to the named ports.

Running the Application When instantiating the application us-
ing the configuration file, the launcher forks a process for each ex-
ecutable, then performs the following tasks:

• Implementation of the policy by setting up process labels as
calculated for each process.

• Creation of all process ports and setup of port labels according
to policy.

• Environment variable initialization for all processes using the
newly created port values.

• Granting of port privilege to processes according to policy.

• Transfer of ports to their respective owners.

• Making the new processes runnable.

Once the developer has expressed the policy using the policy con-
figuration language, little or no code modification is required for
the application to run using the launcher.

A complete implementation of the AWS policy, including exe-
cutable declarations, environment variables and EPs, can be found
online [1].

4.2 Discussion

Our language attempts to simplify policy description, but does not
seek to replace Asbestos labels. If we find that labels are subsumed
by our policy language, then there might be no need for labels. Cur-
rently, though, our language cannot capture the full expressiveness
of labels. For instance, a process may participate in multiple differ-
ent policies, each of which is depicted on its labels. The combina-
tion of all policies defines the process’s final behavior. Our policy
description language is able to define each policy separately, but
can not replace the globally enforced process labels in IFC track-
ing. Although we have achieved label operation performance ca-
pable of supporting realistic applications, such as the AWS, it will
require significant effort before the policy language is optimized
enough to reach similar performance levels. Nevertheless, our pol-
icy language can already use communication relationships to repre-
sent fairly complex policies.

5 DEBUGGING MECHANISMS

Although the policy description language helps implement cor-
rect policies, it is hard to eliminate all development errors caus-
ing policy-related bugs, such as improper declassification, lack of
necessary privilege or clearance, or processes getting contaminated
improperly. These bugs usually manifest themselves as label errors
and—from the kernel’s point of view—as attempts to violate infor-
mation flow rules indistinguishable from genuine attempts to break

system policy. Even in the absence of label errors, while develop-
ing for Asbestos we had to resolve other, more traditional types
of bugs that caused unexpected process death, such as system call
failures (e.g., due to bad arguments) or null pointer dereferences.
Debugging mechanisms in a conventional development environ-
ment assume free access to system and application state. Gathering
and exposing information such as stack traces, system call traces,
file operations, and communication behavior can be done with few
or no restrictions. In the presence of DIFC, debugging is rendered
challenging because this ability to gather system information is re-
stricted by policy rules.

Exposing debugging information to developers almost always
causes debugging data to flow between compartments. As with any
other data exchange between compartments, debugging messages
generated by the system must not violate policies enforced by As-
bestos DIFC. Our goal was therefore to develop useful debugging
facilities whose information flow behavior cleanly maps onto As-
bestos’s existing DIFC model, and especially its privilege model.
We previously performed most of our debugging by exercising our
access to the Asbestos console, where we could inspect all related
messages printed by the kernel. Of course, unprivileged developers
cannot be allowed to utilize this global channel.

The local channels of decentralized privilege did guide our
design, however. Without console access, an Asbestos developer
might gain debugging visibility by spreading privilege more widely
than usual. For example, the application’s components might get
privilege for the tags corresponding to a special “debug user.” This
widespread privilege would relax communication restrictions for
the corresponding tags, giving debuggers better visibility into appli-
cation behavior. Of course, privilege would also change application
behavior; to be useful for debugging, the application itself would
emulate the unprivileged behavior, reporting any errors it observed.

Although this hypothetical system would present implementa-
tion difficulties, such as correctly emulating unprivileged behavior
at user level, it would clearly fit into Asbestos’s DIFC model. In-
spired by this analogy, we introduce the debug domain primitive
and present a system that utilizes kernel extensions to provide sim-
ilar behavior as the hypothetical system, but with much better ease
of use. The result cleanly fits debugging into Asbestos DIFC.

5.1 Label Errors

The high frequency and importance of label errors for Asbestos de-
velopment make them a good working example for DIFC debug-
ging. Assume that process P attempts to send a message to process
Q, but the attempt fails because of a label error caused by poor pol-
icy implementation. (For instance, a level in TP might be above the
corresponding level in CQ.) Such an error will be treated as any
other label error—that is, as an attempt to violate information flow
rules—and information about the error, including its very existence,

7

is concealed by the Asbestos kernel. This makes it particularly dif-
ficult for an unprivileged application developer to diagnose and fix
the bug. It would be very helpful if the system provided information
such as:

• The source and destination of the message that caused the la-
bel error;

• Identifying message details (e.g., its type and ID);

• The tag/port that caused the label error (the “faulting tag”);

• The levels of the faulting tag in the sender’s tracking label and
the receiver’s clearance label; and

• The particular type of label error.

A message containing this information conveys to its recipient in-
formation from both the sender’s and receiver’s compartments, such
as the type of label error and the faulting tag level on both sides’ la-
bels. Therefore, in order to preserve information flow, the message
should also carry both processes’ contaminations. This will ensure
that the debug message may only be received by processes that have
clearance to receive information from both P and Q.

In IFC terms, collecting debugging information belonging to var-
ious compartments requires privilege to declassify information with
respect to those compartments. Since security policies rarely pro-
vide application developers with the required privilege, we need to
provide a way for developers to exercise privilege in a limited, con-
trolled way, only for debugging purposes. Essentially, we want to
create a new type of debugging privilege, which will represent the
ability to declassify debugging information with respect to a set of
tags. The developer will exercise this privilege by granting the ap-
plication debugging privilege over a set of application tags, such as
the tags corresponding to a fake user intended only for debugging.
When an error occurs, the system will search for error information
subject to debugging privilege and report any such information to
the relevant debugger process or processes. However, to maintain
proper information flow control, the kernel appropriately labels the
debugging information; in the case of the label error, the resulting
label is TP ⊔TQ, which combines both P and Q’s tracking labels.
A debugging process will only see the information if allowed, but
since P and Q’s labels will generally consist of tags subject to de-
bugging privilege, issues with hidden errors will likely not arise.

5.2 Asbestos Debug Domains

The debug domain (DD) primitive represents this debugging privi-
lege and attempts to address DIFC’s debugging challenges. A DD
models three types of privilege: the privilege to declassify debug-
ging information with respect to certain compartments, the privi-
lege to receive such information, and the privilege to manage this
mechanism. In essence a DD specifies to the kernel what tags
should generate debugging messages and which processes should
receive those messages. DDs may address a number of different
debugging problems sharing three basic characteristics:

• They are triggered by a specific type of event, such as a label
error;

• They involve a specific set of triggering tags, such as a set of
potential faulting tags; and

• all parties that hold the appropriate debugging privileges and
have declared interest in such events should receive debugging
messages when such events occur.

The primary element of a DD is a collection of tags called DD
member tags, or simply members. The DD represents privilege to

debug with respect to its members, essentially representing privi-
lege to declassify debug information—with respect to members—to
anyone able to receive debug messages from that particular DD.

Holding privilege over the DD gives a process the right to manip-
ulate its member list and the right to connect listening ports to the
DD. By connecting a listening port to a DD, a process instructs the
DD to send debug messages to that port when bugs involving one
(or more) of the DD members occur. Each DD can have an arbitrary
number of listening ports, as well as an arbitrary number of member
tags. Apart from privilege over the DD, adding member tags and/or
connecting listening ports also requires privilege over the tags/ports
that are being added/connected. By requiring privilege over all rele-
vant tags in order to manipulate a DD we bring debugging privilege
into the label system as an instance of an already-existing privilege.

Privilege is also required to modify the properties of a DD, such
as the types of events that are being monitored and the parties that
will be notified when such events are triggered (the owner of the
DD, the sender of the message that triggered the event, the recipi-
ent of the message, or any combination of the three). However, pro-
cesses that receive messages sent to listening ports need not have
privilege for the DDs to which those ports are connected.

Figure 7 is a visual representation of a DD represented by tag
ddt.

h1, h2, h3, ... , hN

p1, p2, p3, ... , pK
set of K attached ports

set of N member handles

Modifiable only
by processes that

ddt

ddt flags
have { ddt * }

Figure 7: A visual representation of a debug domain represented by
tag ddt, including its member tags, connected listening ports, and flags
(characteristics).

Any process may create an arbitrary number of DDs, whose
members may or may not be disjoint; any tag may be a member
of multiple DDs. A process’s ports may be connected to multiple
DDs.

5.3 Implementation

A debug domain tag ddt represents a single DD and is used to man-
age its associated member tags and listening ports. ddt is created
by calling the sys new tag() system call with the appropriate ar-
guments, and DD properties can be managed through the use of
sys debug ctl().

The DD primitive is used in conjunction with different types of
triggering events to implement four debugging applications:

• Label error debugging, using label errors as triggering events.

• System call debugging: using issuing of system calls as trig-
gering events, we generate debug messages containing infor-
mation about the system call, its caller and its results.

• Label history debugging: using label changes as triggering
events, we generate debug messages that contain the label
delta.

• Process exiting: using a process’s death as triggering event,
we generate a debug message that informs processes that may
be interested in this event (e.g., processes that have called
wait() on that process).

Each triggering event is handled by a wrapper function responsi-
ble for that type of error. Eventually, these wrapper functions gen-
erate and send debug messages to all appropriate destination ports.
Sending a debug message involves the following steps:

8

Message type Message label

Label-error debugging (TP ⊔TQ)⊓{d1 ⋆,d2 ⋆, . . . ,dn ⋆, pl ⋆,3}
Syscall tracing TP ⊓{d1 ⋆,d2 ⋆, . . . ,dn ⋆, pl ⋆,3}
Label tracing TP ⊓{d1 ⋆,d2 ⋆, . . . ,dn ⋆, pl ⋆,3}
Process exiting TP ⊓{d1 ⋆,d2 ⋆, . . . ,dn ⋆, pl ⋆,3}

Figure 8: Labels for messages generated by the four debug domain
applications. ⊔ is the least upper bound operator and ⊓ the greatest
lower bound operator. d1,d2, . . .,dn are the member tags of the DD,
while pl is the connected port to which the message will be sent. For
label-error debugging process P has attempted to send a message to
process Q; for the other applications, P is the relevant process.

1. Check that the relevant process has declared interest in this
type of event. If not, return.

2. Iterate over the debug domains of which the faulting tag (i.e.,
the tag/port that triggered the event) is a a member. Discard
the domains that are not related to the event type in question.

3. For each remaining debug domain, investigate its listening
ports. If the port belongs to one of the processes that are sup-
posed to be notified, generate and send a debug message to
that port. For instance, if the DD flags specify that the sender
of the relevant message must be notified, the debug message
will be sent to any listening ports belonging to the sender.
Other possible recipients include the destination of the mes-
sage and the owner of the debug domain.

The most sensitive aspect of writing a debug wrapper function is
identifying the proper label that needs to be attached to the message.

Our implementation of DDs and their applications involved nu-
merous changes in the Asbestos kernel, including debug domain
implementation, identifying cases requiring debug message gener-
ation, actually generating the messages, and managing debug do-
mains via system calls. At the user level, we implemented interfaces
that allow developers to create and manage DDs as well as higher-
level library calls that use DDs to provide a service, such as system
call tracing and debugging libraries.

5.4 Applications

Label Error Debugging Label error debugging uses DDs to pro-
vide useful information about label errors. Each such debug mes-
sage contains information about the type of the label error, the fault-
ing tag, the source and destination of the faulting message, and the
level of the tag in the sender’s tracking label and the receiver’s clear-
ance label. (In the presence of more than one faulting tag we would
fault on each of them separately, generating multiple debug mes-
sages.) Since this message is revealing information about the desti-
nation (e.g., the destination clearance label with respect to the fault-
ing tag) we need to make sure that it is properly contaminated: the
recipients of such debug messages will carry the contamination of
both the sender and receiver of the faulting message. For instance,
if P tries to send a message to Q and fails because of a label error,
label debugging needs to examine the faulting tag, determine which
processes may receive a debug message with respect to that tag, and
label the message with the least upper bound of P and Q’s labels,
explicitly lowered for debug domain members (since a privileged
process has explicitly permitted debugging—i.e., declassification—
with respect to those tags). The exact contamination carried by the
debug message in this example is presented in Figure 8.

To make the use of DDs more concrete, we revisit our AWS ex-
ample. The worker code example of Figure 9 uses a private file to
store some of its state. Function worker init() creates a new tag
mytag (line 7), uses it to make the file private by contaminating it
with {mytag3} (line 8), and grants itself clearance to receive such

1 void

2 worker_init(char ** argv, int argc) {

3 tag_t mytag, ddt, dport, debugger;

4

5 /* create new tag and use it to contaminate

6 private file */

7 sys_new_tag(&mytag, "my secret port");

8 writefile(priv_file, Contamination={mytag 3, 1});

9

10 /* allow ourselves to access

11 contamination {mytag 3} (i.e. read file) */

12 self_give_clearance(mytag, 3);

13

14 /* create new DD (ddt) and connect dport to it at

15 creation time. Add mytag to its members */

16 sys_new_dd(&ddt, DEBUG_LABELS, &dport);

17 sys_add_member_to_dd(ddt, mytag);

18

19 /* spawn debugger and transfer dport to it, so it

20 can receive debug message from it */

21 spawn_process(&debugger);

22 sys_transfer_tag(dport, debugger);

23 ...

24

25 /* prematurely drop {mytag *} privilege */

26 sys_tag_drop_privilege(mytag);

27 r = http_output("Initialization: success!");

28 ...

29 return;

30 }

31

32 int

33 main(char ** argv, int argc) {

34 worker_init(argv, argc);

35 ...

36 /* by reading file, we get contaminated with

37 {mytag 3} since we dropped privilege */

38 read_from_my_file();

39

40 /* {mytag 3} contamination may not

41 escape to the network. LABEL ERROR! */

42 http_output(input);

43 ...

44 }

Figure 9: Code example where DDs (used by the debugger) would help
diagnose a bug causing a label error (because of dropping privilege pre-
maturely on line 26).

contamination later (line 12). Then the function creates a label-error
DD, represented by tag ddt, connects port dport to it (at creation
time), and adds mytag to its members (lines 16–17). This allows the
owner of dport to receive debugging messages whenever a label er-
ror in relation to mytag occurs. A new debugger process is spawned
and ownership of dport is transfered to it (lines 21–22). On line 26
the process mistakenly drops privilege with respect to mytag and
therefore becomes susceptible to {mytag3} contamination, which
it receives when the main function tries to access the private file on
line 38. This leads to a label error when the process tries to output
to the network on line 42, since {mytag 3} is private to the worker
and the network daemon does not have clearance for {mytag3}.

In this example, the debugger has the mytag⋆ privilege required
to declassify messages with respect to mytag, and therefore can no-
tify the developer about the label error debug message received be-
cause of the forbidden operation on line 42.

System Call Tracing We used debug domains to provide users
with system call tracing messages. By adding the special control
tag of process Q to a DD that is configured to use system calls
as triggering events, we enable system call tracing for Q. Debug
messages containing information about every system call Q issues
(system call type, arguments passed to it and return value) will be
sent to all ports connected to the DD.

Since these messages directly expose information related to the
process that is being traced (Q), each debug message must carry Q’s

9

contamination, omitting any contamination related to debug domain
members.

Label History and Exiting Processes Debugging is facilitated
by a mechanism that informs developers of changes to a process’s
labels. If process P’s control tag is added to a DD using label mod-
ifications as triggering events, “label history” debug messages will
be generated every time P’s labels change. Each message contains
the differences in the label components as well as the type of action
that led to the change (e.g. “reception of message”), and carries P’s
contamination. In the context of the example presented in Figure 9
the developer can use label history to identify the calls that led to
dropping mytag privilege (line 26) and getting contaminated with
respect to mytag (line 38).

Additionally, by using the death of a process as the triggering
event, a final type of DD identifies when processes exit, potentially
due to bugs or failures.

6 EXPERIENCES AND EVALUATION

To evaluate our system management mechanisms, we show how
they could aid the development of applications previously presented
by DIFC systems such as Asbestos, HiStar, and Jif. More specif-
ically, we use our policy management tools to express a variety
of DIFC application policies, and then demonstrate that debug do-
mains are able to deliver policy-safe debug messages with reason-
able overhead.

6.1 Implementation of Sample Policies

Our policy language’s parser and launcher are implemented in
Python. The actual runtime cost of parsing and launching policy
configurations is minimal, even in the case of long, complex poli-
cies, but is currently hampered by large Python startup costs on
Asbestos.

We have used our policy language to describe several interesting
policies. Although no static policy language could describe every
dynamic information flow policy, our policy language’s ability to
express a range of previously presented policies, including chal-
lenging ones, indicates its fitness for practical and user-friendly in-
formation flow policy specification.

Our simplified version of the AWS policy presented in Figure 1
is based on our implementation of the full Asbestos web server pol-
icy [14] in our policy language. This was a challenging exercise
since the policy uses all of Asbestos’s features, including event pro-
cesses, to provide both system-based information flow isolation and
high performance.

In this example we make use of the dynexec directive to describe
worker EPs. We have fully implemented the AWS policy, including
all executables and ports required for the application. Therefore, the
511-line long specialized AWS launcher previously used for label
initialization and process spawning is no longer necessary. Also,
a preliminary port of the AWS, currently under development, will
allow us to remove at least 28 additional policy related operations
from various places in the code. Figure 10 presents the part of the
AWS policy that declares the web server worker processes which
utilize EPs to handle user connections. The full policy is also avail-
able [1].

Using its Unix compatibility layer, HiStar [16] can run the
ClamAV anti-virus program, ensuring no leakage of private data
even if the ClamAV processes become compromised. The main
ClamAV process may receive information from the rest of the sys-
tem (for instance, it may read a virus database), but it is prevented
from exporting information so as to avoid leaks (lines 3 and 15–
20). It also has clearance to receive information contaminated with

1 comp W { default < }

2 # worker processes for login and

3 # profile viewing AWS services

4 exec worker1 worker2 {

5 bin /okws-login login

6 bin /okws-view view

7 belongs W

8 # each worker needs to communicate

9 # with the rest of the system

10 port WP { type open }

11 # port that will be used as

12 # worker verify handle

13 port WV { type open }

14 # EP declared for each worker.

15 # Each new EP is created when the demux

16 # sends a new user to a worker

17 # (hence the "source" directive)

18 dynexec USER {

19 source demux

20 # EP implements different default

21 # that parent process

22 default !

23 # and belongs to (externally initialized)

24 # user compartment

25 belongs (env USER_S USER_R default <)

26 # file path where generated EP

27 # initialization code will go

28 file /ep-configs/user-tmpl

29 port WRPORT { type open }

30 # user’s "grant" tag. {UG *} is required

31 # to modify user’s data

32 port UG {

33 type restricted

34 owner parent

35 belongs (env USER_S USER_R default <)

36 }

37 # NETROOT belongs to the net daemon

38 env* NETPORT=port:NETROOT

39 env WRPORT=port:WRPORT

40 env* DPORT=port:DEMUX_USERP # port to D

41 env* UG=port:UG

42 }

43 env SELFPORT=port:WP

44 env* DBP=port:DBP # port to database proxy

45 env MYVERIFY=port:WV

46 # port to the demux

47 env DEMUXPORT=port:DEMUX_USERP

48 }

Figure 10: Part of the AWS policy description showing the declaration
of the compartment and executable for AWS workers. The executable
also includes worker EP declaration.

respect to the calling user (line 40), but doesn’t hold the user privi-
lege required to modify user data. The same applies to the helper
processes it spawns. It also utilizes a private /tmp directory that
contains sensitive user data related to ClamAV, and therefore car-
ries both user and ClamAV contaminations (lines 25–30). Finally,
a privileged process can declassify information out of the ClamAV
compartment and send it to a terminal (lines 4, 7–12 and 38–39).
HiStar uses a specialized launcher to run the ClamAV anti-virus
program, the 110-line long wrap process. This process sets up the
application’s policy. The ClamAV anti-virus policy example ex-
pressed in our policy configuration language is described in 40 lines
(Figure 11). Just as wrap can protect processes other than ClamAV,
so simple changes to Figure 11 can protect different executables; in
a sense, Figure 11 is a generalization of wrap’s policy.

HiStar also presents a VPN isolation example. This example as-
sumes that a user is simultaneously connected to both the Inter-
net and a virtual private network (VPN), using two separate net-
work stacks and two browser instances (one for each network). A
VPN client is placed between the two networks, holding privilege
to forward information from the one to the other only when the
user explicitly allows it—for instance, after a file from the Internet
has been checked for viruses or after a file from the private net-

10

1 # We first declare the three compartments

2 comp USER { env USER_S USER_R default ! }

3 comp AV { default < }

4 comp PRINTER { default <> }

5

6 # Executable declassifying output to the tty

7 exec tty_printer {

8 belongs PRINTER

9 port PRINTER_PORT { type restricted }

10 env MYPORT=port:PRINTER_PORT

11 env AV_PORT=port:CLAMAV_PORT

12 }

13 # ClamAV process. Also spawns helper process

14 # belonging in same compartments

15 exec avscanner {

16 belongs AV

17 port MAIN_AV_PORT { type restricted }

18 env MYPORT=port:MAIN_AV_PORT

19 env PRINTER_PORT=port:PRINTER_PORT

20 }

21 # Process modeling private /tmp folder.

22 # Could be replaced by labeled FS

23 # This process also belongs to the

24 # externally initialized user compartment

25 exec private_tmp_file_server {

26 belongs AV USER

27 port TMP_PORT { type restricted }

28 env MYPORT=port:TMP_PORT

29 env AV_PORT=port:MAIN_AV_PORT

30 }

31 # Process modeling private user data.

32 # Could be replaced by labeled FS

33 exec user_data_server {

34 belongs USER

35 env AV_PORT=port:MAIN_AV_PORT

36 }

37

38 AV <> PRINTER

39 USER <> PRINTER

40 USER > AV

Figure 11: HiStar’s ClamAV security policy implemented using our
policy language.

1 # We declare the five compartments

2 comp VPN INTERNET INTERNET_IPSTACK { default < }

3 comp VPN_CLIENT { default <> }

4 comp NETD { default ! }

5

6 # Both the vpn browser and the vpn IP stack

7 # belong to VPN

8 exec browser_vpn ipstack_vpn { belongs VPN }

9 exec browser_internet { belongs INTERNET }

10 exec ipstack_internet { belongs INTERNET_IPSTACK }

11 exec vpn_client { belongs VPN_CLIENT }

12 exec netd { belongs NETD }

13

24 VPN_CLIENT <> VPN

25 VPN_CLIENT <> INTERNET_IPSTACK

26 INTERNET_IPSTACK <> INTERNET

27 INTERNET_IPSTACK <> NETD

Figure 12: A policy similar to HiStar’s VPN isolation, implemented
using our policy language.

work is verified to be non-confidential. Figure 12 shows a similar,
but more restrictive policy configuration (we completely disallow
browser and IP stack instances from interacting with the rest of the
system). Information can escape from one network to the other only
if the VPN client declassifies it.

Another interesting policy we were able to express was Jif’s [12]
medical study example. In this scenario a hospital (modeled on line
3 of Figure 13 by an external compartment) possesses patients’ per-
sonal data. This data should be anonymized using a data extrac-
tor process E and then forwarded to a group of researchers R. To
process patient information the researchers use a statistical pack-
age SP that accesses a database DB with statistical methods. The

1 # The external compartment the

2 # "hospital" process belongs to

3 comp H { env HOSPITAL_S HOSPITAL_R default <> }

4 # Compartments for data extractor, researchers,

5 # statistics package, and DB

6 comp E R SP DB { default ! }

7 # Compartment for the process that

8 # outputs results of study

9 comp OUT { env OUT_S OUT_R default <> }

10

11 E <> H

12 E > R

13 R <> SP

14 SP <> DB

15 R > OUT

Figure 13: A policy configuration implementing the security model of
the Jif medical example. For brevity we omit executable declarations.

Number of AWS users
1000 5000 20000 50000 100000

Unmodified AWS 1652 1574 1533 1498 1479
Modified AWS 1651 1567 1493 1490 1454

Table 1: Throughput comparison comparison between the unmodified
version of the AWS and the version using debug domains. Each column
corresponds to the number of users in the system, ranging from 1000 to
100000. Measurements correspond to connections per second.

researchers should also be able to export the results to an output
OUT , modeled as an outside compartment. In this policy we pri-
marily want to ensure that no patient data leak to the outside world
(even if application modules have bugs), and secondarily ensure
that only the statistical package has access to the confidential sta-
tistical database. Unlike the Jif solution, Figure 13 does not pro-
vide isolation at the granularity of application variables, but it still
achieves the goal of protecting against leakage of patient data.

6.2 Debug Domains in Use

We have successfully used debug domains to implement debugging
tools and proof-of-concept debugging tests. Label error debugging
has been verified using instrumented test cases—including situa-
tions where the user has no console access—and debug messages
were successfully collected. To evaluate the performance hit of de-
bug domains we modified the Asbestos web server so that every
tag it generates is added to a label-error DD. Asbestos is running
on a 2.8GHz Pentium 4 with 1GB of RAM, connected on a 1Gbps
switch. We ran throughput measurements and compared our results
to the unmodified AWS. As shown in Table 1, the performance hit
for the throughput of AWS is insignificant (overall less than 3%
and in most cases less that 1%), even for large numbers of users
in the system. (The general throughput improvement relative to
previously reported data is due to an improved label implementa-
tion [14].)

We ran micro-benchmarks to measure the average cost of some
major kernel operations for debugging. The results, presented in Ta-
ble 2, and show that the cost is reasonable for frequent operations,
such as adding a member or connecting a port to a DD, as well as
for debug message generation. For label errors, debug message gen-
eration requires the kernel to repeat the label checks that lead to the
error to capture the necessary details; for all debugging messages,
including label errors, the kernel must form the debug message and
perform operations to calculate its label.

System call tracing was used to implement an asynchronous
strace() library call. Similarly, label history debugging was used
to implement a label tracing library call (lt()) that reports all of
a process’s label changes. Additionally, exiting process debugging
has been used to implement the Asbestos wait() library call. Finally,

11

Add member/ Debug message generation
connect port label (to sender/rcvr) syscall exit

cycles 2291 / 1275 31625 / 26316 12548 5606

Table 2: Cost in cycles of debug domain operations: adding of a mem-
ber tag, connecting a new port, and generating debug messages for label
errors (addressed to the sender and receiver of the offending message),
system call tracing, and exiting processes.

we have implemented a simple debugger library that is using the de-
bug domain mechanisms to gather debugging information on behalf
of one or more processes. Each process may fork a new debugger
by calling debugger spawn(). All privilege the process possesses at
that time is inherited by the debugger, so that debug information can
be declassified even if the process loses privilege at a later time. Li-
brary calls have been implemented to grant additional privilege to
an already existing debugger if needed.

As a proof of concept application, we have also built a simple
tool around AWS that allows users to upload untrusted web server
extensions and runs them within a DD. The tool then captured all
debug messages the developer had clearance to receive. Through a
web-based interface, the tool was able to provide two basic func-
tions: debugging console-like output (e.g. label error reports) and
system call tracing.

7 FUTURE WORK

Our policy description language is a first step towards better policy
management in DIFC systems. We intend to improve the language
interface and give developers better control over policy descrip-
tion. More specifically, developers are expected to produce sensible
policy descriptions and our parser is currently unable to identify
the configurations that are impossible to implement using IFC. We
would like to formalize the characteristics of policy descriptions
that cannot be mapped to valid (and secure) label implementations
so as to identify such cases and handle them accordingly (e.g. pro-
duce helpful, diagnostic error messages).

Although we have already used our policy description language
to express a number of policies, we want to test it further by build-
ing large applications with challenging policies. More specifically,
it would be interesting to build such an application from scratch,
without having to write any policy related code “by hand”.

We would also like to investigate the reverse problem of trans-
lating Asbestos label setups (e.g. snapshots of application labels
at runtime) to equivalent high-level policy descriptions. That could
facilitate debugging of policy problems that appear only at runtime
(e.g. due to interaction with the rest of the system). This problem is
very challenging, since it is not always easy to infer the policy from
a given label setup.

Finally, we want to improve the usability of our debugging mech-
anisms, primarily by improving the existing debugger and by imple-
menting more tools and libraries that use debug domains.

8 CONCLUSION

At the heart of any DIFC application lies the application policy,
which specifies the rules that govern information flow. The restric-
tions imposed by the policy affect system management tasks and
introduce new challenges for developers.

In this paper we have investigated and proposed solutions for
two such system management challenges in Asbestos: policy man-
agement and debugging. Our policy description language is able to
express a wide variety of policies in a human-friendly way. Tools
translate high-level policy descriptions to equivalent Asbestos label

configurations and optionally instantiate the policies using applica-
tion binaries. Furthermore, we identified the requirements for infor-
mation flow aware debugging mechanisms that can assist develop-
ers without violating application policy. We introduced the debug

domain primitive and used it to implement debugging mechanisms
and tools such as label error debugging, system call tracing and la-
bel history tracking.

We tested our system management mechanisms using synthetic
tests as well as examples of interesting policies from Asbestos and
HiStar and observed significant improvement in the ease of policy
description, development and elimination of bugs. Although this
work is only a first step, hopefully these and other programmability
improvements will bring the security benefits of DIFC to a wider
community of developers.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Asbestos group,
especially Steve VanDeBogart, Max Krohn, Alex Yip, and Micah
Brodsky for comments on and usage of prior versions of the system,
and the anonymous reviewers and our shepherd Petros Maniatis for
their comments and suggestions.

This work was supported by DARPA grants MDA972-03-P-
0015 and FA8750-04-1-0090, and by joint NSF Cybertrust/DARPA
grant CNS-0430425. Eddie Kohler is supported by a Sloan fellow-
ship and a Microsoft Research New Faculty Fellowship.

REFERENCES

[1] Sample policy implementations.
http://read.cs.ucla.edu/˜pefstath/policies/.

[2] M. Brodsky, P. Efstathopoulos, F. Kaashoek, E. Kohler,
M. Krohn, D. Mazieres, R. Morris, S. VanDeBog-
art, and A. Yip. Toward secure services from un-
trusted developers. Technical Report TR-2007-041,
Massachusetts Institute of Technology Computer Sci-
ence and Artificial Intelligence Laboratory, 2007.
http://hdl.handle.net/1721.1/38453.

[3] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic parti-
tioning. In Proceedings of the 21th ACM Symposium on Op-

erating Systems Principles (SOSP ’07), Oct. 2007.

[4] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing con-
fidentiality and integrity in web applications. In Proceedings

of the USENIX Security Symposium 2007, 2007.

[5] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5), May 1976.

[6] Trusted Computer System Evaluation Criteria (Orange Book).
Department of Defense, Dec. 1985. DoD 5200.28-STD.

[7] P. A. Karger and A. J. Herbert. An augmented capability ar-
chitecture to support lattice security and traceability of access.
In Proceedings of 1984 IEEE Symposium on Security and Pri-

vacy, Apr. 1984.

[8] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard OS abstractions. In Proceedings of the 21th ACM Sympo-

sium on Operating Systems Principles (SOSP ’07), Oct. 2007.

[9] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. In Pro-

ceedings of 2001 USENIX Annual Technical Conference—

FREENIX Track, June 2001.

12

http://read.cs.ucla.edu/~pefstath/policies/
http://hdl.handle.net/1721.1/38453

[10] M. D. McIlroy and J. A. Reeds. Multilevel security in the
UNIX tradition. Software—Practice and Experience, 22(8),
Aug. 1992.

[11] A. C. Myers. JFlow: practical mostly-static information flow
control. In Proceedings of POPL ’99: Proceedings of the

26th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, 1999.

[12] A. C. Myers and B. Liskov. Protecting privacy using the de-
centralized label model. ACM Transactions on Computer Sys-

tems, 9(4), Oct. 2000.

[13] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lepreau. The Flask Security Architecture: System Sup-
port for Diverse Security Policies. In Proceedings of the 8th

USENIX Security Symposium, Aug. 1999.

[14] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn,
C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières.
Labels and event processes in the Asbestos operating system.
ACM Transactions on Computer Systems, 25(4):11:1–11:43,
Nov. 2007.

[15] R. Watson, W. Morrison, C. Vance, and B. Feldman. The
TrustedBSD MAC framework: Extensible kernel access con-
trol for FreeBSD 5.0. In Proceedings of 2003 USENIX Annual

Technical Conference, June 2003.

[16] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiStar. In
Proceedings of the 7th Symposium on Operating Systems De-

sign and Implementation (OSDI ’06), Nov. 2006.

13

	Introduction
	Related Work
	DIFC Management Challenges
	Asbestos

	Policy Management
	Policy Description Language
	Implementation
	Launcher

	Discussion

	Debugging Mechanisms
	Label Errors
	Asbestos Debug Domains
	Implementation
	Applications

	Experiences and Evaluation
	Implementation of Sample Policies
	Debug Domains in Use

	Future Work
	Conclusion

