
Designing DCCP: Congestion
Control Without Reliability

B l b

Eddie Kohler Mark Handley Sally Floyd

UCLA UCL ICIR

SIGCOMM 2006

12 September 2006

1



“Case study
of a badly designed protocol”

B l b

Eddie Kohler Mark Handley Sally Floyd

UCLA UCL ICIR

SIGCOMM 2006

12 September 2006

2



Hot Topics in Networking:
Sequence Numbers!!!

B l b

Eddie Kohler Mark Handley Sally Floyd

UCLA UCL ICIR

SIGCOMM 2006

12 September 2006

3



Transport protocols
i g i g i g i g i g i g i g i g i

• Transport: generalization of application needs

• TCP: reliable congestion-controlled byte stream

• SCTP: reliable congestion-controlled packet streams

• UDP: unreliable any-rate datagrams

• Missing protocol: congestion-controlled unreliable delivery

Can do above UDP, but difficult for applications

4



The applications
i g i g i g i g i g i g i g i g i

• Long-lived, high-bandwidth unreliable flows on the public Internet

Should use congestion control for safety, fairness

• Streaming/interactive media, games, IP telephony . . .

• Prefer timeliness to reliability

Old data isn’t useful, delays new data; why waste bandwidth on it?

• A latent desire for good network citizenship

5



Datagram Congestion Control Protocol
i g i g i g i g i g i g i g i g i

• A transport protocol for congestion-controlled flows of unreliable

datagrams

Goal: API as simple as UDP

Support new congestion control algorithms, as applications require

them (initially TCP-like, TFRC)

Hope to ease safe deployment of new applications

• Proposed Standard RFC March 2006

6



Design challenges
i g i g i g i g i g i g i g i g i

• Expected DCCP design to go smoothly

Expected to reuse TCP mechanisms

• It did not (and we did not)

• Case study of feature interactions in protocol design

Mostly required by the current messy Internet

Some due to our choices

7



TCP
i g i g i g i g i g i g i g i g i

0: SYN

100: SYN, ACK 1

1: ACK 101
1: data[5], ACK 101
6: data[5], ACK 101

101: ACK 11

101: data[100], ACK 11

201: data[100], ACK 11

11: ACK 201

301: data[100], ACK 11

11: ACK 201

201: data[100], ACK 11

Client Server

Server

Sequence

Space

100 SYN

101 data
102 data

. . .

200 data
201 data

. . .

1000 data
1001 FIN

• Byte sequence numbers

SYN and FIN in sequence

space

• Cumulative

acknowledgement

• Windowed flow control

Congestion control an

outgrowth

• Retransmissions

8



Toward DCCP sequence numbers
i g i g i g i g i g i g i g i g i

• UDP datagram-oriented API

Datagram sequence numbers

• What about nondata-grams?

Like TCP, want connection state in band

Connection setup and teardown (SYN and FIN)

Acknowledgements

Connection feature negotiation

9



DCCP sequence numbers
i g i g i g i g i g i g i g i g i

• Every packet occupies sequence

space

+ Uniform ack mechanism for

features and options

+ Unambiguous ack relationship

+ Detect ack loss (enables ack

congestion control)

− Lost packet: data or ack?

Complicates CC

− . . .

0: Request

100: Response

1: Ack

2: Data

3: Data

101: Ack

102: Data[100]

103: Data[100]

4: Ack

104: Data[100]

5: Ack

105: Data[100]

Client Server

10



Toward DCCP acknowledgement numbers
i g i g i g i g i g i g i g i g i

• TCP: cumulative acknowledgement

First sequence number not received

• DCCP is unreliable

Once lost, never found

Application-level retransmissions not part of protocol for

minimality (easy to layer on top)

11



DCCP acknowledgement numbers
i g i g i g i g i g i g i g i g i

• Acknowledge latest packet

received

+ Inevitable absent flow control

+ Supports different ack formats

− . . .

0: Request

100: Response, Ack 0

1: Ack 100

2: Data

3: Data

101: Ack 3

102: Data[100]

103: Data[100]

4: Ack 102

104: Data[100]

5: Ack 104

105: Data[100]

Client Server

12



TCP acks
i g i g i g i g i g i g i g i g i

• Acks report losses

Sender infers packet losses

from receiver’s timeouts,

duplicate acks, SACK

information

Groups losses into loss events,

reduces congestion window

accordingly

⇒ Infer SACK scoreboard

Received Lost Received . . .
101 201 301 601

101: data[100], ACK 11

201: data[100], ACK 11

11: ACK 201

301: data[100], ACK 11

11: ACK 201

401: data[100], ACK 11

11: ACK 201

501: data[100], ACK 11

11: ACK 201
Infer loss:

Retransmit,

reduce cwnd
201: data[100], ACK 11

Client Server

13



TFRC acks
i g i g i g i g i g i g i g i g i

• TFRC: rate-based

Receiver calculates a loss rate

based on recent loss events

Reports loss rate ∼ once per

RTT

Sender uses loss rate to

calculate a TCP-friendly send

rate

No scoreboard needed

102: Data[100]

103: Data[100]

104: Data[100]

105: Data[100]

106: Data[100]

4: Ack, loss rate 0.2
Adjust

send rate107: Data[100]

108: Data[100]

109: Data[100]

110: Data[100]

5: Ack, loss rate 0.1

Client Server

14



DCCP supports either style
i g i g i g i g i g i g i g i g i

• TCP-like: Ack Vector →

Run-length-encoded

scoreboard

Runs backwards from latest

packet received

• TFRC: Loss Event Rate

Sent once per RTT

102: Data[100]

103: Data[100]

4: Ack 102 (-)

104: Data[100]

5: Ack 104 (-x-)

105: Data[100]

6: Ack 105 (--x-)

106: Data[100]

7: Ack 106 (---x-)
Infer loss:

reduce cwnd107: Data[100]

Client Server

15



Acknowledgement state and acks of acks
i g i g i g i g i g i g i g i g i

• Acks must be reliable, though

protocol is not

Ack Vector state grows

without bound!

• Must occasionally acknowledge

an acknowledgement

6: Ack 105 (--x-)

106: Data[100]

7: Ack 106 (---x-)

107: Data[100], ack 7

8: Ack 107 (-)

Client Server

• TCP requires cumulative ack, but this takes bounded state

TCP SACK can grow, but only a hint

16



Detecting receiver misbehavior
i g i g i g i g i g i g i g i g i

• Receiver has incentive to pretend losses didn’t happen [SCWA99]

• Critical problem for an unreliable protocol!

• Solution: echo per-packet nonce [ECN]

• TFRC’s loss event rate cannot be checked!

New Loss Intervals option: report lengths of loss intervals and

relevant nonce sums

x - - x - - - - - - - - - - - - - - - - - - - - - xx - - - -

Lossy

Part

(≤ 1 RTT)

Lossless Part

(report nonce sum)

Loss Interval

• Simpler than TCP

17



Connection synchronization
i g i g i g i g i g i g i g i g i

• Network failure or bad luck: many packets lost in succession

• TCP: network probes are pure acks or retransmissions

Always use expected sequence numbers

• DCCP: each probe gets a new sequence number!

Endpoints in odd sequence space when connectivity returns

How to get back in sync?

0: Data
1: Data

. . .
500: Data

1000: Data
. . .

1500: Data

501: Data

1501: Ack 0
501???

1501???

0???

18



Synchronization attempts
i g i g i g i g i g i g i g i g i

• Pure acks à la TCP?

Then can’t distinguish out-of-sync traffic from sync attempt

• Options?

Don’t want to parse options on out-of-sync packets

• Flow control?

Artificial limitation for timely applications

And wouldn’t help: pure acks use sequence space

19



Synchronization design
i g i g i g i g i g i g i g i g i

• Special Sync and SyncAck packets recover synchronization

Challenge (Sync)/response (SyncAck)

• Sequence number checks on Sync and SyncAck more lenient

0: Data

1: Data
. . .

500: Data

501: Data

1000: Sync, ack 501

502: SyncAck, ack 1001

Expect

seqnos

[0, 100]

Odd seq,

send Sync

Update to

[502, 602]

20



Synchronization subtleties
i g i g i g i g i g i g i g i g i

• An out-of-sequence packet arrives with seqno A

• Send Sync with new seqno and with ackno A

Does not imply that A was processed!

Using the expected seqno would confuse sender: can’t

differentiate actual Sync from old Sync or attack

Bad

501: Data

1000: Sync, ack 11???

That’s old!

Good

501: Data

1000: Sync, ack 501

502: SyncAck, ack 1001

21



Formal modeling
i g i g i g i g i g i g i g i g i

• “Hi, our verifier takes forever on your protocol.” —Somsak Vanit-Anunchai

• Previous algorithm works correctly for all packets except Reset

• After Reset, half-open connection

Give closed end enough information to shut down open end

Bad

1: Data
. . .

500: Data

0: Reset, ack 1

501: Sync, ack 0

1: Reset, ack 501

Timeout

and close

No socket

No socket

Old seq/ack,

send Sync

Repeat

Expect

seqnos

[1000, 1100]

. . .

Good

1: Data
. . .

500: Data

0: Reset, ack 1

501: Sync, ack 1000

1001: Reset, ack 501

Timeout

and close

No socket

No socket

Old seq/ack,

send Sync

OK, reset

Expect

seqnos

[1000, 1100]

22



Simplicity?
i g i g i g i g i g i g i g i g i

• Did DCCP choose efficiency over simplicity?

• Simplicity means many things. We wanted minimal mechanism.

Rather than solve a problem many times, prefer a parsimonious yet

general mechanism that can solve several problems at once.

Example: sequence numbers. Many aspects of this design still

seem successful—ack formats, explicit synchronization

• Sometimes, the accusation fits

Data packets have no acknos

Saves header space (e.g. 8B telephony payload)

But must Sync some Resets, Reset synchronization . . .

23



Conclusions
i g i g i g i g i g i g i g i g i

• Still space for new transport protocols

• Appreciate unified mechanisms of TCP

Flow control ⇔ synchronization

Cumulative ack ⇔ stateless ack ⇔ unidirectional communication

• Appreciate where TCP’s unified face masks dangers below

Robustness against attack

Ack ambiguity

24



Congestion control for unreliable applications
i g i g i g i g i g i g i g i g i

• Example issue: packet size

• Delay-sensitive applications send many small packets

Necessary to meet latency constraints

• But TFRC’s throughput equation matches the bandwidth of a TCP

flow with the same size packets

 0.1

 1

 10

 100

 1000

10-3 10-2 10-1

S
en

d 
R

at
e 

(k
bp

s)

Packet Drop Rate

TCP (1500B)
Standard TFRC (14B)

25



Small-Packet TFRC
i g i g i g i g i g i g i g i g i

• Solution: compensate for packet size

• TFRC-SP’s throughput equation matches the bandwidth of a TCP

flow with 1500-byte packets

Can send multiple pkt/RTT even in the face of persistent losses

Caveats: Min Interval, bottleneck types

 0.1

 1

 10

 100

 1000

10-3 10-2 10-1

S
en

d 
R

at
e 

(k
bp

s)

Packet Drop Rate

TCP (1500B)
TFRC-SP (14B)
Standard TFRC (14B)

26


