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ABSTRACT

Fast-growing Internet applications like streaming media and tele-
phony prefer timeliness to reliability, making TCP a poor fit. Un-
fortunately, UDP, the natural alternative, lacks congestion con-
trol. High-bandwidth UDP applications must implement congestion
control themselves—a difficult task—or risk rendering congested
networks unusable. We set out to ease the safe deployment of these
applications by designing acongestion-controlled unreliable trans-
port protocol. The outcome, the Datagram Congestion Control Pro-
tocol or DCCP, adds to a UDP-like foundation the minimum mech-
anisms necessary to support congestion control. We thoughtthose
mechanisms would resemble TCP’s, but without reliability and, es-
pecially, cumulative acknowledgements, we had to reconsider al-
most every aspect of TCP’s design. The resulting protocol sheds
light on how congestion control interacts with unreliable transport,
how modern network constraints impact protocol design, andhow
TCP’s reliable bytestream semantics intertwine with its other mech-
anisms, including congestion control.

Categories and Subject Descriptors:
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.6 [Computer-Communication Networks]: Internet-
working—Standards (e.g., TCP/IP)
General Terms: Design, Standardization
Keywords: DCCP, congestion control, transport protocols, unre-
liable transfer, streaming media, Internet telephony, TCP

1 INTRODUCTION

Selecting the right set of functionality for a network protocol is sub-
tle and touches on issues of modularity, efficiency, flexibility, and
fate-sharing. One of the best examples of getting this rightis the
split of the original ARPAnet NCP functionality into TCP andIP.
We might argue about a few details, such as whether the port num-
bers should have been in IP rather than TCP, but the original func-
tional decomposition looks remarkably good even 25 years later.
The key omission from both TCP and IP was congestion control,
which was retrofitted to TCP, the main bandwidth consumer, in
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1988 [22]. Protocols other than TCP were appropriately leftalone:
TCP congestion control curbs the bandwidth usage of long-lived
sessions, such as file transfers, and is bound up with TCP’s flow
control and reliable bytestream semantics; the TCP congestion con-
trol mechanisms are thus irrelevant for connectionless, unreliable
applications such as DNS over UDP.

However, recent years have seen a large increase in applica-
tions using UDP for long-lived flows. These applications, which in-
clude streaming media, Internet telephony, videoconferencing, and
games, all share a preference for timeliness over reliability. That
is, given a chance to retransmit an old packet or to transmit anew
packet, they often choose the new packet. By the time the old packet
arrived, it would have been useless anyway: in media applications,
users often prefer bursts of static to choppy rebuffering delay; in
games, only the latest position information matters. TCP’sreliable
bytestream delivery can introduce arbitrary delay and cannot be told
to forget old data. An unreliable protocol is clearly more like what
these applications want.

Applications generally donot want to implement TCP-friendly
congestion control themselves. This is not only because conges-
tion control can constrain performance, but also because properly
implementing congestion control is very hard, as the long history
of buggy TCP implementations makes clear [33, 34]. Applications
might be willing to subject themselves to congestion control, not
least for the good of the network, as long as it was easy to use and
met their needs. A modular congestion control framework would
also make it easier to develop new applications, and to deploy con-
gestion control advances across many applications at once.

After analyzing several alternatives [17], and motivated mostly
by keeping the basic API as simple as UDP’s, we set out to de-
sign a new transport protocol providing a congestion-controlled
flow of unreliable datagrams. The goal was a simple, minimal
protocol upon which other higher-level protocols could be built—
UDP, plus just those mechanisms necessary to support conges-
tion control. The result, the Datagram Congestion Control Protocol
(DCCP) [14, 18, 24], is currently an IETF Proposed Standard.

We expected the design process to run smoothly: after all, unre-
liability is simpler to provide than reliability, so surelyunreliable
congestion control would be no harder to provide than reliable con-
gestion control. That naive expectation was wrong, and a proto-
col that should have been simple to design was not so simple after
all. The development process helped us appreciate the ways TCP’s
reliability, acknowledgement, flow control, and congestion control
mechanisms intertwine into an apparently seamless whole. In par-
ticular, DCCP’s lack of retransmissions and cumulative acknowl-
edgements forced us to rethink almost every issue involvingpacket
sequencing. Of course, TCP appears seamless only when you ig-
nore its extensive evolution, and we still believe that an unreliable
protocol’s simpler semantics form a better base for layering func-
tionality. We therefore discuss many of the issues we faced in de-
signing a modern transport protocol, including some that the TCP
designers did not face as squarely, such as robustness against attack.



Related Work In the early days of Internet multimedia the re-
search community naturally assumed that congestion control would
be an integral part of UDP applications, although much of this work
targeted multicast [11, 29]. In the end, commercial software ven-
dors focused on unicast and omitted congestion control. Recently,
applications such as Skype [41] have started to perform coarse-
grained congestion adaptation to allow the use of higher quality
codecs when bandwidth permits, but not in a form that encourages
interoperability.

Systems such as Time-lined TCP [32] retrofit some support for
time-sensitive data onto TCP, but do so using a specific deadline-
based policy. Real applications often have more complex policies.
For example, application-level messages may have different levels
of importance and there may be interdependencies between them,
the canonical example being MPEG’s key frames (I-frames) and
incremental frames (B/P-frames).

SCTP supports multiple datagram streams in a single connec-
tion [46]. This improves timeliness for some applications,since
missing packets from one stream do not delay packets from
any other stream. Nevertheless, SCTP’s reliability, like TCP’s,
can introduce arbitrary delay. A partial reliability extension, PR-
SCTP [45], attempts to overcome this by allowing a sender to
explicitly abandon outstanding messages. This requires atleast a
round-trip time; the suggested API resembles Time-lined TCP’s.

Another approach is to provide congestion control at a layerbe-
low TCP or UDP, as with the Congestion Manager [3, 6]. While this
may have benefits for TCP, the benefits for unreliable UDP applica-
tions are less clear. These applications must provide theirown pro-
tocol mechanisms to detect and acknowledge losses. This informa-
tion is then fed to the Congestion Manager, which determineswhen
the application can send. The necessarily tight coupling between
feedback style and the congestion control algorithm makes this
module breakdown rather unnatural. For example, adding smoother
rate-based algorithms such as TFRC [16] to the Congestion Man-
ager (as an alternative to the basic abruptly-changing AIMDal-
gorithm) would require different feedback from the receiver; this
would then require a new kernel API to supply the necessary feed-
back to the new Congestion Manager module.

Related work on architectural and technical issues in the de-
velopment of new transport protocols includes papers on SCTP,
RTP [39], RTSP [38], and UDP-Lite [26]. A peripherally related
body of research on the development of new congestion control
mechanisms for high-bandwidth environments, or with more ex-
plicit feedback from routers, highlights the need to be flexible to
accommodate future innovation.

2 APPLICATION REQUIREMENTS

Any protocol designed to serve a specific group of applications
should consider what those applications are likely to need,although
this needs to be balanced carefully against a desire to be future-
proof and general.

One of DCCP’s target applications isInternet telephony. Interac-
tive speech codecs act like constant-bit-rate sources, sending a fixed
number of frames per second. Users are extremely sensitive to delay
and quality fluctuation—even more so than to bursts of static—so
retransmissions are often useless: the receiver will have passed the
playback point before the retransmission arrives. Quick adaptation
to available bandwidth is neither necessary nor desired; telephony
demands a slower congestion response. The data rate is changed by
adjusting the size of each compressed audio frame, either byad-
justing codec parameters or by switching codecs altogether. At the
extreme, some speech codecs can compress 20 ms of audio down
to 64 bits of payload. (The packet rate, however, is harder toadjust,

as buffering multiple frames per packet causes audible delay.) Such
small payloads pressure the transport layer to reduce its own header
overhead, which becomes a significant contributor to connection
bandwidth. A codec may also save bandwidth by sending no data
during the silence periods when no one is talking, but expects to im-
mediately return to its full rate as soon as speech resumes. Many of
these issues are common tointeractive videoconferencing as well,
although that involves much higher bandwidth.

Streaming media introduces a different set of tradeoffs. Unlike
interactive media, several seconds of buffer can be used to mask
some rate variation, but since users prefer temporary videoartifacts
to frequent rebuffering, even streaming media generally prefers
timeliness to absolute reliability. Video encoding standards often
lead to application datagrams of widely varying size. For exam-
ple, MPEG’s key frames are many times larger than its incremental
frames. An encoder may thus generate packets at a fixed rate, but
with orders-of-magnitude size variation.

Finally, interactive games use unreliable transport to communi-
cate position information and the like. Since they can quickly make
use of available bandwidth, games may prefer a TCP-like sawtooth
congestion response to the slower response desired by multimedia.

Since retransmissions are not necessarily useful for thesetime-
sensitive applications, they have a great deal to gain from the use of
Explicit Congestion Notification [35], which lets congested routers
mark packets instead of dropping them. However, ECN capability
must only be turned on for flows that react to congestion, which
requires a negotiation between the two endpoints to establish. Most
of these applications currently use UDP, but UDP’s lack of explicit
connection setup and teardown presents unpleasant difficulties to
network address translators and firewalls and complicates session
establishment protocols such as SIP. Any new protocol should im-
prove on UDP’s friendliness to middleboxes.

2.1 Goals
Considering these requirements, the evolution of modern transport,
and our desire for protocol generality and minimality, we eventually
arrived at the following primary goals for DCCP’s functionality.

1. Minimalism. We prefer a protocol minimal in both function-
ality and mechanism. Minimalfunctionality means that, in line with
the end-to-end argument and prior successful transport protocols in
the TCP/IP suite, DCCP should not provide functionality that can
successfully be layered above it by the application or an intermedi-
ate library. This helped determine what to leave out of the protocol;
for instance, applications can easily layer multiple streams of data
over a single unreliable connection. Minimalmechanism means that
DCCP’s core protocol features should be few in number, but rich in
implication. Rather than solve protocol problems one at a time, we
prefer to design more general mechanisms, such as the details of
sequence numbering, that can solve several problems at once. We
intended to design a simple protocol, but there are many kinds of
simplicity: minimal mechanism defines the type of simplicity we
sought in DCCP. Minimal mechanism also helps us achieve a sec-
ondary goal, namely minimal (or at least small)header size. To be
adopted for small-packet applications such as Internet telephony,
DCCP headers should be reasonably compact even in the absence of
header compression techniques. For example, eight bytes isunac-
ceptable overhead for reporting a one-bit ECN Nonce. Headerover-
head isn’t critical for well-connected hosts, but we want tosupport
DCCP on ill-connected, low-powered devices such as cell phones.

2. Robustness.The network ecosystem has grown rich and
strange since the basic TCP/IP protocols were designed. A modern
protocol must behave robustly in the presence of attackers as well
as network address translators, firewalls, and other middleboxes.
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First, DCCP should be robust against data injection, connection clo-
sure, and denial-of-service attacks. Robustness does not,however,
require cryptographic guarantees; as in TCP, we consideredit suffi-
cient to protect against third-party attackswhere the attacker cannot
guess valid connection sequence numbers [31]. If initial sequence
numbers are chosen sufficiently randomly [8], attackers must snoop
data packets to achieve any reasonable probability of success. How-
ever, we found a number of subtleties in applying sequence number
security to an unreliable protocol; security conflicts directly with
some of our other goals, requiring a search for reasonable middle
ground. Middlebox robustness and transparency led us to introduce
explicit connection setup and teardown, which ease the implemen-
tation burden on firewalls and NATs, and required the disciplined
separation of network-level information from transport informa-
tion. For example, our mobility design never includes network ad-
dresses in packet payloads or cryptographically-signed data.

3. A framework for modern congestion control.DCCP should
support many applications, including some whose needs differ rad-
ically from file transfer (telephony, streaming media). To attract de-
velopers, DCCP should aim to meet application needs as much as
possible without grossly violating TCP friendliness. Clearly DCCP
should support all the features of modern TCP congestion con-
trol, including selective acknowledgements, explicit congestion no-
tification (ECN), acknowledgement verification, and so forth, as
well as obvious extensions hard to port to TCP, such as conges-
tion control of acknowledgements. More importantly, congestion
control algorithms continue to evolve to better support application
needs. DCCP should encourage this evolution. Applicationscan
thus choose among varieties of congestion control: DCCP provides
a framework for implementing congestion control, not a single fixed
algorithm. Currently, the choice is between TCP-like, whose saw-
tooth rates quickly utilize available bandwidth, and TFRC [16],
which achieves a steadier long-term rate. In future, DCCP will
support experimentation with new congestion control mechanisms,
from low-speed TFRC variants to more radical changes such as
XCP [23]. Each of these variants may require different acknowl-
edgement mechanisms; for instance, TFRC’s acknowledgements
are much more parsimonious than TCP’s. Thus, DCCP supports
a range of acknowledgement types, depending on the selectedcon-
gestion control method.

Another aspect concerns challenging links where loss and cor-
ruption unrelated to congestion are common, such as cellular and
wireless technologies. Although there is no wide agreementon how
non-congestion loss and corruption should affect send rates, DCCP
should allow endpoints to declare when appropriate that packets
were lost for reasons unrelated to network congestion, and even to
declare that delivery of corrupt data is preferred to loss.

4. Self-sufficiency.DCCP should provide applications with an
API as simple as that of UDP. Thus, as in TCP, a DCCP imple-
mentation should be able to manage congestion control without ap-
plication aid. DCCP receivers must detect congestion events with-
out application intervention; DCCP senders must calculateand en-
force fair sending rates without application cooperation.Further-
more, congestion control parameters must be negotiated in-band.

5. Support timing–reliability tradeoffs. Any API for sending
DCCP packets will support some buffering, allowing the operating
system to smooth out scheduling bumps. However, when the buffer
overflows—the application’s send rate is more than congestion con-
trol allows—a smart application may want to decide exactly which
packets should be sent. Some packets might be more valuable than
others (audio data might be preferred to video, for example), or
newer packets preferred to older ones. DCCP should support not
only naive applications, but also advanced applications that want
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Figure 1: DCCP packet exchange overview.

fine-grained control over buffers and other tradeoffs between tim-
ing and reliability.

2.2 Deliberate omissions
Any design is determined as much by what is left out as by what is
included. During the lengthy DCCP design process, many sugges-
tions were made to add functionality; most did not make the cut. In
some cases it is interesting to note why not.

Flow control. In a reliable protocol it makes no sense to trans-
mit packets that the receiver may discard. However, timing-critical
applications may, under some circumstances, be unable to avoid do-
ing so. Receivers may prefer to drop old data from their buffers in
favor of new data as it arrives, or may prefer an application-specific
policy difficult to express at the transport level. Flow control is also
nontrivial to get right: likely-mistaken flow control limits have been
observed to lower peak transfer rates [1, 48]. Thus, we decided that
DCCP should not impose any flow control limitation separate from
congestion control. This essentially extends support for timing–
reliability tradeoffs to its logical endpoint. Of course, optional flow
control could easily be layered on top of DCCP if desired.

Selective reliability. Prioritizing timeliness over reliability does
not preclude retransmitting data, so long as the retransmissions
reach the receiver in time. Transport-layer selective reliability might
be convenient for applications, but we’ve found no obviously
preferable API for identifying those datagrams that shouldbe re-
transmitted; retransmission deadlines [32], maximum retransmis-
sion counts, and buffer-based strategies all have advantages and dis-
advantages. Since retransmissions are easily layered above DCCP,
selective reliability was left out of the protocol itself for now.

Streams.SCTP [46] provides applications with astream abstrac-
tion: sub-connection flows with independent sequence spaces. The
benefit is that head-of-line blocking between streams is eliminated.
For an unreliable protocol, though, there is no blocking problem,
as neither reliable nor in-order delivery is guaranteed. Itis trivial to
layer streams over DCCP where they are required.

Multicast. It would have been nice to support multi-party deliv-
ery in DCCP, but there doesn’t appear to be any simple common
ground between the different possible uses of multicast, let alone
between unicast and multicast. None of the main DCCP mecha-
nisms, be it connection setup, acknowledgements, or even conges-
tion control, apply naturally to multicast, and even among multicast
applications one size does not fit all [21]. We resisted the temptation
to generalize beyond what we believed we could do well.

3 DCCP OVERVIEW

DCCP is a unicast, connection-oriented protocol with bidirectional
data flow. Connections start and end with three-way handshakes, as
shown in Figure 1; datagrams begin with the 16-byte generic header
shown in Figure 2. The Port fields resemble those in TCP and UDP.
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Data Offset measures the offset, in words, to the start of packet data.
Since this field is 8 bits long, a DCCP header can contain more than
1000 bytes of option. The Type field gives the type of packet, and is
somewhat analogous to parts of the TCP flags field. The names in
Figure 1 correspond to packet types, of which DCCP specifies ten.
Many packet types require additional information after thegeneric
header, but before options begin; this design choice avoidsclut-
tering the universal header with infrequently-used fields.Even the
acknowledgement number is optional, potentially reducingheader
overhead for unidirectional flows of data. There are no equivalents
to TCP’s receive window and urgent pointer fields or its PUSH and
URG flags, and TCP has no equivalent to CCVal (Section 6.2) or
CsCov/Checksum Coverage (Section 6.5). Sequence and acknowl-
edgement numbers are 48 bits long, although some packet types
also permit a compact form to be used (see Section 4.5).

4 SEQUENCE NUMBERS

DCCP’s congestion control methods are modularly separatedfrom
its core, allowing each application to choose a method it prefers.
The core itself is largely focused on connection management—
setup, teardown, synchronization, feature negotiation, and so forth.

The simplicity of this core functionality turned out to be a dis-
tinctly mixed blessing. TCP, for example, is able to simplify some
aspects of connection management by leveraging the very seman-
tics of reliability that it aims to provide. TCP’s flow control means
that two live endpoints always remain synchronized, and TCP’s re-
liability means a single cumulative acknowledgement number suf-
fices to describe a stream’s state. More generally, TCP combines re-
liability, conciseness of acknowledgement, and bytestream seman-
tics in a tightly unified whole; when we tried to separate those prop-
erties, its mechanisms fell apart. Sometimes the solutionswe de-
veloped in response seem as simple as TCP’s and sometimes they
don’t, but they are almost always different.

DCCP’s core connection management features all depend on
the most fundamental tool available, namelysequence numbers.
We now know to consider sequence numbers carefully: seemingly
small changes to sequence number semantics have far-reaching ef-
fects, changing everything up to the protocol state machine. The in-
terlocking issues surrounding sequence numbers collectively form
the most surprising source of complexity in DCCP’s design, so we
explore them in some depth.

4.1 TCP sequence numbers
TCP uses 32-bit sequence numbers representing applicationdata
bytes. Each packet carries a sequence number, or seqno, and acu-
mulative acknowledgement number, or ackno.

A cumulative ackno indicates that all sequence numbers up to,
but not including, that ackno have been received. The receiver guar-
antees that, absent a crash or application intervention, itwill de-
liver the corresponding data to the application. Thus, the ackno
succinctly summarizes the entire history of a connection. This suc-
cinctness comes at a price, however: the ackno provides no infor-
mation about whetherlater data was received. Several interlocking
algorithms, including fast retransmit, fast recovery, NewReno, and
limited transmit [5], help avoid redundant retransmissions by infer-
ring or tentatively assuming that data has been received. Such as-
sumptions can be avoided if the sender is told exactly what data was
received, a more explicit approach implemented by TCP selective
acknowledgements (SACK) [10].

TCP sequence numbers generally correspond to individual bytes
of application data, and variables measured in sequence numbers,
such as receive and congestion windows, use units of data bytes.
Thus, an endpoint may acknowledgepart of a packet’s contents

Reserved Acknowledgement Number
(b)

Acknowledgement Number (low bits)

Source Port Destination Port

Data Offset CCVal CsCov Checksum

Type 1 Sequence NumberReservedRes

Sequence Number (low bits)

(a)

0 8 16 24

Figure 2: DCCP packet header. The generic header (a) begins every
DCCP datagram. Individual packet types may add additional informa-
tion, such as (b) an acknowledgement number. The packet header is
followed by DCCP options, then payload; payload starts DataOffset
words into the datagram.

(for instance, when a sender overflows the receiver’s receive win-
dow), although this happens rarely in practice and may indicate an
attempt to subvert congestion control [37]. TCP’s congestion con-
trol algorithms generally operate on these byte-oriented variables in
units of theexpected packet size, which can lead to anomalies [2].

TCP connections contain other features that must be acknowl-
edged, including connection setup and teardown, timestamps, ECN
reports, and optional features like SACK. Connection setupand
teardown is handled elegantly: SYN and FIN bits occupy sequence
space, and are thus covered by the ackno. Each other feature,
though, needs its own acknowledgement mechanism. Each time-
stamp option contains an acknowledgement; a TCP header bit
(CWR) acknowledges ECN congestion reports; support for optional
features is acknowledged via options like SACK-Permitted.

Pure acknowledgements, which contain neither data nor SYN or
FIN bits, do not occupy sequence space, and thus cannot be ac-
knowledged conventionally. As a result, TCP cannot easily evalu-
ate the loss rate for pure acknowledgements or detect or react to
reverse-path congestion, except as far as high acknowledgement
loss rates reduce the forward path’s rate as well.

4.2 DCCP sequence numbers
DCCP must be able to detect loss without application support.
Inevitably, then, DCCP headers must include sequence numbers.
Those sequence numbers should measure datagrams, not bytes,
since in accordance with the principles of Application Layer Fram-
ing [13], unreliable applications generally send and receive data-
grams rather than portions of a byte stream. This also simplifies the
expression of congestion control algorithms, which generally work
in units of packets. (Some care is required to calculate congestion
control using the average packet size.)

What, though, should be done with packets that don’t carry ap-
plication data? DCCP’s goals include applying congestion control
to acknowledgements, negotiating congestion control features in
band, and supporting explicit connection setup and teardown. The
first goal requires detecting acknowledgement loss; the second re-
quires acknowledging each feature negotiation. A single minimal-
ist choice, motivated by TCP’s inclusion of SYN and FIN in se-
quence space, seemed to address all three goals at once: In DCCP,
every packet, including pure acknowledgements, occupies sequence
space and uses a new sequence number.

This choice had several unintended consequences. (For exam-
ple, a single sequence space now contains both data packets and
acknowledgements. Often this should be separated: TCP doesnot
reduce a sender’s rate when an acknowledgement it sends is lost,
so neither should DCCP.) The obvious TCP-like choice would have
been to assign pure acknowledgements the same sequence num-
bers as preceding data packets; only connection handshakesand
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Figure 3: Recovering synchronization after bursts of loss.

data would gain new sequence numbers. Of course, feature nego-
tiation and connection synchronization would then requiread hoc
acknowledgement mechanisms. Another alternative would beto in-
troduce a secondary sequence number space for non-data packets.
In the end, though, we believe that despite its warts, the minimalist
path we chose is as simple as or simpler than these alternatives.

Most DCCP packets carry an acknowledgement number as well
as a sequence number. This led to another critical design deci-
sion: To which packet should the ackno correspond? Cumulative ac-
knowledgements don’t make sense in an unreliable protocol where
the transport layer never retransmits data. DCCP’s ackno thus re-
ports thelatest packet received, rather than the earliest not received.
This decision, which still seems inevitable, has tremendous conse-
quences, since without a cumulative acknowledgement, there is no
succinct summary of a connection’s history. Additional congestion
control-specific options provide information about packets preced-
ing the ackno. The most detailed option, Ack Vector, reportsex-
actly which packets were received, and exactly which packets were
received ECN-marked, using a run-length-encoded byte array; each
Ack Vector byte represents up to 64 packets.

4.3 Synchronization
When a TCP connection is interrupted by network failure, itsprobe
packets are retransmissions, and use expected sequence numbers.
But in retransmissionless DCCP, each packet sent during an outage
uses a new sequence number. When connectivity is restored, each
endpoint might have reached a sequence number wildly different
from what the other expects. Thus, large bursts of loss can force
endpoints out of sync, a problem surprisingly difficult to solve.

We cannot eliminate expected-sequence-number windows, as
they are the main line of defense protecting connections from attack
(see Section 4.6). Instead, DCCP supportsexplicit synchronization.
An endpoint receiving an unexpected sequence or acknowledge-
ment number sends a Sync packet asking its partner to validate
that sequence number. (TCP in this situation would send a reset.)
The other endpoint processes the Sync and replies with a SyncAck
packet. When the original endpoint receives a SyncAck with avalid
ackno, it updates its expected sequence number windows based on
that SyncAck’s seqno; see Figure 3(a) for an example.

Some early versions of this mechanism synchronized using exist-
ing packet types, namely pure acknowledgements. However,mutu-
ally unsynchronized endpoints can never resync in such a design,as
there is no way to distinguish normal out-of-sync traffic from resyn-
chronization attempts—both types of packet have either an unex-
pected seqno or an unexpected ackno. We considered using special
options to get back into sync, but endpoints would have to partially
parse options on possibly-invalid packets, a troublesome require-
ment. We considered preventing endpoints from sending datawhen
they were at risk of getting out of sync, but this seemed fragile,
imposed an artificial flow control limitation, and, since even probe

packets occupy sequence space, would not have helped. Explicit
synchronization with unique packet types seems now like theonly
working solution.

The details are nevertheless subtle, and formal modeling re-
vealed problems even late in the process. For example, consider the
ackno on a Sync packet. In the normal case, this ackno should equal
the seqno of the out-of-range packet, allowing the other endpoint to
recognize the ackno as in its expected range. However, the situation
is different when the out-of-range packet is a Reset, since after a
Resetthe other endpoint is closed. If a Reset had a bogus sequence
number (due maybe to an old segment), and the resulting Sync
echoed that bogus sequence number, then the endpoints wouldtrade
Syncs and Resets until the Reset’s sequence number rose intothe
expected sequence number window (Figure 3(b)). Instead, a Sync
sent in response to a Reset must set its ackno to the seqno of the
latest valid packet received; this allows the closed endpoint to jump
directly into the expected sequence number window (Figure 3(c)).
As another example, an endpoint in the initialREQUESTstate—
after sending the connection-opening Request packet, but before
receiving the Response—responds to Sync packets with Reset, not
SyncAck. This helps clean up half-open connections, where one
endpoint closes and reopens a connection without the other end-
point’s realizing.

TCP senders’ natural fallback to the known-synchronized cumu-
lative ackno trivially avoids many of these problems, although sub-
tlety is still required to deal with half-open connections.

4.4 Acknowledgements
A TCP acknowledgement requires only a bounded amount of
state, namely the cumulative ackno. Although other SACK state
may be stored, that state is naturally pruned by successful re-
transmissions. On the other hand, a DCCP acknowledgement con-
tains potentially unbounded state. Ack Vector options can report
every packet back to the beginning of the connection, bounded
only by the maximum header space allocated for options. Since
there are no retransmissions, the receiver—the endpoint reporting
these acknowledgements—needs explicit help to prune this state.
Thus,pure acknowledgements must occasionally be acknowledged.
Specifically, the sender must occasionally acknowledge itsreceipt
of an acknowledgement packet; at that point, the receiver can dis-
card the corresponding acknowledgement information.

We seem to be entering an infinite regression—must acknowl-
edgements of acknowledgements themselves be acknowledged?
Luckily, no: an acknowledgement number indicating that a particu-
lar acknowledgement was received suffices to clean up state at the
receiver, and this, being a single sequence number, uses bounded
state at the sender. Furthermore, some types of acknowledgements
use bounded state, and thus never need to be acknowledged.

Unreliability also affects the semantics of acknowledgement. In
DCCP, an acknowledgementnever guarantees that a packet’s data
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Figure 4: DCCP header with short sequence numbers. See also Fig. 2.

will be delivered to the application. This supports tradingoff time-
liness against reliability (Goal 5). Consider a streaming media re-
ceiver that prefers new data to old. If the receiver blocks for a while,
it may find on resuming computation that more packets are locally
enqueued than it can handle in the allotted time. It is desirable for
the application, as part of the timeliness–reliability tradeoff, to be
able to drop the old data.

For many reasons, however, this data should have been acknowl-
edged already. Acknowledging packets only on application delivery
would distort round-trip time measurements and unacceptably de-
lay option processing; acknowledgement options should, for con-
gestion control purposes, report only losses and marks thathap-
pened in the network proper. To avoid muddying the semantics, we
separate these concerns at the expense of a little efficiency. DCCP
acknos and acknowledgement options reportheader acknowledge-
ment: a packet was received, processed, and found valid, itsoptions
were processed, and its data was enqueued for possible future de-
livery to the application. A separate option called Data Dropped
indicates when an acknowledged packet’s data was not delivered—
for example, when that data was dropped in the receive buffer.

4.5 Sequence number length

How big should the sequence space be? Short sequence numbers
lead to smaller headers, less bandwidth, and less endpoint state.
On the other hand, they wrap more frequently—that is, long-lived
connections must quickly reuse sequence numbers, running the risk
that old delayed packets might be accepted as new—and make con-
nections more vulnerable to attack.

TCP’s 32-bit per-byte sequence numbers already have wrapping
problems at gigabit network speeds (a problem addressed by the
timestamp option). Despite this, DCCP originally used short 24-bit
sequence numbers. We reasoned that fast connections would favor
fewer large packets over many small packets, leaving packetrates
low. This was, of course, a mistake. A datagram protocol cannot
force its users to use large packet sizes, but absent packet length
restrictions, 24 bits are too few: a 10 Gb/s flow of 1500-byte packets
will send 224 packets in just 20 seconds.

We considered several solutions. The header could be rear-
ranged, albeit painfully, to allow 32-bit sequence numbers, but this
doesn’t provide enough cushion to avoid the issue. TCP’s time-
stamp option is a bad model—verbose, complex, and still vulnera-
ble to attack. Even a more concise and consistent timestamp would
force implementations to parse the options area before determining
whether the packet had a valid sequence number.

The simplest and best solution was simply to lengthen sequence
numbers to 48 bits (64 would have crowded out other header fields).
A connection using 1500-byte packets would have to send more
than 14 petabits a second before wrapping 48-bit sequence numbers
unsafely fast (that is, in under 2 minutes).

However,forcing the resulting overhead on all packets was con-
sidered unacceptable; consider speech codecs, in which 8-byte pay-
loads are not atypical. Endpoints should be able to choose between
short and long sequence numbers.

The solution, once found, was relatively clean. Although DCCP
sequence numbers are 48 bits long, some packet types may leave
off the upper 24 bits (Figure 4). The receiver will infer those bits’
values using an expected 48-bit sequence number. The following
procedure takes a 24-bit values and an expected sequence number
r and returnss’s 48-bit extension. It includes two types of compari-
son, absolute (written<) and circular mod 224 (written©<).

rlow := r mod 224; rhigh := ⌊r/224⌋;
if (rlow ©< s < rlow) // s incremented past 224−1

return((rhigh+1) mod 224)×224+ s;
else if (s ©< rlow < s) // s decremented past 0 (reordering)

return((rhigh+224−1) mod 224)×224+ s;
else

returnrhigh×224+ s;

Connection initiation, synchronization, and teardown packets al-
ways use 48-bit sequence numbers. This ensures that the endpoints
agree on sequence numbers’ full values, and greatly reducesthe
probability of success for some serious attacks. But data and ac-
knowledgement packets—exactly those packets that will make up
the bulk of the connection—may, if the endpoints approve, use 24-
bit sequence numbers instead, trading maximum speed and incre-
mental attack robustness for lower overhead. Although a single se-
quence number length would be cleaner, we feel the short sequence
number mechanism is one of DCCP’s more successful features.
Good control over overhead is provided at moderate complexity
cost without opening the protocol unduly to attack.

4.6 Robustness against attack
Robustness against attack is now a primary protocol design goal.
Attackers should find it no easier to violate a new protocol’scon-
nection integrity—by closing a connection, injecting data, moving a
connection to another address, and so forth—than to violateTCP’s
connection integrity. Unfortunately, this is not a high bar.

TCP guaranteessequence number security. Successful connec-
tion attacks require that the attacker know (1) each endpoint’s ad-
dress and port and (2) valid sequence numbers for each endpoint.
Assuming initial sequence numbers are chosen well (that is,ran-
domly) [8], reliably guessing sequence numbers requires snoop-
ing on traffic. Snooping also suffices: any eavesdropper can eas-
ily attack a TCP connection [31]. Applications desiring protection
against snooping attacks must use some form of cryptography, such
as IPsec or TCP’s MD5 option.

Of course, a non-snooping attacker can always try their luckat
guessing sequence numbers. If an attacker sendsN attack pack-
ets distributed evenly over a space ofL sequence numbers (the
best strategy), then the probability that one of these attack pack-
ets will hit a windowW sequence numbers wide isWN/L; if the
attacker must guess both a sequence number and an acknowledge-
ment number, with validity windowsW1 andW2, the success proba-
bility is W1W2N/L2. In TCP, data injection attacks require guessing
both sequence and acknowledgement numbers, but connectionre-
set attacks are easier—a SYN packet will cause connection reset
if its sequence number falls within the relevant window. (A simi-
lar, recently-publicized attack with RST packets is somewhat eas-
ier to defend against.) Recent measurements report a medianad-
vertised window of approximately 32 kB [30]; withW = 32768
bytes, this attack will succeed with more than 50% probability when
N = 65536. This isn’t very high, and as networks grow faster, re-
ceive window widths are keeping pace, leading to easier attacks.

DCCP’s 48-bit sequence numbers and support for explicit syn-
chronization make reset attacks much harder to execute. Forexam-
ple, DCCP is immune to TCP’s SYN attack; if a Request packet
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hits the sequence window of an active connection, the receiving
endpoint simply responds with a Sync. The easiest reset-like attack
is to send a Sync packet with random sequence and acknowledge-
ment numbers. If the ackno by chance hits the relevant window,
the receiver will update its other window to the attacker’s random
sequence number. In many cases another round of synchronization
with the true endpoint will restore connectivity, but luckyattacks
will lead to long-term loss of connectivity, since the attacked end-
point will think all of its true partner’s packets are old. But even
given a large window ofW = 2000 packets (nearly 3 MB worth of
1500-byte packets), an attacker must send more than 1011 packets
to get 50% chance of success.

Unfortunately, the goal of reducing overhead conflicts withse-
curity. DCCP Data packets may use 24-bit sequence numbers, and
contain no acknowledgement number. As a result, it is quite easy to
inject data into a connection that allows 24-bit sequence numbers:
given the default window ofW = 100 packets, an attacker must send
N ≈ 83000 Data packets to get 50% chance of success. An appli-
cation can reduce this risk simply by not asking for short sequence
numbers, and data injection attacks seem less dangerous than con-
nection reset attacks; the attacker doesn’t know where in the stream
their data will appear, and DCCP applications must already deal
with loss (and, potentially, corruption).

Unless we are careful, though, data injection might cause con-
nection reset. For example, certain invalid options might cause the
receiver to reset the connection; an injected Data packet might in-
clude such an option. Several aspects of the protocol were modi-
fied to prevent this kind of attack escalation. At this point,no Data
packet, no matter how malformed its header or options, should
cause a DCCP implementation to reset the connection, or to per-
form transport-level operations that might eventually lead to reset-
ting the connection. For instance, many options must be ignored
when found on a Data packet. In retrospect, these modifications ac-
cord with the TCP Robustness Principle, “be conservative inwhat
you send, and liberal in what you accept”. Although careful validity
checking with harsh consequences for deviations may seem appro-
priate for a hostile network environment, attackers can exploit that
checking to cause denial-of-service attacks. It is better to keep to
the principle and ignore any deviations that attackers might cause.

4.7 Summary and discussion
Congestion control requires loss detection, which in turn requires
sequence numbers. An unreliable protocol uses applicationdata
units, so DCCP sequence numbers namepackets rather than bytes.
Several reasons, including our preference for minimal mechanism,
led us to assignevery packet a new sequence number.

The semantics of acknowledgement are very different for an un-
reliable protocol than for TCP, as there is no succinct equivalent to
TCP’s cumulative ackno. DCCP acknowledges themost recently re-
ceived packet. Options such as Ack Vector indicate precisely which
packets have been received; some such options may grow with-
out bound, requiring thatacknowledgements be acknowledged from
time to time.

Providing robustness via sequence number validity checks is
harder for an unreliable protocol, since absent flow control, the
two endpoints can get out of sync. DCCP thus provides anexplicit
synchronization mechanism. This has some advantages even over
TCP’s design, since unexpected events can trigger synchronization
rather than connection reset.

Long sequence numbers are preferred to short ones, since they
cleanly avoid wrapping issues and frustrate attack, but where space
is at a premium, short sequence numbers can beextended to long
ones on the fly. Care should be taken to ensure that any easily-
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Figure 5: (a) An A-to-B half-connection and (b) a B-to-A half-
connection combine into (c) a full connection with piggybacked data
and acknowledgements.

attacked points in the protocol, such as opportunities for data in-
jection,cannot escalate to denial-of-service attacks.

Not all comparisons between TCP sequence numbers and
DCCP-style unreliable, packet-oriented sequence numberscome
out in favor of TCP. For example, TCP’s bytestream sequence num-
bers make it ambiguous whether an acknowledgement refers toa
packet or its retransmission, which has led to a cottage industry in
acknowledgement disambiguation and recovery from spurious re-
transmissions [27, 36].

5 CONNECTION M ANAGEMENT

This section describes DCCP properties, including severalwith in-
teresting differences from TCP, that do not directly concern se-
quence numbers.

5.1 Asymmetric communication
DCCP, like TCP, provides a single bidirectional connection: data
and acknowledgements flow in both directions. However, many
DCCP applications will have fundamentally asymmetric dataflow.
For example, in streaming media almost all data flows from server
to client; after the initial connection setup, the client’spackets are
all acknowledgements.

TCP devolves naturally into unidirectional communication.
Since TCP acknowledgements occupy no sequence space, it is nei-
ther useful nor possible to acknowledge them; since data retrans-
missions clean up old ack state, a unidirectional TCP flow in which
all data has been acknowledged occupies minimal state on both end-
points. We aim for a similar property from DCCP: a DCCP connec-
tion with unidirectional data flow should spend little time,space, or
bandwidth on the inactive direction. In a bidirectional DCCP con-
nection, however, each endpoint may need to keep detailed SACK-
like acknowledgement information about its partner’s datapackets.
When data flows unidirectionally, this overhead is largely awaste
for the inactive direction. If B is sending only acknowledgements
to A, then A should acknowledge B’s packets only as necessaryto
clear B’s acknowledgement state; these acks-of-acks are minimal
and need not contain detailed loss reports (Section 4.4).

To solve these issues cleanly, DCCP logically divides each con-
nection into twohalf-connections. A half-connection consists of
data packets from one endpoint plus the corresponding acknowl-
edgements from the other. When communication is bidirectional,
both half-connections are active, and acknowledgements can of-
ten be piggybacked on data packets (Figure 5). The format forac-
knowledgements is determined by the governing half-connection’s
congestion control method, which might for example requirede-
tailed Ack Vector information. But a half-connection that has sent
no data packets for some time (0.2 seconds or 2 RTTs, whichever is
greater), and that has no outstanding acknowledgements, issaid to
bequiescent. There is no need to send acknowledgements on a qui-
escent half-connection. When the B-to-A half-connection goes qui-
escent (B stops sending data), A can also stop acknowledgingB’s
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packets, except as necessary to prune B’s acknowledgement state.
Half-connections turned out to be an extremely useful abstrac-

tion for managing connection state. It makes sense conceptually
and in the implementation to group information related to a data
stream with information about its reverse path. DCCP runs with
this idea: each half-connection has an independent set of variables
and features, including a congestion control method. Thus,a sin-
gle DCCP connection could consist of two TFRC half-connections
with different parameters, or even one half-connection using TCP-
like congestion control and one using TFRC.

5.2 Feature negotiation

DCCP’s connection endpoints must agree on a set of parameters,
the most obvious of which is the choice of congestion controlmeth-
ods the connection should use. Both endpoints have capabilities—
the mechanisms they implement—and application requirements—
the mechanisms the application would prefer. Since the application
cannot be relied upon to negotiate agreement, negotiation must take
place in band. TCP has a similar problem, applying at least toECN,
SACK, window scaling, and timestamps, which it solves ad hoc
with different options or bits in each case. The resulting complexity
would only grow in an unreliable protocol. Therefore, in DCCP we
built in a single general-purpose mechanism for reliably negotiating
the values offeatures. A feature is simply a per-endpoint property
on whose value both endpoints must agree. Examples include each
half-connection’s congestion control mechanism, and whether or
not short sequence numbers are allowed.

Feature negotiation involves two option types: Change options
open feature negotiation, and Confirm options, which are sent in
response, name the new values. Change options are retransmitted
as necessary for reliability. Each feature negotiation takes place in
a single option exchange; our initial design involved multiple back-
and-forth rounds, but this proved fragile. A single exchange isn’t
overly constraining, since complex preferences can be described in
the options themselves. Change and Confirm options can contain
preference lists, which the endpoints analyze to find a best match.

With hindsight, generic reliable feature negotiation has allowed
us to easily add additional functionality without needing to consider
interactions between feature negotiation, congestion control, relia-
bility, and the differing acknowledgement styles requiredby each
congestion control mechanism.

5.3 Mobility and multihoming

Mobility and multihoming, which cut across the network and trans-
port layers, are different from most functionality in that they can-
not be layered on top of an unreliable protocol. Mobility could
be implemented entirely at the network layer, as with MobileIP,
but choosing the transport layer has advantages [42]: the transport
layer is naturally aware of address shifting, so its congestion control
mechanism can respond appropriately, and transport-layermobility
avoids triangle routing issues. We were thus directed to develop a
mobility and multihoming mechanism for DCCP.

Happily, mobility and multihoming are among the few cases
where unreliability makes a problem easier. Reliable transport must
maintain in-order delivery even across multiple addresses. As a con-
sequence, changing a connection’s address set requires tight inte-
gration with the transport layer [42]. Unreliable transport, however,
doesn’t guarantee in-order delivery, or any delivery at all, and coor-
dination can therefore be quite loose. DCCP’s mobility and multi-
homing mechanism simply joins a set ofcomponent connections,
each of which may have different endpoint addresses, ports,se-
quence numbers, and even connection features, into a singlesession
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Figure 6: Shutdown handshakes push Time-Wait state to the client.

entity. This is done in the simplest possible way: to add a newad-
dress, an endpoint opens a new DCCP connection, including inits
Request an option for attaching to an existing session. Thismeans
that most DCCP and middlebox code can treat component connec-
tions as independent; for instance, each connection has itsown con-
gestion control state. The only code that differs involves the socket
layer, where transport interacts with the application. Most transport
state is unique per component connection, but all components in
a session share a single socket. Data written to the socket can be
distributed arbitrarily among component connections, anddata re-
ceived from any component connection is enqueued on the shared
socket. This design resembles previous work on session-layer mo-
bility management [25, 43], but thanks to unreliability, wecan add
multihoming support while simplifying the basic abstractions.

The mobility and multihoming mechanism also prevents connec-
tion hijacking, where an attacker moves one endpoint of a victim’s
connection to its own IP address. We reason that hijacking isfun-
damentally more serious than data injection or connection reset, so
hijacking should be preventedeven when the attacker can passively
snoop the connection. Thus, the DCCP options that manage ses-
sions are protected against forgery and replay by nonces anddigital
signatures. Of course, an on-path active attacker, such as acompro-
mised router, can still hijack a connection with or without mobility.

5.4 Denial-of-service attacks

In a transport-level denial-of-service attack, an attacker tries to
break a victim’s network stack by overwhelming it with data or
calculations. For example, the attacker might send thousands of
TCP SYN packets from fake (or real) addresses, filling up the vic-
tim’s memory with useless half-open connections. Generally these
attacks are executed against servers rather than clients. Any mod-
ern transport protocol must be designed from the outset to resist
such attacks, which may even involve changes to the design ofthe
protocol state machine itself.

The basic strategy is to push state to the client whenever possi-
ble. In DCCP, for example, a server responding to a Request packet
can encapsulate all of its connection state into an Init Cookie op-
tion, which the client must echo when it completes the three-way
handshake. Like TCP’s SYN cookies [9] and SCTP’s initializa-
tion cookies [46], this lets the server avoid keeping any informa-
tion about half-open connections; unlike SYN cookies, which were
retrofitted, Init Cookies can encapsulate lots of state. Another state-
holding issue occurs during connection shutdown where, as with
TCP, Time-Wait state needs to remain at an endpoint for at least two
minutes to prevent confusion in case the network delivers packets
late. Unlike TCP, DCCP servers can shift Time-Wait state onto will-
ing clients. This is accomplished by introducing asymmetryinto the
shutdown state machine. All DCCP connections end with a single
Reset packet, and only the receiver of that Reset packet holds Time-
Wait state. Normal connections end with a Close–Reset handshake,
but the server (and only the server) can initiate shutdown with a
CloseReq packet, which effectively asks the client to accept Time-
Wait state (Figure 6).
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DCCP also allows rate limits whenever an attacker might force
an endpoint to do work. For example, there are optional rate limits
on the generation of Reset and Sync packets. Finally, as described
above, the DCCP state machine itself and the explicit synchroniza-
tion mechanism have both been engineered to resist blind reset at-
tacks on existing connections.

5.5 Formal modeling
The initial DCCP design was completed without benefit of formal
modeling. As our work progressed, however, we made use of a
semi-formal exhaustive state search tool and two formal tools, a la-
beled transition system (LTSA, [28]) model and an independently-
developed colored Petri net (CPN) model from the Universityof
South Australia [47]. These tools, and particularly the colored Petri
net model, were extremely useful, revealing several subtleproblems
in the protocol as we had initially specified it.

The most important tool was simply shifting from reasoning
via state diagrams to detailed pseudocode that defined how pack-
ets should be processed. The resulting precision revealed several
places where our design could lead to deadlock, livelock, orother
confusion. An ad hoc exhaustive state space exploration tool was
then developed to verify that the pseudocode worked as expected;
examining its output led to further refinements, especiallyto the
mechanism for recovering from half-open connections. The LTSA
model—which included states, packets, timers, and a network with
loss and duplication, but not sequence numbers—was used to more
formally examine the specification for progress and deadlock free-
dom. It found a deadlock in connection initiation, which we fixed.
The CPN model went into more depth, in particular by including
sequence numbers, with impressive results. This model found the
half-open connection recovery problem described in Figure3(b), a
similar problem with connections in Time-Wait state, and a problem
with the short-sequence-number extension code in Section 4.5 (we
initially forgot reordering). These problems involved chatter, rather
than deadlock: a connection would eventually recover, but only af-
ter sending many messages and causing the verification tool’s gen-
eralized state space to explode in size. Thus, as the protocol im-
proved the verifier ran more quickly!

Our experience with formal modeling was quite positive, espe-
cially combined with clear explanation in pseudocode. Nexttime,
we would seek out modeling experts earlier in the design process.

6 CONGESTION CONTROL

As a congestion control framework, DCCP gives the application a
choice of congestion control mechanisms. Some applications might
prefer TFRC congestion control, avoiding TCP’s abrupt halving of
the sending rate in response to congestion, while others might pre-
fer a more aggressive TCP-like probing for available bandwidth.
The choice is made via Congestion Control IDs (CCIDs), which
name standardized congestion control mechanisms. A connection’s
CCIDs are negotiated at connection startup. This section describes
the two CCIDs that have currently been developed, congestion con-
trol issues exposed by DCCP’s target applications that remain to be
solved, and more general problems relating to congestion control,
including misbehaving receivers and non-congestion loss.

6.1 CCID 2: TCP-like Congestion Control
DCCP’s CCID 2 provides a TCP-like congestion control mecha-
nism, including the corresponding abrupt rate changes and ability to
take advantage of rapid fluctuations in available bandwidth. CCID 2
acknowledgements use the Ack Vector option, which is essentially
a version of TCP’s SACK. Its congestion control algorithms like-
wise follow those of SACK TCP, and maintain similar variables: a

congestion window “cwnd”, a slow-start threshold, and an estimate
of the number of data packets outstanding [10].

One difference from TCP is CCID 2’s reaction to reverse-path
congestion. TCP doesn’t enforce any congestion control on ac-
knowledgements, except trivially via flow control. This is simul-
taneously too harsh and not harsh enough: high reverse-pathcon-
gestion slows down the forward path, and medium reverse-path
congestion may not even be detected, although it can be particu-
larly important for bandwidth-asymmetric networks or packet ra-
dio subnetworks [7]. Modern protocols should ideally detect and
act on reverse-path congestion. Thus, CCID 2 maintains a feature
called Ack Ratio that controls the rough ratio of data packets per
acknowledgement. TCP-like delayed-ack behavior is provided by
the default Ack Ratio of two. As a CCID 2 sender detects lost ac-
knowledgements, it manipulates the Ack Ratio so as to reducethe
acknowledgement rate in a very roughly TCP-friendly way.

Ack Ratio is an integer. To reduce ack load, it is set to at least
two for a congestion window of four or more packets. However,to
ensure that feedback is sufficiently timely, it is capped at cwnd/2,
rounded up. Within these constraints, the sender changes Ack Ratio
as follows. LetR equal the current Ack Ratio.

• For each congestion window of data where at least one of the
corresponding acks was lost or marked,R is doubled;

• For each cwnd/(R2 − R) consecutive congestion windows of
data whose acks were not lost or marked,R is decreased by 1.

This second formula comes from wanting to increase the number
of acks per congestion window, namely cwnd/R, by one for every
congestion-free window that passes. However, sinceR is an inte-
ger, we instead find ak so that, afterk congestion-free windows,
cwnd/R+k = cwnd/(R−1).

6.2 CCID 3: TFRC Congestion Control
TFRC congestion control in DCCP’s CCID 3 uses a different ap-
proach. Instead of a congestion window, a TFRC sender uses a
sending rate. The receiver sends feedback to the sender roughly
once per round-trip time reporting the loss event rate it is currently
observing. The sender uses this loss event rate to determineits send-
ing rate; if no feedback is received for several round-trip times, the
sender halves its rate.

This is reasonably straightforward, and does not require reliable
delivery of feedback packets, as long as the sender trusts the re-
ceiver’s reports of the loss event rate. Since acknowledgements are
so limited—to one per round-trip time—there is no need for ac-
knowledgement congestion control. However, a mere loss event rate
is ripe for abuse by misbehaving receivers. Thus, CCID 3 requires
instead that the receiver report a set ofloss intervals, the quantities
from which TFRC calculates a loss event rate. Each loss interval
contains a maximal tail of non-dropped, non-marked packets. The
Loss Intervals option reports each tail’s ECN nonce echo, allowing
the sender to verify the acknowledgement; see Section 6.4 below.
The receiver need never report more than the nine most recentLoss
Intervals. Since this bounds acknowledgement state, CCID 3ac-
knowledgements need not be acknowledged. Loss Intervals resem-
bles TCP’s SACK option even more closely than does Ack Vec-
tor, except that unlike SACK, Loss Intervals can group several dis-
tinct losses into a single range representing a congestion event. This
feedback information is substantially different from CCID2’s Ack
Vector, but DCCP supports both mechanisms equally well. A less
flexible protocol might have difficulties supporting futureconges-
tion control methods as the state of the art evolves.

TFRC also requires that data senders attach to each data packet
a coarse-grained “timestamp” that increments every quarter-round-
trip time. This timestamp allows the receiver to group losses and
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Figure 7: Send rate for given packet drop rates using TCP, standard
TFRC, and small-packet TFRC. TCP uses bulk transfer and 1460-byte
segments; TFRC uses 14-byte segments and has an application-limited
maximum send rate of 12 kbps including headers.

marks that occurred during the same round-trip time into a single
congestion event. Such a timestamp could obviously be included as
an option, but at the cost of 4 bytes per packet. Instead, CCID3
attaches the timestamp to a 4-bit protocol header field, CCVal, re-
served for use by the sender’s congestion control mechanism. Such
a small field requires care to avoid wrapping problems; we consid-
ered this worth it to avoid the overhead.

6.3 Future congestion control issues
Many open issues remain for designing congestion control suitable
for unreliable timing-critical applications. Examples ofcurrently-
problematic application desires include:

• Sending many small packets rather than fewer large ones.
• Rapid startup after idle periods, such as in interactive communi-

cation where parties speak in turn.
• Abrupt changes in application data rate due to codec artifacts,

such as MPEG I-frames vs. B/P-frames.

We don’t yet understand how far congestion control mechanisms
for best-effort traffic can be pushed to deal with these application-
level issues, or what the consequences might be for aggregate traf-
fic if congestion control mechanisms are pushed too far. We expect
DCCP to evolve as more is learned, and modular CCIDs facilitate
this evolution. As a concrete example, we focus on the small packet
issue, which casts light on the fundamental difficulties faced in de-
signing a protocol that should work well for a wide range of appli-
cations in the face of immense diversity of network constraints.

For a fixed packet loss rate, a TCP connection that uses smaller
packets will achieve a proportionally lower sending rate inbytes
per second than one sending larger packets. However, TCP’s
bytestream semantics mean that it can generally assemble packets
to be as large as possible. For unreliable applications, thestory is
rather different. Due to a combination of application-level framing
and tight delay constraints, applications such as telephony and gam-
ing may sometimes find it necessary to send frequent small packets.
A good adaptive multi-rate CELP speech codec such as AMR [19]
can achieve bitrates from 12 kbps down to less than 5 kbps. At
5.6 kbps, a 20 ms audio frame requires only 14 bytes. Interactive
media must react to congestion primarily by adapting the packet
size, keeping the rate constant; any additional latency would intro-
duce audible artifacts into the playout stream.

So how should such a low-bandwidth, small-packet flow com-
pete with a TCP flow sending 1500-byte packets? We initially
hoped that standard TFRC would suit VoIP applications, but in
practice it competes poorly because it factors packet size into its
throughput equation. By default, a TFRC flow using small pack-
ets will achieve the same throughput as a TCP flow using the same
small packet size and seeing the same loss rate. But most of the time
TCP does not use small packets, so a TFRC VoIP session will lose
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Figure 8: Send rate for givenbyte drop rates using TCP, standard
TFRC, and small-packet TFRC. TCP uses bulk transfer and packet sizes
that optimize send rate; TFRC parameters are as in Figure 7.

out badly to a file transfer. See, for example, the simulationresults
in Figure 7: an application-limited standard TFRC flow reduces its
send rate with increasing loss rates, even though it always sends far
less data than would a large-packet TCP flow.

Given these sensible application requirements—and the applica-
tions’ overall modest sending rates, in both packets and bytes per
second—it made sense to design a TFRC variant allowing such
a VoIP call to compete fairly with a large-packet TCP flow. Our
small-packet TFRC variant [15] does precisely this by compensat-
ing for packet size. Figure 7 also shows that the small-packet TFRC
variant competes fairly for bandwidth with a large-packet TCP flow.

Is small-packet TFRC safe to deploy? The issue is clouded by
questions about the bottleneck links. While the bottleneckrouter’s
forwarding limitation is commonly link capacity in bytes per sec-
ond, in some cases it may be router CPU cycles, which constrain
the forwarding rate inpackets per second. Even if link capacity is
the bottleneck, the queue at the bottleneck router may be limited in
packets or bytes. The former will give both small and large pack-
ets the same drop probability, whereas the latter will preferentially
drop large packets. Furthermore, in some situations a flow might
encountermultiple bottlenecks with different characteristics.

If the bottleneck is in packets per second, an adaptation that
changes only the packet size while sending a constant packetrate
serves no purpose. However, most modern routers can forwardmin-
imum sized packets at line speed, so it is probably reasonable to as-
sume that changing the packet size is worthwhile. But does a small-
packet TFRC flow in fact see the same loss rate as the large-packet
TCP flow? If the bottleneck router manages its flow in bytes, then
the small packets are already less likely to be dropped. Figure 8
shows the results of a simulation like Figure 7, but where each byte
is dropped with some probability; a packet is dropped if any of its
bytes are dropped. Here,standard TFRC competes fairly with TCP.
The small-packet variant gets too much bandwidth at high byte drop
rates, and can actually starve TCP flows in extreme circumstances.

Internet router behavior is simply not well specified, so there
is no right answer for how congestion control should be designed.
What then should DCCP do? The question of appropriate conges-
tion control for small packet flows is still open. A pragmaticview
is that applications will not choose between standard TFRC and
small-packet TFRC, but rather between small-packet TFRC and no
congestion control at all. If DCCP only offered standard TFRC,
with the likelihood of behavior like that in Figure 7, many applica-
tion writers would opt for a fixed-rate UDP flow. The small-packet
variant is never worse for the network than this, and sometimes it is
much better; and, importantly, it may work for the application.

6.4 Misbehaving receivers
Internet congestion control is voluntary in the sense that few, if
any, routers actually enforce congestion control compliance. Un-
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fortunately, some endpoints, particularly receivers, have incentives
to violate congestion control if that will get them their data faster.
For example, misbehaving receivers might pretend that lostpack-
ets were received or that ECN-marked packets were received un-
marked, or even acknowledge data before it arrives [37]. TCP’s se-
mantics deter many of these attacks, since missing data violates the
expectation of reliability and must therefore be handled bythe ap-
plication. However, DCCP applications generally tolerateloss to
some degree, making deliberate receiver misbehavior more likely.
The protocol must therefore be designed to allow the detection of
deliberate misbehavior. In particular, senders must be able to ver-
ify that every acknowledged packet was received unmarked. To do
this the sender provides an unpredictable nonce with each packet;
the receiver echoes an accumulation of all relevant nonces in each
acknowledgement [37].

DCCP, like TCP, uses the ECN Nonce for this purpose. The
nonce encodes one bit of unpredictable information that is de-
stroyed by loss or ECN marking [44]. All acknowledgement options
contain a one-bit nonce echo set to the exclusive-or of the nonces
of those packets acknowledged as received non-marked. However,
unlike in TCP, calculating and verifying this nonce echo presents
no difficulties. The TCP nonce echo applies to the cumulativeack,
and thus covers every packet sent in the connection; but in the pres-
ence of retransmission and partial retransmission, a TCP sender can
never be sure exactly which packets were received, as retransmis-
sions have the same sequence numbers as their originals. Thus, the
TCP nonce echo and verification protocol must specially resynchro-
nize after losses and marks. None of this is necessary in DCCP,
where there are no retransmissions—every packet has its ownse-
quence number—and no cumulative ack: options such as Ack Vec-
tor explicitly declare the exact packets to which they refer.

An endpoint that detects egregious misbehavior on its partner’s
part should generally slow down its send rate in response. An“Ag-
gression Penalty” connection reset is also provided, but werecom-
mend against its use except for apocalyptic misbehavior. After all,
if short sequence numbers are used, an attacker may be able tocon-
fuse an endpoint’s nonce echo through data injection attacks.

Several other DCCP features present opportunities for receiver
misbehavior. For example, Timestamp and Elapsed Time options let
a receiver declare how long it held a packet before acknowledging
it, thus separating network round-trip time from end host delay. The
sender can’t fully verify this interval, and the receiver has reason to
inflate it, since shorter round-trip times lead to higher transfer rates.
Thus far we have addressed such issues in an ad hoc manner.

6.5 Partial checksums and non-congestion loss
Several of our target applications, particularly audio andvideo, not
only tolerate corrupted data, but prefer corruption to loss. Passing
corrupt data to the application may improve its performanceas far
as the user is concerned [20, 40]. While some link layers essen-
tially never deliver corrupt data, others, such as cellulartechnolo-
gies GSM, GPRS, and CDMA2000, often do. Furthermore, link-
layer mechanisms for coping with corruption, such as retransmis-
sion (ARQ), can introduce delay and rate variability that appli-
cations want even less than corruption [12]. DCCP thereforefol-
lows the UDP-Lite protocol [26] in allowing its checksum to cover
less than an entire datagram. Specifically, its checksum coverage
(CsCov) field allows the sender to restrict the checksum to cover
just the DCCP header, or both the DCCP header and some num-
ber of bytes from the payload. A restricted checksum coverage in-
dicates to underlying link layers that corrupt datagrams should be
forwarded on rather than dropped or retransmitted, as long as the
corruption takes place in the unprotected area.

The motivation for partial checksums follows that of UDP-Lite,
but is perhaps more compelling in DCCP because of congestion
control. Wireless link technologies often exhibit an underlying level
of corruption uncorrelated with congestion, but endpointstreat all
loss as indicative of congestion. Various mechanisms have been
proposed for differentiating types of loss, or for using local re-
transmissions to compensate [4]. It isn’t yet clear how oneshould
respond to different types of loss—our current congestion control
mechanisms treat corruption as they would treat ECN marking, that
is, as congestion indications. However, protocols should at least al-
low receivers to distinguish between types of loss, allowing incre-
mental deployment of alternative responses as experience is gained.

To enable this, DCCP allows receivers to report corruption sep-
arately from congestion, when the corruption is restrictedto packet
payload. (Payload corruption may be detected with a separate CRC-
based Payload Checksum option; all packets with corrupt headers
must be dropped and reported as lost.) This uses the same mecha-
nism as other types of non-network-congestion loss, such asreceive
buffer drops: the packet is reported as received, and its ECNNonce
is included in the relevant acknowledgement option’s nonceecho,
but a separate Data Dropped option reports the corruption.

6.6 Summary and discussion
DCCP was designed from the outset to supportmodular conges-
tion control. In part, this is because the state of the art is still ad-
vancing, both algorithmically and in the proper response tonon-
congestion loss. Supporting this evolution in a transport protocol
avoids the need to rewrite thousands of applications with every up-
date to congestion control semantics. Furthermore, time-sensitive
applications can have widely varying needs, as illustratedby small-
packet TFRC. It seems unlikely that any one algorithm will suit
them all, so allowing applications to choose the dynamics they pre-
fer is essential for success.

This choice has consequences, though. Congestion control algo-
rithms form a control loop; the dynamics of the algorithm andthe
nature of the feedback information are tightly coupled. Thus, select-
ing a specific algorithm also dictates theacknowledgement format.

The need to be robust in the face of attack also weighs heavilyon
the design of a modern protocol. Issues such as denial-of-service at-
tacks, misbehaving receivers, and sequence number validity affect
many small details. Robustness is actually very hard to get right—
only formal modeling revealed some subtle flaws in our earlier de-
signs. To expect every application designer to do such modeling is
asking too much; when this work is done for a transport protocol a
whole range of different applications can then reap the benefits.

7 CONCLUSIONS

It might reasonably be assumed that designing an unreliablealter-
native to TCP would be a rather simple process; indeed we made
this assumption ourselves. However, TCP’s congestion control is so
tightly coupled to its reliable semantics that few TCP mechanisms
are directly applicable without substantial change.

TCP manages such a beautifully integrated design for two main
reasons. First, the bytestream abstraction is very simple.With the
exception of the urgent pointer, TCP does not need to consider de-
tailed application semantics. Second, TCP is able to bootstrap off
its own reliability; for example, the cumulative acknowledgement
in TCP serves many purposes, including reliability, liveness, flow
control, and congestion control. An unreliable protocol has neither
luxury, and there does not appear to be a simple unifying mecha-
nism equivalent to the cumulative acknowledgement.

Nevertheless, it is possible to design a relatively simple proto-
col that robustly manages congestion-controlled connections with-
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out reliability. Explicit synchronization and new acknowledgement
formats even have some advantages over their TCP equivalents.
Modular congestion control mechanisms make it possible to adapt
congestion control within a fixed protocol framework as network
and application constraints change. Robustness against attack is ad-
dressed in a more thorough way.

It is too early to tell whether DCCP will succeed in wide de-
ployment. Only recently have implementations started to appear (in
Linux and FreeBSD); NATs and firewalls do not yet understand it;
no application yet uses DCCP as its primary transport. Because it
was designed for applications, and with feedback from application
designers, we hope and believe it will be useful anyway. Regard-
less, our design experience cast well-known issues of reliability and
protocol design in what seemed to us a valuable new light.

Although it may not seem like it, we have deliberately avoided
describing all the details of DCCP. The interested reader isreferred
to the specifications [14, 18, 24].
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