A System For Coarse Grained Memory Protection In Tiny
Embedded Processors

Ram Kumar, Akhilesh Singhania, Andrew Castner, Eddie Kohler, Mani Srivastava
University of California at Los Angeles
420 Westwood Plaza, Los Angeles, CA, USA

{ram,akhi,mbs}@ee.ucla.edu, {castner,kohler} @cs.ucla.edu

ABSTRACT

Many embedded systems contain resource constrained mi-
crocontrollers where applications, operating system compo-
nents and device drivers reside within a single address space
with no form of memory protection. Programming errors in
one application can easily corrupt the state of the operat-
ing system and other applications on the microcontroller.
In this paper we propose a system that provides memory
protection in tiny embedded processors.’. Qur system con-
sists of a software run-time working with minimal low-cost
architectural extensions to the processor core that prevents
corruption of state by buggy applications. We restrict mem-
ory accesses and control flow of applications to protection
domains within the address space. The software run-time
consists of a Memory map: a flexible and efficient data struc-
ture that records ownership and layout information of the
entire address space. Memory map checks are done for store
instructions by hardware accelerators that significantly im-
prove the performance of our system. We preserve control
flow integrity by maintaining a Safe stack that stores re-
turn addresses in a protected memory region. Cross do-
main function calls are redirected through a software based
jump table. Enhancements to the microcontroller call and
return instructions use the jump table to track the cur-
rent active domain. We have implemented our scheme on a
VHDL model of ATMEGA103 microcontroller. Our evalua-
tions show that embedded applications can enjoy the ben-
efits of memory protection with minimal impact on perfor-
mance and a modest increase in the area of the microcon-
troller.

Categories and Subject Descriptors: C.3 [Special -
Purpose and Application-Based Systems]: Real-time and em-
bedded systems

General Terms: Performance, Design, Reliability

Keywords: Memory Protection, Software Fault Isolation

18, 16 and 32-bit microcontrollers with limited resources
This paper is based on research funded in part by UCLA CENS, NSF under
award 0520006, U.S. ONR under award N000140610253, U.S. ARL and the
U.K. MoD under Agreement W911NF-06-3-0002. Any opinions expressed
in this paper are those of the authors and do not necessarily reflect the views
of the funding agencies. Permission to make digital or hard copies of all
or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DAC’07, June 4 -8, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

1. INTRODUCTION

Software complexity on tiny embedded processors is in-
creasing. Software supports a diversity of peripheral devices,
multiple distributed middleware services, dynamic code up-
dates and concurrent applications in a resource constrained
environment. Operating systems (TinyOS [10], SOS [5]),
Virtual Machines (Maté, Sun SPOTS) and Wireless Appli-
cations (Zigbee [16]) are some of the complex software sys-
tems running on 8-bit microcontrollers. Implementing em-
bedded software modules is a challenge, as programmers are
forced to deal with severe resource constraints and concur-
rency issues. Furthermore, there is very limited debugging
support on tiny embedded processors, leading to an abun-
dance of programming errors. In particular, corruption of
memory due to lack of protection from buggy applications
is a very serious problem. The impact of these errors can be
quite severe.

Architecture of tiny embedded processors is very simple.
The entire memory is accessible to all software modules run-
ning on the processor via a single address space. Architec-
ture features such as memory management units (MMU)
and privileged-mode execution are common only in desk-
top/server class processors to isolate and protect data and
code of one program from another. An MMU provides vir-
tual memory in addition to protection and requires lot of
memory for storing page tables for address translations. Em-
bedded microcontroller designers face extreme pressure to
minimize cost and area of a chip. Sometimes, even 32-bit
ARM processor cores are not equipped with MMUs to min-
imize system cost and power [1]. Therefore, current MMU
designs will continue to be absent from low-cost low-power
micro-controllers.

Software-based Fault Isolation (SFI) (or “Sandboxing”) is
a class of techniques proposed by Wahbe et. all for memory
protection within single address space in desktop micropro-
cessors. In SFI, the address space of a process is partitioned
into contiguous segments and each segment is allocated to
a software module. Software modules are implemented with
run-time checks that ensure that all memory accesses reside
entirely within the segment allocated to it. These run-time
checks are introduced through rewrite of a compiled binary.
Our approach is motivated by SFI but it has fundamental
differences due to the resource constraints of the tiny em-
bedded processors. First, we do not partition the address
space of the microcontroller, as the available memory on
microcontrollers is severely limited. For example, the AT-
MEGA128 AVR has only 4 KB of on-chip RAM. In most
systems [6] this is the total available memory. Static parti-

tioning would further limit the memory that is available to
individual software components. Instead we rely on a Mem-
ory Map: a data structure that can efficiently record owner-
ship and layout information of the entire address space. Sec-
ond, we do not rewrite binary to introduce run-time checks.
We instead enhance the implementation of store, call and
return instructions in the microcontroller to perform run-
time checks in hardware. This minimizes the performance
overhead of performing run-time checks in software and also
eliminates the binary rewrite step of SFI which can be quite
error prone.

Our overall system can be viewed as a hardware/software
co-design approach to memory protection. Low cost archi-
tecture extensions and a software run-time library work to-
gether to isolate different software components running on
an embedded processor. Our system is entirely implementable
in software albeit with a high performance overhead. Sim-
ple enhancements to the microcontroller core enable us to
perform critical operations in hardware, thereby improving
performance significantly.

1.1 System Overview

An overview of our system highlighting all its compo-
nents is shown in Figure 1. The final firmware image is
composed of multiple software modules that need to be pro-
tected from one another. A cross domain linking mecha-
nism (described in Section 3) installs the software modules
in separate protection domains. The cross domain calls are
redirected through a software jump table. The redirection
assists the processor in determining the identity of the cur-
rently active domain. The Memory Map (described in Sec-
tion 2) tracks layout and ownership information for the pro-
tected address space. The firmware image interacting with
the memory map and hardware enhanced run-time checkers
is guaranteed to be memory safe. The cost and performance
analysis of our system is done in Section 4. We present re-
lated work in Section 5 and concluding remarks in Section 6.

1. Compiled Binary

Cross Domain Linker
(Desktop Tool / Run-Time)

2. Memory-Safe Binary

| Memory Map Checker |
STORE INSTR. EXT.

: ‘ Memory Map ‘

Domain Tracker

: Jump Table :
: CALL INSTR. EXT. |

RET INSTR. EXT.

B

SW Runtime HW Extensions
Embedded Processor

Figure 1: System Overview

2. MEMORY MAP

2.1 Protection Domains

Our fault model for memory protection is the corruption of
state belonging to a module caused due to illegal write oper-
ations made by some another module. We create and enforce

Protection Domains within data memory address space of
the embedded processor. Protection domain refers to a frag-
mented but logically distinct portion of overall data memory
address space (Figure 2). Every module stores its state in
its own protection domain. No assumptions are made about
layout of state within a domain. Modules are restricted from
writing to memory outside their domain through run-time
checks. There is one single trusted domain in the system
that is allowed to access all memory.

Protection models based on domains do not address all
possible memory corruption faults in the system. Modules
can still corrupt their own state as it resides completely
within a protection domain. This form of corruption, though
undesirable, is less serious than corruption across domains.
If we have an operating system we can load the kernel image
in its separate domain. A stable kernel can always ensure a
clean re-start of user modules when corruption is detected.

0x00

@;i@;i@ 358

Dom 1 Dom 2 E Dom 3 E Stack

Figure 2: Protection Domains

2.2 Memory Map Data Structure

Creating and enforcing protection domains is a challeng-
ing task on resource constrained embedded platforms. Lim-
ited memory prohibits static contiguous partitioning of ad-
dress space into multiple domains. Instead we partition the
address space of the microcontroller into blocks of equal
sizes. A Block is a small contiguous region of memory. Mem-
ory is allocated to domains as segments, which are simply
sets of contiguous blocks. Allocation of segments to domains
could be static (at compile time) or dynamic (through a
memory heap). A domain could be allocated multiple seg-
ments that are scattered randomly across entire address
space. The Memory Map contains access permissions for ev-
ery block of address space. The Memory Map specifies two
pieces of information. First, it contains ownership informa-
tion (domain identity) for every block of memory. Second, it
encodes information about memory layout such as start of
a logical segment of allocation to programs. An example of
actual encoded information and their meaning is specified
in Table 1.

Code | Meaning

1111 | Free or Start of Trusted Segment

1110 | Later portion of Trusted Segment

xxx1 | Start of Domain (0 - 6) Segment

xxx0 | Later portion of Domain (0 - 6) Segment

Table 1: Encoded information in memory map table
for multi-domain protection

2.3 Memory Map Checker

A memory map checker is required to validate memory
accesses made by software components. It enforces the pro-
tection model that we described earlier; programs can write
only into their domain. The memory map checker is im-
plemented as a functional unit (MMC) that intercepts the
signals generated by the CPU for writing into the data mem-
ory (Figure 3). If the write address is valid the MMC writes
directly into the data memory.

CPU_ADDR MMC_ADDR.

cPU_WR_EN Mve MO WREN] P

CPU_STALL

i I i

DATA BUS

Figure 3: Memory Map Controller (MMC)

CPU_WR_ADDR - MEM_PROT_BASE

Address Offset (11 - 0)

CLK CITTTTTITTTIT]
,,,,,,,,,,,,,,,,, 1
|

CPU_ADDR e e\

CPU_WR_EN

Menmap Offset (11 - 5)

Memmap Table

MMC_ADDR

T

I
Memmap Records

MMC_WR_EN | I_

1
(a) Timing

CPU_STALL

MEM MAP BASE

(b) Addr Translate

Figure 4: MMC Operations

The operations performed by MMC are three-fold. First,
it stalls the processor execution and takes control of the
address bus to memory. This occurs in the second cycle of
the clock waveform shown in Figure 4(a). In the same clock
cycle it performs an address translation operation to deter-
mine the address of the permissions in the memory map.
Address translation is shown in Figure 4(b). Memory map
permissions are also read in this cycle as the MMC unit has
control over the address bus. Second, the MMC compares
the ownership information to the identity of the current ex-
ecuting domain. Finally, if the check is successful, then the
MMC issues a write enable signal to the data memory.

The subset of address space protected by the memory
map is defined by the register pair mem_prot_bottom and
mem_prot_top. The first step during translation is to deter-
mine the offset of the write address into the protected ad-
dress space. This is done by subtracting the lower bound of
protected memory address space from the issued write ad-
dress. Assuming a block size of 8 bytes, the nine significant
bits of the address offset represent the block number. Per-
missions are packed into a byte. If the encoded information
is stored in four bits (assuming multi-domain protection),
then each byte would contain information of two contiguous
memory blocks. Therefore the last bit of the block number
represents the byte offset of the permission. The remaining
bits index into the Memory Map Table. The base pointer of
the Memory Map Table is stored in a special register called
mem map_base. The address of the permissions byte is com-
puted by adding the memory map index to the memory map
base pointer.

The Memory Map data structure is configurable through
a set of programmable registers shown in Table 2. The regis-
ters are accessible only by the run-time library loaded in the
trusted domain. The mem map_config register is used to con-
figure the block size and the number of protection domains
available in the system.

2.4 Memory Map Software Library

The software library manages all the memory available on
the embedded processor. First, it ensures that the memory
map accurately reflects current ownership and layout. In any
real system, memory is constantly allocated, de-allocated or
transferred from one module to another. The Memory Map

Function

Memory map base pointer

mem_prot_bot Lower bound of protected address space
mem_prot_top Upper bound of protected address space
mem_map_config | Configure block size and domains

Register
mem_map_base

Table 2: Memory Map Configuration Registers

should be immediately updated when any of these events oc-
cur. The library provides malloc, free and change_own calls
that automatically update the Memory Map data structure.
Second, it only permits the block owner to free or change
its ownership. This condition is necessary as one module
may (due to programming errors) free up memory that is
being used by other module in the system. Also it prevents
a module from accidentally hijacking memory that is owned
by other modules. To enforce this condition, the software
library reads the identity of the current active domain from
the status register. Third, the software library sets up the
memory map to be located in a protected region of mem-
ory. This prevents accidental corruption of the Memory Map
data structure. It is the responsibility of the software library
to ensure that a memory map of sufficient size is allocated
in the system. Fourth, it initializes the MMC with the ap-
propriate block size, number of protection domains and the
range of protected address space.

3. CONTROL FLOW MANAGER

Programming errors can cause a module to corrupt its
own state. Protection domains created and enforced by the
memory map manager cannot prevent such internal memory
corruption. Control flow within a system can be affected by
internal memory corruption. For example, function point-
ers (commonly used to implement callbacks) are stored in
RAM. Return addresses to function call-sites are stored in
the stack. Corruption of these values can cause the processor
to execute arbitrary code belonging to the trusted domain.
The Control Flow Manager ensures that control can never
flow out of a domain except via calls to functions exported by
other domains and via returns to calls from other domains.
Conversely, control flow can enter a domain only through an
exported function or through the return site of a call that
is made to a function exported by some other domain. In
addition, the identity of the current domain (that is execut-
ing) also needs to be tracked. This information is required
by the memory map checker to validate write accesses. Con-
trol flow integrity within a domain is preserved through the
safe stack that stores return addresses.

3.1 Cross Domain Linking

A module loaded in a domain exports a set of functions
that can be validly called by modules in other domains. A
linker parses the set of functions exported by a domain and
writes them to a jump table in flash memory. The jump table
is similar in design to the processor interrupt vector table.
Each entry in the jump table is an instruction to jump to a
valid exported function. Each domain has its own jump ta-
ble that contains all functions that it exports. Modules are
not allowed to directly write to flash memory and therefore
the jump table cannot be corrupted. Modules that subscribe
to functions exported by a particular domain are re-directed
through the jump table of that domain. This is illustrated
in Figure 5. The jump table mechanism is independent of

the process used for dynamic linking i.e. exporting and sub-
scribing to functions. Linking could be done statically or
dynamically on the embedded processor [3].

DOMAIN A
call fool T
DOMAIN B
foo: foolT: jmp foo <
jmp exception
jmp exception
Domain B: Jump Table
ret

Program Memory

Figure 5: Cross Domain Linking

3.2 Domain Tracking

Domain tracking is performed in hardware by extending
the implementation of call and return instructions. Each
domain is allocated one complete page of flash memory to
store its jump table. In the AVR architecture this imposes
a limit of 128 functions that can be exported by every do-
main. This limit can be easily extended by allocating more
space to the jump table. Empty entries in the jump table
are filled with a jump instruction to an exception routine.
Jump table pages of all domains are co-located and stored
at fixed location in flash memory.

This organization simplifies the algorithm for verifying the
target address of a call. A valid target address has to reside
in the jump table. This is checked by a simple compare op-
eration to the base address of the jump table. The check
against the upper bound of jump table is deferred.

The identity of the called domain is also easily determined.
Jump tables of all domains are organized linearly, starting
from the domain 0 jump table located at the base address.
The identifier of the target domain can be easily determined
by first computing the address offset from the base address
of the jump table and dividing it by the size of the jump
table. If the target domain identifier exceeds the maximum
number of domains in the system, then it indicates that the
target address is greater than the upper bound of the jump
table, and an exception is generated. Finally, a call is made
into the jump table that is redirected to the actual entry
point in the target domain.

The current domain identifier needs to be pushed to a
stack, because cross domain calls can be chained: domain A
calls domain B which in turn calls domain C. During cross
domain return, the previous domain identifier is restored
and the control is transferred back to the caller’s domain.
The cross domain state machine handles the push and pop
operations transparently to the application programs.

3.3 Run-Time Stack Protection

Embedded micro-controllers have a single execution stack
that is shared by the entire system. In most architectures,
the stack is initialized at the end of address space and grows
down towards the start of address space. The run-time stack
is used for many purposes. First, it is used to record the re-
turn addresses of function calls. Second, it is used to set

up data frames for storing local variables or function argu-
ments that cannot be accommodated in registers. Third, it
is also used to store arguments for variadic functions. Stack
corruption is a serious problem. Qur protection model pre-
vents corruption of the stack belonging to one domain by
any module belonging to a different domain. During a cross
domain call the processor copies the current stack pointer
into a stack_bound register. The previous stack bound is
saved. The memory map checker compares the write ad-
dress to the current stack bound and signals an exception
if the address exceeds the stack bound. Therefore, modules
belonging to a domain cannot corrupt the stack belonging
to another domain.

3.4 Safe Stack

A module can call any local function within its domain.
The return address of function calls are stored in stack and
are protected from corruption from modules in other do-
mains. However, a programming error can cause a module
to corrupt its own stack. This cannot be prevented by pro-
tection domains. Therefore, we store all return addresses in
a separate stack that resides in a different protection do-
main. We call this a safe stack. A safe stack can be setup
only by the software in the trusted domain by writing to
the safe_stack_ptr. The safe stack can be setup anywhere
in data memory as long as it is protected from accidental
writes and overflow. We usually setup Safe Stack at the end
of all global data in the system and make it grow upwards.
Run-Time stack and Safe Stack approach one another.

4. EVALUATION

In this section, we will analyze the protection benefits and
overheads introduced by our methodology. We have imple-
mented the hardware components of our design by mak-
ing extensions to the AVR instruction set architecture. The
VHDL model of the extended processor is synthesizable.
We have instantiated the processor on Xilinx Vertex 2 Pro
XC2VP30 FPGA. Our performance overheads are measured
using Modelsim 6.0 simulator. The software library and ap-
plications were compiled using avr-gcc cross compiler.

4.1 Performance Overhead

We first present micro-benchmarks that measure CPU
overhead introduced by the protection mechanism. Table 3
contains the overhead of run-time checks present in our
mechanism. We compare our overhead with a completely
software based approach to memory protection through bi-
nary rewrites proposed in [8] for the AVR architecture. The
software based approach also introduces identical run-time
checks except that they are implemented in assembly lan-
guage without any modifications to the processor architec-
ture. The results clearly indicate the superior performance
of run-time checkers implemented in hardware.

Function Name AVR Extension | AVR Binary Rewrite
Memmap Checker 1 65

Cross Domain Call 5 65
Cross Domain Ret 5 28
Save Ret Addr 0 38
Restore Ret Addr 0 38

Table 3: Overhead (CPU cycles) of Memory Protec-
tion Routines

The high overhead of software based memory map checker
is mainly due to complex bit shift operations that are re-
quired to translate write addresses to memory map lookup.
Cross domain call and return have an overhead of five clock
cycles when implemented in hardware. The overhead occurs
because the current domain identity, stack bound and re-
turn address have to be pushed to the safe stack before they
can be updated with new values. The total information that
needs to be pushed to the stack is five bytes and only one
byte can be written every clock cycle. Similarly on the cross
domain return, the five clock cycles are expended in restor-
ing the values read from the safe stack. Saving and restoring
return addresses to the safe stack does not introduce any
added overhead. This is because the hardware unit for safe
stack simply takes over the address bus when the processor
is pushing the return address to the run-time stack. By steal-
ing the address bus from the processor, the hardware unit is
able to simply redirect the store of the return addresses to
the safe stack.

Next we evaluate the software library. Performance over-
head is also introduced by updates to memory map during
allocation, free and transfer of memory within the system.
Table 4 compares the overhead of memory allocation rou-
tines in the presence and absence of the protection mech-
anism. Relatively higher overhead of change_own and free
calls is due additional checks that are introduced to prevent
illegal ownership transfer or freeing of memory blocks by
non-owners.

Function Name | Normal | Protected
malloc 343 610
free 138 425
change_own 55 365

Table 4: Overhead (CPU cycles) of memory alloca-
tion routines

4.2 Resource Utilization

We implemented our system on a AVR Atmegal0O3 pro-
cessor. This contains 4KB of RAM and 128 KB of PROM.
Resource utilization can be partitioned into sections: over-
head of the software library and the overhead of the hard-
ware checkers.

Code and data memory usage of the software library is
shown in Table 5. Maximum memory map size is 256 bytes
for multi-domain protection. This represents an overhead
of 6.25%. However, by modifying data layout, portion of
address space that requires memory map for protection can
be reduced. For example, memory map can be configured
only to protect the heap and safe-stack. By abutting these
two data-structures, size of memory map required can be
reduced to 140 bytes for multi-domain protection. For two
domain protection, the overhead can be reduced to only 70
bytes (1.7%). The total code memory usage of the software
library is only 3674 bytes (2.8%).

SW Component FLASH (B) | RAM (B)
Dynamic Memory 1204 2054
Memory Map 422 256
Jump Table 2048 0

Table 5: FLASH and RAM overhead of software li-
brary

The hardware overhead of our mechanism is shown in Ta-
ble 6. These results were computed by synthesizing our pro-
cessor on Xilinx ISE 8.2i. Most of the additions to the core
area are in the memory map decoder that maintains a bar-
rel shifter to support arbitrary bit-shifts in a single clock
cycles. We can eliminate this overhead if the processor is
synthesized for a fixed block size and number of protection
domains. The overall increase in the core area is about 32%.
This represents a modest increase in the overall area of the
chip as the core occupies only a small fraction of the over-
all area. Bulk of the chip area is occupied by SRAM and
FLASH memories.

HW Component | Ext. Gate Count | Orig. Gate Count
AVR Core 22498 16419
Fetch Decoder 6783 6685
MMC 2284 N/A
Safe Stack 1749 N/A
Domain Tracker 541 N/A

Table 6: Gate count overhead of hardware exten-
sions

S. RELATED WORK

Page-based virtual memory systems have become the dom-
inant form of memory management in the modern general-
purpose computer systems. While the process model of the
virtual memory systems delivers protection for embedded
applications, it also increases the overhead in memory con-
sumption and processor performance. The memory consump-
tion increases due to the need to store address translation
tables. The processor performance is impacted because con-
text switches have a high overhead; page tables have to
be setup for the new context. To improve performance of
virtual memory, architectural features such as Translation
Lookaside Buffers (TLBs) and virtual-mapped caches are
used that further increase the area, cost and complexity of
the chip. For example, the addition of MMU and cache in an
ARMT7TDMI core [1] increases its area ten fold and its power
consumption two fold. Therefore, current MMU designs will
never be used in the low end price sensitive microcontrollers.

Memory protection units (MPU) provide hardware as-
sisted protection in embedded processors such as ARM 940T
[7] and Infineon TC1775 [13]. MPU can statically partition
memory and set individual protection attributes for each
partition. The partitions are contiguous segments within the
address space defined by a pair of base and bounds registers.
The protection model of MPU is not suited for the complex
embedded software (such as operating systems) running on
low-end microcontrollers. MPU defines only two protection
domains viz. User-mode and Supervisor mode. This is suf-
ficient for protecting the kernel from the applications but
not the applications from one another. The static parti-
tioning of address space into contiguous regions is infeasible
for the low-end microcontrollers with very limited memory
footprint. Further, the number of partitions is also limited.
However, MPU has a lower memory footprint than UMPU
because the partitioning information can be stored in regis-
ters instead of maintaining a memory map. MPU introduces
no performance overhead while UMPU incurs a single clock
cycle penalty for memory map accesses.

Mondrian Memory Protection (MMP) [15] inspects mem-
ory accesses at the instruction level from within the proces-

sor pipeline to provide word-level protection. It uses fairly
complex and expensive hardware extensions to reduce over-
head of monitoring all accesses. SafeMem [12] exploits exist-
ing ECC memory protection to guard memory regions and
detect any illegal accesses through ECC violations. How-
ever, these techniques require significant resources to be per-
formed on tiny embedded processors.

Hardware support for memory safe execution of embedded
software was recently proposed in [2]. This technique uses
CCured [11], a tool that generates type safe C programs
through pointer inference techniques. Extensions to the in-
struction set architecture speed up the run-time bounds
checking operations performed by CCured. Our techniques
apply directly to machine instructions and are therefore ag-
nostic to programming languages. Also, our hardware ex-
tensions do not modify the processor instruction set archi-
tecture. Hence, we can continue to use existing compilers.
Custom modifications to compilers can become a source of
new bugs.

Many software based approaches for memory protection
have been proposed. Type-safe languages such as Virgil [14]
can flag illegal accesses at compile or run-time. They pro-
vide fine-grained memory protection of individual objects.
Type-safe languages do not interface with code written in
non type-safe languages. However, most of the software de-
veloped for embedded systems is written in unsafe languages
such as C (or even assembly for low-level drivers). Popular
programming language NesC [4], contains minimal exten-
sions to C (such as the atomic keyword) to prevent race-
conditions that can cause memory corruption. ASVM [9]
can also be used for providing memory protection. Software-
based fault isolation for embedded processors has been pro-
posed in [8]. All the software based approaches have a signif-
icantly higher overhead than custom hardware extensions.

6. CONCLUSION

In this paper, we have proposed a hardware software co-
design approach for providing memory protection in tiny em-
bedded processors. Though we have implemented the protec-
tion technology for the AVR microcontroller, our general ap-
proach is applicable to other RISC architectures such as TI
MSP or ARM. Through a careful partitioning of the protec-
tion techniques, we have significantly improved performance
by moving compute intensive operations into hardware. Our
hardware is very flexible, it can accommodate various con-
figuration parameters. The software library provides a stan-
dard programming interface. Moreover, our approach does
not modify the instruction set architecture of the processor;
hence we do not need to modify the cross compiler. These
features ensure that our software library can be incorporated
into existing projects with minimal modifications; a very
practical benefit to the system developers. We are still ex-
ploring the design space of possible protection architectures.
The resource utilization of our design can be further reduced
by synthesizing hardware units that are pre-configured for
a particular block size and number of protection domains.
An interesting area of future work is to explore software
techniques such as virtual machines or type-safe languages
that can benefit from modest hardware extensions. Software
reliability is an emerging concern in the domain of tiny em-
bedded processors. Limited resources preclude the applica-
tion of existing approaches used in desktop processors. We
believe that hardware software co-design techniques are a

promising avenue to explore for creating robust software for
tiny embedded processors.

7.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

ARMT7TDMI Technical Reference Manual.
http://www.arm.com/pdfs/DDI0210C_7tdmi_rdpl_trm.pdf.
D. Arora, A. Raghunathan, and N. K. Jha.
Architectural support for safe software execution on
embedded processors. In CODES+I1SSS ’06: Proc. 4th
International Conference on Hardware/Software
Codesign and System Synthesis, 2006.

A. Dunkels, N. Finne, J. Eriksson, and T. Voigt.
Run-time dynamic linking for reprogramming wireless
sensor networks. In SenSys ’06: Proc. Jth ACM
Conference on Embedded Networked Sensor Systems,
2006.

D. Gay, P. Levis, R. von Behren, and M. Welsh. The
nesC language: A holistic approach to networked
embedded systems. In PLDI ’03: Proc. ACM
SIGPLAN 2003 Conference on Programming
Language Design and Implementation, 2003.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and

M. Srivastava. SOS: A dynamic operating system for
sensor networks. In MobiSys ’05: Proc. 3rd
International Conference on Mobile Systems,
Applications, and Services, 2005.

J. Hill and D. Culler. Mica: A wireless platform for
deeply embedded networks. In IEEE Micro.,

volume 22, pages 12-24, Nov/Dec 2002.

A. Inc. ARM 940T Technical Reference Manual.

R. Kumar, E. Kohler, and M. Srivastava. Harbor:
Software based memory protection for sensor nodes.
In IPSN °07: Proc. 6th International Symposium on
Information Processing in Sensor Networks, 2007.

P. Levis, D. Gay, and D. Culler. Active sensor
networks. In NSDI ’05: Proc. 2nd Symposium on
Networked Systems Design and Implementation, 2005.
P. Levis, D. Gay, V. Handziski, J. H. Hauer,

B. Greenstein, M. Turon, J. Hui, K. Klues, C. Sharp,
R. Szewczyk, J. Polastre, P. Buonadonna,

L. Nachman, G. Tolle, D. Culler, and A. Wolisz. T2: A
second generation OS for embedded sensor networks.
Technical Report TKN-05-007, Telecommunication
Networks Group, Technische Universitat Berlin, 2005.
G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In POPL ’02:
Proc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting
ecc-memory for detecting memory leaks and memory
corruption during production runs. In International
Symposium on High-Performance Computer
Architecture (HPCA), 2005.

I. Technologies. TC1775: 32-Bit Single Chip
Microcontroller.

B. L. Titzer. Virgil: Objects on the head of a pin. In
OOPSLA ’06: Proc. 21st ACM SIGPLAN Conference
on Object-Oriented Systems, Languages, and
Applications, 2006.

E. Witchel, J. Cates, and K. Asanovi¢. Mondrian
memory protection. In International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002.

Zigbee Consortium. www.zigbee.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

