
The Click Modular Router
by

Eddie Kohler

S.B., Mathematics with Computer Science (1995); S.B., Music (1995)
S.M., Electrical Engineering and Computer Science (1997)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology

February 2001

c© 2000 Massachusetts Institute of Technology
All rights reserved

This version includes some corrections relative to the submitted thesis

The Click Modular Router
by

Eddie Kohler

Submitted to the Department of Electrical Engineering and
Computer Science on November 30, 2000 in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

abstract

Click is a new software architecture for building flexible and configurable
routers. A Click router is assembled from packet processing modules called
elements. Individual elements implement simple router functions like packet
classification, queueing, scheduling, and interfacing with network devices. A
router configuration is a directed graph with elements at the vertices; packets
flow along the edges of the graph. Configurations are written in a declarative
language that supports user-defined abstractions. This language is both read-
able by humans and easily manipulated by tools. We present language tools
that optimize router configurations and ensure they satisfy simple invariants.

Due to Click’s architecture and language, Click router configurations are
modular and easy to extend. A standards-compliant Click IP router has six-
teen elements on its forwarding path. We present extensions to this router
that support dropping policies, fairness among flows, quality-of-service, and
transparent Web proxies. Each extension simply adds a couple elements to
the base IP configuration. Other configurations, such as Ethernet switches,
firewalls, and traffic generators, reuse many of the IP router’s elements. Click
software runs in the Linux kernel; on conventional PC hardware, its maxi-
mum loss-free forwarding rate for IP routing is 357,000 64-byte packets per
second, more than commercial routers with far greater cost. Configuration
optimization tools can raise this rate to 446,000 64-byte packets per second,
enough to handle several t3 lines and 95% of our hardware’s apparent limit.

Thesis Co-Supervisor: M. Frans Kaashoek
Title: Associate Professor

Thesis Co-Supervisor: Robert Morris
Title: Assistant Professor

Contents

1 Introduction 8

2 Architecture 14
2.1 Elements . 15
2.2 Packets . 16
2.3 Connections . 17
2.4 Push and pull . 18
2.5 Packet storage . 21
2.6 CPU scheduling . 21
2.7 Flow-based router context . 22
2.8 Installing configurations . 24
2.9 Element implementation . 25
2.10 Discussion . 26

3 Language 28
3.1 Syntax . 29
3.2 Anonymous elements . 30
3.3 Configuration strings . 32
3.4 Compound elements . 33
3.5 Compound element arguments and overloading 38
3.6 Discussion and limitations . 41

4 Elements 43
4.1 Overview . 43
4.2 Classification . 45
4.3 Scheduling . 47
4.4 Dropping policies . 48
4.5 Differentiated Services elements 49
4.6 IP rewriting . 50
4.7 Information elements . 59

3

5 Routers 63
5.1 IP router . 63
5.2 Extensions and subsets . 66
5.3 Ethernet switch . 69
5.4 Firewall . 70
5.5 Transparent proxy . 73
5.6 Traffic generator . 75

6 Language tools 76
6.1 Pattern replacement . 77
6.2 Fast classifiers . 80
6.3 Devirtualization . 82
6.4 Dead code elimination . 84
6.5 Packet data alignment . 85
6.6 Multiple-router configurations 87
6.7 Discussion . 89

7 Implementation 90
7.1 Polling and device handling 91

8 Evaluation 93
8.1 Experimental setup . 93
8.2 Forwarding rates . 95
8.3 Overload behavior . 98
8.4 CPU time breakdown . 102
8.5 Architectural overhead . 105
8.6 Differentiated Services . 106
8.7 Summary . 107

9 Related work 108

10 Conclusion 111

A Element glossary 113

B Language grammar 120
B.1 Lexical issues . 120
B.2 BNF grammar . 121

4

Acknowledgements

This thesis describes joint work with Robert Tappan Morris, Benjie Chen,
M. Frans Kaashoek, John Jannotti, and Massimiliano Poletto. Robert Morris
wrote many of the IP router’s elements, designed the IP router configuration,
created push and pull processing, and was invaluable throughout. Benjie Chen
did most of the polling and device driver work described in Section 7.1 and
helped create our evaluation testbed. John Jannotti implemented the Ether-
net switch. Massimiliano Poletto implemented the FromLinux element and
helped with the IPRewriter elements. Douglas S. J. De Couto contributed to
the Click user-level software and inspired the ControlSocket element. Peilei
Fan created a set of elements for IPv6, Thomer Gil implemented elements
for flexibly measuring rates, and Alex Snoeren wrote some IPsec elements. I
am also grateful to other Click users who submitted patches and suggested
improvements: Richard Mortier (University of Cambridge Computer Labora-
tory), Leigh Stoller (University of Utah), Saurabh Sandhir and Prem Gopalan
(Purdue University), Brecht Vermeulen (Universiteit Gent), and Joe Elliott.
John Wroclawski, David Black, and several anonymous reviewers made help-
ful comments on papers describing some of the results presented here.

Frans Kaashoek is a great advisor. I thank him inadequately and congrat-
ulate him on graduating me despite obstacles.

I am very lucky, and deeply grateful, to have met these people, and thank
them, for particular things and for everything.

M. Frans Kaashoek
Robert Morris

Janet Sonenberg

Marilyn, Ted, and Clarke Kohler
Gina D’Acciaro

5

Ingrid V. Bassett Mathilda van Es
Anna Rosenberg Nicolaas and Justin Kaashoek

Paula Mickevich
Maria T. Sensale, Librarian and Notary Public

Kristen Nummerdor Chrid Hockert

Sean Andrew Murray

Massimiliano Poletto David Mazières
Rosalba Perna

Anne Dudfield
Celeste Winant

Chelle Gentemann
Chris Onufryk
Marcel Bruchez

Rebecca Leonardson

Elizabeth Stoehr Federica Pasquotto
Jesse Elliott Regina Burris

Larisa Mann Julie Rioux Kris Grotelueschen

Dawson R. Engler Debby Wallach
Douglas S. J. De Couto Jinyang Li

John Jannotti Benjie Chen

Neena Lyall

Paul Hsiao Sulaiman Mamdani

Cora and Olaf Stackelberg
Paul Stackelberg

David K. Gifford Daniel Jackson Barbara Liskov
Martin Rinard Dorothy Curtis Alex Hartemink

Chuck Blake Jeanne Darling
Rachel Bredemeier John Guttag Andrew Myers
Mark Stephenson Sam Larsen Mary Ann Ladd

Ellen T. Harris
Anna Frazer Rebecca Tyler

Elizabeth Connors

Michael Ouellette Peter Child Edward Cohen
Mary Cabral Alan Brody

6

Jeremy Butler
Julie Park

Tara V. Perry

Jeannie Sun Anand Sarwate
Alan Pierson Erin Lavik

Charles Armesto

Darko Marinov

Bing and Beverly Hollis

Michelle Starz Nick Gaiano
David Montgomery Stacy J. Pruitt Rob Marcato

Katie Leo Monica Gomi Linda Tsang
Lin-Ann Ching Jennifer Tsuei Earle Pratt

Rachael Butcher Ken Michlitsch
Bill Fregosi Ed Darna Leslie Cocuzzo Held

Diane Brainerd Mike Katz Derik Pridmore
Andrea Zengion Adriane Stebbins Vanessa Thomas
Ryan Kershner Marivi Acuña April Griffin

Jose Luis Andrade Rony Kubat Franz Elizondo-Schmelkes
Adam Glassman Jesse Barnes Premraj Janardanan

Sean Austin Kortney Adams Melanie Pincus
Debora Lui Carolyn Chen

Kevin Simmons Aomawa Baker Sean Levin
Peter Shulman Geeta Dayal Marketa Valterova
Fernando Paiz Janet Chieh Fernando Padilla

Ricardo Ramirez Sarah Cohen

Tina Packer Joel Dawson José Luis Elizondo
Joshua Goldberg Tom Cork Max Lord

Albert Fischer Peter Cho Chad Trujillo

Forrest Larson Christie Moore
Geoff Brown Joanne Talbot Nancy Lynch

Marilyn Pierce Monica Bell

David Andersen Helen Cargill David Karger

7

1
Introduction

This thesis examines how software for packet processors should be designed.
A packet-processing network consists, to first order, of routers and hosts.

Hosts use packets as a means to an end; they are mostly concerned with
providing communication abstractions to applications. Routers, however, are
pure packet processors. They are interested only in packets, which they route
from place to place based on packet header information. Routing was the first
packet processing application on the Internet, but many others have come to
light as the network has matured. Firewalls limit access to a protected network,
often by dropping inappropriate packets. Network address translators allow
a large set of machines to share a single public IP address; they work by
rewriting packet headers, and occasionally some data. Load balancers send
packets to one of a set of servers, dynamically choosing a server based on load
or some application characteristic. Other packet processors enforce quality-
of-service policies, monitor traffic for planning purposes, detect hacker attacks
or inappropriate use of resources, and support mobile hosts.

The packet processor abstraction is powerful and flexible because the In-
ternet’s network protocols generally maintain transparency. Communicating
hosts can act as if they were connected by a wire; they don’t care if that wire
is actually interrupted by tens of hubs, switches, routers, and other packet
processors. Implementing a new network-level application is as simple as
dropping another packet processor onto the wire. Often, this requires no
changes to other parts of the network.

The essential characteristic shared by all packet processors is the motion
of packets. Packets arrive on one network interface, travel through the packet
processor’s forwarding path, and are emitted on another network interface.
Contrast this with hosts, where packets lose their identity after they arrive:
only data is transferred to the application. In packet processors, packets move
horizontally between peers, not vertically between application layers. The

8

abstractions used to build a packet processor should explicitly support peer-to-
peer packet transfer. Use of inappropriate abstractions, such as the inherently
layered abstraction of procedure call, can result in unreadable code that is
difficult to maintain.

Most software routers, to our knowledge, are built with inappropriate
abstractions. All-software routers, such as the routers included with free
UNIX operating systems, use procedure call exclusively, and mixed hard-
ware/software routers use similar designs on their software paths. A router’s
forwarding path, however, is not easily broken into procedural units; forward-
ing paths behave like pipelines through which packets flow. It is therefore hard
to understand or change a procedural router design. Existing research on mod-
ular networking systems [22, 30, 42] generally focuses on end node network
stacks and uses layered abstractions unsuitable for routers.

As a result, most routers today have closed, static, and inflexible designs.
Network administrators may be able to turn router functions on or off, but
they cannot easily specify or even identify the interactions of different func-
tions. It is also difficult for network administrators and third party software
vendors to extend a router with new functions. Extensions require access to
software interfaces in the forwarding path, but these often don’t exist, don’t
exist at the right point, or aren’t published.

This thesis presents a modular architecture and software toolkit for build-
ing routers and other packet processors. It was motivated by the extensibility
and flexibility increasingly required of routers, and the wide and growing
range of network applications naturally implemented by packet processors.
We call this toolkit Click.

description and goals

Click routers are built from fine-grained software components called elements.
To build a router configuration, the user chooses a collection of elements and
connects them into a directed graph. The graph’s edges represent possible paths
for packet transfer. This layerless design was motivated by the peer-to-peer
nature of packet processing. It also makes packet motion explicit and clear:
packets move through the packet processor along the edges of the graph.
Each router’s forwarding path is implemented by a sequence of elements;
this supports fine-grained extensions throughout, since the elements can be
rearranged. To implement an extension, the user can write new elements
or compose existing elements in new ways, much as UNIX allows one to
build complex applications directly or by composing simpler applications
with pipes.

9

Click’s design began with these principles:

– One rich, flexible abstraction. Click’s single component abstraction is the
element. Router configurations consist of elements connected together;
there are no other component-level abstractions.

The element abstraction therefore significantly influences how Click users
think about router design. Click users tend to break packet processing
applications into element-sized components; that is, they create modular
designs because the element abstraction encourages it. If there were many
abstractions designed for specific networking problems, rather than one
abstraction designed for packet processing tasks in general, the system
would feel less unified, and would be less likely to improve its users’
coding habits.

– Configuration language. Click router design divides naturally into two
phases. In the first phase, users write element classes, which are configuration-
independent. In the second, users design a particular router configuration
by choosing a set of elements and the connections between them. Element
classes are written in C++ using an extensive support library. Router con-
figurations, however, are written in a new programming language—called,
unsurprisingly, Click.

This Click language is wholly declarative. It has features for declaring and
connecting elements and for designing abstractions called compound el-
ements, and that is all. This contrasts with scripting languages like Tcl,
which are essentially general-purpose and, therefore, hard to analyze or
manipulate. The Click language enforces hard separation between the roles
of elements and configurations, leading to better element design. It makes
router configurations human-readable and manipulable by automatic lan-
guage tools. It has also kept the system as a whole both simple and clear.

– Avoid restrictions. The Click system guides users to create modular router
and element designs by making modularity easy to achieve, but it does not
prevent bad designs or restrict user flexibility. This means, for example,
that nothing can be said for certain about an element’s semantics without
looking at its source code. The hundreds of elements we have created
share one mechanism for transferring packets, but nothing prevents new
elements from inventing another. The advantage is that possibly useful
behavior is never prevented by overly aggressive restrictions.

All these principles serve a single goal: programmability. We wanted Click
to be easy and fun to program well. We have succeeded. Creating an ele-

10

ment is more satisfying than writing task-specific network code because of
the element’s broader potential for reuse. Adding functionality to a router is
exciting, especially when it takes just a single element. Click can inspire new
applications as well: Section 4.6’s description of the IPRewriter elements, and
Section 5.5’s illustration of a transparent Web proxy, led one reader to create
a transparent DNS proxy. One year after the software’s release, Click is used
in at least five other universities. Click’s programmability depends on the flex-
ibility of its component architecture, its support library’s ease of use, and the
range of elements available by default. This thesis attempts to demonstrate
programmability by example: Chapters 4 and 5 present many examples of
both elements and router configurations.

We claim that, due to the Click architecture, real, standards-compliant
Click routers are naturally and easily extensible. We claim that elements fa-
cilitate practical component reuse and make programming arbitrary packet
processors a pleasant exercise. We claim that the Click programming language
makes router configurations easy to write, and that it facilitates user-designed
abstractions and debugging. We claim that tools that process Click-language
router descriptions can optimize those configurations or ensure that they sat-
isfy systemwide properties. Finally, we claim that real Click routers perform
well on conventional PC hardware, and that Click’s already low overhead
can be mitigated by language-based optimization tools. The rest of this thesis
substantiates these claims.

thesis overview

The first chapter of the thesis proper examines Click’s architecture: the element
abstraction, how packets pass through a router, how the CPU is scheduled,
how configurations are installed, and so forth. It pays special attention to novel
architectural features supporting programmability—for example, push and
pull processing, two complementary kinds of packet motion, and flow-based
router context, which uses possible paths for packet motion to aid dependency
checking. Chapter 3 then describes the Click programming language, including
its compound element mechanism for user-defined abstraction.

The next chapters examine specific elements and complete router config-
urations. Chapter 4 presents elements for classification, packet scheduling,
dropping policies, and TCP/IP rewriting, among others. Chapter 5 moves
from elements to routers, describing a standards-compliant IP router and a
wide variety of other configurations. Several sections show how adding a cou-
ple elements to the IP router can change its queueing policy to, for example,
support quality-of-service, and how its elements are useful in widely differ-

11

ent configurations, such as firewalls and traffic generators. These chapters
exemplify Click’s programmability and extensibility.

Chapter 6 describes automatic tools that understand, analyze, and modify
router configurations in the Click language. Particular tools optimize router
configurations, check them for errors, and ensure they satisfy simple prop-
erties. Tools can implement transformations with no analogues in other net-
working systems; one tool combines several component router configurations
into a high-level description of an entire network, facilitating global opti-
mizations and checks. Manipulating router configurations off line adds to
Click’s power and extensibility. Through tools, optimizations and checks can
be added without changing the core of the system.

Chapter 7 describes our implementation of the Click architecture, which
runs as software on conventional PCs. No software router on conventional
hardware can reach the multigigabit speeds achieved by expensive, custom-
hardware routers designed for network backbones. However, many routers,
particularly boundary routers at the edges of small to medium-sized organiza-
tions, have lower performance requirements that can be achieved on conven-
tional hardware, although with difficulty. Our performance goal was therefore
to reach the limits of our hardware. Chapter 8 shows that we have achieved
this goal. A Click IP router configuration, after applying language optimiza-
tion tools, can route a peak of 446,000 minimum-size packets per second
in our tests. This is about 95% of the apparent hardware limit, enough to
handle multiple t3 lines, and more than twice the maximum forwarding rate
of a common edge router, the Cisco 7200 series, that costs about an order of
magnitude more than our hardware.1

Finally, Chapter 9 describes related work and Chapter 10 concludes.
There are two appendices: an element glossary in Appendix A describes

all the elements mentioned in the text; Appendix B contains a BNF grammar
for the Click language.

summary

The contributions of this thesis include:

– The Click architecture, especially flow-based router context and push and
pull processing;

1. Of course, the Cisco router presumably has better reliability. It also has more features,
although, outside of better routing table support, most of these features are probably not on
the forwarding path.

12

– The Click language and its compound element abstraction;

– Particular elements, including packet schedulers, dropping policies, classi-
fiers, and the IPRewriter set of elements for flexible TCP/IP rewriting;

– A standards-compliant IP router written in Click;

– Examples of other configurations and IP router extensions, demonstrating
Click’s flexibility;

– Tools that optimize routers and check high-level system properties by an-
alyzing and manipulating files in the Click language;

– A thorough analysis of Click’s performance on PC hardware;

– and the Click software itself.

This thesis describes release 1.1 of the Click software. This and previous
releases are available online for download at http://www.pdos.lcs.mit.edu/
click/.

13

2
Architecture

Click is an extensible toolkit for writing packet processors. This toolkit’s archi-
tecture serves an important function: determining the design space available
for its components. We therefore open our discussion of Click by examining
its architecture and, in particular, the features it provides for components’ use.
In later chapters, we turn to examples of individual components and actual
Click router configurations.

A quick overview: The Click architecture is centered on the element. Each
element is a software component representing a unit of router processing.
Elements perform conceptually simple computations, such as decrementing an
IP packet’s time-to-live field, rather than large, complex computations, such as
IP routing. They generally examine or modify packets in some way; packets,
naturally, are the particles of network data that routers exist to process. At
run time, elements pass packets to one another over links called connections.
Each connection represents a possible path for packet transfer. Click router
configurations are directed graphs of elements with connections as the edges.
Router configurations, in turn, run in the context of some driver, either at
user level or in the Linux kernel.

Figure 2.1 shows some elements connected together into a simple router
configuration. Elements appear as boxes; connections appear as arrows con-
necting the boxes together. Other features of the diagram are described in later
sections. Packets pass from element to element along the arrows (connections).
This router’s elements read packets from the network (FromDevice(eth0)),
count them (Counter), and finally throw them away (Discard).

The rest of this chapter examines the Click architecture’s components in
detail. We start with elements, packets, and connections, then move on to
more specific features like push and pull processing. Later sections examine
CPU scheduling and packet storage in Click, show how router configurations
are installed, and present the C++ implementation of a simple element class.

14

FromDevice(eth0) Counter Discard

elements

connections

Figure 2.1—A simple Click router configuration.

2.1 elements

The element is the most important user-visible abstraction in Click. Every
property of a router configuration is specified either through the choice of ele-
ments or through their arrangement. Device handling, routing table lookups,
queueing, counting, and so forth are all implemented by elements. Inside a
running router, each element is a C++ object that may maintain private state.

Elements have five important properties: element class, ports, configuration
strings, method interfaces, and handlers.

– Element class. An element’s class specifies that element’s data layout and
behavior. For example, the code in an element class determines how many
ports elements of that class will have, what handlers they will support, and
how they will process packets. In C++, each element class corresponds to
a subclass of Element.

– Ports. Each element can have any number of input and output ports. Every
connection links an output port on one element to an input port on another.

Different ports may have different roles; for example, many elements emit
normal packets on their first output port and erroneous packets on their
second. The number of ports provided by an element may be fixed, or it
may depend on the element’s configuration string or how many ports were
used by the configuration. Every port that is provided must be used by at
least one connection, or the configuration is in error. Ports may be push,
pull, or agnostic; these terms are defined in Section 2.4.

– Configuration string. The optional configuration string contains additional
arguments passed to the element at router initialization time. For many
element classes, configuration strings define per-element state and fine-tune
element behavior, much as constructor arguments do for objects.

Lexically, a configuration string is a list of arguments separated by commas.
Most configuration arguments fit into one of a small set of data types: IP
addresses, for example, or integers, or lists of IP addresses.

15

Tee(2)input port output ports

element class

configuration string

Figure 2.2—A sample element.

– Method interfaces. Each element exports methods that other elements may
access. This set of methods is grouped into method interfaces.

Every element supports at least the base method interface, which contains,
for example, methods for transferring packets. Elements can define and
implement arbitrary other interfaces on top of this; for example, Click’s
Queue element, which implements a FIFO packet queue, exports an inter-
face that reports its current length.

– Handlers. Handlers are methods that are exported to the user, rather than
to other elements in the router configuration. They support simple, text-
based read/write semantics, as opposed to fully general method call se-
mantics. For example, the Queue element mentioned above has a handler
that reports its current length as a decimal ASCII string, and the Counter
element in Figure 2.1 provides a handler so users can access its current
count.

In the Linux kernel driver, handlers appear as files in the dynamic /proc
file system. At user level, handlers may be accessed via a TCP/IP-based
protocol.

Figure 2.2 shows how we diagram these properties for a sample element,
Tee(2). ‘Tee’ is the element class; a Tee copies each packet received on its
single input port, sending one copy to each output port. We draw input ports
as triangles and output ports as rectangles. Configuration strings are enclosed
in parentheses: the ‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two
outputs. Method interfaces and handlers are not shown explicitly; they are
specified implicitly by the element class.

The element glossary in Appendix A provides a quick description of Tee
and every other element class mentioned in the text.

2.2 packets

A Click packet consists of a small packet header and the actual packet data;
the packet header points to the data. This structure was borrowed from the

16

Linux kernel’s packet abstraction, sk_buff. In the Linux kernel driver, Click
packet objects are equivalent to sk_buffs, which avoids translation or indi-
rection overhead when communicating with device drivers or the kernel itself.
This equivalence is hidden behind a C++ class, Packet. Other drivers reim-
plement this interface; the user-level driver, for example, has a hand-written
Packet implementation. Thus, elements may be compiled for either driver
without change. Operations on an in-kernel Packet have zero overhead over
the corresponding Linux sk_buff operations.

Several packet headers may share the same packet data. When copying
a packet—for example, with a Tee element—Click produces a new packet
header that shares the original data. Shared packet data is copy-on-write.
Elements that modify packet data first ensure that it is unshared; if it is shared,
the element will make a unique copy of the data and change the packet header
to point to that copy. Packet headers are never shared, however, so header
modifications never cause a copy.

Headers contain a number of annotations in addition to a pointer to the
packet data. Annotations may be shared with Linux or specific to Click. Some
annotations contain information independent of the packet data—for exam-
ple, the time when the packet arrived. Other annotations cache information
about the data. For example, the CheckIPHeader element sets the IP header
annotation on passing IP packets. This annotation marks both where the IP
header begins and where the IP payload begins, freeing later elements from
examining the IP header’s length field. Annotations are stored in the packet
header in a fixed static order; there is currently no way to dynamically add a
new kind of annotation.

Packet data is stored in a single memory buffer. This differs from the
BSD-style mbuf structure, where data is stored in a linked chain of buffers.
Compared to mbufs, Linux and Click’s model allows simpler, faster access in
the common case, at the cost of occasional packet copies when prepending or
appending more data than will fit into a particular buffer. Such copies do not
occur in our tests.

2.3 connections

A connection passes from an output port on one element to an input port
on another. Connections are the main mechanism used for linking elements
together; each connection represents a possible path for packet transfer be-
tween elements. In a running router, connections are represented as pointers
to element objects, and passing a packet along a connection is implemented
by a single virtual function call.

17

Connections are drawn as arrows; each arrow’s direction represents the
direction of packet flow. Each connection links a source port to a destination
port. The source port is always an output port, and the destination port is
always an input port. We also use source element and destination element
with the obvious definitions.

Router configurations may be seen as directed graphs with elements as
vertices. However, connections link ports, not elements, and each element
may have many ports. A more complete model treats router configurations as
directed graphs with ports as vertices. Port graphs such as this have two kinds
of directed edges, ordinary connections and internal edges. Internal edges
show how packets may flow from input ports to output ports within a single
element; an internal edge from an element’s input port i to its output port o
means that a packet that arrived on input port i might be emitted on output
port o. In the simplest model, every element has a complete graph of internal
edges—that is, there are internal edges linking every input to every output.
This is not always appropriate, however. For some elements, packets arriving
on a given input might be emitted on only a subset of outputs, or perhaps on
none at all. More specific internal edge information helps the system decide
which elements are reachable from a given port; in the long run, it will also
help check properties of configurations. Click elements can therefore specify
detailed internal edge information if they choose.

If a path exists from an output port o to an input port i in the port graph
representation of a router configuration, then we say that i is downstream of
o, and, conversely, that o is upstream of i. This notion may also be generalized
to elements.

2.4 push and pull

Click supports two kinds of connections, push and pull, that implement com-
plementary kinds of packet transfer. On a push connection, packets start at the
source element and are passed downstream to the destination element. On a
pull connection, in contrast, the destination element initiates packet transfer:
it asks the source element to return a packet, or a null pointer if no packet is
available. Many software routers provide only push connections; Clark called
pull connections upcalls [8].

These forms of packet transfer are implemented by two virtual function
calls, push and pull. Neither kind of call is ever intended to block. For in-
stance, a pull call reaching an element with no packet ready should immedi-
ately return a null pointer rather than waiting for some packet to arrive. Click
is currently single-threaded, so a blocking design would simply hang.

18

FromDevice Null Null ToDevice

push(p) push(p)

return
return

pull()
pull()
return p return p

receive
packet p

enqueue p
ready to
transmit

dequeue p
and return it

send p

Figure 2.3—Push and pull control flow. This diagram shows functions called as a packet
moves through a simple router; time moves downwards. During the push, control flow
starts at the receiving device and moves forward through the element graph; during the pull,
control flow starts at the transmitting device and moves backward. The packet p always
moves forward.

The type of a connection is determined by the ports at its endpoints. Each
port in a running router is either push or pull. Connections between two push
ports are push, and connections between two pull ports are pull; connections
between a push port and a pull port are illegal. Elements set their ports’ types
as the router is initialized. They may also create agnostic ports, which behave
as push when connected to push ports and pull when connected to pull ports.
In our configuration diagrams, black ports are push and white ports are pull;
agnostic ports are shown as push or pull ports with a double outline.

Figure 2.3 shows how push and pull work in a simple router. This router
forwards packets unchanged from one network interface to another. The
central element in the figure is a Queue. This element enqueues packets on a
FIFO queue as they are pushed to its input, and yields packets from the front
of that queue as it receives pull requests on its output. The two Null elements,
which pass packets through unchanged, demonstrate agnostic ports.

Push connections are appropriate when unsolicited packets arrive at a
Click router—for example, when packets arrive from a device. The router
must handle such packets as they appear, if only to queue them for later con-
sideration. Pull connections are appropriate when the Click router needs to
control the timing of packet processing. For example, a router may transmit
a packet only when the transmitting device is ready. In Click, transmitting de-
vices are elements with one pull input. They use pull requests to initiate packet
transfer only when ready to transmit. Agnostic ports model the common case
that neither kind of processing is inherently required.

Pull connections also model the scheduling decision inherent in choosing
the next packet to send. A Click packet scheduler is simply an element with
multiple pull inputs and one pull output. It responds to a pull request by

19

FromDevice

FromDevice

ToDevice
Counter

ToDevice

Figure 2.4—Push and pull violations. The top configuration has four errors: (1) FromDe-
vice’s push output connects to ToDevice’s pull input; (2) more than one connection from
FromDevice’s push output; (3) more than one connection to ToDevice’s pull input; and (4) an
agnostic element, Counter, in a mixed push/pull context. The bottom configuration, which
includes a Queue, is legal. In a properly configured router, the port colors on either end of
each connection will match.

choosing one of its inputs, making a pull request to that input, and returning
the packet it receives. (If it receives a null pointer, it will generally try another
input.) These elements make only local decisions: different scheduling behav-
iors correspond to different algorithms for choosing an input. Thus, they are
easily composable. Section 4.3 discusses this further.

The following properties hold for all correctly configured routers: Push
outputs must be connected to push inputs, and pull outputs must be connected
to pull inputs. Each agnostic port must be used as push or pull exclusively.
Furthermore, if there is an internal edge linking an agnostic input port to an
agnostic output port on the same element, then the ports must be either both
push or both pull. Finally, push outputs and pull inputs must be connected
exactly once; this ensures that each packet transfer request—either pushing to
an output port or pulling from an input port—uses a unique connection. These
properties are automatically checked by the system during router initialization.
Figure 2.4 demonstrates some violations.

Configurations that violate these properties tend to be intuitively invalid.
For example, the connection from FromDevice to ToDevice in Figure 2.4 is
illegal because FromDevice’s output is push while ToDevice’s input is pull.
But this connection is intuitively illegal, since it would mean that ToDevice
might receive packets that it was not ready to send. The Queue element, which
converts from push to pull, also provides the temporary packet storage this
configuration requires.

Some further notes on agnostic ports: Agnostic ports may be connected
to other agnostic ports. At initialization time, the system will propagate con-
straints until every agnostic port has been assigned to either push or pull. To
support agnostic ports, an element designer might write both a push function
and a pull function; only the relevant function will be called. Alternatively, the

20

designer can write a single simple_action method. This causes each packet
transfer to that port to take two virtual function calls rather than one—the
first reaches a generic push or pull, which, in turn, calls simple_action.

2.5 packet storage

Click elements do not have implicit queues on their input and output ports
or the associated performance and complexity costs. Instead, queues in Click
are implemented by a separate, explicit Queue element. This gives the router
designer control over an important router property: how packets are stored. It
also enables valuable configurations that are difficult to arrange otherwise—
for example, a single queue feeding multiple devices, or a queue feeding a
traffic shaper on the way to a device. Each Queue has a push input port and
a pull output port; the input port responds to pushed packets by enqueueing
them, and the output port responds to pull requests by dequeueing packets
and returning them. Queue never actively passes packets through the graph—
it never calls another element’s push or pull function. Instead, and in accord
with intuition, it exclusively reacts to requests from other elements. This design
would be impossible without support for both push and pull connections: only
the combination of push and pull allows Queue to be entirely reactive.

The user can choose a different storage policy than simple FIFO queueing
simply by using a different element. For example, Queue drops packets from
its tail when it is full. The FrontDropQueue element is mostly equivalent to
Queue except that, when full, it drops packets from its head to make room
for new packets at its tail.

2.6 cpu scheduling

Click schedules the router’s CPU with a task queue. Each router thread runs
a loop that processes the task queue one element at a time. The task queue is
scheduled with the flexible and lightweight stride scheduling algorithm [50].
Tasks are simply elements that would like special access to CPU time. Thus,
elements are Click’s unit of CPU scheduling as well as its unit of packet
processing. An element should be on the task queue if it frequently initiates
push or pull requests without receiving a corresponding request. For example,
an element that polls a device driver should be placed on the task queue;
when run, it would remove packets from the driver and push them into the
configuration. However, most elements are never placed on the task queue.
They are implicitly scheduled when their push or pull methods are called.
Once an element is scheduled, either explicitly or implicitly, it can initiate an

21

arbitrary sequence of push and pull requests, thus implicitly scheduling other
elements.

Click currently runs in a single thread. Thus, any push or pull packet
transfer method must return to its caller before another task can begin. The
router will continue to process each pushed packet, following it from element
to element along a path in the router graph, until it is explicitly stored or
dropped. Similarly, the router will continue to process each pull request until
a packet is found. The placement of Queues in a configuration graph therefore
determines how CPU scheduling may be performed. For example, if Queues
are far away from input device elements in the graph, the router must do a
lot of work on each input packet before processing the next input packet:
specifically, it must push the packet to a Queue.

This design can suffer from infinite loops caused by circular configurations.
Currently, the user is expected to avoid infinite loops, although we eventually
plan to write a language tool that flags potential problems. However, not
every circular configuration is problematic. Consider an element that generates
error packets in response to all packets that aren’t errors themselves. Such an
element could be placed safely in a circular configuration since it doesn’t
respond to packets it generates. This happens in practice with ICMPError
elements and our IP router; see Section 5.1.

Another task structure handles timer events. Each element can have any
number of active timers; each timer calls an arbitrary method when it fires.

2.7 flow-based router context

If an element a wants to call a method on another element b, it must first locate
b. Connections solve this problem for packet transfer, but not for other method
interfaces. Instead, a can refer to b by name (for example, a’s configuration
string could contain the string “b”), or it can use an automatic mechanism
called flow-based router context.

Flow-based router context is simply an application of depth- or breadth-
first search to router configuration graphs. A search starting at an element
and moving downstream describes where packets starting at a given element
might end up. Similarly, a search starting at an element and moving upstream
describes where packets arriving at that element might have originated. This
generalizes connections, which specify where a packet might travel in exactly
one transfer.

To use flow-based router context, elements ask the system questions such
as “If I were to emit a packet on my second output, where might it go?”
Elements may restrict this question to a subset of the configuration—namely,

22

RED Classifier Discard

· · ·

Strip

Figure 2.5—Flow-based router context. A packet starting at RED and stopping at the first
Queue it encountered might pass through any of the grey elements.

those elements that implement a certain method interface. For example, an
element might ask “If I were to emit a packet on my second output, which
Queues might it encounter?” It may further restrict the answer to the closest
method interfaces: “If I were to emit a packet on my second output, and it
stopped at the first Queue it encountered, where might it stop?” This occupies
a useful middle ground between purely local information (connections) and
purely global information (the entire router). It can be more robust than
naming elements explicitly, since it automatically adapts to changes in the
router configuration. It also captures a fundamental router property: if two
elements interact, then packets can usually pass from one to the other.

Dropping policies provide one example of flow-based router context in
practice. Each Queue exports its current length using a method interface.
Elements such as RED (a dropping policy element described further in Sec-
tion 4.4) are interested in this information; RED therefore locates one or more
relevant Queues using flow-based router context. Figure 2.5 shows the router
context downstream of a RED element. Every element in the figure is down-
stream of RED, but only the grey elements are relevant if the search stops at
the closest Queues. Thus, RED’s flow-based router context search will return
the two grey Queues.

Flow-based router context is robust in the presence of cycles in the config-
uration graph. Elements generally ask for flow-based router context once, at
router initialization time, and save its results for quick reference as the router
runs. Any element that uses flow-based router context must be prepared to
handle zero, one, two, or more result elements, possibly by reporting an error
if there are too many or too few results. Section 4.4 demonstrates the flexibility
benefits of handling any number of results.

Flow-based router context can be insufficiently precise for some applica-
tions. For example, the user might want the RED element in Figure 2.5 to use
only one of the grey Queues, or to use a different Queue entirely. RED and

23

other elements therefore let the user override flow-based router context with
an explicit list of element names.

Click currently uses flow-based router context mostly to check assertions—
that a needed element is somewhere downstream, for example. When used
this way, there is no risk of finding the wrong elements, and flow-based router
context simply improves the system’s ability to detect configuration errors.

2.8 installing configurations

Click configurations run inside a driver, which implements facilities used by
all elements. There are currently two drivers: the user-level driver runs as an
application at user level, and the Linux kernel driver runs as a downloadable
module in the Linux kernel. The user-level driver is useful for debugging and
running repeatable tests; it can even receive packets from the network, using
OS mechanisms originally designed for packet sniffers. However, it cannot
prevent the operating system’s networking stack from handling a packet. The
kernel driver can completely replace the OS networking stack, changing a
conventional PC into an arbitrary router. This driver can also achieve high
performance for PC hardware; see Chapters 7 and 8.

The user installs a Click configuration by writing its definition in a simple
textual language and passing that definition to the appropriate driver. (Chap-
ter 3 describes this language in detail.) The driver then parses the definition,
checks it for errors, initializes every element, and puts the router on line.
It breaks the initialization process into stages. In the early stages, elements
set object variables, add and remove ports, and specify whether those ports
are push or pull. In later stages, they query flow-based router context, place
themselves on the task queue, and, in the kernel driver, attach to Linux kernel
structures. This staged design supports cyclic configurations better than any
fixed initialization order, which might fall prey to circular dependencies.

To run a configuration in the user-level driver, the user simply runs a click
application, passing a configuration file’s pathname on the command line.
Arbitrary numbers of user-level drivers can be active simultaneously.

The Linux kernel driver’s installation policy is slightly more complex due to
its location in the kernel. This kernel driver runs one router configuration at a
time. To install a configuration, the user writes a Click-language description to
the special file /proc/click/config. Installing a new configuration normally
destroys any old configuration; for instance, any packets stored in old queues
are dropped. This starts the new configuration from a predictable empty
state. However, Click supports several techniques for changing a configuration
without losing information:

24

– Handlers. Some elements allow the user to reconfigure them with handlers
as the router is running. Handler modifications are generally local to an
element. For example, the Queue element has a handler that changes its
maximum length, and a Click routing table element would likely provide
add_route and del_route handlers as access points for user-level routing
protocol implementations.

– Hot swapping. Some configuration changes, such as adding new elements,
are more complex than handlers can support. In these cases, the user can
write a new configuration file and install it with a hot-swapping option.
This will only install the new configuration if it initializes correctly—if
there are any errors, the old configuration will continue routing packets
without a break. Also, if the new configuration is correct, it will atomically
take the old configuration’s state before being placed on line; for example,
any enqueued packets are moved into the new configuration. This happens
only with element classes that explicitly support it, and only when the new
elements have the same names as the old ones.

– New element classes. Element class definitions can be added to and re-
moved from a running Click kernel driver. A Click configuration can re-
quire a particular set of elements with a require statement; when that
configuration is installed, the driver will automatically load an object file
containing those elements. This feature could be used to support active net-
working, where packets can refer to specialized per-packet routing code. In
Click, that code could consist of elements that are added to the driver dy-
namically; a new configuration using those elements could be hot-swapped
in.

2.9 element implementation

Each Click element class corresponds to a subclass of the C++ class Element,
which has about 20 virtual functions. Element provides reasonable default
implementations for many of these, so most subclasses must override six of
them or less. Only three virtual functions are used during router operation,
namely push, pull, and run_scheduled (used by the task scheduler); the others
are used for identification, push and pull specification, configuration, initial-
ization, handlers, and so forth.

Subclasses of Element are easy to write, so we expect that users will easily
write new element classes as needed. In fact, the complete implementation of
a simple working element class takes less than 10 lines of code; see Figure 2.6.

25

class NullElement: public Element { public:
NullElement() { add_input(); add_output(); }
const char *class_name() const { return "Null"; }
NullElement *clone() const { return new NullElement; }
const char *processing() const { return AGNOSTIC; }
void push(int port, Packet *p) { output(0).push(p); }
Packet *pull(int port) { return input(0).pull(); }

};

Figure 2.6—The complete implementation of a do-nothing element: Null passes packets
from its single input to its single output unchanged.

Most elements define functions for configuration string parsing and initial-
ization in addition to those in Figure 2.6, and take about 120 lines of code.
When linked with 100 common elements, the Linux kernel driver contains
roughly 14,000 lines of core and library source code and 19,000 lines of el-
ement source code (not counting comments); this compiles to about 341,000
bytes of i386 instructions, most of which are used only at router initialization
time. A simple element’s push or pull function compiles into a few dozen i386
instructions.

2.10 discussion

Click users will generally prefer fine-grained elements, which have simple spec-
ifications, to coarse-grained elements with more complex specifications. For
IP routing, for example, a collection of small elements is preferable to a single
element, since the collection of small elements supports arbitrary extensions
and modifications through configuration graph manipulation. However, small
elements are not appropriate for all problems. Coarse-grained elements are
required when control or data flow doesn’t match the flow of packets. For ex-
ample, complex protocol processing often requires a coarse-grained element;
a routing protocol like BGP does not naturally break into parts among which
packets flow.

A conventional router contains shared structures that don’t participate in
packet forwarding, such as routing tables, network statistics, and so forth.
In Click, these structures are more naturally incorporated into the packet
forwarding path. Routing tables, such as the IP routing table and the ARP
cache, are encapsulated by elements that make routing decisions, and statistics
are localized inside the elements responsible for collecting them. Of course,
these elements can export method interfaces so other elements can access the
structures.

26

Several other modular networking systems are built around an abstraction
that represents individual network flows—TCP sessions and the like [22, 30].
These systems automatically create and destroy modules as network flows are
encountered. This is a fast, limited form of configuration installation, as each
new or deleted flow changes a localized section of the configuration. Hot-swap
installation is fast in Click—on a 700 MHz Pentium III, installing a 50-element
configuration takes less than a tenth of a second—but not fast enough to
support flow creation and deletion. Most of the benefits of a flow-based design
can be realized in Click as is; many configurations only require per-flow-class
state and CPU scheduling, and elements can cooperate to maintain per-flow
private state. Unlike flow-based systems, however, Click cannot schedule the
CPU per individual flow.

27

3
Language

The Click programming language textually describes Click router configura-
tions. Two of its constructs are sufficient to describe any configuration graph:
declarations create elements and connections connect elements together. How-
ever, a language with only these constructs would scale poorly to large config-
urations. Click’s language contains additional structure to aid users: syntactic
sugar improves readability, and compound elements, described in Section 3.4,
provide an abstraction mechanism for configuration fragments.

Two goals guided the language’s design, readability and convenience for
tools. The importance of readability is clear enough; a modular networking
system is only extensible as far as its configurations may be easily read and
modified. The second goal, convenience for tools, means that it should be easy
to design, use, and compose automatic tools that analyze and manipulate Click
language files. Tools like this can optimize or transform Click configurations
or ensure that application-level properties hold; see Chapter 6. We prefer a
broad, open-ended set of tools to one tool, no matter how powerful that
tool. For example, the Ensemble system for composing network protocol
stacks [25] is built around a single tool, a theorem prover. It can perform
checks and optimizations, but only with extensive human intervention. In
Click, we chose to sacrifice the kind of correctness guarantees achievable with
theorem proving for ease of use and ease of tool design.

These goals led us to a set of more concrete design principles.

– The language is declarative: it simply describes the configuration graph.
Contrast this with scripting as embodied by Tcl, where directives for ma-
nipulating a system are added to a general-purpose programming language.
The Berkeley ns network simulator [34] uses Tcl as a base; ns configura-
tions are embedded in, and inseparable from, imperative Tcl scripts that
may perform other arbitrary actions. Declarative languages have readabil-
ity advantages, and declarative programs can be analyzed and manipulated

28

more easily than imperative programs.

– The language is simple. We have kept new constructs to a minimum, prefer-
ring to implement language extensions through special-purpose elements.
This choice limits the mechanisms that users must learn and tools must
implement while achieving great flexibility.

– Click-language programs and configuration graphs are equivalent. Any
configuration corresponds to a simple program in the Click language, and
it is easy to translate back and forth between programs and graphs.

– Tools should not need to fully understand Click’s semantics—for example,
they should not have to understand what every element does. Therefore,
the language supports blind manipulation: tools that do not understand
element semantics can transform configuration programs while preserving
correctness.

The rest of this chapter describes the language we have designed based on
these principles: its syntax, its abstraction mechanisms, and its limitations.

3.1 syntax

Again, a configuration graph consists of elements connected together. Each
element has an element class, which is specified by name, and optionally a
configuration string. Elements are connected through their input and output
ports. In the Click language, input and output ports are distinguished by
number and elements are distinguished by name. Each element in the config-
uration has a unique name that the user can optionally specify. These names
distinguish elements during the parsing process, and also let the user, or other
programs, access particular elements once the configuration is running.

The language’s fundamental constructs, declarations and connections, have
the following syntax:

name :: class(config-string); // declaration
name1 [port1] -> [port2] name2; // connection

(All semicolons are optional.) The connection statement “name1 [port1] ->
[port2] name2” creates a connection from name1’s output port port1 to
name2’s input port port2. Elements must be declared before they are used in
connections. Any configuration can be described with these two statements,
but additional syntactic sugar makes configurations more pleasant to write
and to read:

29

// Declare three elements . . .
src :: FromDevice(eth0);
ctr :: Counter;
sink :: Discard;
// . . . and connect them together
src -> ctr;
ctr -> sink;

Figure 3.1—A Click-language description of the trivial router of Figure 2.1 (page 15).

name :: class; // can omit empty configuration string
name1 -> name2; // omitted port numbers are equivalent to [0]
name1 [port1] -> [port2a] name2 [port2b] -> [port3] name3;

// can piggyback connections
name1 -> name2 :: class(config-string) -> name3;

// can declare elements inside connections

Finally, the anonymous element declaration syntactic sugar is described in the
next section.

An additional construct, the require statement, lists configuration require-
ments. Its syntax is as follows:

require(requirement [, requirement . . .]);

As mentioned in Section 2.8, the Click drivers treat each requirement as a
dynamically linked object, possibly containing new element definitions, that
should be loaded before the rest of the configuration is parsed.

Lexically, C++-style comments (both ‘/* . . . */’ and ‘// . . . end of line’) are
treated as whitespace. Click language parsers also recognize C preprocessor-
style line directives (‘# line-number "filename"’) and use them to generate
reasonable line numbers for error messages. Language manipulation tools
include relevant line directives in their output programs.

Figure 3.1 uses these constructs to define a trivial router. For reference,
Appendix B provides a full BNF grammar for the language.

3.2 anonymous elements

Anonymous element declarations let the user create elements without specify-
ing their names. Such elements can be used in at most two connections, once
as input and once as output. For example:

30

FromDevice(eth0) -> Counter -> Discard;

Figure 3.2—Another Click-language description of the trivial router of Figure 2.1.

name1 -> class(config-string) -> name2; // one input, one output
name -> class(config-string); // input only
class(config-string) -> name; // output only
class(config-string); // no inputs or outputs

As usual, empty configuration strings may be omitted. The system constructs a
name for each anonymous element; these names have the form ‘class@i’, where
i is an integer chosen to ensure uniqueness. Anonymous element declarations
improve readability by avoiding clutter. A language without anonymous decla-
rations could be compared, albeit with some exaggeration, to a programming
language in which each subexpression had to be uniquely named. Typical
Click configurations use anonymous declarations for half their elements. The
Click-language description in Figure 3.2 is equivalent to Figure 3.1, but uses
anonymous elements.

Besides making configurations more readable, anonymous elements pro-
vide an excellent means for implementing language extensions. For example,
how might the user set the scheduling priority for an element, or define an
abbreviation for a common network address? The obvious solution would
involve extended syntax:

address eth0_addr = 00:e0:98:09:ab:af;
arpq :: ARPQuerier(18.26.4.44, eth0_addr);
arpq -> td :: ToDevice(eth0) priority 10;

However, this adds unnecessary complexity to the language and does not
generalize well. Instead, Click implements extensions through special infor-
mation elements—ordinary elements whose configuration strings define some
extension property. For example:

AddressInfo(eth0_addr 00:e0:98:09:ab:af);
arpq :: ARPQuerier(18.26.4.44, eth0_addr);
arpq -> td :: ToDevice(eth0);
ScheduleInfo(td 10);

The AddressInfo and ScheduleInfo statements are simply anonymous ele-
ment declarations. Information elements are described further in Section 4.7.

The generated names of anonymous elements are valid identifiers in the
language. Thus, a tool can parse a program that uses anonymous elements and

31

generate an equivalent program in which all elements are named explicitly.
Users are discouraged from using the distinguishing ‘@’ character in their
element names for stylistic reasons, but nothing prevents them from doing so.
This property helps achieve equivalence between programs and graphs.

Correct programs containing anonymous elements can be parsed with-
out knowing the available set of element classes. This helps support blind
manipulation. The rule is simple—every identifier not previously declared is
an element class. Parsing a program using this rule preserves correctness: a
program generated from the parsed configuration graph will be correct if
and only if the original program was correct. Thus, although tools using this
rule will silently accept some kinds of errors, they will not change erroneous
configurations into valid ones or vice versa.

3.3 configuration strings

Configuration strings in Click are comma-separated lists of arguments delim-
ited by parentheses. Each individual argument is essentially a string that is
passed to the element for parsing. Before parsing, however, the Click driver
replaces any comments with single space characters and removes any lead-
ing and trailing space from each argument. Arguments can contain single- or
double-quoted strings; these are useful if an argument contains unbalanced
parentheses, leading or trailing space, or characters that might be mistaken
for comments.

Strictly speaking, what elements do with the arguments is not part of
the Click language. Elements are free to parse argument strings in whatever
way they choose. Practically speaking, however, the configuration string “lan-
guage” is important for users, who must learn it just as they learn the language
for connecting elements together.

Most elements we have designed so far use a common library for pars-
ing their configuration arguments. This library parses arguments with the
following characteristics:

– A configuration argument is either a single item or a list of items. Items in
a list are separated by spaces.

– An individual item can be a string (‘"this is"a_string’), word (‘a_word’),
Boolean value (‘true’, ‘false’), integer (‘90’, ‘-999’, ‘0x8F’), real number
(‘0.5’; the data will be returned in fixed-point decimal or binary represen-
tation), IP address (‘18.26.4.44’), IP network address (‘18.26.4.0/24’),
Ethernet address (‘00:02:B3:06:36:EE’), element name (‘elt’), or IPv6 ad-

32

dress (‘1080::8:800:200C:417A’, ‘::’, ‘::18.26.4.15’). New types can be
plugged into the library dynamically.

– The simplest means of accessing the library takes an entire set of arguments
and produces the corresponding data or an error. This interface supports
positional arguments, some of which may be optional, as well as keyword
arguments like ‘APPEND true’. Elements may also use a lower-level inter-
face that merely parses items; in this case, the elements are themselves
responsible for separating arguments into items and for reporting errors.

This design emphasizes flexibility at the expense of commonality between
elements. Clearly, elements can support natural representations for data types
not mentioned above, since the elements themselves determine how strings
are parsed into data. Several of our elements take advantage of this flexibility,
such as the Classifier elements described in Section 4.2. However, this same
property makes it difficult to write a complete typechecker for configuration
strings without relying on element source code.

3.4 compound elements

Compound element classes let users define their own element classes with-
out writing C++ code. They are the Click language’s abstraction mechanism,
providing flexible macros for router configuration graphs. Operationally, com-
pound element classes are router configuration fragments that are treated like
element classes. They are most commonly created by an elementclass state-
ment, which has the following syntax:

elementclass Name {
. . . Click statements . . .

}

After this statement, Name is an element class that corresponds to the Click
configuration fragment inside the braces. Declaring an “element” of class
Name adds a duplicate of that fragment to the configuration. We call the “ele-
ment” a compound element; each actual element in the fragment it represents
is called a component of the compound. For example, this compound element
class has three components (an InfiniteSource element, a Counter element,
and a Discard element):

elementclass Example {
s :: InfiniteSource; c :: Counter; d :: Discard;
s -> c -> d;

}

33

Only components remain in the final configuration graph—all compound
element structure is compiled away. This process, called flattening, ensures that
a compound element has no more overhead than the corresponding collection
of components. It also lets tools manipulate flat configuration graphs, as
opposed to hierarchical graphs containing compound element classes. During
the flattening process, compound element components are given names that
reflect their origin. A component named ‘e’ of a compound element named
‘compound’ is named ‘compound/e’ in the flattened configuration. For example,
this configuration, with a compound element,

elementclass Example {
s :: InfiniteSource; c :: Counter; d :: Discard;
s -> c -> d;

}
e :: Example;

flattens into this configuration:

e/s :: InfiniteSource; e/c :: Counter; e/d :: Discard;
e/s -> e/c -> e/d;

Generated names like ‘e/s’ are valid identifiers in the language. As with anony-
mous element names, this helps achieve equivalence between programs and
configuration graphs: a flattened configuration graph may be directly trans-
lated into an equivalent valid program.

The elementclass statement can redefine existing element classes. For
example, this statement redefines the Queue class:

elementclass Queue {
. . . new definition . . .

}

Inside the new definition, any use of ‘Queue’ would refer to the original Queue
class. It is not possible to define recursive or mutually recursive element classes.

Another elementclass variant defines an alias for an existing element
class. For example, after this statement,

elementclass MyQueue Queue;

the identifier ‘MyQueue’ is a synonym for Queue—specifically, for the Queue
class that was active when the synonym statement was parsed.

The language supports nested compound element definitions. For example:

34

elementclass Example2 {
elementclass NestedExample {

. . . Click statements . . .
}
n :: NestedExample;

}

The scope of the nested compound element class is limited to the element class
in which it appears.

Ports

Like any element, compound elements may have input and output ports.
Each connection to or from a compound element port is transformed by
flattening into a connection to or from one of its components’ ports. Inside
a compound element class, the special pseudoelements input and output
specify how this transformation proceeds. Consider a compound element e.
If e/input’s output port i has a connection to a component e/c, then every
connection to a e’s input port i will flatten into a connection to its component
e/c. The output pseudoelement plays a corresponding role for output ports.
Compound element components are isolated from the main configuration
except through input and output.

For example, in the following configuration, the Example3 compound
element has one input and zero outputs:

elementclass Example3 {
input[0] -> Counter -> Discard;

}
FromDevice(eth0) -> Example3;

The connection between FromDevice and Example3’s input port transforms
into a connection to the Counter component. Therefore, the above configura-
tion flattens to something like this:

FromDevice(eth0) -> Counter -> Discard;

Figure 3.3 shows a compound element class with one input and one output
as written in the language and as it might be drawn.

Particular input or output ports may be connected multiple times. This will
expand each connection to that port into multiple connections to components.
For example, this use of Example4,

35

elementclass SFQ {
hash :: HashSwitch(...);
rr :: RoundRobinSched;
input -> hash;
hash[0] -> Queue -> [0]rr;
hash[1] -> Queue -> [1]rr;
rr -> output;

}

HashSwitch(...)

RoundRobin...

Figure 3.3—A simple compound element class.

elementclass Example4 {
s1 :: InfiniteSource; s2 :: RatedSource;
s1 -> [0]output; s2 -> [0]output;

}
e :: Example4 -> d :: Discard;

will expand into this flattened configuration:

e/s1 :: InfiniteSource; e/s2 :: RatedSource; d :: Discard;
e/s1 -> d; e/s2 -> d;

An input port may also be connected directly to an output port. For example,
the following Example5 element disappears when flattened:

elementclass Example5 {
input -> output;

}
FromDevice(eth0) -> Example5 -> Discard;

expands into

FromDevice(eth0) -> Discard;

It is an error to use an input port of input or an output port of output, or
to leave a particular input or output port unused when a higher-numbered
port was used.

36

Anonymous compound element classes

Compound element classes may also be anonymous. To create an anonymous
compound element class, the user simply writes a configuration fragment in
braces where an element class was expected—for example, after ‘::’ in an
element declaration:

sfq :: {
hash :: HashSwitch(...); rr :: RoundRobinSched;
input -> hash;
hash[0] -> Queue -> [0]rr; hash[1] -> Queue -> [1]rr;
rr -> output;

}

or, even more anonymously,

FromDevice(eth0) -> { input -> Counter -> output } -> Discard;

Anonymous compound elements are useful for debugging as well as con-
figuration structuring. Consider the following program:

q :: Queue;
// . . .
Source1 -> ... -> q;
Source2 -> ... -> q;
q -> ... -> Sink;

Say we would like to print each packet as it enters the Queue. Without
compound elements, one would have to change at least one of the uses of q;
for example:

qp :: Print(q) -> q :: Queue;
// . . .
Source1 -> ... -> qp;
Source2 -> ... -> qp;
q -> ... -> Sink;

With a compound element, only q’s declaration must be changed:

q :: { input -> Print(q) -> Queue -> output };
// . . .
Source1 -> ... -> q;
Source2 -> ... -> q;
q -> ... -> Sink;

37

3.5 compound element arguments and overloading

Compound element classes, like ordinary element classes, take configuration
arguments and can have varying numbers of arguments, input ports, and out-
put ports. Formal parameters define the arguments that a compound element
class should take; overloading lets several compound element definitions with
different numbers of arguments or ports share a single name.

A formal parameter is a sequence of alphanumeric characters preceded
by a dollar sign, such as $a or $10_4_buddy. A compound element class may
optionally begin with a list of parameters. For example, the following element
takes exactly two arguments:

elementclass Example6 {
$arg1, $arg2 | input -> Discard;

}
e :: Example6(a, b); // OK
e2 :: Example6; // error—wrong number of arguments

Formal parameters are used inside the configuration strings of component ele-
ments. When a compound element is declared, occurrences of formal parame-
ters in its components’ configuration strings are replaced by the corresponding
configuration arguments. For example:

elementclass GatewayDevice {
$device | from :: FromDevice($device) -> output;

}
g :: GatewayDevice(eth0) -> Discard;

expands to

g/from :: FromDevice(eth0) -> Discard;

When compound elements are nested, formal parameters are lexically scoped.
Formal parameters let a compound element class support a fixed number

of positional arguments. The overloading mechanism extends this to support
optional arguments, as well as different behavior based on numbers of input
or output ports. Every compound element class can correspond to a number of
definitions, which are textually separated by ‘||’. These definitions are distin-
guished by their numbers of formal parameters, input ports, and output ports.
For each declared compound element, the system checks how many arguments
were supplied and how many inputs and outputs were actually used. Then it
searches for a matching definition. If one is found, then it is expanded; if none
is found, it is an error. For example, the following ShapedQueue element class
supports an optional capacity argument, just like Queue itself:

38

elementclass ShapedQueue {
input -> Queue -> Shaper(10000) -> output;
||
$cap | input -> Queue($cap) -> Shaper(10000) -> output;

}
q1 :: ShapedQueue; // OK; uses first definition
q2 :: ShapedQueue(1024); // OK; uses second definition
q3 :: ShapedQueue(1024, 10000); // error—no matching definition

The following VerboseCheckIPHeader element class has an optional second
output port, just like CheckIPHeader itself:

elementclass VerboseCheckIPHeader {
input -> c :: CheckIPHeader -> output;
c[1] -> Print(CheckIPHeader) -> Discard;
||
input -> c :: CheckIPHeader -> output;
c[1] -> Print(CheckIPHeader) -> [1]output;

}

A variant of overloading lets the user add new definitions to an existing
element class. For example, this definition adds a two-argument version of
Queue:

elementclass Queue {
... || // ‘dot dot dot’ is part of the syntax
$capacity, $rate | input -> Queue($capacity)

-> Shaper($rate) -> output;
}
q1 :: Queue; // built-in Queue
q2 :: Queue(1024); // built-in Queue
q3 :: Queue(1024, 10000); // overloaded Queue definition above

It is an error for a single compound element class to contain two overloaded
definitions with the same signature (that is, the same numbers of arguments
and input and output ports). A compound element class that overloads an
existing element class (‘elementclass Name { ... || definitions }’) may
override a former definition with the same signature, however.

When choosing the definition that corresponds to a given compound el-
ement declaration, Click only considers the definitions that were lexically
visible at the point of declaration. For example:

39

elementclass Example7 {
Idle;

}
e1 :: Example7(test); // error—no matching definition visible here
elementclass Example7 {

... || $arg | Idle;
}
e2 :: Example7(test); // now it’s OK

Thus, it is still impossible to write recursive or mutually recursive element
class definitions in Click.

Compound element configuration arguments are only meaningful inside
the configuration strings of components. They cannot, for example, change
the element class of a given component, or cause components to be added to
or subtracted from the compound. Overloading helps somewhat, but is based
only on the number of configuration arguments, not on their values. However,
it is possible to build a compound element that sends packets through different
sets of components based on the value of its configuration string.

The keys are the StaticSwitch and StaticPullSwitch elements. StaticSwitch
has one push input and several push outputs. Its configuration string con-
tains an output port number; all packets arriving on its input are emitted
on that output port. StaticPullSwitch is the pull equivalent: its configuration
string contains an input port number, and all pull requests are forwarded to
that input port. The following compound element uses StaticSwitch to imple-
ment a selective checksum check. (The CheckIPHeader element checks an IP
header’s length and checksum for sanity; CheckIPHeader2 does the work of
CheckIPHeader except for the checksum check.)

elementclass MaybeChecksum { $checksum_p |
input -> sw :: StaticSwitch($checksum_p);
sw[0] -> CheckIPHeader2 -> output;
sw[1] -> CheckIPHeader -> output;

};
c1 :: MaybeChecksum(0); // uses CheckIPHeader2, skips checksum
c2 :: MaybeChecksum(1); // uses CheckIPHeader, checks checksum

The click-undead dead code elimination tool can remove StaticSwitch and any
unused elements from the resulting configuration; see Section 6.4.

40

3.6 discussion and limitations

The Click programming language has achieved its goals. The language is
readable and easy to work with. Compound elements let users create libraries
of useful configuration fragments; they are also convenient when debugging
configurations. As Chapter 6 will show, our design principles have created a
convenient language for automatic processing. Also, Click’s division of labor
between element classes and the language works well in practice. Element
classes determine how packets move locally and perform all complex cal-
culations; the language is exclusively concerned with abstraction and how
elements are combined. This division of labor has kept both language and
system simple, focused, and useful.

The language is not necessarily complete, however. Possible areas for fur-
ther work include adding features to compound elements and adding more
information about individual element types.

Compound element classes support many of the features of native C++
element classes, but not all. For example, native classes can support keyword
arguments, perform complex calculations based on their arguments, and cre-
ate handlers that users may access; compound elements can do none of these
things. Also, since compound elements are compiled away at router initializa-
tion time, their internal structure is visible in the created router. Compound
elements are an imperfect abstraction mechanism: they do not hide themselves
from the user, and they are strictly less powerful than native element classes.
We plan to add some features missing from compound elements, particularly
handlers, to a future release of Click. Currently, users who want these features
must write their element classes in C++.

The decision to leave configuration string parsing up to individual ele-
ments has problematic consequences even beyond the difficulty of writing a
type checker. For example, it is dangerous for any automatic tool to change
the name of any element in a Click program: some other element might refer to
that name inside its configuration string, but without knowing which config-
uration arguments are element names, it is impossible to patch any references
that do exist. We initially chose the current design for its simplicity and be-
cause it supports blind manipulation. It was a good choice for building up the
system. Now, however, as elements are more plentiful and as configurations
grow bigger, checking configurations off line for errors may become more
important than simplicity. In future, every element class may be accompanied
by one or more specifications, such as descriptions of the types of its con-
figuration arguments, its numbers of input and output ports and how those
numbers are determined, and whether it modifies passing packets. Providing

41

this kind of semantic information to Click language tools would make it easier
to check configurations for correctness off line, and would not burden element
creators unnecessarily.

42

4
Elements

This chapter describes a cross-section of existing elements and discusses the
design principles on which these elements were built; Chapter 5 presents a
selection of router configurations that use the elements shown here. Click’s
available elements, and the ease of combining elements into configurations,
goes to the heart of Click’s utility. Section 4.1 begins with a description of
our element design priciples, some of which are properties inherent in the
Click architecture. The rest of the chapter describes particular elements, fo-
cusing on how these elements support composition. The packet scheduling,
dropping policy, and TCP/IP rewriting elements, in particular, demonstrate
how the Click element abstraction creates powerful and flexible networking
components.

4.1 overview

Every element class must address the simple set of primitives on which el-
ements are built: configuration strings and input and output ports that can
be push or pull. The characteristics of these primitives create a simple design
methodology. For example, an element that divides packets into categories,
such as a routing table, will have push ports, generally one output port per
category. (In an element with all pull ports, each packet’s output port has been
determined before the packet itself is seen, so categorization based on packet
contents is impossible unless the element has internal packet storage.) Click’s
elements follow this methodology as well as some rules we imposed ourselves:

– Separate functionality within reason. Each element should have a simple
specification. For example, elements that classify packets should be sepa-
rated from elements that modify them. However, separations that would
result in complex inter-element communication should be avoided, par-
ticularly if the elements would not exchange packets or if they would be
difficult to understand individually.

43

This rule argues for small elements and, therefore, large router configu-
rations. Complex router behavior is implemented by combining simple
parts.

– Whenever possible, use different ports rather than packet data to distin-
guish between different kinds of packets. For example, the ARPQuerier
element takes both IP packets and ARP responses. It could examine flags
in the packet header to distinguish between these packet classes, but in-
stead, it has two input ports—one for IP, one for ARP. This makes the
configuration easier to read, since different kinds of packets take distinct
paths. It marginally speeds up the configuration by eliminating redundant
packet header comparisons. It also tends to localize packet classification
in explicit classification elements, which, in turn, facilitates optimization.

When these rules are followed consistently, elements naturally fall into
categories distinguished by their input and output port characteristics.

– Packet sources spontaneously generate packets, either by reading them
from the network (FromDevice), reading them from a dump file (From-
Dump), creating them from specified data (InfiniteSource, RatedSource),
or creating them from random data (RandomSource). They have one out-
put and no inputs.

– Packet sinks remove packets from the system, either by dropping them
(Discard, TimedSink), sending them to the network (ToDevice), writing
their contents to a dump file (ToDump), or sending them to the Linux
networking stack (ToLinux). They have one input and no outputs.

– Packet modifiers change packet data. They have one input and one or two
outputs. Packets arriving on the input are modified and then emitted on
the first output. The second output, if present, is for erroneous packets.
The input and the first output may be agnostic, but the second output is
always push.2

2. Consider a packet modifier element whose ports are pull. After receiving a pull request
on its first output port, the element will pull a packet from its input port and modify the
packet it receives. Normal packets will simply be returned, satisfying the original pull request.
Erroneous packets, however, must be stored or actively emitted on the second output port.
This is a push operation. The element will probably return a null pointer in response to the
original pull request.

44

– Packet checkers keep statistics about packets (Counter) or check them for
validity (CheckLength, CheckIPHeader). Their ports resemble those of
packet modifiers.

– Routing elements choose where incoming packets should go based on
a packet-independent switching algorithm (Switch, RoundRobinSwitch),
general characteristics of packet flow (Meter, PacketMeter, RatedSplitter),
or an examination of packet contents (Classifier, HashSwitch, LookupIP-
Route). They have one push input and two or more push outputs.

– Storage elements (Queue, FrontDropQueue) store packets in memory for
later use, yielding up stored packets upon receiving pull requests. They
have one push input and one pull output.

– Scheduling elements (RoundRobinSched, PrioSched) choose packets from
one of several possible packet sources. They have one pull output and two
or more pull inputs.

– Information elements implement language extensions (AddressInfo, Sched-
uleInfo) or interact with the configuration out-of-band (ControlSocket).
They have no inputs or outputs.

Of course, not all elements fit into these categories, and some elements that
do fit have slightly different port characteristics. Most elements fit into the
categories remarkably well, however, which makes it possible to intuit part of
an element’s function without detailed knowledge of its specification.

4.2 classification

Classifier is Click’s generic classifier element. It compares each incoming
packet’s data against a set of patterns, and sends the packet to an output
port corresponding to the first pattern that matched. Classification is a funda-
mental task, and at least one Classifier appears in even moderately complex
configurations, so Classifier’s syntax and performance are both important.
This section describes how we optimized its performance and made its syntax
extensible.

At configuration time, Classifier parses its configuration string into a de-
cision “tree” (actually, a directed acyclic graph). At run time, the tree is
interpreted for every packet that is received. Leaf nodes represent output
ports; internal branch nodes compare one word of packet data against a
one-word constant value, perhaps with some of the packet data bits masked

45

off. Classifier cannot compare one packet header field with another or per-
form most greater-than or less-than tests.3 This design makes Classifier’s inner
loop efficient—on a Pentium Pro, that loop is just 13 instructions long—and
most tests necessary in practice seem to be equality or inequality tests against
constants.

Classifier optimizes its decision tree to avoid redundant tests. There are
several approaches in the literature [2, 4, 17]; Classifier’s approach is most
similar to BPF+’s [4]. Its core optimization is a form of redundant predicate
elimination [52], which eliminates tests whose results can be statically deter-
mined. Optimization can be very effective, reducing the size of real Classifier
decision trees by two-thirds or more. For example, the number of internal
nodes used for the complex classifier of Figure 5.8 on page 72 drops from 181
to 50.

Comparing packet data against a data structure has significant interpre-
tation overhead even after the data structure is optimized. One of Click’s
language tools, click-fastclassifier, addresses this cost by compiling special-
ized source code for each Classifier in a configuration. This tool expands
optimized tree structure into explicit code branches and inlines all constants,
for an effect somewhat like dynamic code generation [17]. Thus, the con-
ventional optimization strategies for decision trees—tree minimization and
compilation—are split in Click between the element itself and a specialized
optimization tool. Click-fastclassifier is described further in Section 6.2.

All of Classifier’s tree creation and optimization methods are available for
use by its subclasses. This facilitates extending its syntax. Classifier’s native
filter language is austere, allowing only comparisons of packet data against
hexadecimal constants. For example, the clause ‘33/02%12’ matches packets
whose 33rd data byte, after a bitwise and with the hexadecimal mask 12,
equals the hexadecimal value 02. IPClassifier is a subclass of Classifier and
a parsing front end for it; its filter language consists of textual tcpdump-like
expressions specialized for IP packets. For example, the clause ‘tcp syn &&
not ack’ matches TCP packets with a SYN flag but no ACK flag; it is basically
equivalent to the Classifier clause ‘9/06 33/02%12’. Figure 4.1 shows a sample
classification task as written for Classifier and for IPClassifier. The subclass
relationship between Classifier and IPClassifier is purely an implementation
detail, and is not meaningful at the router configuration level. However, the

3. A limited set of greater-than and less-than tests can be compiled into equality tests. If
x is a contiguous bitfield that fits within a single packet data word, then tests of the form
x < 2k (or x > 2k − 1, or x ≤ 2k − 1, or x ≥ 2k) are equivalent to testing some of x’s upper
bits for equality with zero. The IPClassifier element provides syntactic sugar for these tests.

46

Classifier IPClassifier
9/06 16/0A000014 33/02%12, tcp && dst host 10.0.0.20

&& syn && not ack,
9/06 12/121A0400%FFFFFF00 src net 18.26.4.0/24

20/0050, && tcp src port www,
9/06 !22/0000%FF80 tcp dst port >= 128

Figure 4.1—A classification task for IP packets implemented by Classifier and IPClassifier
configuration strings.

PrioSched
high priority
low priority RoundRobinSched

Figure 4.2—Some packet scheduler elements.

click-fastclassifier optimization tool takes advantage of the subtyping rela-
tionship; because they share decision tree structure, optimizations for the two
elements are almost equivalent.

4.3 scheduling

Packet scheduling is a kind of multiplexing: a scheduler decides how a number
of packet sources, usually queues, will share a single output channel. A Click
packet scheduler is naturally implemented as a pull element with multiple
inputs and one output. This element reacts to requests for packets by choosing
one of its inputs, pulling a packet from it, and returning that packet. If the
chosen input has no packets ready, the scheduler will often try other inputs.

Click’s packet scheduler elements include RoundRobinSched, PrioSched,
and StrideSched. RoundRobinSched pulls from its inputs in round-robin order
and returns the first packet it finds, or no packet if no input has a packet
ready. It always starts with the input cyclically following the last successful
pull. PrioSched is a strict priority scheduler; it always tries its first input,
then its second, and so forth, returning the first packet it gets. StrideSched
implements stride scheduling [50] with ticket values specified by the user.
Arbitrary other packet scheduling algorithms could be implemented in the
same way. RoundRobinSched and PrioSched are illustrated in Figure 4.2.

Packet scheduler elements make purely local decisions; any scheduling
characteristics they induce in the router at large are dependent on the way
the configuration is connected. This makes it easy to change a scheduling
policy by plugging in a different element. It also makes it easy to implement
new scheduling policies by composing packet schedulers together. For exam-

47

RoundRobinSched

PrioSched

PrioSched

PrioSched

Figure 4.3—Composability of packet schedulers.

HashSwitch(...) RoundRobinSched

Figure 4.4—A stochastic fair queue as a compound element containing regular Queues and
a packet scheduler (RoundRobinSched). See Figure 3.3 on page 36 for a description in the
Click language.

ple, consider a router with several traffic classes that should be scheduled
round-robin, where each class has high-priority and low-priority traffic. This
corresponds to a RoundRobinSched each of whose inputs is connected to a
PrioSched; see Figure 4.3.

Both Queues and scheduling elements have a single pull output, so to an
element downstream, Queues and schedulers are indistinguishable. We can
exploit this property to build virtual queues, compound elements that act
like queues but implement more complex behavior than FIFO queueing. The
compound element in Figure 4.4 is a virtual queue that implements stochastic
fairness queueing [26]: packets are hashed into one of several queues that are
scheduled round-robin, providing some isolation between competing flows. It
has one push input and one pull output, just like a Queue, so it can generally
be used as a drop-in replacement for Queue.

4.4 dropping policies

The Queue element implements a simple dropping policy, a configurable max-
imum length beyond which all incoming packets are dropped. To implement
more complex policies, the user can either create elements that replace Queue
or build upon Queue with separate dropping policy elements. One separate
policy element is RED, which implements Random Early Detection drop-
ping [18]. This policy drops packets with higher probability when there is
network congestion. RED contains only drop decision code. This separates
the dropping policy from the packet storage policy, allowing either to be in-

48

RED(p1, ...)

RED(p2, ...)

RED(p3, ...)

Classifier(...)
high priority

medium priority
low priority

Figure 4.5—Weighted RED. The three RED elements have different RED parameters, so
packets with different priorities are dropped with different probabilities.

dependently replaced. It is also more flexible, since the user can implement
important RED policy variants just by rearranging the configuration.

RED considers a link congested when there are many packets in the queue
servicing that link. The RED element therefore queries queue lengths when
deciding whether to drop a passing packet. Specifically, it queries the number
of packets in the nearest downstream Storage elements; Storage is a simple
method interface implemented by Queue and other elements that store pack-
ets. It finds these elements using flow-based router context. RED can handle
one or more downstream Storage elements. If there are more than one, it adds
their packet counts together to form a single virtual count. This generaliza-
tion lets it implement variants like RED over multiple queues: a RED element
placed before the stochastic fair queue of Figure 4.4 would count both of
its component Queues. The arrangement of Figure 4.5 implements weighted
RED [7], where packets are dropped with different probabilities depending
on their priority. Finally, RED can be positioned after the Queues instead of
before them. In this case, it is a pull element and looks for upstream rather
than downstream Storage elements, creating a strategy like drop-from-front
RED [24]. (True drop-from-front RED would change the Queues to Front-
DropQueues as well.)

4.5 differentiated services elements

The Differentiated Services architecture [5] provides mechanisms for border
and core routers to jointly manage aggregate traffic streams. Border routers
classify and tag packets according to traffic type and ensure that traffic enters
the network no faster than allowed; core routers queue and schedule pack-
ets based on their tags. The diffserv architecture envisions flexible combina-
tions of classification, tagging, shaping, dropping, queueing, and scheduling
functions—essentially, quality-of-service for the Internet. All of these com-
ponents naturally correspond to Click elements, and implementing them as
elements gives router administrators full control over how they are arranged.

49

C
la

ss
if

ie
r(

...
)

RatedSplitter(7500)
Discard

Shaper(10000)

RatedSplitter(12500)

R
ou

nd
R

ob
in

Sc
he

d

P
ri

oS
ch

ed

SetIPDSCP(D)

A

B

C

D

Figure 4.6—A diffserv traffic conditioning block. A, B, C, and D represent DSCP values.

We have already described elements for classification (Classifier), dropping
(Discard), queueing (Queue), and scheduling (RoundRobinSched). SetIPDSCP
is a simple retagger; it changes incoming IP packets’ Differentiated Services
Code Point field (DSCP) [33] to a fixed value and incrementally updates their
IP checksums. The RatedSplitter and Meter elements classify packets based on
their arrival rate. RatedSplitter(r) forwards at most r packets per second to its
first output; any excess packets are redirected to the second output. Meter(r),
in contrast, sends the entire incoming stream to the second output once it
exceeds r packets per second. Variants of these elements measure bandwidth
(bytes per second) rather than packet rate. Finally, Shaper is a simple traffic
shaper that regulates packets’ departure times. Shaper(r) has one pull input
port and one pull output port, and forwards pull requests to its input at a
maximum rate of r requests per second.

Figure 4.6 uses these elements to build a realistic diffserv traffic condition-
ing block. This configuration separates incoming traffic into 4 streams based
on DSCP. The first three streams are rate-limited, while the fourth represents
normal best-effort delivery. The rate-limited streams are given priority over the
normal stream. From top to bottom in Figure 4.6, these streams are (A) lim-
ited by dropping—traffic in excess of 7,500 packets per second is dropped; (B)
shaped—at most 10,000 packets per second are allowed through the Shaper,
with any excess packets left enqueued; and (C) limited by reclassification—
traffic in excess of 12,500 packets per second is reclassified as best-effort
delivery and sent into the lower priority queue.

4.6 IP rewriting

This section describes the IPRewriter element family: IPRewriter, IPRewriter-
Patterns, RoundRobinIPMapper, TCPRewriter, and FTPPortMapper. These

50

Source (a1) Rewriter New destination (a′2)
a1:p1—a2:p2 a′1:p′1—a′2:p′2

a′2:p
′
2—a′1:p

′
1

a2:p2—a1:p1

Figure 4.7—Action of a generic IP rewriter. Each arrow represents a packet with the given
flow ID.

elements were originally designed to implement transparent proxies, but they
also naturally support packet-filtering firewalls, network address/port transla-
tion, and Web server load balancing, among other applications. This demon-
strates how the Click framework and its design methodology can inspire novel
and flexible solutions to real routing problems.

Firewalls, load balancers, address/port translators, and transparent prox-
ies each act as network address translators, or NATs [15, 45, 46]. A network
address translator modifies passing packets’ network addresses—and, option-
ally, their port numbers, or even data—to achieve some network-level goal,
such as allowing many machines to share a limited number of IP addresses.

The network address translators we consider can examine and modify
TCP and UDP packets’ source addresses, source ports, destination addresses,
and destination ports. We call this quadruple a packet’s flow ID, and write
it as “source address:source port—destination address:destination port”. A
network address translator will change some subset of these components, as
well as any dependent header fields, such as checksums. Incoming packets
that are part of the same TCP or UDP flow will share the same flow ID; their
translations should share the same new flow ID. Packets replying to the trans-
lated flow will have the inverse of the new flow ID; their translations should
share one flow ID, namely the inverse of the original flow ID. This design
makes the translator transparent to both ends of the connection. Figure 4.7
demonstrates this general structure.

Network address translators contain a flow mapping table mapping old
flow IDs to new flow IDs. Without such a table, it would be difficult to ensure
that all packets on a session received the same new flow ID. Every translator
can share a table implementation; the properties that distinguish translators
are the rules used to place mappings into the table. Specifically, what happens
when a translator receives a packet for which its table doesn’t have a mapping?
Should that packet be dropped? Should a new mapping be installed? If so,
what should the new flow ID be? The rest of this section describes how

51

these questions are answered for four translators: a simple firewall, a network
address/port translator, a Web load balancer, and a transparent proxy.

First off, consider a trivial firewall bridging an internal and an external
network. This firewall allows sessions to be initiated only from the internal
network. That is, the firewall forwards all packets that originated from the
internal network, but forwards packets from the external network only if
they correspond to an existing session. That session, by induction, must have
originated internally. This corresponds to a network address translator with
the following rules for fresh packets—that is, packets for which the table
doesn’t have a mapping:

1. For fresh packets from the internal network, create mappings that leave
the packet’s flow ID unchanged.

2. Drop fresh packets from the external network.

Packets originating externally never create new mappings, so every flow ID
in the mapping table corresponds to a session initiated from the internal
network. Fresh packets from the external network represent sessions initiated
externally, and are properly dropped. Figure 4.8 shows a diagram of this
configuration.

Network address/port translation, or NAPT [46], lets a network of ma-
chines with private IP addresses speak with the Internet by sharing one gate-
way with a public IP address. The NAPT gateway is a simple translator:
outgoing connections are rewritten to apparently originate at the gateway;
incoming replies are rewritten to apparently be destined for the relevant pri-
vate IP address. This is accomplished by a network address translator with
the following rules (Figure 4.9):

1. For fresh packets from the private network, create mappings that change
the source address to the NAT gateway’s address, and the source port
to some arbitrary port. The source port must be unique among active
sessions, since that field may be necessary to distinguish between them.
The destination address and port remain unchanged.

2. Drop fresh packets from the Internet.

A load balancer for Web traffic takes incoming HTTP requests headed for
a well-known server address and transparently redirects those requests among
a set of servers that serve identical data. Its network address translation rules
are (Figure 4.10):

52

a1 afirewall a2
a1:p1—a2:p2

a2:p2—a1:p1

a1:p1—a2:p2

a2:p2—a1:p1

internal network firewall external network

Figure 4.8—Rewriting behavior of a simple firewall. (In these diagrams, the flow IDs describe
how packets originating at a1 are affected by the rewriter.)

a1 aNAPT a2
a1:p1—a2:p2

a2:p2—a1:p1

aNAPT:p′1—a2:p2

a2:p2—aNAPT:p′1
private network:

private IP addresses
NAPT gateway:

public IP address
Internet host

Figure 4.9—Rewriting behavior of a network address/port translator.

a1 a2

aw1

aw2

aw3

a1:p1—a2:p2

a2:p2—a1:p1

a1:p1—awi:p2

awi:p2—a1:p1
client

load balancer
and well-known server IP address

load-balanced
server pool

Figure 4.10—Rewriting behavior of a load balancer for Web traffic.

a1

aproxy

arouter a2
a1:p1—a2:p2

a2:p2—a1:p1

arouter:p′1—aproxy:p2 aproxy:p2—arouter:p′1

client

proxy

intended
server

Figure 4.11—Rewriting behavior of a transparent Web proxy.

53

New flow ID a
�

1:p
�

1—a
�

2:p
�

2 Allow fresh packets
Application for fresh flow ID a1:p1—a2:p2 from a

�

2?

Firewall a1:p1—a2:p2 no
NAPT aNAPT:pNAPT—a2:p2 no
Load balancer a1:p1—awi:p2, yes

where awi ∈ {aw1, . . . , awn}
Transparent proxy aspecial:pspecial—aproxy:p2 yes

Table 4.1—Network address translation characteristics of four network applications.

1. For fresh packets from the Internet and destined for the well-known server
address, create a mapping that changes the destination address to one of the
set of server addresses. Leave the source address and port and destination
port unchanged.

2. For fresh packets from the server pool, create mappings that leave their
flow IDs unchanged. The server machines can transparently contact any
machine they’d like.

Finally, a transparent Web proxy snoops for HTTP requests and forwards
them to some program, which might, for example, cache frequently requested
pages. Any replies from the proxy are rewritten to look like they originated
at the intended server. This corresponds to these network address translation
rules (Figure 4.11):

1. For fresh packets from a client and destined for a remote HTTP server,
create a mapping that changes the destination address to the local proxy
machine. The source address is also changed to a private address belonging
to the router so that replies from the proxy can be rewritten.

2. Drop fresh packets from the proxy and destined for the router’s private IP
address. Any such packet should be in reply to some proxied connection,
so it should have a corresponding mapping.

3. Pass along other fresh packets from the proxy unchanged.

Table 4.1 summarizes this discussion; it shows, in shorthand form, the trans-
lation rules for handling new flow IDs corresponding to the four applications.

IPRewriter

The IPRewriter element easily handles these applications, and others, by im-
plementing a flow ID mapping table and letting the user define rules for han-
dling fresh packets. The Click architecture lets IPRewriter be both specialized

54

and general. It is specialized for IP network address translation—other tasks,
such as routing, classification, and queueing, are handled by the rest of the
router configuration—but it implements translation in a fully general way.

The heart of IPRewriter is a flow mapping table. Each mapping in the
table contains an old flow ID, a new flow ID, and the number of one of the
element’s output ports. Packets matching the old flow ID are rewritten to use
the new flow ID and emitted onto the given output port.

Mappings are introduced into the table as fresh packets are encountered.
Each of IPRewriter’s input ports is associated with one rewrite rule, which
defines how mappings are added for fresh packets arriving on that input. The
NAPT configuration described above, for example, requires two rules—one
for traffic headed out of the private network, the other for traffic headed
into it. The corresponding IPRewriter has two input ports, one per rule. The
first input port is meant for outgoing traffic, and corresponds to the first
rule; and similarly for the second input port. Rules are only applied to fresh
packets, however—if a mapping exists for a packet, then that mapping is used
regardless of the input port on which the packet arrived. This ensures that
packets that are part of the same session are rewritten consistently, no matter
which input port they arrive on.

The IPRewriter element thus distinguishes packet types only by the input
port on which they arrived. The rest of the configuration must ensure that
the right packets reach a given IPRewriter input port; IPRewriter is solely
concerned with rewriting.

Mappings are removed from the table when they are stale—that is, when
no packet with that mapping has been encountered for an hour. In the future,
IPRewriter may check passing TCP packets for FIN or RST flags, which
indicate that a connection is closed.

Figure 4.12 restates this discussion in pseudocode; it describes what hap-
pens when IPRewriter receives a packet.

Rewrite rules

Each of IPRewriter’s configuration arguments specifies a rewrite rule applying
to a single input port. The most common, and complex, kind of rewrite rule
is the ‘pattern’ rule.

A pattern rule looks like ‘pattern A1 P1 A2 P2 O OR’. A fresh packet’s flow
ID is rewritten according to the pattern, and the modified packet is emitted
on output O.

The pattern proper has four parts: a new source address A1, new source
port P1, new destination address A2, and new destination port P2. Any of these

55

For each packet p received on input port i,
Search the flow mapping table for a mapping m

corresponding to p’s flow ID
If no mapping was found,

Execute the rewrite rule for input port i
(The rule may insert new mappings into the table.)
Search the table again for mapping m

If no mapping was found either time,
Drop the packet

Otherwise, (m is a valid mapping)
Rewrite p’s flow ID according to m
Push p onto the output port specified by m

Figure 4.12—Pseudocode describing how IPRewriter behaves when a packet is received.

parts can be a dash ‘–’, which means “leave unchanged”. Thus, the pattern
‘1.0.0.1 – 1.0.0.2 –’ will set the packet’s source and destination addresses but
leave the ports as they are. The source port specification can also be a range
of ports ‘PL–PH’, in which case the rewriter will choose a port between PL and
PH. It will also ensure that any two active mappings created by this pattern
have different source ports. The pattern ‘1.0.0.1 1024–65535 1.0.0.2 80’,
for example, sets every fresh packet’s source address to 1.0.0.1, destination
address to 1.0.0.2, and destination port to 80. The new source port, however,
will differ for any two active sessions. Therefore, the new source port uniquely
identifies an session, and every reply packet—which will contain that port
number—can be mapped back to a unique original flow ID.

O is an output port number. The rewritten fresh packet, and later packets
with the same flow ID, are emitted on output port O. The other port number,
OR, is used for rewritten reply packets. Different output ports are purely
a convenience. IPRewriter assigns no semantics to its output ports—every
rewriter could have exactly one output. It is often useful, however, to have
IPRewriter demultiplex incoming packet streams based on their flow IDs.
The user can decide, for example, that packets headed for networks A and B
should be emitted on a rewriter’s first and second outputs, respectively, and
enforce this decision through rewrite rules. IPRewriter is already rewriting
packets; demultiplexing has considerable benefit and minute additional cost.

When a fresh packet with flow ID a1:p1—a2:p2 arrives on an input port
with a ‘pattern’ rule, the rewriter first chooses a new flow ID a′1:p′1—a′2:p′2
according to the pattern. Next, the following pair of mappings is installed,
one for the input flow ID and one for replies to the new flow ID:

56

a1:p1—a2:p2 maps to a′1:p′1—a′2:p′2 with output port O
a′2:p′2—a′1:p′1 maps to a2:p2—a1:p1 with output port OR

Finally, the rewriter modifies the fresh packet to use the new flow ID and
pushes this rewritten packet out on output O.

IPRewriter understands several other types of rule as well, including:

– ‘drop’. Fresh packets are dropped.

– ‘keep O OR’. This rule is equivalent to ‘pattern – – – – O OR’: the rewriter
installs mappings for the input flow and its reply flow that leave their flow
IDs unchanged. Thus, future packets with either the input flow ID or its
reply flow ID will be passed through the rewriter to O or OR, even if they
arrive on an input port with, for example, a ‘drop’ rule.

– ‘elementname’. A rewrite rule may consist of a single element name. That
element should implement the IPMapper method interface; one of its meth-
ods is called whenever a fresh packet is encountered on this input port.
The method is expected to install mappings into the IPRewriter element ac-
cording to some algorithm. This lets the user extend the available rewrite
rules by writing elements. For example, the RoundRobinIPMapper ele-
ment, an IPMapper, is associated with an arbitrary number of ‘pattern’
rules. It cycles through these rules in round-robin order as new flow IDs
are encountered. This can implement round-robin load balancing among
a pool of Web servers, for example.

Table 4.2 shows how these rewrite rules can implement the four rewriting
applications of Table 4.1.

Discussion

In addition to the new flow ID and the relevant output port number, each map-
ping contains deltas so that the IP and TCP/UDP checksums can be updated
incrementally. TCPRewriter is an IP rewriter specialized for TCP; its map-
pings contain more deltas for TCP’s sequence number and acknowledgement
number fields. These deltas start at zero, but other elements can easily manip-
ulate TCP traffic by changing the deltas. The FTPPortMapper element uses
this feature to support rewriting the File Transfer Protocol [39]. FTP requires
special treatment because IP addresses are transmitted in the FTP data stream
in text form. These IP addresses must be changed along with packets’ source
and destination IP addresses. FTPPortMapper rewrites embedded IP addresses

57

Application Input port Rewrite rule

Firewall 0 From internal keep 0 1
1 From external drop

NAT 0 From private pattern aNAT pL–pH – – 0 1
1 From Internet drop

Load balancer 0 Requests RoundRobinIPMapper
1 Replies keep 1 0

Transparent proxy 0 Requests pattern aspecial pL–pH aproxy – 0 1
1 Proxy’s replies drop
2 Proxy other keep 1 0

Table 4.2—IPRewriter configurations for the four network applications of Table 4.1. The
“Input port” column informally describes the properties of packets arriving on each IPRe-
writer input port.

in FTP control packets as they pass by. This may make the FTP control pack-
ets grow or shrink, which changes the sequence numbering; FTPPortMapper
bumps the relevant TCPRewriter sequence number deltas to account for this.
FTPPortMapper demonstrates that the IPRewriter element family naturally
extends to include application-level gateways [47].

Once a pattern rule’s source port range is exhausted, that pattern will drop
new packets rather than reuse active source ports. As mappings are removed,
of course, the corresponding source ports become available again.

Some care is required to ensure that different fresh packets are never
mapped to the same new flow ID. For example, consider these patterns:

Input port Rewrite rule
0 pattern 1.0.0.1 1024–4096 – – 0 1
1 pattern 1.0.0.1 2048–8192 – – 1 2

If packets with flow IDs A:B—18.26.4.44:80 and C:D—18.26.4.44:80 arrive
on the two input ports, the rewriter might choose 1.0.0.1:2048—18.26.4.44:80
as the new flow ID for both. This would make the reply mapping ambiguous.
However, the rest of the configuration might ensure that packets arriving on
input 0 had destination port 80, while packets arriving on input 1 had desti-
nation port 22. In this case, there would be no conflict between the patterns,
because two new flow IDs created by the two patterns would never share the
same destination port.

The user can prevent ambiguous mappings by using different source ad-
dresses, disjoint source port ranges, or shared patterns. A shared pattern is

58

not tied to a particular rule; instead, multiple IPRewriter rules can refer to the
same shared pattern. Any two mappings created by using shared pattern will
use different source ports, even if the mappings are stored in different IPRe-
writer elements. Shared patterns are specified with an information element,
IPRewriterPatterns.

The network can generate ICMP errors, such as Destination Unreachable,
Network Unreachable, and so forth, in response to any IP packet. If the ICMP
error packet was generated in response to a rewritten packet, then it will
not reach the original sender unaided. IPRewriter itself cannot help directly
because the error packet is not TCP or UDP. The natural solution is to build
an application-level gateway for ICMP. The ICMPRewriter element rewrites
ICMP error packets based on the mappings stored in an existing IPRewriter.

This section has presented the IPRewriter element family in isolation.
These elements shine most, however, when combined with other elements
to form router configurations. Click element characteristics and our element
design principles have led to uniquely flexible and modular components for
IP network address translation. Users can create arbitrarily complex rewriting
specifications; because of Click’s input and output ports, their intentions are
still clear. IPRewriter and friends are more flexible than other network address
translators [21, 40]. For example, IPRewriter seems unique in its support for
multiple translation tables and flexible placement of translation relative to
other routing tasks. Section 5.5 presents an IPRewriter element in the context
of a transparent Web proxy configuration.

4.7 information elements

The elements described so far, like most of Click’s elements, participate ac-
tively in packet forwarding. However, some elements do not naturally forward
packets. For example, shared IPRewriter patterns do not concern packets at
all. Other shared structures, such as certain routing or location tables, also
might belong outside the flow of packets. Furthermore, most potential lan-
guage extensions do not involve forwarding packets, as Click already has
good support for forwarding.

Shared state and language extensions are implemented in Click by in-
formation elements, which have no inputs or outputs. Information elements
are a general mechanism for representing router structure that is indepen-
dent of packet flow. Click’s extensibility depends on decent support for non-
forwarding tasks, so this section describes several information elements in
depth, demonstrating the range of extensions they can implement.

Some information elements specify properties of other elements in the

59

configuration. Elements in this group are not active at runtime; they collect
information from their configuration strings into a simple database that other
elements can easily access. The ScheduleInfo element, for example, stores
information about scheduling parameters. Section 2.6 described the task queue
that schedules Click elements. Each scheduled element has a number of tickets
that determines how often it will be scheduled in relation to other tasks; an
element with two tickets will be scheduled twice as often as an element with
one. Users specify these ticket amounts with ScheduleInfo.

Each of ScheduleInfo’s configuration arguments contains an element name
and that element’s relative priority. The default priority is 1; a priority of 2
says that an element should be scheduled twice as often as the default, 0.5
says it should be scheduled half as often, and so forth. For example:

fd :: FromDevice(eth0); td :: ToDevice(eth0);
ScheduleInfo(fd 0.1, td 1);

Elements like ScheduleInfo share a common problem: how should com-
pound elements and information elements interact? This question is tricky to
answer well, but finding the right solution can enhance the compound element
abstraction. Consider the following configuration, where an element that must
be scheduled (Unqueue) is buried inside a compound element (Delayer):

elementclass Delayer {
input -> Queue -> u :: Unqueue -> output;

}
... -> d :: Delayer -> ...

Who can provide scheduling parameters for the Unqueue—the compound
element, the main configuration, or both? And if both can provide parameters,
how should those parameters interact?

In Click, both the compound element and the main configuration can
provide scheduling parameters. For example:

elementclass Delayer {
input -> Queue -> u :: Unqueue -> output;
ScheduleInfo(u 2);

}
... -> d :: Delayer -> ...
ScheduleInfo(d 0.8);

This configuration will be flattened to something like the following.

60

d/Queue@1 :: Queue;
d/u :: Unqueue;
d/ScheduleInfo@3 :: ScheduleInfo(u 2);
ScheduleInfo@10 :: ScheduleInfo(d 0.8);
... -> d/Queue@1 -> d/u -> ...

Every element inside the compound, including the ScheduleInfo, has been as-
signed a name prefixed with d/. The ScheduleInfo named d/ScheduleInfo@3
takes note of this and adds its d/ prefix to each of its arguments; thus, its
argument is effectively d/u 2, not u 2. The user can also specify a schedul-
ing parameter for a prefix, such as d 0.8 in the example. This parameter
is multiplied with parameters specified inside the prefix. Therefore, in this
configuration, the d/u element will have scheduling priority 0.8 × 2 = 1.6.
Compound element designers and users collaborate to set scheduling param-
eters in this design. A compound element can suggest that it be scheduled
more or less often than the default; if the user does not specify a scheduling
parameter, Click will follow the element’s suggestion.

In an alternative design, compound elements might specify how their parts
should be scheduled relative to one another, but only the main configuration
could say how the compound should be scheduled relative to other elements.
The chosen design might be viewed as a breach of encapsulation when com-
pared to this alternative. However, the chosen design is more flexible, that
flexibility is important in practice, and the alternative design breaches en-
capsulation even more. With Click’s design, a compound element is truly
equivalent to the corresponding collection of simple elements; if two schedu-
lable elements with priority 1 are included in a compound, their scheduling
parameters are the same as before. In the alternative design, their effective pri-
orities would drop to 0.5, since the compound as a whole would have priority
1. To make the compound usable, then, every user would have to give every
use of the compound twice the scheduling parameter they might expect.

Other information elements extend the language’s syntax. For example,
Click configurations often refer to common IP addresses, Ethernet addresses,
and IP network prefixes repeatedly. The AddressInfo element can provide
shorthand names for these addresses, localizing the addresses and making
the configuration easy to adapt as addresses change. Each of AddressInfo’s
configuration arguments has a name and several addresses; for example,

AddressInfo(me 18.26.4.15 0:90:27:97:5a:76);

says that ‘me’ is shorthand for an IP address (18.26.4.15) and an Ethernet
address (0:90:27:97:5a:76). The address type chosen for a particular use of
‘me’ depends on the kind of address required there.

61

Some information elements monitor the router configuration at run time
or respond to user requests. For instance, PeekHandlers and PokeHandlers
call read and write handlers on specified elements at specified times; this is
useful for running repeatable tests. The ControlSocket element, available only
in the user-level driver, opens a TCP/IP socket and listens for commands.
Other programs may connect to this socket to query read handlers, call write
handlers, or find out other information about the current router. Still other
information elements stop the router when packet sources have completed,
poll network interface status, or set up performance counter measurements.

Language extensions in general are well suited for implementation by infor-
mation elements. When implemented as elements, extensions fit into the Click
language without change, interact naturally with compound element classes,
and, given anonymous element declarations, still provide convenient, read-
able syntax. Some extensions do not fit well into this framework—compound
element classes, for example, obviously could not be implemented by infor-
mation elements alone. However, most extensions do not alter the element
abstraction, they merely augment it. Information elements are good for ex-
tensions of this kind. They make the Click language and system extensible
without pain.

62

5
Routers

Now that elements have been described, we explore how they combine to form
routers. This chapter presents several full Click router configurations, starting
with a standards-compliant IP router. The Click IP router is modular—it has
sixteen elements on its forwarding path—and, therefore, easy to understand
and easy to extend. The next sections present IP router extensions for different
queueing and packet scheduling policies and for transparent proxying, as
well as simpler configurations that use subsets of the IP router’s elements.
Of course, Click is suitable for many packet processing tasks other than IP
routing, and the chapter closes with examples of non-IP configurations and IP
non-routers—specifically, an Ethernet switch, a simple firewall, and the traffic
generator used in our tests.

5.1 IP router

Figure 5.1 shows a Click IP router that forwards unicast packets in nearly
full compliance with the standards [3, 37, 38]. The version in the figure has
two network interfaces, but easily generalizes to three or more. The rest of
this section describes this configuration in more detail; Chapter 8 evaluates its
performance with eight network interfaces, and Appendix A contains quick
descriptions of every element class it uses.

IP forwarding tasks that involve only local information fit naturally into
the Click framework. For example, DecIPTTL decides if a packet’s time-to-
live field (TTL) has expired. If the TTL is still valid, DecIPTTL decrements
it, incrementally updates the packet’s checksum, and emits the packet on its
first output; if the TTL has expired, DecIPTTL emits the packet on its second
output, which is usually connected to an element that generates ICMP errors.
These actions depend only on the packet’s contents, and do not interact with
decisions made elsewhere except as expressed in the packet’s path through
the element graph. Self-contained elements like DecIPTTL can be easily com-

63

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

PaintTee(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

PaintTee(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Figure 5.1—An IP router configuration.

64

posed. For example, one could connect DecIPTTL’s “expired” output to a
Discard to avoid generating ICMP errors, or insert an element that limited
the rate at which errors are generated.

Some forwarding tasks require that information about a packet be calcu-
lated in one place and used in another. The IP router uses packet annotations
(Section 2.2) to carry such information along, including the following:

– Destination IP address. Elements that deal with a packet’s destination
IP address use this annotation rather than the value of the IP header’s
destination field. This allows elements to modify the destination address—
for example, to set it to the next-hop gateway address—without modifying
the packet. GetIPAddress copies an address from the IP header into the
annotation, LookupIPRoute replaces the annotation with the next-hop
gateway’s address, and ARPQuerier maps the annotation to the next-hop
Ethernet address.

– Paint. The Paint element marks a packet with an integer “color”. PaintTee
emits every packet on its first output, and a copy of each packet with a
specified color on its second output. The IP router uses color to decide
whether a packet is leaving the same interface on which it arrived, and
thus should prompt an ICMP redirect.

– Link-level broadcast flag. FromDevice sets this flag on packets that arrived
as link-level broadcasts. The IP router uses DropBroadcasts to drop such
packets if they are about to be forwarded to another interface.

– ICMP Parameter Problem pointer. This is set by IPGWOptions on erro-
neous packets to specify the bad IP header byte, and used by ICMPError
when constructing an error message.

– Fix IP Source flag. The IP source address of an ICMP error packet must be
the address of the interface on which the error is sent. ICMPError can’t
predict this interface, so it uses a default address and sets the Fix IP Source
annotation. After the ICMP packet has been routed towards a particular
interface, a FixIPSrc on that path will see the flag, insert the correct source
address, and recompute the IP checksum.

In a few cases elements require information of an inconveniently global
nature. A router usually has a separate IP address on each attached net-
work, and each network usually has a separate IP broadcast address. All of
these addresses must be known at multiple points in the Click configuration:

65

LookupIPRoute must decide if a packet is destined to the router itself, Check-
IPHeader must discard a packet with any of the IP broadcast addresses as its
source address, ICMPError must suppress responses to IP broadcasts, and IP-
GWOptions must recognize any of the router’s addresses in an IP Timestamp
option. Each of these elements takes the complete list of addresses as part of
its configuration string, but ideally they would derive the list automatically,
perhaps using flow-based router context.

The IP router conforms to the routing standards both because of indi-
vidual elements’ behavior and because of their arrangement. For example,
the CheckIPHeader element checks exactly the properties required by the
standards: the IP length fields, the IP source address, and the IP checksum.
IPGWOptions processes just the Record Route and Timestamp options, since
source route options should be processed only on packets addressed to the
router. IPFragmenter fragments packets larger than the configured MTU, but
sends large packets marked as unfragmentable to an error output instead.
Finally, ICMPError, which encapsulates most input packets in an ICMP error
message and outputs the result, does not respond to broadcasts, ICMP errors,
fragments, and source-routed packets; ICMP errors should not be generated
in response to these packets. In terms of element arrangement properties, the
standards mandate the placement of DecIPTTL after the LookupIPRoute
routing element—a packet’s time-to-live can be decremented only after it is
determined that the packet is not destined for the router itself. Likewise, the
Record Route IP option must be processed only on packets not destined for
the router, so IPGWOptions must follow LookupIPRoute; and the router
should not process IP options on link-level broadcast packets, so IPGWOp-
tions follows DropBroadcasts.

5.2 extensions and subsets

Click’s design makes it easy to extend the IP router by adding elements, or
to implement simpler IP networking tasks by reusing a subset of its elements.
Figure 5.2 shows IP router extensions that implement different dropping and
packet scheduling policies, including Differentiated Services; the elements sup-
porting these policies were described in Sections 4.3, 4.4, and 4.5. Many of
the extensions consist of just a couple added elements. The extensions only
affect how the router stores packets, not how routing decisions are made, so
the changes required are conveniently localized to the area surrounding the
Queues.

Click’s modular scheduling, queueing and dropping policy elements make
even complex functionality easy to implement. For example, consider the

66

ARPQuerier

ToDevice

ARPQuerier

HashSwitch(...)

RoundRobinSched

ToDevice

ARPQuerier

RED

ToDevice

ARPQuerier

ToDevice

Classifier

RatedSplitter

Discard

Shaper

RatedSplitter

SetIPDSCP

RoundRobinSched

PrioSched

Normal Stochastic Fair RED dropping Differentiated Services
Queueing (Section 4.4) (Section 4.5)

(Section 4.3)

Figure 5.2—Three queueing extensions for the IP router of Figure 5.1.

ARPQuerier

RED

Classifier(...)

RoundRobinSched RoundRobinSched

HashSwitch(...) HashSwitch(...)

PrioSched

ToDevice ToDevice

high priority low priority

Figure 5.3—A complex combination of dropping, queueing, and scheduling.

67

home
1.0.0.10

mobile
43.0.0.6

(1.0.0.11)
router

43.0.0.1

router
1.0.0.1

mobile
1.0.0.11

network
1.0.0.x

network
43.0.0.x

Internet

Internet

Figure 5.4—Network arrangement for a configuration supporting mobility. The mobile host
1.0.0.11 is currently located on network 43, where it has the temporary address 43.0.0.6. Its
home node, 1.0.0.10, should encapsulate packets destined for 1.0.0.11 and forward them to
43.0.0.6.

following requirements:

– two parallel links to a backbone, between which traffic should be load-
balanced;

– division of traffic into two priority levels;

– fairness among the connections within each priority level;

– and RED dropping driven by the total number of packets queued.

Figure 5.3 shows the corresponding extension.
We now turn to a different task, namely supporting host mobility. This

configuration can reuse several of the IP router’s elements in a simpler context.
Figure 5.4 shows a network with a mobile host, 1.0.0.11, that has currently
roamed to network 43 and accepted a local IP address there (43.0.0.6). We
would like packets sent to the mobile host’s home address to be transparently
forwarded to its current location. Assume, however, that we cannot change
the home router. We do have control over 1.0.0.10, a normal machine on
the home network. Figure 5.5 shows a Click configuration that might be
active at this home node. The configuration proxy-ARPs for 1.0.0.11, the
mobile host’s home IP address, essentially pretending to be the mobile host
(the ARPResponder element). Packets it receives that are meant for 1.0.0.11
are then encapsulated in a new IP header and sent to 43.0.0.6, the mobile
host’s remote location (the IPEncap path). Reply packets from 43.0.0.6 are
unencapsulated and sent onto the local network (the CheckIPHeader path).
Not shown are elements that deal with fragments or ensure that packets
generated by 1.0.0.10 itself are properly encapsulated.

68

FromDevice(eth0)

ToDevice(eth0)

Classifier(...)

ARPQuerier(1.0.0.10, ...)

ARPResponder
(1.0.0.10/32 ...,
1.0.0.11/32 ...)

GetIPAddress(16)

StripIPHeader

CheckIPHeader

Strip(14)

Classifier(...)

SetIPAddress(1.0.0.1)

IPEncap(4,
1.0.0.10, 43.0.0.6)

Strip(14)

ARP
queries

IP-in-IP
from 43.0.0.6

IP
for 1.0.0.11

ARP
responses

other IP
for 1.0.0.10

for 1.0.0.10 for others

to Linux

to Linux

Figure 5.5—A configuration for the home node, 1.0.0.10, in the arrangement of Figure 5.4.

5.3 ethernet switch

Figure 5.6 shows a Click configuration unrelated to IP, namely an IEEE
802.1d-compliant Ethernet switch. It acts as a learning bridge and partici-
pates with other 802.1d-compliant bridges to determine a spanning tree for
the network.

The EtherSwitch element can be used alone as a simple, functional learn-
ing bridge. EtherSwitch can switch packets among an arbitrary number of
links, which are represented by pairs of one input port and one output port.
Intuitively, each port pair corresponds to an Ethernet interface, and this is
how the figure is arranged; as a modular element, however, EtherSwitch can
easily support other configurations. When a packet arrives on an EtherSwitch
input port, it is normally copied and sent to every other output port. This
corresponds to the action of a hub. EtherSwitch additionally keeps a table

69

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

EtherSwitchEtherSpanTree(s1, s2, ...)

s1 :: Suppressor

s2 :: Suppressor

ToDevice(eth0) ToDevice(eth1)

802.1d
protocol other

802.1d
protocol other

Figure 5.6—An Ethernet switch configuration.

mapping Ethernet addresses to port numbers. When a packet with Ethernet
source address a arrives on input port p, this indicates that the machine with
address a must be on, or directly reachable via, link p, so EtherSwitch stores a
mapping a → p in the table. Until that mapping expires, all packets destined
for a will be forwarded only to port p.

The EtherSpanTree and Suppressor elements are necessary only to avoid
cycles when multiple bridges are used in a LAN. Suppressor, a generic el-
ement, forwards packets from each input to the corresponding output, but
also exports a method interface for suppressing and unsuppressing individ-
ual ports. Packets arriving on a suppressed port are dropped. EtherSpanTree
implements the IEEE 802.1d protocol for constructing a network spanning
tree. It suppresses certain ports on the Suppressor elements, thus preventing
EtherSwitch from forwarding packets along edges not on the spanning tree.
The Suppressors cannot be found using flow-based router context, so the user
must give their names in EtherSpanTree’s configuration string.

5.4 firewall

Firewalls attempt to prevent unauthorized traffic from entering or leaving an
internal network. Packet filtering firewalls, in particular, work by deciding, for

70

FromDevice(eth0) FromDevice(eth1)

ToDevice(eth0)ToDevice(eth1)

Classifier(...) Classifier(...)

CheckIPHeader
(..., 14)

CheckIPHeader
(..., 14)

IPFilter(...) IPFilter(...)

IP other IP other

Figure 5.7—A simple IP firewall.

each packet, whether or not to forward it. Figure 5.7 shows a simple packet
filtering firewall built in Click. This firewall acts as a transparent bridge; it has
two interfaces, and all packets arriving on one interface are either passed to the
other interface or dropped. Its IP addresses, and even its Ethernet addresses,
are not visible to other machines on the network. It behaves like an Ethernet
cable—for example, it forwards ARP queries and responses unchanged. The
firewall itself has no holes that could be exploited by a network attacker,4

since it does not process packets except by forwarding them. This also means
that it cannot be contacted over the network.

The firewall’s packet filtering behavior depends on its IPFilter elements.
IPFilter is another element built upon Classifier; its syntax resembles IPClas-
sifier’s, but the user writes a set of filtering rules for each output rather than
one classifier per output. Figure 5.8 shows one set of filtering rules suitable
for IPFilter. The rules were directly translated from an example in Building
Internet Firewalls [54, pp 691–2]; they are the incoming packet filtering rules
for the network configuration of Figure 5.9. For example, the following rules:

allow src host BASTION && dst host INTERNAL_SMTP // SMTP-2
&& tcp && src port 25 && dst port > 1023 && ack,

4. Except, of course, for any bugs in the firewall’s elements or its network drivers. One
of Click’s advantages is that elements are relatively simple and can be checked easily for
correctness.

71

IPFilter(deny src net INTERNAL, // Spoof-1
allow src host BASTION && dst net INTERNAL // HTTP-2

&& tcp && src port www && dst port > 1023 && ack,
allow dst net INTERNAL // Telnet-2

&& tcp && src port 23 && dst port > 1023 && ack,
allow dst net INTERNAL // SSH-2

&& tcp && src port 22 && ack,
allow dst net INTERNAL // SSH-3

&& tcp && dst port 22,
allow dst net INTERNAL // FTP-2

&& tcp && src port 21 && dst port > 1023 && ack,
allow dst net INTERNAL // FTP-4

&& tcp && src port > 1023 && dst port > 1023 && ack,
allow src host BASTION && dst net INTERNAL // FTP-6

&& tcp && src port 21 && dst port > 1023 && ack,
// FTP-7 omitted

allow src host BASTION && dst net INTERNAL // FTP-8
&& tcp && src port > 1023 && dst port > 1023,

allow src host BASTION && dst host INTERNAL_SMTP // SMTP-2
&& tcp && src port 25 && dst port > 1023 && ack,

allow src host BASTION && dst host INTERNAL_SMTP // SMTP-3
&& tcp && src port > 1023 && dst port 25,

allow src host NNTP_FEED && dst host INTERNAL_NNTP // NNTP-2
&& tcp && src port 119 && dst port > 1023 && ack,

allow src host NNTP_FEED && dst host INTERNAL_NNTP // NNTP-3
&& tcp && src port > 1023 && dst port 119,

allow src host BASTION && dst host INTERNAL_DNS // DNS-2
&& udp && src port 53 && dst port 53,

allow src host BASTION && dst host INTERNAL_DNS // DNS-4
&& tcp && src port 53 && dst port > 1023 && ack,

allow src host BASTION && dst host INTERNAL_DNS // DNS-5
&& tcp && src port > 1023 && dst port 53,

deny all // Default-2
);

Figure 5.8—Packet filtering rules for incoming packets on the Building Internet Firewalls
“interior router” example [54, pp 691–2], implemented by an IPFilter element. The rule
FTP-7 contains greater-than and less-than tests that cannot be implemented with IPFilter.
Capitalized words like BASTION are addresses specified elsewhere with AddressInfo. See also
Figure 5.9.

72

INTERNAL_DNS

INTERNAL_SMTP

INTERNAL_NNTP

INTERNAL

Internetrouterfirewall

BASTION

NNTP_FEED

‘‘DMZ’’

Figure 5.9—The network configuration for the firewall of Figure 5.8. The firewall protects
machines on the INTERNAL network. Machines in the “DMZ” are partially trusted by the
internal network although they are outside the firewall.

allow src host BASTION && dst host INTERNAL_SMTP // SMTP-3
&& tcp && src port > 1023 && dst port 25

allow the exchange of SMTP traffic between the BASTION host in the “DMZ”
and the INTERNAL_SMTP host in the internal network. Either host can initiate
a connection to the other host’s SMTP port, port 25. The BASTION host pre-
sumably receives mail from the Internet, and perhaps checks it for viruses and
other problems; once it is satisfied, it may forward traffic to the INTERNAL_SMTP
host, from which it will reach the internal recipient.

The firewall’s CheckIPHeader elements mark each packet’s IP header,
which is required by IPFilter. The 14 in their configuration strings says that
the IP header starts 14 bytes into each packet—that is, just after the Ethernet
header.

5.5 transparent proxy

Figure 5.10 shows a transparent Web proxy extension for the IP router con-
figuration. It expects to run on a router that receives all of its clients’ Web
requests—for example, on a bridge router that is the clients’ single link to the
Internet. Outgoing Web requests are diverted to a user-level proxy running on
the router machine. The proxy might, for example, answer the queries from
a cache.

Figure 5.10 catches outgoing traffic just before it reaches the outgoing
interface’s ARPQuerier and separates Web traffic from other traffic using an
IPClassifier. Web traffic passes through an IPRewriter element, which rewrites
packets’ flow IDs as described in Section 4.6. The rewrite rule for outgoing
packets is “pattern FAKE 1024–65535 LOCAL 8000 0 1”, so packets are
rewritten and sent to port 8000 on the local machine. The proxy should be
listening on that port. The packets’ source addresses are also changed, to
FAKE.

73

IPClassifier(...)

IPRewriter
(pattern FAKE 1024-65535 LOCAL 8000 0 1,

drop)

ToLinux

FromLinux
(fdev0, FAKE)

Classifier(...)

ARPResponder

CheckIPHeader

Strip(14)

EtherEncap(0x0800, ...)

Web other

ARP queries IP

to ARPQuerier

from IPFragmenter

to Linux

to LookupIPRoute

Figure 5.10—A transparent Web proxy extension for the IP router configuration.

The FromLinux element captures replies from the proxy. FromLinux in-
stalls a fake device into Linux’s device table; here, that device is named fdev0
and its native IP address is FAKE. Linux’s routing table is manipulated so
that packets destined for the address FAKE are sent to the fake device. Since
packets directed to the proxy have their source addresses changed to FAKE,
replies from the proxy will have destination address FAKE, and will be sent
to the fake device. As packets arrive on that device, they are emitted into
the Click router configuration by FromLinux. The configuration must re-
spond to ARP requests sent to the fake device, which explains the Classifier
and ARPResponder elements. IP packets from the fake device—namely, the
proxy’s replies—are sent through the IPRewriter, where they are rewritten
to look like replies from the intended server and properly forwarded via the
configuration’s routing table.

74

FromDevice

Classifier(...)

ARPResponder(...)

UDPIPEncap
(saddr, sport, daddr, dport)

RatedSource
(data, rate, count)

EtherEncap(0x0800, ...)

Counter

ToDevice

ARP queries other

to Linux

Figure 5.11—A configuration that generates an even flow of UDP traffic at a given rate.

5.6 traffic generator

Figure 5.11 shows a Click traffic generator. We used this configuration in our
experiments to generate flows of minimum-size UDP/IP packets at specified
rates. Click’s efficiency and location within the Linux kernel allows a simple
configuration to generate more traffic more evenly than any user-level pro-
gram. The configuration also demonstrates that Click is well-suited for packet
processing tasks that are nothing like routing.

The RatedSource element actually generates the traffic. It creates and emits
packets containing the specified data at the specified rate without burstiness.
Later UDPIPEncap and EtherEncap elements encapsulate this traffic in cor-
rect UDP/IP and Ethernet headers. Most packets received during the test
are passed off to Linux for normal processing, but the Click configuration
responds to ARP queries itself. ARP queries must be answered in a timely
fashion to support our evaluation setup; placing ARP responses under Click’s
control ensures that responses will be generated relatively quickly, and allows
us to schedule Linux less often. The Counter element counts the number and
rate of packets actually sent.

75

6
Language tools

This chapter explores the router manipulation tools made possible by Click’s
programming language. Tools in general can optimize router configurations,
transform them, and check whether they satisfy simple properties. We discuss,
in particular, a tool for transforming a configuration based on user-specified
patterns; two optimization tools that generate specialized C++ source code; a
tool that eliminates dead code from a configuration; a tool that ensures that
routers satisfy a global property, namely that packet data is always correctly
aligned; and a tool that combines two or more router definitions into one
configuration, enabling global optimizations and analyses on a collection of
routers. We built these tools to make routers faster—for many of them, we
report how much they speed up the Click IP router in Figure 5.1—and to
allow Click to run on non-x86 machines. More fundamentally, though, they
demonstrate how powerful programming language techniques can be when
applied at the level of system components.

Again, the tools depend on several important properties of the language.
First, every router configuration can be expressed in the language, so a lan-
guage file is effectively equivalent to a router configuration. Furthermore,
because the language is wholly declarative, a configuration can be consid-
ered apart from its eventual execution environment. Without this property,
it would be difficult to manipulate router descriptions outside of a running
router.

Each tool reads a configuration, analyzes and manipulates that configu-
ration, reports errors, and writes out the (possibly modified) configuration.
Being a language file, the output of one tool is suitable as input for another,
so tools can be composed in any order. We categorize the tools according to
three properties:

1. Language-only or language plus source code? Some tools work entirely at
the configuration language level, while others additionally generate C++

76

source code defining new elements. This source code is attached to the
configuration; a tool for installing configurations can compile the source
code and dynamically load it into a Click driver.

2. Element semantics. Some tools work without understanding the semantics
of individual elements. Others need to partially understand some elements’
semantics, ranging from whether an element’s ports are push or pull to how
an element affects packet data alignment.

3. Graph analyses and manipulations. Some tools require only simple graph
analyses and manipulations, others run relaxation-based data flow algo-
rithms on graphs, and others perform expensive graph operations like
subgraph isomorphism tests.

6.1 pattern replacement

The pattern replacement tool, click-xform, is a generic search-and-replace
engine for configuration graphs. First, it reads a router configuration and a
collection of patterns and replacements. It then searches the configuration
for occurrences of each pattern, replacing each match it finds with the corre-
sponding replacement. When there are no more occurrences of any pattern, it
outputs the transformed configuration.

Click-xform patterns and replacements are written as compound elements.
A pattern matches a subset of a router configuration iff replacing that subset
with an occurrence of the pattern’s compound element would result in an
identical configuration, modulo element names. Element configuration strings
in each pattern may also contain variables, such as $a, which are set to the
corresponding text in the matched subset. This definition is quite flexible—for
example, the user can specify that the pattern must be isolated from the rest of
the router, or that the pattern is connected to the router in a constrained way.
Searching a configuration graph for an occurrence of a pattern is a variant of
subgraph isomorphism, a well-known NP-complete problem. Luckily, the pat-
terns and router configurations seen in practice are well-served by Ullmann’s
algorithm for subgraph isomorphism [49], and click-xform’s observed perfor-
mance is good, taking about one minute to make hundreds of replacements
on router graphs with thousands of elements (and much less on normal-sized
routers).

One optimization enabled by click-xform is replacing a slow element, or
a collection of slow elements, with a single, more specialized, faster element.
For example, we have designed elements that combine the work of common
IP router elements. Figure 6.1 shows a portion of the IP router configuration

77

Paint(1)

CheckIPHeader(...)

Strip(14)

GetIPAddress(16)

LookupIPRoute(...)

IPGWOptions(1.0.0.1)

DropBroadcasts

PaintTee(1)

FixIPSrc(1.0.0.1)

DecIPTTL

IPFragmenter(1500)

from eth0

to eth0

from other devices

to Linux to other devices

to ICMP error
generators

Figure 6.1—A portion of the IP router configuration (Figure 5.1 on page 64).

IPInputCombo(1, ...)

LookupIPRoute(...)

IPOutputCombo(1, 1.0.0.1, 1500)

IPFragmenter(1500)

from eth0

from other devices

to Linux to other devices

to ICMP error
generators

to eth0

Figure 6.2—A router fragment equivalent to Figure 6.1 using faster “combo” elements.

78

Patterns Replacements

1.

Paint($p)

CheckIPHeader($a)

Strip(14)

GetIPAddress(16)

→ IPInputCombo($p, $a) CheckIPHeader($a)

Strip(14)

GetIPAddress(16)

2.

Paint($p)

CheckIPHeader($a)

Strip(14)

GetIPAddress(16)

→ IPInputCombo($p, $a)

3.

IPFragmenter($mtu)

DropBroadcasts

PaintTee($p)

IPGWOptions($ip)

FixIPSrc($ip)

DecIPTTL

→
IPOutputCombo($p, $ip, $mtu)

IPFragmenter($mtu)

Figure 6.3—Three pattern-replacement pairs suitable for the click-xform tool. Together, they
transform Figure 6.1 into Figure 6.2.

79

(Figure 5.1 on page 64) corresponding to one network interface. The frag-
ment in Figure 6.2 behaves equivalently, but uses the combination elements.
This combination-element configuration takes 29% less CPU time to process
a single packet than the original. With the simple pattern set shown in Fig-
ure 6.3, click-xform can automatically transform the original fragment into
the combination-element version.

Every element class mentioned in a replacement must already exist. Click
users, for example, wrote the combination element classes in Figure 6.2 by
hand. Click-xform simply changed configurations to use the combination el-
ements wherever possible. A single set of patterns can apply to an infinite
number of configurations, freeing the user from having to update all routers
by hand. Furthermore, click-xform lets users work with the original, more
modular configurations, which tend to be more flexible and easier to under-
stand, without sacrificing the performance of the specialized versions. These
are the conventional arguments for any optimizer: a high-level language plus
optimizations is often preferable to a low-level language. In Click, however,
programs in the high-level and low-level languages are distinguished not by
their syntax, but by the element classes they use, and the user can mix high-
and low-level languages at will.

Click-xform is also suitable for general-purpose transformations. It could,
for example, insert extensions into existing configurations. Well-written pat-
terns could upgrade configurations to use new elements or fix bugs.

Click-xform works entirely at the language level and without any knowl-
edge of element semantics. Semantic knowledge is encoded in the patterns
and replacements, but these are written by users. It performs extensive, and
expensive, graph analysis and manipulation.

Pattern replacement has been implemented in several systems—for exam-
ple, Scout [36] has a rule-based global optimizer, and instruction selectors like
BURG [19] attack similar problems for tree structures. Click-xform’s pattern
language is more powerful than any of these.

6.2 fast classifiers

The fast classifier tool, click-fastclassifier, optimizes configurations that con-
tain Classifier, IPClassifier, and IPFilter elements. As described in Section 4.2,
these elements traverse a decision tree whose intermediate nodes check packet
data against fixed values, and whose leaves represent particular output ports.
Click-fastclassifier makes each such element faster by compiling its decision
tree into C++ code, inlining constants and making branches explicit. Different
Classifiers are compiled into different C++ classes.

80

Click-fastclassifier also combines adjacent Classifier elements when possi-
ble, creating a single fast classifier that does the work of both. This reduces the
number of elements a packet must travel through, and is particularly useful in
the presence of compound elements, where a user may create adjacent Classi-
fiers without realizing it by connecting two compound elements together.

For example, the generated code for Classifier(12/0800, –), a particularly
simple classifier, contains the following function:

inline void
FastClassifier_a_ac::length_unchecked_push(Packet *p)
{

const unsigned *data = (const unsigned *)(p->data() - 0);
step_0:
if ((data[3] & 65535U) == 8U) {

output(0).push(p);
return;

}
output(1).push(p);
return;

}

The corresponding function in an unmodified Classifier contains a loop and
many operations involving the decision tree structure:

void
Classifier::push(int, Packet *p)
{

const unsigned char *packet_data = p->data() - _align_offset;
Expr *ex = &_exprs[0]; // avoid bounds checking
int pos = 0;
// ...
do {

if ((*((unsigned *)(packet_data + ex[pos].offset)) & ex[pos].mask.u)
== ex[pos].value.u)

pos = ex[pos].yes;
else

pos = ex[pos].no;
} while (pos > 0);
checked_push_output(-pos, p);

}

The click-fastclassifier tool relies on Click itself to produce the decision
trees. It starts a user-level Click driver, passes it a stripped-down version of

81

the router configuration, and calls Classifier read handlers that output the
optimized decision trees in text form. This avoids a possibly buggy reimple-
mentation of Classifier’s configuration string parsing and decision tree opti-
mizations.

Click-fastclassifier both changes the configuration program and compiles
new element classes. It depends intimately on the semantics of Classifier, but
requires little graph analysis or manipulation.

Similar optimization strategies have been developed for BPF [4], DPF [17],
and other packet filters. The Click language provides a generic context for this
filter optimization work, showing that it exemplifies a class of optimizations—
where a faster element is swapped in for a slower one. For example, a tool
that generated specialized code for some other element class could share much
of click-fastclassifier’s graph manipulation code.

An IP router configuration with fast classifiers takes 3% less CPU time
to process a single packet than the original. The IP router’s Classifier is very
simple; click-fastclassifier is particularly effective on more complex classifiers.
For example, consider the complex IPFilter of Figure 5.8 (page 72). This ele-
ment takes 388 nanoseconds to process a packet matching rule DNS-5, more
than five times the cost of many of the IP router’s elements (see Table 8.2 on
page 103). Click-fastclassifier speeds this up to 188 nanoseconds per packet.
This 200 nanosecond-per-packet improvement is large enough to have impact
on end-to-end performance metrics.

6.3 devirtualization

The click-devirtualize tool optimizes configurations by removing virtual func-
tion calls from their elements’ source code. Virtual function calls, or dynamic
dispatches, are made through a table of function pointers; on a Pentium III,
a mispredicted virtual function call takes dozens of cycles. Packet transfer
between elements is implemented in Click with virtual function calls, which
makes C++ element classes independent of how their elements are used. How-
ever, once the router configuration is known, every packet transfer virtual
function call could conceivably be replaced by the relevant direct function call,
since each element’s position in the configuration is known. Click-devirtualize
implements this optimization.

The tool reads a configuration program, then reads and partially parses
the C++ source code for each element class used in that configuration. Finally,
it generates one new C++ class per element in the configuration. This code is
based on that element’s original code, but direct function calls replace each
virtual function call for packet transfer. For example, consider an element

82

whose first output port is connected to the first input port of a Counter
element. Then code like this in the element’s normal class definition:

Element *next = output(0).element();
// call goes through virtual function table
next->push(output(0).port(), packet_ptr);

is transformed by click-devirtualize into code like this:

Counter *next = (Counter *)output(0).element();
// call is resolved at compile time
next->Counter::push(0, packet_ptr);

Besides removing the virtual function call, click-devirtualize has inlined the
next input port number. That is, the reference to ‘output(0).port()’ has been
changed to ‘0’. Click-devirtualize inlines other method calls as well, such as
those that return how many inputs or outputs an element has.

While click-devirtualize can generate a new element class for every ele-
ment, it usually does not, because even specialized elements can often share
code. For example, all Discard elements can share code, since Discard throws
away every packet it receives: there are no virtual function calls to remove.
Because of this, two elements can share code if they have the same class—say,
Counter—and they are each connected to a single Discard element. (The two
Discard elements share a C++ implementation, so the Counters’ push virtual
function calls both resolve to the same function, Discard::push.) Similarly,
two elements with the same class, each connected to one of the two Counters,
can also share code, and so forth. Two elements cannot share code if any of
the following properties is true:

1. The elements have different classes.

2. The elements have different numbers of input or output ports.

3. There exists an input or output port number where that port is push on
one element, but pull on the other.

4. There exists an input port number where the corresponding ports are both
pull, but the two elements connected to those ports cannot share code.
(For example, the port is connected to a Counter on one element, but a
Strip on the other.)

5. There exists an output port number where the corresponding ports are
both push, but the two elements connected to those ports cannot share
code.

83

A simple data flow algorithm based on the above rules calculates the elements
for which code sharing is allowed. In our IP router configurations, such as
Figure 5.1, analogous elements in different interface paths can always share
code.

Virtual function calls do have some advantages. For example, infrequently
executed paths may not be important enough to devirtualize—the i-cache cost
of expanded source code may outweigh the performance savings of removing
virtual functions. To address this, the user can tell click-devirtualize not to
devirtualize certain elements.

Click-devirtualize can inline function calls as well as devirtualizing them.
This can improve performance significantly, but it currently requires some
hand intervention.

The devirtualization tool both changes the configuration program and
compiles new element classes. It depends only on the push/pull properties
of each element, not on more complex semantic properties; although it re-
quires that every element’s source code be available, it does not analyze or
understand that source code in depth. It requires configuration graph analy-
sis, both to discover the push/pull properties of the graph and to determine
whether elements can share code. Both analyses use relatively simple data flow
algorithms. It does not require substantial graph manipulation.

Devirtualization is a well-known technique in object-oriented program-
ming languages such as Java. Mosberger et al. [31] demonstrate that path
inlining, essentially devirtualization with inlining, is useful for decreasing pro-
tocol latency in a modular networking system (the x-kernel [22]), but they
implement it by hand. To our knowledge, neither the x-kernel nor Scout [36]
can implement devirtualization automatically.5

A devirtualized IP router configuration takes 23% less CPU time to process
a single packet than the original.

6.4 dead code elimination

The click-undead tool removes dead code from a router configuration. Dead
code, such as unused or useless elements, rarely occurs in configurations
written entirely by hand. Configurations containing compound elements will
sometimes contain dead code, however, as the user will tend to connect un-
needed compound element inputs and outputs to Discard or Idle elements.
This might, for example, connect one of a Tee’s branches to an Idle. This

5. Scout paths are automatically “specialized”, but this optimization largely consists of
removing unneeded queues. Click avoids unneeded queues a priori.

84

branch obviously serves no purpose except to slow down the configuration:
it is dead code.

Click-undead first removes all Null, StaticSwitch, and StaticPullSwitch
elements from the configuration. Null never occurs in real configurations, but
StaticSwitch and StaticPullSwitch are useful for creating conditional branches
in compound elements, as described in Section 3.4. Click-undead redirects
connections around StaticSwitch, sending packets to the specified output port
directly. This eliminates one packet transfer on the corresponding path and
may create opportunities for further optimization.

Click-undead next decides which elements are live. An element is live if
it is reachable from both a packet source element and a packet sink ele-
ment. Sources and sinks are explicitly marked as such by element designers;
sources include InfiniteSource, FromDevice, and FromDump, while sinks in-
clude TimedSink, ToDevice, and Discard (when used as a pull element). Dis-
covering liveness requires a simple data flow analysis to spread reachability
downstream from sources and upstream from sinks. When this is complete,
any dead elements are removed. Elements can be explicitly marked as live.
Information elements, for example, are always live, so they are not removed
even though they are never reachable.

Next, the tool removes unused ports on scheduler elements and tees. This
saves the time that would be spent copying a packet only to throw it away,
or checking upstream for a packet that could never exist. A port is considered
unused if everything connected to it was dead. Click-undead also removes
redundant scheduler elements and tees—that is, schedulers or tees with only
one input and one output.

Dead code elimination works entirely at the language level. It does re-
quire some knowledge of element semantics—namely, source, sink, and live-
ness information for some elements, and more detailed knowledge about the
switches, schedulers, and tees specifically mentioned above. It relies on rela-
tively simple data flow analysis and graph manipulations.

None of the configurations described in this thesis contain dead code, so we
do not measure click-undead’s effect on performance. Click-undead becomes
useful only for configurations with large numbers of compound elements.

6.5 packet data alignment

The data contained in a Click packet is stored in a flat array of bytes. However,
many elements require that data to be aligned on a word boundary. For
example, elements such as CheckIPHeader expect the IP header to be word-
aligned. Other elements, such as Classifier, can adapt to any single alignment,

85

Before

RatedSource(...)
-> Strip(14)
-> c :: Classifier(...)
-> CheckIPHeader
-> ...;

After

RatedSource(...)
-> Align(4, 2)
-> Strip(14)
-> c :: Classifier(...)
-> CheckIPHeader
-> ...;

AlignmentInfo(Strip@2 4 2,
c 4 0,
CheckIPHeader@4 4 0,
...);

Figure 6.4—The click-align tool at work on a simple configuration.

but require that every packet have the same alignment. On many architectures,
incorrect packet data alignment will cause the entire router to crash.

The alignment of a packet’s data depends on both its initial alignment and
on any modifications that happened on its path through the router. For ex-
ample, the Strip element strips a specified number of bytes from the packet’s
header by bumping a pointer; a packet’s alignment after passing through
Strip(1) will be different than its alignment before. The Align element fixes
misaligned packets by copying them. Its configuration string contains an align-
ment specification, such as ‘4, 0’ to request word-aligned packets. It copies
every passing packet whose alignment does not match that specification, fixes
its alignment, and emits the fixed packet.

It is clearly too expensive, in packet copies and in sheer number of ele-
ments, to place Aligns everywhere. The packet data alignment tool, click-align,
improves on this by globally calculating both the required and expected align-
ments at every point in the configuration. It can then insert a small number of
Aligns exactly where they are needed.

Click-align calculates alignments using a data flow analysis resembling
availability analysis [1]. The analysis takes the alignment effects of elements
like Strip into account. The tool then inserts Align elements at every point
where the existing alignment is incorrect. After rerunning the analysis, it
removes redundant Align elements and adds an AlignmentInfo element, which
informs every other element of the alignments they can expect. Our IP router
configuration requires no Align elements, but the tool is necessary anyway, as
it provides the Classifier element with alignment information.

Figure 6.4 shows click-align’s effects on a simple configuration. The Rated-
Source element produces packets with the wrong alignment, so the tool adds

86

a single Align element. The AlignmentInfo element informs the Classifier c
that its received packets will be word-aligned (‘4 0’).

On x86-based machines, the click-align tool is optional—unaligned ac-
cesses are legal, and not any slower than aligned accesses. (An unaligned
access can cause two d-cache misses if it straddles two cache lines, but this
is not a problem in practice, as the packet data is always in the cache.) On
other architectures, however, configurations that have not been checked with
click-align cause Click to crash.

The alignment tool works entirely at the language level and requires knowl-
edge of the alignment-related semantics of each element. Its data flow analyses
are relatively complex—for example, two different analyses are required to
discover what alignments elements need and what alignments they can expect.
However, its graph manipulations are simple. It has no effect on performance
unless you count that on some architectures, unaligned configurations do not
work at all.

6.6 multiple-router configurations

The click-combine tool can combine several router configurations into one
larger configuration that gives a detailed picture of the overall network. For
example, if the output interface of one router is connected to the input interface
of another by a point-to-point link, then the combined configuration will have
explicit connections between the relevant interfaces. This unified Click graph
can be analyzed and manipulated using language techniques like the ones
described above, ensuring properties of the network—for instance, that the
frame formats at either end of each link are compatible—or removing redun-
dant computation performed by more than one router. The click-uncombine
tool can then separate the combined configuration into its component router
parts. For example, Figure 6.5 shows part of a combined router generated by
click-combine. Router A’s ToDevice(eth0) was connected by a point-to-point
link to router B’s PollDevice(eth1).

One optimization enabled by router combination is ARP elimination. If
two routers are connected by a point-to-point Ethernet link, there is no need
to have a full ARP mechanism in place on that link; each router can be
preprogrammed with the Ethernet address of the other. The ARP elimina-
tion optimization removes ARPQuerier and ARPResponder elements from
a configuration, replacing them with the corresponding EtherEncap element.
Another optimization might remove redundant IPFragmenter elements. Each
link has a hard-wired maximum transmission length, or MTU; IPFragmenter
breaks packets larger than this length into fragments before sending them.

87

Separate

Classifier(...)

PollDevice(eth1)

Classifier(...)

Paint(1)

Strip(14)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth0)

A

B

Combined

Classifier(...)

Paint(1)

Strip(14)

ARPQuerier(2.0.0.1, ...)

RouterLink
(ToDevice ..., eth0,
PollDevice ..., eth1)

A

B

Figure 6.5—Portions of two routers, A and B, and the corresponding combined configuration
generated by click-combine.

However, if the links upstream of a router have the same or smaller MTU
as its downstream links, then IPFragmenter is unnecessary, as any arriving
packets will already be small enough to fit.

Of course, these optimizations are inherently dangerous. They produce cor-
rect results only if the user correctly and completely represents every router
attached to a particular link as a Click configuration. Furthermore, the user
must re-run the optimizations every time the devices on a link are changed: if a
cable is unplugged, the optimizations should be run again. These requirements
are only realistic when all routers on a link are controlled by the same ad-
ministrative entity, or when the routers automatically exchange information
about their configurations. A safer use for click-combine and click-uncombine
is to check for properties like loop freedom.

For completeness, we measured the performance impact of ARP elimina-
tion. The most general form of ARP elimination would require complex data
flow analyses to ensure that the required properties hold in the configuration
graph; we did not implement these analyses, but instead used simple click-
xform transformation patterns to capture the common case. The impact was
small—an IP router with ARP eliminated via click-combine and click-xform
takes just 3% less CPU time to process a single packet than the original.

Click-combine and click-uncombine work entirely at the language level

88

and do not need to understand element semantics. Their graph manipulations
and analyses are extensive, but simple. Individual multiple-router optimiza-
tions like ARP elimination resemble some kinds of programming language
optimizations, such as interprocedural optimizations.

6.7 discussion

The partial information that some language tools need about element classes
is often quite simple. For example, several tools only need to know whether
ports are push or pull. Extracting this information from the C++ implemen-
tation would be a difficult, if not impossible, task. Instead, we supply several
parallel definitions for each element class. For example, each element has a
C++ definition and a push/pull definition; some elements have additional def-
initions as required by the tools. In this approach, the user creates simple,
high-level specifications for each element and each property required. These
specifications are focused and easy to write, and they facilitate incremental
specification—the behavior of an element is specified as tools are built. How-
ever, they force the user to write many specifications for each element, and as
new tools become available, old element classes may need to be updated with
new specification information. Furthermore, the additional specifications are
not required by the drivers, so element designers may tend to put off writing
them.

One could instead write element implementations in a language that facili-
tated analysis, then extract all necessary information from those implementa-
tions. For example, in the Ensemble system for composing network protocol
stacks [25], components are written in Objective Caml. However, despite its
relative convenience for analysis, Objective Caml is still so general that a
complex theorem prover and extensive human intervention are required to
analyze Ensemble components. Click’s design avoids these costs.

Tools are relatively simple to write, but certainly not as simple as ele-
ments. A tool library has functions for reading configurations, flattening them
to remove compound elements, searching configuration graphs for specific
elements or connection patterns, and so forth. Writing a tool is nontrivial
despite this. After all, the Click language is still a programming language,
however simple, and tools have some similarities to compiler passes. Ma-
nipulating any program is a difficult task because of the exhaustive analysis
required to handle all cases, and the compiler knowledge required to design a
tool is significantly greater than the system knowledge required to design an
element. A higher-level library that made it easier to develop new tools would
be useful.

89

7
Implementation

This chapter describes how the Click kernel driver was implemented, including
the changes to Linux required to achieve good performance.

The Click kernel driver runs as a kernel thread under Linux 2.2. The
kernel thread loops over the current router’s task queue and runs each task.
Only interrupts can preempt this thread, but to keep the system responsive, it
voluntarily gives up the CPU to Linux from time to time; the user can specify
how often with a ScheduleLinux information element. There is generally only
one Click thread active at a time. However, during configuration installation,
there may be two or more simultaneously active router configurations and
driver threads—the new router plus several old ones in the process of dying.

The Click kernel driver uses Linux’s /proc filesystem to communicate
with user processes. To bring a router on line, the user creates a configura-
tion description in the Click language and writes it to /proc/click/config (or
/proc/click/hotconfig for a hot-swap installation). Other files in the /proc/
click directory export information about the current configuration, a list of
element classes known to the driver, and so on. When installing a router con-
figuration, Click creates a subdirectory under /proc/click for each element.
This subdirectory contains that element’s handlers (Section 2.8). The code that
handles accesses to /proc runs outside the Click thread in the context of the
reading or writing process.

Besides packets, important objects in a running Click router include:

– Elements. The system contains an element object for each element in the
current configuration, as well as prototype objects for every kind of prim-
itive element that could be used. Element prototypes can be added to and
removed from the running driver.

– Router. The single router object collects general information relevant to
a given router configuration. It configures the elements, checks that con-

90

nections are valid, and puts the router on line; it also manages the task
queue.

– Timers. In the kernel driver, Click timers are implemented with Linux timer
queues. On Intel PCs, these have .01-second resolution.

7.1 polling and device handling

The original Click system [29] shared Linux’s interrupt structure and device
handling; our goal was to change Linux as little as possible. However, in-
terrupt overhead and device handling dominated that system’s performance,
consuming about 4.8 and 6.7 µs respectively of the total of 13 µs required to
forward a packet on a 700 MHz Pentium III PC. In addition, Click processed
packets at a lower priority than interrupts, leading to receive livelock [28]: as
the number of input packets increased, interrupt processing eventually starved
all other system tasks, leading to reduced throughput.

Click now eliminates interrupts in favor of polling. A new device-handling
element, PollDevice, is the polling equivalent of FromDevice; it puts the rel-
evant device into polling mode and puts itself on Click’s task queue to wait
for packets. When activated, PollDevice polls its device’s receive DMA queue
for newly arrived packets; if any are found, it pushes them through the con-
figuration. ToDevice also places itself on the task queue. When activated, it
examines its device’s transmit DMA queue for empty slots, which it fills by
pulling packets from its input. These elements also refill the receive DMA list
with empty buffers and remove transmitted buffers from the transmit DMA
list. The device never interrupts the processor; furthermore, Linux networking
code never executes except as requested by the Click router configuration.6

Mogul and Ramakrishnan [28] also used polling to eliminate receive livelock.
However, their system left interrupts enabled under light load, while Click is a
pure polling system—even infrequent PC interrupts are simply too expensive.

Polling required changes to Linux’s structure representing network devices
and to the drivers for our network devices. The new device structure includes,
for example, methods to turn interrupts on and off, to poll for received pack-
ets, and to clean the transmit DMA ring.

6. The FromDevice element still uses interrupts, however. With FromDevice, Click can use
devices whose drivers don’t support polling. On an interrupt, FromDevice stores packets in an
internal ring buffer. Like PollDevice, it places itself on the router’s task queue. It then outputs
packets from that ring buffer as it is activated. This avoids race conditions in configurations
containing both FromDevice and PollDevice, but does make FromDevice-only configurations
slower than they were before. Our test configurations all use PollDevice.

91

The introduction of polling let us eliminate all programmed I/O (PIO)
interaction with the Ethernet controllers. One PIO reenabled receive interrupts
after an interrupt was processed, and was not necessary in a polling system.
The second PIO was used in the send routine to tell the controller to look
for a new packet to transmit. To eliminate it, we configured the network card
to periodically check the transmit DMA queue for new packets. As a result,
all communication between Click and the controller takes place indirectly
through the shared DMA queues in main memory, in the style of the Osiris
network controller [14]. This saved roughly two microseconds per packet, as
a PIO takes about 1 µs to execute.

These improvements eliminated receive livelock, reduced the total time
required to process a packet from 13 µs to 2.8 µs, and increased Click’s maxi-
mum loss-free forwarding rate of minimum-sized packets more than fourfold.
Mogul and Ramakrishnan [28] found that polling eliminated receive livelock
but did not increase peak forwarding rate. We hypothesize that interrupts
are relatively much more expensive on PCs than on the Alpha hardware they
used.

92

8
Evaluation

This chapter evaluates Click’s performance for IP routing and for several
extended configurations. We also describe and analyze sources of overhead in
Click’s design and implementation, and demonstrate the practical effectiveness
of the language tool optimizations.

Our goal is to understand the performance of a particular Click router,
the performance limitations of the Click architecture, and the performance
characteristics of our PC hardware. We will show that the Click architecture’s
only significant performance limitation is the cost of virtual function calls, and
that the language tool optimizations successfully address this cost. We also
argue that our PC hardware is limited, by either the PCI bus or the memory
system, to a sustained forwarding rate of about 400,000 64-byte packets per
second, and show that our optimized IP router configurations easily achieve
this rate. Finally, we show that Click can enforce quality-of-service constraints
very well under ordinary loads, and reasonably well even under overload.

An unoptimized Click IP router achieves a maximum loss-free forwarding
rate of 357,000 64-byte packets per second. With language tool optimizations,
this rate rises to 446,000 packets per second. For comparison, a common edge
router, the Cisco 7200 series, can route 200,000 packets per second. The cost
of this router is about a factor of ten more than the cost of the hardware
we used. (Of course, the two routers are not really comparable. Cisco router
hardware is presumably more reliable than PC hardware. Furthermore, the
Cisco router has functionality not currently available in Click—such as routing
protocol support—although most of this functionality is probably not on the
forwarding path.)

8.1 experimental setup

The experimental setup consists of a total of nine Intel PCs running a modified
version of Linux 2.2.16. (We patched Linux to add support for Click’s polling

93

device drivers.) Of the nine PCs, one is the router host, four are source hosts,
and four are destination hosts. The router host has eight 100 Mbit/s Ethernet
controllers connected, by point-to-point links, to the source and destination
hosts. During a test, each source generates an even flow of UDP packets
addressed to a corresponding destination; the router is expected to get them
there.

The router host has a 700 MHz Intel Pentium III CPU and an Intel
L440GX+ motherboard. Its eight DEC 21140 Tulip 100 Mbit/s PCI Eth-
ernet controllers [13] are on multi-port cards split across the motherboard’s
two independent PCI buses. The Pentium III has a 16 KB level-1 instruction
cache, a 16 KB level-1 data cache, and a 256 KB level-2 unified cache. The
source and destination hosts have 733 MHz Pentium III CPUs and 200 MHz
Pentium Pro CPUs, respectively. Each host has one DEC 21140 Ethernet con-
troller. The source-to-router and router-to-destination links are point-to-point
full-duplex 100 Mbit/s Ethernet.

The source hosts generate UDP packets at specified rates, and can gen-
erate up to 147,900 64-byte packets per second; the destination hosts count
and discard the forwarded UDP packets. Each 64-byte UDP packet includes
Ethernet, IP, and UDP headers as well as 14 bytes of data and the 4-byte Eth-
ernet CRC. When the 64-bit preamble and 96-bit inter-frame gap are added,
a 100 Mbit/s Ethernet link can carry up to 148,800 such packets per second.

This setup is easier on routers than a real network might be. The tests did
not involve fragmentation, IP options, or ICMP errors, though Figure 5.1 has
all the code needed to handle these. More destination hosts might slow Click
down by increasing the number of ARP table entries. A larger routing table
might also slow down Click’s simple routing table implementation; previous
work on fast lookup in large tables has addressed this problem [12, 51]. The
setup is nevertheless sufficient to analyze the architectural aspects of Click’s
performance.

Click’s modularity is as convenient for measuring performance as it is
for building routers. Our source hosts generate packets using the Click con-
figuration described in Section 5.6; the destination hosts use another Click
configuration to receive them. Particular measurements made use of Click el-
ements that check Pentium III cycle counters and performance counters, and
that poll Tulip network interface status. All of these elements are distributed
with the Click software.

94

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

Fo
rw

ar
di

ng
 r

at
e

(K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Click
Polling Linux
Linux

Figure 8.1—Forwarding rate as a function of input rate for Click and Linux IP routers (64-
byte packets). The “Linux” line used one sender-receiver pair (theoretically 148,800 packets/s
maximum), while the other lines used four sender-receiver pairs (theoretically 595,200 pack-
ets/s maximum).

8.2 forwarding rates

We characterize performance by measuring the rate at which a router can
forward 64-byte packets over a range of input rates. Minimum-size pack-
ets stress the router harder than larger packets; the CPU and several other
bottleneck resources are consumed in proportion to the number of packets
forwarded, not in proportion to bandwidth. Plotting forwarding rate versus
input rate indicates both the maximum loss-free forwarding rate (MLFFR)
and the router’s behavior under overload. An ideal router would emit every
input packet regardless of input rate, corresponding to the line y = x. This
section focuses on maximum loss-free forwarding rates for a number of Click
router configurations, including optimized IP routers. The next section turns
to router behavior under overload.

Figure 8.1 shows the performance of the Click IP router—namely, the
IP router configuration of Figure 5.1 extended to a total of eight network
interfaces. This configuration has a total of 161 elements, 19 elements per
interface plus 9 elements shared by all interfaces. The “Click” line shows this
router’s performance with eight interfaces. To provide context, the “Linux”
and “Polling Linux” lines show the performance of Linux IP routing. “Linux”
uses the standard interrupting device drivers, while “Polling Linux” was mod-
ified to use Click’s polling drivers.

Click’s maximum loss-free forwarding rate is 357,000 packets per second.

95

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

Fo
rw

ar
di

ng
 r

at
e

(K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Simple
Switch
IP
IP+RED
IP+SFQ

Figure 8.2—Forwarding rate as a function of input rate for extended IP router configurations
and some non-IP routers (64-byte packets).

Click was always fair during this test: the router forwarded an equal number
of packets for each sender-receiver pair.

Polling Linux’s MLFFR is 308,000 packets per second. This is clearly com-
parable to Click’s MLFFR, and shows that Click’s modularity has acceptable
cost when compared to conventional router software. Polling Linux’s MLFFR
may be less than Click’s because of the Linux routing table implementation,
which is slower than LookupIPRoute, but more scalable. Standard Linux’s
MLFFR is significantly less than either Click’s or Polling Linux’s because of
interrupt-driven receive livelock.

Figure 8.2 shows the performance of some extended IP router configu-
rations and some non-IP-router configurations. The “Simple” line shows the
performance of the simplest possible Click router, which forwards input pack-
ets directly from input to output via a Queue with no intervening processing.
Its MLFFR is 468,000 packets per second; its overload behavior is analyzed
in the next section, but is basically due to the configuration being PCI or
memory limited rather than CPU limited. The “Switch” line corresponds to
the Ethernet switch configuration of Figure 5.6. The “IP” line, repeated from
Figure 8.1, shows the performance of the base IP router configuration. The
“IP+RED” configuration is an IP router in which a RED element is inserted
before each Queue. No packets were dropped by RED in the test, since the
router’s output links are as fast as its inputs. The “IP+SFQ” configuration is
an IP router with each Queue replaced by a stochastic fair queue—namely,
a version of Figure 4.4 with four component Queues. As router complex-

96

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

Fo
rw

ar
di

ng
 r

at
e

(K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Simple
Opt. IP, no ARP
Opt. IP
IP

Figure 8.3—Forwarding rate as a function of input rate for optimized IP router configurations
(64-byte packets). “Opt. IP” is the IP router transformed by click-xform, click-fastclassifier,
and click-devirtualize. “Opt. IP, no ARP” adds ARP elimination as well.

ity increases from simple forwarding through IP routing to IP routing with
stochastic fair queueing, Click’s performance drops only gradually.

Figure 8.3 illustrates the effectiveness of the language-based optimizations
described in Chapter 6. The “IP” and “Simple” lines are repeated from Fig-
ure 8.2. The “Opt. IP” configuration is an IP router transformed by three opti-
mization tools: click-xform with the patterns of Figure 6.3, click-fastclassifier,
and click-devirtualize. The “Opt. IP, no ARP” configuration is “Opt. IP” ad-
ditionally transformed to eliminate ARP queries, as described in Section 6.6.
“Opt. IP” has a maximum loss-free forwarding rate of 446,000 packets per
second, which is 25% more than the base IP router. Thus, our language-based
optimizations have a significant impact on the performance of IP routing.
Eliminating ARP adds 11,000 more packets per second to this MLFFR, which
is perhaps not enough of an improvement to justify this risky optimization.

An otherwise idle Click IP router forwards 64-byte packets with a one-way
latency of 29 µs. This number was calculated by taking the round-trip ping
time through the router (measured with tcpdump), subtracting the round-trip
ping time with the router replaced by a wire, and dividing by two. 5.8 µs of
the 29 are due to the time required to transmit a 64-byte Ethernet packet at
100 megabits per second. 10 µs are due to the costs of polling eight Ethernet
controllers, all but two of which are idle in this test. 2.5 µs of delay is the
expected amount of time the Tulip controller will take to poll for a new packet
to transmit. The latency of a router running standard Linux IP code is 33 µs.

97

8.3 overload behavior

Before analyzing these routers’ performance under overload, we must closely
examine how packets move through a Click router’s network interfaces and
CPU. Figure 8.4 describes, at a high level, the paths our test packets take
while traveling through our router. Each packet arrives on a receiving Tulip
card and is written to memory. Then the CPU reads the packet from memory
and pushes it to a Queue in the configuration. After spending some time in
the Queue, the packet is pulled out and placed on a DMA queue for the
transmitting Tulip card. The transmitting Tulip card reads the packet from
memory and sends it. In other tests, packets might take paths not illustrated
in the figure; the Click configuration’s CheckIPHeader will drop packets with
erroneous IP headers, and several Tulip error conditions, such as transmission
aborts, never arise in our experiments. We derived these flowcharts from Tulip
documentation [13], code inspection, and experiments.

Each packet’s path ends in one of four different outcomes, which are
shown in the figure as boxes with heavy borders. Packets may be dropped on
the receiving Tulip card because the Tulip is out of memory (“FIFO overflow”)
or if there are no receive DMA descriptors available after two tries (“missed
frame”). The packet may be dropped at the Click Queue when packets are
arriving faster than they can be sent (“Queue drop”). Every packet that sur-
vives these obstacles is sent (“packet sent”). If a packet is to be dropped, it
is best to drop it at the receiving card’s FIFO, as this early drop point avoids
wasting resources. In particular, it avoids all PCI bus and memory operations,
which are shown in the figure as shaded boxes.

All of these events can be measured. The Tulip cards provide counters that
report missed frames and FIFO overflows, if polled frequently; Click’s Queue
has a handler that reports how many packets it has dropped; and the test’s
receiver machines report how many packets they received, which is equivalent
to the number of packets the router sent. Therefore, we can account for every
packet received by the router. We measured these packet outcomes for several
router configurations over a range of input rates. Figure 8.5 on page 101
shows the results. The solid line in each graph corresponds to the forwarding
rate. The other lines cumulatively add other drop outcomes to the forwarding
rate. The sum of all outcomes is the input rate—that is, the straight line y = x.

The baseline IP router configuration is clearly CPU-limited. All of its input
packets are either forwarded or dropped as missed frames. Missed frame
drops occur when a Tulip card unsuccessfully searches for an open DMA
descriptor twice. This indicates that the CPU is emptying and refilling the
relevant receive DMA ring slower than the Tulip card is filling it—that is, the

98

Packet arrives

Internal
FIFO full?

Enqueue packet
on FIFO

Poll for receive
descriptor

Got
descriptor?

Suspend until next
packet arrives

Poll for receive
descriptor

Got
descriptor?

Drop packet
(FIFO overflow)

Drop packet
(missed frame)

Dequeue packet and
write it to memory

N

Y

Y

N

Y

N

Poll packet from
receive DMA ring

Queue
full?

Pull packet
from Queue

Push packet
to Queue

Enqueue packet
on Queue

Enqueue packet on
transmit DMA ring

Drop packet
(Queue drop)

N

Y

Path through receiving Tulip card Path through CPU

Read packet from memory

Poll transmit DMA ring

Packet sent

Path through transmitting Tulip card

Figure 8.4—Flowcharts showing the paths our test packets take while passing through a
Click router with Tulip network interface cards. Packet outcomes are shown as boxes with
thick borders; shaded boxes are steps that use the PCI bus.

99

CPU is overloaded, so the relevant PollDevice is running infrequently.
The “Simple” configuration is not CPU-limited. None of the packets

dropped by “Simple” are missed frames; they are either FIFO overflows or
Queue drops. Both of these outcomes indicate that the PCI bus or mem-
ory system is overloaded. FIFO overflows occur when a receiving Tulip card
gets packets faster than it can request DMA descriptors and write packets
to memory. Queue drops occur when packets are added to a Queue faster
than ToDevice removes them. Instrumenting the ToDevices revealed that they
were often idle—that is, they chose not to pull packets—because their devices’
transmit DMA queues were full. Thus, the CPU wanted to send packets faster
than the transmitting Tulip cards could process them. These possible bottle-
neck tasks—reading packets from memory, writing packets to memory, and
requesting DMA descriptors—are limited not by the CPU, but by the PCI bus
or the memory system. Our analysis is not detailed enough to determine the
bottleneck resource precisely. Other researchers have suggested in personal
communication that the memory system is a likely candidate—in particular,
that validating data received from the PCI bus against the CPU’s caches is an
expensive operation.

The “Simple” forwarding rate drops when Queues begin dropping packets.
This happens soon after the ToDevice elements begin noticing full transmit
DMA queues. The forwarding rate may drop, rather than holding steady,
because each packet dropped at a Queue has already consumed some critical
resources—namely, the PCI or memory bandwidth required to fetch a receive
descriptor, write the packet into memory, and read it from memory into the
CPU’s cache. Thus, dropping the packet at a Queue is worse than never
receiving the packet at all. This waste causes livelock. The forwarding rate
flattens out again when packets begin dropping due to FIFO overflows. These
packets have consumed no critical resources, so they don’t cause livelock.

The “Optimized IP, no ARP” configuration is CPU-limited over a range
of input rates, but then becomes PCI- or memory-limited. At input rates up
to 500,000 packets per second, all dropped packets are due to missed frames,
indicating that the CPU is the bottleneck. The forwarding rate is flat for a
time, but then begins to drop. Again, this may be due to livelock—while
missed frames are not as wasteful as Queue drops, they do exhaust some PCI
bandwidth by requesting useless receive descriptors. At 500,000 packets per
second, however, FIFO overflows start to occur. This indicates that the CPU
is no longer the bottleneck. The Tulip card’s FIFO is filling up, so it must be
receiving a decent number of receive descriptors; otherwise, the FIFO would
empty due to missed frames. Once the Tulip’s FIFO is full, the forwarding rate
flattens out, again to around 400,000 packets per second. All four fast router

100

0

100

200

300

400

500

600

0 100 200 300 400 500 600

O
ut

co
m

e
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

IP

Packets sent
+ missed frames

0

100

200

300

400

500

600

0 100 200 300 400 500 600

O
ut

co
m

e
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Simple

Packets sent
+ Queue drops
+ FIFO overflows

0

100

200

300

400

500

600

0 100 200 300 400 500 600

O
ut

co
m

e
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Optimized IP, no ARP

Packets sent
+ missed frames
+ FIFO overflows

Figure 8.5—Cumulative outcome rates as a function of input rate for three Click router
configurations.

101

Task Time (ns/packet)

Polling packet 562
Refill receive DMA ring 139
Click forwarding path: push 1572
Click forwarding path: pull 85
Enqueue packet for transmit 135
Clean transmit DMA ring 412

Total 2905

Table 8.1—CPU time cost breakdown for the Click IP router.

configurations—“Simple”, “Switch”, and the optimized IP routers—flatten
out to this rate after dropping. Because FIFO overflows, which do not use
any critical resources, eventually occur whenever PCI or memory bandwidth
is overloaded, it seems possible that PCs using Tulip cards may be able to
achieve forwarding rates of about 400,000 64-byte packets per second even
under loads much higher than those we tested.

8.4 cpu time breakdown

Table 8.1 breaks down the CPU time cost of forwarding a packet through the
baseline Click IP router of Figure 5.1. Costs were measured in nanoseconds by
Pentium III cycle counters [23]. Each measurement is the accumulated cost for
all packets in a 10-second run divided by the number of packets forwarded.
These measurements are larger than the true values as using Pentium III cycle
counters has significant cost. Most of the tasks performed by a Click router’s
CPU are included in the table, except for the overhead of the Click task
scheduler.

“Polling packet” measures the time it takes PollDevice to read packets
from the Tulip’s receive DMA ring. PollDevice then adds new descriptors
to the receive DMA ring so that the Tulip may receive more packets; this
cost is measured by “Refill receive DMA ring”. The two “Click forwarding
path” costs measure how much time it takes a packet to traverse the IP
router’s configuration graph. The “push” cost involves 15 elements, starting
after PollDevice and ending at a Queue. The “pull” cost involves just two
elements—when a ToDevice element is ready to send, it pulls a packet from a
Queue. The time consumed by Linux’s equivalent of the push path is 1.65 µs,
slightly more than Click’s 1.57 µs. “Enqueue packet for transmit” is the
time ToDevice spends placing a packet on the Tulip’s transmit DMA ring.

102

Time
Element (ns/packet)

Classifier 70
Paint 77
Strip 67
CheckIPHeader 457
GetIPAddress 120
LookupIPRoute 140
DropBroadcasts 77
PaintTee 67
IPGWOptions 63
FixIPSrc 63
DecIPTTL 119
IPFragmenter 29
ARPQuerier 106

Subtotal 1455

Table 8.2—Execution times of some of the individual elements involved in IP forwarding.

ToDevice must also remove transmitted packets from the DMA ring; this cost
is measured by “Clean transmit DMA ring”. The Click push forwarding path
is by far the most expensive task. Overall, Click code takes 60% of the time
required to process a packet; device code takes the other 40%.

Table 8.2 partially breaks down the 1.57 µs Click push cost by element.
Each element’s cost is the difference between the Pentium III cycle counter
value before and after executing the element, decreased by the time required
to read the cycle counter; it includes the virtual function call(s) that move a
packet from one element to the next. IPFragmenter is so inexpensive because
it does nothing—no packets need to be fragmented in this test—and its packet
transfer requires one virtual function call. Other elements that do nothing in
this test, such as IPGWOptions, have agnostic ports that incur two virtual
function calls per packet transfer.

The total cost of 2905 ns measured with performance counters implies
a maximum forwarding rate of about 344,000 packets per second, which is
within 4% of the observed MLFFR of 357,000 packets per second.

Pentium III performance counters report that forwarding a packet through
Click incurs five level-2 data cache misses: one to read the receive DMA
descriptor, two to read the packet’s Ethernet and IP headers, and two to
remove the packet from the transmit DMA queue and put it into a pool of

103

Time (ns/packet) % of Total % of
Configuration Push Pull Click IP Time IP

Simple 97 91 187 11% 1715 59%
Switch 958 83 1040 63% 2324 80%
Optimized IP, no ARP 991 69 1061 64% 2256 78%
Optimized IP 1033 68 1101 66% 2414 83%
IP + click-xform 1093 81 1174 71% 2480 85%
IP + click-devirtualize 1207 67 1274 77% 2532 87%
IP + ARP elimination 1516 84 1600 97% 2809 97%
IP + click-fastclassifier 1536 75 1611 97% 2819 97%
IP 1572 85 1657 — 2905 —
IP + RED 1711 80 1792 108% 3091 106%
IP + SFQ 1665 230 1895 114% 3102 107%

Table 8.3—CPU time costs per packet for several router configurations. “Optimized IP” is the
IP router transformed by click-xform, click-fastclassifier, and click-devirtualize. “Optimized
IP, no ARP” adds ARP elimination as well.

reusable packets. Each of these loads takes about 112 nanoseconds. Click
runs without incurring any other level-2 data or instruction cache misses.
1295 instructions are retired during the forwarding of a packet, implying that
significantly more complex Click configurations could be supported without
exhausting the Pentium III’s 16K level-1 instruction cache.

Table 8.3 shows Click push and pull costs and total CPU time costs of the
other router configurations mentioned in Section 8.2. The “Click” column is
the total Click cost, push and pull; the “Total Time” column is the total CPU
time cost, including both Click and the four device-related tasks.

When applied to the IP router configuration, the language tool optimiza-
tions mostly reduce the cost of pushing a packet through the Click forward-
ing path. Applying all router-local optimizations—click-fastclassifier, click-
devirtualize, and click-xform—reduces this cost from 1657 ns to 1101 ns.
The optimizations have significant effects even when device drivers are in-
cluded, as shown by the table’s last columns.

Pattern replacement with combination elements (click-xform) is the most
effective individual optimization, reducing the Click cost by 30%. Devirtual-
ization is also quite effective on its own, reducing that cost by 23%. These
optimizations address the same problem, the number of packet transfers on
the path, so applying them together is not much more useful than applying
either one alone.

Although the fast classifier optimization reduces the cost of the push path
only slightly (to be precise, by 36 cycles), it improves the performance of the

104

IP router’s Classifier element by an average of 24%. This optimization is more
effective on configurations with complex Classifiers, such as the IP firewall of
Section 5.4.

8.5 architectural overhead

Click’s modularity imposes performance costs in two ways: the overhead of
passing packets between elements, and the overhead of unnecessarily general
element code.

Passing a packet from one element to the next causes either one or two
virtual function calls, where a virtual function call includes loading the rele-
vant function pointer from a virtual function table as well as an indirect jump
through that function pointer. Indirect jumps take about 10 nanoseconds if
the Pentium III’s branch target buffer successfully predicts the target address,
but can take dozens of nanoseconds if it fails. Most elements in the IP router
use a simplified agnostic-port interface that causes two virtual function calls
per packet transfer; the CPU usually predicts one call but doesn’t predict the
other. As a result, the total cost of packet transfer is about 70 nanoseconds,
adding an empty element to a configuration graph usually adds 70 nanosec-
onds of overhead, and the IP router, with 16 elements on its forwarding path,
has about 1 µs of overhead. This overhead can be avoided with the click-
devirtualize tool.

Several elements in the IP router configuration, such as Classifier, are
implemented with more generality than the IP router requires. We used the
click-fastclassifier tool to analyze the cost of this generality; it produces an
element specialized for the IP router’s classification task, including straight-
line code and compiled-in constants. The fast classifier element cost 24% less
CPU time per packet than Classifier, but even Classifier takes only 4% of the
per-packet CPU time expended inside the Click configuration. Since the rest of
the IP router’s elements offer less opportunity for specialization, we conclude
that element generality has a relatively small effect on Click’s performance.

To analyze the combined effects of these overheads, we used the combina-
tion elements described in Section 6.1. These elements reduce the number of
virtual function calls on the forwarding path, specialize some of the more gen-
eral elements, and offer the compiler better opportunities for optimization.
Again, one element implements the functionality of Paint, Strip, CheckIP-
Header, and GetIPAddress; the other, the functionality of DropBroadcasts,
PaintTee, IPGWOptions, FixIPSrc, DecIPTTL, and IPFragmenter. The for-
warding path of the transformed configuration has only eight elements instead
of sixteen. Its push path processes an IP packet in 1.03 µs instead of 1.57 µs.

105

C
la

ss
if

ie
r(

...
)

A
R

P
Q

ue
ri

er Shaper(30000)

P
ri

oS
ch

ed

T
oD

ev
ic

ehigh
priority

medium
priority

low
priority

Figure 8.6—A Click diffserv traffic conditioning block with three priority levels.

When we add eight distinct do-nothing elements to the forwarding path of
this new configuration, restoring the number of elements to sixteen, the packet
processing time rises to 1.58 µs; this suggests that the entire reduction from
1.57 µs to 1.03 µs is due to reducing the number of virtual function calls.

8.6 differentiated services

Section 4.5 showed that Click can conveniently model Differentiated Services
configurations; this section shows that Click can enforce diffserv policies using
only packet scheduling elements like PrioSched. Our simple test policy has
three priority levels, where the highest priority is additionally rate limited to
no more than 30,000 packets per second. Figure 8.6 shows a configuration
fragment that implements this policy. To test this configuration, we inserted
it into the IP router of Figure 5.1 and measured per-priority forwarding rates
at a range of input rates. Three source hosts send equal numbers of packets
marked as high, medium, and low priority respectively. The router has a single
100 Mbit/s Ethernet output link which all priority levels must share.

Figure 8.7 shows the results. The per-source sending rate varies along the
x axis; the total input load on the router is three times the x-axis value. The
y axis indicates how many packets per second the router forwarded from
each of the sources. Once the per-source input rate rises above 30,000 packets
per second, the router starts dropping high-priority packets, since they are
rate-limited. Above 57,000 packets per second, the output link is saturated,
and medium priority packets start taking bandwidth away from low. Above
100,000 packets per second, the router runs out of CPU time, forcing the
Ethernet controllers to drop packets. Since the controllers don’t understand
priority, they drop medium-priority packets as well as low. Each medium-
priority packet that a controller drops leaves room on the output link for a
low-priority packet, which is why the low-priority forwarding rate isn’t driven
down to zero.

There is probably no way to achieve perfect packet scheduling under over-
load; instead, a router should be engineered with sufficient processing power to

106

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Fo
rw

ar
di

ng
 r

at
e

(K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

High priority
Medium priority
Low priority

Figure 8.7—Performance of the Click diffserv configuration in Figure 8.6. Three traffic
sources send 64-byte UDP packets with three different priorities into a router with a single
100 Mbit/s output link.

carry all packets to the point where the priority decision is made. A Click user
can approximate such a design by moving the classification and per-priority
queues of Figure 8.6 earlier in the configuration—that is, nearer to FromDe-
vice than ToDevice. This wastes less CPU time on lower priority packets that
will eventually be dropped, because they travel through less of the configu-
ration before reaching the drop point. Even with the priority decision late in
the configuration, Click enforces priority reasonably well under overload and
very well with ordinary loads.

8.7 summary

We have shown that a modular Click router can achieve performance near
the limits of high-end PC hardware. Of its sources of overhead, only vir-
tual function calls have a significant impact on performance, and language
tools described in Chapter 6 can mitigate or eliminate their impact. A Click
IP router optimized with these tools can achieve a peak forwarding rate of
446,000 64-byte packets per second, 95% of the apparent hardware bound.
This router’s maximum sustained forwarding rate is roughly 400,000 64-byte
packets per second, enough to handle several t3 lines. Measurements of ex-
tended Click configurations show that incremental extensions have incremen-
tal costs. Finally, Click can enforce quality-of-service constraints—namely,
priorities—reasonably well even under overload.

107

9
Related work

The x-kernel [22] is a framework for implementing and composing network
protocols. It is intended for use at end nodes, where packet motion is vertical
(between the network and user level) rather than horizontal (between net-
work interfaces). Like a Click router, an x-kernel configuration is a graph of
processing nodes, and packets are passed between nodes by virtual function
calls. However, an x-kernel configuration graph is always acyclic and layered,
as x-kernel nodes were intended to represent protocols in a protocol stack.
This prevents cyclic configurations like our IP router. The x-kernel’s inter-
node communication protocols are more complex than Click’s. Connections
between nodes are bidirectional—packets travel up the graph to user level and
down the graph to the network. Packets pass alternately through “protocol”
nodes and “session” nodes, where the session nodes correspond to end-to-end
network connections like TCP sessions. Bidirectional connections and session
nodes are irrelevant to most routers.

Scout [30, 36] was designed for use as an operating system at end nodes,
but it is better suited for routing than the x-kernel; for example, cyclic config-
urations are partially supported, and session nodes are not mandatory. Execu-
tion in Scout is centered on “paths”, sequences of packet processing functions.
Each path has implicit queues on its inputs and outputs; it is not clear, there-
fore, how many queues would appear in a complex configuration like the IP
router, which is not amenable to linearization. Each path is run by a single
thread and has a CPU priority, and packets are classified into the correct path
as early as possible. For example, TCP/IP packets containing MPEG data can
be routed immediately to the correct path, whose scheduling behavior might
be specialized for MPEG. If desired, Click primitives can support some uses of
paths: an early Classifier element could send MPEG-in-TCP-in-IP-in-Ethernet
traffic into a special Queue, and the element that took packets off that Queue

108

could be scheduled appropriately for MPEG data. However, Scout supports
per-flow paths, where a path object is created for each individual network
flow. This allows its CPU scheduler to treat flows independently; Click’s CPU
scheduler can only treat flow classes independently.

The UNIX System V STREAMS system [42] is also built from composable
packet processing modules. STREAMS modules include implicit queueing by
default. Each module must be prepared for the next module’s queue to fill
up, and to respond by queueing or discarding or deferring the processing of
incoming packets. Modules with multiple inputs or outputs must also make
packet scheduling decisions. STREAMS’ tendency to spread scheduling and
queueing logic throughout the configuration conflicts with a router’s need for
precise control over these functions.

FreeBSD contains a modular networking system called Netgraph [16]
whose nodes resemble Click elements. Netgraph was designed for composing
coarse-grained modules such as PPP encapsulation and other framing proto-
cols. Configurations are built up dynamically; there are commands that add
and delete nodes, and that connect and disconnect “hooks” (the equivalent
of ports), but no external specification for a configuration. This supports
on-line configuration modification somewhat more naturally than Click, but
there is no way to analyze a Netgraph configuration off line or install a new
configuration atomically.

ALTQ [6], a system for configurable traffic management, is also shipped
with FreeBSD. It contains several sophisticated queueing policies, but its con-
figurability is limited to the specification of one queueing policy per output
interface.

The router plugins system [10, 11] was designed to make IP routers more
extensible. A router plugin is a software module executed when a classifier
matches a particular flow. These classifiers can be installed at any of several
“gates”. However, gates are fixed points in the IP forwarding path; there is
no way to add new gates, or to control the path itself.

To the best of our knowledge, commercial routers are difficult to extend,
either because they use specialized hardware [32, 35] or because their soft-
ware is proprietary. However, open router software does not necessarily make
a router easily extensible. A network administrator could, in principle, imple-
ment new routing functions in Linux, but we expect few administrators have
the time or ability to modify the monolithic Linux kernel. Click’s modularity
makes it easy to take advantage of its extensibility.

The active networking research program allows anyone to write code that
will affect a router [44, 48]. Click allows a trusted user to change any aspect

109

of a router; active networking allows untrusted packets to decide how they
should be routed. The approaches are complementary, and Click may provide
a good platform for active network research.

Click’s polling implementation and device driver improvements were de-
rived from previous work [14, 27, 28, 53].

110

10
Conclusion

Click routers are modular, extensible, and flexible. Elements, the building
blocks of router functionality, can support wide varieties of tasks through com-
position. Click configurations for real routers, such as a standards-compliant
IP router, are readable and extensible. We showed how adding support for
scheduling and dropping policies, complex queueing, and transparent Web
proxies can require simply adding a couple elements to the IP router, and how
IP router elements are useful for other packet processing applications. Router
configurations are written in a simple, declarative language. Careful language
design means that router configurations are easy to process with tools, which
can optimize configurations, check them for errors, or ensure they satisfy
simple invariants. Our performance analysis shows that Click’s modularity is
compatible with good forwarding performance for PC hardware, and that our
optimization tools are effective, reducing the Click IP router’s per-packet CPU
time by 34%. The optimized Click IP router’s steady-state forwarding rate is
400,000 minimum-size packets per second; its peak forwarding rate is 95%
the hardware’s apparent capacity. Last but not least, Click is fun to program.

Several universities are already using Click for research. At the University
of Utah, researchers adopted it as a prototypical component-based system
against which they compared their own component architecture [41]. Students
at Purdue University are modifying it to better support multicast and active
networking [20]. The Mescal project at the University of California, Berkeley
used the Click IP router as the definition of IP routing, upon which they are
building their own modular router in a hardware-focused setting; they appear
to have chosen Click because its high-level description of IP routing is so easy
to understand [43]. At MIT, Click is in use as a mixed simulation/execution
environment for the Grid ad-hoc routing system [9].

future work

Since the optimized Click IP router appears close to the performance limits of
our hardware, future performance work must focus on breaking these limits.

111

For instance, it might be a pleasant exercise to compile Click configurations
for real router hardware—FPGAs or ASICs. Since elements tend to have com-
pact specifications, they might correspond naturally to short definitions in
some hardware description language. A Click-language tool might read in
configurations and write out the corresponding hardware descriptions.

Of course, some configurations are still CPU-limited. Click currently runs
in a single thread on a single processor. Taking advantage of a symmetric mul-
tiprocessing platform might speed Click up dramatically. Its element structure
may facilitate dividing a configuration into regions, each of which could be
active on a different processor.

The tools described in Chapter 6 are relatively simple; they cannot, for
example, prove that every packet reaching a certain point in a configuration
is an IP packet. Tools should be written that check configurations for such
high-level correctness properties. These properties are difficult to check and
require more information about element semantics than the tools we have
now. The current system of writing tools based on informal element semantics
has many advantages, including that writing tools and elements is easy and
requires no theorem-proving expertise. Nevertheless, as tools are written that
establish more complex properties, a parallel language for expressing element
semantics in an integrated fashion may begin to make more sense.

summary

Click’s philosophy of components, a declarative language for combining com-
ponents, and tools manipulating that language has been a success. The three
parts of the system—components, language, and tools—are in good balance.
The system works well as a whole, with each part becoming more powerful
because of the others; for example, information elements are more useful be-
cause tools can add them automatically, and compound elements are more
powerful because elements like ScheduleInfo were designed to support them.
Click appears easy to learn, as witnessed by its use outside MIT. The most
important decision in its creation, I believe, was the initial division of the
system into components and language. Without that early division, it would
have been tempting to make either the component architecture or the language
more complicated than was necessary. With the early division, complexities in
the component architecture were resolved with help from the language, and
vice versa, resulting in a simple, natural, and usable system. I would like to
build more systems this way.

112

A
Element glossary

This section lists 59 of the approximately 150 elements included with version
1.1 of the Click software. Each entry follows this format:

ElementName(configuration arguments) Port types (push, pull, or agnostic).
Port descriptions (packet types and numbers of ports). Description. (Op-
tional reference to section with more detailed description.)

Some elements also have a reference to a section where more information can
be found. Detailed manuals for each element are accessible on line at http://
www.pdos.lcs.mit.edu/click/doc/.

AddressInfo(name addrs, ...) No inputs or outputs. Creates shorthand names
for IP and Ethernet addresses and IP network prefixes. (§4.7, p 61)

ARPQuerier(...) Push. First input takes IP packets, second input takes ARP
responses with Ethernet headers. Output emits ARP queries and IP-in-
Ethernet packets. Uses ARP to find the Ethernet address corresponding to
each input IP packet’s destination IP address annotation; encapsulates the
packet in an Ethernet header with that destination Ethernet address.

ARPResponder(ip eth, ...) Agnostic. Input takes ARP queries, output emits
ARP responses. Responds to ARP queries for IP address ip with the static
Ethernet address eth.

CheckIPHeader(...) Agnostic. Input takes IP packets. Discards packets with
invalid IP length, source address, or checksum fields; forwards valid pack-
ets unchanged.

CheckIPHeader2(...) Agnostic. Input takes IP packets. Discards packets with
invalid IP length or source address fields; forwards valid packets un-
changed. Unlike CheckIPHeader, does not check the IP checksum.

113

Classifier(...) Push. Input takes any packet. Examines packet data according
to a set of classifiers, one classifier per output port. Forwards packet to
output port corresponding to the first classifier that matched. Example
classifier: “12/0800” checks that the packet’s data bytes 12 and 13 contains
values 8 and 0, respectively. See also IPClassifier. (§4.2, p 45)

ControlSocket(type, addr) No inputs or outputs. Creates a socket and listens
for connections on that socket. Speaks a simple protocol allowing remote
machines to query read handlers and set write handlers. Only available at
user level.

Counter Agnostic. Input takes any packet; forwards packets unchanged. Its
read handlers provide information about the number of packets passed
and their arrival rate.

DecIPTTL Agnostic, but second output is push. Input takes IP packets. Decre-
ments input packets’ IP time-to-live field. If the packet is still live, incre-
mentally updates IP checksum and sends modified packet to first output;
if it has expired, sends unmodified packet to second output.

Discard Push. Discards all input packets.

DropBroadcasts Agnostic. Input takes any packet. Discards packets that ar-
rived as link-level broadcasts; forwards others unchanged.

EtherEncap(p, ethersrc, etherdst) Agnostic. Input takes any packet, output
emits Ethernet packets. Encapsulates input packets in an Ethernet header
with protocol p, source address ethersrc, and destination address etherdst.

EtherSpanTree Agnostic. Inputs take IEEE 802.1d messages. Implements the
IEEE 802.1d spanning tree algorithm for Ethernet switches. (§5.3, p 70)

EtherSwitch Push. Inputs take Ethernet packets; one input and one output
per interface. Learning, forwarding Ethernet switch. Learns the interfaces
corresponding to Ethernet addresses by examining input packets’ source
addresses; forwards packets to the correct output port, or broadcasts them
if the destination Ethernet address is not yet known. (§5.3, p 69)

FixIPSrc(ip) Agnostic. Input takes IP packets. Sets the IP header’s source ad-
dress field to the static IP address ip if the packet’s Fix IP Source annotation
is set; forwards other packets unchanged.

114

FromDevice(devicename) Push. No inputs. Sends packets to its single output
as they arrive from a Linux device driver. Use FromDevice for devices that
do not support polling. See also PollDevice.

FromLinux(devicename, ip/netmask) Push. No inputs. Installs into Linux a
fake Ethernet device devicename, and a routing table entry that sends
packets for ip/netmask to that fake device. The result is that packets gen-
erated at the router host and destined for ip/netmask are emitted from
FromLinux’s single output as they arrive from Linux.

FrontDropQueue(n) Push input, pull output. Input takes any packet. Stores
packets in a FIFO queue; maximum queue capacity is n. When a new
packet arrives on a full queue, the packet at the head of the queue is
dropped rather than the new packet. See also Queue. (§2.5, p 21)

FTPPortMapper(...) Agnostic. Input takes TCP/IP packets representing an
FTP control connection. Forwards most packets unchanged, but looks
for PORT commands embedded in passing packets. These commands are
rewritten according to an IPRewriter pattern. (§4.6, p 57)

GetIPAddress(16) Agnostic. Input takes IP packets. Copies the IP header’s
destination address field (offset 16 in the IP header) into the destination IP
address annotation; forwards packets unchanged.

HashSwitch(offset, length) Push. Input takes any packet; arbitrary number
of outputs. Forwards packet to one of its outputs, chosen by a hash of the
packet’s data—specifically, bytes [offset, offset + length).

ICMPError(ip, type, code) Agnostic. Input takes IP packets, output emits
ICMP error packets. Encapsulates first part of input packet in ICMP error
header with source address ip, error type type, and error code code. Sets
the Fix IP Source annotation on output packets.

Idle Agnostic. Any number of inputs and outputs. Discards all packets as they
arrive, and always returns a null pointer in response to pull requests.

IPClassifier(...) Push. Input takes IP packets. Examines packet data according
to a set of classifiers, one classifier per output port. Forwards packet to
output port corresponding to the first classifier that matched. Example
classifier: “ip src 1.0.0.1 and dst tcp port www” checks that the packet’s
source IP address is 1.0.0.1, its IP protocol is 6 (TCP), and its destination
TCP port is 80. See also Classifier and IPFilter. (§4.2, p 46)

115

IPEncap(p, ipsrc, ipdst) Agnostic. Input takes any packet, output emits IP
packets. Encapsulates input packets in an IP header with protocol p, source
address ipsrc, and destination address ipdst.

IPFilter(...) Push. Input takes IP packets. Examines packet data according to
a set of classifiers, where each classifier contains an action such as “allow”
(meaning forward to first output port) or “drop”. Performs the action
of the first classifier that matched. Example action and classifier: “allow
ip src 1.0.0.1 and dst tcp port www” checks that the packet’s source IP
address is 1.0.0.1, its IP protocol is 6 (TCP), and its destination TCP port
is 80; if this is true, the packet is forwarded to the first output. See also
IPClassifier. (§5.4, p 70)

IPFragmenter(mtu) Push. Input takes IP packets. Fragments IP packets larger
than mtu; sends fragments, and packets smaller than mtu, to first out-
put. Too-large packets with the don’t-fragment IP header flag set are sent
unmodified to the second output.

IPGWOptions Agnostic, but second output is push. Input takes IP packets.
Processes IP Record Route and Timestamp options; packets with invalid
options are sent to the second output.

IPRewriter(...) Push. Inputs take IP packets; any number of inputs and out-
puts. Rewrites TCP/IP and UDP/IP packets according to specified rewrite
rules. See also TCPRewriter. (§4.6, p 54)

IPRewriterPatterns(...) No inputs or outputs. Stores shared IPRewriter pat-
terns. (§4.6, p 58)

LookupIPRoute(table) Push. Input takes IP packets with valid destination
IP address annotations. Arbitrary number of outputs. Looks up input
packets’ destination annotations in a static routing table specified in the
configuration string. Forwards each packet to the output port specified
in the resulting routing table entry; sets its destination annotation to the
specified gateway address, if any.

Meter(r) Push. Input takes any packet. Sends all packets to first output if
recent input rate averages < r, second output otherwise. Multiple rate
arguments are allowed. See also RatedSplitter.

Null Agnostic. Input takes any packet; forwards every input packet to its
output unchanged.

116

Paint(p) Agnostic. Input takes any packet. Sets each input packet’s paint
annotation to p before forwarding it.

PaintTee(p) Agnostic, but second output is push. Input takes any packet.
Forwards packets with paint annotation p to both outputs; otherwise just
to first.

PollDevice(devicename) Push. No inputs. Sends packets to its single output as
they arrive from a Linux device driver. Uses polling. See also FromDevice.
(§7.1, p 91)

PrioSched Pull. Inputs take any packet; one output port, arbitrary number of
input ports. Responds to pull requests by trying inputs in numeric order,
returning the first packet it receives. Thus, lower-numbered inputs have
priority. (§4.3, p 47)

Queue(n) Push input, pull output. Input takes any packet. Stores packets in
a FIFO queue; maximum queue capacity is n. See also FrontDropQueue.
(§2.5, p 21)

RandomBitErrors(prob, action) Agnostic. Input takes any packet. Changes
each bit on each input packet with probability prob. Action determines
the kind of change: set sets bits to 1, clear sets bits to 0, and flip flips bits.

RatedSource(data, rate, count) Push. No inputs; output emits packets con-
taining data as data. Sends rate packets per second up to a maximum of
count packets.

RatedSplitter(rate) Push. Input takes any packet. Forwards up to rate input
packets to its first output unchanged. Any remaining packets are forwarded
to the second output. (§4.5, p 49)

RED(minthresh, maxthresh, maxp) Agnostic. Input takes any packet. Drops
packets probabilistically according to the Random Early Detection algo-
rithm [18] with the given parameters; forwards other packets unchanged.
Examines nearby router queue lengths when making its drop decision.
(§4.4, p 48)

RoundRobinIPMapper(...) No inputs or outputs. A round-robin IPRewriter
mapper, useful, for example, for load balancing. (§4.6, p 57)

117

RoundRobinSched Pull. Inputs take any packet; one output port, arbitrary
number of input ports. Responds to pull requests by trying inputs in round-
robin order; returns the first packet it receives. It first tries the input port
just after the one that succeeded on the last pull request. (§4.3, p 47)

ScheduleInfo(elementname param, ...) No inputs or outputs. Specifies ele-
ments’ initial task queue scheduling parameters by element name. Each
scheduling parameter is a real number; an element with parameter 2p will
be scheduled twice as often as an element with parameter p. (§4.7, p 59)

ScheduleLinux No inputs or outputs. Places itself on the task queue, and
returns to Linux’s scheduler every time it is run.

SetIPAddress(ip) Agnostic. Input takes IP packets. Sets each packet’s destina-
tion IP address annotation to the static IP address ip. Forwards modified
packets to first output.

SetIPDSCP(c) Agnostic. Input takes IP packets. Sets each packet’s IP diff-
serv code point field [33] to c and incrementally updates the IP header
checksum. Forwards modified packets to first output.

Shaper(n) Pull. Input takes any packet. Simple pull traffic shaper: forwards
at most n pull requests per second to its input. Pull requests over that rate
get a null pointer in response.

StaticPullSwitch(p) Pull. Input takes any packet; arbitrary number of inputs.
Forwards each pull request to input port p. (§3.5, p 40)

StaticSwitch(p) Push. Input takes any packet; arbitrary number of outputs.
Forwards each input packet to output port p. (§3.5, p 40)

Strip(n) Agnostic. Input takes any packet. Strips off each packet’s first n bytes;
forwards modified packets to first output.

StripIPHeader Agnostic. Input takes IP packets. Strips off each packet’s IP
header, including any options; forwards modified packets to first output.

Suppressor Agnostic. Inputs take any packet; arbitrary number of input ports,
same number of output ports. Normally forwards packets arriving on each
input port to the corresponding output port. A method interface allows
other elements to ask Suppressor to drop packets arriving on particular
input ports. (§5.3, p 70)

118

TCPRewriter(...) Push. Inputs take TCP/IP packets; any number of inputs and
outputs. Rewrites TCP/IP packets according to specified rewrite rules. This
element supports sequence number rewriting as well as flow ID rewriting.
See also IPRewriter. (§4.6, p 57)

Tee(n) Push. Input takes any packet; n output ports. Forwards each input
packet to all n output ports.

ToDevice(device) Pull. Input takes Ethernet packets; no outputs. Hands pack-
ets to a Linux device driver for transmission. Activates pull requests only
when the device is ready.

ToLinux Push. Input takes Ethernet packets; Linux will ignore the Ethernet
header except for the protocol field. No outputs. Hands input packets to
Linux’s default network input software.

UDPIPEncap(ipsrc, srcport, ipdst, dstport) Agnostic. Input takes any packet,
output emits UDP/IP packets. Encapsulates input packets in a UDP-in-IP
header with source address ipsrc, source port srcport, destination address
ipdst, and destination port dstport.

Unqueue Pull input, push output. Input takes any packet. Places itself on
the task queue; whenever it is scheduled, pulls packets from its input and
forwards them to its output.

119

B
Language grammar

B.1 lexical issues

Click identifiers are nonempty sequences of letters, numbers, underscores ‘_’,
at-signs ‘@’, and slashes ‘/’ that do not begin with a slash. The system uses
‘@’ and ‘/’ for special purposes: ‘@’ in constructed names for anonymous
elements and ‘/’ in names for components of compound elements. Users are
discouraged from using these characters in their own identifiers. Identifiers
are case-sensitive.

The keywords ‘connectiontunnel’, ‘elementclass’ and ‘require’ may not
be used as identifiers. The normal identifiers ‘input’ and ‘output’ have special
meaning inside compound element definitions.

The following characters and multi-character sequences are single Click
tokens: -> :: ; , () [] { } | || ...

Whitespace and comments, as defined by C++, separate Click tokens. Ei-
ther form of comment—from ‘//’ to the end of the line, or from ‘/*’ to the
next ‘*/’—terminates an identifier, so this Click fragment

an/identifier/with/slashes//too/many

has an identifier ‘an/identifier/with/slashes’ and a comment ‘//too/many’.
No identifier contains two consecutive slashes.

Parameters look like Perl variables. A parameter consists of a dollar sign
‘$’ followed by one or more letters, numbers, and underscores.

A configuration string (config-string in the grammar) starts immediately
following a left parenthesis ‘(’ and continues up to the next unbalanced right
parenthesis ‘)’. However, parentheses inside single or double quotes or com-
ments do not affect balancing. Here are several examples; in each case, the
configuration string consists of the underlined text.

120

A(simple string)
B(string with (balanced parens))
C(string with ")quoted" paren)
D(// end-of-line comment)

still going!)
E(/* slash-star comment) */ and backslash \)

Click programs may contain C preprocessor-style line directives. These are
lines that start with ‘#’ and have the form ‘# linenumber "filename"’ or ‘#line
linenumber "filename"’; they change the filenames and line numbers used for
error messages. The "filename" portion is optional. Other preprocessor direc-
tives are ignored with a warning. Preprocessor directives are not recognized
inside configuration strings.

B.2 bnf grammar

The Click language is LALR(1), although this grammar is not. (There are am-
biguities between the declaration and connection nonterminals, and between
identifiers used as element names and element class names.)

stmts ::= stmts stmt
∣∣ ε

stmt ::= declaration
∣∣ connection∣∣ tunnel-stmt
∣∣ elementclass-stmt

∣∣ require-stmt
∣∣ ;

declaration ::= element-names :: class opt-config
element-names ::= element-name

∣∣ element-names , element-name
element-name ::= identifier

class ::= identifier
∣∣ { compounds }

∣∣ { ... || compounds }
compounds ::= compound

∣∣ compounds || compound
compound ::= stmts

∣∣ opt-formals | stmts
opt-formals ::= formals

∣∣ ε
formals ::= parameter

∣∣ formals , parameter
connection ::= element opt-port -> opt-port connection-tail

connection-tail ::= element
∣∣ connection

element ::= element-name
∣∣ element-name :: class opt-config∣∣ class opt-config

opt-config ::= (config-string)
∣∣ ε

opt-port ::= [number]
∣∣ ε

tunnel-stmt ::= connectiontunnel identifier -> identifier
elementclass-stmt ::= elementclass identifier class

require-stmt ::= require (config-string)

121

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[2] Mary L. Bailey, Burra Gopal, Michael A. Pagels, and Larry L. Peterson.
PathFinder: A pattern-based packet classifier. In Proc. 1st USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’94), pages 115–123, October 1994.

[3] F. Baker. Requirements for IP Version 4 routers. RFC 1812, Internet
Engineering Task Force, June 1995. ftp://ftp.ietf.org/rfc/rfc1812.
txt.

[4] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting
global data-flow optimization in a generalized packet filter architecture.
In Proc. ACM SIGCOMM ’99 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, pages
123–134, August 1999.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. RFC 2475, Internet Engineering
Task Force, December 1998. ftp://ftp.ietf.org/rfc/rfc2475.txt.

[6] Kenjiro Cho. A framework for alternate queueing: towards traffic man-
agement by PC-UNIX based routers. In Proc. USENIX 1998 Annual
Technical Conference, pages 247–258, June 1998.

[7] Cisco Corporation. Distributed WRED. Technical report, 1999.
http://www.cisco.com/univercd/cc/td/doc/product/software/
ios111/cc111/wred.htm, as of January 2000.

122

[8] David Clark. The structuring of systems using upcalls. In Proc. of the
10th ACM Symposium on Operating Systems Principles (SOSP), pages
171–180, December 1985.

[9] Douglas S. J. De Couto and Robert Morris. Personal communication,
2000.

[10] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard Plattner.
Router plugins: A software architecture for next generation routers. In
Proc. ACM SIGCOMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 229–
240, October 1998.

[11] Daniel S. Decasper. A software architecture for next generation routers.
PhD thesis, Swiss Federal Institute of Technology, Zurich, 1999.

[12] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink.
Small forwarding tables for fast routing lookups. In Proc. ACM SIG-
COMM ’97 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 3–14, October
1997.

[13] Digital Equipment Corporation. DIGITAL Semiconductor 21140A PCI
Fast Ethernet LAN Controller Hardware Reference Manual, March
1998. http://developer.intel.com/design/network/manuals.

[14] P. Druschel, L. Peterson, and B. Davie. Experiences with a high-speed
network adaptor: A software perspective. In Proc. ACM SIGCOMM
’94 Conference on Communications Architectures, Protocols and Appli-
cations, pages 2–13, August 1994.

[15] K. Egevang and P. Francis. The IP Network Address Translator (NAT).
RFC 1631, Internet Engineering Task Force, May 1994. ftp://ftp.
ietf.org/rfc/rfc1631.txt.

[16] Julian Elischer and Archie Cobbs. The Netgraph networking system.
Technical report, Whistle Communications, January 1998. http://www.
elischer.com/netgraph/, as of July 2000.

[17] Dawson Engler and M. Frans Kaashoek. DPF: Fast, flexible message de-
multiplexing using dynamic code generation. In Proc. ACM SIGCOMM
’96 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, pages 53–59, August 1996.

123

[18] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):
397–413, August 1993.

[19] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. Burg—
fast optimal instruction selection and tree parsing. SIGPLAN Notices,
27(4):68–76, April 1992.

[20] Prem Gopalan and Saurabh Sandhir. Personal communication, 2000.

[21] Michael Hasenstein. IP network address translation. Diplomarbeit,
Technische Universität Chemnitz, Chemnitz, Germany, 1997. Available
on line at http://www.suse.de/˜mha/linux-ip-nat/diplom/nat.html
as of November 2000.

[22] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: an ar-
chitecture for implementing network protocols. IEEE Transactions on
Software Engineering, 17(1):64–76, January 1991.

[23] Intel Corporation. Pentium Pro Family Developer’s Manual, Volume 3,
1996. http://developer.intel.com/design/pro/manuals.

[24] T. V. Lakshman, Arnold Neidhardt, and Teunis J. Ott. The drop from
front strategy in TCP and in TCP over ATM. In Proc. IEEE INFOCOM,
volume 3, pages 1242–1250, March 1996.

[25] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey,
Mark Hayden, Kenneth Birman, and Robert Constable. Building reli-
able, high-performance communication systems from components. In
Proc. 17th ACM Symposium on Operating Systems Principles (SOSP),
pages 80–92, December 1999.

[26] P. E. McKenney. Stochastic fairness queueing. In Proc. IEEE INFO-
COM, volume 2, pages 733–740, June 1990.

[27] David L. Mills. The Fuzzball. In SIGCOMM ’88, Proc. ACM Symposium
on Communications Architectures & Protocols, pages 115–122, August
1988.

[28] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock
in an interrupt-driven kernel. ACM Transactions on Computer Systems,
15(3):217–252, August 1997.

124

[29] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.
The Click modular router. In Proc. 17th ACM Symposium on Operating
Systems Principles (SOSP), pages 217–231, December 1999.

[30] David Mosberger and Larry L. Peterson. Making paths explicit in the
Scout operating system. In Proc. 2nd Symposium on Operating Systems
Design and Implementation (OSDI ’96), pages 153–167, October 1996.

[31] David Mosberger, Larry L. Peterson, Patrick G. Bridges, and Sean
O’Malley. Analysis of techniques to improve protocol processing latency.
In Proc. ACM SIGCOMM ’96 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, pages
73–84, August 1996.

[32] Peter Newman, Greg Minshall, and Thomas L. Lyon. IP switching—
ATM under IP. IEEE/ACM Transactions on Networking, 6(2):117–129,
April 1998.

[33] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differen-
tiated Services field (DS field) in the IPv4 and IPv6 headers. RFC 2474,
Internet Engineering Task Force, December 1998. ftp://ftp.ietf.org/
rfc/rfc2474.txt.

[34] NS. UCB/LBNL/VINT network simulator NS homepage. Available from
http://www-mash.cs.berkeley.edu/ns/.

[35] Craig Partridge, Philip P. Carvey, Ed Burgess, Isidro Castineyra, Tom
Clarke, Lise Graham, Michael Hathaway, Phil Herman, Allen King, Steve
Kohalmi, Tracy Ma, John Mcallen, Trevor Mendez, Walter C. Milliken,
Ronald Pettyjohn, John Rokosz, Joshua Seeger, Michael Sollins, Steve
Storch, Benjamin Tober, Gregory D. Troxel, David Waitzman, and Scott
Winterble. A 50-Gb/s IP router. IEEE/ACM Transactions on Network-
ing, 6(3):237–248, June 1998.

[36] Larry L. Peterson, Scott C. Karlin, and Kai Li. OS support for general-
purpose routers. In Proc. 7th Workshop on Hot Topics in Operating
Systems (HotOS-VII), pages 38–43. IEEE Computer Society Technical
Committee on Operating Systems, March 1999.

[37] J. Postel. Internet Protocol. RFC 791, Internet Engineering Task Force,
September 1981. ftp://ftp.ietf.org/rfc/rfc0791.txt.

125

[38] J. Postel. Internet Control Message Protocol. RFC 792, Internet
Engineering Task Force, September 1981. ftp://ftp.ietf.org/rfc/
rfc0792.txt.

[39] J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC 959,
Internet Engineering Task Force, October 1985. ftp://ftp.ietf.org/
rfc/rfc0959.txt.

[40] Darren Reed. IP Filter TCP/IP packet filtering package. Technical report,
2000. http://coombs.anu.edu.au/˜avalon/, as of November 2000.

[41] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide.
CpU: Component composition for systems software. In Proc. 4th Sym-
posium on Operating Systems Design and Implementation (OSDI 2000),
October 2000.

[42] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories
Technical Journal, 63(8):1897–1910, October 1984.

[43] Michael Shilman. Personal communication, 2000.

[44] Jonathan M. Smith, Kenneth L. Calvert, Sandra L. Murphy, Hilarie K.
Orman, and Larry L. Peterson. Activating networks: a progress report.
IEEE Computer, 32(4):32–41, April 1999.

[45] P. Srisuresh and D. Gan. Load sharing using IP Network Address Trans-
lation (LSNAT). RFC 2391, Internet Engineering Task Force, August
1998. ftp://ftp.ietf.org/rfc/rfc2391.txt.

[46] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT)
terminology and considerations. RFC 2663, Internet Engineering Task
Force, August 1999. ftp://ftp.ietf.org/rfc/rfc2663.txt.

[47] P. Srisuresh, G. Tsirtsis, P. Akkiraju, and A. Hefferman. DNS exten-
sions to Network Address Translators (DNS ALG). RFC 2694, Internet
Engineering Task Force, September 1999. ftp://ftp.ietf.org/rfc/
rfc2694.txt.

[48] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden. A survey of active network research.
IEEE Communications Magazine, 35(1):80–86, January 1997.

[49] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
ACM, 23(1):31–42, January 1976.

126

[50] Carl A. Waldspurger and William E. Weihl. Stride scheduling: deter-
ministic proportional-share resource management. Technical Memo
MIT/LCS/TM-528, MIT Laboratory for Computer Science, June 1995.

[51] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner.
Scalable high speed IP routing lookups. In Proc. ACM SIGCOMM ’97
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 25–38, October 1997.

[52] Mark N. Wegman and Kenneth Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages
and Systems, 13(2):181–210, April 1991.

[53] John Wroclawski. Fast PC routers. Technical report, MIT LCS Advanced
Network Architecture Group, January 1997. http://mercury.lcs.mit.
edu/PC-Routers/pcrouter.html, as of July 2000.

[54] Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building
Internet Firewalls, Second Edition. O’Reilly and Associates, Sebastopol,
California, 2000.

127

