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Problem Set 1 Solutions

1. This code is trying to wait until something happens on file descriptor fd, or a signal is caught, whichever
comes first. It relies on the fact that Unix blocking system calls, including select, exit early when the
program receives a signal. Does this program work?

int fd;
int have_received_a_signal;
extern "C" int signal_handler(int signal_number) {

have_received_a_signal = 1;
}
int wait_for_signal_or_fd_activity() {

fd_set read_fds, write_fds, except_fds;
FD_ZERO(&read_fds);
FD_SET(fd, &read_fds);
write_fds = except_fds = read_fds;
if (have_received_a_signal)

return SAW_SIGNAL;
/* Race condition: A signal might occur right here! */
int retval = select(fd + 1, &read_fds, &write_fds, &except_fds, 0);
if (retval > 0 && (FD_ISSET(fd, &read_fds) || FD_ISSET(fd, &write_fds)

|| FD_ISSET(fd, &except_fds)))
return SAW_FD_ACTIVITY;

else if (retval < 0 && errno == EINTR) {
assert(have_received_a_signal);
return SAW_SIGNAL;

} else if (retval < 0)
/* Maybe the kernel ran out of memory */
return -1;

else
/* This should never happen! */
return WORLD_EXPLODING;

}

There’s a race condition: a signal might arrive after we check have_received_a_signal, but
before we call select (the boldfaced line above). If this happened, we might wait forever
even though a signal had already arrived.

The pselect system call can be used to avoid this deadlock, as follows.

int fd;
int have_received_a_signal;
extern "C" int signal_handler(int signal_number) {

have_received_a_signal = 1;
}
int wait_for_signal_or_fd_activity() {

fd_set read_fds, write_fds, except_fds;
sigset_t sigmask, original_sigmask;
FD_ZERO(&read_fds);
FD_SET(fd, &read_fds);
write_fds = except_fds = read_fds;
/* Temporarily block signals from arriving. */
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGUSR1); /* Repeat for other signals */
sigprocmask(SIG_BLOCK, &sigmask, &original_sigmask);
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/* Did a signal arrive already? */
if (have_received_a_signal) {

sigprocmask(SIG_SETMASK, &original_sigmask);
return SAW_SIGNAL;

}
int retval = pselect(fd + 1, &read_fds, &write_fds, &except_fds, 0,

&original_sigmask);
sigprocmask(SIG_SETMASK, &original_sigmask);
if (retval > 0 && (FD_ISSET(fd, &read_fds) || FD_ISSET(fd, &write_fds)

|| FD_ISSET(fd, &except_fds)))
/* Note: ’have_received_a_signal’ might be true here if a
signal arrived after pselect returned, but we still know
the file descriptor became active first. */
return SAW_FD_ACTIVITY;

else if (retval < 0 && errno == EINTR) {
assert(have_received_a_signal);
return SAW_SIGNAL;

} else if (retval < 0)
/* Maybe the kernel ran out of memory */
return -1;

else
/* This should never happen! */
return WORLD_EXPLODING;

}

Pretty horrible! Unix signals cause all kinds of concurrency problems and race conditions
like this. That should make you think. Several people suggested solutions for Problem 3a
based on upcalls, or callback functions activated directly by the kernel. Signals are a form
of upcall. Could you improve upcall semantics to avoid such race conditions, or are race
conditions inherent in the very idea of an upcall?

People also pointed out that fd should be checked against FD_SETSIZE, that not all signals
can be caught, that the operating system itself can’t say which event came first with total
precision, that you should add fd to except_fds to catch the case when fd is closed, and so
forth.

2. Asynchronous I/O lets us build fast servers, and additionally solves other problems just as a matter
of course. Sketch a deadlock scenario where a client and a server are communicating over a socket using
blocking I/O.

A classical, but subtle, deadlock is when the client pipelines many requests to the server
at the same time as the server sends a long reply to the client:

Client Server
write(server_fd, buffer, 20000); write(client_fd, buffer2, 20000);

The client’s send buffer will fill up because the server isn’t reading, and the server’s send
buffer will fill up because the client isn’t reading. Each process will block waiting for
space in its send buffer; that space would only materialize if the other process woke up
and read.

The lesson here is to remember to make writes asynchronous as well as reads, even if your
client and server are running on the same machine, and even if you wrote both client and
server (so neither is malicious).
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Many people came up with more-or-less convoluted scenarios involving reads, including
unreliable transport (a packet is dropped and both endpoints block on read), unexpected
lengths (the server sent back less data than the client expects, then waits for the next
request: both endpoints block on read), and so forth. The unreliable transport example is
arguably uncommon; programmers know what “unreliable” means and expect replies to
get lost.

Some people suggested a malicious client or server, but that isn’t really deadlock. Techni-
cally, deadlock should involve at least two blocked processes (or threads or requests), each
one waiting for a resource held by another. In the write scenario above, each process is
waiting for send buffer space that can only be freed by the other process. If a server hangs
waiting for data from a client, we say that the server is blocked; but there is no deadlock
unless the client is simultaneously blocked waiting for data from the server.

Here’s a fun scenario from Ryan Cunningham: Say the client wrote a request to the server,
then blocked to read the reply. I/O packages frequently buffer their writes to avoid excessive
system calls, however; the client must make sure to flush its write before reading, or the
server will never get the request. The C stdio library generally buffers its reads and writes,
but the straight read and write calls do not.

3a. Sketch a comprehensive design for an asynchronous I/O subsystem, including disks, or argue that one
of the current designs is best. Think about buffer management, event notification, the cost of system calls,
ease of use, and portability to application-level interfaces. (Many servers provide an I/O-like interface;
think of an HTTP server, which is basically open/read if you ignore POST. Could your design apply there
too?) Don’t be afraid to present something partially-baked, as long as it’s interesting and different.

Note: There were no “right” answers to Problem 3, so I’m not including explicit solutions.

One common suggestion was to have I/O system calls include a callback, which the kernel
would call once the I/O was complete. In some ways this is the obvious interface, but
there are some important details. When might the callback be called? At any time, or
only after select/poll? If the function might be called at any time, then you have all sorts
of concurrency issues. How might the user protect critical sections of code? If the function
might be called only after select or a similar system call, then the callback interface could
be implemented all at user level.

There were several suggestions that provided no way to cancel an outstanding I/O request.
Any call that queues a request for later processing should probably return a token that
can be used to control the request – to change its scheduling or cancel it, for example.
The conventional read/write asynchronous I/O calls don’t need to worry about this, since
requests are never queued. The POSIX aio_ calls use struct aiocb pointers as request tokens.

Also make sure you conside how many interface calls are required to complete a request
in the best case as well as the worst case. An asynchronous read of n bytes requires a best
case of one kernel-user crossing if the data is already in the buffer cache. However, it may
take O(n) crossings in the worst case, even with proper use of select/poll, if only one byte
becomes available at a time. The POSIX aio_ calls, and many of your solutions, require
2–3 kernel crossings in every case. Could you imagine combining the advantages of these
systems?
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