BrainCoqulus: A Formally Verified Compiler of Untyped Lambda Calculus
to Brainfuck

Thomas Lively
Harvard University

Abstract

We investigate compilation and verification tech-
niques for functional language compilers by devel-
oping and verifying BrainCoqulus, a compiler from
the untyped call-by-value lambda calculus to brain-
fuck. The input language is augmented only with
a simple output operation and a notion of input us-
ing encoded lists of Church numerals, and the out-
put language is assumed to conform to an idealized
but reasonable brainfuck semantics. BrainCoqulus
is constructed from layers of intermediate languages
including a stack machine language used to cross
from the functional to imperative paradigm. We
use forward simulation to prove that each transla-
tion between intermediate languages preserves pro-
gram semantics, and by transitivity that the entire
compilation preserves semantics.

Due to time constraints, we finished the end-to-
end implementation of the compiler in Coq but we
were not able to prove all of the compilation correct.

1 Introduction

Drawing on inspiration from previous work in ver-
ified compilers such as CompCert [4] that showed
that it is possible to implement a provably verified
compiler that works in realistic scenarios, we de-
cided to implement an esoteric compiler that despite
being verified (probably) should not be used in pro-
duction environments. BrainCoqulus is a compiler
from the untyped lambda calculus, a language first
introduced by Alonzo Church in his ”An unsolvable
problem of elementary number theory” [2], to the

Victor Domene
Harvard University

Gabriel Guimaraes
Harvard University

classic esoteric language brainfuck created by Ur-
ban Miiller [1]. Unlike other verfied compilers such
as CompCert, however, BrainCoqulus’ source lan-
guage is functional, which creates a host of new ver-
ification challenges.

We chose lambda calculus and brainfuck as our
source and target languages so we could focus on
the challenge of functional to imperative compila-
tion without getting bogged down by complex lan-
guages or large instruction sets, and also because it
sounded fun.

We implemented the whole compiler using the
Coq proof assistant and we proved parts of the com-
pilation correct. We were not able to prove the entire
compilation correct due to time constraints and we
leave that as future work for ourselves unless some-
one else fancies the idea of working on a lambda
calculus to brainfuck compiler.

The structure of this project is fairly simple. We
used three intermediate languages between lambda
Calculus and brainfuck forming a total of four lan-
guage translations. For each of these layers we have
a separate compilation routine and the final Brain-
Coqulus compiler is just the composition of these
four routines. The five languages we used are out-
lined below in the order of source to target language.

e untyped lambda calculus: a simple, call-
by-value semantics implementation of Lambda
Calculus with support for input and output.

e stack machine language (SML): a simple
stack machine, supporting operations such as
push, get, del, inc, out. More interestingly,
SML provides support for function calls with

the call primitive, as well as environment clo-
sures via the pack and unpack operations that
create tuples on the stack.

e jump stack machine language (JSML): a
stack machine with jump semantics, that is, the
programs can no longer call a function and ex-
pect to return to the call site. Instead, whenever
a function ends, if there is a function identifier
on the top of the stack, the machine will jump
to the corresponding function and continue its
execution.

e BFN: a shallow layer on top of brainfuck that
supports repeating commands N times. This
was mostly used as an experiment in our proof
and compilation strategy, but it is also useful
for writing brainfuck literals in the compiler.

e brainfuck: the well-known esoteric language,
and our final compilation target.

For each of the above languages, we implemented
a reference interpreter that defines the semantics of
the language in Coq. Using these interpreters we are
able to run programs in any of the above languages.
The correctness theorem for the compilation states
that each translation between languages preserves
semantics as defined by these interpreters. To pre-
serve semantics, each translation must ensure that if
the input program would terminate with a given out-
put, then the output program is guaranteed to also
terminate with the same output. This relationship
is transitive, so if it can be proven for each trans-
lation between intermediate languages, it can easily
be proven for the overall compilation by composing
the proofs.

Throughout the project, we attempted to keep the
languages as primitive and simple as possible so we
would be able to prove the correctness of the com-
pilation with the fewest number of steps.

1.1 Trusted computing base

The following are in our trusted compute base:

e The reference interpreters for lambda calcu-
lus and brainfuck, which together comprise the
specification of the semantics that need to be
preserved during translation.

e The lambda calculus parser. If the parser
parsed all lambda calculus programs as the
identity function then it would be trivial and
meaningless to prove the correctness of the
compiler.

e The Coq proof assistant itself and the compi-
lation chain used to produce a final executable
from the Coq project.

e The runtime used to execute the brainfuck pro-
grams produced by our compiler. If its execu-
tion semantics do not exactly match those of
the compiler’s reference brainfuck interpreter
then the compiler’s correctness guarantees do
not hold.

2 Contributions

We have implemented a full compiler from untyped
lambda calculus to brainfuck, passing through 3 in-
termediary languages. We have a full proof in Coq
that the BFN to BF translation is correct and we
have a preliminary proof that the JSML to BFN
compilation is also correct. Unfortunately we have
never run our compiler end to end. We are able
to run each step of the compiler separately, but we
get a stack overflow in Coq whenever we try to run
the full compiler on the simplest identity function.
We estimate that the identity function gets compiled
to something on the order of 10* brainfuck instruc-
tions, which Coq is not able to handle in our current
environment. We suspect that exporting the Coq
code to OCaml might alleviate the stack overflow is-
sue. Regardless, stack overflows in Coq are merely
a quality of service issue, so they have no bearing
on the correctness of our compiler.

3 Definition of correctness

BrainCoqulus’ main correctness theorem is given
in Figure 1. As can be inferred from the
theorem, the functions interpret_lambda and
interpret_bf define the semantics of the lambda
calculus and brainfuck, respectively. Since both ref-
erence interpreters are implemented in Coq, both
are required to provably terminate. Since it is possi-
ble to write divergent programs in both lambda cal-

Theorem compile_correct
forall (1

lambda) (input output

list nat),

(exists fuel, interpret_lambda 1 input fuel = Some output) ->
(exists fuel, interpret_bf (compile 1) input fuel = Some output).

Figure 1: The main correctness theorem for BrainCoqulus

culus and brainfuck, we introduce a fuel argument
to the interpreter functions. On each step of the in-
terpreter, the fuel argument is decreased, and if it
reaches zero the interpreter stops and the execution
is considered unfinished. Given any lambda calcu-
lus or brainfuck program and an input, there exists
some fuel that makes the reference interpreter finish
and return the program’s output if and only if the
program terminates on that input. This leads to the
functional correctness property given by the theo-
rem above. Note that we make no guarantees about
the behavior of the compiler’s output if it is given
input that would cause the input program not to ter-
minate.

In order to modularize the compiler and the proof
of correctness, we implemented interpreters defin-
ing the semantics of each of our intermediary lan-
guages as well. Proving the above correctness the-
orem amounts to proving similar theorems for each
of the translations between intermediate languages
in the compilation pipeline.

4 Reference languages

The meaning of correctness in BrainCoqulus de-
pends on the semantics of both lambda calculus and
brainfuck, so the reference interpreters for both of
these languages form part of the trusted specifica-
tion of the compiler. In both of these interpreters, a
program’s input and output are sequences of natu-
ral numbers. To simplify the correctness property
of the compiler, a program’s input is specified in
full before execution, i.e. the program is determin-
istic. In addition, the program is only considered
to have produced output if it terminates. The com-
piler makes no guarantees about the behavior of pro-
grams that do not terminate.

4.1 Lambda calculus with output

The lambda calculus used as the input language is
the untyped call-by-value lambda calculus with the
addition of an output operator, A, that generally be-
haves identically to the identity function. The differ-
ence is that when the output operator’s subterm is o-
equivalent to a Church numeral representing n, n is
appended to the output sequence. Lambda calculus
programs are lambda terms that are applied at exe-
cution time to the term encoding the input as a list of
Church numerals. ! Since this list and number en-
coding is part of the semantics of the language, they
cannot be determined by the user. Although there
are infinite ways to encode lists and numbers in the
untyped lambda calculus, the canonical encodings
used in our compiler are given in Figure 2.

The implementation of the lambda calculus ref-
erence interpreter in Coq is simplified by parsing
lambda calculus programs into a representation us-
ing de Bruijn indices [3]. In this representation,
lambda calculus variables are no longer associated
with identifiers but rather with numbers identifying
how many nested lambdas ago this variable was in-
troduced into the context. Although parsing pro-
grams into the representation puts more code into
the trusted lambda calculus parser, it is worth the
corresponding simplification of the trusted lambda
calculus reference interpreter.

4.2 brainfuck

There are many possible semantics for brainfuck
[1], but the core language is well established. Like
a Turing machine, a brainfuck program has a tape
and a single pointer into the tape. All of brainfuck’s

Tt would be possible and in some ways more intuitive to
have lambda calculus programs evaluate to the encoded list
of Church numerals corresponding to their output, so we may
change to this model in the future. This would allow us to re-
move the non-standard output operator.

ZERO £ A f Ax.x

SUCC = AnAfAx.f (n f x)

TRUE £ Ax.Ay.x
FALSE £ Ax.Ay.y

NIL £ A f.TRUE (Ax.x)
CONS £ Aa.ALAf.FALSE (Af.f al)
ISEMPTY £ A[.I TRUE
HEAD £ A1.l FALSE TRUE
TAIL £ A1.I FALSE FALSE

Figure 2: canonical lambda calculus encodings

eight operations involve this pointer and are given
in Table 1. The part of the semantics where imple-
mentations vary is how large the tape is, what the
wrapping behavior is at the tape boundaries if they
exist, and similarly what values cells on the tape can
hold and how they wrap when incremented or decre-
mented.

Since there is so much variability anyway, and to
reduce the the impedance mismatch between the in-
put and output languages as much as possible, we
use an idealized version of the Brainfuck seman-
tics. While most Brainfuck interpreters use fixed-
size cells and many use fixed-size arrays, our ref-
erence Brainfuck interpreter uses an infinite array
of natural numbers, or in other words it represents
memory as a function N — N. Moving left off the
end of the tape and decrementing a 0 valued cell
are both no-ops in our semantics. Another choice
we made for the brainfuck semantics is to make the
read input operator (,) write a zero to the current cell
when there is no input available. This means that
the input sequence is not allowed to contain zeros
so that the end of input can be detected and acted
upon.

Not only is the execution model of brainfuck
completely different from that of lambda calculus,
the way it handles input is also different. In the
lambda calculus semantics input is materialized all
at once as an encoded list of numbers at the begin-
ning of execution, but in brainfuck the input is part
of the execution state and is made available to the

program on demand at any point in the execution.
This means that at some point during the compi-
lation we need to inject startup code that reads all
of the available input and encodes it on the tape in
such a way that the compiled program cannot tell it
wasn’t there immediately at the beginning of execu-
tion. This code is injected in the form of a runtime
library written in stack machine language (SML),
the first intermediate language in BrainCoqulus.

5 Intermediate languages

In this section, we describe in detail the semantics of
all intermediate languages used in the compilation
process.

5.1 SML

We use a stack machine to bridge the gap between
functional and imperative code, and we refer to our
stack machine language as SML, not to be confused
with Standard ML of New Jersey. Each unique
lambda subterm within a program is associated a
function identifier that can be used to locate the
SML translation of its body in a function table.
Function IDs also allow functions to be represented
by simple natural numbers on the stack. Although
each lambda subterm only introduces a single new
argument that can be used in its body, a nested
lambda subterm has access to a number of argu-
ments equal to its nesting depth. We need a way to
package a function and its environment into a single
item on the stack, since such closures can be passed
around as arguments to other functions or closures.
To accomplish this packaging we introduce a notion
of tuples into SML.

A Stack is defined as essentially a list of items,
where each item can be either a single natural num-
ber, or a tuple. Unfortunately Stack had to be de-
fined as an inductive type instead of as a list because
defining it as a list made it impossible to prove that
the SML step function terminated, as described be-
low. The SML specification allows the following
commands: push n, which pushes a natural num-
ber to the top of the stack; get n, which copies
the n-th item in the stack to the top of the stack;
del n, which removes the n-th item in the stack;
pack n, which packages the top n items on the

Move pointer one space right

Move pointer one space left

+{A|V

Increment value at pointer

Decrement value at pointer

, | Set value at pointer to next input value

Output value at pointer

[| If value at pointer is 0, skip to instruction after matching |

| | If value at pointer is nonzero, loop back to matching [

Table 1: brainfuck operators

stack into a tuple; unpack, which expands the tu-
ple at the top of the stack into its individual entries
or does nothing if the top of the stack is a number;
cond_get n k, which is like get n if the top of
the stack is a 0 and like get k otherwise; call,
which calls the function corresponding to the func-
tion identifier on the top of the stack; inc and dec,
which increase/decrease the number on the top of
the stack by 1; out, which outputs a natural number
on the top of the stack; and read, which takes an
input from the environment and puts it on the top of
the stack. Just as in our brainfuck semantics, read
pushes a 0 onto the stack if there is no more input.

The semantics of call are that the item at the
top of the stack is recursively unpacked until it is
a number instead of a tuple. Then that number is
taken to be a function ID and consumed as the inter-
preter jumps into the corresponding function body.
This means that when a tuple comprised of argu-
ments followed by a function ID is at the top of the
stack, the call operation will expand that tuple and
at the beginning of the function body the arguments
will all be available at known stack indices. This is
exactly how closures are implemented in SML. The
recursive unpacking step is why the stack must be an
inductive type, since it can add an arbitrary number
of items to the stack, and it is not possible to create
measure function to prove this operation terminates
if the stack is a list.

5.2 JSML

Given the specification of SML, we realized that im-
plementing the semantics of call directly in Brain-
fuck would be a very difficult task, since there is no
way in brainfuck to record the location of and return
to the call site of a function. We considered solv-

ing this problem by translating the lambda calculus
to continuation passing style before lowering it to
SML, but that did not work because that translation
introduces a new function application that would
need to be able to return to its call site. So instead
we created a new intermediate language, the jump
stack machine language (JSML).

JSML is essentially the same as SML.: it supports
all of its primitives, with the exception of call. A
JSML program will execute all commands similarly
to a SML program, but whenever a function finishes
its execution, if there is a function identifier on the
top of the stack, the JSML runtime will implicitly
Jjump to the corresponding function and continue its
execution. As we will later see, this can be imple-
mented in Brainfuck in a straightforward manner:
the execution becomes essentially a while loop with
a switch statement, jumping into the correct func-
tions and repeating the process until termination,
which is signaled by the function identifier 0.

5.3 BEFN

BFN is a shallow layer on top of brainfuck
that allows typical brainfuck commands to be re-
peated a fixed number of times. Thus, instead of
writing the cumbersome >>>>>>>> 4 + 4 +
+ << <L <L, we could write something simi-
lar to (8 >)(5+)(8 <). While we could have com-
pleted the compiler without this intermediate step, it
did serve as an effective proving ground for gaining
insight into how the other intermediate languages
could be implemented and proven correct.

Perhaps unsurprisingly, writing code in BFN
was much more pleasant than directly dealing with
brainfuck. In many cases the number of repeated
commands was dependent on the BFN implemen-

tation of the JSML stack. As we iterated on that
implementation, we were able to update all of the
BFN stack widgets by simply modifying constants
such as KELL_SIZE instead of manually changing
the number of repeated commands.

6 Compiler overview

Having discussed the semantics of each language
used in the BrainCoqulus compilation process, we
can now discuss the translations between those lan-
guages.

6.1 Lambda calculus to SML

The translation from lambda calculus to SML is rel-
atively straightforward. At the beginning of a func-
tion body the stack is known to contain all the vari-
ables in that functions environment, which is equal
to its nesting depth. Therefore the stack depth of
variables can be computed from their de Bruijn in-
dices to translate them into get operations. The
translation of function applications of e; to e, first
translates e; to get its value on the stack, then trans-
lates e; to get its value, which is a closure or func-
tion, on the stack, then appends a call operator
to perform the function call. The translation of a
lambda term appends the translation of its body to
the function table then pushes its function ID onto
the stack. Finally, the translation of the lambda cal-
culus output operator assumes the the top of the
stack is corresponds to a Church numeral 7 and ap-
plies that Church numeral to the special function inc
and 0 and then applies the out operator. inc is a
function that consists only of the inc operator, and
is part of the SML runtime library so it is always
available to the translation. The result of this low-
ering is that the O gets incremented n times then ap-
pended to the output stream, as desired.

Note that already in the first intermediate lan-
guage we have switched from the lambda calculus
notion of input and output to that of brainfuck. This
combined with the fact that SML is the highest level
of our intermediate languages make it the best place
to inject startup code to read and encode the pro-
gram input. The SML runtime library contains the
SML translations of the canonical lambda calculus

functions, which it calls to properly encode the in-
put. While there is still input remaining, it reads one
input value, converts it into a church numeral us-
ing the translations of ZERO and SUCC, then appends
that church numeral to an encoded list by calling
the SML translation of CONS. Once it has finished
encoding the input, the runtime calls the translation
of the lambda calculus program to execute the pro-
gram.

6.2 SML to JSML

All commands are compiled from SML to their ex-
act JSML counterpart, with the noticeable exception
of the call primitive. This makes most of the trans-
lation trivial, but the scheme for allowing call se-
mantics without a return address or return instruc-
tion requires some ingenuity.

push g push g
call push f1
push 5 get 1
out del 2
del O

push 7
push 7 out
out del O
del O

push 5

out

del O

Figure 3: SML code and the corresponding JSML
translation

For concreteness, consider the SML program and
its translation into JSML in Figure 3. Effectively,
the compiler iterates over all functions f in the orig-
inal SML program (the main function as well as ev-
ery function in the function table) and splits them
into two functions: a “pre-call” (fp) and a “post-
call” (f1). Since other functions in the SML pro-
gram can call f and will do so by its identifier, we
maintain the mapping of function calls by assign-
ing the same function identifier of f to fy. Notice
that if g had a call statement within it, it would
also be split into two functions, but the “pre-call”
would still correspond to the g function identifier.

bfn_right offset (bfn_loop (bfn_dec 1
(bfn_right move (bfn_inc 1 (bfn_left
move bfn_end)))) (bfn_left offset
bfn_end))

Figure 4: brainfuck snippet that copies a cell.

Finally, we inject a small snippet of JSML code into
fo that pushes the function identifier of f] as the sec-
ond item on the stack (using get and del). When
the JSML runtime reaches the end of the execution
of fy, there will be a function identifier to g, the
function that was originally called by f. After that
function finishes its execution, the next value on the
stack will be the function identifier of fj, and the
runtime will jump to it. This emulates the behavior
of call semantics within JSML.

Notice that it is absolutely essential for correct-
ness of JSML translation that the functions called,
in this case g, do not leave any remaining state on
the stack. This is guaranteed by the translation from
Lambda Calculus to SML: any program that we will
be dealing with is guaranteed to clean up after its
arguments, removing them from the stack when ap-
propriate.

6.3 JSML to BFN

Arguably, this was the most bizarre part of our
project. We spent hours debugging brainfuck code
that implemented a very specific stack machine, de-
fined by the JSML semantics.

6.3.1 Writing brainfuck code in Coq

In this part of the project, we actually had to write
brainfuck code simulating the stack machine sup-
ported by JSML. Initially, we were writing brain-
fuck code directly in Coq: we wrote code as an AST,
which would be executed via our BEN interpreter in
Coq itself. Debugging brainfuck in these conditions
was difficult to say the least. We found ourselves
staring at snippets of code with hundreds of brain-
fuck instructions and ASTs like the one in Figure
4

Thus, to actually write code in a friendly en-
vironment, we wrote another brainfuck interpreter

in Python and wrote all of our brainfuck code in
that environment as Python strings. Once we were
reasonably certain of the correctness of our brain-
fuck code, we wrote a Python routine that compiled
Python strings into Coq AST definitions of brain-
fuck code to automate the process of getting the
brainfuck programs back into Coq.

6.3.2 JSML Stack as a brainfuck Tape

The primary design decision when compiling
JSML to BFN is deciding how to represent the
JSML stack in a brainfuck tape. The basic data
unit is what we call a “kell”: a group of con-
tiguous brainfuck cells. Initially, a kell consisted
of only two cells, corresponding to a fag and
a value. In that context, we would represent
the stack containing 42,(21,84) as follows:
(0,.)(1,42)(0,_)(2,21)(1,_)(2,84) (0,).
A kell with a tag of 0 is always a separator between
two stack items, which can be either a single natural
number or a tuple. The value of a separator kell
is unused (represented as an underscore). The
separator kells are essential to the stack semantics
for two reasons: i) they allow us to seek to previous
stack items in a straightforward manner by simply
looking at the tags until we reach a zero; ii) they
allow us to implement tuples.

An item that is a single natural number n will be,
then, of the form (0, _) (1,n). Within a single tu-
ple, the separator between subitems in the tuple is
of the form (1,_), and the kell of a natural number
n in the tuple is (2,n). With nested tuples, we sim-
ply increase the tag values, so that within k nested
tuples the outermost tags are k+ 1 and the separa-
tors are k. Therefore, the stack containing only the
tuple (42,(21,84)) is simply

(0,.)(2,42)(1,.)(3,21)(2,.)(3,84) (0,_)

As we started implementing the JSML seman-
tics in brainfuck, we realized that we would need
a notion of registers, or temporary space to perform
computation. An if-else statement, for instance,
can only be executed in brainfuck with additional
scratch space available. Furthermore, to implement
operations such as get n and del n, we needed to
keep coming back and forth between positions on

the brainfuck tape, and we did not have a way to
know where to go back to. To address these two
issues, we increased the size of a kell to four brain-
fuck cells. Thus, the final design of a kell includes
a tag, idenitifying items and implementing tuples;
a value, corresponding to the actual number on the
stack; a mark, corresponding to a temporary value
used to seek between kells; and a scratch space,
used primarily for copies and if-else statements.

6.3.3 JSML Operations

Pushing an item n onto the stack involves adding
two contiguous kells, containing (0,0,1,0) and
(1,n,1,0) respectively. As explained in the previ-
ous section, the first kell, with tag 0, indicates the
beggining of an item: it is the separator between
items. The second kell, with tag 1, indicates an item
at depth one, or equivalently a natural number. Note
that both of them are initialized with empty scratch
space and 1 for the marked cell. In brainfuck, it is
much easier to seek to the first zero cell than it is
to seek to the first non-zero cell; therefore, we call
kells with a 1 in the third cell unmarked, and kells
with a 0 in the third cell marked.

In order to implement get n and del n, we first
identify which item needs to be copied or deleted,
respectively. Recall that an item in SML is either
a natural number or a tuple of items. We are able
to seek to items on the tape by looking for kells
with tag value 0, which always signify the begin-
ning of an item on the stack. Once we find the de-
sired item, we use the mark cell to mark it as places
we would like to seek back to. Since we are delet-
ing or copying kells on the tape and these operations
are destructive in brainfuck, we cannot rely on the
tag value for seeking. This is when the mark cells
and scratch spaces come into play. We keep moving
back and forth using the marked cells until the en-
tire item has been deleted or copied to the top of the
stack.

A few of the operations, such as inc, out, read
and dec are trivial implementations in brainfuck.
It suffices to seek to the value cell within the kell
at the top of the stack and perform the correspond-
ing brainfuck operation. For pack n, the stack was
designed so as to make this operation as simple as
possible: it entails simply increasing the tags of the

previous n items on the stack.

Finally, for unpack and cond_get, we needed
some notion of control flow. For cond_get n k,
this is obvious: if the value at the top of the stack is
0, we want to perform get n, and we want get k
otherwise. For unpack, we seek to the last item on
the stack, and we want to decrement the tag val-
ues only if the current tag value is greater than 1
(namely, if we have a tuple). The actual implemen-
tations of these operations is trivial once we have an
if-else construct. We implemented these seman-
tics: the if-else(nonzero, zero) block copies
the kell’s value to the scratch space, and if it is O,
it executes zero; it performs nonzero otherwise.
The construct expects nonzero and zero to move
the brainfuck tape pointer to the top of the stack at
the end of their execution. Finally, the value on the
scratch spaces after an if-else execution is unde-
fined, and therefore it must be zeroed out before be-
ing used.

6.3.4 Implementing Jump Semantics

The compiler takes in a main JSML function, as
well as a function table that will be used through-
out the program execution. In brainfuck, there is
no way to directly force a jump into code section;
the code pointer is followed almost entirely in a lin-
ear manner, with the exception of the loop construct.
This is the only way to simulate function calling in
brainfuck.

Function switch fn_table :=

match fn_table with

| [1 => stack_top

| hd :: t1 =>

if_else_val (bfn_dec 1 (switch tl))

(bfn_left 1 stack_top & del 0 &
bfn_of_jsmp hd & stack_top)

end.

Figure 5: switch statement in brainfuck implement-
ing function calls

After executing the main function, the compiled
brainfuck code enters a while loop whose body is
effectively a switch statement (Figure 5). To find
the appropriate function to execute, the body of the

switch statement works as follows. Suppose the
function identifier at the top of the stack in n. In the
switch statement, if the top of the stack is non-zero,
then decrease it and fallthrough to the next if state-
ment; if it is 0, then delete the function identifier and
jump into a particular function (which correspond to
the function identifier n in the original JSML func-
tion table). The while loop will terminate when the
function identifier at the top of the stack is 0, which
signifies the end of the program.

6.4 BFN to Brainfuck

The implementation of this step was trivial: we sim-
ply compiled every command like (8 >) into 8 re-
peated > symbols. However, proving the correctness
of this translation was not so trivial, as discussed in
the next section.

7 Proof Strategy

Our original proof strategy was to simply prove
each translation correct however seemed best. But
when we struggled to prove the trivial BEN to BF
translation correct, it became clear that we needed
a more deliberate approach. Since the semantics
of each of our languages was already represented
with interpreters that repeated step functions from
execution state to execution state, the obvious proof
method was forward simulation.

7.1 Forward Simulation

To prove translations correct with forward simula-
tion, we first need to find and define a relationship
between execution states of the source and target
languages that holds for the initial states of both lan-
guages when given the same input. When the source
language program takes a step from a state where
the relation holds, it must be proven that the target
language program that was the result of translating
the source program takes some number of steps to
make the relation hold again. Finding such a rela-
tion is enough to prove that no matter how many
steps the source language program takes, its trans-
lation takes enough steps to maintain the relation.
If the relation enforces that the state of the outputs
in the source and target programs are the same, then

the correctness proof for the translation follows triv-
ially.

The relationship between BFN execution states
and their corresponding BF execution states is that
they are the exact same except all of the BFNs in the
execution state are translated to BFs. Since one step
in BFN corresponds to one step in BF, this was easy
to prove and from that relation it was easy to prove
that the output was always the same. However, this
was the only translation we have been able to prove
so far. We believe that the forward simulation struc-
ture will work for proving the other translations, but
finding the relations between the execution states of
the other languages is much more difficult.

7.2 Pre-Conditions and Post-Conditions

Each compilation step expects the previous layer to
output programs with a given format. This could
be formulated in terms of pre-conditions and post-
conditions. For instance, the JSML layer expects
that a program compiled from lambda calculus to
SML be such that it does not leave extraneous argu-
ments on the stack, i.e., it cleans up after its argu-
ments after the execution. This is, indeed, enforced
by the SML compilation step, and it is much of the
reason why we can implement jump semantics the
way we did in Section 6.

Another example of this type of requirement is
the fact that JSML to brainfuck compilation expects
that the function with identifier equal to 0 indicates
the termination of the program, instead of being
possibly called during code execution. This allows
brainfuck to determine termination.

In BrainCoqulus, the approach taken was to prove
lemmas about the output of each intermediate layer.
It is possible that introducing some sort of ghost
state or assertions within the program itself would
have been easier to manage in terms of proofs. In
particular, it seems like something that an auto-
mated prover such as Dafny could verify, reducing
the verification burden when compared to what must
be done in Coq.

8 Conclusion and Future Work

Writing a verified compiler for an esoteric language
has proved to be quite challenging and fun. The

largest challenges have been: i) the bridge between
the functional and imperative worlds in the lambda
calculus to SML layer, ii) in particular implement-
ing a runtime in SML that converts the input list into
a list encoding of Church numerals, iii) the imple-
mentation of a stack machine in brainfuck for the
SML to BFN layer, and iv) proving any of the lay-
ers correct using Coq.

For future work, we leave the obvious task of fin-
ishing the verification of all parts of our compila-
tion pipeline. It is also possible to make the com-
piler aware of more types of data structures and con-
trol flow idioms to further optimize the output. Fur-
thermore, future work can also include optimization
passes on brainfuck itself, to simplify the code gen-
erated from lambda calculus. Optimization passes
to decrease the size of the generated brainfuck code
are crucial for our compiler to be usable in more
realistic scenarios As noted before, the current ver-
sion of BrainCoqulus generates over 10,000 brain-
fuck instructions for the simplest of lambda terms.

References

[1] brainfuck. https://esolangs.org/wiki/Brainfuck.
Accessed: 2017-5-8.

[2] CHURCH, A. An unsolvable problem of elementary num-
ber theory. American Journal of Mathematics 58, 2 (Apr.
1936), 345-363.

[3] DE BRUIIN, N. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with
application to the church-rosser theorem. Indagationes
Mathematicae (Proceedings) 75, 5 (1972), 381 — 392.

[4] LErOY, X. Formal verification of a realistic compiler.
Commun. ACM 52,7 (July 2009), 107-115.

10

