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Abstract

Software Transactional Object (STO) is a novel, ef-
ficient software transactional memory system that
leverages data types to avoid false conflicts and
reduce bookkeeping effort, significantly improving
the performance of existing software transactional
memory systems. We formally verify the correct-
ness of STO’s commit protocol in Coq, an interac-
tive proof assistant. We use serializability as the cor-
rectness condition: we first model the execution of
STO transactions as a trace, and then prove that for
all STO traces, there exists a serial trace, one that
groups all actions of a transaction together and ex-
ecutes one transaction at a time, that produces the
same externally-visible effects on the system as its
original STO trace, one that have actions of transac-
tions interleave with each other. Although we have
made several assumptions and simplifications in our
proofs, this work demonstrates the viability to for-
mally machine-prove STO and is the first to do so.

1 Introduction

Transactional memory is an appealing alternative
to lock-based synchronization mechanisms. It pro-
vides in-memory operations with transaction ab-
straction analogous to database systems. In order
to provide high performance, software transactional
memory implementations such as [7, 9, 31] explore
different optimization strategies, forcing intricate
conflict management schemes. It thus becomes vi-
tally important to verify the correctness of these al-
gorithms.

In this work, we aim to verify in Coq [1] the cor-

rectness of a particular software transactional mem-
ory system, namely STO [19]. Instead of verify-
ing that its C++ implementation is correct, we ver-
ify the algorithm of STO’s commit protocol is cor-
rect. While opacity [15] is deemed as a better candi-
date of correctness criterion for transactional mem-
ory, for the purpose of this project, we only verify
that STO’s commit protocol guarantees serializabil-
ity [11]. We model the execution of STO in Coq
with traces, and prove serializability using them. To
this end, we prove that all traces generated by the
modeling are serializable. In particular, a trace is
serializable if there exists an equivalent serial trace
(section 3) that has the same execution effect as the
original trace.

We make the following simplifications in our
modeling. First, while the real STO provides
many transactional data types that support com-
mon data type interfaces (e.g., indexing for arrays,
push back for vectors, and insert for red black
trees), in our modeling we assume that STO trans-
actions only access one variable with one associated
lock, and that this variable can be accessed only by
read and write operations. Second, we relax STO’s
abort conditions by allowing transactions to abort at
any point before they decide to commit. This is in
contrast to the real STO specification that has strict
abort conditions. Third, we do not model STO’s
bounded spinning in the lock phase of the commit
protocol.

We also simplify our proof goal. To prove that the
equivalent serial trace of a trace has the same execu-
tion effect, normally we need to show that the corre-
sponding read and write operations of the two traces
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are the same. In this project, we only show that the
equivalent trace preserves all actions and their order
in a transaction as the original trace. This property
implies that the corresponding read and write oper-
ations of the two traces are the same, but imposes
less proof burdens.

We introduce a concept of ghost phase
and an intermediate form of traces called
committed unconflicted STO trace (CUST) to
further facilitate our proof strategy.

Ghost phases represent the stage in which a trans-
action resides during any point of its execution. For
example, when a transaction just gets started, it is in
a starting phase, meaning that it has made no im-
pact on the overall system yet but its existence is
known to the system. On the other hand, a trans-
action in a commit phase will globalize its changes
to the system by making them externally visible to
other transactions. Ghost phases help simplify proof
conditions by allowing transactions to only move
forwards along the phases. That is, once a trans-
action transitions to a new phase, it cannot return
back to its older phases. Although ghost phases are
involved in some computation, they do not affect the
externally visible state of a machine.

In a nutshell, our proof strategy consists of three
phases. In the first phase, we prove that given any
STO trace, there exists an equivalent CUST. The sec-
ond phase involves proving that given any CUST,
there exists an equivalent serial trace. The last phase
makes sure that our construction of a serial trace
is correct. That is, the resulting serial trace, as we
call it, is indeed serial. By transitivity, the first two
phases show that there exists a legal transformation
that transforms any legal STO trace to an equivalent
serial trace, and since the third phase demonstrates
that a serial trace generated from such a transforma-
tion is indeed serial, we show that a STO trace is
serializable.

To the best of our knowledge, our work is the
first to verify the correctness of the STO transac-
tional memory using the Coq proof assistant. We
make the following contributions in this work: (1)
a trace-based approach to modeling the execution
of a transactional memory, (2) a machine-checked
proof of serializability of a transactional memory.
The first contribution also allows us to prove other
properties about STO beyond serializability.

The rest of the paper is organized as follows.
Section (2) discusses related work. Section (3) in-
troduces our modeling approach. Section (4) de-
tails our proof strategy. Section (5) discusses future
work, and Section (6) concludes.

2 Background

STO (Software Transactional Objects) is a software
transactional memory. STO provides high perfor-
mance by leveraging semantics of data types. In-
stead of having a generic commit protocol, STO
delegates part of the commit protocol implemen-
tation to each specific data type. Being aware of
type semantics, each data type can exploit commu-
tativity and other properties to reduce bookkeeping
information and false conflicts, thus implementing
its part of the commit protocol efficiently. How-
ever, we unfortunately do not model all data types in
our work. We only model the TBox<int>type and
assume all transactions only access one variable of
this type.

Serializability is an important property in proving
the correctness of transactional memory. It requires
that all committed transactions in a schedule issue
the same requests and receive the same responses
as a serial schedule that consists of precisely the
committed transactions in the original schedule. Al-
though serializability is the most commonly used
correctness condition for database transactions, it
is not sufficient for transactional memory transac-
tions. In particular, it does not specify behavior
regarding aborted transactions and aborted transac-
tions can cause irrecoverable errors for transactional
memory. Opacity addresses this issue by further re-
quiring that transactions abort as soon as they ob-
serve any inconsistent state. While STO does pro-
vide opacity, for the sake of simplicity, we only use
serializability as the correctness condition.

Our use of the concept of ghost phase in the in-
duction type action phase (section 3) is inspired
by the use of ghost in many formal verification lit-
erature [18,24,35–37] Unlike most of those systems
that use ghost variables/states only for verification,
not execution, but similar to Verdi, a framework that
formally verifies distributed systems, our system in-
cludes ghosts in our execution but does not affect

2



STO Verification
the externally visible trace.

3 Definitions

Our first step is to prove serializability of a low
level implementation of STO that concerns only one
memory location. We mandate, for ease of con-
structing proofs, that only two memory-related op-
erations are allowed on the location: reading and
writing a value. We use an inductive type action

(Appendix A) that describes all possible operations
within a transaction. At the same time, we also
introduce action phase(Appendix B) that incor-
porates a phase variable of type nat to each ac-
tion, whose main purpose of existence is to sim-
plified later proofs. The latest action of a transac-
tion determines the phase in which the transaction
is. However, unlike the common concept of “ghost
variables” [24] used in formal verification ( sec-
tion 6), this phase variable is involved in execution,
although it does not affect externally visible STO
traces. We call this semi-ghost variable ghost phase.

Each ghost phase encodes a stage of a transac-
tion in a STO trace. Specifically, when a transac-
tion is in Phase I, it is free to perform reads and
writes on the memory location. Once it is ready
to commit, it transits to Phase II, during which it
also locks its writes if it has performed any writes
in the previous phase. Phase III is where a trans-
action leaves its mark on the trace; it contains a
seq point action that records the order of all the
transactions in a trace when the trace is serialized.
A transaction also validates its reads in this phase
after the seq point action. In Phase IV, a trans-
action uses commit txn action to broadcast its in-
tention to commit, and globalizes its writes using
complete write item action. If every action of
the transaction so far proceeds with no conflict with
that of other transactions, it declares its completion
through the commit done done action. However, if
at any point a conflict arises, the transaction directly
transitions to Phase VI and aborts itself via the
abort txn action. In addition, if a transaction to be
aborted holds a write lock, it must also explicitly re-
lease its lock through the unlock write item ac-
tion, the only other action in Phase VI. A commit-
ted transaction automatically releases its write locks

when the commit is completed. We simplify our
reasoning and proof burden by allowing a transac-
tion to abort at any time, even when no conflicts
have occurred.

In reality, many transactions execute simultane-
ously, each one having its actions (possibly) inter-
leave with those in other transactions; we define a
trace to be a list of actions in all undergoing trans-
actions. When a transaction executes an action, we
append the action, along with the ID of the transac-
tion, to a trace. An example trace with four transac-
tions would look like this

[(4,read item1);(3,commit donetxn);

(3,commit txn);(4,start txn)

(3,validate read item1);

(3,seq point);(3, try commit txn);(3,read item1);

(3,start txn);(1,abort txn);(1,validate read item1);

(1, try commit txn);(2,commit done txn);

(2,complete write item1);

(2,commit txn);(2,validate read item0);

(2,seq point);(2, lock write item);

(2, try commit txn);(2,write item4);

(1,read item0);(2,read item0);

(2,start txn);(1,start txn)]

Note that since we append actions to the front of
the list, the first element in the list is actually the
last action of the trace.

When the sequence of actions in a trace follows a
set of transactional-memory-specific rules, we call
such a trace a STO trace. In Coq, we use an induc-
tive type sto trace (Appendix C) to generate legal
STO traces, following the rules of software trans-
actional memory STO. We explain what constitutes
a legal STO trace by describing the inductive type
sto trace in detail in subsection 3.1.

We define a serial trace to be a trace that groups
together all actions in the transactions that commit-
ted successfully. For example, a serial trace of the
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above example trace would be

[(3,commit donetxn);(3,commit txn);

(3,validate read item1);

(3,seq point);(3, try commit txn);(3,read item1);

(3,start txn);(2,commit done txn);

(2,complete write item1);

(2,commit txn);(2,validate read item0);

(2,seq point);(2, lock write item);

(2, try commit txn);(2,write item4);

(2,read item0);(2,start txn);

We can see from the above example that only
committed transactions (i.e., transaction 2 and 3) are
included in the serial trace. Actions that belong to
the aborted transaction (transaction 1) and the un-
finished transaction (transaction 4) are all removed
from the serial trace.

We introduce an inductive type
committed unconflicted sto trace Ap-
pendix D as an intermediate stage between
the original STO trace and its serial trace.
committed unconflicted sto trace removes
aborted and unfinished transactions and contains no
read-write conflicts (i.e., it only contains committed
transactions). However, it does not require actions
in the same transaction to be grouped together
(as does a serial trace). We find that having this
intermediate stage significantly lessens our proof
burden.

We computationally create serial traces from
CUSTs instead of generating them inductively. To
generate a serial trace from a CUST, we iteratively
swap actions within a trace until no more legal
swaps are available. subsection 3.3 describes the
mechanism in detail.

3.1 Creating STO Traces

We will explain in this section each action in
sto trace. Please refer to Appendix C for the cor-
responding Coq code.

The empty step is the base case in our inductive
type; we construct our STO trace from an empty list.

The start txn step signifies the inception of a
transaction. To create a transaction in a STO trace,

one must give a valid tid to the transaction. That is,
tid must be greater than zero and unique. We make
sure that the transaction tid is unique by checking
the phase of a transaction with a given tid. We de-
fine a function trace tid phase that returns the
ghost phase of a transaction, or 0 if the transaction
does not exist. If a tid already exists, then its asso-
ciated transaction must be in a phase larger than I.
We find that numerical values of ghost phases makes
it easier for us to check the existence of a transac-
tion. Without ghost phases, we have to go through
the entire trace to make sure a tid is never used.

The read item step is a read item action. A
transaction is only allowed to take this action if it
is in Phase I. To be able to read from the memory
location, a transaction must ensure that this location
is not locked by another transaction ready to com-
mit. We define a function locked by that returns
the tid of a transaction in a trace that holds a write
lock. If no transaction holds a lock, the function will
return 0 (recall that all tids must be larger than 0).
read item action also records the version number
of the memory location. When a transaction is ready
to commit, it must validate every version number
recorded during its reads against the current version
number of the memory location to make sure that
the value in that location at the point of the commit
is the same value as those at the point of all of its
previous reads.

The write item step is a write item action.
A transaction taking this action must be in phase I.
We record the value written to the memory location
in the trace.

The try commit txn step records the time
when a transaction is ready to commit; therefore, af-
ter taking the try commit txn action, it will tran-
sition to Phase II. However, a transaction must be in
Phase I before it is ready to commit.

The lock write item step is a valid step for
read-write transactions. A transaction locks all of
its writes (i.e., taking the lock write item action)
as a preparation to commit. No other transaction is
able to access the memory location after this action.
However, the transaction ready to hold the write
locks must make sure that no other transactions have
already held the locks. It checks this condition by
again using the lock by function. A transaction is
only allowed to take this action when it is in Phase
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II.

Before a transaction validates its reads, it must
takes the seq point action. The location of this
sequence point in a transaction does not affect the
validity of a STO trace. However, this is an im-
portant step as it is this action that determines
the sequence of all transactions in a trace for cre-
ating a valid serial trace. Specifically, it is ar-
ranged after the lock write item action but be-
fore the validate read item action (described
later). This is because we would like to ensure that
in a serial trace that is derived from a valid STO
trace, a transaction can only read values that were
written by a transaction before it in the sequence.0
The seq point action also signifies the transition
of a transaction between Phase II and III; therefore,
a transaction can take this action only if it is in Phase
II.

The validate read item step validates the
read set of a transaction. Validating reads in-
volves checking the version number associated
with the memory location. This version num-
ber is determined by the last transaction that
completes its writes. We define a function
trace write version to obtain this value.

Once a transaction successfully obtains
write locks and validates its read set, the
commit txn step takes place and transitions
the transaction from Phase III to Phase IV.

In Phase IV, a read-write transaction can safely
globalize its writes as long as it still holds all the
write locks. Writing to the memory location also
requires the transaction to update the location’s ver-
sion number so a transaction with stale reads will
know when it tries to commit that it needs to abort.
We use the function trace write version to ob-
tain the latest version number and increment that
value.

The last step for a committed transaction is the
commit done step in Phase IV. A transaction in
this step releases its write locks if necessary and fin-
ishes.

The abort txn step occurs as long as a transac-
tion has not committed (i.e., in Phase IV). We allow
a transaction to abort at any point before Phase IV
for simplicity, even though in practicality, a trans-
action should not abort when there is no conflict
between itself and another transaction. An aborted

transaction is considered ‘dead’. That is, the tradi-
tional roll-back can occur, but it will be considered
a new transaction by and of itself.

We also require an explicit step called the
unlock item step to take place after a transaction
aborts to release all the locks held by the transac-
tion. Since this action can only occur when a trans-
action aborts, it must be in Phase VI to take this ac-
tion. We use locked by function to make sure only
read-write transactions take this action since read-
only transactions need not do so.

3.2 Creating Committed Unconflicted STO
Traces

A committed unconflicted STO trace is a variation
of a STO trace with only committed transactions.
Since it is a more restricted version of a STO trace
and the only requirement is that all transactions
must have committed, we can construct a commit-
ted unconflicted STO trace on top of a STO trace
with one additional condition: all transactions in
this trace must be in Phase IV. Using committed un-
conflicted STO traces, we can discard many irrele-
vant actions during our proof. For example, since
aborted transactions do not affect the final state of
the trace, it is safe to remove them and prove prop-
erties of the resulting trace. As long as we can prove
that no committed transactions are removed or al-
tered during this process, many of those properties
can be directly extended to the original STO trace it
derives from (section 4).

3.3 Creating Serial Traces

A serial trace contains all committed transactions in
a STO trace. Transactions in a serial trace do not
interleave; all actions in a transaction are grouped
together, and the order of the transactions in a serial
trace must lead to the same externally-visible effects
as does the original STO trace it derives from. Given
a CUST, all actions in the CUST must also be in the
serial trace. Therefore, one only needs to reorder the
actions in the trace. Reordering can be performed
by swapping adjacent actions multiple times, and
stops only when the expected order is achieved. Our
algorithm reorders a CUST one tid at a time, using
the position of every transaction’s seq point as the
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indication of order and grouping all actions belong-
ing to a transaction towards its seq point. We also
ensure that adjacent actions in the same transaction
are not swapped. After a maximum of (length t)

* (length t) swaps, where t is a CUST, we create
a serial trace from a CUST.

4 Approach

In this section, we discuss how we use our defini-
tions in the previous section to prove correctness of
a STO trace (e.g., serializability). We first provide a
high level proof strategy (Figure 1), describing cap-
stone theorems we aim to prove in a top-down fash-
ion. We then delve into the details of many proofs,
giving lower level explanations.

To prove that a STO trace (say t) is serializ-
able, we first prove that the transformation from t

to a committed unconflicted STO trace (t’) is legal,
and that the transformation from t’ to a serial trace
(t’’) is also legal. Given the equivalence of t and
t’’, we then only need to show that t’’ is indeed
serial.

To prove that t’ is a legal derivation of t, we
need to prove three theorems:

• t’ is also a type sto trace

• t’ removes all of the non-committed (i.e.,
aborted and unfinished) transactions in t

• t’ preserves all of the committed transactions
in t

The first theorem makes sure that the derived trace
has the correct type. The second and third theorems
ensure that t’ does not insert random actions in the
original trace, and neither does it modify committed
transactions.

To prove that t’’ is a legal derivation of t’, we
need to prove another two theorems:

• t’’ is also a type CUST

• t’’ does not reorder actions taken within a
transaction in t’

The first theorem, combined with the first theorem
in the previous list, transitively proves that t’’ is

of type sto trace. The second theorem guaran-
tees that for every transaction in t’, there exists a
corresponding identical transaction in t’’.

The above five theorems together prove that t
and t’’ are equivalent in terms of the externally-
visible effects on changing the state of a machine.
Once we prove in the last theorem that t’’ is in-
deed serial, we successfully prove that t (i.e., a valid
sto trace) is serializable.

4.1 Detailed Explanations

Theorem 4.1: A CUST is a STO trace

Theorem cust is sto trace t:

committed unconflicted sto trace t

→ sto trace t.

By construction, a CUST is a sto trace (Ap-
pendix D). Therefore Theorem4.1 can be proved
simply by induction on the hypothesis that t is a
CUST.

Theorem 4.2: A CUST removes all un-
committed transactions.

Theorem

remove noncommitted sto is cust t:

sto trace t →
committed unconflicted sto trace

( remove noncommitted t (

uncommitted tids t (tid list t)

) ).

Three functions are involved in Theorem 4.2.
The function remove noncommitted takes two

parameters, a trace (i.e., a list of actions) and a list
of tids of uncommitted transactions, and returns a
trace without those transactions.

The function uncommitted tids generates a list
of tids for remove noncommitted as one of its
inputs. It takes a trace and a list of tids, and checks
whether any of the tids in that list corresponds to a
uncommitted transaction. That is, if the transaction
is not in Phase IV, it includes its tid in the returned
list.

The function tid list simply returns all tids in
a trace.

The three functions above are used together to
generate a CUST from a STO trace, and our goal is to
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Figure 1: High level proof strategy

prove that the resulting trace is indeed a CUST. Our
proof strategy of this theorem contains two phases:
1) We first prove that the trace generated from ap-
plying remove noncommitted function to a STO
trace is a STO trace, a weaker argument than the one
we have to prove; 2) we then refine our argument by
proving two properties of the resulting STO trace:
a) All transactions in it are committed transactions,
and b) all tids removed from the original STO trace
are uncommitted. Following this proof strategy, we
successfully prove the veracity of this theorem.

Theorem 4.3: A CUST contains all com-
mitted transactions.

Theorem

remove noncommitted does not reorder

t tid:

sto trace t →
In tid ( uncommitted tids t

(tid list t) ) →
filter ( fun pr => fst pr =? tid

) t =

filter ( fun pr => fst pr =?

tid ) ( remove noncommitted t (

uncommitted tids t (tid list t) )

).

Theorem 4.3 proves that a CUST generated from
a STO trace not only retains all committed trans-
actions in the STO trace but also ensures that the
order of the actions in each transaction is preserved.
Combining Theorem 4.1, 4.2, and 4.3, we can prove
the equivalence of a STO trace and the CUST that is
derived from the STO trace.

We prove this theorem by showing that every time
we remove one uncommitted transactions from a
STO trace, the rest of the trace is still a valid STO
trace, and more importantly, the order of the ac-
tions in each transaction remaining in the trace is
not changed. We prove this property when we re-
move each uncommitted transaction until no more
transactions can be removed from the trace, which
by construction, results in a CUST.

Theorem 4.4: A serial trace is a CUST.

Theorem

serial trace is cust t:

committed unconflicted sto trace t

→ committed unconflicted sto trace

( create serialized trace t

(seq list t) ).

Theorem 4.4 proves that a serial trace is also a
CUST. Combining this theorem with Theorem 4.1,
we are able to show that a serial trace is a STO
trace. As discussed in section 3, we create a serial
trace from a CUST computationally. This is done by
calling the function create serialized trace.
This function takes a trace and an ordered list of
tids. The order of the tids in the list is deter-
mined by the order of the occurrence of seq point

in the committed transactions in the trace. This or-
der is crucial to the correctness of the resulting se-
rial trace. We use the function seq list to gener-
ate this ordered list from the trace. Given this or-
dered list, create serialized trace takes one
tid at a time from the list, and calls a function
named swaps to group all actions associated with
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the tid together by swapping each of them towards
the sequence point of the transaction.

To prove that a serial trace generated from apply-
ing the create serialized trace function to a
CUST is also a CUST, we need to prove that legally
swapping actions within a CUST does not invalidate
its type. This is because ultimately a serial trace
is the result of many swaps within the CUST trace.
Our mechanism of swapping is legal because each
transaction remains valid after being grouped by our
swaps, and because we do not reorder the sequence
of transactions in a trace.

Note that, although we use the term “serial trace”
in this context, we have not yet proved that the trace
is indeed serial, and we are not concerned about this
property in Theorem 4.4; we have a separate theo-
rem to prove it.

Theorem 4.5: Each transaction in a serial
trace has the same order of
actions as that in the CUST
from which it is derived.

Theorem

serial trace does not reorder t:

committed unconflicted sto trace t

→ forall tid,

filter ( fun pr =>fst pr =? tid

) t =

filter ( fun pr =>fst pr =? tid

)

( create serialized trace t

(seq list t) ).

In the previous theorem, we prove that the func-
tion create serialized trace generates a CUST
(which should also be a serial trace as we will prove
later) from a CUST. However, although we prove in
that theorem that each transaction in the resulting
trace is valid, we have not yet proved that each trans-
action is the same in the resulting CUST as the cor-
responding one in the original CUST. We prove this
correctness property in Theorem 4.5.

We construct Theorem 4.5 by checking ev-
ery transaction in the original CUST and the
CUST (or the serial trace) generated from the
create serialized trace function. The
filter function is used to generate a list of actions
of one transaction in a trace.

To prove this theorem, we again turn to swaps,
just as in Theorem 4.4, and prove that swaps does
not modify the order of actions within a transac-
tion. swaps calls a function named swap1 that goes
through the entire trace and looks for one possible
legal swap between an action of a particular tid and
some other action of a different tid in the trace.

The conditions of a legal swap1 swap
are what guarantee that swaps and thus
create serialized trace will not reorder
actions within a transaction.

Theorem 4.6: A serial trace generated
from CUST is indeed serial.

Theorem

serial trace is serial t:

committed unconflicted sto trace t

-> is serial (

create serialized trace t

(seq list t) ).

To prove Theorem 4.5, we first provide a defini-
tion of serialization. We construct this definition as
an inductive type (Appendix E). For a CUST to be
serial, we only need to make sure that no legitimate
swapping exists in the trace. In other words, for all
the transactions in the trace, trying to swap any of its
actions with other actions in any other transactions
results in the same trace as before. This is how we
define the inductive type is serial and how we
prove serialization.

5 Discussion and Lessons Learned

Specification Correctness Goes a Long Way
There is one constant theme among all for-

mal verification literature: correctness of the
specification of a system cannot be machine-
proved. Instead, developers have to manually check
its correctness, having confidence in their final spec-
ification of the system. Our work is certainly not an
exception to this constant theme. Our first version
of the specification of STO was unfortunately incor-
rect, and we did not realize the flaw in the specifi-
cation until midway into the proofs. Specifically,
we made a mistake in identifying the possible po-
sitions of the sequence point within a transaction,
which is crucial to the correctness of its correspond-
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ing serial trace. The consequence of this mistake
was rewriting of many definitions and functions and
a complete overturn of most of the proofs. Since the
specification is the fundamental building block of
the formal verification, we learned from our lesson
that one cannot spend too much time in checking
the correctness of the specification and cannot be
too careful in making sure that every aspect of the
specification is considered.
Top-Down Approach Promotes Productivity

When we first started proving serializability of
STO traces, we took a bottom-up approach that
causes constant frustration. We defined and proved
many helper lemmas, only to find in later develop-
ment that those lemmas were tangential to our final
goal. Although being able to actually prove some-
thing boosted our confidence in Coq, in reality, we
were not making any progress but wasting limited
time in blindly proving true, and sometimes trivial
statements.

Later in the development, we decided to switch to
a top-down approach, starting from the highest-level
lemmas and deciding what lower-level lemmas were
needed when proving those high-level ones. Start-
ing from the top level specification, which simply
states that a STO trace is serializable, we came up
with lemmas regarding the order of actions within
each transaction, and the sequence of transactions
in a serial trace. We then proceeded to even lower
level of lemmas concerning swapping actions in a
trace. At each level, we always completed the proof
of each lemma/theorem (i.e., ending the proof with
Qed, not Admitted), although many helper lemmas
used in the proof were admitted. Those helper lem-
mas were usually one level lower in our prove strat-
egy and we would eventually prove those lemmas
when we proceed to their level. The benefits of
a top-down approach are threefold: 1) We are al-
ways able to complete proofs of lemmas on a level,
which undoubtedly boosts our morale as we achieve
a sense of accomplishment and progress; 2) helper
lemmas that we need to prove on a lower level are
most likely to be useful since we need to use them
in higher level lemmas; 3) lemmas that are hard to
prove can be constantly refined to smaller lemmas
that are easier to prove. Many of our lowest level
lemmas can be proved in just a few tactics.
Ghost Provides Real Benefits Our use of ghost

phases significantly assuaged our proof burden.
Conceptually, ghost phases abstract the legal order
of actions within a transaction into various stages
that are represented by natural numbers. This ab-
straction gives us two benefits: 1) When dealing
with preconditions of an action in a transaction, we
no longer need to enumerate a list of actions that
must have occurred before it; we only need to make
sure that the transaction is in the right phase to take
the action; 2) since phases are represented by natu-
ral numbers, we are able to use all lemmas regarding
natural numbers; reasoning about numbers is intu-
itive and error-proof than reasoning about each ac-
tion within a transaction.
Layers of Abstraction Remain Valuable A fa-
mous aphorism of David Wheeler goes:

All problems in computer science can be
solved by another level of indirection.

Our addition of a level of indirection, namely
the committed unconflicted sto trace layer,
helps facilitate our reasoning and simplify proof re-
quirements. Without this layer, proving a STO trace
is serial requires us to consider multiple aspects
of the trace simultaneously. For example, when
constructing any lemmas regarding a STO trace,
we need to be concerned about aborted and unfin-
ished transactions, in addition to the useful com-
mitted transactions. Performing induction on such
a general trace can be challenging, if not impossible
sometimes. The addition of the CUST layer separates
our concern of committed transactions in a STO
trace, which are what actually constitutes the serial
trace, from that of aborted and unfinished transac-
tions, which are eventually removed from the serial
trace. Therefore, CUST enables us to only reason
about committed transactions when we prove seri-
alization of a STO trace.
Decomposition Leads to Simplification A com-
plex algorithm in Coq usually leads to a painful
proof when it is used in a lemma. We experienced
such pain when we tried to prove properties about
a poorly-written swapping function. Our original
swap1 function takes a path along the trace, and
swaps actions of a given tid with its neighboring
action as long as the swap is legal. Therefore, unlike
our current swap1 function, which performs at most
one swap, it can potentially swap many times until it
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reaches the end of a trace. This fact restricts us from
only focusing on two adjacent actions; we cannot
assume that the rest of the trace is unchanged. On
the other hand, we can call one-swap swap1 func-
tion multiple times and obtain the same result as that
of calling multi-swap swap1 function. Reasoning
about one swap at a time localizes our concern and
makes the proof manageable; we need not worry
about the whole trace but the two adjacent actions
being swapped. Our decomposition of the swap1

function (not to be confused with our swaps func-
tion that calls swap1 multiple times) from multiple
swaps at a time to one swap at a time enabled us to
successfully prove Theorem 4.4 and 4.5.

6 Related Work

Verification of software transactional memories has
received much attention in recent years. The works
can be divided into two classes of approaches in
general: static and dynamic approaches.

6.1 Static Approaches

Research in this direction, including our work,
has mostly focused on verification of transactional
memories at the algorithm level, instead of the im-
plementation level (e.g. C/C++ implementation).
Early works take the model checking approach [4,
10, 12–14, 26]. This line of works aim at automatic
verification of transactional memories. In principle,
specifications of correctness conditions and transac-
tional memory algorithms (TM algorithms) can be
formalized as transition systems, state exploration
techniques can then be applied to verify that the TM
algorithms satisfy the correctness conditions. How-
ever, since TM algorithms generally have an infi-
nite number of states due to unbounded numbers
of threads and shared memory locations and un-
bounded transaction lengths, simple model check-
ing approaches cannot be directly used.

Cohen et al. [4] can verify small instances (i.e.
an instantiation of the TM algorithm that has a small
number of threads and each transaction contains a
small number of operations) of some simple TM al-
gorithms directly using a model checker. But this
approach does not apply to larger instances or more

complicated TM algorithms. They manually spec-
ify the refinement relations between the specifica-
tions and the TM algorithms. Then they verify the
relations with an explicit state model checker. This
approach requires a thorough understanding of both
the specification and the TM algorithm, and does
not really achieve automation.

Guerraoui et al. [12–14] address the state explo-
sion problem by reducing the verification to a small
instance that has only two threads and two locations.
And they prove a meta-theorem which states that a
TM algorithm is correct if and only if the small in-
stance is correct. The first component can be solved
by finite state model checking, but the second com-
ponent requires manual proof for each individual
TM algorithm. This means that the proof is not fully
machine checked either.

Emmi et al. [10] attempt to achieve fully
automatic parameterized verification by automati-
cally generating and checking parameterized invari-
ants. They generate invariants using a combination
of verification by invisible invariants [2, 28] and
template-based invariant generation [5, 33]. These
techniques exploit structural properties of of TM al-
gorithms. However, their approach does not scale
well for instances that have more than two threads
and two memory locations.

O’Leary et al. [26] work on verifying an in-
dustrial implementation of software transactional
memory, namely McRT STM [30]. Unlike pre-
vious works that model check transactional memo-
ries at the algorithm level, they attempt to model the
STM pseudocode as exactly as possible. For exam-
ple, they model pointer dereferencing and setjmp/-
longjmp operations. Initially, they use strict serial-
izability as the correctness condition, but the model
checker shows that their implementation does not
respect real-time order. Eventually, they manage
to validate that McRT STM guarantees serializabil-
ity of purely-transactional programs that have two
threads and each transaction has at most three reads
or writes.

Overall, while model checking approaches can
be used to find bugs, they do not scale well for
verification of TM algorithms in the general case.
This is not necessarily a problem if it can be shown
that a TM algorithm is correct if and only if some
smaller instance is correct. Unfortunately, this prop-
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erty does not hold for all TM algorithms.

Our work most relates to research that verifies the
correctness of TM algorithms via theorem proving
[6, 20, 34]. An interactive theorem prover addresses
the state explosion problem by allowing human in-
sights to guide the proof, at the cost of significant
more human efforts. Our work differs from other
works mostly in that we use the Coq proof assis-
tant, and that we are currently using a more specific
solution that targets to verify the STO transactional
memory.

In a subsequent work, Cohen et al. [6] extend
their TM model to handle non-transactional mem-
ory accesses. Instead of using a model checker, they
opt for an interactive theorem prover, TLPVS [27]
(a variant of PVS [29]), to overcome the state ex-
plosion problem. They prove that the TCC algo-
rithm [16] augmented with non-transactional mem-
ory accesses provides strict serializability.

Lesani et al.’s work [20] resemble the one above
in that they both use PVS. They build a framework
for verifying TM algorithms in the PVS interactive
theorem prover. They use I/O automata [23] to
specify both correctness conditions and TM algo-
rithms, and prove that the automaton specifying the
TM algorithm implements the automaton specify-
ing the correctness condition by simulation [22]. A
common proof strategy in their proof is to introduce
intermediate automata that successively have more
details about the target TM algorithm. This hierar-
chical approach not only breaks the proof into man-
ageable pieces, but also allows reuse of the same
proof for TM algorithms that share common spec-
ifications at some level. This framework provides
many theories and lemmas to facilitate verification
of new TM algorithms. They propose a new cor-
rectness condition for TM algorithms “TMS1” that
aims to be as general as possible, and a more re-
strictive version “TMS2” that is easier to work with
[8]. Using their framework, they have proved that
TMS2 implements opacity, and opacity implements
TMS1. Therefore, to prove that a TM algorithm im-
plements TMS1, it suffices to prove that it imple-
ments TMS2. And they have proved that the NOrec
algorithm implements TMS2, using the hierarchical
approach mentioned above.

Tasiran [34] takes a different approach. He de-
composes the verification into two parts. The first

part is a manual proof that a TM algorithm provides
serializability if certain non-interference properties
hold. The second part consists of proving that the
Barok STM [17] satisfies these properties. Since
the non-interference properties are expressed as as-
sertions in sequential programs, he is able to use
the Boogie sequential program verifier to handle all
proofs.

6.2 Dynamic Approaches

Due to the limitations and complexity of static ver-
ification, researchers also seek runtime verification
techniques [3,21,25,32] that verify the correctness
of executions of transactional memories.

Manovit et al. [25] use pseudo-random testing
to verify and find bugs in transactional memory im-
plementations. They generate random test programs
with both transactional and non-transactional oper-
ations, run the programs, and feed the traces (in-
cluding dynamic order of all operations, and load
and store values) of programs to an analysis algo-
rithm, which decides if a particular trace can be gen-
erated by a legal execution. They show that the gen-
eral problem of deciding if an trace is legal is NP-
complete. However, with extensive optimizations,
their analysis algorithm works well in practice. This
approach is more suited for offline verification of
transactional memory implementations. Similarly,
Hu and Hutton [21] implement a simple transac-
tional language similar to STM Haskell. They also
implement the semantics, run time and compiler in
Haskell, and use randomized testing to verify their
compiler is correct.

Chen et al. [3] propose to perform online run-
time validation. They construct a constrained graph
online that captures the correctness of transactional
memories, and check the graph for cycles. A cycle
indicates that the correctness guarantee is violated.
They use a check-pointing scheme to resume the ex-
ecution from a previously validated state if a cycle is
detected. To make the runtime validation practical,
they use several optimization techniques to reduce
the number of graph vertices to track and limit the
scope of checking.

Singh’s work [32] on online runtime verifica-
tion resembles that of Chen et al. They construct
conflict graphs that can encode various correctness

11



STO Verification
conditions (e.g. serializability, strict serializabil-
ity, opacity) and check the graph is acyclic. They
achieve good performance with a two level verifi-
cation scheme. The coarse verification uses Bloom
filters for fast storage of tracking sets. Since the re-
sults of using Bloom filters are inaccurate, they run
a precise verification to check the correctness of an
execution if the coarse verification reports a cycle.

7 Future Work

Our work is the first step towards proving correct-
ness of a software transactional memory system,
STO. However, as we have discussed in section 1,
we have made numerous assumptions and simpli-
fications. For example, the most exciting part of
STO is its type-aware commit protocol that can ef-
fectively reduce false conflicts and bookkeeping ef-
fort. However, our work concerns only one mem-
ory location and thus does not take data types into
consideration. Moreover, a transaction can abort
at any time. Therefore, future work involves, for
example, proving the correctness of the algorithms
of the transactional memory that hosts a specific
data type (e.g., a red-black tree or a linked list).
We believe one can reuse many of our definitions,
lemmas, and theorems to prove such correctness.
For instance, one only needs to slightly modify the
inductive type action to include operations such
as checking whether aborting is needed even when
there is an invalid read.

8 Conclusion

We have proved correctness (in terms of serializ-
ability) of the algorithm of a software transactional
memory system, STO. We have made several as-
sumptions and simplifications of STO. Specifically,
we are only concerned about one memory location
with only one lock. Moreover, we allows a trans-
action to abort at any time and do not model STO’s
bounded spinning in the lock phase of the commit
protocol. However, to the best of our knowledge,
our work is the first that demonstrates the correct-
ness of the STO protocol, and provides a meaning-
ful guidance to those who are interested in formally
verify STO.
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A Inductive Type action

I n d u c t i v e a c t i o n :=
| s t a r t t x n : a c t i o n
| r e a d i t e m : v e r s i o n −> a c t i o n
| w r i t e i t e m : v a l u e −> a c t i o n
| t r y c o m m i t t x n : a c t i o n
| l o c k w r i t e i t e m : a c t i o n
| s e q p o i n t : a c t i o n
| v a l i d a t e r e a d i t e m : v e r s i o n −>

a c t i o n
| a b o r t t x n : a c t i o n
| u n l o c k w r i t e i t e m : a c t i o n
| commi t txn : a c t i o n
| c o m p l e t e w r i t e i t e m : v e r s i o n −>

a c t i o n
| commi t done txn : a c t i o n .

B Definition action phase

D e f i n i t i o n a c t i o n p h a s e ( a : a c t i o n )
:=

match a wi th
| s t a r t t x n => 1
| r e a d i t e m => 1
| w r i t e i t e m => 1
| t r y c o m m i t t x n => 2
| l o c k w r i t e i t e m => 2
| s e q p o i n t => 3
| v a l i d a t e r e a d i t e m => 3
| commi t txn => 4
| c o m p l e t e w r i t e i t e m => 4
| comm i t done txn => 4
| a b o r t t x n => 6
| u n l o c k w r i t e i t e m => 6
end .

C Inductive Type sto trace

I n d u c t i v e s t o t r a c e : t r a c e −>
Prop :=

| e m p t y s t e p : s t o t r a c e [ ]
| s t a r t t x n s t e p : f o r a l l t t i d ,

t i d > 0
−> t r a c e t i d p h a s e t i d t = 0
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , s t a r t t x n )

: : t )
| r e a d i t e m s t e p : f o r a l l t t i d ,

t r a c e t i d p h a s e t i d t = 1
−> l o c k e d b y t 0 = 0
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , r e a d i t e m

( t r a c e w r i t e v e r s i o n t ) ) : :
t )

| w r i t e i t e m s t e p : f o r a l l t t i d
va l ,

t r a c e t i d p h a s e t i d t = 1
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , w r i t e i t e m

v a l ) : : t )
| t r y c o m m i t t x n s t e p : f o r a l l t

t i d ,
t r a c e t i d p h a s e t i d t = 1
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

t r y c o m m i t t x n ) : : t )
| l o c k w r i t e i t e m s t e p : f o r a l l t

t i d v ,
t r a c e t i d p h a s e t i d t = 2
−> In ( t i d , w r i t e i t e m v ) t
−> l o c k e d b y t 0 = 0
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

l o c k w r i t e i t e m ) : : t )
| s e q p o i n t s t e p : f o r a l l t t i d ,

t r a c e t i d p h a s e t i d t = 2
−> ( f o r a l l v , In ( t i d ,

w r i t e i t e m v ) t
−> In ( t i d ,

l o c k w r i t e i t e m
) t )

−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , s e q p o i n t )

: : t )
| v a l i d a t e r e a d i t e m s t e p : f o r a l l

t t i d ve r s ,
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t r a c e t i d p h a s e t i d t = 3
−> l o c k e d b y t t i d = t i d
−> t r a c e w r i t e v e r s i o n t =

v e r s
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

v a l i d a t e r e a d i t e m v e r s ) : :
t )

| a b o r t t x n s t e p : f o r a l l t t i d ,
t r a c e t i d p h a s e t i d t > 0
−> t r a c e t i d p h a s e t i d t < 4
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , a b o r t t x n )

: : t )
| u n l o c k i t e m s t e p : f o r a l l t t i d ,

t r a c e t i d p h a s e t i d t = 6
−> l o c k e d b y t 0 = t i d
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

u n l o c k w r i t e i t e m ) : : t )
| c o m m i t t x n s t e p : f o r a l l t t i d ,

t r a c e t i d p h a s e t i d t = 3
−> ( f o r a l l ve r s , In ( t i d ,

r e a d i t e m v e r s ) t
−> In ( t i d ,

v a l i d a t e r e a d i t e m
v e r s ) t )

−> ( f o r a l l ve r s , In ( t i d ,
v a l i d a t e r e a d i t e m v e r s ) t

−> In ( t i d ,
r e a d i t e m
v e r s ) t )

−> s t o t r a c e t
−> s t o t r a c e ( ( t i d , commi t txn

) : : t )
| c o m p l e t e w r i t e i t e m s t e p : f o r a l l

t t i d va l ,
t r a c e t i d p h a s e t i d t = 4
−> l o c k e d b y t 0 = t i d
−> t r a c e t i d l a s t w r i t e t i d t

= Some v a l
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

c o m p l e t e w r i t e i t e m ( S (
t r a c e w r i t e v e r s i o n t ) ) ) : :

t )
| c o m m i t d o n e s t e p : f o r a l l t t i d ,

t r a c e t i d p h a s e t i d t = 4

−> l o c k e d b y t 0 <> t i d
−> s t o t r a c e t
−> s t o t r a c e ( ( t i d ,

comm i t done txn ) : : t ) .

D Inductive Type
committed unconflicted sto trace

I n d u c t i v e
c o m m i t t e d u n c o n f l i c t e d s t o t r a c e

: t r a c e −> Prop :=
| c o n s t r u c t c u s t : f o r a l l t r ,

s t o t r a c e t r
−> ( f o r a l l t i d , t r a c e t i d p h a s e

t i d t r > 0 −> t r a c e t i d p h a s e
t i d t r = 4 )

−>
c o m m i t t e d u n c o n f l i c t e d s t o t r a c e

t r .

E Inductive Type is serial

I n d u c t i v e i s s e r i a l : t r a c e −> Prop
:=

| s e r i a l c o n s t r u c t o r : f o r a l l t ,
c o m m i t t e d u n c o n f l i c t e d s t o t r a c e

t
−> ( f o r a l l t i d , In t i d (

s e q l i s t t ) −> swap1 t i d
t = t )

−> i s s e r i a l t .

15


	Introduction
	Background
	Definitions
	Creating STO Traces
	Creating Committed Unconflicted STO Traces
	Creating Serial Traces

	Approach
	Detailed Explanations

	Discussion and Lessons Learned
	Related Work
	Static Approaches
	Dynamic Approaches

	Future Work
	Conclusion
	Inductive Type action
	Definition action_phase
	Inductive Type sto_trace
	Inductive Type committed_unconflicted_sto_trace
	Inductive Type is_serial

