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Abstract

As demand for the serverless computing paradigm increases,
so does demand for a currently unavailable serverless archi-
tecture: stateful, long-lived serverless computation. In this
paper, we re-introduce Alto, which provides such an archi-
tecture. Using Alto, developers can enjoy the autoscaling
and fine-grained billing promised by the serverless platform
while also enjoying the performance benefits of co-locating
code and local data. This serverless paradigm makes develop-
ing existing applications easier and also enables new cloud
application architectures. We explain why providing state-
ful, long-lived serverless computation requires fast snapshot
and restore of computation. We explain how Alto virtual-
izes the managed runtime to provide fast snapshot and re-
store. We describe how Alto moves filesystem and network
state from the kernel into the Alto runtime to improve per-
formance. Finally, we evaluate an Alto prototype against
Checkpoint-and-Restore In Userspace (CRIU), a fast process
checkpoint-restore tool, and show that Alto snapshot and
restore performance is comparable.

1 Introduction

Serverless platforms are becoming increasingly attractive
for cloud application developers. In the serverless comput-
ing paradigm, tenants pay for computational resources used,
rather than for the time computational resources were allo-
cated. The cloud provider is responsible for allocating addi-
tional resources to each tenant’s application automatically as
the application’s load increases, and releasing these resources
when load drops. In the extreme case, when an application
is not in use, the cloud provider allocates no resources and
the tenant is not billed.

The most popular instance of serverless computing
is Function-as-a-Service; though popularized by Amazon
Lambda [2], other offerings include Google Cloud Func-
tions [20] and Microsoft Azure Functions [28] . Using
Faa$, developers deploy “functions” which respond to cloud
platform-provided events such as HT'TP requests, database
triggers, and other function calls. Upon receiving an event,
the cloud provider is responsible for deploying an “instance”
of the function to respond to that event. In response to events,
functions are free to create other events, query databases,
and respond to the requesting client. Functions instance are,
by specification, to be treated as ephemeral and stateless:
instances have a maximum execution time (on the order of

minutes) and once a function instance is finished executing
(or killed), all in-memory state is discarded.

Clearly, the constraints imposed by FaaS make it unsuit-
able for many types of applications. An image conversion
algorithm or ETL (Extract, Transform, Load) pipeline will
operate well on an Faa$S platform, but data-heavy computa-
tion like MapReduce and machine learning algorithms will
not. However, FaaS is not the only exemplar of the serverless
paradigm. Certain databases and datastores, such as Firebase
Firestone [21] and Amazon S3 [3] provide the autoscaling
and fine-grained billing properties which characterize a suc-
cessful serverless platform, though for data storage. Using a
serverless database or datastore, tenants pay for the amount
of data they actually store and the queries performed on their
data, rather than total storage allocated and database server
uptime. There is also research on autoscaling databases de-
signed specifically for serverless platforms [25].

Unfortunately there are types of computation not covered
by these serverless offerings. Database-as-a-Service, or DaaS
is built purely for data storage. Because FaaS instances are
stateless, the co-location of code and data becomes impossi-
ble; instances are forced to store long-lived data at centralized
locations, incurring a latency penalty whenever data is stored
or retrieved. Hellerstein et al. [22] note that FaaS is holding
distributed architectures back, since modern architectures
are realizing the performance benefits of placing code near
local data. Numpywren [29] builds a system for performing
linear algebra operations, which retrieves intermediate state
from S3 at coarse granularities to offset the high request
latency. ExCamera [19] develops a distributed video encoder
atop Lambda, but is limited by function instance’s transience.
Since a function instance may be killed at any time, the sys-
tem must be fault tolerant. Both Numpywren and ExCamera
shoehorn function instances into units akin to actors, treat-
ing properties like transience and statelessness as obstacles,
rather than features.

In this work, we present Alto, a serverless platform that
provides stateful, long-lived computation. Using Alto, devel-
opers can deploy types of serverless applications currently
unsuitable for today’s serverless platforms. Tenants specify
their application once, much like in FaaS, and the platform
is responsible for deploying instances of their applications
called Clefs. In this new serverless model, Clefs include both
code and data. Using Clefs, tenants pay for computation only
when Clefs are active and running. However, unlike Faa$,



each Clef’s data persists across multiple invocations. When
a Clef is not in use, both code and data are saved, together, to
disk. When needed, Clefs are restored from disk into mem-
ory. Tenants are billed, like FaaS, based on the execution
time of their active Clefs. To be truly serverless, Alto must
provide the ability to autoscale resources based on perceived
load. Alto defines a more flexible approach to autoscaling
than FaaS: tenants define criteria which, when met, cause
Alto to spawn additional distinct Clefs.

This new serverless model, though it can help existing
applications like ExCamera and Numpywren, also enables
new, exciting architectures. For example, developing a social
network application using Alto would be very different from
using traditional deployment mechanisms. Using Alto, the
developer would write their application as the code required
to handle a single user of the social network. The developer
specifies autoscaling criteria, which instructs Alto to create
a new Clef using this code whenever a new social network
user joins. In this way, every user has their own personal Clef.
When the user logs out, their Clef is written to disk, and
when they log back in, the Clef is read back into memory.
This architecture has a number of benefits:

1. The developer pays based on the number of active
users.

2. Because the user’s data lives exclusively in in-memory
data structures, access to the data is faster than it would
be if the data was stored externally. (Note aggregate
data should still be stored in serverless databases.)

3. Reasoning about each user’s data and the application
as a whole becomes much simpler. In particular, mov-
ing or deleting a user’s data is as simple as moving or
deleting the user’s Clef.

In order to provide stateful, long-lived units of computa-
tion with high-performance, Alto must be able to snapshot
and restore Clefs quickly. Alto could build Clefs atop tra-
ditional virtualization options like KVM or Docker, which
provide snapshot and restore operations for VMs and contain-
ers, respectively. Unfortunately, snapshotting and restoring
VMs is slow, since entire memory must be copied. Snapshot-
ting containers is complex, since the underlying mechanism,
Checkpoint Restore in Userspace (CRIU) [11], must extract
both network and filesystem state from the kernel.

To facilitate fast, stateful snapshot and restore, Alto [26]
moves the virtualization boundary to the level of a managed
runtime. In this way, the Alto runtime acts as the hypervi-
sor, and Clefs are composed of a running program’s code
and data that sit atop the runtime. Specifically, an Alto Clef
includes the program state (such as the stack, in-memory
data structures), the runtime state (such as garbage collector
state), and the code. This state is saved to disk when the Clef
is snapshotted, and is loaded from disk into the Alto runtime
when a process is restored. To avoid the need to examine the

kernel for system-specific state, Alto moves both filesystem
and network state into the Alto runtime.

Alto presents a multitude of research challenges includ-
ing multiplexing the runtime, specifying autoscaling criteria,
and Clef-to-Clef communication. Here, we focus on just one:
achieving fast snapshot and restore for Alto Clefs. Particu-
larly, we demonstrate that both snapshotting and restoring
an Alto program which includes both open TCP connections
and open files is faster than snapshotting and restoring the
containing process and data using Docker Checkpointing,
powered by CRIU. (Mention specific result)

By providing low-latency snapshot and restore, Alto rep-
resents a new architectural model model that makes and
enables new stateful, long-lived serverless computation.

2 Background

In this section we describe important technologies such as
serverless computing, virutalization technologies, and snap-
shotting tools.

2.1 Serverless Computing

Serverless computing broadly refers to the notion of devel-
opers being able to write code and upload it to the cloud for
deployment, without having to worry about infrastructure
like managing servers [22]. The term is also commonly used
to refer to Function as a Service (FaaS), in which develop-
ers upload short functions to run on certain triggers. These
computations are short-lived; AWS Lambda, the most widely
used Faa$ service, may terminate running function instances
(called lambdas) after 5 minutes [34]. In addition, FaaS does
not provide any guarantees about preserving function state,
meaning developers must write results to remote storage
if they want those results to persist. Another limitation of
FaaS is that function composition is difficult; in fact, Baldini
et al. have shown that platforms like AWS Lambda cannot
support function composition and achieve all three of: being
billed only once for each function instance, compose func-
tions without hard-coding one function into another, and
ensure that function compositions are themselves functions
[5].

A related subset of serverless computing is serverless
databases, in which users can access a remote database man-
agement system without needing to manage the physical in-
frastructure. Example services include AWS Relational Data-
base Service [? ] and Google Datastore [? ].

2.2 Virtualization Technologies

There are two primary mechanisms of virtualization today:
virtual machines and containers. OS-level virtual machines
allow all layers of the software stack above hardware to run
without being aware of the specific underlying hardware
architecture. A virtual machine is managed by a hypervisor,



which mediates interactions between guest operating sys-
tems and the hardware (e.g. by managing page tables). VMs
are widely used because of their strong isolation guarantees;
errors in one application cannot break another application
becuase both are running on separate operating systems.
VMs are widely used for FaaS because of this security guar-
antee. As Wang et al. describe, coresidency of different users’
function invocations on the same VM is dangerous because
it leaves users vulnerable to side channel attacks [34].

Linux containers, on the other hand, are groups of one or
more processes that have isolated namespaces. As a result,
processes in one container cannot address resources like files
and PIDs in other containers and in the operating system
[17]. Containers are advantageous because they are more
lightweight than VMs; however, they also cannot provide
as strong isolation guarantees. Docker is one of the most
popular implementations of containers.

2.3 Snapshotting Tools

In this section we present tools used to snapshot different
levels of the software stack. Snapshotting means serializing
state into image files such that the entity can be restored
from the images.

Starting at the highest level of the stack, CRIU is a tool
that can snapshot and restore processes [11]. In order to
ensure that processes can be restored, it must also capture
some operating system state such as network connections
and open file connections. CRIU is able to restore network
connections; however, it can only restore file connections
if the file exists on the machine where the file is restored
[9]. So, the user may need to read the files from disk on the
checkpoint machine, send them over a network, and then
write them to disk on the restore machine.

Docker containers can be snapshotted in two different
ways. First, Docker containers are generated from Docker-
files, which are the commands that need to run to generate
the container image [15]. So, a Docker container can be snap-
shotted by just migrating the Dockerfile to a new machine,
and starting up a Docker container. However, this is not
true snapshotting; rather, it lets one recreate the same initial
environment. While this is useful for being able to deploy
software in the same environment on different machines,
it does not let one pause running computations and restart
them on a different machine.

The docker checkpoint command can be used for true
snapshotting, where a running Docker container is paused
[14]. This command uses CRIU to checkpoint and restore the
containers [24]. So, it has the same benefits and limitations
as CRIU.

Finally, VMs are always stored as images, which allows
them to be suspended and resumed easily. Clark et al. started
research into live migration for virtual machines, aiming to
minimize the VM’s downtime (i.e. the period when the VM
is not running on any physical machine) [7]. They developed
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Figure 1. Alto design overview. To snapshot a Clef, Alto
must enumerate program state, filesystem state, and network
state. Alto moves filesystem and network state from the OS
into the Alto runtime.

the pre-copy approach, which starts with multiple rounds of
sending the VM’s pages over the networks (and re-sending
pages that have been modified since they were first sent), and
then a short period where the VM is stopped in order for the
final set of pages to be sent over the network. This approach
reduced VM downtime to as low as 60ms, with a worst-case
downtime of 3.5 seconds. In general, a VM’s downtime is
proportional to the rate at which it dirties pages, the page
size, the duration of the last pre-copy round, and inversely
proportional to network bandwidth [30]. Total migration
time is proportional to the number of live migration rounds.

3 Design
We present the following three design goals for Alto:

1. Stateful autoscaling, ensuring Alto fits within the
serverless paradigm

2. Fast snapshot and restore of above-runtime Clefs, en-
abling data-with-code application architectures

3. The ability to support more Clefs per machine than
Lambdas per machine (i.e. tens of thousands of Clefs)

To achieve these design goals, Alto’s key insight is to
treat the runtime as a hypervisor, as presented in Figure 1.
We follow the definition of hypervisors presented for Xen
virtualization, in which the runtime “operates at a higher
privilege level” than the programs running through the run-
time [6]. Runtimes are already able to spin up new programs
and tear them down, much like a traditional hypervisor does
for virtual machines. But runtimes can also assist in migra-
tion of programs to different physical machines by storing
necessary state.

The runtime must hold three types of states necessary
for Clefs to be resumed on any machine: (1) local program
state, such as the program’s local and global variables, (2) file
system state, such as the program’s open file connections,
and (3) network state, such as the program’s open network



connections. If these three types of state can be serialized,
then they can be resumed on a new physical machine, and
the program should be able to continue running without
interruptions. As a result, the Alto managed runtime must
store this state, and thus the runtime becomes the unit of
snapshotting and restoring.

This stored state is critical and allows Alto to meet its
proposed system goals. For Goal 1, stateful computation is
achieved because a program’s memory can be snapshotted
and later resumed, meaning all data in memory is effectively
persistent. If developers store a user’s state in memory, then
the persistence of memory enables Clefs to autoscale for each
user. Computation can be long-lived because long-running
programs can be snapshotted and resumed on different phys-
ical machines.

Faster snapshot and restore in Goal 2 is achieved because
the runtime is a smaller virtualization layer than virtual
machines and containers. So, these operations deal with less
state. In addition, the increased utility of in-memory data
structures improves performance because it is faster to write
data from memory than from disk. This persistent memory
also enables the colocation of code and data.

And finally, more Clefs can be supported than Lambdas
because long-running programs can be quickly snapshot-
ted and resumed on different physical machines. This allows
cloud computing providers to load-balance and decrease frag-
mentation, as they can migrate long-running programs to
new machines to free up resources for a short-lived program.

Alto’s design goals allows it to support new types of ap-
plications as well as improve existing ones. Alto is useful for
stateful applications where computation can be sharded by
some entity. For example, a ridesharing service could utilize
Alto by creating a new Alto Clef per user. As users move in
a car, the service could migrate the user and driver’s Clefs
to physical machines closer to their geolocations, without
either the user or driver perceiving any interruptions in the
app. And as mentioned earlier, social media platforms could
utilize Alto by specifying the logic for each user’s connec-
tion; a Clef would be rebooted when a user logs in, and then
saved to disk when the user logs out. In addition, one could
build FaaS platforms like AWS Lambda using Alto, by im-
posing a time limit for running computation and ignoring
state. Thus, Alto creates a more general platform for serverless
computing.

However, we note Alto doesn’t serve all applications well;
in particular, applications that read more data than will fit
in main memory — such as database management systems
— are not well-suited for Alto because Alto stores operating
system in memory.

In this paper, we specifically focus on Goals 1 and 2. The
following sections enumerate the state that Alto must track.
We start with the runtime state, and then explain the network
and file system state that must be stored.

3.1 Runtime State

In order to snapshot/restore an Alto Clef, the program’s
state must be extracted from the runtime and serialized to
disk such that it can be deserialized and loaded into a new
runtime. A program’s state includes the following:

e Global state: values accessible to the entire program,
which many include global variables, classes, and user-
defined functions.

Local state: values accessible only in a given context,
such as instance variables, function-local variables,
and function arguments.

Closures: lexically-scoped references to values
“closed over” by functions.

Call stack: the chain of functions to be walked after
the current function returns.

e Threads: the values and references accessible to dif-

ferent threads of execution.

e Code: the code itself, which may be referenced by
function state.

However, the underlying runtime contains structures and
mechanisms containing their own program-specific state.
For example, a runtime may include:

e Scheduler state: information about which threads
have been run and which threads should be prioritized
next.

e Garbage collector state: depending on the garbage
collection algorithm used, this may include infor-
mation about reference counts, generations, objects
marked for sweeping.

¢ JIT information: if the language contains a JIT com-
piler, information about which parts of the code have
been compiled or not.

e I/O: file descriptors, open sockets, and other system-
specific data.

Therefore, the above two lists enumerate all of the state
relevant to an Alto Clef. Snapshotting an Alto Clef involves
enumerating this state, serializing it, and flushing it to disk
(or the network). Restoring an Alto Clef involves reading
the state, deserializing it, then inserting it into the runtime’s
data structures. For instance, the managed runtime may store
garbage collector information such as a linked list of objects
to be swept. Alto snapshots must extract the information
from this list, serialize it, and load it into another Alto run-
time’s to-sweep list. In this way, the runtime resembles a
hypervisor, since it must abstract the resources (runtime data
structures) from the multiplexed units of computation (Alto
Clefs).

3.2 The Alto Runtime

We will now discuss the design of the Alto runtime and how
the design facilitates simple, fast snapshot and restore. In this
section we focus on runtime-specific structures and state,



and we describe the techniques used to snapshot files and
network sockets in later sections.

The Alto runtime is based on Lua 5.3 [23]. It uses an inter-
preter which supports the following types:

e Boolean

e Integer

e String (immutable, interned)
e Table

e Function

Note that Tables, which are maps of keys to values, is
the only mutable data structure. Functions are first-class,
and both Functions and Tables are pass-by-reference, while
all other data types are immutable and thus pass-by-value.
Alto is lexically scoped and supports closures. Alto does not
support threads or coroutines.

Alto uses Lua’s mark-and-sweep garbage collector, which
classifies objects as either live or dead based on whether or
not a reference chain from the object to a globally accessible
object. If no reference chain exists, the object is marked as
dead and swept during the next GC cycle.

There are four pieces of state included in an Alto snapshot.

1. The set of global variables: stored in an internal table
and thus easily enumerable.

2. The stack: the stack includes local variables, Function
references, and Function arguments.

3. The call graph: a linked list of activation frames which
each store metadata about the current Function level
such as the Function name. Each node in the linked
list references a Function on the stack. Restoring the
call graph ensures that, upon restore, execution re-
sumes from the point immediately before snapshot
was called.

4. The code: In Lua, and therefore Alto, all chunks of code
are represented as anonymous Functions. This means
all code is automatically serialized when Functions are
snapshotted.

Alto’s simple runtime design facilitates fast, easy state
snapshot and restore. Since Alto does not support threads,
Alto snapshots need snapshot scheduler state. Alto does
not include a JIT compiler. Alto does support the I/O struc-
ture (such as network and filesystem) state snapshots and
describes the mechanisms required to do so in subsequent
sections. Alto also includes a garbage collector. However, as
stated, in order to perform a snapshot Alto must serialize
global variables, the stack, and the call graph. So, by def-
inition, Alto snapshots only values that are accessible by
references from global variables (stack values are freed once
the stack slot is popped), leaving dead objects behind. In
this way Alto snapshots perform implicit garbage collection.
Thus, there is no need for Alto to snapshot GC state, since
all objects being restored are were definition live.

3.3 File System State

The following state must be stored for each file in order to
recreate open file connections when Clefs are restored:

1. File path.

2. Access mode (e.g. “read-only” or “read and write”), if
the file is currently open

3. File offset. Note that files are separate for each Clef,
and Clefs are expected to run in single-threaded mode,
so Alto can store the offset per-Clef, instead of per-file
connection, as Linux does.

4. Data buffer: the file contents.

This last piece of state is motivated by Alto’s goal of fast
snapshot and restore times, as this allows cloud computing
providers to migrate long-lived computation to different
physical machines. Reading files from disk has a latency
of 3ms, which is too slow for snapshotting and restoring
computation that runs to completion in seconds [1]. So, Alto
instead maintains all files as in-memory data structures.

3.4 Runtime Network Stack

Alto aims not only to enable efficient snapshot and restore,
but also to perform migration in such a way as to mini-
mize the perceived interruption of normal processing. It is
therefore necessary to move the networking stack out of the
kernel and into the runtime, so that it may be more easily
tied to applications.

Nevertheless, not all network state is relevant in this con-
text. In fact, only transport layer network state must be ex-
plicitly accounted for by Alto’s network-specific snapshot
and restore mechanisms. To see why this is the case, we
briefly consider the other levels of the OSI network stack:

1. Application Layer: the relevant state amounts to ei-
ther code or data, both of which will be captured by
Alto’s general runtime state snapshot-restore mecha-
nisms.

2. Network, Data Link, and Physical Layers: trans-
port layer protocols operate under the assumption
that these layers are unreliable and, if necessary, are
robust against failures in these layers.

Thus, Alto’s runtime network stack and corresponding
snapshot-restore mechanisms need only place explicit em-
phasis on transport layer state in order to successfully mi-
grate applications. Furthermore, Alto can restrict its atten-
tion even further to just those transport layer protocols that
are stateful (e.g., TCP); it can be assumed that applications
built upon stateless protocols (e.g., UDP) are robust against
transport failure and loss, and thus additional faultiness in-
troduced by Alto migration should not prove problematic.



4 Implementation
4.1 Runtime

As noted in Section 3.2, the Alto runtime prototype is built
using Lua 5.3. Lua provides a simple but expressive API for
developing Lua libraries in C. Specifically, Lua stores all pro-
gram state (including global variables, the stack, and the call
graph) in a single luaState instance, and makes this state
accessible to C libraries. (Alto does not use Lua coroutines.)
In this way, implemented in C as a Lua library, Alto can sim-
ply serialize the relevant pieces of state to perform snapshots.
To perform a restore, the Alto library deserializes the state
and inserts it into the new luaState object.

The current Alto prototype is about 1,000 lines of library
code, with less than 100 lines of modification to the actual
Lua 5.3 runtime. The current iteration of the prototype can
snapshot global variables (including closures), local variables,
and the call graph. However, it only supports the restoration
of global variables, including closures. As a result, both snap-
shots and restores are triggered by the programmer, rather
than the runtime. Additionally, execution does not resume
where the snapshotted program left off. After restore, all
global variables captured by the snapshot are accessible to
the restored program. For instance, here is an example of a
program being snapshotted using the current prototype.

alto = require "alto"
-- globals

a =10

b = "foo"

local c = 6

function f(argl)
-- ¢ only captured because closed over
return a + argl + c

end

alto.snapshot ()

And the current program being restored:

alto = require "alto"
alto.restore()
print(f(11)) -- prints 27
print(c) -- prints nil

Lua’s lack of complex, user-defined data (such as classes)
also simplifies Alto’s design: Tables are the closest thing Lua
has to structs. Two variables may reference the same object
only if the object is either a Table or Function. As a result,
if Alto encounters a Function or Table while snapshotting,
Alto must ensure that the object was not previously snap-
shotted, since another variable may have been pointing to
the same object. Although closed-over values referenced by
Functions (called upvalues in Lua) may appear to compli-
cate this, a Function’s upvalues are stored in a Table, which
makes snapshotting and restoring Alto values a relatively
painless task.

4.2 Network Stack

As discussed in 3.4, the Alto design calls for the direct inte-
gration of the network stack and the language runtime. To
this end, we choose to integrate picoTCP, a small, modular
networking stack with a clear internal separation of state
along network layer and protocol boundaries [31], into the
Alto runtime.

The current Alto prototype contains an API for serializing
and deserializing picoTCP sockets (i.e., struct pico_socket)
used in TCP connections. The prototype currently supports
snapshotting applications with active TCP client connec-
tions and subsequently restoring these applications with the
original connection intact and without loss of data that was
in transmission or enqueued for transmission at the time of
snapshotting.

During snapshotting, all application specific metadata as-
sociated with picoTCP sockets as well as the sockets’ associ-
ated TCP state is serialized to disk using stdio file function
calls. Most socket state is easily written to a file, in the order
that it is laid out within the relevant picoTCP structs and
without modification or additional data. The most notable
exception to this is the serialization of sockets’ outbound
TCP queues, which are stored using red-black trees and thus
require additional consideration and manipulation to serial-
ize.

The chronology and mechanics of deserialization mostly
parallel those of serialization. However, while picoTCP sock-
ets encapsulate all state required to be serialized, it is not
sufficient to reconstruct the original sockets during applica-
tion restoration. Before resuming a snapshotted application
we must create a temporary socket on the new picoTCP stack
and connect this socket to an arbitrary server in order to
properly initialize the relevant picoTCP structures. Subse-
quently, we replace all of the temporary socket metadata
(including TCP state) with that from the serialized socket.
Finally, we attempt to resend the packets from the serialized
socket’s outbound TCP queue. After this, the application can
resume networking as if it had never been snapshotted.

Further development of the Alto prototype will result in
the full integration of the picoTCP networking stack into
the Lua runtime. Completing this requires only a small Lua
wrapper around the serialization/deserialization API and
possibly a set of POSIX style socket system calls (which
are provided by compiling against the picoTCP-BSD library
extension).

5 Evaluation
5.1 Runtime Snapshot/Restore

In this section, we evaluate the performance of snapshotting
and restoring an Alto Clef using our Lua-based Alto proto-
type. We snapshot a simple program that does two things: 1)
construct a 10KB globally accessible String, and 2) construct
a global table of 10,000 anonymous Functions. We measure
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the time it takes to snapshot the program after this data has
been initialized. We then measure the time it takes to restore
that data into a new Lua program. We benchmark Alto’s
performance against CRIU. Using CRIU, we snapshot and re-
store the same program, but CRIU snapshots and restores the
entire process rather than the runtime state. We performed
each experiment 1,000 times. The experiments were run in
an Ubuntu 18.06 VirtualBox VM with 8GB of memory atop
a Dell XPS 15 with an Intel 2.8 GHz i7 processor.

The snapshot results are shown in Figure 2. Note that
Alto’s average snapshot time (0.0119ms) is better than CRIU’s
(0.1856ms). This is because Alto doesn’t need to snapshot
the entire process state (which includes all of the process’s
memory), but only needs to snapshot the relevant program
state. The same can be said for restore performance, shown
in 3. Alto’s average restore time is 0.0071ms while CRIU’s is
0.0649ms. However, note that Alto has an advantage here:
currently restoration of the call graph does not work. This
means CRIU successfully restores execution state whereas
Alto does not.

These results indicate that snapshotting and restoring at
a higher level than the process abstraction provides superior
performance. This stems from the fact that Alto can snapshot
only the state relevant to the program, given a runtime. By
assuming a runtime (and a platform atop which the runtime
executes), snapshots become smaller. Additionally, enumer-
ating state is much easier, since it all lives within a single
in-memory data structure.

5.2 File System Microbenchmarks

Recall that Alto maintains an in-memory file system in or-
der to support fast migration; alternative snapshotting tools
would need to read files from disk, send them over the net-
work, and write the data to disk on a new machine. So, our
first file system microbenchmark compares the total time to
snapshot and restore an Alto process with one open file of
varying sizes against reading that file from disk and writing
it to a new file on disk. The Alto operations were recorded
by adding timestamps in the Alto snapshot and restore func-
tions. The disk copy operation was recorded using the Linux
dd tool, which evaluates the latency and bandwidth of disk
operations.

For both Alto and dd, we sync and flush the disk cache
after every operation in order to ensure a fair comparison;
that is, we sync and flush after each Alto snapshot, Alto
restore, and dd operation. In addition, we used setvbuf(3)
to ensure that Alto’s serialized FS state is not cached by stdio,
and is therefore read from disk [13]. We varied the file size
opened by the snapshotted program from 2048 bytes to 40960
bytes in increments of 2048 bytes, and averaged 1000 trials.
All experiments were run in a VirtualBox VM running atop
a MacBook Pro with a 2.3 GHz processor, four cores, and 16
GB of RAM. The individual snapshot and restore times are
found in Figure 4a, and the comparison is in Figure 4b.

We compared the combined snapshot and restore times
against a disk copy operation because we are unable to iso-
late the time to write to the disk; Given that writing to disk
is analogous to snapshotting, and reading from disk is anal-
ogous to restoring, a fair comparison is combined snapshot-
ting and restoring against one disk copy operation. As Figure
4b shows, Alto is at best 8x faster than disk operations, and
at worst 2x faster. We believe that Alto’s performance should
be faster than that of a disk copy operation because Alto
performs a disk write from memory instead of a disk write
from disk. However, this would only explain why Alto snap-
shotting is faster than a disk copy operation; we expect that
restoring would have similar latencies to reading from disk,
and therefore to increase proportionately to file size. While
we see a slight increase, we are unable to explain why the
restore latency is relatively flat.

We also performed a microbenchmark of the open () func-
tion. In Section ??, we mentioned that Alto must prefetch
existing disk files that are opened in a Clef. We measured
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Figure 5. Comparison of latency to open a file in Alto and
in Lua, for varying file sizes.

the performance degradation of this decision against the un-
modified Lua function to open files. Again, we varied the file
size from 2048 bytes to 40960 bytes in 2048 byte increments,
and averaged 1000 iterations of each trial. As the results in
Figure 5 show, Alto is much slower than unmodified Lua
because of the prefetching. However, we believe that latency
smaller than 1ms is a sufficient trade-off for faster migration.

We were unable to present benchmarks against CRIU be-
cause CRIU snapshots much more information than just file
system state; so a direct comparison would be unfair. Future
work will include a macrobenchmark of the entire Alto sys-
tem against CRIU for varying dimensions, including size of
open files.

5.3 Network Stack Microbenchmarks

We evaluate the Alto network snapshot and restore API by
comparison against CRIU. For both Alto and CRIU we snap-
shot a simple program that establishes 100 TCP connections
with a netcat server and subsequently writes short, 30 byte
messages across each of its connections until killed. For Alto,
we measure the aggregate time spent in the Alto serialize

Alto vs. CRIU: Snapshot and Restore
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Figure 6. Comparison of time to snapshot and restore an
application with 100 open TCP connections using Alto and
CRIU.

and restore API functions for all 100 open sockets. For CRIU,
we determine the time spent in the CRIU dump function
(snapshot equivalent) and the time spent in the CRIU restore
function both after the application has established its 100
TCP connections. We performed each experiment 100 times.
The expeirmnets were run in an Ubuntu 18.06 VirtualBox
VM with 8GB of memory atop a MacBook Pro with an Intel
3.3 GHz processor i7 processor.

The snapshot and restore comparison between Alto and
CRIU is shown in Figure 6. We note that Alto’s snapshot time
(330.80 ms) is faster than CRIU’s time (1244.96). This is likely
because of the additional overhead incurred by CRIU in mod-
ifying connections to prevent FIN and RST packets from
being sent or received while the application is suspended.
Alto is not burdened by manipulating socket state during sus-
pension because this information lives in the picoTCP stack
rather than the kernel. However, we also note that Alto’s re-
store time (2250.61 ms) is slower than CRIU’s time (24.67 ms).
This is almost certainly because of the way in which dummy
connections are established as refernced in Section 4.2. A



further experiment (graph omitted) showed that the average
time (across 1000 trials) to restore a single connection was
3.32 ms, thus suggesting parity with the time required to
snapshot an application with 100 open connections.

These results show that snapshotting and restoring net-
work state at a higher level than the proces abstraction can
provide superior performance. Further work (specifically
establishing dummy connections in parallel rather than se-
rially) could provide greater insight into how to make Alto
network state restoration competitive or better than that of
CRIU.

6 Related Work

In this section we acknowledge the work of and differentiate
Alto from previous lightweight virtualization and application
snapshotting/restoring approaches.

6.1 Lightweight Virtualization

Throughout the literature, a range of new virtualization tech-
niques can be found [12, 32, 33], ranging from iterative ap-
proaches to full hardware virtualization to sub-process level
techniques.

In 2018 Amazon deployed Firecracker as a hardware level
virtualization technology meant to reduce startup latency
for their serverless computing service, AWS Lambda, by
removing legacy support and emulating only the minimal
hardware required for booting AWS Linux [33]. Akin to Xen’s
Dom0, AWS Firecracker includes an orchestration manager
that invokes one-time-use “MicroVMs” via the Linux KVM
API [33]. Notably, the approach taken by Firecracker differs
from that taken by Alto in that Firecracker purposefully
does not support live migration of VMs as it is Amazon’s
intention that FaaS instances are short-lived. Additionally,
in choosing to keep the virtualization boundary at the level
of hardware, Firecracker’s solution is inherently “heavier”
than Alto’s approach.

In recent years, unikernel and libraryOS designs have
regained the interest of their predecessors [16, 27]. One of
the more recently developed systems is Graphene, which
aims to reudce VM memory overhead and support multi-
process applications by combining traditional elements of
unikernel and microkernel design. Graphene kernels can
run arbitrary, unmodified binaries and supports application
snapshot and resume. The key difference between Alto and
Graphene is that Graphene is still a “heavier” solution in
that it can provide all necessary kernel functionalities to its
applications via the traditional libraryOS module system.
Thus, Graphene is required to support a greater number
abstractions than Alto.

Perhaps the most virtualization technology most akin to
that of Alto Clefs is proposed by Boucher et al. [18]. Aiming
to minimize the size of FaaS computational units as well
as their latency, Boucher et al. “virtualize” single-threader

worker processes which are given microservices to run (via
calling a registered function) by a centralized dispatcher.
Ultimately, Alto differs from this approach in that it aims to
provide long-lived, stateful units of computation, and thus
established a slightly lower virtualization boundary (i.e., that
of a managed runtime).

6.2 Snapshot and Restore

Both the literature and the open source community are re-
plete with snapshot and restore solutions with support rang-
ing from single-process applications to entire virtual ma-
chines.

Presented by Cully et al. in 2008, the Remus system was
designed to provide high fault tolerance for unmodified ker-
nels running as virtual machines atop commodity hardware
[12]. By actively sending VM state across the network to
actively running backups and running the primary guest
slightly ahead via speculative execution, Remus is a highly
fault tolerant system. Though Remus and Alto provide sim-
ilar guarantees for the state of restored applications, Alto,
owing to its inherently lightweight design, achieves these
guarantees via operations that are two orders of magnitude
faster.

Another existing solution is Distributed MultiThreaded
Checkpointing (DMTCP) [4]. The approach taken by DMTCP
is similar to that of Cully et al. though restricted to the ap-
plication level. However, the major downside of DMTCP’s
solution is that any application that wishes to be snapshotted
and resumed must be statically linked against DMTCP; addi-
tionally, DMTCP doesn’t support all useful kernel features
such as inotify() [8]. Thus, Alto differs from DMTCP in that
Alto places no requirements on the applications that can be
snapshotted and restored beyond that they be written for a
supported runtime (currently Lua, though in future others
are possible).

Perhaps the most innovative snapshot and restore solution
is Checkpoint and Resume In Userspace (CRIU). CRIU relies
on a set of invasive tools (e.g., ptrace) and parasitic behavior
in order to snapshot and restore applications [10]. Like Alto,
CRIU can snapshot and restore arbitrary applications; how-
ever, the major difference between the solutions is in their
deployment. Alto is self-contained, providing both a mech-
anism for lightweight virtualization and snapshot/restore,
whereas CRIU must be coupled with a separate virtualization
technology (e.g., Docker containers) in order for deployment
in an FaaS implementation.

7 Conclusion

In this paper, we described Alto, a system that fills the gap for
stateful, long-lived computation in the serverless ecosystem.
Alto’s key insight is to treat the runtime as a hypervisor,
storing all necessary state for running programs, including
program, network, and file system state. We then present



our Alto prototype using a modified Lua runtime, which can
successfully snapshot and restore running Lua programs.
Our evaluation shows that Alto achieves fast snapshot and
restore performance relative to CRIU and disk reads and
writes.

While we presented some applications that work well for
Alto, such as social media platforms and ride sharing appli-
cations, we hope that creating a new serverless architecture
will allow developers to create new types of applications.
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