
Native DAG Execution in OpenWhisk

Harshita Gupta
Harvard University

hgupta@college.harvard.edu

Eric Lu
Harvard University

ericlu01@g.harvard.edu

Abstract
Function-as-a-service offerings, such as AWS
Lambda, are becoming increasingly common build-
ing blocks for server-side computation. Instead of
running computations on one’s own VMs or physi-
cal hardware, “serverless” functions are combined
to create the building blocks of complex computa-
tions on matrices and large data-sets. These uses of
serverless functions, however, are constrained by
the limited orchestration and function composition
abilities of serverless infrastructures.

We modify Apache OpenWhisk to interpret a
domain-specific language, DAGular, for serverless
orchestration and function composition. DAGular
allows programmers to specify data dependencies
between serverless function invocations in a func-
tional syntax. We execute DAGular code as a di-
rected acyclic graph of computations that allows us
to optimize function invocation order and schedul-
ing in the OpenWhisk controller. DAGular and
its accompanying OpenWhisk executor satisfy the
serverless trilemma and go beyond, providing na-
tive orchestration that is dynamic, highly parallel,
and easily programmable by developers.

1 Introduction

Serverless functions allow developers a low-cost
way to deploy and run computations in the cloud
without managing VM provisioning. While pro-
grammers in the past have had to manage scaling
to respond to load bursts and minimize idle time

themselves, serverless functions offload the respon-
sibility of burst management and scaling down onto
the serverless provider. Since the user is charged
per time unit of computation used, idle time is “free”
in this model. Moreover, since pricing is not based
directly on the number of function instances started,
handling load bursts by increasing concurrency is
also “free” in this model. This makes functions-as-
a-service (FaaS) a desirable model for programmers
whose computations exhibit a high amount of vari-
ance in load.

As serverless functions are adopted for more
complex use cases, programmers start needing to
combine the results of multiple distinct serverless
function invocations into higher-level workflows.
In [1], Baldini et al. propose a serverless trilemma
that describes shortcomings in mechanisms for
function composition supported by existing server-
less function offerings. Namely, Baldini et al. claim
that existing serverless function offerings each fail
to satisfy one of three key properties: that time
spent by a caller function waiting on the result of a
callee function is not billed (“no double-billing”);
that a function can be used while its source code
remains hidden to its user (“black-box constraint”);
and that the composition of multiple functions can
again be treated as a single function in terms of
blocking behavior and return value (“substitution
principle”).

To address the serverless trilemma, we propose
that the serverless function provider expose an
expressive orchestration language for controlling

1



function scheduling and composition. Furthermore,
to maximize the provider’s opportunities for sched-
ule optimization, we propose that this language
be interpreted directly by the platform’s sched-
uler. In this paper, we contribute a design of an
orchestration language, DAGular, which allows the
user to specify computations as function compo-
sitions. DAGular can express compositions that
take the form of a directed acyclic graph (DAG)
whose nodes represent function invocations and
whose edges represent data dependencies between
invoked functions. As we will discuss, this supports
a more diverse range of computations than existing
platform-side offerings. We have implemented an
interpreter for a subset of DAGular as an extension
to OpenWhisk, an open-source serverless comput-
ing framework.

Contributions This paper introduces:

1. A domain-specific language, DAGular, that al-
lows a programmer to write a functional pro-
gram that specifies the relationships between
the inputs and outputs of multiple serverless
functions in a workflow.

2. A parser that compiles DAGular into depen-
dency information that can be used to schedule
function invocations in OpenWhisk.

3. An implementation of a new action in Open-
Whisk that triggers an interpreter to execute
DAGular programs.

The rest of this paper is organized into the follow-
ing sections. In 2, we discuss other approaches to or-
chestration and function composition and compare
them to our contribution. In 3, we discuss the archi-
tecture of OpenWhisk and explain where our im-
plementation fits in. In 4, we discuss the language
specifics of DAGular. In 5, we explain how our
implementation interfaces with OpenWhisk. We
evaluate expressiveness and discuss planned bench-
marks in 6, discuss future research in 7, and finally
conclude in 8.

2 Related Work

Some existing serverless function platforms sup-
port scheduling for complex function compositions.
AWS Step Functions are an AWS-provided service
running atop AWS Lambda that addresses function
composition with scatter-gather parallelism. AWS
Step Functions allow developers to specify an order
in which serverless functions should be executed,
and also allow for triggering function invocations
through other AWS services such as AWS API Gate-
way and AWS S3 bucket. Microsoft Azure Durable
Functions also support stateful function composi-
tion with scatter-gather parallelism.

Numpywren [5] highlights one computationally-
intensive workload whose communication pattern
cannot be expressed directly by either AWS Step
Functions or Azure Durable Functions. Numpy-
wren is targeted toward calculations in linear alge-
bra such as matrix multiply and Cholesky decompo-
sition. While these might be highly repetitive, paral-
lelizable, and therefore well-suited to FaaS, parallel
implementations of these algorithms as composi-
tions of serial functions exhibit complex communi-
cation structure. In particular, result values are mul-
tiply reused, and single function invocations refer
to different sets of preceding values, sometimes sets
that are determined dynamically. This highlights a
primary limitation of existing orchestration offer-
ings: they cannot directly support computational
workloads with complex or dynamic communica-
tion patterns. Numpywren instead develops its own
client-side coordination scheme, handling schedul-
ing and message-passing between serverless func-
tion instances using a number of other AWS plat-
forms. Like DAGular, numpywren is therefore able
to express dependency graphs of function invoca-
tions; however, numpywren restricts programmers
to computations whose communication patterns can
be inferred statically. It also requires the mainte-
nance and programming of an additional live server
which coordinates function execution.

Similarly, ExCamera [2] runs two additional vir-
tual machines that launch and communicate be-
tween serverless functions that serve as “workers”

2



in a larger video encoding operation.
Jangda et al. propose an orchestration language

for serverless functions, Serverless Programming
Language (SPL) [3]. SPL implements serial compo-
sition of function invocations and simple platform-
side operations on returned values, but does not
support parallel execution. Jangda et al. also chose
to implement SPL on OpenWhisk, adding two ad-
ditional action types, Fork and Program; composi-
tions are implemented using OpenWhisk’s existing
Sequence action type. The function composition
language itself is not interpreted platform-side; set-
ting up a workflow requires a client to make one
request per function composition, representing a
significant overhead which increases as the work-
flow lengthens.

3 Architecture

OpenWhisk is an open source serverless plat-
form, implementing a distributed system for ex-
ecuting serverless functions. OpenWhisk consists
primarily of a server (“controller”) that distributes
work to containers (“invokers”). OpenWhisk uses
a CouchDB database to store programs and data.
OpenWhisk supports lambda-type function invoca-
tions in the form of “actions”. Action invocations
generate “activations”, which identify running ac-
tions; the ultimate results are persisted in a database.
An OpenWhisk action may execute a script or rep-
resent a Sequence of other actions (as proposed
by [1]); Sequences themselves are considered ac-
tions, thereby obeying the substitution principle.

Actions are created and triggered via a command
line interface, WSK, which communicates with the
OpenWhisk controller via HTTP requests. Users
may create and update actions via HTTP post/put
requests; these are stored in CouchDB and retrieved
for execution when invoked.

OpenWhisk is deployed on virtual machines us-
ing ansible. It can be deployed across a single ma-
chine or multiple machines; our development all
occured on a single-machine deployment.

def cholesky (A, B, N) {
nblocks = ceil(N/B)
def for_j(j) {

L[j][j] = chol(A[j][j]);
par_for (i in range(j, j + nblocks)) {

L[i][j] = mul(
inv(

L[j][j]), A[i][j]);
}
def for_k(k, j) {

par_for (i in range(k, nblocks)) {
A[k][l] = sub(

A[k][l],
mul(

T(L[k][j]), L[l][j]));
}

}
par_for (k in range(j, j + nblocks)) {

for_k(k, j);
}

}
seq_fold (L = A, j in range(0, nblocks))

{for_j(j)};
return L;

}

Figure 1: A DAGular Program Executing Cholesky
Decompositions

4 Design

4.1 DAGular Language Design

DAGular is designed to support complex function
compositions and data dependencies that ultimately
allow a user to build a computation out of many
worker serverless functions. The language syntax
is intended to be intuitive and familiar for a devel-
oper. Despite an imperative appearance, because
the language ultimately describes a dependency
graph, it is interpreted functionally; this also ren-
ders synchronization unnecessary. While we do not
support unbounded conditional looping, our lan-
guage contains parallel map and sequential reduce,
allowing many programs on variable-size data to
be expressed and safely executed.

An example DAGular program, Cholesky, is pro-
vided in 1. This example relies on the lambda func-
tions chol, mul, inv, sub and transpose. The
example uses subgraph definitions via the def key-
word, and runs computations in sequence or paral-
lel via seq_fold and par_for. Apparent updates
are functional and scoped; future references will

3



store_results = STORE_METADATA(INPUT["link"]);
rekognition_results = REKOGNITION(INPUT["link"]);
status1 = DB_PERSIST(

store_results["status"]["code"]);
status2 = DB_PERSIST(

rekognition_results["status"]["code"]);
insights = rekognition_results["data"];
return {

"persistence_status": [status1, status2],
"rekognition_insights" : insights
};

Figure 2: A DAGular program that operates on a
file uploaded to S3

pick up the last bound value. This allows the de-
veloper’s code to remain brief while also retaining
the DAGular nature of the dependency structure.
Unlike numpywren, DAGular does not attempt to
analyze the program for its dependency structure
before execution.

DAGular also makes it easy for the programmer
to define how partial outputs from one program
can be consumed as inputs to another program. 2
shows a simple example of our projection language,
which is very similar to that proposed in [3]. The
projection features of DAGular allow a DAGular
invocation to return a hybrid response to the caller
once the results have returned.

5 Implementation

5.1 Parallelism and asynchronity

To maximize parallelism, the DAGular interpreter
is implemented using asynchronous callbacks. Vari-
able names refer to results of evaluation or function
invocation that may not be complete yet; the fi-
nal return value is bundled as a typical OpenWhisk
activation, such that users may invoke DAGular pro-
grams asynchronously or register event handlers for
completion. The value of a variable is not retained
once all its consuming functions have completed
execution; this reduces the memory footprint of in-
terpretation. DAGular expressions that depend on
the results of other DAGular expressions or function
invocations wait on these results before themselves

returning a value. Elements of arrays generated by
parallel maps are retained as separate values so that
later maps are able to begin work before all ele-
ments of the array have been completed. Though
the current implementation only invokes a function,
allocating a container, once the arguments to the
invocation are ready, extensions could pre-allocate
containers to reduce cold start overhead.

5.2 DAGular invocation

Our implementation allows for DAGular programs
to be created via the OpenWhisk command line in-
terface (CLI) using e.g. the command wsk action
create �dagular newAction file.js. The
provided parameter contains a DAGular program
after conversion to JSON representation. After
creation, DAGular programs may be executed us-
ing normal action invocation mechanisms, includ-
ing e.g. the command line wsk action invoke
newAction. All functions invoked by the DAGu-
lar code that are not defined subgraphs within the
DAGular program scope are assumed to refer to an
OpenWhisk action and invoked from the database.

Our implementation of DAGular execution
builds on top of existing OpenWhisk function ex-
ecution from scratch. We register a single activa-
tion for the entire DAG in the OpenWhisk action
database, and invoke function executions once the
action has been triggered.

Our implementation uses significantly less net-
work bandwidth than [3]’s extension to OpenWhisk,
primarily because it relies less on the network for
activations. [3] constructs an invocation pipeline
from multiple sub-actions, rather than through one
single action, and slows execution and activation
down as a result.

Since OpenWhisk relies on Scala futures to trig-
ger functions, our DAG execution occurs lazily and
as functions become available. This requires min-
imal computation on the controller’s part and is
handled by built-in Scala language features.

4



6 Evaluation

Implemeting DAGular support in the OpenWhisk
reactive core satisfies the serverless trilemma. Since
serverless functions do not call each other, there
is no double-billing; since DAGular functions are
actions themselves, they satisfy the substitution
principle; and since no code of called functions
is required DAGular satisfies the black-box con-
straint. DAGular also satisfies all other metrics out-
lined in [4]; DAGular supports parallelization, is dy-
namic, has minimal overhead, and is build directly
into the reactive core so that it is not client-side or
a serverless function itself.

DAGular is successfully able to execute a
Cholesky decomposition without the use of a sched-
uler or server outside the OpenWhisk controller.

6.1 Planned Benchmarks

Due to trouble getting numpywren to run on Open-
Whisk, we were unable to evaluate and compare
our implementation of a Cholesky decomposition
to numpywren’s. Below are some benchmarks we
plan to collect in the future:

• Measuring completion time for identical
cholesky decompositions of various sizes and
block numbers. on both DAGular and numpy-
wren.

• Tracking the number of workers executing at
a given time, as a way to measure utilization
and parallelization.

• Measuring CPU utilization level on the virutal
machines for both numpywren and DAGular –
which is working to saturation, and better?

• Measuring how much network overhead is
present in passing data between functions?

• Measuring how much database access is
adding performance overhead?

7 Discussion and Future Work

Future work on DAGular has much potential. DAG
compilation currently occurs within the Open-
Whisk controller; future work out move this compi-
lation to the CLI in order to proactively type-check
and raise user errors upon DAG creation. Preemp-
tively compiling a data structure of function de-
pendencies from DAGular code would also allow
advanced analytics through graph and edge analy-
sis.

Additionally, DAGular can be sped up by adding
direct message passing capabilities to the function
invocations within OpenWhisk. By allowing func-
tions to communicate directly with each other, com-
plex data dependencies will introduce less perfor-
mance overhead.

DAGular’s small code footprint additionally
demonstrates that adding DAG execution to com-
merical serverless infrastructures is a manageable
lift with high payoffs for the user. Our patch to
OpenWhisk is only 750 lines of code.

8 Conclusion

We have reviewed the serverless trilemma and the
problem of function composition and orchestration,
and discussed why existing solutions are either not
parallel enough or not dynamic enough. We have
proposed and implemented DAGular, a serverless
orchestration language that can be natively sup-
ported by a serverless controller. We have modified
OpenWhisk’s controller to interpret DAGular code
and execute the corresponding computations.

Our project demonstrates the usefulness and fea-
sibility of orchestration and composition frame-
works for serverless functions. By supporting more
complex and dynamic workloads, serverless func-
tions make auto-scaling and auto-scheduling fea-
tures more broadly available to cloud computing
users, and bring the promise of “serverless comput-
ing” closer. When developers can focus on their
computations and led cloud providers handle au-
toscaling and scheduling, FaaS grows in its capabil-

5



ities and value.

References

[1] Ioana Baldini, Perry Cheng, Stephen J. Fink,
Nick Mitchell, Vinod Muthusamy, Rodric Rab-
bah, Philippe Suter, and Olivier Tardieu. The
serverless trilemma: function composition for
serverless computing. In Proceedings of the
2017 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections
on Programming and Software - Onward! 2017,
pages 89–103, Vancouver, BC, Canada, 2017.
ACM Press.

[2] Sadjad Fouladi, Riad S Wahby, Brennan Shack-
lett, Karthikeyan Vasuki Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. En-
coding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads.
page 15.

[3] Abhinav Jangda, Donald Pinckney, Samuel
Baxter, Breanna Devore-McDonald, Joseph
Spitzer, Yuriy Brun, and Arjun Guha. For-
mal Foundations of Serverless Computing.
arXiv:1902.05870 [cs], February 2019. arXiv:
1902.05870.

[4] Pedro García López, Marc Sánchez-Artigas,
Gerard París, Daniel Barcelona Pons, Ál-
varo Ruiz Ollobarren, and David Arroyo Pinto.
Comparison of FaaS Orchestration Systems.
2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion
(UCC Companion), pages 148–153, December
2018. arXiv: 1807.11248.

[5] Vaishaal Shankar, Karl Krauth, Qifan Pu,
Eric Jonas, Shivaram Venkataraman, Ion Sto-
ica, Benjamin Recht, and Jonathan Ragan-
Kelley. numpywren: serverless linear algebra.
arXiv:1810.09679 [cs], October 2018. arXiv:

1810.09679.

6


	Introduction
	Related Work
	Architecture
	Design
	DAGular Language Design

	Implementation
	Parallelism and asynchronity
	DAGular invocation

	Evaluation
	Planned Benchmarks

	Discussion and Future Work
	Conclusion

