
λ Bureau of Investigation
Juan Esteller

esteller@college.harvard.edu
William Qian

wqian@g.harvard.edu

Abstract
Serverless computing is an emerging computing par-
adigm where users can focus solely on the business
logic of their applications without needing to invest
in system administration. Cloud providers like Ama-
zon AWS [4] provides users with the platform, services,
and tools to build, deploy, and maintain their applica-
tions. Still missing, however, are comprehensive tools
for debugging applications on serverless platforms like
AWS Lambda [5]. In this work, we identify core debug-
ging features that are unavailable to Lambda users and
present two technical innovations to improve the de-
bugging experience. The command line step debugger
allows a user to step debug a single Lambda instance,
and the investigation toolkit provides the user with the
ability to extract details from, interrupt programs on,
and interact directly with individual Lambda instances.
These tools fill a previously-unfilled niche in debugging
serverless functions on AWS Lambda.

1 Cloud Computing at Present
One view of modern cloud computing models is that of
a spectrum, from serverless computing at one end to
serverful computing at the other, with cluster manage-
ment tools like Borg and Kubernetes in the middle [11].
Cluster management tools and serverful computing
have mature ecosystems of debugging tools, such as
interactive debugging tools like the GNU Project De-
bugger (GDB) [10], much of which is currently absent
in serverless computing. In this work, we focus on the
popular AmazonWeb Services (AWS) [4] and its server-
less computing platform, AWS Lambda [5]. We identify
interactive debugging as a crticially-missing feature
for AWS Lambda and present two tools that tackle this
absence. One tool allows for step debugging in AWS
Lambda and the other allows for individualized control
of an AWS Lambda instance.

1.1 Serverful Computing
In traditional serverful cloud computing, such as AWS
Elastic Compute Cloud (EC2) [3], a user pays the cloud
provider for a virtual machine (VM). This VM comes

with compute, memory, and network resources, includ-
ing a public IP address, which allows the VM to serve
a public web application. Additionally, the user has di-
rect access to the VM, which allows the user to use the
same debugging tools that are available on the user’s
personal machines. When an application encounters
an anomaly, the user can remotely access the VM as a
highly privileged user and leverage a familiar, feature-
rich set of debugging tools to identify and solve the
problem.
However, deploying today’s complex modern sys-

tems on serverful computing models can lead to many
challenges. Servers that require orchestrationwith other
servers, such as the task of load balancing, can only
present the user with a local, narrow view of the sys-
tem. As the system scales up, the user may need to
examine more VMs at once to find and fix anomalies.
Without advanced logging and tracing infrastructure
in place, such as Canopy [12], the user will quickly be
overwhelmed by the number of VMs they need to ac-
cess and the intellectual overhead of correlating logs
and data across many machines.
Cluster management systems tackle this problem of

information overload in large serverful computing de-
ployments with the concept of a job. By abstracting
away the hardware details of a running application,
jobs provide the user with a contextual, high-level view
of the underlying system. While debugging, the user
can rely on the cluster management system to under-
stand which machines to target for direct access, thus
reducing the cognitive burden of deducing the context
themself.
Borg [1] is a cluster management systems that deploy

jobs on long-lived servers. A featureful UI allows a
user to submit, update, monitor, and kill jobs without
needing to manually access each machine, but does not
prevent such access. If desired, a user can directly access
a a server through a public-facing IP address, which can
be retrieved from Borg. This allows the user to debug a
server as if in a serverful computingmodel. Thus, a Borg
deployment provides valuable contextual information
for the user while maintaining their visibility into and
control over individual servers.

1



Canopy [12] is Facebook’s end-to-end tracing sys-
tem, which propagates metadata about each request to
enable cheaper and faster analytics. Facebook’s deploy-
ment of Canopy has allowed their developers to focus
more on their projects, without worrying about how to
implement and analyze their own metrics. Furthermore,
by providing a common set of interfaces for use in any
product, Canopy reduces the cognitive load on devel-
opers by only requiring them to learn a single general
tracing library, rather than one library per product.
AWS Lambda [5] is AWS’s serverless computing plat-

form, and presents a different model of computing
from serverful computing and cluster management sys-
tems. Unlike with EC2, a user cannot directly access
an individual Lambda, which restricts the debugging
tools available for investigating anomalies. Unlike Borg,
there is no way to monitor in real time how each ma-
chine in the deployment is behaving [2], which clouds
the user’s visibility into the system. Additionally, Lamb-
das run on short-lived allocations, unlike the long-running
servers in serverful computing and cluster management
systems. Without these controls and visibility options,
the user must find alternative ways to debug anomalies
on Lambdas.
One approach is to use the AWS Lambda Editor, a

unified web IDE that allows the user to quickly iterate
on their Lambda. The user can define the test case’s
input parameters and immediately view the result of a
run. Code changes can be immediately rerun to observe
the effects. The editor does have a size limit, however,
and will not serve projects greater than 3MB in size [6].
Additionally, the console editor does not provide ac-
cess to any command line tools, which prevents the
user from knowing what dependencies already exist on
the system and from installing missing dependencies
through tools like pip.
Another approach is to use the AWS Serverless Appli-

cation Mode (SAM) [7]. SAM allows the user to locally
emulate the environment in which Lambdas run. This
gives the user full control of the runtime environment,
and enables the same suite of debugging tools as server-
ful computing and cluster management systems. The
main detraction of SAM is that not everything in the
cloud environment can be easily emulated. Anomalies
arising from heterongeneous hardware, variances in
operating systems, and other environment differences
will only be discovered on the actual cloud environ-
ment. In the absence of similarly-powerful debugging
tools, the user will be ill-equipped for addressing these
kinds of bugs when they occur on a live deployment.

AWS CloudWatch [8] provides logs as another way to
debug Lambdas. Lambdas can write unstructured data
to logs, which CloudWatch will automatically capture
and store. When an error occurs, the user can inspect
the logs for clues about the error. CloudWatch also
provides higher-level analytics, such as error counts
and success rates. Since CloudWatch is a tool provided
directly by AWS, the user does not have to worry about
log rotation, durability, or storage capacity, making
CloudWatch an easy-to-setup tool for gathering clues
about Lambdas. Since CloudWatch is a logging tool,
though, it has two major limitations. First, logs can only
provide information about what has already occurred –
it cannot be used to speculate on whether a change will
fix the problem. Second, CloudWatch can only provide
logs, and cannot provide the user with any deeper level
of access for debugging.
AWS X-Ray [9] can enrich the user’s understand-

ing of the situation by providing end-to-end traces for
Lambdas. This is especially useful for when the Lambda
runs as part of a larger stack, such as serving web con-
tent. While X-Ray does not operate at Canopy’s scale, it
can still provide useful information about which events
are triggered, how often, and so forth. Like with Cloud-
Watch, however, X-Ray can only provide information
about Lambdas that have already been run, and cannot
provide any finer-grained information about what the
state of the program is, or whether a change will fix the
problem.
AWS’s suite of tools can help the user gather clues

and understand the situations behind many failures in
Lambdas, but still lack the ability to debug a Lambda as
it encounters the bug. Live debugging can be useful in
many situations, such as killing a Lambda before it cor-
rupts the system’s state or being able to step through a
rare bug. We present a command line debugger and an
investigation toolkit to improve the debugging experi-
ence.

2 Design
We propose two approaches for simplifying the debug-
ging process of Lambdas. The first approach enables
step debugging for a Lambda. The second approach
uses a toolkit that enables fine-grained monitoring of
and investigation into the state of individual Lambdas
in a job.

2



2.1 Step Debugging
Adebugger, such as theGNUProject Debugger (GDB) [10],
allows a user to inspect the internals of a running pro-
gram. A step debugger extends this by allowing the
user to inspect the state of the program one statement
or instruction at a time. Using step debugging, a user
can pinpoint when an error occurs, what the state is,
and what code path led up to the error.
AWS does not natively provide support for step de-

bugging Lambdas; therefore, we must remotely connect
a step debugger to a Lambda. One model for a remote
debugger initiates a connection with the target binary,
which in turn has an open port that listens for such
connections. This model does not work for step debug-
ging AWS Lambdas, however, because Lambdas are not
addressable and cannot accept incoming connections.
This means that there is no way for a user to initiate a
connection with the Lambda from outside or inside the
AWS network.
Our solution to this problem is to reverse the relation

between the debugger and the Lambda. Rather than
have the debugger connect to the Lambda, we have the
Lambda connect to the debugger instead. Since AWS
does not restrict outbound connections from Lambdas,
this approach avoids the network restrictions that AWS
has in place.
Having the Lambda connect to the debugger does

have other restrictions. Since the debugger is now the
server, the Lambda now has to address the debugger.
This means that the user must provide the debugger’s
address and port a priori. Additionally, the user must
ensure that the listening port is open and listened on
when the Lambda is invoked.

2.2 Investigation Toolkit
A step debugger works well for reliably-reproducible
bugs in a single Lambda. When a bug cannot be reliably
reproduced, or when a job invokes many concurrently-
running Lambdas, however, this approach becomes in-
feasible. In both cases, the user may have to sift through
hundreds or thousands of debugging sessions, which is
exhausting and impractical. Our investigation toolkit
tackles this challenge by monitoring Lambda invoca-
tions for abnormalities and reporting just the abnormal-
ities to the user. While it lacks the fine-grained control
of a step debugger, our toolkit allows the user to under-
stand and contexualize the environment in which the
abnormality occurred.

The toolkit comprises two components: the monitor
and the dashboard. The monitor runs on the Lambda
and the dashboard presents a UI to the user for inter-
acting with each Lambda’s monitor. Additionally, we
maintain the spirit of working in the serverless world
and avoid using a central server for coordination and
communication.

2.2.1 Monitor
The monitor runs on each Lambda instance to gather
information about the Lambda and communicate with
the user through the dashboard. We focused on the
monitor’s usability and versatility in our design.

Usability Since themonitor runs as part of the Lambda
function, the user must actively incorporate the moni-
tor into their function. Because this is a tool to assist the
user, we must ensure that incorporating the monitor is
as painless as possible. To achieve this, we design the
monitor as a wrapper that encapsulates the function
code. This allows the user to use the monitor library
without changing any logic to the function code being
monitored.

Versatility We have three required features for the
monitor:

1. Extracting details about the runtime environment
and communicating them to the user,

2. Interrupting the program at the user’s will, such
as allowing ad-hoc killing of Lambdas, and

3. Interacting with the user in a stepping manner,
such as interposing before every network I/O re-
quest.

These features impose several requirements on themon-
itor. Extraction requires access to the Lambda’s runtime
information. Interruption and interaction occur during
the function’s execution, thus requiring concurrency.
All three features require two-way communication be-
tween the monitor and the dashboard. We address these
requirements as detailed below.
Extraction occurs at the beginning of a monitored

Lambda invocation. To access the Lambda’s runtime
information, the monitor searches in two areas: the con-
text and the language. The context is a parameter that
AWS provides when the Lambda is invoked. This mostly
contains job information, such as the Lambda’s name,
memory limit, and deadline. To retrieve information
about the machine on which the Lambda is running,
we rely on libraries in the language runtime. This can

3



provide information about the machine’s memory, up-
time, and MAC address. In order to uniquely identify a
Lambda invocation, we combine the machine’s MAC
address, the function’s name, and other parameters of
the invocation. The monitor then sends the identifier
and extracted information off to a data store for later
retrieval. Upon a successful execution of the wrapped
function, the record is deleted from the data store.
Interruption and interaction occur concurrently with

the execution of the Lambda function’s body. We there-
fore implement both features in an asynchronous mon-
itor for the duration of the execution. To receive mes-
sages from the user, the asynchronous monitor polls
from an AWS SQS queue. Each Lambda invocation has
a corresponding SQS queue, which eliminates the need
for filteringmessages. Thus, once amessage has arrived,
the monitor can immediately act on it. The action taken
depends on the type and contents of the message. We
currently support one interruption (killing) and one
interaction (stepping) message.
Interactions also need to send messages to the dash-

board. While we could implement this with another
SQS queue, we instead use the aftorementioned data
store that contains information about the Lambda’s
runtime. In order to send a message to the dashboard,
we update the record, and AWS sends the update to
all subscribing dashboards. This implementation has a
critical advantage over one using an SQS queue. When
a message arrives in an SQS queue, the consumer must
decide whether to pop it off the queue. Doing so would
allow the consumer to access the next message, but
other consumers will no longer be able to read that
message. Not doing so means that unless another con-
sumer pops off the message, all of the consumers will
be stuck reading just the first message. This makes an
SQS queue inherently incompatible with the ad-hoc
subscription model that we envision for the dashboard.
The data store, however does provide the ability to pub-
lish a message to arbitrarily many subscribers by means
of AWS AppSync.

2.2.2 Dashboard
As the user-facing part of this project, the dashboard is
designed to present a clean, concise view of the infor-
mation we have on each Lambda and a simple interface
for interacting with each monitor. In this design, the
dashboard performs three roles:

1. Presenting users with information about,
2. Subscribing to and displaying messages from, and

3. Sending user-initiated responses to each Lambda.
Given that the frontend web stack has many AWS APIs
and is a generally good choice for user interfaces, we
built our dashboard as a web application.
To display information about each Lambda to the

user, the dashboard subscribes to the AWS AppSync
API of interest. When a monitored Lambda is invoked,
the insertion of a record into the associated data store
triggers an event that sends the record to each sub-
scribing dashboard. The dashboard can then parse the
structured record for information and present it to the
user. Upon deletion of a record in the data store, AWS
AppSync sends a corresponding deletion event to each
subscribing dashboard. Each dashbard then deletes the
associated record from the UI. If a record persists be-
yond the expected timeout of Lambda, the dashboard
alerts the user of the anomalous Lambda. A dashboard
can also receive an event when a monitor updates the
record in the data store.
To send a signal to a given Lambda, the dashboard

constructs amessage and pushes it to the corresponding
SQS queue. This queue is identified by a URI that is
provided as part of the record in the data store. The
dashboard exposes this feature to the user as a set of
buttons. Pushing a button will send the corresponding
signal by enqueueing the message to the SQS queue.
For example, to send a kill signal to a long-running
Lambda, the user can click the kill button, which then
sends the kill message to the monitor. To ensure that
each message is sent no more than once, we use SQS’s
API to determine and filter duplicate messages.

3 Implementation
We implement both the step debugger and investiga-
tion toolkit’s monitor library only in Python due to
Python’s flexibility and ease of use for a prototype im-
plementation. Thus, our implementation currently only
supports Lambdas written in Python. The investigation
toolkit’s dashboard is written in NodeJS and ReactJS.

3.1 Command Line Step Debugger
The default Python debugger is Python’s native pdb [13]
module, and can connect to any locally-running Python
program. Rpdb wraps around pdb and enables remote
debugging through an open socket connection with the
target program. Since rpdb relies on the ability to ad-
dress the remote program, which as mentioned in § 2.1
is absent on AWS Lambdas, we created crpdb to sup-
port remote debugging of Lambads running in Python.

4



Figure 1. Code difference between crpdb and rpdb.
Rpbd’s server socket code is changed to client socket
code.

Crpdb extends rpdb by flipping the client-server rela-
tion between the debugger and the target program, as
shown in Figure 1.

3.2 Inspection Toolkit
3.2.1 Monitor
The monitor is implemented as a decorator class, which
allows it to be easily added to any existing Lambda
handler. The decorator runs in three stages:

1. Pre-execution
2. Execution
3. Post-execution

In the pre-execution phase, the monitor collects run-
time information, sets up the Lambda’s SQS queue, in-
serts the Lambda’s record into the data store, sets up
interpositioning in the AWS Python API, and spins up
the monitor thread. To collect runtime information, we
use the os, sys, and uuid Python libraries. We then in-
voke a GraphQL mutation to update DynamoDB with
the Lambda’s record, including the URL of the Lambda’s
SQS queue.
In the execution phase, the main thread invokes the

original Lambda handler, and the monitor runs in a con-
current subthread as an instance of the LambdaMonitor
class, a subclass of the Thread class. Messages are re-
ceived in a loop by the LambdaMonitor, which polls
from the SQS queue. When the function successfully
completes, the main thread flips a flag, which tells the
LambdaMonitor to break out of its polling loop and join

back with the main thread. To ensure that the Lamb-
daMonitor regularly checks this flag, we poll from the
SQS Queue with a bounded wait time. Once we have
received a message, the LambdaMonitor acts based on
the encoded signal:

• KILL – indicates that the Lambda should be ter-
minated.

• PROCEED – step over the current interposition.

The implementations of termination and interposition
will be described below.
In the post-execution phase, the function has already

successfully completed its execution and we can safely
perform cleanup. The main thread signals for the Lamb-
daMonitor to join, the SQS queue is deleted, and the
Lambda’s record is deleted with another GraphQL mu-
tation. This triggers an event from AppSync to sub-
scribing dashboards, which subsequently remove the
Lambda’s record from the dashboard UI. If the function
encountered an error during the execution phase, the
program will immediately terminate and cleanup will
not occur; this allows the dashboard to identify anom-
alies when a Lambda’s record has outlived the Lambda
it represents.

3.2.2 Dashboard
We build our dashboard as a NodeJS + ReactJS web ap-
plication. We choose ReactJS because it is one of the
few frontend libraries with AWS AppSync API sup-
port, which we need for subscribing to Lambda record
changes. We choose NodeJS for its compatibility with
ReactJS and the AWS Amplify library, which generates
the GraphQL schema, queries, and mutations that we
need. The dashboard UI is implemented as a table, with
rows representing Lambdas. Each row contains the run-
time information about the Lambda, as well as actions
for the user to take, in the form of the proceed, kill, and
clear buttons, as shown in Figure 2. The proceed button
only appears when the Lambda has been interposed.
The kill and clear buttons are available at all times, and
kill the function and clear the record from the data store,
respectively.

3.2.3 Termination
We implement termination with the help of the Python
threading library. This form of interruption works by
interrupting the main thread and killing the process.
In Python3, this is a call to _threading.interrupt_main(),
and in Python2, this is a call to threading.interrupt_main().

5



Figure 2. Dashboard with one running Lambda.

Due to the incompatible version differences, the Lamb-
daMonitor dynamically checks its version when termi-
nating to determine which implementation to execute.
Once the interruption is made, the Lambda fails un-
gracefully.

3.2.4 Interposition
We currently support interposition on anyAWSAPI call.
By default, we interpose on all GetObject calls in the S3
API. When the function hits an interposed API call, the
API call publishes its interposed state and waits on an
Event that is triggered only when the LambdaMonitor
receives a PROCEED signal from the user.
Like with the overall monitor design, we avoid the

need for complicated code changes that the user might
have to implement. Instead, we wrap the API creator
botocore.client.ClientCreator._create_api_method to in-
ject our interposition code into the AWS API. Since
we are using Python, this trick allowed us to dynam-
ically redirect all AWS API calls in the function to
our wrapped version, without making any source code
changes to the AWS API itself. We believe, however,
that this implementation would not extend well to other
languages, such as C++ and Java.

4 Evaluation
We evaluate only our investigation toolkit, as the com-
mand line step debugger is functionally the same as
rpdb. We evaluate the toolkit on two use cases, an S3
retrieval and a PyWren deployment. Our evaluation
takes into account three metrics:

1. The cost of setting up and using the toolkit,
2. The usefulness of the dashboard for identifying

and understanding anomalies, and
3. The performance overhead for using the toolkit.

The first two metrics are qualitative, and the third met-
ric is quantitative.

4.1 S3 Retrieval
The S3 retrieval test makes a call to S3 to retrieve an
object before exiting. We include this test in our library

as test.py, and invoking the test with python3 test.py

will start one run of the test. Multiple concurrent runs
can be achieved with multiple invocations.

4.2 PyWren
The PyWren deployment is in script.py, and can be
run with python3 script.py. The PyWren workload we
provide is a short-lived number squarer. Unlike the S3
retrieval test, we cannot directly decorate the Lambda
function handler without making changes to PyWren.
Instead, we wrap the PyWren handler inside our own
handler, on which we apply the monitor library deco-
rator. This handler wrapped can be found in index.py.
To run the test, our run script first deploys PyWren
normally. We then download PyWren function, add li-
braries that we need, and reupload the code with our
changes. We also change the Lambda’s entry point to
point to our wrapping handler, instead of PyWren’s
handler.

4.3 Setup Cost
We designed the monitor library to be a minimal-cost
library for users. The S3 Retrieval test demonstrates
the minimal work needed to use the monitor library:
importing the library and adding the decorator to the
function handler. To use the decorator, the user must
explicitly specify the AppSync API URL and API key,
which the user can easily retrieve from the AWS dash-
board. In a situation where the user does not easily have
direct access to the source code of the function handler,
like in PyWren, the setup cost rises. In addition to using
the decorator, the user must also wrap the target han-
dler and redeploy the Lambda. We have automated this
process for PyWren, but customizing the redeployment
for every new framework can be difficult.
Another half of the setup cost is setting up the AWS

services. In order for the investigation toolkit to work,
the usermust set upAppSync, DynamoDB, theGraphQL
API, and either Cognito or IAM. Although we provide
the schema for setting up GraphQL, this process can
still be difficult. Additionally, AppSync keys can expire,

6



which means that the user may need to frequently re-
new their keys and update them in the decorator, which
requires another round of redeployment.
Overall, we believe that we have made the basic use

case for the investigation reasonably frictionless. Some
future work in this area can seek to automate the AWS
setup procedure, which can relieve the user of infras-
tructural burdens. Further automation can automati-
cally wrap function handlers and redeploy the function.

4.4 Dashboard
Figure 3 shows the dashboard during a PyWren test,
with interpositioning and record clearing disabled. We
can see that the dashboard provides a concise sum-
mary of many details about each individual Lambda
instance. Unique identifiers allow the user to distin-
guish the Lambdas from each other and cross-reference
with other services, like CloudWatch. Furthermore, the
dashboard dynamically updates itself with the latest
information, so the user can passively monitor their
Lambdas. The combination of a friendlier UI and visual
presentation helps the user to better understand how
their Lambdas are running.
For interpositioning, an interactive feature, the user

is presented with buttons to use. With the default in-
terpositioning configuration, the LambdaMonitor will
pause the function at every S3 GetObject call, and reflect
this in the dashboard. Figure 2 shows the dashboard for
one run of this test case. The interposition is reflected
in the Comments column by a button that prompts the
user to send a PROCEED signal, as well as the AWS
API call that triggered the interposition.
Overall, the dashboard does present to the user a

broad view of their Lambdas, a feature that does not
currently exist on AWS. We still suffer, however, from
information overload, rapid fluctuations of rows appear-
ing and disappearing, and other UX concerns. Future
work in this area could include better ways to group
Lambdas by job and a more customizable dashboard.

4.5 Performance Overhead
We used lightweight statistical counters to report the
time cost of each step in our monitor library. Based
on sample runs of the PyWren test with 10 Lambdas
per job, the overhead for the pre-execution phase is
2 ± 1 seconds, and for the post-execution phase is 3 ± 1
seconds. These costs are fixed, and therefore are more
significant for short-running Lambdas than for long-
running ones. We also only measured these costs for

warm Lambdas, as we expect that the toolkit’s over-
head will be proportionally less in a cold start, where
other costs, such as spinning up the VM, can domi-
nate the performance profile. Overall, we believe that
our toolkit’s performance overhead is generally low
enough for most applications, though future work can
look into better understanding the performance profile
and optimizing it for better performance.

5 Discussion
5.1 Monitor Usability and Versatility
In § 2.2.1, we presented usability and versatility as core
components of our monitor library design. We briefly
return to these topics. Based on our experience of in-
corporating the monitor library in our test cases, we
have found that the decorator design is a convenient
and concise way to incorporate the monitor without
relying much on the user. Since we hold to the tenet
of not expecting the user to modify their code beyond
including the decorator, the monitor library presents
a very low bar to entry. We have also demonstrated
that the monitor library can extract details, interrupt
functions, and interact with the user, which satisfies
our desire for versatility. Though our implementation
still has many areas for improvement, it does succeed
in demonstrating the feasibility of our main desired
features.

5.2 Future Work
Though our implementations are imperfect, they both
fill a niche for debugging Lambdas that is presently un-
occupied. Future work in this direction can look at more
automation and better presentation of details in the
system, or integrating these contributions with other
debugging tools to facilitate easier debugging for users.
One direction in integrating tools is integrating the

step debugger with the investigation toolkit. For exam-
ple, if the LambdaMonitor can interpose between when
the function encounters an error and when it exits, then
it can provide the user with option of connecting that
Lambda to the step debugger, allowing the user to step
debug fewer Lambdas.
One possibility for more automation is a setup script

that uses AWS command line tools to walk the user
through setting up AppSync, DynamoDB, the GraphQL
API, and identity management. These are all distinct
components of the AWS ecosystem, and their individ-
ual quirks can add up to be overwhelming for even
experienced users. A setup script can help relieve the

7



Figure 3. A screenshot of the dashboard during a PyWren run.

burden on the user, as well as reduce the likelihood of
a fatal misconfiguration.
Another direction for automation is in automating

the monitor library inclusion for complex deployments
like PyWren. While we currently have a way to auto-
mate the PyWren deployment, the script is complex,
and we expect that it will be similarly complicated for
other similar deployments.
Presentation-wise, a more customizable UI with more

options for interacting with the Lambdas can help im-
prove the versatility of the toolkit. Since we have al-
ready implemented an interruption and an interaction,
futurework can use these implementations as templates
for other interruptions and interactions.

6 Conclusions
Our project demonstrates inroads in improving the de-
bugging experience for AWS Lambda users. We pre-
scribe a simple change to rpdb that allows for step debug-
ging in Python. We also built the Lambda Investigation
Toolkit for transparency into each Lambda running in
a job. The toolkit provides introspection into the speci-
fication and state of each Lambda, presented to the user
through a dashboard UI. Through the dashboard, users

can also send signals to an individual Lambda, such as
KILLing a looping Lambda or telling it to PROCEED
past an interposition.

References
[1] Abhishek Verma, Luis Pedrosa, et al. 2015. Large-scale cluster

management at Google with Borg. In Proceedings of the Tenth
European Conference on Computer Systems.

[2] Amazon Web Services. 2016. Can we check how
many concurrent lambda currently run? https:
//aws.amazon.com/about-aws/whats-new/2018/10/
aws-lambda-supports-functions-that-can-run-up-to-15-minutesuws.
amazon.com/thread.jspa?threadID=222549

[3] Amazon Web Services. 2019. Amazon EC2. https://aws.
amazon.com/ec2/

[4] Amazon Web Services. 2019. Amazon Web Services (AWS).
https://aws.amazon.com/

[5] Amazon Web Services. 2019. AWS Lambda – Serverless Com-
pute. https://aws.amazon.com/lambda/

[6] Amazon Web Services. 2019. AWS Lambda Limits – AWS
Lambda. https://docs.aws.amazon.com/lambda/latest/dg/
limits.html

[7] Amazon Web Services. 2019. AWS Serverless Application
Model. https://aws.amazon.com/serverless/sam/

[8] Amazon Web Services. 2019. Using AWS Cloud-
Watch. https://docs.aws.amazon.com/lambda/latest/
dg/monitoring-functions.html

8

https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutesuws.amazon.com/thread.jspa?threadID=222549
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutesuws.amazon.com/thread.jspa?threadID=222549
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutesuws.amazon.com/thread.jspa?threadID=222549
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutesuws.amazon.com/thread.jspa?threadID=222549
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://aws.amazon.com/serverless/sam/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html


[9] Amazon Web Services. 2019. Using AWS X-Ray. https://docs.
aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

[10] Free Software Foundation, Inc. 2019. GDB: The GNU Project
Debugger. https://www.gnu.org/software/gdb/

[11] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-
Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar,
Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. 2019.
Cloud Programming Simplified: A Berkeley View on Serverless
Computing. arXiv preprint arXiv:1902.03383 (2019).

[12] Jonathan Kaldor, Jonathan Mace, et al. 2017. Canopy: An
End-to-End Performance Tracing And Analysis System. In
Symposium on Operating Systems Principles.

[13] Python Software Foundation. 2019. pdb— The Python Debug-
ger. https://docs.python.org/3/library/pdb.html

9

https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://www.gnu.org/software/gdb/
https://docs.python.org/3/library/pdb.html

	Abstract
	1 Cloud Computing at Present
	1.1 Serverful Computing

	2 Design
	2.1 Step Debugging
	2.2 Investigation Toolkit

	3 Implementation
	3.1 Command Line Step Debugger
	3.2 Inspection Toolkit

	4 Evaluation
	4.1 S3 Retrieval
	4.2 PyWren
	4.3 Setup Cost
	4.4 Dashboard
	4.5 Performance Overhead

	5 Discussion
	5.1 Monitor Usability and Versatility
	5.2 Future Work

	6 Conclusions
	References

