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ABSTRACT
Serverless computing has risen to popularity over the past few years
with the release of AWS Lambda, Google Cloud Functions, and
Azure Functions. However, serverless providers offer few guaran-
tees or transparency about performance. We propose a microbench-
mark framework that can be used to create a suite of microbench-
marks in order to compare latency and scalability across the various
cloud provider offerings. We evaluate cold starts, warm starts, and
scalability of warm starts across two different triggers: AWS API
Gateway (HTTPS) and AWS Simple Queuing Service (Pub/Sub).
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1 INTRODUCTION
Serverless computing, also known as Functions-as-a-Service (FaaS),
is a type of cloud computing platform that abstracts away server
management from tenants. Instead, programmerswrite event-driven
functions and can modify a small set of configurations. The FaaS
platform then handles dependencies, compilation, virtual machine
configuration, and resource allocation. Moreover, FaaS platforms
bill only for the compute time the user consumes, metering by
timeslices on the order of 100ms [14]. After a function handles a
request, its virtual machine is put to sleep, so users do not pay for
idle or unused resources. FaaS platforms therefore offer certain ad-
vantages compared to traditional Infrastructure-as-a-Service (IaaS)
cloud computing platforms. There are, however, certain limitations
of FaaS platforms compared to traditional IaaS cloud computing
platforms such as lack of state, run time cutoffs, invocation over-
head, and limited logging tools for the user.

Although originally intended for simple workloads, FaaS plat-
forms have since been used by tenants to handle a wide variety of
services including video processing, data analytics, and machine
learning. Some companies even rely entirely on FaaS to power their
backend [27]. Despite the diversity of these workloads, all of them
take advantage of one key benefit of FaaS over traditional cloud
computing: the scaling of each FaaS deployment is automatically
handled by the FaaS cloud provider rather than the tenant. One
of the main marketing points of FaaS is that it is able to automati-
cally handle server management so that users do not have to deal
with complex resource allocation problems. However, the resulting
opaqueness from cloud providers regarding startup latency and
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scalability makes it difficult for users to compare FaaS platforms to
each other. Even when a cloud provider gives scalability guarantees,
users have few tools to test that those guarantees are acted upon.
This means that users and providers cannot easily compare a FaaS
platform to other FaaS offerings or even previous versions of the
same platform.

To address these concerns, we introduce a microbenchmarking
framework along with a suite of microbenchmarks intended to
be generalizable across FaaS providers to measure startup latency
and scalability. Our microbenchmarking framework is capable of
modeling various workloads in order to test differences in perfor-
mance for cold and warm start at various degrees of scale. Through
preliminary tests on AWS Lambda, we are able to measure cold
start, warm start, and scalability. These preliminary results show
that our benchmarking framework is able to measure core FaaS
metrics, and it is generalizable to other serverless platforms. We
hope these results can guide FaaS users in deciding which provider
is best for their specific workload.

1.1 Paper Structure
We structure the rest of the paper as follows: section 2 gives an
overview of related work and benchmarking best practices, section
3 reviews motivating serverless use cases, section 4.1 outlines the
metrics we use tomeasure serverless platforms, section 4.2 describes
our benchmarking framework, section 4.3 discusses performance
concerns we addressed, section 4.4 explains the benchmarks we
chose to run, section 5 is the evaluation of AWS Lambda with
our benchmarking suite, section 6 discusses shortcomings in our
research and opportunities for future work, and section 7 wraps up
our discussions.

2 RELATEDWORK
As serverless computing is such a new field, literature on the topic
is still nascent. We expanded our review to include both informal
discussions of serverless performance and use cases. We also added
formal benchmarking literature in non-serverless fields, such as
operating systems.

2.1 Benchmarking Literature
In designing a benchmarking suite, we first conducted a literature
review to discover what qualities make a benchmarking suite useful
for researchers and developers; below we provide a summary of
some of the key research done on common benchmarking fallacies
and pitfalls. We also address how our benchmarking framework
will address them.
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Benchmarking Crimes [43]: Heisner discusses many of the unin-
tentional mistakes that authors commit when creating their bench-
marks. Although we do not evaluate our microbenchmarks using
this framework, below we discuss four particularly notable "crimes"
that influenced our benchmark design.

First, authors often neglect part of the evaluation space when cre-
ating a benchmark. This allows them to demonstrate improvement
on one metric, while avoiding results that show degradation on
another. With this in mind, we evaluate both the progressive crite-
rion in serverless—improved scalability—as well as the conservative
criterion—degraded request handling rate. We hope to elucidate
the trade-offs here that serverless offerings make. Moreover, we
provide multiple trigger mechanisms and scale options in order to
conduct our benchmarks on as wide a search space as possible.

Second, authors may attempt to make macro claims from mi-
crobenchmarks, ie suggesting the microbenchmarks will be repre-
sentative of performance in practice. While we are putting forth a
microbenchmarking suite, we hope to temper our claims about the
results while still providing valuable insights to our readers. Primar-
ily, we are focused on the elements on serverless that are the most
opaque and difficult to test. We anticipate that users will leverage
our benchmarking suite to create additional custom benchmarks
for their unique applications and workloads.

Third, authors may not report a sufficient breadth of statistics
about, or do not conduct, multiple benchmark trial runs. When
averages are reported without metrics such as variance, readers are
unable to draw clear conclusions about the results. We address this
by constructing benchmarks that produce composable datasets—
and therefore don’t require composing summary statistics after the
fact—or clearly summarizing our benchmark results with complete
distribution summaries whenever possible.

Fourth, authors may fail to clearly specify the environment that
they are using for the evaluations. One of the primary focuses of
our benchmark is providing reproducibility and freshness of results.
We structure our framework to allow for low-cost (in both time and
money) execution of the suite so that readers can verify the results
or produce new results for unexplored environment configurations.

SevenDeadly Sins ofCloudComputingResearch [34]: Schwar-
zkopf et al. identify many unfortunate tendencies in cloud comput-
ing research, some of which undoubtedly apply to new serverless
offerings. In particular, we hope to provide a benchmarking suite
that helps developers avoid three of the evaluation mistakes that
Schwarzkopf et al. highlight.

First, Schwarzkopf et al mandate that cloud computing research
report results based on multiple benchmark runs and report vari-
ance over multiple trials over a reasonable time period. We conduct
multiple trials over time, and the automated nature of our bench-
mark suite allows others to replicate results. We anticipate that per-
formance characteristics will change over time, on short timescales
due to tenant resource contention, as well as long timescales as
cloud providers opaquely update their serverless implementations.

Second, Scharzkopf et al. note that cloud computing research
sometimes operated in isolation; researchers would compare new
approaches against traditional, outdated methods, instead of more
recent, and harder to beat, proposals. We address this deficit by

selecting microbenchmarks and developing a benchmarking frame-
work that can be extended to any new serverless provider. We hope
our benchmarking framework will provide a unified, up-to-date
overview of the state of the ecosystem.

Finally, Scharzkopf et al. call into question standard assump-
tions that scalability is infinite in the cloud. We agree that this is
infeasible, and therefore seek to explore what the finite bounds
on scalability are for serverless offerings. We intend to probe this
limit through increasingly large load capacities and monitoring the
serverless platform for signs of queuing or failure.

Ten SimpleRules forReproducibleComputationalResearch
[32]: We note that the rules applicable to our microbenchmarks
include: tracking how results were gathered, recording all interme-
diate results, storing raw data, avoiding manual data manipulation,
and providing public access. To achieve the latter, we make our
benchmarking suite publicly accessible.1 We address the other re-
quirements in our design section. We have a logging system that
records all raw data generated by the benchmarking suite as well a
script to generate graph based on that data. This allows our data to
be publicly accessible on Github for easy reproduction.

Open Versus Closed: A Cautionary Tale [33]: Schroeder et al.
disambiguate two important variants of request-based benchmark-
ing: open versus closed. In closed systems, a specified number of
actors performs sequential requests against a system, with new
requests coming from an actor only once that actor has finished
its previous request. In open systems, new requests arrive indepen-
dently of request completion. As we will discuss in section five, we
chose an open system for our microbenchmarks.

2.2 Serverless Literature
We reviewed available serverless literature to better understand
the current deficits and complications in the ecosystem. Because
the space is nascent, we also looked at several informal writeups
in order to understand the broader serverless developer community.

Peeking Behind the Curtains of Serverless Platforms [44]:
Wang et al. explore the implementation, performance, and security
characteristics of several major serverless providers: AWS Lambda,
Azure Functions, and Google Cloud Functions. They focus on under-
standing the implementation underlying the serverless platforms,
and perform substantial investigation into the co-location of differ-
ent function instances and the network performance that results
from those decisions. Excitingly, Wang et al. noticed a substantial
performance change between the initial exploration they conducted
and a subsequent review they conducted several months later; for
example, Microsoft Azure coldstart latency improved by a factor
of fifteen. We hope to create a system that will unveil these types
of changes over time in a reliable, ongoing, and easily accessible
manner. Unlike Wang et al., we accept the opaqueness of the server-
less implementations and instead focus all of our attention on the
developer-facing aspects of the serverless platforms.

1Source code is available on GitHub at awendland/faas-benchmarking. We will be
improving documentation as the interfaces stabilize.
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Figure 1: A request to a serverless function will traverse sev-
eral intermediaries before actually being executed.We focus
on the traversal of these intermediaries—such as "queue re-
quest," "ingest request," and "send response"—as opposed to
the function’s actual execution (i.e. "process request").

Cold Start Influencing Factors in Function as a Service [30]
and Performance Evaluation of Heterogeneous Cloud Func-
tions [24]: The benchmarking suites by Manner et al. and Figiela
et al. both are for serverless functions, cover the primary providers
(AWS Lambda, Azure Functions, Google Cloud Functions, and IBM
OpenWhisk), and attempt to set up a framework for repeatable
results. We believe there are deficits in both pursuits. Figiela et
al’s bechmarking suite consists of an integer-based CPU inten-
sive benchmark, instance lifetime measurement, and data transfer
benchmark. It also uses HPL Linpack, a CPU-intensive benchmark
that uses a linear system of equations to measure floating point per-
formance and assesses cost and heterogeneity of hardware. While
we believe that CPU-intensive benchmarks are useful metrics for
users, as we will expand on in section 3, we believe that the pri-
mary performance concern with serverless platforms is in request
ingestion and response, not in the processing of the request by the
function instance (see Figure 1 for an overview of the serverless
invocation process). Manner et al. focus on cold starts—similarly to
us–however, we believe that isolated cold starts are only one factor
in a larger pool of relevant performance characteristics. Therefore,
we expand our benchmarking suite to look at not only cold start
performance but also warm start request latency and function in-
stance allocation at scale. As we will discuss later, we believe that
these metrics present a comprehensive picture for understanding
how serverless handles request load.

Serverless Benchmark 2.0 - Part I[42] [41]: Strehl proposes an in-
formal benchmarking suite comparing AWS Lambda, Google Cloud
Functions, Azure Functions, IBM Cloud Functions, and Cloudflare
Workers. The tests are continuous, measuring overhead and cold
start time every hour at various concurrency levels. We augment
this suite by adding other important benchmarks and being more
rigorous about collecting sufficient data, timing function responses
more precisely, and creating a reproducible framework.

CF Serverless: Attempts at a Benchmark for Serverless Com-
puting [28] and How does language, memory and package
size affect cold starts of AWS Lambda? [23] are another two
informal serverless benchmarking attempts. Kaviani and Maxim-
ilien provide an initial specification for SPECserverless to add to
the SPEC series of benchmarks. The authors suggest comparing
workloads that vary in invocation distribution (random, spiked or
periodic), size of payload, and concurrency. With these dimensions,
they hope to examine performance CPU-heavy jobs, memory-heavy
jobs, jobs that rely on databases, and jobs that invoke external net-
work services. As of May 2019, results have not yet been published.
Cui examines how language choice, size of the deployment pack-
age, and memory allocation affect execution time of the function.
However, neither examine cold or warm start latency; metrics we
propose to be the main cost introduced by serverless.

3 SERVERLESS USE CASES
We review publicly-documented use cases of serverless platforms to
understand how developers leverage them today. Some of these use
cases relate directly to serverless computing’s proposed strengths—
such as quick scalability—however, others perform functions that
are traditionally handled by non-serverless platforms and are less-
perfect cases for serverless. We summarize these in table 1 and
grouped use cases into 4 broad categories:

(1) Webapps - these applications perform traditional web servers
functionality, such as returning dynamically generatedHTML
based on a browser request. They are traditionally mono-
lithic applications.

(2) HTTP backends - these applications perform simplified
web server roles, such as returning a JSON response to a
client request. They may be "RESTful" or communicate over
some other HTTP RPC.

(3) DevOps - these applications perform support functional-
ity for developers or system engineers, and usually do not
directly perform client facing functions. For example, they
may manage infrastructure deployments or perform code
analysis. They may be triggered by internal events or peri-
odically.

(4) Data processing - these applications perform ETL (extract,
transform, load) operations on data sets. They may be trig-
gered by internal events or periodically.

Jonas et al [26] also presented a categorization for use cases
of serverless computing which we believe supports our 4 main
groups: 32% of serverless computing use cases are for web and API
serving, 21% are for data processing, 17% are for integrating 3rd
party services, 16% are for internal tooling, 8% are for chat bots,
and 6% are for Internet of Things. Unlike us, they then investigate
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Table 1: Collection of publicly-discussed serverless use cases. Scale refers to the number of requests received by the system
per second (Low ≈ <0.1 rps, Medium ≈ <1 rps, High ≈ >1 rps). Burstiness refers to the potential volatility of the request rate.
Latency refers to how much time the system has to address each request (>1 sec, >500ms, <500ms). Scores are intended for use
case summary purposes, not for detail analysis.

Category Name Description Trigger Scale Burstiness Latency

Web apps Zappa[12] Converts existing Python websites to run
on FaaS

HTTPS Medium Medium High

HTTP Backends MoonMail[19] Send infinite emails with FaaS HTTPS Medium High Low
Coca-Cola[1] Vending machine credit-card payments, loy-

alty programs, etc.
HTTPS Low Low High

iRobot[7] Consumer vacuum controls HTTPS Medium Low Medium
Hello, Retail![18] Nordstrom’s serverless ecommerce demo HTTPS High High High
Bustle[2] Online lifestyle magazine HTTPS Medium Medium High
Reuters[5] User messaging HTTPS Medium Medium Low

DevOps SSH certs[20] Netflix/Lyft’s SSH certificate management Direct Low Low Low
Automated recovery[29] Netflix’s infrastructure health-check system Periodic Low Medium Low
Serverless Artillery[16] Nordstrom’s high-throughput HTTP load

generator
Direct High High High

Prisma E2E Testing[21] Parallelized headless browser integration
testing

Direct Medium Low Low

Expedia’s CI/CD[13] Continuous integration/deployment at Ex-
pedia

HTTPS Low Low Medium

Data Processing StreamAlert[35] AirBnB’s real-time log analysis framework File High Low Low
MLB’s User Metrics[29] Major League Baseball’s user metric pro-

cessing pipeline
Pub/Sub High High Low

BinaryAlert[15] AirBnB’s framework for analyzing millions
of malware files daily

File High Low Low

specific research projects using serverless computing and chronicle
limitations to serverless as a platform in those applications. Several
examples that they discuss:

ExCamera [25] uses a framework to orchestrates parallel com-
putations with serverless computing to encode video in real-time.
It uses an encoder that can pass named intermediate states to en-
code small chunks of the videos in a parallelized fashion. It then
stitches the chunks together serially. Ultimately, ExCamera per-
forms 60x faster than state-of-the-art encoders with similar bitrates
and quality. Numpywren [39] is a system to perform large scale
linear algebra with serverless computing. For certain linear algebra
computations that are highly paralellizable, numpywren’s perfor-
mance was within 33% of ScaLAPACK’s and saved 240% in com-
pute efficiency. Numpywren also demonstrated that a limitation of
serverless was inability to use locality across cores in a machine. In
particular, they find FaaS is an extremely poor fit for databases and
other state-heavy applications.

However, the cloud computing sin addressed by Schwarzkopf et
al. most relevant to our benchmarking framework is the require-
ment that the workload we run through the benchmark is represen-
tative of real-world use cases. Though workloads such as ExCamera
and Numpywren depend on serverless computing’s automatic scal-
ing and fine grained billing, they are highly-stateful and uncommon
in enterprise deployments (which makes them interesting for re-
search, but that’s for others to address). Instead, most serverless use

cases perform simple object fetching, transforming, and sending;
with connections to databases, other web APIs, or object stores (like
Amazon S3). As discussed by the users or documentation of the ap-
plications in 1, these applications are mostly concerned with quick
elastic scaling and, in many cases, low end-to-end response times.
These systems usually consume serverless functions in a platform
agnostic way, such as over HTTP, and therefore must proxy their
requests through intermediaries, such as AWS API Gateway2 for
HTTPS. Due to this, in our evaluations we will include the latency
from API Gateway, and other triggers, as part of the serverless
framework.

4 BENCHMARK
4.1 Benchmark Metrics
We focus on two core metrics in our benchmarking framework,
motivated by the needs of the use cases mentioned previously.

4.1.1 Latency. We define the latency of a serverless platform as
the time between when we begin sending the request and the
time when we receive a response (see 1 for a visual overview). We
calculate latency by recording the time when the request was sent
and the time when the response was received; this period of time
will include:
2AWS API Gateway is a load balancer, Layer 7 router, and proxy that translates HTTPS
requests to Lambda invocations
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• Time required to traverse the network to the serverless func-
tion’s trigger endpoint

• Time required for the trigger to notify the serverless function
scheduler

• Time required to allocate the resources and runtime for the
serverless function

• Time required for the function to run
• Time required for the function to send back the response
• (In some cases) Time required for the response to be trans-
formed/proxied to the client

We then remove running time of the function. For our bench-
mark, we either run a function that returns immediately or a func-
tion that sleeps for a pre-determined amount of time before re-
turning. The function response includes a self-reported running
time which is removed from the latency calculation. Thus, the three
significant portions of latency included in the measurement are
network time, trigger activation time, and VM (Virtual Machine)
assignment time. We believe all of these factor into a holistic mea-
surement of latency as consumers will necessarily be affected by
all of them. We measure two kinds of latency; cold start and warm
start latencies. We define a cold start latency as the response latency
described above reported by a FaaS instance that had not previously
returned a result (i.e. the first response sent by a FaaS instance is
categorized as a cold start latency). We define a warm start latency
as any response reported by a FaaS instance that had previously
returned a result. We expect cold start latencies to be on average
greater than warm start latencies as a cold started response will
include the time required to provision, boot up, and configure the
FaaS instance to handle a request whereas a warm start is sent by a
FaaS instance that had already been configured to handle requests.

4.1.2 Scale. We measure scale in two ways. The first way we mea-
sure scalability is checking how many FaaS instances are used
to handle requests. For this test, we can either maintain a con-
stant request rate or incrementally increase the request rate. In
this way, we are able to test a serverless platform under various
loads by changing the rate of our requests and the running time
of our serverless function (with a sleep as mentioned above). We
expect to see an increase in FaaS instances proportional to both
the running time of the serverless function and the rate of re-
quests. In fact, AWS Lambda publicly states that the number of
FaaS instances should be equal to (invocations per second) ∗
(average execution duration in seconds) [11]. We aim for
our benchmarking framework to support validating this claim.

The second way we will measure scalability is by checking the
average latency as we increase the number of requests over the
course of the benchmark. This test checks whether or not perfor-
mance degrades as the number of requests increases. We expect
there to be minimal change in latency over time as serverless plat-
forms are designed to handle multiple tenants with our benchmark
being just a single user. However, we would be impressed to see
if there was lower latency over time as that may indicate that the
platform has some kind of optimization in place to pre-emptively
scale up.

4.2 Benchmarking Framework
In this section, we describe how our benchmarking framework
launches requests for each trigger mechanism. We focused our im-
plementation on AWS Lambda, but we selected approaches that
are generalilzable to other serverless platforms as well.3 We dis-
cuss several alternative approaches that we pursued but did not
eventually adopt in order to justify the final approach taken by the
benchmark framework (uninterested readers can skip sections 4.2.1
and 4.3).

4.2.1 Time Synchronization. A primary concern for our bench-
marking framework was how to address time. An ideal approach
for benchmarking the overhead of a FaaS system would be to record
the time when the client invokes the trigger, and then the time in
the FaaS instance when it is subsequently invoked by that trigger
event. However, since we are evaluating a distributed system, each
FaaS instance is running on a separate, remote, compute instance,
and therefore different clocks are used when recording those differ-
ent times. If the system being timed was on the order of minutes, or
even several seconds, the disparity between the two clocks would
be negligible. Informal measurements demonstrated that the clocks
on the benchmark executor (running on an EC2 instance) and the
FaaS instances (running on AWS Lambda) had less than 20ms dis-
parity, however, when cold starts are measured on the order ∼200
ms, and warm starts are 10s of ms, this disparity can influence
results substantially.

NTP—To reduce this disparity, we investigated several time syn-
chronization protocols. We first explored the Network Time Pro-
tocol, NTP [8], as a mechanism for synchronizing time. NTP is a
complex algorithm that makes repeated requests to time servers
and performs statistical analysis on the results to converge on the
"true time" even across WANs. In 10+ minutes, NTP is able to syn-
chronize to within 2ms of a time server’s time [22]. NTP is widely
deployed, and synchronizes most computer systems today.

Selecting a reliable time server with consistent network latency
is the next important step when using NTP. Most major cloud
providers have advanced time keeping functionality, leveraging
atomic clocks to provide highly accurate time sources with perfor-
mant access [38]. In our testing, we found that an EC2 instance
could query this clock in less than 1ms with negligible network jit-
ter. However, this mechanism imposes new portability constraints
on the system, since not all cloud providers offer these time servers.
When we tested on other time server offerings, such as the public
NTP pool4 or Canonical’s,5 we found that the best NTP software
we had access to6 was unable to narrow its potential error size to
less than 5ms.

Moreover, two other concerns arose with using NTP. Firstly, 10+
minutes convergence is too long for our benchmark suite since it
would impose constraints on function execution time and would
substantially increase the cost of running our benchmark suite.

3In particular, we reviewed the equivalent documentation, service offerings, and
SDKs, of Google Cloud Platform and Microsoft Azure to ensure the benchmarking
framework’s approaches were portable
4pool.ntp.org
5pool.ubuntu.com
6chrony[4] was our software of choice for optimal NTP performance given it’s en-
dorsement by Canonical[10], AWS[38], and Redhat[3].
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Given reliable time servers and stable network connections, it’s
likely that this time could be improved, however. Secondly, there
were no reputable NTP clients for Node.js,7 and implementing a per-
formant, spec-compliant, complete NTP solution is not a trivial feat.

SNTP—A simplified version of NTP, called Simple Network Time
Protocol, or SNTP, can be leveraged for requesting the time from
a networked time server. It leverages the same data format and
network protocol as NTP, but it doesn’t introduce the statistical
calculations and statefulness. SNTP can be used as the basis for
custom time synchronization approaches. Several game engines
leverage custom SNTP-based implementations that use basic outlier
filters and other statistical techniques to quickly converge on shared
understandings of time when network latency is consistent [17][31].

However, these implementations also take time to converge and
introduce new potential sources of noise in the benchmark suite.
Upon consultation with Professor Kohler, we discontinued investi-
gation into distributed time synchronization with the justification
that network overhead on the response is an appropriate element
of latency that consumers of the benchmarkwould be curious about.

Cloud Provider Time—Another approach we briefly considered
was relying on the cloud provider’s logging system to record the
time. Serverless providers keep execution logs with millisecond
granularity in order to support 100 ms-incremented billing. How-
ever, we dismissed this approach for two reasons. Firstly, these
logs only cover FaaS instance execution, and do not provide similar
precision guarantees for trigger invocations. Secondly, and most
importantly, we believe that minimizing our reliance on the cloud
provider for any information increases the robustness of our bench-
marks.

SingleVMTimeKeeping—Our current version of the benchmark-
ing framework performs all time recording activity on a single VM.
This removes the need to have any sense of "true time", since we are
concerned primarily about durations or offsets from a fixed epoch
(such as the start of the benchmark’s execution). More importantly,
this removes the need to have a shared time distributed across all
computers participating in the benchmark execution.

In the current version, the VM sending requests to the triggers be-
ing tested records all times. The benchmark uses the Date.now() in
Node.js, which in the Node.js 8.15.1 VM on Linux kernel 4.15.0-1039-
aws become clock_gettime(CLOCK_MONOTONIC, . . . ) calls.8
This call is appropriate for recording elapsed time because it will
never jump backwards and returns swiftly.

4.2.2 Trigger Classes. We group request triggers into two classes:
synchronous request triggers and asynchronous request triggers.
Synchronous requests differ from asynchronous requests in that
synchronous requests invoke a FaaS instance as soon as the trigger
fires. With asynchronous requests, a scheduler constantly polls the
event source to see if there is a trigger event it should respond

7Some FaaS providers allow users to execute non-JavaScript code, however, this is not
a universal feature and would limit portability.
8Following the rabbit trail in the source code takes you to
https://github.com/v8/v8/blob/4b9b235/src/base/platform/time.cc#L556, and
further strace-ing shows that what the system calls were (most of the system calls in a
test Node.js program running HTTP requests in a loop were this clock_gettime call).

to. As such, when the trigger fires, there is additional latency be-
fore the FaaS instance is invoked. On the AWS platform, the main
asynchronous request triggers include SQS, S3, and DynamoDB;
the main synchronous request triggers include API Gateway and
Kinesis Data Firehose[37].

4.2.3 Synchronous Framework. Setting up and testing synchronous
triggers follows a simple high-level model:

(1) Deploy infrastructure to be tested: FaaS configuration (source
code, memory size, runtime), trigger configuration (API Gate-
way)

(2) Send requests to the trigger (HTTPS requests to the new
endpoint on API Gateway)

(3) Record the send time and response time of each request
(4) Teardown infrastructure that was tested
This approach ensures a fresh environment for every invoca-

tion, and is portable to all serverless providers that we reviewed.
However, it is quite slow, with the deployment and teardown steps
taking ∼2 minutes (combined) while, in the case of cold start testing,
the request step takes less than 1 second. In order to improve the
framework’s test throughput, several test runs are batched together.
For a cold start test, 589 FaaS configurations are deployed at once
and then each FaaS is sent a single, independent, request. Further
discussion about exactly how HTTP requests are sent will occur in
section 4.3.1.

4.2.4 Asynchronous Framework. Asynchronous triggers require an
additional component in the system. Because the FaaS instances are
invoked asynchronously, they do not have a mechanism to return
a response to the client through the same channel that they were
triggered via. For example, in Pub/Sub the client will publish a
message, and a FaaS instance will eventually be invoked to process
it, but the client will immediately be returned a response from
the Pub/Sub framework indicating if the message was published
successfully, before the FaaS instance is even invoked.

Therefore, in order to receive responses from the FaaS instances,
we create a local server that the FaaS instance can callback to. The
callback server runs on the same computer as the request engine so
that it shares the same clock. The callback server listens for HTTP
requests on a TCP port. The trigger event contains information
about the host of the callback server so the FaaS instance can send
an HTTP request back to it. The trigger event also contains a unique
identifier so that the initial message can be connected to the callback
request. Therefore, the high-level process is:

(1) Deploy infrastructure to be tested: FaaS configuration (source
code, memory size, runtime), trigger configuration (SQS)

(2) Attach the callback server to an Internet accessible port on
the local machine

(3) Send N requests to the trigger (pub/sub messages to the
queue in SQS)

(4) Record the send time of each message
(5) Wait until N requests have been received by the callback

server, or a timeout period has elapsed
(6) Teardown infrastructure that was tested

958 is a limitation imposed by the CloudFormation[36] infrastructure-as-code and
serverless[9] framework.
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Similar throughput improvements are made to those described
for synchronous invocation in section 4.2.3. This approach does add
one additional constraint to portability: the serverless providermust
allow FaaS instances to communicate outwards over the Internet,
however, we expect this to be an existing requirement for most FaaS
use cases anyways. Furthermore, this approach adds no additional
constraints to serverless infrastructure portability since it only
introduces additional components on the local machine.

Our asynchronous benchmark currently focuses on AWS Simple
Queue Service. The benchmarking framework send messages to
SQS using theAWS SDK for JavaScript, by calling the sendMessageBatch10
function, with a batch size of 10 messages. The SDK translates
this call into an HTTPS request to the SQS REST endpoint. The
benchmarking framework records the start time for those messages
immediately before the sendMessageBatch function is called. This
approach therefore introduces the overhead of the SDK call into the
latency measurements—which includes the SDK processing time
as well as the time for the SDK to interact with the remote API—
however, we believe this is appropriate to measure since serverless
providers frequently provide proprietary triggers that are primarily
consumed through SDK interfaces, and any latency they introduce
in inefficient SDK implementations will manifest for their users.

4.2.5 Open vs. Closed. We implement all asynchronous bench-
marks in an open manner in order to mirror real-world serverless
conditions; a key benefit of serverless computing is the promise
of infinite, elastic scaling (automatic, quick scaling of new FaaS in-
stances before previous requests have been completed). An open de-
sign allows us to incorporate unfavorable scenarios, such as highly
bursty request periods. We note that this approach is similar to the
approach taken by SPECmail2001, SPECJ2EE, and SPECWeb96. Syn-
chronous benchmarks are implemented in a closed manner due to
limitations in our workload generator (though they are practically
open for the tests we run). We hope to explore other approaches to
maintaining several thousand open TCP sockets at once to allow
us to implement the HTTPS benchmark in a fully open manner in
the future.

4.2.6 FaaS Function. Each FaaS configuration is deployed with the
same source code and Node.js 8.15.1 runtime.11 The source code
has three parts:

• Initialization - Immediately upon initialization the timewould
be recorded, then a unique identifier would be randomly gen-
erated (16 bytes of entropy).

• Trigger entries - Each trigger type has a specific handler
that exposes the appropriate interface for that trigger. These
handlers extract appropriate information/parameters from
the trigger event and then invoke the core handler. However,
before anything else, they first record the time they were
triggered.

10https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#sendMessageBatch-
property
11All FaaS providers that we reviewed offered a Node.js runtime (usually this was their
first available runtime, before others were released), so therefore we selected it for its
high portability. Node.js 8 is an LTS version, and, until very recently, was the most
up-to-date version of Node.js available on AWS Lambda (though as of May 15th, 2019
Node.js 10 is available in beta; it is also in beta on GCP; and it is generally available on
Azure.

• Core handler - A shared handler is invoked with a normalized
set of arguments from any trigger. This will sleep the FaaS
instance if requested, send an HTTP request to the callback
server, and prepare execution information for analysis. This
information includes:
– Initialization time
– Trigger time
– FaaS instance ID
– Processing duration (FaaS instance recorded time between
invocation and replying)

– Run count (in-memory counter of the number of times the
FaaS instance has run)

– Parameters (sleep duration, callback server host)
– FaaS provider info (provider request ID, version, etc.)

The processing duration is set immediately before writing the
HTTP request data to the TCP socket, or immediately before the
function returns to the FaaS runtime. We evaluated the runtime
of the FaaS source code on an m5.xlarge EC2 VM, and found that
loading the initialization process takes <10ms (including overhead
of reading the file, loading it into memory, and executing it; though
not including the time to start a Node.js VM). The handler pipeline,
without making an HTTP request or sleeping, takes <0.01ms.12

The FaaS instance can perform two operations outside of simply
returning execution information to the client:

The FaaS instance can be instructed to sleep for a set period
of milliseconds. This will idle the Node.js VM until the specified
amount of time has elapsed. This feature allows the benchmarking
framework to customize the running time of of the FaaS instances
and stress the concurrency limits of the FaaS system.We use the pro-
cessing duration to substract the running time of the FaaS instance
in order to isolate FaaS overhead. We recognize that a serverless
function that does not do any meaningful work is not a realistic use
case, however, since we are focused on the non-processing elements
of the FaaS platforms this allowed us to remove as many factors as
possible while keeping execution times short.

Also, the FaaS instance can be instructed to make an HTTP
request to a callback server. The FaaS instance will complete all
other processing activities (sans returning to the FaaS runtime)
and then open a TCP connection to a specified host and write a
JSON string containing the aforementioned informational payload.
This request is opened with Nagle’s algorithm disabled in order to
minimize any delay. Any response to the request is ignored, and
the function returns to the FaaS runtime as soon as the request has
been sent.

4.3 Eliminating Overhead
We dedicated most of our time on this project to minimizing inter-
ference and producing accurate test results. We ran several isolated
microbenchmarks of various approaches to ensure we were testing
the overhead of the FaaS system, not our benchmarking framework,
as much as possible. However, we admit to several initial compro-
mises that were made. Firstly, our benchmarking framework runs

12Our test demonstrates that it takes less than 0.01ms, however, this test is running in
a tight loop and the Node.js VM may be performing JIT optimizations on the code path
that would not be performed if the handler was invoked only once. However, no-loop
tests (with a much smaller sample size) indicate that it takes <1ms and is therefore
still negligible.

7



OOKAY’19, May 2019, Cambridge, Massachusetts USA CS 260R/245 folk

on the Node.js VM, which is not a traditional high performance
computing language.13 Secondly, our benchmarking framework
includes network overhead in its latency results. Though we would
like to remove these eventually, we believe that they are fine for an
initial version of the benchmarks because FaaS users will experi-
ence them and FaaS providers do have control over their network
performance. Furthermore, to emphasize the latter point, we ran
all tests of AWS Lambdas from AWS EC2 machines inside the same
AWS region, leaving the network performance entirely in their
hands.

We will now discuss various concerns we explored.14

4.3.1 HTTP(S) Request Performance. Our initial implementation
of the HTTPS request engine leveraged the Node.js library got[40],
a wrapper around Node.js’s https sockets[6]. However, time series
plots showing when requests were sent out and when responses
were received by the client showed two issues: 1.) a large delay
between send events and responses, 2.) a peculiar pattern where
only 2 to 3 responses were handled in any given millisecond, sup-
porting a maximum rate of 2000 requests per second, a number
substantially lower than Node.js HTTP server benchmarks have
demonstrated.

We mitigated the initial delay through three mechanisms:
• We opened up TLS connections to the host before making
the HTTP requests (therefore removing DNS resolution and
TCP/TLS handshake time).

• We reused existing TLS connection between HTTP requests
using the keep-alive TCP option.

• We disabled Nagle’s algorithm, which caused ∼100 ms of
buffering while waited for additional data to be written to the
TCP socket in order to combine requests into fewer packets.

The peculiar response handling time required a different ap-
proach. After strace-ing the application,15 we determined that the
Node.js process was aware of open sockets substantially (on the
order of milliseconds) before it was reading data from them and
sending it to our time recording functions. However, there were no
system calls in between the epoll_wait responses and read calls.
Because of this, we concluded that excessive computation at the
JavaScript level was delaying any operations.

With our first attempt at improving performance,16 we removed
got and usedNode.js’s https.requestmethod directly. This tripled
the number of requests we could handle per second, but we still be-
lieved Node.js should be able to process requests faster. Additional
testing led us to remove calls to process.hrtime, a nanosecond-
resolution timer, which were occurring on handlers registered to
every part of the HTTP/socket request lifecycle. This brought an
additional 50% throughput gain. However, two additional changes
made things even faster. We stopped using https.request, and
instead used the tls library to create and manage TLS sockets di-
rectly. We wrote custom HTTP messages directly to this socket and

13Node.js, however, is quite efficient at handling a large number of network requests,
which is the primary job of our benchmarks.
14All measurements are reported from tests on an m5.xlarge instance on AWS EC2
running Ubuntu 18.04 with Node.js 8.15.1 VM on Linux kernel 4.15.0-1039-aws.
15These experiments can be found under experiments/strace-http-engine
16These experimental results can be found under experiments/autocannon and im-
plementations can be found at experiments/old-apps/lib/triggerer

handled the response data in JavaScript directly (with deferred de-
coding of the body until after all responses were received). Finally,
we added HTTP pipelining, a rarely used, but frequently supported,
feature of HTTP 1.1 that allows a subsequent HTTP requests to be
sent on the same socket before the previous request has returned.17
This allowed us to send over 25,000 requests per second, indicating
a per millisecond response throughput that would have negligible
impact on latency measurements. It’s important to note, however,
that HTTP pipelining introduces a new problem into the system:
head-of-line blocking. If one request is delayed with 9 requests
pipelined behind it, then the 9 other requests will have to wait until
the first request is returned before they can be returned. Therefore,
though HTTP pipelining may reduce the median response time of
the requests, it may increase the tail latencies.

4.3.2 HTTP Server Performance. Similar approaches were taken
to improve the callback server’s request handling performance,
allowing it reach a rate of 31,000 requests per second on average
(from a client in a separate process with 500 TCP connections
communicating over localhost).18 All decoding of HTTP request
body data was deferred until after all responses had been received
(caching the benchmarking frameworks standard FaaS response
required ∼400 bytes of memory).

4.3.3 Network Jitter. To ensure that network performance was at
least consistent between requests (and therefore not introducing
noisy amounts of error into latency results) we performed ping
tests between various points of the benchmarking framework when
deployed on AWS EC2 and AWS Lambda.19 Network round-trip-
times were determined by measuring the time it took to establish
TCP connections to target hosts. Within AWS’s us-east-1 region,
network latency averaged ∼1.0 ms with a standard deviation of
∼0.5 ms (over 1000 trials spaced across several days). Since this
was substantially smaller than the latencies being measured, this
was within acceptable bounds for our benchmarks and would have
negligible impact their results.

4.4 Benchmark Tests
We implemented several benchmarks on top of our benchmarking
framework that we will now overview.

4.4.1 Cold Start. To benchmark cold start latency, the benchmark-
ing framework deploys FaaS infrastructure and then sends a single
request to the appropriate trigger. It filters out any results from
FaaS instances that had previously run (though this should never
occur due to the freshness of the deployments being tested). We
note that this cold start measurement is expected to result in lower
latencies for synchronous trigger directly initiate FaaS instances.
For asynchronous triggers, the delay due to trigger polling adds
even more to the cold start latency. However, since we are only
sending one request, we do not expect to see that massive queuing
delays that we saw from warm start tests and large request volumes.

4.4.2 Warm Start. To benchmark warm state latency, the bench-
marking framework operates similarly to cold start, however, it
17We leveraged an existing library that implemented this feature, autocannon, to
reduce our development burden.
18These experiments can be found under experiments/callback-server-perf
19These experiments can be found under experiments/jitter-test
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sends many requests to the trigger instead of only one. Any re-
sponses indicating that they were the first response from a FaaS
instance are discarded. We note that this warm start benchmark
will produce results that are uncomparable to cold starts in the asyn-
chronous case, due to the massive delays introduced by the queuing
of requests before they are processed (unlike synchronous invoca-
tions which invoke FaaS instances upon receiving the request). In
fact, preliminary results showed that the cold start latencies were
lower than the warm start latencies for the SQS trigger due to the
added queuing latency for warm start latency measurements. In or-
der to make a fair comparison, we would have to significantly limit
the number of requests sent for asynchronous warm start latency
benchmarks so that request queuing delay can be minimized, but a
realistic use case would likely incur the request queuing overhead.

4.4.3 Scaling Request Rates. To benchmark rate of scale and la-
tency at scale, we introduce a variant of the warm start benchmark.
For each time period, we increase the rate at which requests are
sent every second by a fixed amount. However, we do not increase
the rate for asynchronous triggers as the services are already rate
limited (by the rate at which the event source is polled) reflected
by the presence of queuing overhead at a low rate. Testing indi-
cated that there was minimal to no difference when comparing a
constant amount of requests per period and a scaling amount of
requests per period, therefore we elide those results. We also do not
decrease the request rate between time periods, since we are not
interested in how quickly FaaS instances scale down—scale down
is not immediately beneficial to FaaS users as they pay only for
invocation time, not idle FaaS capacity. We add a sleep delay to our
scalability tests as increasing the run time of our FaaS function will
add stress to the FaaS system. As each FaaS instance will be held-
up for a longer time, in order to handle the same rate of requests,
more FaaS instances will need to be provisioned. This is bolstered
by the fact that, as mentioned above, AWS claims the number of
FaaS instances partitioned is proportional to both request rate and
running time. This also relieves stress on the benchmarking system
as it can achieve a high stress workload without overloading our
own request/response handler.

These benchmarks provide information regarding basic latency
and scalability metrics. The benchmarking framework is able to
simulate many more workloads, but we focus on these workloads
as a preliminary benchmark for serverless providers. These tests
generate a basic set of metrics with which we can compare the
performance of a cloud provider against other cloud providers
and against the guarantees made by the cloud provider. We leave
the generation of other benchmarks utilizing our benchmarking
framework to future work we hope to pursue.

5 RESULTS
We ran our benchmarking suite only on AWS Lambda,20 as we
are mainly interested in a rigorous theoretical justification of our
microbenchmark selection. Our suite is designed so that future
researchers can easily port it to other FaaS providers by alterring
20All benchmarks were run from m5.xlarge (4 vCPU, 16 GiB RAM) instances on AWS
EC2 running Ubuntu 18.04 with Node.js 8.15.1 VM on Linux kernel 4.15.0-1039-aws
against Lambdas that had an account global concurrency limit of 1000. Benchmarks
that approached the concurrency limit were not conducted simultaneously, and only
one benchmark was ever running at a time per m5.xlarge instance.

Figure 2: CDF of cold start latency when sending 1 request
per FaaS deployment to AWS API Gateway.

Figure 3: CDFs of cold vs warm start latency when sending
many requests to AWS API Gateway.

a few lines within the infrastructure deployer and, if the trigger
interface is non-standard, the trigger requester.

5.1 HTTPS Trigger Results
5.1.1 Cold Start. As shown in Figure 2, our simple HTTPS cold
start benchmarks tend to follow similar patterns across all memory
sizes tested, although 128 MB had a longer cold start than those
of the other memory sizes. This may be evidence that 128 MB
FaaS configuration is given lower allocation priority compared to
other sizes. Based on our benchmark alone, however, we cannot
form a strong hypothesis regarding why this would be the case.
Performance is fairly stable up to the 99th percentiles, although
we found that higher percentiles could have tails longer than 1000
ms in very rare cases. The median cold start time was 221 ms, and
standard deviation was 47.8 ms; 95% of the cold starts complete
within 100 ms of the first cold start completion.

5.1.2 Cold vs. Warm Start. Figure 3 displays both the HTTPS warm
start and cold start CDFs on the same graph, including data from
all FaaS memory sizes. We restrict the range for the x-axis to be 0
ms to 800 ms in order to focus on bulk of the latency data; though
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Figure 4: CDF of cold start latency when sending 1 request
per FaaS deployment to AWS Simple Queuing Service.

Figure 5: CDF of cold start latencies, comparing the https
and pub/sub triggers. Each CDF is an aggregate of all test
runs with varying FaaS instance memory sizes.

the tail is quite long, reaching over 5000 ms for warm start latency.
Overall, cold start and warm start follow the same shape. Cold start
lags behind warm start, as expected, by approximately 200 ms.

5.2 SQS Trigger Results
5.2.1 Cold Start. For our simple cold start test for our pub/sub
AWS SQS trigger, we see a similar CDF shape across all memory
sizes (Figure 4). Again, we see that the 128 MB FaaS instances
had a longer cold start compared to those of the other memory
sizes, supporting our hypothesis that certain FaaS instance memory
sizes are given lower priorities than others (though we also see the
256 MB size having a worse cold start, which we did not see with
HTTPS). Besides the 128 MB size, performance is fairly stable up
to the 90th percentile, after which we begin to see longer tails; the
longest cold start test took 1794 ms. The 128 MB size has an even
worse performance dropoff after the 80th percentile (1 in 10 cold
starts will take over 500 ms). The median cold start time was 319
ms, and standard deviation was 120.6 ms, much greater than that
of https cold starts.

Figure 6: Graph of number of unique VMs (concurrent FaaS
instances) seen in each 10 second period as 500messages are
sent every 10 seconds to AWS SQS (10k messages per trial).
Tests are run with varying memory sizes. Error bars (unno-
ticeable due to their very small size) are shown at the 5th
and 95th percentiles.

5.2.2 HTTPS vs. Pub/Sub Cold Start. Figure 5 compares the CDFs
for the pub/sub and https triggers (aggregating across all memory
sizes for both). While the distribution of the CDFs follow the same
pattern, the pub/sub trigger is uniformly slower than the https trig-
ger. The pub/sub trigger takes longer to start up initially and has
a much longer tail. The former is expected, as pub/sub is an asyn-
chronous trigger; instead of reacting immediately to the trigger as
with synchronous triggers, the FaaS scheduler has to continuously
poll a stream of events before invoking new instances.

5.2.3 Pub/Sub Scaling Under Load. Figure 6 compares the number
of FaaS instances that spin up to handle pub/sub messages that
are sent at 50 requests per second. The messages further instruct
the FaaS instance to sleep for 5 seconds, to produce an execution
time that should dominate FaaS system overhead and provide a
reliable runtime number for evaluating the concurrency formula
provided by AWS. Here, we see a fairly uniform increase of FaaS
instances over time, and this trend does not vary much at all even
when memory size of the FaaS instances increase. The error bars
are also very small; there is almost no variance across trials. Given
the near uniformity across different memory sizes and trials, it is
possible that Amazon has a deterministic formula for number of
FaaS instances to invoke that depends on the presence of and or the
number of requests that need to be handled. However, it does not
appear that their formula for number of concurrent instances21 is
being followed here (at 50 trigger events per second and 5 seconds
of execution, that should be 250 concurrent FaaS instances, though
this number is not provisioned until 100 seconds in and is surpassed
a little while later).

5.2.4 Pub/Sub Latency Under Load. Figure 7 compares the latency,
with 5th and 95th percentile bars, incurred over time as FaaS in-
stances spin up to respond to 50 requests per second sent by the
pub/sub trigger. As expected, we see latency increase over time,
although we begin to see a slight decrease after approximately 125
seconds, when approximately 250 unique FaaS instances respond to
requests. Importantly, we see the distance between the 5th and 95th
21(invocations per second) ∗ (average execution duration in seconds)
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Figure 7: Latency over time as 500 requests are sent every
10 seconds to AWS SQS. Tests are run with varying memory
sizes. Error bars are shown at the 5th and 95th percentiles.

percentiles decrease over time. We hypothesize this is because as
the number of unique FaaS instances handling requests increases,
the rate at which enqueued requests are handled also increases
resulting in overall lower response latency.

6 FUTUREWORK
This section outlines shortcomings in our approach and potential
avenues for future work to address them.

Firstly, our benchmarking approach includes the time required
for packets to traverse the network to reach the serverless func-
tion’s trigger endpoint. It is possible that this network time varies
across trials and requests, adding an unknown variable that could
contribute to unobserved errors (regardless of the testing we per-
formed as discussed in 4.3.3). It is also possible that the packets
travel across the same path, so sending many requests at once from
the same source to the same destination could lead to congestion
along the network or contribute to head-of-line blocking.

Secondly, we were unable to test scalability for our HTTPS trig-
ger. We attempted to measure latency and FaaS instance count over
time, configuring our requester to send 50 requests every second
and letting functions sleep for 5 seconds. However, because HTTPS
is a closed test, it cannot invoke at a fast enough rate because of
the sleep delay. In order to hit the same rate as the pub/sub trigger,
we would need double the maximum number of TCP connections
we were able to open on our test VMs. Further, we anticipate that
this benchmark would show the HTTPS trigger immediately invok-
ing concurrent FaaS instances up to the concurrency limit, since
the invocations are synchronous. Because of these expectations,
we did not prioritize solving this limitations and instead we leave
it to future research to overcome. One potential approach would
be leveraging the approach we used for asynchronous trials with
callback requests sent to the local listener (this would allow us to ter-
minate the connection to API Gateway from the requester as soon
as the initial HTTPS request was sent, but before a response was
returned). Another approach would be to leverage HTTP pipelining
further, since many HTTP requests could be sent over a single TLS
connection. The HTTP pipelining implementation we leveraged did

not support this in addition to request limits per second, however,
it should be possible to augment it.22

Finally, it would be useful to set up our benchmarking suite to
automatically run and present results. Serverless computing is a
growing field with platforms that are still evolving. An automated
benchmark across multiple platforms would help track develop-
ments in the FaaS ecosystem as a whole. Moreover, it would allow
developers and researchers to have insight into noteworthy, but
currently unnoted, changes in FaaS offerings; as well as help project
trends about where the field is headed for the future.

7 CONCLUSION
FaaS providers offer little transparency about performance. As such,
users are unable to compare different platforms, the same platform
across different updates, and different triggers within platforms
to each other. We propose several microbenchmarks that address
the core tradeoff and promises with serverless: cold start latency,
warm start latency, unique FaaS instance counts over time, and
latency over time for asynchronous triggers. We hope that users
will be able to use our benchmarks to select the optimal triggers
and platforms for their FaaS use case, if they determine that the
overhead of FaaS is acceptable at all. We also hope that researchers
and industry members will leverage our microbenchmarks as they
explore more macro- and micro-benchmarking suites in the future.
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