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Abstract changed across nodes. These metrics, however, were in-

The systems and networking community treasures usim;ended to capture the overhead or efficiency of an algo-

ple” system designs, but our evaluation of system simithm and are at times incongruent with our notion of

plicity often relies more on intuition and qualitative dis- SMPicity. For example, flooding performs poorly on the

cussion than rigorous quantitative metrics. In this papernumber of messages exchanged across nodes, but most

we develop a prototype metric that seeks to quantify theof us would consider flooding a simple, albeit inefficient,

notion of algorithmic complexity in networked system solutlpn..SlmHarIy, a piece of state obtam_ed as the result
%f a distributed consensus protocol feels intuitively more

design. We evaluate several networked system design .
through the lens of our proposed complexity metric an _ompl_exthan state that holds the IP address of a neighbor
n a wireless network.

demonstrate that our metric quantitatively assesses sé- . S . . .
d y We conjecture that this mismatch in design aesthetic

lutions in a manner compatible with informally artic- . .
ulated design intuition and anecdotal evidence such a ontrlbl_Jtes to the frequent disconnect between the more
real-world adoption. theoretical and applied research on networked system
problems. A good example of this is the work on rout-
ing. Routing solutions with small forwarding tables are
widely viewed as desirable and the search for improved
The design of a networked system frequently includes algorithms has been explored in multiple communities;
strong algorithmic design component. For example, sofor instance, a fair fraction of the proceedings at STOC,
lutions to a variety of problems — routing, distributed PODC, and SPAA are devoted to routing problems. The
storage, multicast, name resolution, resource discovenpasic distance-vector and link-state protocols incur high
overlays, data processing in sensor networks — requirgouting state Q(n) entries) but are simple and widely
distributed techniques and procedures by which a collecemployed. By contrast, a rich body of theoretical work
tion of nodes accomplish a network-wide task. has led to a suite ofompactrouting algorithms €.g,
Design simplicity is a much-valued property in such [2,3,10,36]). These algorithms construct optimally small
systems. For example, the literature on networked sysrouting tables©(,/n) entries) but appear more complex
tems often refers to the importance of simplicity (all em- and have seen little adoption.
phasis added): This is not to suggest existing overhead or efficiency
metrics are not relevant or useful. On the contrary, all else
being equal, solutions with less state or traffic overhead
are strictly more desirable. Our point is merely that de-
sign simplicity plays a role in selecting solutions for real
world systems, but existing efficiency or performance-

1 Introduction

The advantage of Chord is that itssibstantially
less complicated . (Chord [35])

This paper describes a design for multicast that is
simple to understand. (Simple Multicast [32])

This paper proposed simpleand effective ap- focused metrics can be misaligned with our notion of
proach...(SOSR [17]) what constitutes simple system designs.
Likewise, engineering maxims stress simplicity: This paper explores the question of whether we can

identify complexity metrics that more directly capture
the intuition behind our judgment of system designs. Be-
i ] cause the system designs we work with are fairly well-
KISS: Keep It Simple, Stupid! (Apollo program) specified, we believe there is no fundamental reason why
However, as the literature reveals, our evaluation ofour appreciation of a design cannot be reinforced by
the simplicity (or lack thereof) of design options is of- quantifiable measures. Such metrics would not only al-
ten through qualitative discussion or, at best, proof-of-low us to more rigorously discriminate between design
concept implementation. What rigorous metrics we dooptions, but also to better align the design goals of the
employ tend to be borrowed from the theory of algo-theory and systems communities.
rithms. For example, two of the most common metrics We start by reporting on a survey we conducted to un-
used to calibrate system designs are the amount of statkerstand how system designers evaluate and articulate
maintained at nodes and the number of messages exomplexity in system design (Section 2). Building on

Allthings being equal, the simplest solution tends
to be the right one. (Occam’s razor)



this, we define a complexity metric in Sections 3 and 4 More complex

and evaluate several networked system designs througHfgorithm A Algorithm B algorithm
the lens of our complexity metric in Section 5. Using this DV LS A (p < .060)
analysis, we demonstrate that our metric quantitatively BV Landmark B { < .050)
differentiates across flavors of solutions and ranks sys-PV Compact B 0 <.030)
- . . RCP not significant

tems in a manner that is congruent with our survey. We _
discuss the limitations of our metric in Section 6, review Read one/write all - Quorum Bp(<.007)
related work in Section 7, and conclude in Section 8. W0 phase commit - Paxos B .001)

. . . Gossip Multicast Bp < .013)

Finally, it is important to clarify the scope of our work. . . _

. . . Atomic multicast Repeated multicast A & .001)
We intend for our complexity metric to complement — Locking Lease not significant
not replace — existing efficiency or performance metrics. Napster Gnutella Br{< .001)

Fpr egample, in the case of a rquting algorithm, our met— DHT Gnutella A < .020)

ric might cgpture the compleglty of route construction g lookup DHT lookup B p< .007)

but reveal little about the quality of computed paths. In )

addition, while we focus on system design at the aIgo-Tabl? 1: Survey results.on comparing netvyorked systems com-

rithmic or procedural level, there are many aspects to & €XIly- For each question, we present which algorithm was sta-
) . . tistically rated as more complex based on thest’s p-value,

software system that contribute to its ultimate complex- ° .~ "~ o SR

. which indicates the probability that the result is coincidental.

ity. For example, as the CAP theorem [13] tells us, theThe smaller the p-value, the more significant the result.

careful selection of a system’s service model profoundly

impacts complexity. The same is true for the sound defepeated multicast, respectively. Napster was perceived

sign of its software implementation. Although at least asas simpler than Gnutella and systems such as Gnutella

important as distributed complexity, these are not aspectgnd the Domain Name System (DNS) as simpler than

we consider in this paper. Lastly, we stress that we viewdistributed hash tables (DHTS).

our metric as a prototype: one specific metric that works The rationales for these rankings shed more insight.

well with several classes of important systems. We ex-Participants found a system was complex if it was hard

pect that the best-suited metric will emerge in time afterto “get right,” understand, or debug, or if it could not eas-

much broader discussion and evaluation (similar to thdly cope with failures. For the most part, issues of scal-

development of standard benchmarks in many commuability or performance did not figure in their responses.

nities such as databases and computer architecture). Aome sample answers include: “components have com-

such, we view our contribution primarily in getting the plex interactions,” “centralized or hierarchical is sim-

ball rolling by providing a candidate metric and set of pler than decentralized,” “structure is complex,” and “re-

results for further scrutiny. quires complex failure and partition handling.” Tellingly
) ) participants at times could not clearly articulate why one
2 Perceived Complexity algorithm was more complex than the other and resorted

We conducted a survey to explore how system design?o circular definitions —eg chose sy;tem A because |:['
or “B’s protocol is more complex.

ers perceive complexity of networked system algorithméS more complicated”
such as routing, distributed systems, and resource discov :
ery. Nineteen students in a graduate distributed systemé Components of Complexity
class at UC Berkeley participated in the survey. Partici-A complexity metric could make these arguments ob-
pants were asked to rank which of two comparable netjective. A good metric would be based on quantifiable,
worked system algorithms they viewed as more complexconcrete measurements of the system properties that in-
on a scale where 1 means system A is far more compleduce implementation difficulties, complex interactions
and 9 means B is far more complex. Participants werend failures, and so forth. Many metrics are possible. A
also asked to rationalize their choice in 2—-3 sentences. perfect metric would be intuitive and easy to calculate,
We discuss the algorithms we surveyed in detail inand would correlate with other, more subjective metrics,
the later sections of this paper; Table 1 briefly summa-such as lines of code or system designers’ experience.
rizes the findings from the survey’s quantitative rank- We build on the observation that much of system de-
ing. The one-sampletest reveals that participants con- sign centers on issues of state —the required state must be
sider distance vector (DV) routing as more complex thandefined and operations for constructing and using it must
link state (LS) routing but less complex than landmarkbe developed — but in distributed systems, one state can
or compact routing. In evaluating classical distributedderive from states stored on other nodes. To calculate its
systems, participants viewed solutions such as quorumstate, a node must hear from the remote nodes that store
Paxos, multicast, and atomic multicast as more complexhe dependencies. This adds additional dependencies on
than read-one/write-all, two phase commit, gossip, andhe network and intermediate node states required to re-



lay input states to the node in question. Thus, not only are
a given piece of state’s dependencies distributed, there
are also more of them.
We conjecture that the complexity particular to net- @._'2@._'3@)
worked systems arises from the need to ensure state isv= f(w) w

kept in sync with its distributed dependencies. The met-(a) Collecting one value (b) Collecting several values
ric we develop in this paper reflects this viewpoint and

we illustrate several systems for which this dependency-
centric approach appears to appropriately reflect system '~ &) W=Tka) x=ia) Y
complexity. Alternate approaches are certainly possible (c) Collecting an aggregate value
however —e.g, based on protocol state machine descrip-
tions, a protocol’s state space, and so forth —and we leave v=f(w) w=f(x) x=f(y) y

a comprehensive exploration of the design space for met- (d) Collecting one value via intermediate states
rics and their applicability to future work.

Our goal then is to derive a per-state measyréhat
captures the complexity due to the distributed state on
which a states depends. While a natural option would be
simply to counts's dependencies, this is not sufficiently
discriminating: dependencies, like state, can vary gyeatl (&) Collecting via branches forked and then merged
in the burden they impose. Consider Figure 1, whichrigure 1: State relationships in four toy scenarios. For clarity
shows dependency relationships between states for sewuting table state, writteh is only shown in scenario (a).
eral simple networks. In Fig. 1b, a simple distribution
tree,v is computed from three dependenciest, andy,  We write states as lowercase letters, suchk, asandw.
while in Fig. 1c, which transforms a value over severalWhere the context is clear, we abuse notation and merge
hops,v (e.g, the distance from node 1 to node 7) has justthe identities of states and nodesy, instead of “deliv-
onedirectdependencw, which is computed frora; and  ered to node 1, which stores staféwe simply say “de-

X, which is in turn computed frory anday. However, a  livered tox.” Local or primitive state can be maintained
change iny in Fig. 1b will affectonly v, while the same  without network traffic, as in a sensor node’s tempera-
change in Fig. 1c must propagate througandw first.  ture reading. We sometimes indicate primitive state with
As a system, we argue that Fig. 1c is more complex thaman underline, as iw. All other state isderived at least
Fig. 1b. We thereforeveighteach state, and instead of partially from states held at other nodes. We call these
naively counting dependencies, calculate a state’s conremote stateslirect value dependenciesin Fig. la,w
plexity by summinghe complexities of its dependencies. is a primitive state, and is a derived state with one
The sum includes not only direct dependencies on valuesjalue dependency, namely, as indicated by the defini-
but also dependencies on tiansport statesequired to  tion v = f(w). Primitive state is assigned zero complex-
relay those values, accounting for networks whose transity, while any derived state has positive complexity. The
port relationships are expensive to maintain. set of states's direct value dependencies is writtBg.

Some flexibility is required to account for the differ- A derived state also depends on the transport state re-
ent types of dependencies in real networked systems, inyuired to relay value dependencies through the network.
cluding redundancy, soft state, and so forth, and to dif+or instance, in Fig. 1a, propagatingo v uses thé, and
ferently penalize transport and value dependencies. Nevs routing table entries at nodes 2 and 3, respectively. We
ertheless, our metric is defined exclusivelydmunting  call these statesansport dependenciesand account for
we avoid incorporating intricate probabilistic models of their complexity. The seTs_y is defined as the set of
node or link behavior or state machine descriptions andransport dependencies involved in relayigvalue to
the like. This keeps our metric usable, lending it to eval-s; it is empty wherx ¢ Ds. In terms of maintaining state
uation through simple examination and analysis or evertonsistency, transport dependencies are less of a burden
empirical simulation, and represents one particular tradethan value dependencies since changes in a state’s trans-
off between a metric's discriminative power and the sim-port dependencies do not induce costs to keep that state
plicity of the metric itself. Some of the limitations of our in sync and, as we shall see, our metric reflects this. For
counting-based approach are discussed in Section 6. instance, in Fig. 1a, any changevnmust be commu-

. . nicated to node 1, but a changelinneed not, since
4 A Complexity Metric depends on thestates only for the delivery af.
Given a system that consists of a set of st&esur goal While some value dependencies require state changes
is to assign a complexity metrig; to each stats € S be relayed, others need only be established once. For ex-

wy = f(x)



ample, ifv were defined as a function of at some spe- in x are not propagated & so we cut offx’s value de-
cific time rather than ofv's currentvalue, then once es- pendency impact. However, to ensure thas charged
tablishedv is unaffected by changes elsewhere in the netfor its initial reliance onx, we introduceg, 0 < € <« 1,
work. We say that stateand one of its value dependen- and charge this amount for every non-local, unlinked de-
ciesy arelinked if a change iny must be propagated to pendency.
x, andunlinked otherwise. Linked value dependencies Note that our definition ofis assumes the dependen-
are the major source of network complexity due to theciess inherits are independent — a simplifying assump-
state maintenance they incur and are treated accordingyon due to whichus overcounts in some dependency
by our metric. structures. For example, in Fig. 1evif— {wy,wo} «—
Evaluating the metric requires determining dependenx « vy, theny is counted twice im,, once viaw; and once
cies among states and defining which dependencies akga w,. This situation arose rarely. Many such branching
linked or unlinked. Unused or redundant dependenciesjependency structures represent unused or redundant de-
which frequently occur, can be measured in several wayspendencies that we model by picking one active input,
For example, consider Fig. 1b, where= f(w,x,y) and  which leaves the dependency graph in the form of a tree.
let us assume that the valudakes at any point is based  Thecomplexity of sis then defined as follows:
on just one of its inputs (for instance, perhaps the active

input is chosen based on minimum path length). TWien Cs= Csx ;

value dependencies have distinctly different importance: xEDs

ensuring consistency requires thvaand its active input Us x+ Syer. , Maxcy, &)+ ¢ if xlinked,
stay synchronized, while updates from the other depenCs—x = Ve s it x unlinked

dencies are less critical. When we consider dependencies
of statev, we focus on these active states that devisad
ignore unused value dependencies.

We now turn to the metric itself, first defining a sub-

metric us which we call thevalue dependency impact dencies are all linked. Then, the first terf o, Us. x

Us measures the number of remote states on whiish (= ug) is Ss value dependency impact. The second term

e e oot 511, My ) count or e complesyo
P ' y %Cthe transport states frosis direct value dependencies

could result in an update atand hence one can intu- to s itself; € again ensures that all links are counted,

gg’grl]ya\gi\gr ﬁ;ﬁt;?gilsgtgloengifs'EZﬁc;uvrvri]t%eirtsOI/;Bga(;? here including transport Iir_lks that nominally require no

. : : . . state (such as one-hop wireless broadcast). Finally, the
peljdenues.ls Is defined mutually recursively YVIIIHIH, last termy ,p, Cx covers the complexity from inherited
\éVh'Ch (rjneasqres the rél_meer cl)f stgtes 03 wisichvalue (transport and value) dependencies downstream #om
Ioiz(lers],taetrjest \Cl/a;shoarcgj |r:ec(;)t \L/Ja ieu epe:no eneDs. For !_oqal ;tat&s hascg = 0. Thus intuiti_ve_ly, yvhe_reuS was

' ST ST EseX ' indicative of the updates seensats is indicative of the
Us = Us updates seen across all states — value and transport — that
xEDs maintain changes frorsis dependencies ta
For a chain of linked dependencies froxg to x;

(Fig. 1c), which depends on its local stae(perhaps
X; measures nodés hop count to node 0), and writirg

This definition accounts for the entire scaffolding of dis-
tributed dependencies that maintain changes §erde-
pendencies t® itself. Supposes's direct value depen-

Uy if xis linked tosand
x is not dependent on local state,

Us—x = { Ux+1 if xis linked tosand for ¢, and so forth, we have, = i and
x is dependent on local state,
€ if x is unlinked tos. =i+ > ¢+Ca.
yeTP(i,l)

If the dependencyg < x is linked, s must be notified of

any change i € Ds. Applied recursively, changesinany Ignoring transport dependencies, the resutt is- (i2 +

of x’s direct or indirect value dependencies must also bé)/2: chained linked dependencies induce complexity
passed on ts. Thus, the number of dependencies inher-proportional to the square of the length of the chain. In
ited viax is X's own value dependency impact, plus  Figure 1, if we assume dllstates have complexity the
one in the event that was derived (in part) from local metric yieldsc, = 1+ 2t in Fig. 1a,c, = 3+ 6t in Fig. 1b,
state (since a change caused by state localitould not  andc, = 6+ 6t in Fig. 1c.

be accounted for ini). For example, states andx in We sometimes convey intuition about the sources of
Fig. 1d, do not include any local inputs while the samecomplexity by writingcs = ¢ +-cl, wherec is the com-
states in Fig. 1c do. Kis unlinked tox, then any changes plexity contributed by value dependencies afds the



complexity contributed by transport dependencies: ) @_€® (43)

o2 (@)
Y, = Us x+C) @ OS=©

= Z max(cy, €) + ¢ . ! .,
s x py X(Cy, &) + Cy 3) @.__®
/@

This split is purely for illustration and does not affect the (6) < : 4—@ Q
definition of complexity in any way. @ ) '\@
To measure the complexity of aperation such as /@ ® G D,

name resolution, routing, agreement, replication, and so (7) QA@ (x2) ()
forth, we simply measure the complexity of a state cre- \8 (x6) "

ated or updated by that operation. For example, to mea-
sure the complexity of multihop routing, we imagine a Figure 2: Canonical scenarios. For clarity we do not show the
piece of states, derived from one primitive value de- local and transport state at each node. In all scenarios other than
pendencyx, whose value must be routed across a multi-(1) and (2), the transport state is assumed to have comptexity
hop network. The complexity of routing is definedas
which accounts for the multihop transport dependencie
used to routex across the network. Assuming a network

with diameterd where every routing table entry has com- . . .
puts as being times the average complexity due to a

plexity ¢, the resulting complexity i©(d¢ ). ) ) ) )
This r;aper evaluates different net(wor)ked system de-Slngle input. As shown in [9], this average can be com-

signs by comparing their complexities for specific puted simply as Am times the complexity o assuming

operations of intereste(g, route, wite_object, allmmpyts were requwgd Inputs. . . .
find_obj ect). We found it sufficient to consider one . Likewise, for the multipath scenario in which a single
operation at a time for our evaluation. If desired, one/MPut x can be relayed ts using anyk of m available

might (for example) select the average complexity of keypaths' E/)ve calculatg thekcqmpleﬁtles due fo the trlan_sport
operations as the overall complexity of the networkegStates betweenands ask times the average complexity

system. We proceed to evaluating the above metric angue to t.he transport states anng. any one path. )
defer a discussion of its scope and limitations to SecRecursion In some systems, a piece of staie derived

&b

total number of inputs (paths) available dnid the num-
%er of inputs (paths) required.
We define the complexity af derived fromk-of-min-

tion 6. by an operation that uses states that were themselves set
up by the same operation. For example, in DHTs, a node
4.1 Some Canonical Scenarios discovers its routing table entries usind aokup op-

] ] . ) eration that makes use of state (at other nodes) that was
We first examine how the above complexity metric fares;igqf set up using ookup operations.

in evaluating a few simplified network scenarios and in We usetwo complexity computation passks state

the following section explore a suite of more completey, s inyolves this kind of recursion. In the first pass, we
networked sys_tt_am solutions. Before this, we first |ntro-Compute the complexities from value and transport de-
duce two conditions that appear repeatedly in our analyqenqencies with the assumption that states used by the
sis of system designs and are hence worth calling out. operation do not depend on the operation. We compute
Redundant inputs and paths Many systems build i he final complexities in the second pass in terms of an
redundancy to achieve higher robustness. In our analysperation on states whose complexities are computed in
sis, this manifests itself as some statbat has multiple  {he first pass. In Section 5, DHTs and Paxos are canoni-
inputs or paths but only a subset of them are needed tgy, examples that involve recursion.

derive s (akin to our discussion of active value depen- o, qnica| scenarios We recap the following canonical

dencies in the previous section). For example, a mu'“'scenarios, also depicted in Figure 2. In many cases, we

ple input scena_rio could be a nodg trying to discover tr?ecan construct dependency structures of networked sys-
addriss Xfpabwweless S ceess dpomlt (ﬁp) —fthe nodg I'Ist'em algorithms by composing several canonical scenar-
tens for eacons but need only hear from a singl§,g |51 scenarios other than (1) and (2), we assume

AP to establish conne(_:tlwty state. An example involv- that the transport state at each node has complexity
ing redundant paths might include two data centers that

provision multiple disjoint network paths between them. (1) single input, 1-hop broadcast: heres is derived
When a message is encoded with K) erasure code and by listening to the broadcast of We assume is lo-
each code is sent to a distinct path, the destination caoal state and henceg, = 0. Moreover, the complexity
construct the message if akyout of m paths work cor-  of transport state ax equals zero since broadcasting
rectly. We call this thek-of-m scenario wheren is the  does not require any non-local transport state to be es-



Scenario Cs rewards the use of redundant state. This decision might

(1) 1 input, 1-hop broadcast e seem to warrant discussion. One might argue that redun-
(2) 1 non-value-dependent input,e dancy should add to complexity because of the additional
1-hop broadcast effort that goes into creating redundant state. For exam-
(3) 1 input, 1-hop unicast 1t ple, consider a server that must createeplicas of an
(4a) 1 input, 1-of-m paths 1t immutable file instead of just one. While this is true, we
(4b) 1 input, k-of-m paths 4kt note that (in this example) the replicas are not dependent
(5a) 1-of-m inputs, 1 path 4t on each other and likewise state derived from one of the
(5b) k-of-m inputs, 1 path k(1+t1) replicas is ultimately only dependent on one rather than
(6) m inputs, in series %m(m+ 1) +mt m replicas and hence neither should have a complexity
(7) minputs, in parallel m+ mt higher than if there were only a single replica. That said,
(8) tree O(mlogm-+ mt) the additional effort due to creating redundancy would

emerge in the complexity of the operation that creates
the m copies since this requires maintaining additional
tablished atx. Correspondingly, state has complexity —state to identify then nodes at which to store replicas.
Cs=1+cx+max0,e) =1+e. In terms of not rewarding redundancy, one might argue
(2) single unlinked input, 1-hop broadcast: this case (as was done in [34]) that a scenario in whédik derived

is identical to the previous case but hetis unlinked to ~ from k-of-m inputs should have lower complexity than

x (e.g, s stores the value of as soft-state) and hence if swere derived from exactli inputs because having
Us_x = € andcs = €. alternate options reduces the extent to whsakepends

(3) single input, 1-hop unicast: this is identical to the ©n any single input (and similarly for paths). However, to
first case, except that instead of broadcastirigrouted ~ do so would be conflating robustness and compleéxity

to susing transport state atwhich has complexity and the sense that having alternate inputs does not ultimately
hencecs = 1+t. change the number of dependencies $amven though
(4a) single input, 1-of-m paths: this is identical to the it changes theextentto which s might depend on any
previous case but we now haweidentical paths fronx individual input;i.e., the value ofs derived fromk-of-

to s. As before, the complexity of the transport state for Minputs does ultimately depend on sokieput states.
each path i$ and hences = 1+t. .
(4b) slijngle input, k-of-m paths: this is identical to the > ~\Nalysis

previous case but hesemust be delivered tg alongk  In this section we evaluate a number of networked sys-

Table 22 Complexity of canonical scenarios

paths and henog = 1+ kt. tem designs through the lens of the complexity metric
(5a) 1-of-m inputs, single path per input: 1 input must ~ defined in Section 4. Our goal in this is to: (1) illustrate
be delivered ts and hences = 1+t. the application of our metric to a broad range of systems

(5b) k-of-m inputs, single path per input: similar to ~ and (2) provide concrete examples of the assessments our
the previous case but hekénputs must be delivered ®  Metric arrives at both in comparing across systems, and
and hences = k(1+t). relative to traditional metrics.
(6) m value dependencies; 1 direct, m1 indi- To the extent possible, our hope is also to validate that
rect: similar to Fig. 1c, here the value of eaghs com- ~ Our metric matches common design intuition. That said,
puted from that ok, 1 and local state and hengg=m  conclusively validating the goodness of a metric is al-
andcs — m(rr;l) mt most by definition difficult and, in this sense, our results
(7) m direct value dependencies:similar to Fig. 1b,s are perhaps better. viewed as providing the initial dataset
is computed fronminputs each of which is directly con- for the future scrutiny of mepnc performance.
nected tos and hences — m(1+t). We analy_zed the complexﬂy .Of solut!ons to four prob-
(8) tree: each intermediate node has two children and{/icr)?iet(;i;g:;z Fzrl(;rTrll?eerr;[le{ Irguttri]r?g“t(ezr)a;[:LIJ;s(i)cr;In;E
the tree height i©(logm). Hencecs = O(mlogm-- mt). tributed systems, (3) resource discovery, and (4) routing
The complexities for the above scenarios are summaln wireless networks. Due to space constraints we only
rized in Table 2. Comparing the complexity ®in case  discuss the first two items in this paper; our complete set
(6) to that in case (7), we see that dependencies that a&f results are presented in [9].
cumulate indirectly result in a higher complexity than .
dependencies that accumulate directly (in keeping with -1 Routing
our discussion comparing Fig. 1b and Fig. 1c). A sec-Routing is one of the fundamental tasks of a networked
ond observation, based on comparing casevg3¢a) system and the literature abounds in discussions of rout-
or (3) vs. (5a), is that our metric neither penalizes noring architectures and algorithms. In this section we an-



alyze a set of routing solutions that represent a range df7, 8], FCP [25] — present different instantiations of this
design options in terms of architectud, centralized centralized approach. We analyze two variants of central-
vs. distributed), scalabilityd.g, smallvs. large tables), ized routing solutions inspired by these proposals. Our
adoption and so forth. variants are not identical to any particular proposal but
For each solution, we present the complexity of an in-instead adapt their key (routing) insights for a generic
dividual routing entry and a source-to-destination ragitin network context. We do this because many of the above
operation. For clarity we summarize only the final com- proposals were targeted at specific contexts which com-
plexity results here and present the details of their derivaplicates drawing comparisons across solutions if we were
tion in [9]. For comparison across metrics, we also eval-to adopt them unchanged. For example, RCP assumes
uate each solution using the following traditional mea-existing intra-domain routing and leverages this to de-
sures: (1) per-node state, (2) number of messages and (B)er forwarding state from the center to the domain’s
convergence timé.In what follows, we consider each IGP routers.
routing solution in turn, briefly revise its operation and  In our first “RCP-inspired” variant, a designated center
summarize its complexity. The results of our analysis arenode collects the LSAs flooded by all nodes, reconstructs
summarized in Tables 3 and 4 and we end this sectiothe complete network map from these LSAs, computes
with a discussion examining these results. forwarding tables for all nodes and then uses source rout-
Distance-Vector (DV) Used by protocols such as RIP ing to send each node its forwarding tablgvhen the
and IGP, distance-vector represents one of the two maaetwork topology changes, the center receives the new
jor classes of IP routing solutions. DV protocols use theLSA, recomputes routes and updates the forwarding state
Bellman-Ford algorithm to calculate the shortest path beat relevant nodes. RCP-inspired has a per-state complex-
tween pairs of nodes. Every node maintains an estimatity of cs = O(d + d?¢) and correspondingly, a routing op-
of its shortest distance (and corresponding next-hop) te@ration complexity of;oute = O(d? + d3¢). This can be
every destination. Initially, a node is configured with the intuitively inferred by noting that a routing entrycom-
distance to its immediate neighbors and assumes a digputed at the center is similar to that at a node in LS;
tance of infinity for all non-neighbor destinations. Eachis then delivered to a node in the network using a source
node then periodically informs its neighbors of its cur- route with the same complexity asRCP’s performance
rently estimated distance to all destinations. For eachwvith traditional metrics is summarized in Table 4.
destination, a node picks the neighbor advertising the RCP-inspired centralizes the computation of routes
shortest path to the destination and updates its estimatéshit packet forwardingi., the data plane) still relies on
shortest distance and next-hop accordingly. state distributed across nodes along the path. Borrowing
For ann node network with diameted, DV thus re-  from several recent routing proposals [8, 25], our second
quiresO(n) per-node state, a total message co®@f)  variant “RCP-inspired + SR” uses source routing to for-
and convergence time @(d) in the absence of topol- ward packets between pairs of nodes. Routing construc-
ogy changes. In terms of our complexity measure, a sintion proceeds as before but now the forwarding table sent
gle DV routing entrys has complexitycs = O(d? 4 de) from the center to a nodé& contains the entire route (as
while a routing operation has a complexity Qfyte = opposed to just the next hop) fromto each destina-
O(d3+d2.£).3 tion and this information is used to source route packets
Link-State (LS) Link-State routing, used in protocols originating atA. Thus, rather than requirin@(d) rout-
such as OSPF and IS-IS, represents the second majorg entries (one at each node along the path) for packet
class of widely-deployed IP routing solutions. In LS, forwarding, our second variant requires only the single
each node floods a “link state announcement (LSA)” dessource-route entry at the source thus retaining the per-
scribing its immediate neighbor connections to the entirestate complexitys = O(d 4 d?¢) but lowering the com-
network. This allows each node to reconstruct the comyplexity of coute to that of a single routing entry and hence
plete network topology. To compute routes, a node thertoute = O(d 4 d?¢).
simply runs Dijkstra’s algorithm over this topology map. Compact routing Compact routing [2,3, 10, 36] has sig-
LS thus require®O(nf) state per node (wheré de- nificantly improved scalabilityi(e., small routing tables)
notes the average node degree), incurs a total messagglative to deployed solutions but has seen little real-
cost ofO(n®) and convergence tim®(d). A routing en-  world adoption. Here, we analyze the complexity of a
try shas complexitycs = O(d + d2¢) while a routing op-  state-of-the-art name-independenouting algorithm by
eration has complexitgioute = O(d? + d3¢).4 Abrahamet al. (AG+_conpact ) [2]. AG+_conpact
Centralized Architectures The authors of the 4D guarantees optimally small routing tables@(,/n) en-
project [15] argue for architectures that centralize thetries, worst-case stretch less than 3.0 for arbitrary mpol
routing control plane to simplify network management. gies andx1.0 for Internet topologies [23] and hence — as
Several subsequent proposals — RCP [5], SANE/Ethanper standard measuresAc+_conpact would appear



Algorithm Us cY cl Cs Croute

DV O(d) O(d?) O(de) O(d? +de) O(d® +d%)

LS 0(d) 0(d) O(d?%¢) O(d +d?%) O(d? +d%)
RCP-inspired O(d) O(d) O(d+d%) O(d+d%) O(d? +d%)
RCP-inspired-SR  O(d) 0(d) O(d+d%) O(d+d%) O(d+d%)
Compact O(dy/n) O(nd?) O(nd?) O(nd?) O(nd?)
Hierarchical LS ~ O(log]) O(log])  O(elog?l) O(logh +elog?f) O(log? +elog® )
Intradomain ROFL O(d?) O(d?logn) O(d3clogn) O((d?+d3¢)logn) O((d?+d3¢)log®n)

Table 3: Complexity analysis for routing solutions with the breakdown of the finalsp@te complexitycs into its constituent
componentsus, the complexity contributed by value dependenci&9 énd the complexity contributed by transport dependencies

().

Algorithm State Message Convergence time  Complexity
DV o(n) o(n?) O(d) O(d® +d%)
LS O(nf) o(n%) O(d) O(d? +d%)
RCP-inspired O(n), centerO(nf) O(n3) O(d) O(d? +d%)
RCP-inspired-SR  O(n), centerO(nf)  O(n3) O(d) O(d +d?%)
Compact O(y/n) Oo(ny/n) O(d) O(nd?)
Hierarchical LS O(R +K) O((1)2+k3 O(logd) O(log? ! + €log® )
Intradomain ROFL O(logn) O(nlog?n)  O(dlog?n) O((d? 4 d3¢) log?n)
Table 4: Evaluation of routing solutions using different metrics
to be an attractive option for IP routing. AG+_conpact incurs O(y/n) per-node state, total

Briefly, AG+_conpact operates as follows: a node Message overhead @(ny/n) and converges ir0(d)
A vicinity ball (denoted VB(A)) is defined as thie ~ rounds. Derived in [S]AG+_conpact has per-state
nodes closest to A. Node A maintains routing state for®@MPIexitycs = O(nd®) andcioute = O(nd).
every node in its own vicinity ball as well as for ev- Hierarchical routing  Compact routing represents one
ery node B such that A= VB(B). A distributed col- effort to reduce routing table size. The approach adopted
oring scheme assigns every node one@blors. One Py IP routing however has been to address scalability

color, say red, serves as the global backbone and evefirough the use of hierarchy. For example, OSPF may
node in the network maintains routing state for all redpartition nodes into OSPF areas and border routers of ar-

nodes. Finally, a node must know how to route to ev-€as are connected into a backbone network. Identifiers
ery other node of the same color as itself. Farodes, ~©f nodes within a region are assigned to be aggregat-
vicinity balls of sizek = O(,/n) andc = O(,/n) colors, able {.e, sharing acommon pref|>§) so that border routers
one can show that a node’s vicinity ball contains everyn€ed only advertise a single prefix to represent all nodes
color. With this construction, a node can always forwardWithin the region.

to a destination that is either in its own vicinity, is red, or ~ FOr @ network partitioned intd areas, hierarchical

is of the same color as the node itself. If none of these igouting reduces the per-node state(; + k) and total
true, the node forwards the packet to a node in its vicinitymessage overhead @((})3 + k). The resultant com-
that is the same color as the destination. The challenge iplexity depends on the network topology. If the diameter
AG+_conpact lies in setting up routes between nodesof an area scales as Iggthen, from the LS complex-

of the same color without requiring state at intermediatety analysis, we know that routing complexity in an area
nodes of a different color and yet maintaining boundedis ca = log® { + £log® §. The final routing complexity is
stretch for all paths. LooselpG+_conpact achieves 2Ca, Which is asymptotically equivalent to the complexity
this as follows: say nodes A and D share the same colo@f non-hierarchical routin@(log?n+ elog®n). Thus, in

and A is looking to construct a routing entry to D. A ex- this case, hierarchy offers improved scalability at no ad-
plores every vicinity ball to which it belongs (VB(l), A ditional complexity. (If the network is planar, hierarchy
€ VB(l)) and that touches or overlaps the vicinity ball of as above actually reduces complexity®fs/n) [9].)

the destination Di(e., 3 node X VB(l) with neighbor  Intradomain ROFL  Hierarchical routing offers im-

Y and Y € VB(D)). For such I, A could route to D via proved scalability at the cost of constraining address
I, Xand Y.AG+_conpact considers possible paths for assignment (giving rise to several well-documented is-
each neighboring vicinity balls VB(I) as well as the path sues). Intradomain ROFL [6] is a scalable routing pro-
through the red node closest to D and uses the shortest tdcol that retains the ability to route on flat (as opposed
these for its routing entry to D. to aggregatable) identifiers. Each virtual node maintains



its predecessor and successor and a pointer cache thainnectivity information from the nodes along the path
stores source routes of virtual nodes extracted from forto B. In DV, the computation mapping theddink states
warded packets. In routing a packet, if a node knows anto a single routing entry islistributed— occurring in
virtual node whose identifier matches the label, it sendstages at the multiple nodes en route to A. LS by contrast,
the packet directly to the node; otherwise, it forwards thelocalizesthis computation in that theé pieces of state are
packet to a node whose identifier is closest to the labelransferred unchanged to node A which then computes
using a source route. Each node computes source routéise route locally. RCP not only localizes, léntralizes
of its neighbors from a network topology map obtainedthis computation.
from LSAs. To simplify our analysis and comparison, we  Qur metric ranks distributed network computations as
assume that the pointer cache of a node contains fingeraore complex than localized ones and hence DV as more
as in Chord [35] to guaranté®(logn) hops in the flatla-  complex than LS. Our metric ranks the complexity of LS
bel space and each node hosts a single virtual node reps equal to that of the first centralized variant implying
resenting itself. that a localized approach.€., “flood everywhere then

In intradomain ROFL, a node maintains routing en-compute locally”) is similar in complexity to a central-
tries, each of which igid,s,r) whereid is a particular ized one {.e., “flood to a central point, compute locally,
identifier,s is the successor afl andr is a source route then flood from central point”). This appears justified as
to the node hosting Like in LS, ¢, = O(d?+d3¢). Find-  both approaches are ultimately similar in the number and
ing susing a lookup operation také&Xlogn) hops thus  manner in which they accumulate dependencies. While
yielding a complexity ots = O(logn(d?+d3¢)). Arout-  the central server can ensure an update is consistently ap-
ing operation involves log such entries, hence results plied in computing routes for all nodes, it is still left with
in a complexity oftioute = O(log?n(d? + d3¢)). In other  the problem of consistently propagating those routes to
metrics, intradomain ROFL requiré3(logn) state per all nodes. LS must deal with the former issue but not
node, incurs a total message cosghlog?n), and has  the latter and is thus merely making the inverse trade-

convergence tim@(dlog?n). off. These “simpler” approaches that localize or cen-
. . tralize computations might lead to greater message costs
5.1.1 Discussion or reduced robustness and this tradeoff could be made

Tables 3 and 4 summarize our results which we nowapparent by simultaneously considering scalability, com-
briefly examine. In drawing comparisons, we generallyplexity and robustness metrics.

assume that the network diamedas O(logn) ande ~ O. Introducing the use of source routing cause<o4d)
Complexity vs. traditional metrics Our first observa- reduction in the complexity of the first RCP-inspired
tion is that none of the traditional metrics yield the samevariant. Note too that introducing source routing to LS
relative ranking of solutions as our complexity metric, would result in a similar reduction. In some sense source
confirming that complexity (as defined here) is not therouting localizes decision making for titata plane in
same as scalability or efficiency. Moreover, the rankingmuch the same way as LS and RCP do for the control
due to our complexity metric is in fair agreement with plane and hence the reduced complexity points again to
that suggested by real-world adoption and our survey rethe benefit of localized vs. distributed decision making.
sults. For example, DV, LS and hierarchical routing areFinally, we note that, assumirg— 0, the combination
simpler than eitheAG+_conpact 's compact routing  of LS/RCP-inspired and source routing agl) com-
algorithm or intradomain ROFL; centralized routing is plexity which we conjecture might be optimal for di-
simpler than DV, compact routing or intradomain ROFL. rected routing over an arbitrary topology.

Our complexity measure is also more discriminating In terms of navigating simplicity and scalability we
than the other metrics. For example, DV, LS and bothnote that — unlike compact routing and intradomain
variants of centralized routing fare equally in terms of to- ROFL — introducing hierarchy improves scalability with-
tal state or convergence time while our metric ranks thermout increasing complexity.
as DV> LS = RCP-inspired> RCP-inspired + SR. Con- From our analysis we find that the complexity of com-
vergence time in particular appears too coarse-grained pact routing is in large part because of the multiple passes
for routing protocols it mostly reflects the scope to which needed to configure routing tables — a node must first
state propagates and hence most solutions have the saigild its vicinity ball (VB), then hear from nodes whose
value. In some sense, however, this greater discriminayBs it belongs to and finally explore the intersection of
tive power is to be expected as our metric is somewhatadjoining” VBs. We found a similar source of com-
more complicated in the sense of taking more detail intoplexity in our analysis of sensornet routing algorithms
account. (presented in [9]) that use an initial configuration phase
Deconstructing complexity A routing entry at a node to elect landmark nodes and then proceed to construct
A for destination B depends fundamentally on the link “virtual” coordinate systems based on distances to these



Algorithm State  Message Complexity e compare a best-effort read-one/write-all-availalie (i

ROWAA(read) O(1) 0O(1) O(1) short, ROWAA) that favors availability over consistency
ROWAA(write) O(1) O(n) 0O(1) and quorum systems [28] used in cluster file systems
Quorum(read) O(1) O(k) O(k) such as GPFS [1]. Our analysis assumes a client knows
Quorum(write) O(1) O(Kk) O(k?) the set of servers that participate in the algorithm.
2PC O(1) O(n) O(n?) ROWAA In ROWAA, a client issues a read request to
Paxos O(1) O(n) o(k3) any one of the replicas, but writes data to all available
Multicast on) o(n) O(log®n) replicas in a l_aest-effort manner. A replica that is unavail-
Gossip o(n) O(nlogn) O(logn) able at the time of the write is not updated and hence
ROWAA can lead to inconsistency across replicas.
TTL—.bas_ed 1 1 € When a client reads a variable from a server, this
Invalidation 1 1 2

fetched value (denoted by depends only on the current
Table 5: Evaluation of classical distributed system algorithms value at that server. Therefo, = 1. Reading involves
using different metrics. a request from the client to a server and the response
from the server; hence’ = 2. When a client writes a
landmarks [33]. Such systems build up layers of depenvalue to all available servers, it receives any acknowl-
dencies, leading to higher complexity. edgments from the servers in a best-effort manner; hence

Work on compact routing is typically cast as exploring ¢,, = O(1).
the tradeoff between efficiency (path stretch) and scalaguorum Quorum systems allow clients to tolerate some
bility (table size). Throwing complexity into the ring en- number of server faults while maintaining consistency al-
ables discussing tradeoffs between simplicity, efficiencythough with lower read performance. To obtain this prop-
and scalability. For example, much of the complexity of erty, the client reads from and writes to multiple replicas,
AG+_conpact stems from the additional mechanisms and the quorum protocol requires that there is at least
needed to bound the worst-case stretch when routing beme correct replica that intersects a write quorum and a
tween nodes in adjoining vicinities (see [9]). Were we toread quorum thereby ensuring that the latest write is not
instead reuse the same mechanism for nodes that are jfissed by any client. For this purpose, each value stored
adjoining vicinity balls as for those in distant vicinities s tagged with a timestamp.
this would reduce the complexity &{G+_conpact to To read a variable in a quorum system, a client sends
O(y/nd?) but weaken the worst-case stretch bound.  requests td servers and receivés (value, timestamp)

In summary, we show that our complexity metric pairs from a quorum. It chooses the value with the high-
can discriminate across a range of routing architecturesest timestamp_ Since reading avalue dependdmme'
ranks solutions in a manner that is congruent with comjmestamp) pairs;¥ = k. Since there ark requests and
mon design intuition and can point to alternate “simpler” k responses;” = 2k.
design options and tradeoffs. A write operation requires two phases. In the first
. L hase, a client sends a request to read the timestamp to
5.2 Classical Distributed Systems zach of thek servers. Whenqit receives timestamps fror?‘n
In this section, we analyze the complexity of well- k servers, it chooses the value with the highest times-
known classical distributed system algorithms: (1)tampthgy, and computes a new timestartya,, greater
shared read/write variables, (2) coordination/consensusghantyigh. thew depends ok timestamps stored at servers
(3) update propagation, and (4) cache consistency. Faand these timestamps are fetchedkiaquests ani re-
each, we consider two solutions; one that offers inferiorsponses. Therefore} = k andc] = 2k.
performance/correctness guarantees relative to the other In the second phase, the client sends write requests
but is typically viewed as being simpler. The algorithms (value,tney) to k servers and receives acknowledgments
we analyze operate under benign fault assumptions anfilom k servers. When a server receives this request, it
we assume transport states have complexity 1. We despdates its local sta®which depends on the value and
note byn the number of servers and denote kog> g) thews and hence:g =2k+1 andcl = 2k+1. The client
the quorum size. The results are summarized in Table 5finishes the second phase when it recekvasknowledg-

. i ments from distinct servers. Therefog, = k(3k + 3),
5.2.1 Shared Read/Write Variable ¢} = k(2k+ 2) and hence overall com;aléexityigs O(kz)).
For availability or performance, applications frequently Observations Our complexity-based evaluation is in
replicate the same data on multiple servers. The repliagreement with intuition and our survey. ROWAA has
cated data can be viewed as a shared, replicateldwer complexity but does not provide consistency; quo-
read/write variable provided by a set of servers that allomums have higher complexity but ensure consistency.
multiple clients to read from, and write to, the variable. This suggests that guaranteeing stronger properties, (here



consistency) may require more complex algorithms. The proposer then multicasts Ban (accepts, Vc)
o message. When an acceptor receives the accept message,
5.2.2 Coordination it comparess; with its local sy. If S > Sm, Sm is Set to

Two-phase commit (in short, 2PC) [14] and Paxos [26]Sc: Sa IS set tos, andva is set tove. It then sends an
coordinate a set of servers to implement a consensus sefack sa, Va) message to the coordinator. Otherwise, it re-
vice. Both protocols operate in two phases and require &irns an{error) message. When the proposer receives
coordinator that proposes a value and a set of acceptoréaCK Sa, Va) messages frork distinct acceptors, it knows
which are servers that accept coordinated results. 2Pthat the message is accepted bwucceptors and com-

is commonly used in distributed databases and Paxos @letes the consensus process.

used for replicated state machines. 2PC requires that a Note thatv, depends ow,’s accepted by acceptors in
coordinator communicate with servers; on the other the second phase. To account for this dependency, we
hand, Paxos requires that a coordinator (named as a prose twopasseso compute overall complexity. In the first
poser in Paxos) communicate witiserversj.e, a quo-  pass, we compute the dependencypWithout consid-

rum of servers (named as acceptors in Paxos). Thereforefing the dependency in the second phase. In the second
2PC cannot tolerate a single server fault, but Paxos capass, we use the dependencygtomputed in the first
toleraten — k server faults. pass to compute the dependency in the first phase and the
2PC In the first phase of 2PC, a coordinator multicaststotal dependency of the algorithm.

to R (a set of acceptors) éprepare T) message where  Inthe first passiy, = 3k sincev; depends ok sy's and

T is a transaction. When an acceptor receives the mesa's, each of which depends ansent by the proposer.
sage, it makes a local decision on whether to accept thAlso, ¢, = 5k+ 1 sincev, depends o and a default
transaction. If the decision is to accept the acceptor value.c}a = 2k+ 1 sincek prepare messagdspromise
sends alreadyT) message to the coordinator. Other- messages, and one accept message are required. In the
wise, it sends dno, T) message to the coordinator. The second passy, = k(7k+5) and the finat" = k(11k? +
coordinator collects responses from acceptors. Since thelk + 3), anchC = k(2k+3) and the finat" = k(2k? +

acceptor’s decision depends on its local state tusént 3k 4 2). Hence Paxos has an overall complexitydgk®).
by the coordinator, the collection at the end of the firstopservations Our complexity-based evaluation is in
phase hasy = 3n. Since there ara requests sent anl  5qreement with general intuition and our survey. Both
responses received, the collection at the end of the firsipc 3nd Paxos ug@(n) messages, maintaid(1) state
phase has] = 2n. _ _ _ per node, and have the same operation time. However,
In the second phase, if the coordinator receivespayos is more complex than 2PC because of inter-
(readyT) from all acceptors, it multicasts t® &  gependencies between phases. At the same time, itis this
(commit T) message. Otherwise, it multicastsRoan  gqgitional dependency that enables Paxos to tolerate up
(abort, T) message. When an acceptor receives a requeg n — k faults while 2PC becomes unavailable with even
for commit or abort, it executes the request and sendg single fault. Our results affirm once again that guar-

an (ack T) back to the coordinator. When the coordi- 4nteeing stronger properties (here, fault-tolerance) may
nator receives acknowledgments from all acceptors, lfequire more complex system algorithms.

knows that the transaction is completed. Since the coor-
dinator collectsr acknowledgmentsy = n(7n+3) and
¢} = n(2n+2) at the completion of the second phase.
Hence 2PC has an overall complexity®fn?). Update propagation algorithms disseminate an update
Paxos In Paxos, each acceptor maintains two importanfrom a publisher to all nodeg(g, publish-subscribe sys-
variables:sy that denotes the highest proposal numbertems). We examine multicase.¢, ESM [20]) using a
the acceptor promised to accept andthat denotes an constructed tree and Gossip [11] that exchanges updates
accepted value. A proposer multicast&ta (prepares) ~ with random nodes. To ease comparison, we assume each
message wheisis a proposal number. When an acceptornode in the system knovksrandom nodes in the system
receives this message, it compasesith sy. If s> s,  from a membership service.
the acceptor sets, to sand returns dpromises, s,, Va) Multicast In multicast, nodes run DV over a k-degree
message where, is the proposal number for the ac- mesh to build a per-source tree over which messages
cepted value,. Otherwise, it returns aferror) message. are disseminated. Hence forwarding state has complex-
When the proposer receivépromises, sy, Va) mes- ity ¢s = O(log?n+ logn). A value received at a node
sages fronk distinct acceptors, it chooseg with the  depends only on the value published by the source and
highests, amongk messages. Lei; ands; be the cho-  hencec” = 1. On the other hand, if we assume the tree
sen value and proposal number, respectively, i not  is balancede” = O(cslogn) and hence the overall com-
null, v¢ is set tov,; otherwisey, is set to a default value. plexity of multicast isO(log®n).

5.2.3 Update Propagation



Gossip In Gossip, when a node receives a message, iThe derivation of the complexities and discussion of the
chooses a random node and forwards the message to thesults are described in [9].

selected node. This process continues until all nodes in We also analyzed several wireless routing solutions in-
the system receive the new update. Heolte- 1 as be-  cluding GPSR [21] (a scalable geo routing algorithm),

fore. Each transport depends on a single hop from a fornoGeo [33] (a scalable, but more complex solution
warding node to a randomly chosen node, and in averagihat constructs “virtual” geographic coordinates) and
logn such hops are required. Henck= O(logn) and  AODV [31] (a less scalable but widely deployed ap-

the overall complexity of Gossip B(logn). proach). At a high level, our results (described in [9])

Observations Our metric ranks multicast as more com- reflect a similar intuition as our analysis from Section 5.1
plex than Gossip which matches our survey. Howeverand hence we do not discuss them here.

multicast offers a deterministic guaranteedgfogn) de- . .
livery time and does so using an optin@(n) number of 6 Discussion

messages. Once again, our results convey that efficiendyefining a metric involves walking the line between the

need not be congruent with complexity. discriminating power of the metric.é., the level of detail
in system behavior that it can differentiate across) and
5.2.4 Cache Consistency the simplicity of the metric itself. Our prototype metric

When mutable data are replicated across multiplerepresentsapartlcular point in that tradeoff. We discuss

servers, a cache consistency algorithm provides consigome of the implications of this choice in this section.

tency across replicas. We compare TTL-based caching 1 [ imitations and possible refinements
to invalidation-based approaches.

TTL-based caching In TTL-based caching, a cache V.Veight.ing valuevg.transport dependenciesOur met-

server that receives a request first checks whether thg° a:jsggns equal |mpo;tancedt_o valuehand transport de-
requested data item is locally available. If so, it served”®" enhqes. Howe\éer, hepl;en mr? ont edsystem enwron—l
the client’s request directly. Otherwise, it fetches tleent ment, this may not be the best choice and a more genera

from the corresponding origin server and stores the datiP'M Of the complexity equation might be to assign:
item for its associated time-to-live (TTL). After the TTL Csex = Wylsx + W, Z max(Cy, £) + Cx
expires, the item is evicted from the cache. Once a data yeTsx

item is cached, it does not depend on the item valueEI

stored at the origin server and hence a cached data ite or example, a system Whgreln the transport ;tate IS
hasc = €. nown to be very stable while the data value of inputs

Invalidation With approaches based on invalidation, thechange frequently m_|ght ch_oose, > W, thus favorlng
ystem designs that incur simpler value dependencies.

origin server tracks which caches have copies of eac@v S . . .
. : - eighting dependencies Our metric treats all input

data item. When a data item changes, the origin SCeIVESr transport states as equally important. However, some-

sends an invalidation to all caches storing that item. Sinc%IY b qually Imp ) ’

a cached item depends on the master copy of the origi ?recc(:)?rr;il; 'enSF;Utrgthjgzzgrt)?Li:ﬁsozzzgoggr'renxgor:_ant
servercY =1,c' =1, andc = 2. : £y '

ple, DHTs maintain multiple routing entries but only the

immediate “successor” entry ensures routing progress

Observations TTL-based caching is a soft-state tech- hence one miaht emphasize the complexity due t Suc
nigue while invalidations are a hard-state technique. g P piexity

Soft-state is typically viewed as simpler than hard-state%essor' Again, this might be achieved by weighting states

because of the lack of explicit state set-up and tear-dow ased on system-specific knowledge of their importance.

mechanisms and our metric supports this valuation. orrelated inputs Our metric treats all inputs as in-
dependent which might result in over-counting depen-

dencies from correlated inputs. This could be avoided
by maintaining the set identifying the actual dependen-
Resource discovery is a fundamental problem in netcies associated with each piece of state rather than just
worked systems where information is distributed acrossount their number although this requires significantly
nodes in the network. We subjected a number of well-more fine-grained tracking of dependencies.

known approaches to this problem to our complexity Capturing dependencies in timeln our counting-based
based analysis. Due to space constraints, because thesmgproach we only consider the inputs and transport states
solutions are well known in the community and our re- by which state was ultimately derived without worrying
sults are (we hope) fairly intuitive, we only present the fi- about the precise temporal sequence of events that led to
nal ranks of our analysis: centralized directagyg, Nap-  the eventual value of state. While a time-based analysis
ster) < (DNS, flooding-based:g, Gnutella)) < DHT. might enable a more fine-grained view of dependencies

5.3 Other systems



this would also seem more complicated since it requireguired;i.e., a weighted metrias of states defined as:
incorporating a temporal model that captures the evolufs = -cs wherer andm are the required and available
tion of state over time. number of inputs, respectively.

6.2 Scope 7 Related Work

Scalability vs. Complexity ~ As seen in the previous there is much work — particularly in software engineer-
sections, our complexity metric complements tradltlonaling — on measuring the complexity of a softwaye-

scalability metrics. As an example of their complemen—gram For example, Halstead’s measures [18] capture
tary nature: our metric would not penali_ze system A,thatprogramming effort derived from a program's source
has the same per-state or per-opgrauon complexity &ode. Cyclomatic complexity [30], simply put, measures
system B but constructs more state in total than B. the number of decision statements. Fan in-fan out com-

Correctnessvs. Complexity Our metric does little 1o hjaxity [19] is a metric that measures coupling between
validate the assumptions, correctness or quality ofasoltbrogram components as the length of code times the

tion. For example, our metric might capture the complex—Square of fan in times fan out. Kolmogorov complex-
ity of route construction but says little about the qual-ity is measured as the length of the program’s shortest
ity or availability of the source-to-destination path. &k description in a description language.d, Turing ma-
wise, our metric is oblivious to undesirable assumptionsshine). These metrics work at the level of system imple-
that might underlie a design. For example, our metricmentation rather than design, focus on a standalone pro-
ranks hierarchical routing favorably and cannot capturéyram and do not consider the distributed dependencies of
the loss in flexibility due to its requirement of aggregat- components that are networked. We believe the latter are
able addresses (section 5.1). Similarly, our metric rank$(ey to capturing complexity in networked systems and
traditional geo routing as simple despite its problematicy i viewpoints are valuable.

assumption of “uniform disc” connectivity [9]. Similarly, there is much work on improved approaches
Robustnessss.Complexity Perhaps less obviousis the 14 systemspecificationwith recent efforts that focus
relationship between our complexny metric and robust-,, network contexts [22]. Metrics are complementary
ness. In some sense, our metric does relate to robustnegssystem specification and cleaner specifications would
since a more complex scaffolding of dependencies doeg,ake it easier to apply metrics for analysis. An interest-
imply greater opportunities for failure. However, this re- jq question for future work is whether the computation
lation is indirect and does not always translate to robustys network complexity (as we define it here) can be de-
ness. For example, consider a system where state atyjyed from a system specification (or even code) in an
nodes is derived from state at a central server. Our coms;iomated manner. This appears non-trivial asatie-
plexity metric would assign a low complexity to such a myjationof distributed dependencies is typically not ob-
system, while, in terms of robustness, such a system igjq,s at the program or specification level.
vulnerable to the fall_ure of the central server. _ While we derive our dependency-based metric from a
_However, we conjecture that our dependency-centricyysiem design, there have been many recent effoirs at
viewpoint might also apply to measuring robustness anqerring dependencies or causality graphs fromianing

this is something we intend to explore in future work. oy stem for use in network management, troubleshooting,
In particular, there are two aspects to dependencies thaf, 4 performance debugging [4, 12, 16].

appear important to robustness. The first isuhinera- Finally, this paper builds on an earlier paper that artic-

bility of the system which could be captured by countingulated the need for improved complexity metrics [34].
the “reverse” dependencies of a stats the number of

output states that derifeom s The second aspect is the
extentto which a piece of state is affected by its various
dependencies and this is a function of both the impor-This paper takes a first step towards quantifying the in-
tance of that dependencg.(, the address of a server vs. tuition for design simplicity that often guides choices
estimated latency to the server as a hint for better perfor practical systems. We presented a metric that mea-
formance) and the degree to which redundancy makesures the impact of the ensemble of distributed depen-
the dependency less criticald, deriving a piece of state dencies for an individual piece of state and apply this
from anyk of minputs withk << mis likely more robust  metric to the evaluation of several networked system de-
that one derived frork specific inputs). The former con- signs. While our metric is but a first step, we believe
sideration (importance) can be captured by weighting dethe eventual ability to more rigorously quantify design
pendencies as proposed above. A fairly straightforwaraomplexity would serve not only to improve our own de-
extension to capture the effect of redundancy would besign methodologies but also to better articulate our de-
to further weight complexity by the fraction of states re- sign aesthetic to the many communities that design for
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real-world networked context®.g, algorithms, formal [23] D. Krioukov, K. Fall, and X. Yang. Compact routing on Imet-
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