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Abstract

The systems and networking community treasures “sim-
ple” system designs, but our evaluation of system sim-
plicity often relies more on intuition and qualitative dis-
cussion than rigorous quantitative metrics. In this paper,
we develop a prototype metric that seeks to quantify the
notion of algorithmic complexity in networked system
design. We evaluate several networked system designs
through the lens of our proposed complexity metric and
demonstrate that our metric quantitatively assesses so-
lutions in a manner compatible with informally artic-
ulated design intuition and anecdotal evidence such as
real-world adoption.

1 Introduction

The design of a networked system frequently includes a
strong algorithmic design component. For example, so-
lutions to a variety of problems – routing, distributed
storage, multicast, name resolution, resource discovery,
overlays, data processing in sensor networks – require
distributed techniques and procedures by which a collec-
tion of nodes accomplish a network-wide task.

Design simplicity is a much-valued property in such
systems. For example, the literature on networked sys-
tems often refers to the importance of simplicity (all em-
phasis added):

The advantage of Chord is that it issubstantially
less complicated. . . (Chord [35])

This paper describes a design for multicast that is
simple to understand. . . (Simple Multicast [32])

This paper proposed asimpleand effective ap-
proach. . . (SOSR [17])

Likewise, engineering maxims stress simplicity:

All things being equal, the simplest solution tends
to be the right one. (Occam’s razor)

KISS: Keep It Simple, Stupid! (Apollo program)

However, as the literature reveals, our evaluation of
the simplicity (or lack thereof) of design options is of-
ten through qualitative discussion or, at best, proof-of-
concept implementation. What rigorous metrics we do
employ tend to be borrowed from the theory of algo-
rithms. For example, two of the most common metrics
used to calibrate system designs are the amount of state
maintained at nodes and the number of messages ex-

changed across nodes. These metrics, however, were in-
tended to capture the overhead or efficiency of an algo-
rithm and are at times incongruent with our notion of
simplicity. For example, flooding performs poorly on the
number of messages exchanged across nodes, but most
of us would consider flooding a simple, albeit inefficient,
solution. Similarly, a piece of state obtained as the result
of a distributed consensus protocol feels intuitively more
complex than state that holds the IP address of a neighbor
in a wireless network.

We conjecture that this mismatch in design aesthetic
contributes to the frequent disconnect between the more
theoretical and applied research on networked system
problems. A good example of this is the work on rout-
ing. Routing solutions with small forwarding tables are
widely viewed as desirable and the search for improved
algorithms has been explored in multiple communities;
for instance, a fair fraction of the proceedings at STOC,
PODC, and SPAA are devoted to routing problems. The
basic distance-vector and link-state protocols incur high
routing state (O(n) entries) but are simple and widely
employed. By contrast, a rich body of theoretical work
has led to a suite ofcompactrouting algorithms (e.g.,
[2,3,10,36]). These algorithms construct optimally small
routing tables (O(

√
n) entries) but appear more complex

and have seen little adoption.
This is not to suggest existing overhead or efficiency

metrics are not relevant or useful. On the contrary, all else
being equal, solutions with less state or traffic overhead
are strictly more desirable. Our point is merely that de-
sign simplicity plays a role in selecting solutions for real-
world systems, but existing efficiency or performance-
focused metrics can be misaligned with our notion of
what constitutes simple system designs.

This paper explores the question of whether we can
identify complexity metrics that more directly capture
the intuition behind our judgment of system designs. Be-
cause the system designs we work with are fairly well-
specified, we believe there is no fundamental reason why
our appreciation of a design cannot be reinforced by
quantifiable measures. Such metrics would not only al-
low us to more rigorously discriminate between design
options, but also to better align the design goals of the
theory and systems communities.

We start by reporting on a survey we conducted to un-
derstand how system designers evaluate and articulate
complexity in system design (Section 2). Building on



this, we define a complexity metric in Sections 3 and 4
and evaluate several networked system designs through
the lens of our complexity metric in Section 5. Using this
analysis, we demonstrate that our metric quantitatively
differentiates across flavors of solutions and ranks sys-
tems in a manner that is congruent with our survey. We
discuss the limitations of our metric in Section 6, review
related work in Section 7, and conclude in Section 8.

Finally, it is important to clarify the scope of our work.
We intend for our complexity metric to complement –
not replace – existing efficiency or performance metrics.
For example, in the case of a routing algorithm, our met-
ric might capture the complexity of route construction
but reveal little about the quality of computed paths. In
addition, while we focus on system design at the algo-
rithmic or procedural level, there are many aspects to a
software system that contribute to its ultimate complex-
ity. For example, as the CAP theorem [13] tells us, the
careful selection of a system’s service model profoundly
impacts complexity. The same is true for the sound de-
sign of its software implementation. Although at least as
important as distributed complexity, these are not aspects
we consider in this paper. Lastly, we stress that we view
our metric as a prototype: one specific metric that works
well with several classes of important systems. We ex-
pect that the best-suited metric will emerge in time after
much broader discussion and evaluation (similar to the
development of standard benchmarks in many commu-
nities such as databases and computer architecture). As
such, we view our contribution primarily in getting the
ball rolling by providing a candidate metric and set of
results for further scrutiny.

2 Perceived Complexity
We conducted a survey to explore how system design-
ers perceive complexity of networked system algorithms
such as routing, distributed systems, and resource discov-
ery. Nineteen students in a graduate distributed systems
class at UC Berkeley participated in the survey. Partici-
pants were asked to rank which of two comparable net-
worked system algorithms they viewed as more complex
on a scale where 1 means system A is far more complex
and 9 means B is far more complex. Participants were
also asked to rationalize their choice in 2–3 sentences.

We discuss the algorithms we surveyed in detail in
the later sections of this paper; Table 1 briefly summa-
rizes the findings from the survey’s quantitative rank-
ing. The one-samplet-test reveals that participants con-
sider distance vector (DV) routing as more complex than
link state (LS) routing but less complex than landmark
or compact routing. In evaluating classical distributed
systems, participants viewed solutions such as quorums,
Paxos, multicast, and atomic multicast as more complex
than read-one/write-all, two phase commit, gossip, and

More complex
Algorithm A Algorithm B algorithm

DV LS A (p < .060)
DV Landmark B (p < .050)
DV Compact B (p < .030)
DV RCP not significant

Read one/write all Quorum B (p < .007)
Two phase commit Paxos B (p < .001)
Gossip Multicast B (p < .013)
Atomic multicast Repeated multicast A (p < .001)
Locking Lease not significant

Napster Gnutella B (p < .001)
DHT Gnutella A (p < .020)
DNS lookup DHT lookup B (p < .007)

Table 1: Survey results on comparing networked systems com-
plexity. For each question, we present which algorithm was sta-
tistically rated as more complex based on thet test’s p-value,
which indicates the probability that the result is coincidental.
The smaller the p-value, the more significant the result.

repeated multicast, respectively. Napster was perceived
as simpler than Gnutella and systems such as Gnutella
and the Domain Name System (DNS) as simpler than
distributed hash tables (DHTs).

The rationales for these rankings shed more insight.
Participants found a system was complex if it was hard
to “get right,” understand, or debug, or if it could not eas-
ily cope with failures. For the most part, issues of scal-
ability or performance did not figure in their responses.
Some sample answers include: “components have com-
plex interactions,” “centralized or hierarchical is sim-
pler than decentralized,” “structure is complex,” and “re-
quires complex failure and partition handling.” Tellingly,
participants at times could not clearly articulate why one
algorithm was more complex than the other and resorted
to circular definitions –e.g., “chose system A because it
is more complicated” or “B’s protocol is more complex.”

3 Components of Complexity
A complexity metric could make these arguments ob-
jective. A good metric would be based on quantifiable,
concrete measurements of the system properties that in-
duce implementation difficulties, complex interactions
and failures, and so forth. Many metrics are possible. A
perfect metric would be intuitive and easy to calculate,
and would correlate with other, more subjective metrics,
such as lines of code or system designers’ experience.

We build on the observation that much of system de-
sign centers on issues of state – the required state must be
defined and operations for constructing and using it must
be developed – but in distributed systems, one state can
derive from states stored on other nodes. To calculate its
state, a node must hear from the remote nodes that store
the dependencies. This adds additional dependencies on
the network and intermediate node states required to re-



lay input states to the node in question. Thus, not only are
a given piece of state’s dependencies distributed, there
are also more of them.

We conjecture that the complexity particular to net-
worked systems arises from the need to ensure state is
kept in sync with its distributed dependencies. The met-
ric we develop in this paper reflects this viewpoint and
we illustrate several systems for which this dependency-
centric approach appears to appropriately reflect system
complexity. Alternate approaches are certainly possible
however –e.g., based on protocol state machine descrip-
tions, a protocol’s state space, and so forth – and we leave
a comprehensive exploration of the design space for met-
rics and their applicability to future work.

Our goal then is to derive a per-state measurecs that
captures the complexity due to the distributed state on
which a statesdepends. While a natural option would be
simply to counts’s dependencies, this is not sufficiently
discriminating: dependencies, like state, can vary greatly
in the burden they impose. Consider Figure 1, which
shows dependency relationships between states for sev-
eral simple networks. In Fig. 1b, a simple distribution
tree,v is computed from three dependenciesw, x, andy,
while in Fig. 1c, which transforms a value over several
hops,v (e.g., the distance from node 1 to node 7) has just
onedirectdependencyw, which is computed froma1 and
x, which is in turn computed fromy anda0. However, a
change iny in Fig. 1b will affectonly v, while the same
change in Fig. 1c must propagate throughx andw first.
As a system, we argue that Fig. 1c is more complex than
Fig. 1b. We thereforeweight each state, and instead of
naively counting dependencies, calculate a state’s com-
plexity bysummingthe complexities of its dependencies.
The sum includes not only direct dependencies on values,
but also dependencies on thetransport statesrequired to
relay those values, accounting for networks whose trans-
port relationships are expensive to maintain.

Some flexibility is required to account for the differ-
ent types of dependencies in real networked systems, in-
cluding redundancy, soft state, and so forth, and to dif-
ferently penalize transport and value dependencies. Nev-
ertheless, our metric is defined exclusively bycounting;
we avoid incorporating intricate probabilistic models of
node or link behavior or state machine descriptions and
the like. This keeps our metric usable, lending it to eval-
uation through simple examination and analysis or even
empirical simulation, and represents one particular trade-
off between a metric’s discriminative power and the sim-
plicity of the metric itself. Some of the limitations of our
counting-based approach are discussed in Section 6.

4 A Complexity Metric
Given a system that consists of a set of statesS, our goal
is to assign a complexity metriccs to each states∈ S.

1 2 3
v = f (w) w

l2 l3

1

2 3

4 5

6 7
v =

f (w,x,y)

w

x

y

(a) Collecting one value (b) Collecting several values

1 2 3 4 5 6 7
v = f (w,a2) w = f (x,a1) x = f (y,a0) y

(c) Collecting an aggregate value

1 2 3 4 5 6 7
v = f (w) w = f (x) x = f (y) y

(d) Collecting one value via intermediate states

1 3 5

4

6 72
v =

f (w1,w2)

w1 = f (x)

w2 = f (x)

x = f (y) y

(e) Collecting via branches forked and then merged

Figure 1: State relationships in four toy scenarios. For clarity
routing table state, writtenl , is only shown in scenario (a).

We write states as lowercase letters, such ass, v, andw.
Where the context is clear, we abuse notation and merge
the identities of states and nodes;e.g., instead of “deliv-
ered to node 1, which stores statex,” we simply say “de-
livered tox.” Local or primitive state can be maintained
without network traffic, as in a sensor node’s tempera-
ture reading. We sometimes indicate primitive state with
an underline, as inw. All other state isderived at least
partially from states held at other nodes. We call these
remote statesdirect value dependencies. In Fig. 1a,w
is a primitive state, andv is a derived state with one
value dependency, namelyw, as indicated by the defini-
tion v = f (w). Primitive state is assigned zero complex-
ity, while any derived state has positive complexity. The
set of states’s direct value dependencies is writtenDs.

A derived state also depends on the transport state re-
quired to relay value dependencies through the network.
For instance, in Fig. 1a, propagatingw to v uses thel2 and
l3 routing table entries at nodes 2 and 3, respectively. We
call these statestransport dependenciesand account for
their complexity. The setTs←x is defined as the set of
transport dependencies involved in relayingx’s value to
s; it is empty whenx 6∈ Ds. In terms of maintaining state
consistency, transport dependencies are less of a burden
than value dependencies since changes in a state’s trans-
port dependencies do not induce costs to keep that state
in sync and, as we shall see, our metric reflects this. For
instance, in Fig. 1a, any change inw must be commu-
nicated to node 1, but a change inl2 need not, sincev
depends on thel states only for the delivery ofw.

While some value dependencies require state changes
be relayed, others need only be established once. For ex-



ample, ifv were defined as a function ofw at some spe-
cific time, rather than ofw’s currentvalue, then once es-
tablishedv is unaffected by changes elsewhere in the net-
work. We say that statex and one of its value dependen-
ciesy are linked if a change iny must be propagated to
x, andunlinked otherwise. Linked value dependencies
are the major source of network complexity due to the
state maintenance they incur and are treated accordingly
by our metric.

Evaluating the metric requires determining dependen-
cies among states and defining which dependencies are
linked or unlinked. Unused or redundant dependencies,
which frequently occur, can be measured in several ways.
For example, consider Fig. 1b, wherev = f (w,x,y) and
let us assume that the valuev takes at any point is based
on just one of its inputs (for instance, perhaps the active
input is chosen based on minimum path length). Thenv’s
value dependencies have distinctly different importance:
ensuring consistency requires thatv and its active input
stay synchronized, while updates from the other depen-
dencies are less critical. When we consider dependencies
of statev, we focus on these active states that derivev and
ignore unused value dependencies.

We now turn to the metric itself, first defining a sub-
metricus which we call thevalue dependency impact.
us measures the number of remote states on whichs is
value dependent directly or indirectly. Stated otherwise,
these are primitive states that, if they were to change,
could result in an update ats and hence one can intu-
itively view us as indicative of the number of updates
seen ats for maintaining consistency with its value de-
pendencies.us is defined mutually recursively withus←x,
which measures the number of states on whichs is value
dependent via some direct value dependencyx∈ Ds. For
local states, we haveDs = /0, us = us←x = 0.

us = ∑
x∈Ds

us←x ;

us←x =































ux if x is linked tos and

x is not dependent on local state,

ux +1 if x is linked tos and

x is dependent on local state,

ε if x is unlinked tos.

If the dependencys← x is linked,s must be notified of
any change inx∈Ds. Applied recursively, changes in any
of x’s direct or indirect value dependencies must also be
passed on tos. Thus, the number of dependencies inher-
ited via x is x’s own value dependency impact,ux, plus
one in the event thatx was derived (in part) from local
state (since a change caused by state local tox would not
be accounted for inux). For example, statesw andx in
Fig. 1d, do not include any local inputs while the same
states in Fig. 1c do. Ifs is unlinked tox, then any changes

in x are not propagated tos, so we cut offx’s value de-
pendency impact. However, to ensure thats is charged
for its initial reliance onx, we introduceε, 0 < ε ≪ 1,
and charge this amount for every non-local, unlinked de-
pendency.

Note that our definition ofus assumes the dependen-
ciess inherits are independent – a simplifying assump-
tion due to whichus overcounts in some dependency
structures. For example, in Fig. 1e, ifv← {w1,w2} ←
x← y, theny is counted twice inuv, once viaw1 and once
via w2. This situation arose rarely. Many such branching
dependency structures represent unused or redundant de-
pendencies that we model by picking one active input,
which leaves the dependency graph in the form of a tree.

Thecomplexity of s is then defined as follows:

cs = ∑
x∈Ds

cs←x ;

cs←x =

{

us←x +∑y∈Ts←x max(cy,ε)+cx if x linked,

ε if x unlinked.

This definition accounts for the entire scaffolding of dis-
tributed dependencies that maintain changes froms’s de-
pendencies tos itself. Supposes’s direct value depen-
dencies are all linked. Then, the first term∑x∈Ds us←x

(= us) is s’s value dependency impact. The second term
∑x∈Ds ∑y∈Ts←x max(cy,ε) accounts for the complexity of
the transport states froms’s direct value dependencies
to s itself; ε again ensures that all links are counted,
here including transport links that nominally require no
state (such as one-hop wireless broadcast). Finally, the
last term∑x∈Ds cx covers the complexity from inherited
(transport and value) dependencies downstream fromx.
Local states hascs = 0. Thus intuitively, whereus was
indicative of the updates seen ats, cs is indicative of the
updates seen across all states – value and transport – that
maintain changes froms’s dependencies tos.

For a chain of linked dependencies fromx0 to xi

(Fig. 1c), which depends on its local stateai (perhaps
xi measures nodei’s hop count to node 0), and writingci

for cxi and so forth, we haveui = i and

ci = i + ∑
y∈Ti←(i−1)

cy +ci−1 .

Ignoring transport dependencies, the result isci = (i2 +
i)/2: chained linked dependencies induce complexity
proportional to the square of the length of the chain. In
Figure 1, if we assume alll states have complexityt, the
metric yieldscv = 1+2t in Fig. 1a,cv = 3+6t in Fig. 1b,
andcv = 6+6t in Fig. 1c.

We sometimes convey intuition about the sources of
complexity by writingcs = cV

s +cT
s , wherecV

s is the com-
plexity contributed by value dependencies andcT

s is the



complexity contributed by transport dependencies:

cV
s←x = us←x +cV

x ,

cT
s←x = ∑

y∈Ts←x

max(cy,ε)+cT
x .

This split is purely for illustration and does not affect the
definition of complexity in any way.

To measure the complexity of anoperation, such as
name resolution, routing, agreement, replication, and so
forth, we simply measure the complexity of a state cre-
ated or updated by that operation. For example, to mea-
sure the complexity of multihop routing, we imagine a
piece of state,s, derived from one primitive value de-
pendency,x, whose value must be routed across a multi-
hop network. The complexity of routing is defined ascs,
which accounts for the multihop transport dependencies
used to routex across the network. Assuming a network
with diameterd where every routing table entry has com-
plexity cr , the resulting complexity isO(dcr).

This paper evaluates different networked system de-
signs by comparing their complexities for specific
operations of interest (e.g., route, write_object,
find_object). We found it sufficient to consider one
operation at a time for our evaluation. If desired, one
might (for example) select the average complexity of key
operations as the overall complexity of the networked
system. We proceed to evaluating the above metric and
defer a discussion of its scope and limitations to Sec-
tion 6.

4.1 Some Canonical Scenarios
We first examine how the above complexity metric fares
in evaluating a few simplified network scenarios and in
the following section explore a suite of more complete
networked system solutions. Before this, we first intro-
duce two conditions that appear repeatedly in our analy-
sis of system designs and are hence worth calling out.
Redundant inputs and paths Many systems build in
redundancy to achieve higher robustness. In our analy-
sis, this manifests itself as some states that has multiple
inputs or paths but only a subset of them are needed to
derive s (akin to our discussion of active value depen-
dencies in the previous section). For example, a multi-
ple input scenario could be a node trying to discover the
address of a wireless access point (AP) – the node lis-
tens for AP beacons but need only hear from a single
AP to establish connectivity state. An example involv-
ing redundant paths might include two data centers that
provision multiple disjoint network paths between them.
When a message is encoded with (m,k) erasure code and
each code is sent to a distinct path, the destination can
construct the message if anyk out of m paths work cor-
rectly. We call this thek-of-m scenario wherem is the
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Figure 2: Canonical scenarios. For clarity we do not show the
local and transport state at each node. In all scenarios other than
(1) and (2), the transport state is assumed to have complexityt.

total number of inputs (paths) available andk is the num-
ber of inputs (paths) required.

We define the complexity ofsderived fromk-of-m in-
puts as beingk times the average complexity due to a
single input. As shown in [9], this average can be com-
puted simply as 1/m times the complexity ofsassuming
all m inputs were required inputs.

Likewise, for the multipath scenario in which a single
input x can be relayed tos using anyk of m available
paths, we calculate the complexities due to the transport
states betweenx ands ask times the average complexity
due to the transport states along any one path.
Recursion In some systems, a piece of states is derived
by an operation that uses states that were themselves set
up by the same operation. For example, in DHTs, a node
discovers its routing table entries using alookup op-
eration that makes use of state (at other nodes) that was
itself set up usinglookup operations.

We usetwo complexity computation passesfor state
that involves this kind of recursion. In the first pass, we
compute the complexities from value and transport de-
pendencies with the assumption that states used by the
operation do not depend on the operation. We compute
the final complexities in the second pass in terms of an
operation on states whose complexities are computed in
the first pass. In Section 5, DHTs and Paxos are canoni-
cal examples that involve recursion.
Canonical scenariosWe recap the following canonical
scenarios, also depicted in Figure 2. In many cases, we
can construct dependency structures of networked sys-
tem algorithms by composing several canonical scenar-
ios. In all scenarios other than (1) and (2), we assume
that the transport state at each node has complexityt.

(1) single input, 1-hop broadcast: heres is derived
by listening to the broadcast ofx. We assumex is lo-
cal state and hencecx = 0. Moreover, the complexity
of transport state atx equals zero since broadcasting
does not require any non-local transport state to be es-



Scenario cs

(1) 1 input, 1-hop broadcast 1+ ε
(2) 1 non-value-dependent input,ε

1-hop broadcast
(3) 1 input, 1-hop unicast 1+ t
(4a) 1 input, 1-of-m paths 1+ t
(4b) 1 input, k-of-m paths 1+kt
(5a) 1-of-m inputs, 1 path 1+ t
(5b) k-of-m inputs, 1 path k(1+ t)
(6) m inputs, in series 1

2m(m+1)+mt
(7) m inputs, in parallel m+mt
(8) tree O(mlogm+mt)

Table 2: Complexity of canonical scenarios

tablished atx. Correspondingly, states has complexity
cs = 1+cx +max(0,ε) = 1+ ε.
(2) single unlinked input, 1-hop broadcast: this case
is identical to the previous case but heres is unlinked to
x (e.g., s stores the value ofx as soft-state) and hence
us←x = ε andcs = ε.
(3) single input, 1-hop unicast: this is identical to the
first case, except that instead of broadcasting,x is routed
to susing transport state atx which has complexityt and
hencecs = 1+ t.
(4a) single input, 1-of-m paths: this is identical to the
previous case but we now havem identical paths fromx
to s. As before, the complexity of the transport state for
each path ist and hencecs = 1+ t.
(4b) single input, k-of-m paths: this is identical to the
previous case but herex must be delivered tos alongk
paths and hencecs = 1+kt.
(5a) 1-of-m inputs, single path per input: 1 input must
be delivered tosand hencecs = 1+ t.
(5b) k-of-m inputs, single path per input: similar to
the previous case but herek inputs must be delivered tos
and hencecs = k(1+ t).
(6) m value dependencies; 1 direct, m−1 indi-
rect: similar to Fig. 1c, here the value of eachxi is com-
puted from that ofxi+1 and local state and henceus = m
andcs = m(m+1)

2 +mt.
(7) m direct value dependencies:similar to Fig. 1b,s
is computed fromm inputs each of which is directly con-
nected tosand hencecs = m(1+ t).
(8) tree: each intermediate node has two children and
the tree height isO(logm). Hencecs = O(mlogm+mt).

The complexities for the above scenarios are summa-
rized in Table 2. Comparing the complexity ofs in case
(6) to that in case (7), we see that dependencies that ac-
cumulate indirectly result in a higher complexity than
dependencies that accumulate directly (in keeping with
our discussion comparing Fig. 1b and Fig. 1c). A sec-
ond observation, based on comparing cases (3)vs. (4a)
or (3) vs. (5a), is that our metric neither penalizes nor

rewards the use of redundant state. This decision might
seem to warrant discussion. One might argue that redun-
dancy should add to complexity because of the additional
effort that goes into creating redundant state. For exam-
ple, consider a server that must createm replicas of an
immutable file instead of just one. While this is true, we
note that (in this example) the replicas are not dependent
on each other and likewise state derived from one of the
replicas is ultimately only dependent on one rather than
m replicas and hence neither should have a complexity
higher than if there were only a single replica. That said,
the additional effort due to creating redundancy would
emerge in the complexity of the operation that creates
the m copies since this requires maintaining additional
state to identify them nodes at which to store replicas.

In terms of not rewarding redundancy, one might argue
(as was done in [34]) that a scenario in whichs is derived
from k-of-m inputs should have lower complexity than
if s were derived from exactlyk inputs because having
alternate options reduces the extent to whichs depends
on any single input (and similarly for paths). However, to
do so would be conflating robustness and complexity1 in
the sense that having alternate inputs does not ultimately
change the number of dependencies fors even though
it changes theextentto which s might depend on any
individual input; i.e., the value ofs derived fromk-of-
m inputs does ultimately depend on somek input states.

5 Analysis
In this section we evaluate a number of networked sys-
tem designs through the lens of the complexity metric
defined in Section 4. Our goal in this is to: (1) illustrate
the application of our metric to a broad range of systems
and (2) provide concrete examples of the assessments our
metric arrives at both in comparing across systems, and
relative to traditional metrics.

To the extent possible, our hope is also to validate that
our metric matches common design intuition. That said,
conclusively validating the goodness of a metric is al-
most by definition difficult and, in this sense, our results
are perhaps better viewed as providing the initial dataset
for the future scrutiny of metric performance.

We analyzed the complexity of solutions to four prob-
lems that figure prominently in the literature on net-
worked systems: (1) Internet routing, (2) classical dis-
tributed systems, (3) resource discovery, and (4) routing
in wireless networks. Due to space constraints we only
discuss the first two items in this paper; our complete set
of results are presented in [9].

5.1 Routing
Routing is one of the fundamental tasks of a networked
system and the literature abounds in discussions of rout-
ing architectures and algorithms. In this section we an-



alyze a set of routing solutions that represent a range of
design options in terms of architecture (e.g., centralized
vs. distributed), scalability (e.g., small vs. large tables),
adoption and so forth.

For each solution, we present the complexity of an in-
dividual routing entry and a source-to-destination routing
operation. For clarity we summarize only the final com-
plexity results here and present the details of their deriva-
tion in [9]. For comparison across metrics, we also eval-
uate each solution using the following traditional mea-
sures: (1) per-node state, (2) number of messages and (3)
convergence time.2 In what follows, we consider each
routing solution in turn, briefly revise its operation and
summarize its complexity. The results of our analysis are
summarized in Tables 3 and 4 and we end this section
with a discussion examining these results.
Distance-Vector (DV) Used by protocols such as RIP
and IGP, distance-vector represents one of the two ma-
jor classes of IP routing solutions. DV protocols use the
Bellman-Ford algorithm to calculate the shortest path be-
tween pairs of nodes. Every node maintains an estimate
of its shortest distance (and corresponding next-hop) to
every destination. Initially, a node is configured with the
distance to its immediate neighbors and assumes a dis-
tance of infinity for all non-neighbor destinations. Each
node then periodically informs its neighbors of its cur-
rently estimated distance to all destinations. For each
destination, a node picks the neighbor advertising the
shortest path to the destination and updates its estimated
shortest distance and next-hop accordingly.

For ann node network with diameterd, DV thus re-
quiresO(n) per-node state, a total message cost ofO(n2)
and convergence time ofO(d) in the absence of topol-
ogy changes. In terms of our complexity measure, a sin-
gle DV routing entrys has complexitycs = O(d2 + dε)
while a routing operation has a complexity ofcroute =
O(d3 +d2ε).3

Link-State (LS) Link-State routing, used in protocols
such as OSPF and IS-IS, represents the second major
class of widely-deployed IP routing solutions. In LS,
each node floods a “link state announcement (LSA)” de-
scribing its immediate neighbor connections to the entire
network. This allows each node to reconstruct the com-
plete network topology. To compute routes, a node then
simply runs Dijkstra’s algorithm over this topology map.

LS thus requiresO(n f) state per node (wheref de-
notes the average node degree), incurs a total message
cost ofO(n3) and convergence timeO(d). A routing en-
try shas complexitycs = O(d+d2ε) while a routing op-
eration has complexitycroute = O(d2 +d3ε).4

Centralized Architectures The authors of the 4D
project [15] argue for architectures that centralize the
routing control plane to simplify network management.
Several subsequent proposals – RCP [5], SANE/Ethane

[7, 8], FCP [25] – present different instantiations of this
centralized approach. We analyze two variants of central-
ized routing solutions inspired by these proposals. Our
variants are not identical to any particular proposal but
instead adapt their key (routing) insights for a generic
network context. We do this because many of the above
proposals were targeted at specific contexts which com-
plicates drawing comparisons across solutions if we were
to adopt them unchanged. For example, RCP assumes
existing intra-domain routing and leverages this to de-
liver forwarding state from the center to the domain’s
IGP routers.

In our first “RCP-inspired” variant, a designated center
node collects the LSAs flooded by all nodes, reconstructs
the complete network map from these LSAs, computes
forwarding tables for all nodes and then uses source rout-
ing to send each node its forwarding table.5 When the
network topology changes, the center receives the new
LSA, recomputes routes and updates the forwarding state
at relevant nodes. RCP-inspired has a per-state complex-
ity of cs = O(d+d2ε) and correspondingly, a routing op-
eration complexity ofcroute = O(d2 + d3ε). This can be
intuitively inferred by noting that a routing entryr com-
puted at the center is similar to that at a node in LS;r
is then delivered to a node in the network using a source
route with the same complexity asr. RCP’s performance
with traditional metrics is summarized in Table 4.

RCP-inspired centralizes the computation of routes
but packet forwarding (i.e., the data plane) still relies on
state distributed across nodes along the path. Borrowing
from several recent routing proposals [8,25], our second
variant “RCP-inspired + SR” uses source routing to for-
ward packets between pairs of nodes. Routing construc-
tion proceeds as before but now the forwarding table sent
from the center to a nodeA contains the entire route (as
opposed to just the next hop) fromA to each destina-
tion and this information is used to source route packets
originating atA. Thus, rather than requiringO(d) rout-
ing entries (one at each node along the path) for packet
forwarding, our second variant requires only the single
source-route entry at the source thus retaining the per-
state complexitycs = O(d+d2ε) but lowering the com-
plexity of croute to that of a single routing entry and hence
croute = O(d+d2ε).
Compact routing Compact routing [2,3,10,36] has sig-
nificantly improved scalability (i.e., small routing tables)
relative to deployed solutions but has seen little real-
world adoption. Here, we analyze the complexity of a
state-of-the-art name-independent6 routing algorithm by
Abrahamet al. (AG+_compact) [2]. AG+_compact
guarantees optimally small routing tables ofO(

√
n) en-

tries, worst-case stretch less than 3.0 for arbitrary topolo-
gies and≈1.0 for Internet topologies [23] and hence – as
per standard measures –AG+_compact would appear



Algorithm us cV
s cT

s cs croute

DV O(d) O(d2) O(dε) O(d2 +dε) O(d3 +d2ε)
LS O(d) O(d) O(d2ε) O(d+d2ε) O(d2 +d3ε)
RCP-inspired O(d) O(d) O(d+d2ε) O(d+d2ε) O(d2 +d3ε)
RCP-inspired+SR O(d) O(d) O(d+d2ε) O(d+d2ε) O(d+d2ε)
Compact O(d

√
n) O(nd2) O(nd2) O(nd2) O(nd2)

Hierarchical LS O(log n
k) O(log n

k) O(ε log2 n
k) O(log n

k + ε log2 n
k) O(log2 n

k + ε log3 n
k)

Intradomain ROFL O(d2) O(d2 logn) O(d3ε logn) O((d2 +d3ε) logn) O((d2 +d3ε) log2n)

Table 3: Complexity analysis for routing solutions with the breakdown of the final per-state complexitycs into its constituent
components:us, the complexity contributed by value dependencies (cV

s ) and the complexity contributed by transport dependencies
(cT

s ).

Algorithm State Message Convergence time Complexity
DV O(n) O(n2) O(d) O(d3 +d2ε)
LS O(n f) O(n3) O(d) O(d2 +d3ε)
RCP-inspired O(n), centerO(n f) O(n3) O(d) O(d2 +d3ε)
RCP-inspired+SR O(n), centerO(n f) O(n3) O(d) O(d+d2ε)
Compact O(

√
n) O(n

√
n) O(d) O(nd2)

Hierarchical LS O(n
k +k) O((n

k)3 +k3) O(log n
k) O(log2 n

k + ε log3 n
k)

Intradomain ROFL O(logn) O(nlog2n) O(d log2n) O((d2 +d3ε) log2n)

Table 4: Evaluation of routing solutions using different metrics

to be an attractive option for IP routing.

Briefly, AG+_compact operates as follows: a node
A’s vicinity ball (denoted VB(A)) is defined as thek
nodes closest to A. Node A maintains routing state for
every node in its own vicinity ball as well as for ev-
ery node B such that A∈ VB(B). A distributed col-
oring scheme assigns every node one ofc colors. One
color, say red, serves as the global backbone and every
node in the network maintains routing state for all red
nodes. Finally, a node must know how to route to ev-
ery other node of the same color as itself. Forn nodes,
vicinity balls of sizek = Õ(

√
n) andc = O(

√
n) colors,

one can show that a node’s vicinity ball contains every
color. With this construction, a node can always forward
to a destination that is either in its own vicinity, is red, or
is of the same color as the node itself. If none of these is
true, the node forwards the packet to a node in its vicinity
that is the same color as the destination. The challenge in
AG+_compact lies in setting up routes between nodes
of the same color without requiring state at intermediate
nodes of a different color and yet maintaining bounded
stretch for all paths. Loosely,AG+_compact achieves
this as follows: say nodes A and D share the same color
and A is looking to construct a routing entry to D. A ex-
plores every vicinity ball to which it belongs (VB(I), A
∈ VB(I)) and that touches or overlaps the vicinity ball of
the destination D (i.e., ∃ node X∈ VB(I) with neighbor
Y and Y ∈ VB(D)). For such I, A could route to D via
I, X and Y.AG+_compact considers possible paths for
each neighboring vicinity balls VB(I) as well as the path
through the red node closest to D and uses the shortest of
these for its routing entry to D.

AG+_compact incurs O(
√

n) per-node state, total
message overhead ofO(n

√
n) and converges inO(d)

rounds. Derived in [9],AG+_compact has per-state
complexitycs = O(nd2) andcroute = O(nd2).
Hierarchical routing Compact routing represents one
effort to reduce routing table size. The approach adopted
by IP routing however has been to address scalability
through the use of hierarchy. For example, OSPF may
partition nodes into OSPF areas and border routers of ar-
eas are connected into a backbone network. Identifiers
of nodes within a region are assigned to be aggregat-
able (i.e., sharing a common prefix) so that border routers
need only advertise a single prefix to represent all nodes
within the region.

For a network partitioned intok areas, hierarchical
routing reduces the per-node state toO(n

k + k) and total
message overhead toO((n

k)3 + k3). The resultant com-
plexity depends on the network topology. If the diameter
of an area scales as logn

k , then, from the LS complex-
ity analysis, we know that routing complexity in an area
is ca = log2 n

k + ε log3 n
k . The final routing complexity is

2ca, which is asymptotically equivalent to the complexity
of non-hierarchical routingO(log2n+ ε log3n). Thus, in
this case, hierarchy offers improved scalability at no ad-
ditional complexity. (If the network is planar, hierarchy
as above actually reduces complexity byO(

√
n) [9].)

Intradomain ROFL Hierarchical routing offers im-
proved scalability at the cost of constraining address
assignment (giving rise to several well-documented is-
sues). Intradomain ROFL [6] is a scalable routing pro-
tocol that retains the ability to route on flat (as opposed
to aggregatable) identifiers. Each virtual node maintains



its predecessor and successor and a pointer cache that
stores source routes of virtual nodes extracted from for-
warded packets. In routing a packet, if a node knows a
virtual node whose identifier matches the label, it sends
the packet directly to the node; otherwise, it forwards the
packet to a node whose identifier is closest to the label
using a source route. Each node computes source routes
of its neighbors from a network topology map obtained
from LSAs. To simplify our analysis and comparison, we
assume that the pointer cache of a node contains fingers
as in Chord [35] to guaranteeO(logn) hops in the flat la-
bel space and each node hosts a single virtual node rep-
resenting itself.

In intradomain ROFL, a node maintains routing en-
tries, each of which is(id,s, r) whereid is a particular
identifier,s is the successor ofid andr is a source route
to the node hostings. Like in LS,cr = O(d2+d3ε). Find-
ing s using a lookup operation takesO(logn) hops thus
yielding a complexity ofcs = O(logn(d2+d3ε)). A rout-
ing operation involves logn such entries, hence results
in a complexity ofcroute = O(log2n(d2 +d3ε)). In other
metrics, intradomain ROFL requiresO(logn) state per
node, incurs a total message cost ofO(nlog2n), and has
convergence timeO(d log2n).

5.1.1 Discussion

Tables 3 and 4 summarize our results which we now
briefly examine. In drawing comparisons, we generally
assume that the network diameterd is O(logn) andε ∼ 0.
Complexity vs. traditional metrics Our first observa-
tion is that none of the traditional metrics yield the same
relative ranking of solutions as our complexity metric,
confirming that complexity (as defined here) is not the
same as scalability or efficiency. Moreover, the ranking
due to our complexity metric is in fair agreement with
that suggested by real-world adoption and our survey re-
sults. For example, DV, LS and hierarchical routing are
simpler than eitherAG+_compact’s compact routing
algorithm or intradomain ROFL; centralized routing is
simpler than DV, compact routing or intradomain ROFL.

Our complexity measure is also more discriminating
than the other metrics. For example, DV, LS and both
variants of centralized routing fare equally in terms of to-
tal state or convergence time while our metric ranks them
as DV> LS= RCP-inspired> RCP-inspired + SR. Con-
vergence time in particular appears too coarse-grained –
for routing protocols it mostly reflects the scope to which
state propagates and hence most solutions have the same
value. In some sense, however, this greater discrimina-
tive power is to be expected as our metric is somewhat
more complicated in the sense of taking more detail into
account.
Deconstructing complexity A routing entry at a node
A for destination B depends fundamentally on the link

connectivity information from thed nodes along the path
to B. In DV, the computation mapping thesed link states
into a single routing entry isdistributed– occurring in
stages at the multiple nodes en route to A. LS by contrast,
localizesthis computation in that thed pieces of state are
transferred unchanged to node A which then computes
the route locally. RCP not only localizes, butcentralizes
this computation.

Our metric ranks distributed network computations as
more complex than localized ones and hence DV as more
complex than LS. Our metric ranks the complexity of LS
as equal to that of the first centralized variant implying
that a localized approach (i.e., “flood everywhere then
compute locally”) is similar in complexity to a central-
ized one (i.e., “flood to a central point, compute locally,
then flood from central point”). This appears justified as
both approaches are ultimately similar in the number and
manner in which they accumulate dependencies. While
the central server can ensure an update is consistently ap-
plied in computing routes for all nodes, it is still left with
the problem of consistently propagating those routes to
all nodes. LS must deal with the former issue but not
the latter and is thus merely making the inverse trade-
off. These “simpler” approaches that localize or cen-
tralize computations might lead to greater message costs
or reduced robustness and this tradeoff could be made
apparent by simultaneously considering scalability, com-
plexity and robustness metrics.

Introducing the use of source routing causes anO(d)
reduction in the complexity of the first RCP-inspired
variant. Note too that introducing source routing to LS
would result in a similar reduction. In some sense source
routing localizes decision making for thedata plane in
much the same way as LS and RCP do for the control
plane and hence the reduced complexity points again to
the benefit of localized vs. distributed decision making.
Finally, we note that, assumingε → 0, the combination
of LS/RCP-inspired and source routing hasO(d) com-
plexity which we conjecture might be optimal for di-
rected routing over an arbitrary topology.

In terms of navigating simplicity and scalability we
note that – unlike compact routing and intradomain
ROFL – introducing hierarchy improves scalability with-
out increasing complexity.

From our analysis we find that the complexity of com-
pact routing is in large part because of the multiple passes
needed to configure routing tables – a node must first
build its vicinity ball (VB), then hear from nodes whose
VBs it belongs to and finally explore the intersection of
“adjoining” VBs. We found a similar source of com-
plexity in our analysis of sensornet routing algorithms
(presented in [9]) that use an initial configuration phase
to elect landmark nodes and then proceed to construct
“virtual” coordinate systems based on distances to these



Algorithm State Message Complexity
ROWAA(read) O(1) O(1) O(1)
ROWAA(write) O(1) O(n) O(1)
Quorum(read) O(1) O(k) O(k)
Quorum(write) O(1) O(k) O(k2)

2PC O(1) O(n) O(n2)
Paxos O(1) O(n) O(k3)

Multicast O(n) O(n) O(log3n)
Gossip O(n) O(nlogn) O(logn)

TTL-based 1 1 ε
Invalidation 1 1 2

Table 5: Evaluation of classical distributed system algorithms
using different metrics.

landmarks [33]. Such systems build up layers of depen-
dencies, leading to higher complexity.

Work on compact routing is typically cast as exploring
the tradeoff between efficiency (path stretch) and scala-
bility (table size). Throwing complexity into the ring en-
ables discussing tradeoffs between simplicity, efficiency
and scalability. For example, much of the complexity of
AG+_compact stems from the additional mechanisms
needed to bound the worst-case stretch when routing be-
tween nodes in adjoining vicinities (see [9]). Were we to
instead reuse the same mechanism for nodes that are in
adjoining vicinity balls as for those in distant vicinities,
this would reduce the complexity ofAG+_compact to
O(
√

nd2) but weaken the worst-case stretch bound.
In summary, we show that our complexity metric

can discriminate across a range of routing architectures,
ranks solutions in a manner that is congruent with com-
mon design intuition and can point to alternate “simpler”
design options and tradeoffs.

5.2 Classical Distributed Systems
In this section, we analyze the complexity of well-
known classical distributed system algorithms: (1)
shared read/write variables, (2) coordination/consensus,
(3) update propagation, and (4) cache consistency. For
each, we consider two solutions; one that offers inferior
performance/correctness guarantees relative to the other
but is typically viewed as being simpler. The algorithms
we analyze operate under benign fault assumptions and
we assume transport states have complexity 1. We de-
note byn the number of servers and denote byk (> n

2)
the quorum size. The results are summarized in Table 5.

5.2.1 Shared Read/Write Variable

For availability or performance, applications frequently
replicate the same data on multiple servers. The repli-
cated data can be viewed as a shared, replicated
read/write variable provided by a set of servers that allow
multiple clients to read from, and write to, the variable.

We compare a best-effort read-one/write-all-available (in
short, ROWAA) that favors availability over consistency
and quorum systems [28] used in cluster file systems
such as GPFS [1]. Our analysis assumes a client knows
the set of servers that participate in the algorithm.
ROWAA In ROWAA, a client issues a read request to
any one of the replicas, but writes data to all available
replicas in a best-effort manner. A replica that is unavail-
able at the time of the write is not updated and hence
ROWAA can lead to inconsistency across replicas.

When a client reads a variable from a server, this
fetched value (denoted byr) depends only on the current
value at that server. Therefore,cV

r = 1. Reading involves
a request from the client to a server and the response
from the server; hencecT

r = 2. When a client writes a
value to all available servers, it receives any acknowl-
edgments from the servers in a best-effort manner; hence
cw = O(1).
Quorum Quorum systems allow clients to tolerate some
number of server faults while maintaining consistency al-
though with lower read performance. To obtain this prop-
erty, the client reads from and writes to multiple replicas,
and the quorum protocol requires that there is at least
one correct replica that intersects a write quorum and a
read quorum thereby ensuring that the latest write is not
missed by any client. For this purpose, each value stored
is tagged with a timestamp.

To read a variable in a quorum system, a client sends
requests tok servers and receivesk (value, timestamp)
pairs from a quorum. It chooses the value with the high-
est timestamp. Since reading a value depends onk (value,
timestamp) pairs,cV = k. Since there arek requests and
k responses,cT = 2k.

A write operation requires two phases. In the first
phase, a client sends a request to read the timestamp to
each of thek servers. When it receives timestamps from
k servers, it chooses the value with the highest times-
tamp thigh and computes a new timestamptnew greater
thanthigh. tnew depends onk timestamps stored at servers
and these timestamps are fetched viak requests andk re-
sponses. Therefore,cV

1 = k andcT
1 = 2k.

In the second phase, the client sends write requests
(value,tnew) to k servers and receives acknowledgments
from k servers. When a server receives this request, it
updates its local states which depends on the value and
tnew, and hencecV

s = 2k+1 andcT
s = 2k+1. The client

finishes the second phase when it receivesk acknowledg-
ments from distinct servers. Therefore,cV

2 = k(3k+ 3),
cT

2 = k(2k+2) and hence overall complexityc is O(k2).
Observations Our complexity-based evaluation is in
agreement with intuition and our survey. ROWAA has
lower complexity but does not provide consistency; quo-
rums have higher complexity but ensure consistency.
This suggests that guaranteeing stronger properties (here,



consistency) may require more complex algorithms.

5.2.2 Coordination

Two-phase commit (in short, 2PC) [14] and Paxos [26]
coordinate a set of servers to implement a consensus ser-
vice. Both protocols operate in two phases and require a
coordinator that proposes a value and a set of acceptors,
which are servers that accept coordinated results. 2PC
is commonly used in distributed databases and Paxos is
used for replicated state machines. 2PC requires that a
coordinator communicate withn servers; on the other
hand, Paxos requires that a coordinator (named as a pro-
poser in Paxos) communicate withk servers,i.e., a quo-
rum of servers (named as acceptors in Paxos). Therefore,
2PC cannot tolerate a single server fault, but Paxos can
toleraten−k server faults.
2PC In the first phase of 2PC, a coordinator multicasts
to R (a set of acceptors) a〈prepare,T〉 message where
T is a transaction. When an acceptor receives the mes-
sage, it makes a local decision on whether to accept the
transaction. If the decision is to acceptT, the acceptor
sends a〈ready,T〉 message to the coordinator. Other-
wise, it sends a〈no,T〉 message to the coordinator. The
coordinator collects responses from acceptors. Since the
acceptor’s decision depends on its local state andT sent
by the coordinator, the collection at the end of the first
phase hascV

1 = 3n. Since there aren requests sent andn
responses received, the collection at the end of the first
phase hascT

1 = 2n.
In the second phase, if the coordinator receives

〈ready,T〉 from all acceptors, it multicasts toR a
〈commit,T〉 message. Otherwise, it multicasts toR an
〈abort,T〉message. When an acceptor receives a request
for commit or abort, it executes the request and sends
an 〈ack,T〉 back to the coordinator. When the coordi-
nator receives acknowledgments from all acceptors, it
knows that the transaction is completed. Since the coor-
dinator collectsn acknowledgments,cV

2 = n(7n+3) and
cT

2 = n(2n+ 2) at the completion of the second phase.
Hence 2PC has an overall complexity ofO(n2).
Paxos In Paxos, each acceptor maintains two important
variables:sm that denotes the highest proposal number
the acceptor promised to accept andva that denotes an
accepted value. A proposer multicasts toRa〈prepare,s〉
message wheres is a proposal number. When an acceptor
receives this message, it comparess with sm. If s> sm,
the acceptor setssm to s and returns a〈promise,s,sa,va〉
message wheresa is the proposal number for the ac-
cepted valueva. Otherwise, it returns an〈error〉message.

When the proposer receives〈promise,s,sa,va〉 mes-
sages fromk distinct acceptors, it choosesva with the
highestsa amongk messages. Letvc andsc be the cho-
sen value and proposal number, respectively. Ifva is not
null, vc is set tova; otherwise,vc is set to a default value.

The proposer then multicasts toR an 〈accept,sc,vc〉
message. When an acceptor receives the accept message,
it comparessc with its local sm. If sc ≥ sm, sm is set to
sc, sa is set tosc, andva is set tovc. It then sends an
〈ack,sa,va〉message to the coordinator. Otherwise, it re-
turns an〈error〉 message. When the proposer receives
〈ack,sa,va〉messages fromk distinct acceptors, it knows
that the message is accepted byk acceptors and com-
pletes the consensus process.

Note thatvc depends onva’s accepted by acceptors in
the second phase. To account for this dependency, we
use twopassesto compute overall complexity. In the first
pass, we compute the dependency ofva without consid-
ering the dependency in the second phase. In the second
pass, we use the dependency ofva computed in the first
pass to compute the dependency in the first phase and the
total dependency of the algorithm.

In the first pass,cV
vc

= 3k sincevc depends onk sm’s and
va’s, each of which depends ons sent by the proposer.
Also, cV

va
= 5k+ 1 sinceva depends onvc and a default

value.cT
va

= 2k+1 sincek prepare messages,k promise
messages, and one accept message are required. In the
second pass,cV

vc
= k(7k+5) and the finalcV = k(11k2 +

11k+3), andcT
vc

= k(2k+3) and the finalcT = k(2k2 +

3k+2). Hence Paxos has an overall complexity ofO(k3).
Observations Our complexity-based evaluation is in
agreement with general intuition and our survey. Both
2PC and Paxos useO(n) messages, maintainO(1) state
per node, and have the same operation time. However,
Paxos is more complex than 2PC because of inter-
dependencies between phases. At the same time, it is this
additional dependency that enables Paxos to tolerate up
to n−k faults while 2PC becomes unavailable with even
a single fault. Our results affirm once again that guar-
anteeing stronger properties (here, fault-tolerance) may
require more complex system algorithms.

5.2.3 Update Propagation

Update propagation algorithms disseminate an update
from a publisher to all nodes (e.g., publish-subscribe sys-
tems). We examine multicast (e.g., ESM [20]) using a
constructed tree and Gossip [11] that exchanges updates
with random nodes. To ease comparison, we assume each
node in the system knowsk random nodes in the system
from a membership service.
Multicast In multicast, nodes run DV over a k-degree
mesh to build a per-source tree over which messages
are disseminated. Hence forwarding state has complex-
ity cs = O(log2n+ ε logn). A value received at a node
depends only on the value published by the source and
hencecV = 1. On the other hand, if we assume the tree
is balanced,cT = O(cs logn) and hence the overall com-
plexity of multicast isO(log3n).



Gossip In Gossip, when a node receives a message, it
chooses a random node and forwards the message to the
selected node. This process continues until all nodes in
the system receive the new update. HencecV = 1 as be-
fore. Each transport depends on a single hop from a for-
warding node to a randomly chosen node, and in average
logn such hops are required. HencecT = O(logn) and
the overall complexity of Gossip isO(logn).
Observations Our metric ranks multicast as more com-
plex than Gossip which matches our survey. However,
multicast offers a deterministic guarantee ofO(logn) de-
livery time and does so using an optimalO(n) number of
messages. Once again, our results convey that efficiency
need not be congruent with complexity.

5.2.4 Cache Consistency

When mutable data are replicated across multiple
servers, a cache consistency algorithm provides consis-
tency across replicas. We compare TTL-based caching
to invalidation-based approaches.
TTL-based caching In TTL-based caching, a cache
server that receives a request first checks whether the
requested data item is locally available. If so, it serves
the client’s request directly. Otherwise, it fetches the item
from the corresponding origin server and stores the data
item for its associated time-to-live (TTL). After the TTL
expires, the item is evicted from the cache. Once a data
item is cached, it does not depend on the item value
stored at the origin server and hence a cached data item
hasc = ε.
Invalidation With approaches based on invalidation, the
origin server tracks which caches have copies of each
data item. When a data item changes, the origin server
sends an invalidation to all caches storing that item. Since
a cached item depends on the master copy of the origin
server,cV = 1, cT = 1, andc = 2.

Observations TTL-based caching is a soft-state tech-
nique while invalidations are a hard-state technique.
Soft-state is typically viewed as simpler than hard-state
because of the lack of explicit state set-up and tear-down
mechanisms and our metric supports this valuation.

5.3 Other systems

Resource discovery is a fundamental problem in net-
worked systems where information is distributed across
nodes in the network. We subjected a number of well-
known approaches to this problem to our complexity
based analysis. Due to space constraints, because these
solutions are well known in the community and our re-
sults are (we hope) fairly intuitive, we only present the fi-
nal ranks of our analysis: centralized directory (e.g., Nap-
ster) < (DNS, flooding-based (e.g., Gnutella)) < DHT.

The derivation of the complexities and discussion of the
results are described in [9].

We also analyzed several wireless routing solutions in-
cluding GPSR [21] (a scalable geo routing algorithm),
noGeo [33] (a scalable, but more complex solution
that constructs “virtual” geographic coordinates) and
AODV [31] (a less scalable but widely deployed ap-
proach). At a high level, our results (described in [9])
reflect a similar intuition as our analysis from Section 5.1
and hence we do not discuss them here.

6 Discussion
Defining a metric involves walking the line between the
discriminating power of the metric (i.e., the level of detail
in system behavior that it can differentiate across) and
the simplicity of the metric itself. Our prototype metric
represents a particular point in that tradeoff. We discuss
some of the implications of this choice in this section.

6.1 Limitations and possible refinements
Weighting valuevs.transport dependenciesOur met-
ric assigns equal importance to value and transport de-
pendencies. However, depending on the system environ-
ment, this may not be the best choice and a more general
form of the complexity equation might be to assign:

cs←x = wvus←x +wt ∑
y∈Ts←x

max(cy,ε)+cx

For example, a system wherein the transport state is
known to be very stable while the data value of inputs
change frequently might choosewv≫ wt , thus favoring
system designs that incur simpler value dependencies.
Weighting dependencies Our metric treats all input
or transport states as equally important. However, some-
time certain input or transport states are more important
(for correctness, robustness,etc.) than others. For exam-
ple, DHTs maintain multiple routing entries but only the
immediate “successor” entry ensures routing progress
hence one might emphasize the complexity due to suc-
cessor. Again, this might be achieved by weighting states
based on system-specific knowledge of their importance.
Correlated inputs Our metric treats all inputs as in-
dependent which might result in over-counting depen-
dencies from correlated inputs. This could be avoided
by maintaining the set identifying the actual dependen-
cies associated with each piece of state rather than just
count their number although this requires significantly
more fine-grained tracking of dependencies.
Capturing dependencies in timeIn our counting-based
approach we only consider the inputs and transport states
by which state was ultimately derived without worrying
about the precise temporal sequence of events that led to
the eventual value of state. While a time-based analysis
might enable a more fine-grained view of dependencies



this would also seem more complicated since it requires
incorporating a temporal model that captures the evolu-
tion of state over time.

6.2 Scope
Scalability vs. Complexity As seen in the previous
sections, our complexity metric complements traditional
scalability metrics. As an example of their complemen-
tary nature: our metric would not penalize system A that
has the same per-state or per-operation complexity as
system B but constructs more state in total than B.
Correctnessvs. Complexity Our metric does little to
validate the assumptions, correctness or quality of a solu-
tion. For example, our metric might capture the complex-
ity of route construction but says little about the qual-
ity or availability of the source-to-destination path. Like-
wise, our metric is oblivious to undesirable assumptions
that might underlie a design. For example, our metric
ranks hierarchical routing favorably and cannot capture
the loss in flexibility due to its requirement of aggregat-
able addresses (section 5.1). Similarly, our metric ranks
traditional geo routing as simple despite its problematic
assumption of “uniform disc” connectivity [9].
Robustnessvs.Complexity Perhaps less obvious is the
relationship between our complexity metric and robust-
ness. In some sense, our metric does relate to robustness
since a more complex scaffolding of dependencies does
imply greater opportunities for failure. However, this re-
lation is indirect and does not always translate to robust-
ness. For example, consider a system where state atn
nodes is derived from state at a central server. Our com-
plexity metric would assign a low complexity to such a
system, while, in terms of robustness, such a system is
vulnerable to the failure of the central server.

However, we conjecture that our dependency-centric
viewpoint might also apply to measuring robustness and
this is something we intend to explore in future work.
In particular, there are two aspects to dependencies that
appear important to robustness. The first is thevulnera-
bility of the system which could be captured by counting
the “reverse” dependencies of a states as the number of
output states that derivefrom s. The second aspect is the
extentto which a piece of state is affected by its various
dependencies and this is a function of both the impor-
tance of that dependency (e.g., the address of a server vs.
estimated latency to the server as a hint for better per-
formance) and the degree to which redundancy makes
the dependency less critical (i.e., deriving a piece of state
from anyk of m inputs withk≪m is likely more robust
that one derived fromk specific inputs). The former con-
sideration (importance) can be captured by weighting de-
pendencies as proposed above. A fairly straightforward
extension to capture the effect of redundancy would be
to further weight complexity by the fraction of states re-

quired; i.e., a weighted metricrs of states defined as:
rs = r

mcs wherer andm are the required and available
number of inputs, respectively.

7 Related Work

There is much work – particularly in software engineer-
ing – on measuring the complexity of a softwarepro-
gram. For example, Halstead’s measures [18] capture
programming effort derived from a program’s source
code. Cyclomatic complexity [30], simply put, measures
the number of decision statements. Fan in-fan out com-
plexity [19] is a metric that measures coupling between
program components as the length of code times the
square of fan in times fan out. Kolmogorov complex-
ity is measured as the length of the program’s shortest
description in a description language (e.g., Turing ma-
chine). These metrics work at the level of system imple-
mentation rather than design, focus on a standalone pro-
gram and do not consider the distributed dependencies of
components that are networked. We believe the latter are
key to capturing complexity in networked systems and
both viewpoints are valuable.

Similarly, there is much work on improved approaches
to systemspecificationwith recent efforts that focus
on network contexts [22]. Metrics are complementary
to system specification and cleaner specifications would
make it easier to apply metrics for analysis. An interest-
ing question for future work is whether the computation
of network complexity (as we define it here) can be de-
rived from a system specification (or even code) in an
automated manner. This appears non-trivial as theaccu-
mulationof distributed dependencies is typically not ob-
vious at the program or specification level.

While we derive our dependency-based metric from a
system design, there have been many recent efforts atin-
ferring dependencies or causality graphs from arunning
system for use in network management, troubleshooting,
and performance debugging [4,12,16].

Finally, this paper builds on an earlier paper that artic-
ulated the need for improved complexity metrics [34].

8 Conclusions

This paper takes a first step towards quantifying the in-
tuition for design simplicity that often guides choices
for practical systems. We presented a metric that mea-
sures the impact of the ensemble of distributed depen-
dencies for an individual piece of state and apply this
metric to the evaluation of several networked system de-
signs. While our metric is but a first step, we believe
the eventual ability to more rigorously quantify design
complexity would serve not only to improve our own de-
sign methodologies but also to better articulate our de-
sign aesthetic to the many communities that design for



real-world networked contexts (e.g., algorithms, formal
distributed systems, graph theory).
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Notes
1We thank Paul Francis and Robert Kleinberg for discussion onthis.
2 We include this since the time complexity of distributed algo-

rithms is commonly used in the theory community [24,27]. Time com-
plexity is the maximum number of message-exchange rounds needed
to complete the required computation.

3This can be inferred by noting that route construction is similar to
the canonical “m inputs in series” scenario from the previous section.

4 This is quickly inferred by noting the similarity to the “m inputs
in parallel” scenario withm = d inputs relayed along a path of O(d)
hops and transport state of complexityε at each hop.

5This use of source routing is the key difference relative to RCP
which uses the underlying intra-domain routes for the same purpose.

6We do not consider name-dependent algorithms [10, 29] as these
require an additional name translation service for IP routing.


