
Click for Measurement
Eddie Kohler

UCLA Computer Science Department Technical Report TR060010, February 2006

Abstract
The Click modular router was designed to forward pack-
ets, but some of its strengths—modular design, speed,
and scalability—are well suited for measurement tasks as
well. We present simple and efficient Click elements that
process traces and live packet data, and configurations
and tools that combine those elements in useful ways.

1 INTRODUCTION & R ELATED WORK

The mechanics of Internet measurement and analysis—
writing and running the code or scripts necessary to ac-
complish some measurement goal—remains surprisingly
painful. There are a lot of reasons for this, including an
infinite variety of analyses, sheer data volume, and the
details of packet format and protocol parsing. These re-
quirements are at odds. For example, scripting languages
make it easy to support a wide variety of analyses; but
simple Perl scripts that processtcpdump’s textual out-
put tend to be slow and to ignore protocol details. Entire
continuous-query systems have been designed from the
ground up to address these issues [3].

This paper instead advocates an ad-hoc approach that
ends up being surprisingly powerful: Build network anal-
yses using a router forwarding path—specifically, the
Click modular router [8].

Click was designed not for measurement, but as a
high-performance software forwarding path. The com-
ponents originally distributed with Click focused on for-
warding and other active tasks (for example, decrement-
ing IP packets’ time-to-live). But routing and measure-
ment both involve slinging lots of packets around, a task
at which Click excels. Click’s infrastructure for build-
ing efficient, modular forwarding paths naturally sup-
ports efficient, modular trace analyses, given the right
components; and those components are easy and natu-
ral to write. Minimal extensibility mechanisms, such as
a limited per-packet annotation area, have large reach.
Components used at user level for trace analysis can mi-
grate into a kernel forwarding path when desired, avoid-
ing the high overhead of copying packets to user level.
Click’s modular component architecture makes these ef-
ficient configurations relatively easy to write and read.

Compared tolibpcap-based analyses, Click makes it
easier to write reusable analysis fragments. It’s also easy
to handle multiple data sources in a single configuration.
Compared to perhaps the most common trace manipu-
lation methodology—namely, scripts that analyze ASCII
tcpdumpoutput—Click analyses are faster, and often just

as readable and easier to make correct. In addition, new
components let Click generate an ASCII trace format
more consistent and manipulable thantcpdump itself.

In terms of measurement tools, Click is most similar
to Fisk and Varghese’s data flow-basedsmacqq tool [3],
on which some of Click’s elements are based (Aggre-
gateFirst and AggregateLast, §4.1). Click is less lim-
ited in some ways (its dataflow graphs can branch) and
more limited in important other ways (it doesn’t support
an arbitrary dynamic type system). Its infrastructure is
somewhat faster and it offers a smooth path to kernel
deployment, should that be necessary; it also provides
a wider collection of file reading elements. The most
salient distinction between the systems lies in their differ-
ent attitudes towards data types.Smacqmodules are poly-
morphic, operating on many data types; it is operation-
oriented, not data-oriented. In contrast, Click, partially
because of its routing heritage, focuses entirely onone
compound data type, the packet. Depending on taste, this
packet-oriented focus can make it easier to conceptual-
ize analyses. This paper’s contribution is to show how
much can be done within a constrained, lean data model.
Compared to other modular networking systems [6, 11],
Click’s basic abstractions tend to be more flexible [4].
Unlike Scout, for example, Click enforces no overall pro-
cessing structure. This paper demonstrates some unin-
tended, but pleasant, consequences of this flexibility.

2 CLICK

Click routers consist of components calledelements
plugged together intoconfigurations. Elements pro-
cess packets in various ways—creating them, modifying
them, classifying them into different paths, and so forth.
Packets flow from element to element along the edges of
a configuration graph. Example elements include “From-
Device(eth1)”, which reads and emits packets from net-
work deviceeth1, and “Discard”, which drops any pack-
ets it receives. Here’s a simple router configuration file
using those elements:

FromDevice(eth1) -> Discard;

This file, like any Click configuration, uses a simple
declarative language. Compiler-like optimization and
analysis passes can transform Click-language files to im-
prove performance [9].

Connections between elements can use eitherpush
or pull processing. In push processing, packets are ac-
tively pushed forward through the graph. In pull process-
ing, packetrequestsmovebackwardsthrough the graph.

1



FromDevice(eth0, PROMISC true)

c :: Counter

Discard

Figure 1: Counting packets from theeth0device.

Pull processing models packet transfer as an “upcall”:
downstream elements call upwards to retrieve a packet.
The combination of push and pull can model complex
control flow patterns, including explicit queues.

A Click driver can run inside the Linux kernel, or at
user level on any Unix-like OS. Most element source files
can be compiled for either driver. Click kernel configu-
rations can run at or close to the limits of conventional
PC buses [2, 8, 9]. For example, an optimized Click IP
router can forward 740,000 minimum-size packets a sec-
ond over Gigabit Ethernet on a 1.6 GHz Athlon MP with
64-bit/66 MHz PCI [9].

3 SIMPLE ANALYSES

Figure 1 shows one of the simplest analyses possible:
a Click configuration that counts all packets arriving
on deviceeth0, then throws those packets away. The
“PROMISC true” argument says that theeth0 device
should be put into promiscuous mode. This configuration
runs equally well at user level or inside a patched Linux
or FreeBSD kernel. At user level, it extracts packets from
the OS vialibpcapor a raw packet socket—an operation
not without overhead. In a patched kernel, it steals pack-
ets directly from the relevant device queues, avoiding all
packet copies and scheduling delay. Furthermore, for cer-
tain network cards, aPollDeviceelement can be used in-
stead ofFromDevice. This increases performance at high
input rates via polling, which eliminates all interrupt and
programmed-I/O overhead as well as any receive live-
lock [10].

User and kernel behavior will differ in one important
way: User-level configurationsaugmentnormal network
processing, so the kernel still processes every packet; but
kernel configurationsreplacenormal network process-
ing, so this configuration will effectively disconnect the
host machine from itseth0card. This may or may not
be what you want. ReplacingDiscardwith aToHostele-
ment will pass all packets to the kernel network stack for
normal processing.

3.1 Extracting results

Click elements export the statistics they collect through
handlers, or functions whose arguments and return val-
ues are textual strings. This text interface makes handler
interactions relatively easy to script. For example, this

user-level configuration, based on Figure 1, counts pack-
ets for 10 seconds and prints the result:

FromDevice(...) -> c :: Counter -> Discard;
DriverManager(wait 10s, save c.count -, stop)

TheDriverManagerelement does not process any pack-
ets; instead, it directs Click’s progress using a high-level
script. This script runs Click for 10 seconds, then calls
elementc’s counthandler and writes the result to stan-
dard output. Thecounthandler simply returns the packet
count seen byCounteras a decimal string.

Data-dependent behavior can be implemented by
calling handlers contigent on particular events. For ex-
ample, this configuration reports how long it takes to re-
ceive 1000 packets:

FromDevice(...)
-> Counter(COUNT_CALL 1000 stop)
-> tr :: TimeRange -> Discard;

DriverManager(wait, save tr.interval -, stop)

The Counterelement calls the “stop” handler after re-
ceiving the 1000th packet. TheDriverManagerhas been
paused at the the “wait” instruction, waiting for this call;
it then prints the value oftr ’s intervalhandler (which re-
turns the difference in seconds between the last and first
timestamps the element has seen), and stops. This level
of scripting makes easy analyses easy to write; to sup-
port more complex control flow patterns, a programmer
would generally write corresponding C++ code as an el-
ement.

Handlers are directly accessible as well. For kernel
configurations, handlers appear as files in a/proc-like
file system; extracting thec element’s count is as simple
ascat /click/c/count. For user-level configurations,
theControlSocketelement lets other programs connect to
a TCP or UNIX socket and read handler values.

3.2 Classification

Figure 1 countsall packets, but most analyses focus on
a subset instead. Click provides many elements that can
help with this classification task. The genericClassifier
element examines arbitrary bytes of packet data. The
IP-specificIPClassifierelement accepts a variant of the
Berkeley Packet Filter language, as inIPClassifier(tcp
syn && src port 80). Classifier and IPClassifier clas-
sify packets by traversing binary decision trees. These
trees are extensively optimized to eliminate redundant
checks, making classification fast; for even faster results,
theclick-fastclassifiertool can dynamically generate the
corresponding machine code [9]. Other elements imple-
ment more specific tasks;CheckIPHeader, for example,
classifies packets into those with valid IP headers and
those without, andRandomSamplesamples each packet
with some probability.

2



IPClassifier(tcp syn && !ack && dst port 80,
tcp dst port 80, tcp)

websyn :: Counter

web :: Counter

tcp :: Counter

Figure 2: Counting overlapping kinds of traffic with a single classifier
and dataflow.

FromDump(eth0.dump) FromDump(eth1.dump)

TimeSortedSched

Figure 3: Merging two overlappingpcap files into a single packet
stream sorted by timestamp.

Figure 2 demonstrates a particularly useful classifi-
cation pattern, combining independent analyses into one
configuration. This configuration counts three overlap-
ping categories of packet: (1) TCP SYN packets sent
to port 80, (2) any TCP packets set to port 80, and (3)
all TCP packets. Instead of classifying the packet stream
three times, the user has built the overlapping categories
into the configuration’s data flow: every packet in cate-
gory (1) is also in category (2), so the configuration sends
packets from the category-(1) counter directly into the
category-(2) counter. This query optimization structure
avoids redundant checks and is easily automated.

3.3 Sources

User-level Click configurations can read not only from
live network devices, but also from a wide variety of trace
formats. For example, the following configuration prints
the number of packets in apcapdump file:

FromDump(x.trace, STOP true)
-> c :: Counter -> Discard;

DriverManager(wait, save c.count -, stop)

The FromDump element reads packet data from the
named file, constructs the corresponding Click packet
structures, and emits them downstream.FromDumpuses
efficient memory-mapped I/O to reduce copies and mem-
ory allocation; each packet is actually a pointer into a
shared immutable buffer. The “STOP true” argument
calls the “stop” handler when the dump file runs out of
packets. As before, this wakes upDriverManager, which
outputs the count to standard output.

Normally,FromDumpemits packets as fast as it can
read them from the file; this behavior mirrors that of
network sources. However, it can also act in passive or
pull mode, where it returns packets only in response
to requests. Pull mode, plus Click’s support for packet

scheduling, allows the easy construction of unusual con-
figurations. For example, Figure 3 uses pull mode and
an odd packet scheduler to merge two independent dump
files into a single stream of packets sorted by timestamp.
The TimeSortedSchedelement maintains a one-packet-
long queue for each of its inputs; on receiving a pull re-
quest, it responds with the earliest packet in any of the
queues, then refills that queue with an upstream pull re-
quest. Previously whole programs have been written to
do this merge.

Click can also read NLANR trace files (From-
NLANRDump), DAG trace files generated by Endace
tools (FromDAGDump), traces from Mark Allman’scap
tool [1] (FromCapDump), textual NetFlow summary files
(FromNetFlowSummaryDump), and even textualtcp-
dump output (FromTcpdump), and will transparently de-
compress compressed files when necessary. Some of
these formats can be written, withToDumpet al. Users
can also construct arbitrary test streams using Click’s
packet generation elements.

3.4 Packet modification

Click’s wide range of packet modification elements
is also available for measurement. For example, the
IPReassemblerelement can be used to efficiently re-
assemble packets, simplifying tasks such as TCP nor-
malization [5]; as it’s designed for in-forwarding-path
use, IPReassemblercarefully avoids resource exhaus-
tion attacks. TheAnonymizeIPAddrelement anonymizes
IP packets’ addresses, using atcpdpriv-style prefix-
preserving anonymization function, either at user level or
in the kernel;EraseIPPayloadextends this anonymiza-
tion by removing any packet payload.

3.5 Discussion

In Linux kernel configurations, polling viaPollDevice
can take precedence over all user processes. Processes
will not starve, but they can slow down significantly. This
can cause problems for measurement; for example, any
user-leveltcpdump process might not be scheduled fre-
quently enough. To mitigate this, an optional adaptive
scheduler can limit Click’s maximum CPU share to a
user-defined fraction.

4 BIGGER ANALYSES

Click of course supports analyses more complex than
counting packets. This section describes several, begin-
ning with the aggregateelements that count packets
based on an aggregate annotation, and moving on to ele-
ments for analyzing TCP.

3



4.1 Aggregates

Click was designed for routing packets, not arbitrary
analyses, and it derives much of its speed from lean data
structure design. Even routers need to annotate pack-
ets with information, however; for example, they must
remember packets’ source interfaces so as to gener-
ate appropriate redirect messages. Therefore, each Click
packet provides limitedannotation space: 24 bytes, plus
a small set of general annotations (a timestamp, a pointer
to the network header, a destination IP address, and so
forth). This space turns out to suffice for many analyses
as well.

A particularly common analysis task is to count the
number of packets seen for each possible value of some
field or property—for example, to count the number of
packets sent to each /8 network, or the number of packets
sent per IP protocol. In Click, this is carried out using the
aggregate annotation. This four-byte annotation contains
the packet’saggregate number, a generic packet identi-
fier. Some elements set the aggregate annotation based
on packet data, while others count the number of pack-
ets with each aggregate annotation value or otherwise
manipulate aggregates. For example, this configuration
counts the number of packets seen per destination /8:

... -> AggregateIP(ip dst/8)
-> ac :: AggregateCounter -> Discard;

DriverManager(wait, write ac.write_text_file -,
stop)

Thewrite text file handler call causesAggregateCounter
to write a file such as this to standard output:

!num_nonzero 2
128 1
134 1

This file indicates thatAggregateCountersaw two pack-
ets, one heading to network 128.0.0.0/8 and the other to
134.0.0.0/8. “!num_nonzero” reports the number of ag-
gregates with nonzero counts.AggregateCounteruses an
efficient prefix tree data structure to store its counts, and
can write packed binary as well as textual output.

The aggregate annotation can be set in several ways.
AggregateIPsets it based on the (possibly partial) value
of some TCP/IP header field.AggregateLengthsets it
based on packet length. Particularly powerful isAggre-
gateIPFlows, which sets the annotation based on TCP
or UDP flow identity: two packets that are part of the
same end-to-end flow will receive the same aggregate an-
notation.AggregateIPFlowswatches TCP flows for FIN
handshakes and correct RSTs, thus separating distinct
flows with the same address/port 4-tuple, and includes
configurable timeouts for UDP (and TCP). It correctly
handles fragments, assigning them the correct aggregate
annotation once the TCP/UDP header can be determined,

and ICMP errors, assigning them to the relevant flows. It
also localizes this intelligence: onlyAggregateIPFlows
needs to know the semantics of flow completion.

BesidesAggregateCounter, the aggregate annotation
is used by several elements.AggregateFilterclassifies
packets based on their aggregate annotations.Aggregate-
First emits the first packet seen for each aggregate an-
notation, whileAggregateLastemits the last packet seen.
AggregateLastalso marks each packet with the first and
last timestamps observed, and the total number of pack-
ets and bytes seen with the aggregate value. Also note-
worthy isAggregateCounter’s countspdf handler, which
transforms aggregate counter data into a scaled PDF of
the original counts. Thus, if exactly five aggregates in the
oldAggregateCounterhad counts of 42, then the newAg-
gregateCounter’s value for aggregate 42 will equal five.

Putting it all together, consider the following:

... -> AggregateIPFlows
-> AggregateFirst
-> AggregateIP(ip dst/8)
-> ac :: AggregateCounter -> ...

DriverManager(wait, write ac.counts_pdf,
write ac.write_pdf_file -, stop)

The first element aggregates packets by flow identifier.
The second drops all but one packet per flow identifier.
The third resets the aggregate annotation to the top 8
bits of the destination address, andac counts the results.
Thus, theacelement counts how many flows are present
in the trace per destination /8 network. The handlers in
theDriverManagerelement transform those counts into
a PDF, which is written to standard output. Output like

100 0.42968
128 0.125 ...

would indicate that in this trace, 43% of /8 networks con-
tained exactly 100 flows; 12.5% of /8 networks contained
exactly 128 flows; and so forth. Thus, the aggregate ele-
ments naturally combine to calculate an interesting mea-
surement result.

While the aggregate annotation is sufficient for many
purposes, it is limited to 32 bits in length. For IPv6 ad-
dresses, for example, this will not suffice; and switching
to a larger annotation would require changing many el-
ements. This is one instance wheresmacq-style generic
types would be a win.

4.2 TCP analysis

Aggregate elements are quite effective for simple anal-
yses, but less so for more complex ones, such as avail-
able bandwidth analysis for TCP flows. These analyses
require fairly complex control flow poorly expressed by
data flow between simple modules. Thus, Click’s TCP
analysis elements tend to be more coarse grained, and
introduce extensibility mechanisms of their own.

4



The central TCP analysis element is calledTCPCol-
lector. This element simply collects a detailed record
of every TCP flow it sees, including a digest of each
packet. (TCP flows are defined by aggregate annota-
tions, soTCPCollectorusually appears downstream of
an AggregateIPFlowselement.) Packet digests include
sequence number, acknowledgement and SACK, packet
number, TCP flags, IP ID, and timestamp information,
as well as a set of informational flags: Was the packet a
window probe? Did it fill the receive window? Was the
packet in sequence order, or not? Does it appear to be
a duplicate or a (possibly partial) retransmission? These
digests are stored on doubly linked lists. There are also
per-flow digests, which record initial and final sequence
numbers and timestamps, maximum sequence numbers,
packet counts, window scaling, MTU, and so forth, and
maintain pointers to the packet digests. Total memory us-
age is 48 bytes per packet plus 172 bytes per connection.

TCPCollectordoes little analysis of its own, aside
from setting sequence-ordering flags. Its output is an
XML file giving important properties of each connection:

<?xml version=’1.0’ standalone=’yes’?>
<trace file=’<stdin>’>
<flow aggregate=’1’ src=’146.164.69.8’ sport=’33397’

dst=’192.150.187.11’ dport=’80’
begin=’1028667433.955909’ duration=’131.647561’
filepos=’24’>

<stream dir=’0’ ndata=’3’ nack=’1508’ beginseq=’1543502210’
seqlen=’748’ sentsackok=’yes’> </stream>

<stream dir=’1’ ndata=’2487’ nack=’0’ beginseq=’2831743689’
seqlen=’3548305’> </stream> </flow> </trace>

Note thefilepos attribute, which specifies where in the
trace file the first packet on this flow appears. A trace
reader can usefilepos to skip ahead to the relevant por-
tion of a large trace; Click’sFromDumpelement, for ex-
ample, accepts aFILEPOSargument.

Besides this summary information,TCPCollector
can also generate XML containing summaries of each
data packet, or lists of interarrival times. But its real
power comes from its extensibility. Other elements can
hook up toTCPCollectorto store extra information in
each packet or stream digest, and to add their own per-
stream XML tags toTCPCollector’s output. For exam-
ple, theMultiQ element hooks up toTCPCollector to
provide one or more bottleneck capacity estimates for
each observed significant TCP flow, based on packet in-
terarrival times. Capacity estimates are based on the Mul-
tiQ algorithm [7].MultiQ checks each TCP flow’s MTU
and size to determine significance, then calculates inter-
arrival times from the packet digests, runs the algorithm,
and reports the results as part of a<multiq_capacity>
XML tag. It can also calculate interarrival times from
an input packet stream, but this works only if the input
stream is one flow; associating withTCPCollectormakes
it easy to work on multiple flows. The division of labor
is simple:AggregateIPFlowskeeps track of the details

of flow association,TCPCollectorremembers per-flow
state, andMultiQ concentrates on its capacity estima-
tion algorithm. Moving to Click, from an earlier Python-
based tool, let us process raw traces, support multiple
flows, and analyze flows about an order of magnitude
faster, while keeping the MultiQ-specific code about the
same length (and this is not counting several external
tools that the Click version no longer requires).

BesidesMultiQ, Click also supports a prototype loss
inference tool calledTCPMysterywhich makes much
more extensive use of packet sequence number data.

TCPCollector’s memory usage is bounded by the
number of currently active connections, and thus by the
packet stream andAggregateIPFlows’s timeout for com-
pleted TCP connections. For fast traces, this can get
large; when processing a 440 MB, 5.7 million packet
DAG-formatted packet trace, representing 5 minutes of
traffic on dual gigabit Ethernet links,TCPCollectoroc-
cupied a maximum of 275 MB of memory (on a dual
2 GHz PowerPC with 512 MB of memory). It took just
24 seconds to process this trace, however. For compar-
ison, a Click configuration that simply read the trace,
throwing all its packets away, took about 9 seconds,
roughly the same asgzcat trace | wc -c. If memory
becomes a problem, the user can simply run Click multi-
ple times, sampling disjoint subsets of flows with aClas-
sifier-like element each time.

5 APPLICATIONS

It is certainly possible, and even easy, to write measure-
ment tools and analyses directly as Click scripts. After
running your tenth or eleventh trivial variant of the same
configuration, however, a more automated tool seems at-
tractive. Click naturally supports applications that parse
command line options, generate a corresponding Click
script, and then run it. Most application logic boils down
to the selection and combination of elements. If more
logic is required, the Click library and elements can be
linked with the application directly; the application can
provide its own elements or handlers, facilitating two-
way communication.

The most widely used Click measurement application
has a seemingly-simple specification.Ipsumdumpreads
IP packets from one or more data sources, then summa-
rizes those packets into a textual file, one packet per line.
Unlike tcpdump, with its complex and evolving output,
ipsumdumpgives the user full control over what infor-
mation appears on each line, and its output was designed
for easy processing by scripts.

The ipsumdumptool simply creates and runs a con-
figuration containing aToIPSummaryDumpelement. For
example, this configuration:

FromDump(a.dump, FORCE_IP true, STOP true)

5



-> ToIPSummaryDump(out.txt, CONTENTS
src dst proto sport dport);

might write this toout.txt:
!IPSummaryDump 1.1 ...
!data ip_src ip_dst proto sport dport
192.150.187.20 192.150.187.34 T 22 3243
206.71.111.206 192.150.187.11 T 4044 80
192.150.187.11 206.71.111.206 T 80 4044 ...

Other supported fields include timestamp, IP and TCP
options, sequence numbers, and so forth. Additional
fields are very easy to add. And there is a corresponding
source element as well:FromIPSummaryDumpreadsip-
sumdumpfiles and emits packets with the specified char-
acteristics.

Ipsumdumphas proven a surprisingly useful tool. For
measurement or tool designers, such as the authors of
Bro [12], its output is a human- and script-friendlylingua
franca. Adding requested functionality, such as collat-
ing multiple packet sources (TimeSortedSched), random
sampling (RandomSample), or writing pcap-formatted
dump files (ToDump), has usually proven trivial. The el-
ements have seen other uses as well. Hand-writtenip-
sumdumpfiles, changed into packets viaFromIPSumma-
ryDump, make natural regression test input for packet
processing functionality. Even better,FromIPSumma-
ryDump can turn non-packets into packets, allowing
broader application of Click measurement elements. For
example, here is a Click script that changes a file of inter-
arrival times in seconds, one per line, into a sequence of
packets with those values as timestamps, then calculates
the implied capacity usingMultiQ:

FromIPSummaryDump(file.txt,
CONTENTS timestamp, STOP true)

-> MultiQ(RAW_TIMESTAMP true) -> Discard;

An interesting variant,ToIPFlowDumps, splits a packet
stream intomanysummary files, one per aggregate anno-
tation (i.e., one per TCP flow). Careful caching and file
descriptor usage letsToIPFlowDumpsexplode a packet
stream into tens of thousands of single-flow files, option-
ally stored in many directories, at file system speeds.

Other tools generate aggregate count files for
arbitrarily-defined aggregates (ipaggcreate) or manipu-
late aggregate counts in various ways, including calcu-
lating wavelet energy (aggmanip).

6 CONCLUSION

The code described in this paper is all freely available.
Seehttp://pdos.csail.mit.edu/click/.

This material is based in part upon work supported
by the National Science Foundation under Grant No.
0230921. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] Mark Allman. Measuring end-to-end bulk transfer capac-
ity. In Proc. 1st Internet Measurement Workshop (IMW
’01), San Francisco, California, November 2001.

[2] Benjie Chen and Robert Morris. Flexible control of par-
allelism in a multiprocessor PC router. InProc. 2001
USENIX Annual Technical Conference (USENIX ’01),
June 2001.

[3] Mike Fisk and George Varghese. Agile and scalable anal-
ysis of network events. InProc. 2nd Internet Measure-
ment Workshop, November 2002.

[4] Yitzchak Gottlieb and Larry Peterson. A comparative
study of extensible routers. InProc. 5th International
Conference on Open Architectures and Network Pro-
gramming (OPENARCH ’02), pages 51–62, New York,
New York, June 2002.

[5] Mark Handley, Vern Paxson, and Christian Kreibich.
Network intrusion detection: Evasion, traffic normaliza-
tion, and end-to-end protocol semantics. InProc. 10th
USENIX Security Symposium (Security ’01), Washington,
DC, August 2001.

[6] N. C. Hutchinson and L. L. Peterson. Thex-kernel: an
architecture for implementing network protocols.IEEE
Transactions on Software Engineering, 17(1):64–76, Jan-
uary 1991.

[7] Sachin Katti, Dina Katabi, Charles Blake, Eddie Kohler,
and Jacob Strauss. MultiQ: Automated detection of mul-
tiple bottleneck capacities along a path. InProc. Internet
Measurement Conference (IMC) 2004, Taormina, Sicily,
October 2004.

[8] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The Click modular router.ACM
Transactions on Computer Systems, 18(3):263–297, Au-
gust 2000.

[9] Eddie Kohler, Robert Morris, and Benjie Chen. Program-
ming language optimizations for modular router config-
urations. InProc. 10th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (ASPLOS-X), pages 251–263, San Jose,
California, October 2002.

[10] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminat-
ing receive livelock in an interrupt-driven kernel.ACM
Transactions on Computer Systems, 15(3):217–252, Au-
gust 1997.

[11] David Mosberger and Larry L. Peterson. Making paths
explicit in the Scout operating system. InProc. 2nd Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI ’96), pages 153–167, October 1996.

[12] Vern Paxson. Bro: A system for detecting network intrud-
ers in real-time. Computer Networks, 31(23–24):2435–
63, December 1999.

6


