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ABSTRACT However, the right abstractions can capture events’ ex-

Tame is a new event-based system for managing corPressivity while minimizing the headaches of stack rip-
currency in network applications. Code written with Pind [30]. The Tame system introduces powerful abstrac-

Tame abstractions does not suffer from the “stack-t'onfs with implementation techmqut_ari sunab!]?_ for h|g£1-
ripping” problem associated with other event libraries. periormance system programming. The specific contribu-

Like threaded code, tamed code uses standard control fIO\H,OnS of the Tame system are:

automatically-managed local variables, and modularinter1. A high-level, type-safe API for event-based program-
faces between callers and callees. Tame’s implementation ming that frees it from the stack-ripping problem but is
consists of C++ libraries and a source-to-source tranglato  still backwards compatible with legacy event code.

no platform-specific support or compiler modifications are 2. A new technique to incorporate threads and events in
required, and Tame induces little runtime overhead. Expe-  the same program.

rience with Tame in real-world systems, including a pop-
ular commercial Web site, suggests it is easy to adopt ang'
deploy.

A maintainable and immediately deployable imple-
mentation in C++, using only portable libraries and
source-to-source translation.

1 INTRODUCTION 4. An automated memory management scheme for events

This paper introduces Tame, a system for managing con- that does not require garbage collection.
currency in network applications that combines the flex- Our experience with Tame has shown the interface suf-
|b|||ty and performance of events with the programma- ficient to build and run real systems. Programmers other
bility of threads. Tame is yet another design point in athan the authors rely on Tame in educational assignments,
crowded space, but one that has proven successful in rediesearch projects [36], and even a high-traffic commercial
world deployments. The system is, at heart, an event-based/eb site [16].
programming library that frees event developers from the
annoyance of “stack ripping” [1]. We have implemented 2 RELATED WORK
Tame in C++ using libraries and source-to-source translaThe research systems most closely related to Tame are
tion, making Tame deployable without compiler upgrades.Capriccio [38] and the work of Adya et al. [1]. Capriccio
Threads are the more popular strategy for managings a cooperative threading package that exports the POSIX
concurrency, but some situations (and programmers) stilthread interface but looks like events to the operating sys-
call for events [7, 13, 24, 28, 34, 39]. Applications with tem: it uses sophisticated stack management to make one
exotic concurrency, such as multicast, publish/subscribestack appear as many, saving on cycles and memory. How-
or TCP-like state machines, might find threads insuffi-ever, the Capriccio system strives to equal events only in
ciently expressive [37]. Certain contexts do not supportterms ofperformanceand not in terms oéxpressivityits
threads or blocking [6, 21]. On new platforms, portabil- authors note that the thread interface is less flexible than
ity can favor events, which require only select call  that of events [37].
and no knowledge of hardware-specific stack or register Adya et al.’s system is a way to combine event-based
configuration [11]. Finally, some event-based servers perand threaded code in the same address space. The key in-
form better and use less memory than threaded competsight is that a program’s style of stack management (auto-
tors [18, 24-26]. matic or manual) is orthogonal to its style of task manage-
But a key advantage of events—a single stack—is also anent (cooperative or preemptive) and that most literature
liability. Sharing one stack for multiple tasks requiremct  on events and threads mistakenly claims they are linked.
ripping, which plagues the development, maintenance, deAs in Adya’s system, a Tame program can be expressed
bugging and profiling of event code [1]. The programmerin a syntax that has readable automatic stack management
must manually split (or “rip”) each function that might (like threads) yet has explicit cooperative task manage-
block (due to network communication or disk I/O), as well ment (like events). Tame differs because it extends auto-
as all of its ancestors in the call stack. Ripping a func-matic stack managementadi event code, while “hybrid”
tion obscures its control flow [6] and complicates memoryevent code in Adya’s system still requires manual stack
management. management. Other systems like SEDA [40] use threads



d // Threads

and events in concert to achieve flexible scheduling an ) i _
void wait_then_print_threads() {

intraprocess concurrency. Tame is complementary to such = gjeep(10); /7 blocks this function and all callers
hybrid systems and can be used as an implementationtech-  printf("Done!");
nigue to simplify their event code. ¥

Many othe_r'systems attempt to improve threads’ scala- |, rame primitives
bility and efficiency. NPTL in Linux [9] and I/O comple- tamed wait_then_print_tame() {

tion ports in Windows [22] improve the performance of tvars { rendezvous<> r; }
kernel threads; we compare Tame with NPTL in our eval- e :)‘f‘ke"ir/‘tg; Vo tr%lgfr?etgaef\;:?;grgec
uation. Practical user-level cooperative threading pgeka twait(r) // block until an event om is triggered
include Gnu PTH, which focuses on portability [12], and // only blocks this function, not its callers!
StateThreads, which focuses on performance [31]. printf("Done!");

Existing practical event libraries fall into several cate-
gories. The most primitive, such dsbevent [27], fo- // Tame syntactic sugar
cus exclusively on abstracting the interface to OS events tamed wait_then_print_simple_tame() {
(i.e., select vs.poll vs. epoll vs. kqueue), and don't twait { timer(10, mkevent(3); }

simplify the construction of higher-level events, such as print£("Dane!”);

RPC completions. The event libraries integrated with GUI _. _ . . .

. . . Figure 1: Three functions that prinbone! after ten seconds. The first
toolkits, such as Motif, GTK+, and Qt, support higher- version uses threads; the second Tame version is esseataadable.
level events, but are of course tuned for GUIs rather
than general systems programming. The type-#aésync  ences in performance and function. CMkents are ef-
event library for C++ is the basis of our work [21, 41].  fectively continuations and preserve the equivalent of an

The protothreads C-preprocessor library [11] gives theentire call stack, while Tamevents preserve only the top-
illusion of threads with only one stack. Protothreads arélevel function’s closure, and CML has no direct equivalent
useful in resource-constrained settings such as embeddégr Tame’s user-supplied event IDs—instead the CML user
devices and sensor networks, but lacking stacks or clomust manipulatevent objects directly. Tame’s constructs
sures, they must use global variables to retain state anflave similar power but are efficiently implementable in
therefore are not suited to building composable APIs. Thesonventional systems programming languages like C++.
Tame system shares implementation techniques with pro-
tothreads and similar C coroutine libraries [10, 11], adwel 3 TAME SEMANTICS

as theporch program checkpointer [29]. Tame makes easy concurrency problems easy to express in
The Tame language semantics draw from a rich bodyevents (as they were easy to express in threads). Figure 1
of previous work on parallel programming [32]. Like con- shows three implementations of a trivial function; the sec-
dition variables [14], Tame’'gvents allow signaling and  ond Tame version is indeed close to the threaded version
synchronization between different parts of a program, buin code length and readability. The rest of this section de-
unlike condition variablessvents do not require locks (or  scribes the Tame primitives and syntactic sugar. We also
threads, for that matter). Many parallel programming lan-show through examples how the full power of Tame sim-
guages have constructs similar to Tameigit: Occam  plifies the expression diard concurrency problems, and
hasPAR [17], and Pascal-FC h&®BEGIN andCOEND [8].  how Tame allows users to develop composable solutions
Tame also borrows ideas such as closures and funder concurrency problems (harder to express correctly in
tion currying from functional languages like Lisp [33] and threads).
Haskell [15]. Previous work in modeling threads and con- .
currency in functional languages, such as Haskell and ML,3'1 Overview
has noted a correspondence between continuations afiéime introduces four related abstractions for handling
threads. A user-level thread scheduler essentially clinoseoncurrencyeventswait points rendezvousandsafe lo-
among a set of active continuations; blocking adds thecal variables They are expressed as software libraries
current continuation to this set and invokes the schedulerwhenever possible, and as language extensions (via
For instance, Claessen uses monads in Haskell to implesource-to-source translation) when not.
ment threading [5]. Li and Zdancewic extend Claessen’s First, eachevent object represents a future occurrence,
technique to combine threads and events [20]. Concurrerguch as the completion of a network read. When the
ML (CML) uses continuations to build a set of concur- expected occurrence actually happens—for instance, a
rency primitives much like those of Tame [30]. Tame andpacket arrives—the programmigiggersthe event by call-
CML have similarevents, Tame'srendezvous shares ing its trigger method.
some properties with CML'shoose operator, and Tame’s The mkevent function allocates an event of type
twait is analogous to CML'ssync. There are differ- event<T>, whereT is a sequence of zero or more types.



This event'strigger method has the signatureoid Although wait points are analogous to blocking a thread
trigger(T). Calling trigger(v) marks the event as until a condition variable is notified, blocking in Tame has
having occurred, and passes zero or more resylidiich  a different meaning than in threads. A blocked threaded
are calledtrigger values to whomever is expecting the function’s caller only resumes when the callee explicitly

event. For example: returns. In Tame, by contrast, samed function’s caller
o resumes when the called functieither returns or blocks
rendezvous<> r; int i =0; To allow its caller to distinguish returning from blockiray,
event<int> e = mkevent(r, i); f . ill oft hich
e.trigger(100); _tam_ed unction will often accep_t an_event a_lrgument,w ic
assert(i == 100); // assertion will succeed it triggers when it returns. This trigger signals the func-

tion’s completion. Here is a function that blocks, then re-
When triggerede’s int trigger value is stored i, whose  turns an integer, in threads and in Tame:
type is echoed ir’s type.

The wait point language extension, writtelwait int blockf() { tamed blockf(event<int> done) {
. . . ’ ’ ... block ... ... block ...
blocks the calling function until one or more events are return 200: done. trigger(200) ;

triggered. Blocking causes a function to return to its galle 3 }
but the function does not complete: its execution point
and local variables are preserved in memory. When an ex-
pected event occurs, the function “unblocks” and resumes, 1 .o the caller usesiait to wait for block to re-
processing at the wait point. By that time, of course, theturn and S0 must becomemed itself. Waiting for events
functiprfs origin_al ca.\IIe.r may have _returned. Any function thus, trickles up the call stack until'a caller doesn't care
coqtammg await pointis marked with Fhamed keyword, whether its callee returns or blocks. This property is edat
which ”?fo”"s the caller that the function can b!OCI.(' .. to stack ripping, but much simpler, since functions do not

Tbe f|r.st, and more corpmo.n, form of wait point is writ- split into pieces. Threaded code avoids any such change
ten “twait { statements}”. This executes thetatements . yno ¢ot of blockinghe entire call stackwhenever a

ﬂ:e: bIocI:; untl?l_l eventds (i:reated b'gdcleven;ca}!ll;sei?at.he function blocks. Single-function blocking gives Tame its
statementfiave Iriggered. For example, code li 1t event flavor, increases its flexibility, and reduces its ever

{ ;Clr‘“e_r (10’1®mke‘f{ento) : } tihoutl)? bi rea’:_(lj t?]S €X€" head (only the relevant parts of the call stack are saved).
cute ‘timer (10, mkevent())', then block untilthe cre-\ye yor i to this topic in the next section.

ated event has triggered”—or, sinagmer triggers its When an evend is triggered, Tame queuesrigger no-

event argument aft“er the given number Pf_seconds hEj‘t'?fication for e’s event ID one’s rendezvoug. This step
passed, simply as “block for 10 secondskait{} can also unblocks any function blocked amait(r). Con-

implement many forms of event-driven control flow, in- versely,twait (r) checks for any queued trigger notifica-
cluding serial and parallel RPCS' . . tions onr. If one exists, itis dequeued and returned. Other-
.T_he second, more erX|bIel . Qf walt pqmt ex- wise, the function blocks at that wait point; it will unblock
plicitly names arendezvous object, which sp(_acme_s the and recheck the rendezvous once someone triggers a cor-
set of expect.ed events reIevant to the wait point. EV’responding event. The top-level event loop cycles through
ery event object associates with oneendezvous. A 110cked functions, calling them in round-robin order
wait pointtwait (r) unblocks whemny oneof rendez- when unblocking on file descriptor 1/0 and first-come-

vogs ri (i\t/ert]rt]s %clculis. dean(:_cklng”(]:or}_su?wfes thefeve_rt]hrst-served order otherwise. More sophisticated queuing
and restarts the biocked function. 1he first form of wait 5, scheduling techniques [40] are possible.

point is actually syntactic sugar for the second: code like Multiple functions cannot simultaneously block on the

“twait { statements}” expands into something like same rendezvous. In practice, this restriction isn't gigni
{ rendezvous<> __r: cant since most rendezvous are local t_o a single_function.
statements // wheremkevent calls create eventsonr A 1&Me program that needs two functions to wait on the
while (notall __r events have completad same condition uses two separate events, triggering both
twait(__1); 1 when the condition occurs. Tame-based read locks (see
Section 7.5) are an example of such a pattern.
The twait() form can also return information Finally, safe local variables, a language extension, are
about which event occurred. A rendezvous of type variables whose values are preserved across wait points.
rendezvous<|> accepts events witbvent IDsof type(s)  The programmer marks local variables as safe by enclos-
I. Event IDs identify events in the same way thread IDsing them in atvars {} block, which preserves their values
identify threads, except that event IDs have arbitrary,in a heap-allocated closure. (Function parameters are al-
programmer-chosen types and values.t®ait(r, i) ways safe.) Unsafe local variables have indeterminate val-
statement then seit$o the ID(s) of the unblocking event. ues after a wait point. The C++ compiler’s uninitialized-

i = blockfQ); twait { blockf(mkevent(i)); }



[ Classes [ Keywords & Language Extensions [ Functions & Methods |

event<> twait(r[,i]; mkevent (r,i,S);
e A basic event. e A wait point. Block on explicit rendez{ e Allocate a new event with event ID.
event<T> vousr, and optionally set the event ID When triggered, it will awake rendezvous
e An event with a singlerigger value of when control resumes. rand store trigger value in sist
type T. This value is set when the event tamed mkevent(s);
occurs; an example might be a characiers A return type for functions that ussvait. | e Allocate a new event for an implici
read from a file descriptor. Events may tvars { } twait{} rendezvous. When triggered,
also have multiple trigger values of types Y store trigger value in slat
... T, e Marks safe local variables. .
. The g ) e.trigger(V);
twalt Sstatements; . . .
rendezvous<|> Wait boint. sviiact block o Trigger evene, with trigger valuev.
e Represents a set of outstanding evept® Vvail point syntactc sugar: block on an . o .
with event IDs of typel. Callers name 4  implicit rendezvous until all events cre- "% (t0,); wait_on_fd(fd,rw,e);
rendezvous when they block, and unblock ~ ated instatementéave triggered. e Primitive event interface for timeouts and
on the triggering of any associated event. file descriptor events, respectively.

Figure 2: Tame primitives for event programming in C++.

variable warnings tell a Tame programmer when a localwait_on_signal (sig,e) triggerse when signakigis re-

variable should be made safe. ceived. The base event loop that understands these func-
tions is implemented in terms afelect() or platform-

Type signatures Events reflect the types of their trig- specific alternatives such as Linux’s epoll or FreeBSD’s

ger values, and rendezvous reflect the types of their everkqueue [19].

IDs. The compiler catches type mismatches and reports Like all programs based on events or cooperative

them as errors. Concretelyendezvous is a conventional threads, a tamed program will block entirely if any portion

C++ template type, defined in a library. All events associ-of it calls a blocking system call (such apen) or takes

ated with a rendezvous of typendezvous<I> musthave a page fault. Tame inherif#basyncs non-blocking sub-

event IDs of typel. Themkevent function has type: stitutes for blocking calls in the standard library (such as
open andgethostbyname). For tamed programs to per-
event<T1,T2,...> mkevent(rendezvous<I> r, const I &i, form well in concurrent settings, they should use only non-
Tl &s1, T2 &s2, ...);

blocking calls and should not induce swapping.

_ Figure 2 summarizes Tame’s primitive semantics.
The arguments aremendezvous, an event IDi, and slot

references1, s2, ... that will store trigger values when 3.2 Control Flow Examples

the event is later triggered. C++'s template machinery decommon network flow patterns like sequential calls, par-
duces the appropriate event ID and slot type(s) from theyjle| calls, and windowed calls [37] are difficult to express
arguments, smkevent can unambiguously accommodate jn standard event libraries but much simplified with Tame.
optional event IDs and arbitrary trigger slot types. TheAs a running example, consider a function that resolves
event: :trigger method has type: addresses for a set of DNS host names. An initial design

might use the normal blocking resolver:
void event<T1,T2,...>::trigger(const Tl &vl,

const T2 &v2, ...); void multidns(dnsname name[], ipaddr a[], int n) {

1

2 for (int 1 = 0; i < n; i++)

3 a[i] = gethostbyname(name[i]);
4

When called, this method assigns the trigger valugs }

v2, ... to the slots given at allocation time, then un-
blocks the corresponding rendezvous. Wait points have Of course, this function will block all other computation
type twait (rendezvous<I> r, I &i); when the wait until all lookups complete. An efficient server would allow
point unblocks; holds the ID of the unblocking event.  other progress during the lookup process. The event-based
solution would use aonblockingresolver, with a signa-
Primitive events Three library functions provide an in- ture such as:
terface to low-level operating system eventdmer(),
wait_on_fd(), andwait_on_signal (). Each function
takes anevent<> e and one or more extra parameters. This resolver uses nonblocking 1/0 when contacting local
timer(to,e) triggers e after to seconds have elapsed; and/or remote DNS servers. (Alternately, Tame’s threading
wait_on_fd(fd,rw,e) triggerse once the file descriptor support makes it easy to adapt a blocking resolver for non-
fd becomes readable or writable (dependingraf, and  blocking use; see Section 4.) Singethost_ev’s caller

tamed gethost_ev(dnsname name, event<ipaddr> e);



void multidns_nasty(dnsname name[], ipaddr a[], int n,
event<> done) {
if (n >0 {
// When lookup succeeds, gethost_ev will call
// "helper(name, a, n, done, RESULT)"
gethost_ev(name[0], wrap(helper, name, a, n, done));
} else // done, alert caller
done.trigger(Q);

void helper(dnsname *name, ipaddr *a, int n,
event<> done, ipaddr result) {
*a = result;
multidns_nasty(name+1, a+l, n-1, done);

}

Figure 3: Stack-rippedibasynccode for looking um DNS names with-
out blocking. A simplefor loop has expanded into two interacting func-
tions, obscuring control flow; all callers must likewise spli

1 tamed multidns_par(dnsname name[], ipaddr a[],
int n, event<> done) {
twait {
for (int i = 0; i < sz; i++)
gethost_ev(name[i], mkevent(al[i]));
}

done.trigger();
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}

The only difference between the serial and parallel ver-
sions is the ordering of théor andtwait statements (and
thati doesn't need to be in the closure). Since both ver-
sions have the same signature, the programmer can switch
implementation strategies without changing caller code.
With threads, however, the serial version could use one

can regain control before the lookup completes, the lookughread to do all lookups, while the parallel version would
result is returned via a trigger value: once the addressise as many threads as lookups. Tame preserves events’

a is known, the resolver calls.trigger(a). The trig-

flexibility while providing much of threads’ readability.

ger simultaneously exports the result and unblocks anyone A generalization of serial and parallel control flow is

waiting for it. Here’s how to look up a single name with
gethost_ev:

tvars { ipaddr a; }
twait { gethost_ev(name, mkevent(a)); }
print_addr(a);

Without Tame, adaptingultidns to usegethost_ev
is an exercise in stack-ripping frustration; for the gory de
tails, see Figure 3. Tame, however, makes it simple:

1 tamed multidns_tame(dnsname name[], ipaddr a[],
int n, event<> done) {

2 tvars { int i; }

3 for (i = 0; i < n; i++)

4 twait { gethost_ev(name[i], mkevent(a[il])); }

5 done.trigger(Q);

6 }

multidns_tame keeps all arguments and the local vari-
ablei in a closure. Whenevegethost_ev looks up a

L . . 1
name, it triggers the event allocated on line 4. This stores; 3

the address ira[i] and unblocksnultidns_tame, af-

windowedor pipelinedcontrol flow, in whichn calls are
made in total, and at mogt < n of them are outstanding
at any time. For serial flowy = 1; for parallel,w = n. In-
termediate values off combine the advantages of serial
and parallel execution, allowing some overlapping with-
out blasting the server. With Tame, even windowed control
flow is readable, although the simplifiedhait{} state-
ment no longer suffices:

1 tamed multidns_win(dnsname name[], ipaddr a[],
int n, event<> done) {
tvars { int sent(0), recv(®); rendezvous<> r; }
while (recv < n)
if (sent < n && sent - recv < WINDOWSIZE) {
gethost_ev(name[sent], mkevent(r,a[sent]));
sent++;
} else {
twait(r);
recv++;
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10 }
done.trigger(Q);

ter which the loop continues. Though the code somewhaThe loop runs until all requests have received responses

resembles threaded code, the semantics are still evenfrecv

driven:multidns_tame can return control to its caller be-

n). On each iteration, the function sends a
new request (lines 5-6) whenever a request remains

fore it completes. Thus, it signals completion via an event(sent < n) and the window has roonsént - recv <
namelydone. Any callers that depend on completion must WINDOWSIZE). Otherwise, the function harvests an out-
use Tame primitives to block on this event, and thus bestanding request (lines 8-9). Again, the signature is un-

cometamed themselves. Theamed return type then bub-

changed, and the implementation is short and clear. We

bles up the call stack, providing the valuable annotatiorhave not previously seen efficient windowed control flow

thatmultidns_tame and its callers may suspend compu-

tation before completion.

multidns_tame allows a server to use the CPU more
effectively thamultidns, since other server computation
can take place asultidns_tame completes. However,
multidns_tame’s lookups still happen in series: lookip
does not begin until lookup- 1 has completed. The obvi-

ous latency improvement is to perform lookups in parallel.

The tamed code barely changes:

expressed this simply.
3.3 Typing and Composability

Tame’s first-class events and rendezvous, and its distinc-
tion between event IDs and trigger values, improve its flex-
ibility, composability, and safety.

First, Tame preserves safe static typing without compro-
mising flexibility by distinguishing event IDs from trig-
ger values. Event IDs are like names. They identify events,



timer 1 template <typename T> tamed

__add_timeout (event<T> &e_base, event<bool, T> e) {
tvars { rendezvous<bool> r; T result; bool rok; }
timer (TIMEOUT, mkevent(r, false));
e_base = mkevent(r, true, result);
twait(r, rok);
e.trigger(rok, result);
r.cancel(Q);

}
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Figure 4: Relationships between events (boxes) and rendezvousdrou 5

box) for a DNS lookup with timeout template <typename T> event<T> add_timeout(event<bool, T> e) {

10 event<T> e_base;
11 __add_timeout (e_base, e);

and are known when the event is registered; all events oﬁé ) return e_base;

the same rendezvous must have the same event ID type.

Trigger values, on the other hand, are like results: they ar¢ __timer Private to__add_timeout
not known until the event actually triggers. Examples in-
clude characters read from a file descriptor, RPC replies,

and so forth. Event IDs and trigger values are related, ofsthostey = ARfgse igger  wake
course; when await statement returns event ID the — [®-°2%¢ | pawe\ " J e : I—’cauer

programmer knows that eventhas triggered, and there- = sotresult [ slotsok, a
fore its associated trigger values have been set. In cantras o e-trigger(rok, result) .-
several other systems return trigger values as part of an
event object; thewait equivalent returns the object, and Figure5: Code and object relationships for a composable timeout event
extracting its values requires a dynamic cast. The Tame dgdaPter and s use in a DNS lookup.
sign avoids error-prone casts while still letting a single+
dezvous handle events with entirely different trigger ealu
types.

To demonstrate Tame’s composability, we’ll add time-
outs to the following event-based DNS lookup:

Tame can do better. Its programmers can write an adapter
that can add a cancellation timeout amy event. The
adapter relies on C++'s template support and on Tame’s
first-class events, and resembles adapters from higher-
level thread packages such as CML. Many other event li-
tvars { ipaddr a; } braries could not express this kind of composable abstrac-
twait { gethost_ev(name, mkevent(a)); } tion, which was a main motivator for Tame’s design. The

adapter simplifies the lookup code to:
We want to cancel a lookup and report an error if a name

fails to resolve in ten seconds. The basic implementatiortvars { ipaddr a; bool ok; }

strategy is to wait ortwo events, the lookup and a ten- it { gethost-ev(nane, add_timeout(mkevent(ok, a))); }
. ) ’ . if (lok) printf("Timeout");

second timer, and check which event happens first. P

tvars { ipaddr a: rendezvous<bool> T3 bool ok; } The caller generates an event witho trigger slots, one

timer(10, mkevent(r, false)): fqr the base trigger vglue and one for a boolean that in-
gethost_ev(name, mkevent(r, true, a)); dicates success or failure. Either a successful lookup or a
twait(r, ok); timeout will trigger the event. Success will set the boolean

if (lok) printf("Timeout");

trigger value to true, timeout will set it to false. Thus eaft
r.cancel();

waiting for the event, callers can examine the boolean to
The event IDfalse represents timeouts, whilerue rep- check for timeout. This pattern works witlwait{} state-

resents successful lookup. Theait statement seiskto ~ MeNts as well as explicit rendezvous. _
the ID of the event that triggers fifstsook is false if and Unfortunately, thegethost_ev function requires an
only if the lookup timed out. The.cancel() call cleans ©€Vent that takes aingletrigger value, namely the IP ad-

up state associated with the event that did not trigger. Figdress- It will not supply an extra trigger value unless we
ure 4 diagrams the relevant objects. change its signature and implementation, which would

This code is verbose and hard to follow. Supportingmake it specific to our timeout adapter—something we’d

timeouts onevery lookup, or on other types of event, like tg avoid. But Tame's abstractions_ Ie“t ttmn"spar-
would require addingendezvous andtimer calls across €Nty interposéetweergethost_ev and its “caller”. The

the program and abandoning theait{} syntactic sugar. adapter will set the extra trigger value. _
Figure 5 shows the code and a diagram of the object re-

1in other libraries we have examined, such as CML, theit func- lationships. The real work takes place inadd_timeout,

tion would return an opaque, system-chosen ID that the pmgier — \\hich createstwo events: e_base, which is returned
would compare with return values fronkevent. Though this works,

event IDs are far more convenient, particularly when many &vere (and eventually passec_i gEthOSt_—eV)7 an_d an internal
outstanding. event passed to the timer function on line 6. The two




created events associate with the rendezwouscal to  threading packages, though kernel-level threads that sup-

__add_timeout. Thisis the interposition. When the time- port SMPs are also compatible with our approach.

out triggers, or wher_base triggers (due to a successful ~ The key semantic difference between threaded and

DNS lookup),__add_timeout will unblock, set theok  event-based operation is how functions return. In event-

slot appropriately, and then trigger Only this last step based Tame, functions can either return a useful value via

unblocks the caller. The caller observes thlainda have  a return statement or block viawait, but not both.

been set, but is oblivious to_add_timeout’s interces- Threaded functiongan both block and return a value,

sion; itis as ifgethost_ev setok itself. since the caller regains control only when the computation

It would be trivial to add other types of “timeout”, such is done.

as signal receipt, tadd_timeout; its signature would not With thread support, Tame exposes both event and

change, and neither would its callers. Similarly, one-linethread return semantics. In Tame, a threaded function is

changes could globally track how many events time outone that callswait but does not haveiamed return type.

We've added significant additional concurrency semanticdVhen such a function encountemsait (r), it checks for

with only local changes: the definition of composability. queued triggers imr as usual; if none are present, it asks
for a wakeup notification when a trigger arrivesripand

34 Future Work thenyieldsto another thread. During the yield, the thread-

Tamed processes do not currently run on more than on#g package preserves the function’s entire call stack (in-

core or CPU. The production Tame-based applications weluding all of its callers), while running other, more ready

know of consist of multiple concurrent processes coopercomputations. When the trigger arrives, the blocked thread

ating to achieve an application goal. OkCupid.com, for in-awakes at thewait call and can return to its caller.

stance, uses exclusively multicore and SMP machines. Its A trivial example using threads in Tame is a reimple-

Web front-ends run no fewer than fifty site-specific Tame-mentation of thesleep call:

based processes, all of which simultaneously answer Web . i

.. . .1 int mysleep(int d) {

requests. When traffic is high, all CPUs (or cores) are in, twait { timer(d, mkevent()): }

use. Nevertheless, few changes to Tame would be required  return d;

for true simultaneous threading support. Tame already supt 1}

ports event-based locks to product data structures from un- . _ i

wanted interactions (Section 7.5). As a@sync-mp[41], A_s usual, the call taimer registers an eveqt that will be

multiple kernel threads could draw from a shared pool Oftrlggered after al second delay. The function then calls

ready tasks, as restricted by Tame's current atomicity ast#ait on an implicitrendezvous at line 2, yielding its
sumption: at most one thread of control can be active ir}hread. Aiterd seconds have glapsed, th? main thread trig-
any given closure at a time. Locks enforced by the kernel,ge(rjS tgeeve_nt allocatled orr:s!ne 2, waking umysll_eep

or any equivalent technique, could ensure this invariant. 219 advancing control to thesturn statement on line 3.

Tame does not currently interact well with C++ excep- >"cemysleep is threaded (i.e., does not havetamed

tions: an exception raised in a Tamed function might padeturn value), it returns an actual value to its caller.
Blocking the current thread uses Tame’s existimgit

caught by the event loop. tax. but start thread N N
Some of Tame’s limitations are not implementation-jg:czéhzu starting a new thread requires a nefor

dependent but rather consequences of its approach and
mantics. As mentioned in Section 3, changing a function +fork(rendezvous<I> r, I i, threadfunc<V> £, V &);
from a regular C++ function to a tamed function involves

signature changes all the way up the call stack. Some deFhe semantics are:

velopers might object to this limitation, especially those 1. Allocatee = mkevent(r, i).

who export libraries with fixed interfaces. 2. Fork a new thread. In the new thread context:

4 THREADS (a) Call£() and store its return value n
(b) Trigger evente.

Tame can interoperate with threads when a thread pack- (c) Exit the thread.

age is available, suggesting that the Tame abstractio

(wait points,events andrendezvous) apply to both pro- ceives a trigger with event IR. This unifies the usually

grammln_g_models. With thread support, Tame S|mpI|f|esSeparate concepts of event “blocking” and joining on a
the transition between threaded and event-style program-

ming, for instance allowing event-based applications @ us ~ *threadfunc<R> is an event whose trigger method yields a re-
threaded software in the C library (e gethostbyname) U™ value of typeR. Given the functionint £0), we can create a

. . . i K threadfunc<int> from a function pointer tcf. From the functionint
and database client “_bra”es (el(:;.bmysqlcllgnt [23]). g(int a), we can create ahreadfunc<int> by wrappingg with an
We have only experimented with cooperative user-leveinteger argument, as in function currying [15].

"When the functionf completes, therendezvous r re-




thread. Code like the following usefork andtwait{} RA r

syntactic sugar to call a blocking library function from an :
i controlin | .- br oken’s R3' 'R3
event-based context: br oken R1 closure ) Vo
f
tamed gethost_ev(const char *name, evﬁrr:;;om
event<struct hostent *> e) { . .
tvars { struct hostent *h; } (a) After theevent allocation on line 3.

twait { tfork(wrap(gethostbyname, name), h); }
e.trigger(h);
}

r

control in br oken’s RS'//’ \\ R3
This startsgethostbyname (name) in a new thread, then broken closure 2
blocks in the usual event-driven way until that thread exits evmfg‘)m
At that point, the caller is notified via an event trigger of

thestruct hostent result.

(b) After control exitsbroken on line 5.

Figure 6: Memory references for thieroken function. Weak references
5 MEMORY MANAGEMENT are shown as dotted lines, and strong references as saisl Bolid fill
indicates a function exit, and striped fill indicates catat&in.
Tame hides most details of event memory management

fro_m programmers, protecting them at all costs from wild 55 re eagerly, right after it exited, then teent’s even-

writes and catching most memory leaks. For the large mag ) trigger would write its value into the deallocated mem-

jority of Tame code that uses thsvait{} environment, ory where the closure used to be.

correct program syntax guarantees correct leakless mem- 15 me's answer is a careful reference-counting scheme;

ory management. For more advanced programs that USgs ryntime keeps track of events and closures with C++

explicit rendezvous, Tame uses reference counting to en-«gmart pointer” classes. For examplent<> objects are

force key invariants at runtime. The invariants are: actually smart pointers; thevent is stored elsewhere, in a

I1 A function’s closure lives at least until control exiteeth private object only accessible by Tame code. If necessary,
function for the last time. Tame keeps thevent around even after the user frees it.

I2 Some of anevent’s trigger slots may be safe local There can be circular references among these three types
variables, and triggering it assigns values to those variof objects—for example, a closure contains a lasaint,

ables. Thus, a function’s closure must live as least untiivhich names a different closure-local variable as a trigger
events created in the function have triggered. slot. Tame uses two different types of reference counts to

break the circularitystrongreferences, which are conven-
tional reference counts, aweeakreferences, which allow
access to the object only if it hasn't been deallocated.

In outline, Tame keeps the following reference counts:

I3 Events associated with aendezvous r must trigger
exactly once before is deallocated. The programmer
must uphold 13 by correctly managingendezvous
lifetime and triggering eachvent exactly once.

A closure should be deallocated as soon as so doing dddd Entering a tamed function for the first time adds a
not violate 11 or 12. strong reference to the corresponding closure, which is

Of these invariants, I3 depends the most on program cor- removed only when the function exits for the last time.
rectness. Some cases are easy to handle. Tame ignores at- ' IS Preserves [1.
tempts to trigger an event multiple times (or aborts, deR2 Eachevent created inside a closure holds a strong ref-
pending on runtime options), and forgetting to trigger an  erence to that closure, preserving 12. The reference is

event in atwait{} environment will cause a program dropped once thevent is triggered.

hang and is thus easily observable. The difficult case ifh3 A rendezvous and its associatedvents keep weak
volves managing the lifetimes of explicitendezvous. references to each other. The referencesralezvous

Consider the functiobroken: keeps to itevents allow it to cancekvents that did

tamed broken(dnsname nm) { not trigger before theendezvous’s deallocation. Can-

1 . . .

2 tvars { rendezvous<> r; ipaddr res; } celing anevent clears its R2 reference; any future trig-
3 gethost_ev(nm, mkevent(r, res)); ger attempt on thevent will be ignored, preserving
‘5‘ ) // Whoops: forgot to twait(r)! 13. The weak references the other way enableamt

to update itrendezvous upon a trigger.

The event created on line 3 uses the trigger stats, a  Figure 6a shows these references intreken function
safe variable irbroken’s closure. The function then exits following line 3's event allocation. The most important
without waiting forr or examiningres. This is a bug—an problem introduced by this reference counting scheme is
event leakn violation of I3. If Tame deallocatebiroken’s  due to R2: an untriggereskent can cause a closure leak.



Such a leak can be caught by checking the associated resimple pointer arithmetic and associates with the closure
dezvous upon deallocation for untriggered events. A renall rendezvous that fall between the two fence posts.
dezvous’ deallocation is up to the programmer, but there i%
an important and common case in which Tame can inter-
vene. If arendezvous was declared as a local variable in The translation of a tamed function adds to the function
some closure, and that closure has exited for the last timegne new entry and exit point pewait statement. A trans-
then no future code will caltwait on therendezvous, lated twait statement first checks whether a trigger is
even if the closure cannot be deallocated petause of pending on the correspondingndezvous. If so, control
some stray reference. Thus, Tame amends the referenflow continues past thewait function as usual; but if not,
counting protocol as follows: the function records the current wait point, adds a func-
tion pointer for this wait point to theendezvous, and
Yreturns to its caller. Later, a trigger on avent in the
) rendezvous invokes the recorded function pointer, which
sure. Canc_ellng aendezvous car_1ce|s allevents as- forces control to reenter the function and jump directly to
sociated W'th it. Actual deallocanon oceurs only wh_en the recorded wait point. The Tame translation shifted the
lthe Closure is deallocated, which might be some t'mefunction’s parameters and safe local variables to a closure
ater. structure, so the function can access these values even afte
Figure 6b shows how Tame'’s reference counting protofeentry.
col solvesroken’s leak. Control exits the functionimme- ~ The Tame preprocessor adds an extra “closure pointer”
diately, forcingr’'s cancellation by R4. Upon cancellation, parameter to eachamed function. The closure pointer
r checks that all of itevents have triggered. In this case, is null when the function is called normally, causing the
the event allocated on line 3 has not triggered, but Tametranslated function body to allocate and initialize a new
cancels it, clearing its R3, which releases the closure, andlosure. The closure pointer is non-null when the function
in turn, releases. Any eventual trigger of thevent is  is reentered at a later wait point. The names of parameters

.2 Entry and Exit Trandlation

R4 Exiting a tamed function for the last time cancels an
rendezvous directly allocated in that function’s clo-

ignored. and safe local variables are changed to opaque identifiers
to hide them from the function body; instead, local vari-
6 |IMPLEMENTATION DETAILS ables with reference types make these names point into the

closure. This strategy reduces the extent to which Tame
Tame is implemented as a C++ preprocessor (or sourcenyst understand C++ name lookup, since the translation
to-source translator). The difficulty of parsing C++ is well preserves the function implementation’s original names-
known [2]. Tame avoids as much C++ parsing as possipace. Multiple entry points are simulated with a switch
ble at the cost of several semantic warts, which could b&tatement at the beginning of the function; each case in

avoided with fuller compiler integration. the switch jumps to a different label in the function. There
is one label for the initial function entry and one for each
6.1 Closures wait point_

Eachtamed function has one closure with a flat names- _ntérnally, mkevent is a macro that fetches some spe-
pace, restricting C/C++s scoping. Internally, the TameCially na}meq yarlables (suc_h as the current cIc_)sure,_or the
translator writes a new C++ structure for each tamed funcSurrent implicitrendezvous in the case of await envi-

tion, containing its parameters and itsars variables. "onment). Aninput ofikevent (rv, w, tl, t2) gener-
This structure gets an opaque name, discouraging the pr&ies a call of the form:

grammer from accessing it directly.

Programmers are free to use arbitrary C++-stack allo-
cation, as long as no wait points come between the declégor some closure _cls. _mkevent heap-allocates a new
ration and use of stack-allocated variables. When they dogvent object, packing it with references to all of the sup-
the underlying C++ compiler generates a warning due teglied arguments. The resultirgyent object provides one
goto branches in the emitted code (see the next section).method, trigger, which takes trigger value parameters

Maintaining Section 5's R4 requires that each closurewith the types oft1 and t2. All of these operations are
know which rendezvous it directly contains, so it can type-safe through use of C++ templates.
cancel them appropriately. This knowledge is unavailable Putting these pieces together, the translation of:
without fully parsing C++: a closure might contain an ob-
ject of typefoo, that contains an object of typear, that ~ » tmed Auflnt 0 {

. . L R tvars { rendezvous<> r; }
contains arendezvous, which will in turn share fate with 3, qkevent(r)); twait(r); bO; }
the closure. As a first-order heuristic, Tame marks the be-
ginning and the end of the new closure in memory usingooks approximately like:

_mkevent(__cls, rv, w, tl, t2);



void A::f(int __tame_x, A_f_closure *__cls) { 7.1 Web Server

; if (__cls == 0)

Z asggiit;ils‘ezzA——iﬂfigiﬁeg}}iS’ &A::fn, __tame x); The latest version of OKWS [18], a lightweight Web server

5 int & = __cls->x; - for dynamic Web content, uses the Tame system. Its most
g ngi“iii"guszSfe;t;;clljz;g . obvious applications are serial chains of asynchronous
8  case 0: // original entry function calls, such as startup sequences that involve IPC
?0 Caggt‘;—f/‘—;i;g;rzgg; firet tumit across cooperating processes. These chains are common
11 goto __A__f_entry__1; } in OKWS; Tame lets them occupy a single function body,
e ——gzﬁ;\fgﬂ——gis 5 making the code easier to read.

14 if (Ir.has_queved_trigger() { A more specialized Tame application is in OKWS's
e ;—ii;g‘e};{gpzi‘zu;i . templating system, which allows OKWS Web developers
17 return; } o to separate their application logic from the HTML presen-
I Thg et tation layer. In a manner similar to Flash [24], OKWS uses
20 3 blocking helper processes to read templates from the file

) . system; the main server calls the helper processes asyn-
Lines 5-6 set up the function body so that references tpronously. However, since templates can be arbitrarily
x andr refer to closure-resident values. Lines 7-11 direc'[nested, reading one template may require many helper
traffic as it enters and reenters the function afteait  gjis. The previous version of OKWS, written without
points. Lines 12-19 are the translation of the user coderame, sacrificed expressiveness for programmability. Web
Lines 14-17 are the translation of theait (r) call from  jte developers had to request all template files they would
thg original function. Ifnotrjggeyis queued efithe trans-  eyer need when their Web service started up, so that a
lation bumps the entry point (line 15) and tells then- ¢4l to publishing a template in response to a Web request
dezvous to reenter__cls via the methodi: :fn whena  \yoyld not block and force a stack rip. In the new version
trigger arrives (line 16). Once that happefisvill jumpto  of OKWS, publishing a template is an asynchronous op-
entry point 1 (line 18) and cali ). eration, and site developers can therefore publish any file
6.3 Backwards Compatibility in thehtdocs directory, at any time. Tame saves develop-

) . ) ers from the stack ripping problem that previously discour-
Our implementation of Tame borrows its event loop a”daged this feature.

event objects from thibasyncevent library [21]. The key
compatibility feature is to implemergvents aslibasync .
callbacks, allowing legacy functions to interface with 7.2 An Event-Based Web Site
tamed functions, and consequently, legacy projects to inOkCupid.com [16] is a dating Web site that uses OKWS as
crementally switch over to tamed code. its Web server. For several years, its programmers wrote
The Tame prototype implements thread support withcode in thelibasyncidiom to manage concurrency, but
the Gnu PTH library [12]. PTH supplies stubs for block- in early 2006 switched over to Tame to simplify debug-
ing network calls such aselect, read andwrite. Thus  ging and to improve productivity. Currently seven pro-
theselect call in libasyncs select loop transparently be- grammers, none of whom are the authors, depend on Tame
comes a call to PTH’s scheduler. Similarly, blocking net-for maintaining and developing site features. The system
work calls in third party libraries likelibmysglclient is easy enough to use so that the first programming project
drop into the scheduler and later resume when the opnew employees receive is to convert code from the old
eration completes. We also had to mdlmasynccall a  event-based system to Tame syntax.
modified, Tame-awargelect. Thisselect returns early OkCupid.com has found Tame’s parallel dispatch par-
when another thread in the same process triggers an evefigularly useful when programming a Web site. When a
that should wake up the current thread (something thagiser logs into the site, the front-end Web logic requests
never happens in single-threaded Tame). data from multiple databases to reconstruct the user's
preferences and server-resident state. To minimize elient
7 EXPERIENCE WITH TAME perceived latency from disk accesses, these queries can
Like any other expressive synchronization system, Tameéappen in parallel. With juslibasync primitives, paral-
requires some mental readjustment and ramp-up time. lielism was hidden in stack-ripped code and caused bugs.
most cases, developers need only thait{} environ-  Tame’s solution is the parallelism inherent in theait
ment, which is designed to be simple to learn and comenvironment. To calf andg in parallel, then calh once
parable to thread programming. With only this subset ofthey both complete, a Tame programmer simply writes:
Tame, programmers become much more productive rela-
tive to vanilla-event coders, and hopefully as productve a1 twait { f(mkevent()); g(mkevent()); }
thread programmers. 2 twait { h(mkevent()); }
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7.3 An NFS Server under the status quo, programmers can access safe local
Jariables in debuggers by simply examining the members
of a function’s closure and can walk the closure-chain
manually if desired.

A graduate distributed systems class at MIT requires it
students to write a simple Frangipani-inspired [35] file
server that implements the NFS Version 3 protocol [4].
In spring 2006, the students had the option to write their7. 5 | ocksand Synchronization

assignment with the Tame tool. Four out of 22 StUdemﬁDro rammers using events or cooperative threading often
used Tame, most successfully on the source file that im; 9 9 p 9

plements the file system semantics (about two thousanE)alsely convince themselves that they have “synchroniza-

lines long). Consider, for example, tiG®EATE RPC, for on for fr'ee." This 'is not always the case. Global' data
creating a new file on the server. When given this RPC,on one side of a yleld_or block point might look differ-
the server must acquire a lock, lookup a file handle for the-n't On the other side, if another part of the program ma-

target directory, read the contents of the directory, writemrgl:#itegrt&?;:g; 'nrge:;vriinhwgzggf Z?]edf-rr?ginp.rg_'
out new directory contents, then write out the file, and ﬁ_\g/ocati(,)n can result ir?a gield hlidir? conc’urre)rlmu aslsuml i
nally release the lock, all the while checking for various er . . yield, 9 y P

ror conditions. The solutions with legatipasyncinvolve tions deep in the call stack. In practice, a programmer can-

code split up over no fewer than five functions, with anot know automatically know when to protect global data

stack rip at every blocking point. Students who used Tamtaféwgtugzzu[;]' ti\;inggnlli)::i;rag:cgr?hgéan:\szrak?e|(c:jc-mtﬁlér_
accomplished the same semantics with just one function.ust Br/eturn topthe mainpeve,nt 0o (al?/owin oi/her ’com-y
Quantitatively, the students who used Tame wrote 2094 P 9

less code in their source files, and 50% less code in theiPUt"?ltlonS to run) on either side ofavait statement or
environment.

header files. Qualitatively, the students had positive com- When Tame proarams require atomicity quarantees on
ments about the Tame system and semantics, and strong(IE)( prog q Y9

preferred writing in the Tame idiom to writinfibasync ther side of atwait (or y!eld in the case of threads),
code directly. they can use a simple lock implementation based on Tame

primitives. A basic lock class exposes the methods:
74 Debugglng tamed lock::acquire(event<> done);
Tame's preprocessor implements source-code line trans- void lock::release();

lation, so debuggers and compilers point the programme, ) .
to the line of code in the original Tame input file. The The acquire method checks the lock to see f its cur-

programmer need only examine or debug autogenerater(?ntly agquwed; i S0, I queues the givewent, and if
code when Tame itself has a bug. Programmers can disrl.Ot’ It tr_|ggersdone immediately. Therelease method
able line-translation and view human-readable output fro cither trlgggrs the. head of thavent queue, or marks the
the Tame preprocessor. Relative to a tamed function in th opk as ava'llablle if n@vents were gugued. An example
input file, a tamed function in the output file differs only Critical section in Tame now looks like:

in its Tame-generated preamble,@atait points, and at 1 tamed global_data_accessor() {

return statements. The rest of the code is passed through twait { global lock->acquire(mkevent()); }
untouched. 3 ... touch global state, possibly blocking ...

Tame also has debugging advantages over Iegac;l/ }
libasync with unmodified debugging tools. With legacy
libasync a developer must set a breakpoint at every stackVe have also built shared read locks with Tame, in which
rip point. With Tame, a logical operation once again fits in- a writer's release of a lock can cause all queued readers to
side a single function body. As a result, a programmer setsinblock.

a break point at the suspect function, and can trace exeCL§ PERFORMANCE M EASUREMENTS
tion until a blocking point (i.e.twait). After the blocking

point, control returns to the same breakpoint at the top ofThe Tame implementation introduces potential perfor-
the same function, and then jumps to the code directly aftemance costs relative to threaded code and traditional event
thetwait statement. driven software. Unlike cooperative-threaded code, and

Future work calls for a Tame debugger and profiler. Inmore so than traditional event libraries (eldpasyng,
both cases, the runtime nesting of closures is Tame’s andlame makes heavy use of heap-allocated data struc-
logue of the call stack in a threaded program. Slight debugtures, such as closures and one-time events. Tame also
ger modifications could allow walking this graph to pro- uses synchronization primitives (namekndezvous and
duce a “stacktrace”-like feature, and similarly, measyirin events) that are potentially costlier than the lower level
closure lifetime can yield gprof-style output for under-  primitives in threading packages tbasync We investi-
standing which parts of a program induce latency. Evergate the end-to-end cost of Tame relative to a comparable

global_lock->release();
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Capriccio  Tame Operation Min  Median Mean

Throughput (connections/sec) 28,318 28,457 Simple function call 63 63 66

Number of threads 350 1 Simple function call 182 196 196

Physical memory (kB) 6,560 2,156 with int allocation

Virtual memory (kB) 49,517 10,740 Tame call fullfn()) 399 455 463
wrap() 217 224 231

Figure 7: Measurements of Knot at maximum throughput. Throughput

is averaged over the whole one-minute run. Memory readingsaéen

after the warm-up period, as reported . Figure 8: Cost of system calls anlibasyncand Tame primitive opera-
tions, measured in cycles.

high-performance system, and conclude that Tame incurs
no performance penalties and makes better use of MEMONYect loop is expensive relative to other Tame primitives.

gettimeofday ) 2618 2660 2781

Optimizing Capriccio Knot's performance required
manual tuning. The size of the thread pool must be suf-
A logical point of comparison for the Tame system is theficiently large (about 350 threads) before Capriccio Knot
Capriccio thread package [38]. Like Tame, it provides au-can achieve maximal throughput. Threads’ stack sizes
tomatic memory management and cooperative task manmust also be set correctly—stacks that are too small
agement; it is also engineered for high performance. Theisk overflow, while stacks that are too big waste virtual
Capriccio work focuses its measurements on the simplenemory—but the default 128 kB per stack sufficed for
“Knot” web server. We compared the performance of thethese experiments. Capriccio can automate these parame-
original Capriccio Knot server with a lightly modified, ter settings, but the Knot server in the Capriccio release
tamed version of Knot. In selecting a workload, we fac-does not use automatic stack sizing, and manual thread
tored out the subtleties of disk I/O and scheduling thatsettings were more stable in our tests. Further work could
other work has addressed in detail [25] and focused omring Capriccio’s memory usage more in line with Tame’s,
memory and CPU use. We ran a SpecWeb-like benchmarkut we note that Tame achieves its memory usage automat-
but used only the smallest files in the dataset, making th&ally without changes to the base compiler.
workload entirely cacheable and avoiding link saturation. ~ Memory allocation in Tame Knot happens mainly on the

For all experiments, the server was a 2-CPU 2.33 GHzeap, in the form of event and closure allocations. In our
Xeon 5140 with 4GB memory, running Ubuntu Linux with test cases, we noted 12 closure allocations and 12.6 event
kernel 2.6.17-10, code compiled with GCC version 4.1.2 allocations per connection served. We experimented with
optimization level-02. Because Capriccio does not com- “recycling” events of common types (such egent<>s)
pile with more recent compilers, it was compiled GCC ver-rather than allocating and freeing them each time. Such
sion 3.3.5. Glibc and NPTL were both version 2.4. Thoughoptimizations had little impact on performance, suggestin
the machine has four cores, only one was needed in ourinux’s malloc automatically optimizes Tame’s memory
experiments (neither Tame nor the other systems testeslccess pattern.
use multiple CPUs). Tame supports Linugisol1, but its
event loop was configured to uselect in our bench-
marks. Capriccio uses the similapll call in its loop. We performed microbenchmarks to get a better sense for
We used an array of six clients connected through a gigahow Tame was spending its cycles in the web benchmark,
bit switch, each making 200 simultaneous requests to thand to provide baseline statistics for other applicatiéns.
server. The servers were given a thirty-second “warm-up’first cost of Tame relative to thread programming is closure
time in which they pulled all of the necessary files from allocation. We measured closure costs with the most basic
disk into cache, and then ran for a one-minute test. Théamed function that uses a closure:
results are shown in Figure 7.

The high level outcome is that under this Workload,;
the Capriccio and Tame versions of Knot achieve the
same throughput, but Tame Knot uses one-third the phys-or comparison, we also measure a trivial function, a
ical memory, and one-fifth the virtual memory. We note function that performs a small heap allocatiihasyncs
that neither Knot server in this scenario ever blocks: bothclosure-approximating function (i.ewrap), and a trivial
servers use 100% of available CPU, even when idle. Asystem call §ettimeofday). In each case, an experiment
version of the Tame server that blocks when there is naonsisted of executing the primitive 10,000 times, brack-
work to be done achieves a surprising 4,000 fewer coneted by cycle counter checks. We ran each experiment 10
nections per second on our benchmark machine. Anotheimes and report averaged results over the 10 experiments,
important optimization was to avoid dropping into the se-and the median results over all 100,000 calls. In all cases,
lect loop when outstanding connection attempts could behe standard deviation over the 10 experiments was within
accepted [3]. Microbenchmarks in Section 8.2 show the 5% of the mean. Figure 8 summarizes our results: entering

8.1 End-to-End Performance

8.2 Microbenchmarks

static tamed nullfn()
{ tvars { int i(0); } i++; }
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a tamed function is about 2.2 times the cost of a simple ~ Function Cycles InCore Outside

; ; ; ; benchfn without Tame 5,251 4,906 344
func'upn Wlth. heap allocation, and 1.8 times the cost of a benchn with twait{} 5331 4,840 491
wrap invocation. with PTH core loop 6,010 5476 534
A second functionbenchfn, measures Tame overhead benchfn with twait(r); 5,642 4,887 755
when managing control flow: with PTH core loop 6,565 5,678 887
benchfn_thr in PTH 37,540 - -
1 static tamed benchfn (int niter, event<> done) { n NPTI,‘ ) 28,803 B -
2 tvars { int i: } in Capriccio 7,892 - -
3 for (i = 0; i < niter; i++) benchfn_tame_thr 64,957 - -
4 twait { timer(®, mkevent()); } Figure 9: Results from running thBenchfn code in 1,000 experiments,
5 done.trigger(); with niter=100. Costs shown are the average cycles per iteration, aver-
6 } aged over all experiments. These costs are broken down intescgpent

in the core event loop, and time spent outside.
Line 4 of benchfn is performing Tame’s version of a
thread fork and join. A call tankevent and latertwait , ) ,
. . . . 2 void benchfn_tame_thr(int niter) {
is required to launch a potentially blocking network op- 5 for (int i = 0; i < niter; i++)
eration, and to harvest its result. Unlikelibasyncver- 4 twait { tfork(wrap(noop_tame)); }
sion ofbenchfn, the tamed version must manage closures; 1}
an implicit rendezvous, and jumping into and out of the

function once per iteration. We compare three versions of : P, .
- . - . . A thread allocation and join is five to seven times as ex-
benchfn: with an implicit rendezvous, with an explicit

rendezvous. and with oniviibasvncfeatures pensive as an event allocation and join in Tame when us-
We ran ali versions Witylmitely—m@ and r.e eated the ing standard Linux libraries like PTH and NPTL. Tame’s
experiment one thousand times_Thé resultspare resent tgread wrappers added additional overhead relative to na-
EXPE ; ' o P N%Ve PTH since they require locks and condition variables.
In Figure 9. All experiments spend a majority of .cyclleg n Capriccio is much faster and competitive with Tame. Tra-
the core seIept loop. Thbenc}lfn that USes an implicit ditionally, threaded programs allocate threads not quite
rendezvous is only slightly more expensive, perform- as cavalierly asbenchfn_thr; they might use thread-
. . . 0 . . y _ — H
:gge\llvil:rrlm:eién?;ttigﬁ gaEZ?;EizZZZ Ctﬁgei'm-ra}g:jelzo‘_’v pooling techniques to accomplish more than one operation
pem P ; P per thread. However, examples like those in Sections 3.2
vous, reducing memory allocations and virtual method and 3.3 and those in real-world Web site programming
calls along the critical path. Hence, thenchn version (Section 7.2) benefit greatly from repeated thread creation

that uses an explicitendezvous runs about 6% slower . L0 .
. . : - and destruction. Tame primitives are certainly fast enough
still. We also experimented with replacitigpasyncs na- to support this

tive scheduler with that of the PTH thread library, as is o ) )

required when running Tame with thread support. In sum, Tgme’s pnmmve operations are .margmally
Based on these benchmarks, we can estimate how TanfBOre expensive thalibasyncs and roughly equivalent to

Knot's CPU time is spent. Tame Knot uses 81,877 cycledh0se of a good thread package. The observed costs are

for each request. Assuming the microbenchmark result§heap relative to real workloads in network applications.

hold, and given Tame Knot'’s use of 12.6 events and 12 clo-

sure allocations per request, roughly 7.6% of these cycles

are spent on event management and 6.8% on closure maB- SUMMARY

agement, with the remainder going towards system calls

and application-level processing. Tame confers much of the readability advantage of threads
Figure 9 also gives similar benchmarks for a version ofWwhile preserving the flexibility of events, and modern

benchfn written in pure thread abstractions, thread packages have good performance: the @tich

performance/readability distinction between events and

1 static void noop() { pthread_exit(NULL); } threads no longer holds. Programmers should choose the

2 void benchfn_thr(int niter) { abstraction that best meets their needs. We argue that event

3 for (int i = 0; i < niter; i++) { . . R ¥

1 pthread_t t: programming with Tame is a good fit for networked and

5 pthread_create(&t, NULL, noop, NULL); distributed systems. The Tame system has found adoption

6 pthread_join(t, NULL); in real event-based systems, and the results are encourag-

; } ¥ ing: fewer lines of code, simplified memory management,

and simplified code maintenance. Our hope is that Tame
can solve the software maintenance problems that plague
current event-based systems, while making events palat-
1 static void noop_tame() {} able to a wider audience of developers.

and a version using Tame'’s thread wrappers:
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