
Software-Based Memory Protection In Sensor Nodes

Ram Kumar, Eddie Kohler and Mani Srivastava, UCLA
{ram, mbs}@ee.ucla.edu, kohler@cs.ucla.edu

ABSTRACT

Typical sensor nodes are resource constrained micro-
controllers containing user level applications, operating
system components, and device drivers in a single ad-
dress space, with no form of memory protection. A pro-
gramming error in an application can easily corrupt the
state of the operating system and other software compo-
nents on the node. In this paper, we propose a memory
protection scheme that prevents the corruption of operat-
ing system state by buggy applications. We use sandbox-
ing to restrict application memory accesses within the
address space. Severe resource constraints on the sen-
sor node present interesting challenges in designing a
sandbox for user applications. We have implemented and
tested our scheme on the SOS operating system. Our ex-
periments were able to detect a memory corruption bug
in an application module that had been in use for several
months.

1 INTRODUCTION

Sensor networks are permeating many industrial, com-
mercial, and medical applications. For example, Code-
blue [1] is a prototype medical sensor network platform
that is used for expediting the triage process during dis-
aster response. A network of 4000 sensors deployed by
Intel [2] in a semiconductor fabrication plant performs
predictive maintenance of machinery in service. The
Zigbee consortium [3] is seeking to equip lighting and
HVAC controllers with wireless radios to enable intel-
ligent building automation and security services. These
current and upcoming sensor network deployments re-
quire a high availability infrastructure with the ability to
support multiple users. Unexpected failures could cause
anything from financial losses to life-critical damages.
However, current software technology is grossly inade-
quate for such long term deployments. Bugs in any part
of the software can easily bring down the entire network.
In particular, corruption of memory due to the lack of
protection from buggy applications can crash or freeze
the node, or corrupt sensed data.We argue that memory
protection is a vital enabling technology for creating re-
liable and long-lasting sensor network software systems.

Most sensor nodes have a very simple architecture,
and lack features, such as memory management units
(MMU) and privileged-mode execution, used in desk-
top/server class systems to isolate or protect the data and
code of one program from another. The micro-controllers
used in sensor nodes typically have separate memories

for program and data storage. The entire data memory of
the sensor node is accessible to all the programs running
on the node via a single address space.

However, sensor software is quite complex. This
complexity arises mainly from the need to support
diverse sensors, multiple distributed middleware ser-
vices, dynamic code updates, and concurrent applica-
tions.Implementing the software components presents
a tough challenge. Programmers have to deal with se-
vere resource constraints and concurrency issues. Fur-
thermore, there is very limited debugging support on the
sensor node hardware. Therefore, programming errors
are quite common. The impact of these errors can be se-
vere.

Virtual machines for sensor nodes, such as ASVM [4],
ensure that programming errors in high-level scripts
cause no harm. However, individual script instructions
are executed as native code which could be buggy.

In this paper, we present and evaluate a technique for
providing software-based memory protection in resource
constrained embedded sensor nodes. Our approach par-
titions the software components installed on a sensor
node into kernel and user modules. The primary goal
of our scheme is to protect the memory of the kernel
modules from being corrupted by the user modules. We
achieve memory protection by re-writing the source code
of user modules to enforce restrictions on memory ac-
cesses. This class of technique was first proposed by
Wahbe et. all [5] and is known as “software-based fault
isolation” (SFI) or “sandboxing”.

We investigate the challenges in implementing SFI on
resource constrained embedded sensor nodes. The lim-
ited address space on the motes precludes the partition-
ing of the address space into contiguous kernel and user
domains. Scarce memory resources require the scheme
to have a very small memory footprint. Limited compu-
tational capabilities also require a reasonably small CPU
overhead. In our approach, we maintain a fine-grained
memory map of the address space containing the access
permissions of the memory regions. A run-time checker
intercepts all write operations made by a user module and
restricts accesses based upon the permissions encoded in
the memory map.

We have implemented and evaluated the software-
based memory protection mechanism on the SOS operat-
ing system [6] although our work is also applicable other
OSes. The implementation on an embedded platform is
non-trivial. However, the benefits became immediately



apparent when our scheme was able to detect memory
corruption in a data collection (Surge) application mod-
ule that had been in use for several months. In the Surge
module, under certain conditions, the invalid result of a
failed function call was being used to determine an offset
into a buffer. Subsequently, data was written to an incor-
rect memory location, causing some nodes to crash. Our
scheme was successfully able to prevent the corruption
and signal the invalid access.

In the rest of the paper, we will describe the design of
the memory protection scheme in detail. Section 2 pro-
vides a brief background on the SOS operating system.
The protection architecture is described in Section 3. The
overhead of our scheme is evaluated in Section 4. We dis-
cuss related work in Section 5 and conclude in Section 6.

2 BACKGROUND: SOS
Unique resource tradeoffs in sensor nodes, the dis-
tributed and collaborative nature of applications and,
remote unattended operation of sensor networks moti-
vated a new class of operating systems and run-times.
TinyOS [7], the most popular operating system for sen-
sor networks, uses reusable software components [8] to
implement common services, but each node runs a stat-
ically linked system image. ASVM [4], an application
specific virtual machine on top of TinyOS, provides lim-
ited flexibility to re-task a deployed network using high-
level scripts; script instructions are implemented by ma-
chine code. SOS [6] has a more traditional architecture,
including a kernel installed on all nodes. The rest of
the system and application level functionality is imple-
mented by a set of dynamically loadable binary modules.
Our memory protection mechanism is implemented for
SOS specifically, although it could be applied to other
run-times as well (Section 6). This brief background is
useful to fully understand the design and implementation
of our scheme.

The SOS kernel is well tested and assumed to be free
of programming errors. Modules are position indepen-
dent binaries that implement a specific task or function.
Modules operate on their own state, which is dynam-
ically allocated at run-time. An application in SOS is
composed of one or more modules, such as routing pro-
tocols, sensor drivers and applications, interacting via
asynchronous messages or function calls.

The SOS kernel supports dynamic memory allocation.
Dynamic memory is used to store module state and mes-
sages.Memory is allocated using a block-based first-fit
scheme to minimize the overhead of the allocation pro-
cess. The dynamic memory region is shared by the SOS
kernel and the modules. The SOS kernel tracks owner-
ship of each block of memory. Ownership can also be
transferred, enabling easy movement of buffers through
the system.

3 PROTECTION ARCHITECTURE

3.1 User Fault Domain
We focus on memory corruption faults caused by pro-
gramming errors in the user modules. A wild write made
by a user module can easily corrupt operating system
state and trigger a severe failure condition. Our fault
model for memory protection is to prevent corruption of
kernel state caused by illegal write operations made by a
user module. We create and enforce a user fault domain
within the data memory address space of the sensor node.
The user fault domain refers to a fragmented but logically
distinct portion of the overall data memory address space
(Figure 1). The state belonging to the user modules re-
sides entirely within the fault domain. No assumption is
made about the layout of the state belonging to the indi-
vidual applications within the fault domain. The kernel
state resides entirely outside the user fault domain. Mod-
ules are restricted from writing to the memory outside
the user fault domain through run-time checks.

Figure 1—Kernel and User Protection Domains

The protection model based on a user fault domain
does not address all possible memory corruption faults
in the system; user modules can still corrupt each other’s
memory.This form of corruption, though undesirable, is
less serious than kernel corruption.A stable kernel can
always ensure a clean re-start of user modules when cor-
ruption is detected. On the other hand, a corrupted kernel
has unpredictable behavior, leaving complete system re-
boot through a watchdog or grenade timer as the only
possible means of recovery [9].

Creating and enforcing a user fault domain is a chal-
lenging task on embedded platforms. The total available
address space is only 4 KB. Limited memory prohibits
prevents contiguous partitioning of the address space into
kernel and user domains, since this would severely limit
memory available to applications. We designed the user
fault domain with three requirements: low CPU over-
head, small memory footprint, and no design constraints
for user applications. A memory map data structure sat-
isfies these requirements.

3.2 Memory Map Manager
A memory map specifies the permissions value for ev-
ery block of the address space, where a block is a small,
contiguous, chunk of memory. The main operation of the



memory map is to to find the access permissions for a
given address. Its design goal is to balance the lookup
efficiency with the extra storage required for the table.
The memory map specifies two pieces of information.
First, it contains the ownership (user or kernel) for every
block of memory. Second, it encodes information about
the memory layout such as the start of a segment.The ac-
tual encoded information and its meaning is specified in
Table 1.

Code Meaning
00 Free or Start of Kernel Allocated Segment
01 Later portion of Kernel Allocated Segment
10 Start of User Allocated Segment
11 Later portion of User Allocated Segment

Table 1—Encoded information in the memory map table

The mapping from address to memory map ownership
information is shown in Figure 2. Assuming a block size
of 8 bytes1, the last three bits of the address are the off-
set into a given block. The remaining bits represent the
block number in the data memory. Block permissions
are packed into a byte; each byte contains information
for four contiguous memory blocks. Therefore, the last
two bits of the block number represent the bit offset of
the permission, and the remaining bits represent the in-
dex into the memory map table. This particular design of
the memory map table was chosen to minimize memory
footprint.

Figure 2—How an address indexes the memory map

The memory map manager tracks permission infor-
mation for every block in the address space.The mem-
ory map is initialized such that all the statically allo-
cated kernel memory blocks (containing kernel globals)
are marked as owned by the kernel, since user modules
never read or write to them. The remaining portion of
the address space is partitioned into a heap and a stack.
The heap is divided into blocks; the dynamic memory
allocation API allocates segments , or contiguous block
ranges, from the heap. The smallest allocated segment
can be a single block. The memory map for the heap is
initially marked as “Free”. The stack frames are not guar-
anteed to lie on block boundaries and therefore there is
no memory map for the stack. The memory map itself

1Our implementation on AVR uses a block size of 8 bytes

is protected from wild writes as it is a part of the kernel
state.

The memory map manager works closely with the
dynamic memory manager in the SOS operating sys-
tem. Any request for dynamic memory is passed to the
kernel’s memory map manager which, sets the correct
permissions for the set of allocated blocks. During the
free operation, the memory map manager automatically
clears the permissions. The dynamic memory manager in
SOS permits ownership to change for dynamically allo-
cated memory blocks. The memory map manager tracks
any changes to the permissions that are caused due to the
ownership transfer of a set of memory blocks.

3.3 Run-time Checker
A run-time checker restricts the memory access of user
modules to permissible regions based on the memory
map. The policy used for access control can vary; our
current policy prevents user modules from writing to
memory regions that are owned by the kernel. The mod-
ules are instrumented to introduce checks before every
write operation that needs protection. The pseudo-code
for performing the write access checks in shown in Fig-
ure 3.

WRITE_ACCESS_CHECK(addr_t addr){
if (addr < STACK_PTR){

// Retrieve permissions byte
uint16_t mmap_index = (addr >> 5);
uint8_t perms = MEM_MAP_PERMS_TBL[mmap_index];

// Generate bit mask
uint8_t mmap_offset = (addr & 0x1f);
// uint8_t perms_bm = (BLOCK_TYPE_BM << ((mmap_offset >> 3) << 1));
uint8_t perms_bm = MEM_MAP_BM_LUT[mmap_offset];

// Check validity
if !(perms & perms_bm) mem_access_violation();
}

}

Figure 3—Pseudo-code for run-time checker

The write access checker performs three operations.
First, it retrieves the ownership permissions byte for a
given address from the memory map table. Second, it
generates a bit mask from the address offset to derive the
actual permission. Third, it checks the permission and
signals a memory access violation for invalid operations.
The generation of the bit mask requires bit shift opera-
tions. These operations took 32 clock cycles on the At-
mega128L, which have no instruction level support for
arbitrary bit shifts. Therefore, a lookup table is used; this
is stored in flash memory to minimize data memory uti-
lization. The organization of the lookup table and its op-
eration is described in Figure 4. The lookup table takes
only 8 clock cycles. Write accesses to the stack are not
subject to any checks. Stack range is determined by read-
ing the stack pointer register.

During module unloading, the kernel uses ownership
information to free all the memory owned by that mod-
ule. The ownership information and the size of the seg-



Figure 4—Lookup table optimization to simulate bit-shift operations

ment are stored as meta-data within the first memory
block of a segment, as shown in Figure 5. This organi-
zation enables the kernel to efficiently map a memory lo-
cation to its owner. However, the user modules can over-
write the meta-data as it lies within the block boundary.
Therefore, the run-time checker is modified such that the
meta-data in the first block of any segment is protected
from writes. Note that the memory map table maintains
information about the starting block of any segment. The
additional checks are also implemented using a look-up
table for improved efficiency.

typedef struct _Block
{

uint16_t segmentSize; // Blocks in current segment
uint8_t owner; // Identity of the segment owner
union
{
uint8_t userPart[BLOCK_SIZE - sizeof(uint16_t)];
struct
{

struct _Block *prev; // Doubly linked free-list
struct _Block *next; // Doubly linked free-list

};
} ;

} Block;

Figure 5—Block implementation in SOS kernel

All the checks are currently introduced by modify-
ing the source code of the user modules. The CIL (C
Intermediate Language) [10] framework catches all the
writes made by the user module and inserts the appro-
priate write access check. In future, a binary rewrite tool
will analyze the code to introduce fewer checks. The bi-
nary rewrites would be performed at load time of mod-
ules into the sensor network.

4 EVALUATION

The main objective of our evaluation was to determine
the overhead introduced by the protection mechanism.
The experiment setup was a network of 5 Mica2 motes,
arranged in a linear topology to form a two hop net-
work to the basestation. All the nodes were installed
with an image of the SOS kernel with the protection fea-
tures enabled. A data collection application comprising
two modules was installed on all the nodes in the net-
work. First, a tree building and maintenance module [11]
was distributed to all the entire network. Next, the Surge
module was installed that periodically samples light sen-
sor data and sends it to the basestation via the collection
tree. We first present micro-benchmarks that measure the
CPU overhead introduced by the protection mechanism.

The computation overhead of the micro-benchmarks was
measured using Avrora [12], a cycle accurate node and
network simulator for the Mica family of sensor nodes.
The measurements were averaged over multiple itera-
tions spanning different nodes in the network.

Function Name Normal Protected
ker malloc 343 661
ker free 138 467
ker change own 55 285

Table 2—Overhead (CPU cycles) of memory allocation routines

Table 2 compares the overhead of memory allocation
routines in the presence and absence of the protection
mechanism. The overhead is mainly due to the setting
of the appropriate permissions fields in the memory map
table. Furthermore, all the calls were enhanced with ex-
tra checks. For example, ker change own does not
permit a user module to take ownership of a memory
block owned by the kernel. The run-time memory access
checking routine has an overhead of 66 clock cycles. The
increased code and data memory due to the protection
mechanism are shown in Table 3. The difference in data
memory is due to the memory map table, which occupies
86 bytes of RAM.

Memory Section Normal Protected
FLASH 38470 B 39526 B
RAM 2827 B 2741 B

Table 3—Code and Memory Size Overhead for Mica2 platform

The impact of these overheads on the complete ap-
plication was measured by profiling the active time of
the CPU in the Avrora simulator. A total of 40 mem-
ory write operations were instrumented in the two mod-
ules. The CPU active time was observed to be 6.48% and
6.64% over a duration of 30 minutes for the normal and
protected mode operation respectively. The absolute dif-
ference in the CPU utilization is only 0.16% when the
check operation was invoked 4410 times. The difference
in the overheads can be further reduced by using standard
compiler optimizations to invoke fewer checks. The in-
creased overhead is a small price to pay for the improved
reliability provided by the software-based memory pro-
tection.

The protection mechanism was able to detect a pro-
gramming error in the Surge module. Surge module in-
vokes a dynamic function call to the Tree Routing mod-
ule to determine the size of the routing header. Dynamic
function calls are linked at run-time and they fail with
an error code if the function provider is not present.
The error code returned by the function was not be-
ing checked in the Surge module implementation. Nodes
where the Surge module was installed before the Tree
Routing module would use an arbitrary value for the size
of the routing header and thereby corrupt the memory.



The run-time checker detected the occurrence of the ille-
gal write and prevented memory corruption.

5 RELATED WORK

As sensor networks are being envisioned for long-term
deployments, there is an emerging interest to address
reliability as primary design concern [13, 9]. Sympa-
thy, a debugging framework, has focussed on develop-
ing network-level protocols to diagnose/localize prob-
lems [13] At present, high dependability is generally
simulated by node reboot [9]. Our approach aims to pro-
vide memory protection as an enabling technology for
building high availability sensor networks. In this aspect,
our work relates primarily to efforts that isolate indepen-
dent software components from corrupting each other’s
state, due to program bugs.

Type-safe languages such as JAVA and ML can flag
illegal accesses at compile time. However, their run-
time support incurs high overhead. Therefore, most of
the code on embedded platforms is written in unsafe
languages such as C or assembly. Languages such as
NesC [8] contain minimal extensions to C (such as the
atomic keyword) to remove race conditions, but do not
address memory corruption.

Run-time techniques such as Software Fault Isolation
(SFI) [5] have been suggested for desktop/server sys-
tems. SFI enforces a static partitioning on an applica-
tion’s address space to enable safe sharing of the address
space by multiple cooperative modules. Protecting mod-
ules from each other would be a natural extension of
our work, requiring different space/time tradeoffs. Our
work is also related to numerous OS extensions to ad-
dress isolation among distrusted modules. Nooks [14],
for example, separates modules into lightweight protec-
tion domains by managing separate page-tables for each
module.

Hardware-assisted protection is vastly popular on
standard computing platforms [15]. Mondrian Memory
Protection (MMP) [15] inspects memory accesses at the
instruction level from within the processor pipeline to
provide word-level protection. It uses fairly complex and
expensive hardware extensions to reduce overhead of
monitoring all accesses. Sensor-class nodes, however,
lack such hardware, soliciting simpler, software-based
techniques.

6 CONCLUSION

We have explored the challenges in providing soft-
ware based memory protection through sandboxing in
resource constrained embedded sensor nodes. Though
we have implemented the protection technology in the
SOS operating system, our general approach is appli-
cable to other run-times such as TinyOS and ASVM.
TinyOS applications, particularly those using dynamic

memory [16], might benefit from this infrastructure by
partitioning the components into user and system at com-
pile time. ASVM envisions building new instructions as
needed. Our work could ensure that these new instruc-
tions do not destabilize the system. Therefore, memory
protection is a general enabling technology for long term
sensor network deployments. In future, we plan to eval-
uate our scheme on real world applications to better un-
derstand the trade-offs involved.

REFERENCES
[1] Konrad Lorincz et. al. Sensor networks for emergency response:

Challenges and opportunities. In In IEEE Pervasive Computing,
Special Issue on Pervasive Computing for First Response, Oct-
Dec 2004.

[2] Robert Adler et. al. Design and deployment of industrial sensor
networks: Experiences from the north sea and a semiconductor
plant. In Third ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2-4, 2005.

[3] Zigbee consortioum.
[4] Phil Levis, David Gay, and David Culler. Active sensor networks.

In Proceedings of the second international conference on Net-
worked Systems Design and Implementation (NSDI), 2005.

[5] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient software-based fault isolation. In SOSP ’93:
Proceedings of the fourteenth ACM symposium on Operating sys-
tems principles, pages 203–216, New York, NY, USA, 1993.
ACM Press.

[6] Chih Cheh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani
Srivastava. Sos: A dynamic operating system for sensor net-
works. In Third International Conference on Mobile Systems,
Applications, And Services (Mobisys), 2005.

[7] Phil Levis et. al. T2: A second generation os for embedded sensor
networks. Technical report, University of California, Berkeley,
2005.

[8] David Gay, Philip Levis, Robert von Behren, and Matt Welsh.
The nesc language: A holistic approach to networked embedded
systems. In Proceedings of Programming Language Design and
Implementation, 2003.

[9] Prabal Dutta, Mike Grimmer, Anish Arora, Steve Bibyk, and
David Culler. Design of a wireless sensor network platform for
detecting rare, random, and ephemeral events. In The Fourth In-
ternational Conference on Information Processing in Sensor Net-
works (IPSN), 2005.

[10] George C. Necula, Scott McPeak, Shree Prakash Rahul, and
Westley Weimer. Cil: Intermediate language and tools for anal-
ysis and transformation of c programs. In CC ’02: Proceedings
of the 11th International Conference on Compiler Construction,
2002.

[11] Alec Woo, Terence Tong, and David Culler. Taming the underly-
ing challenges of reliable multihop routing in sensor networks. In
First ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2003.

[12] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable
sensor network simulation with precise timing. In Proceedings of
the Fourth International Conference on Information Processing
in Sensor Networks (ISPN), 2005.

[13] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod,
Eddie Kohler, and Deborah Estrin. Sympathy for the sensor net-
work debugger. In Third ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), November 2-4, 2005.

[14] Michael Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. In ACM Trans-
actions on Computer Systems, volume 23, 2005.

[15] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian
memory protection. In International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2002.

[16] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor net-
work application construction kit (snack). In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded net-
worked sensor systems, pages 69–80, New York, NY, USA, 2004.
ACM Press.


