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ABSTRACT
Many sensor nodes contain resource constrained microcontrollers
where user level applications, operating system components, and
device drivers share a single address space with no form of hard-
ware memory protection. Programming errors in one application
can easily corrupt the state of the operating system or other ap-
plications. In this paper, we propose Harbor, a memory protec-
tion system that prevents many forms of memory corruption. We
use software based fault isolation (“sandboxing”) to restrict appli-
cation memory accesses and control flow to protection domains
within the address space. A flexible and efficient memory map data
structure records ownership and layout information for memory re-
gions; writes are validated using the memory map. Control flow
integrity is preserved by maintaining a safe stack that stores re-
turn addresses in a protected memory region. Run-time checks val-
idate computed control flow instructions. Cross domain calls per-
form low-overhead control transfers between domains. Checks are
introduced by rewriting an application’s compiled binary. The sand-
boxed result is verified on the sensor node before it is admitted for
execution. Harbor’s fault isolation properties depend only on the
correctness of this verifier and the Harbor runtime. We have im-
plemented and tested Harbor on the SOS operating system. Har-
bor detected and prevented memory corruption caused by program-
ming errors in application modules that had been in use for sev-
eral months. Harbor’s overhead, though high, is less than that of
application-specific virtual machines, and reasonable for typical sen-
sor workloads.
Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems
General Terms: Performance, Design, Reliability
Keywords: Software Fault Isolation, Memory Protection

1. INTRODUCTION
Sensor networks have promise for many industrial, commercial,

and medical applications. For example, CodeBlue [13] is a proto-
type medical sensor network platform for expediting triage during
disaster response. A network of 4000 sensors deployed by Intel in
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a semiconductor fabrication plant performs predictive maintenance
of machinery in service [10]. The Zigbee consortium [24] seeks to
equip lighting and HVAC controllers with wireless radios, enabling
intelligent building automation and security services. These current
and upcoming sensor network deployments require high availabil-
ity infrastructure with the ability to support multiple users. Unex-
pected system failures could cause problems ranging from financial
impacts to loss of life. Current software technology is grossly in-
adequate to run such long term deployments. Bugs in any part of
the software can easily bring down an entire network. In particular,
memory corruption due to buggy applications can crash or freeze
sensor nodes or corrupt sensed data. We argue that memory protec-
tion is a vital enabling technology for creating reliable and long-
lasting sensor network software systems.

Sensor software is quite complex, supporting many sensor types,
multiple distributed middleware services, dynamic code updates,
and concurrent applications. Programmers must deal with severe
resource constraints and concurrency issues on hardware with very
limited debugging support. Therefore, programming errors are quite
common and can impact the network.

Mote-class sensor nodes have a very simple architecture. All pri-
mary memory is accessible to all programs running on a node via a
single address space. Common mote-class architectures do not have
features such as memory management units (MMUs) and privileged-
mode execution used in desktop/server class systems to isolate pro-
gram data and code. Embedded microcontroller designers face ex-
treme pressure to minimize chip cost and area. Sometimes even 32-
bit ARM processor cores omit an MMU to minimize system cost
and power [1]. We expect MMU designs will continue to be absent
from low-cost low-power microcontrollers. If sensor node applica-
tions are to be made robust, it must happen through software.

Software-based approaches for memory protection have emerged
to compensate for the architectural limitations of embedded micro-
controllers. Domain specific interpreters such as Maté [11] pro-
vide a safe environment to execute high-level application scripts.
Type-safe languages such as Virgil [20] provide fine-grained pro-
tection of individual memory objects. However, these approaches
have their limitations. For example, Maté instructions are imple-
mented in non type-safe language and could be buggy. Type-safe
languages require unsafe extensions to interface to the low-level
hardware, though these extensions could be used sparingly. An ideal
system for memory protection might combine two or more software-
based approaches.

In this paper, we present Harbor, a system for providing software-
based coarse-grained memory protection in resource-constrained
embedded sensor nodes. Harbor can be used as a building block
with other approaches to create more effective protection mecha-
nisms. For instance, Harbor can be used to implement memory safe
Maté instructions. Harbor partitions a sensor node’s memory into
multiple domains. Memory belonging to one domain is protected



from corruption by code running in other domains. We achieve
memory protection by rewriting machine instructions to enforce re-
strictions on memory accesses. This technique, first proposed by
Wahbe et al. [22], is known as software-based fault isolation, SFI,
or “sandboxing”.

We investigate the challenges in implementing SFI on resource-
constrained embedded sensor nodes. Motes’ limited address space
precludes static address space partitioning: there is not enough mem-
ory available to assign each software module a single contiguous
range of addresses. Scarce memory resources require Harbor to
have a very small memory footprint. Limited computational capa-
bilities also encouraged us to limit Harbor’s CPU overhead. The
contribution of our work has been to design techniques that make
sandboxing feasible on embedded sensor nodes. First, a memory
map data structure efficiently maintains fine-grained ownership and
layout information for the entire address space. The memory map
can be tuned to match available resources and protection require-
ments of a system. Second, a safe stack in protected memory pre-
serves control flow integrity within a domain by storing function
return addresses. The conventional run-time stack, which stores lo-
cal data, function parameters, and so forth and is is shared by all
the domains, is protected from corruption via stack bounds. The al-
ternative of maintaining a separate stack per domain is not possible
due to address space limitations. Third, cross domain calls imple-
ment low-overhead context switches between domains. The over-
head of copying call arguments is eliminated as the domains share
a common run-time stack. Cross domain calls and returns track the
system’s currently active domain. Fourth, run-time checks ensure
that control flow in and out of a domain occur as expected even on
computed transfers, and similarly that memory is accessed only as
expected. To minimize the module code size, the run-time checks
are not inlined. Modules invoke the run-time checks by calling or
jumping into the appropriate routines located in the trusted domain,
and all potentially unsafe operations are replaced by calls to cor-
responding checks. Calls to the checks are introduced by a binary
rewriter and verified independently by a verifier running on every
sensor node. Harbor’s correctness depends only upon the correct-
ness of the verifier and the Harbor runtime, and not on the rewriter.
The design of the verifier affects the system’s performance (Sec-
tion 8). So far, we have only evaluated a simple verifier that main-
tains no additional state. Exploring the design space of verifiers and
evaluating their impact on performance is a challenge that remains
to be addressed.

These techniques are easily incorporated into existing systems.
We have implemented and evaluated Harbor’s protection mecha-
nisms on the SOS operating system [8], although the ideas should
apply elsewhere. During experimentation, Harbor detected memory
corruption in a data collection application module that had been in
use for several months. A common programming mistake in SOS is
to forget to check the error code returned by a cross-domain func-
tion call. In the Surge module, under certain conditions, the invalid
result of a failed function call was being used to determine an offset
into a buffer. Subsequently, the data was being written to an incor-
rect memory location which would cause some of the nodes in the
network to crash. Harbor was successfully able to prevent the cor-
ruption and signal the invalid access.

In the rest of the paper, we will describe the design and evalua-
tion of Harbor in detail. After presenting related work and a brief
overview in Section 3, we describe Harbor’s run-time components,
the memory map manager (Section 4) and control flow manager
(Section 5). The binary rewriter and verifier are described in Sec-

tion 6. Section 7 presents evaluation results. The design alternatives
offered by the Harbor mechanism and our current operating point
are discussed in Section 8.

2. RELATED WORK
Several recent systems address reliability as a primary design

concern for long-term sensor network deployments [7, 18, 5]. t-
kernel [7], a runtime for Mica motes, also rewrites binaries to make
them safe for execution. Harbor and t-kernel represent different
points in the design space of software-based protection mechanisms.
t-kernel enforces a strong isolation boundary between the applica-
tion and the kernel. Through a process called naturalization, the
application binary is rewritten on the sensor node to guarantee that
the t-kernel can always safely regain control of the processor, even,
for example, in the presence of application infinite loops that could
otherwise hang the system. The rewritten application binary con-
tains an entire TinyOS operating system image, in contrast to Har-
bor, where a sensor node can protect multiple modules from one
another. t-kernel also implements software-based differentiated vir-
tual memory, which translates the addresses for all memory ac-
cesses made by a program into the heap segment. The overhead of
virtual memory is unpredictable and can be very high in the event
of a swap from external flash. Harbor does not implement virtual
memory, but does enforce isolation at a finer granularity than t-
kernel. In particular, Harbor can protect application modules from
one another. Harbor does not address control flow isolation, except
as required to enforce memory isolation; in particular, it cannot
force a buggy module stuck in an infinite loop to relinquish con-
trol of the CPU. t-kernel requires external flash memory, whereas
Harbor makes use of on-chip flash memory only.

Safe TinyOS [18] uses CCured [16] and static analysis tech-
niques to provide memory safety to TinyOS applications. CCured
performs complex pointer analysis to mark pointers as safe or un-
safe. Much driver code performs arbitrary typecasts that can cause
CCured to fail or conservatively mark pointers as unsafe, which in-
troduces a performance penalty as the CCured run-time performs
bounds checks on unsafe pointers during code execution. CCured
provides memory safety at a much finer granularity than Harbor.
The UTOS framework allows untrusted extensions to safely inter-
face with Safe TinyOS components. UTOS extensions are made
type-safe and memory-safe using CCured and a backend service
that copies buffers when they are exchanged between the extension
and the Safe TinyOS core. Extensions are not allowed to interact
with one another. Harbor allows safe buffer transfers without copy-
ing, and allows extensions to interact, but its current simple runtime
check infrastructure introduces overhead that CCured can some-
times avoid. The UTOS backend service also mediates resource re-
quests and prevents any extension from starving other extensions in
the system. Harbor does not make any guarantees on fair resource
allocation.

Type-safe languages such as Virgil [20] can flag illegal accesses
at compile or run time and provide fine-grained memory protection
of individual objects. However, most software developed for em-
bedded systems is currently written in unsafe languages such as C,
or even assembly. Virtual machines can also provide memory pro-
tection by allowing sensor network users to program in a higher-
level, safe language [11]; we discuss tradeoffs between the virtual
machine and sandboxing approaches in Section 7.

Software fault isolation (SFI) was initially developed for desk-
top and server-class systems [22]. SFI allows multiple modules to
safely share an address space by partitioning that space into con-



tiguous ranges, one (or a small number) per module. This memory
organization, common to SFI and later optimized variants, avoids
the need for Harbor’s memory map data structures. It is reasonable
on hardware that already supports virtual memory, but not on an
embedded sensor node, whose limited address space precludes such
a static partitioning. Nevertheless, the SFI optimizations in PittS-
FIeld [14] and similar systems would apply to Harbor. The two-
stack execution model used by Harbor to ensure module control
flow integrity was motivated by XFI [6], a high-performance variant
of SFI. XFI’s scoped stack holds data accessible only in the static
scope of each function, including return addresses and most local
variables. A separate allocation stack stores data that may be shared
within the functions in a module. Several other efforts in the desk-
top/server space isolate kernel modules such as device drivers either
using hardware support [19] or through type-safe languages [3] or
software fault isolation [9].

3. SYSTEM OVERVIEW
The goal of our work was to provide memory protection for

mote-class sensor nodes running the SOS operating system. This
brief introduction to SOS is useful to fully understand the imple-
mentation of our scheme.

3.1 SOS Operating System
TinyOS [12], the most popular operating system for sensor net-

works, uses reusable software components to implement common
services, but each node runs a statically linked system image. SOS
has a more traditional architecture: a kernel is installed on all nodes,
and application level functionality is implemented by a set of dy-
namically loadable binary modules [8]. The kernel is relatively well
tested; we assume it is free of programming errors. Modules are po-
sition independent binaries that implement a specific task or func-
tion, and are less well tested by comparison. Modules operate on
their own state, which is dynamically allocated at run-time. An ap-
plication in SOS is composed of one or more modules interacting
via asynchronous messages or function calls. Examples of modules
are routing protocols, sensor drivers, application programs, and so
forth.

The SOS kernel supports dynamic memory allocation. Dynamic
memory is used to store module state and to create messages to be
dispatched to other modules. Memory is allocated using a block-
based first-fit scheme to minimize the overhead of the allocation
process. Limited memory forces SOS kernel and user modules to
share a common allocation heap; any static partitioning would be
too conservative. The kernel therefore tracks ownership of mem-
ory blocks. A block’s ownership can also be transferred, allowing
buffers to pass easily through various modules in the system.

3.2 Protection Domains
User modules’ wild writes can easily corrupt operating system

state and trigger severe failure conditions. Harbor aims to prevent
this systemwide corruption by preventing user modules from cor-
rupting memory in different protection domains. These protection
domains are distinct subsets of a sensor node’s overall data mem-
ory address space (Figure 1), created and enforced by Harbor. Each
module resides in exactly one domain; SOS kernel state resides in
its own, separate domain. The kernel can read and write any do-
main, but each module can only write into its own domain. (This
simple design precludes writable shared memory regions, but SOS
did not previously support such regions anyway.) The number of
protection domains is subject to a tradeoff between space efficiency

and fault protection. Harbor’s space overhead is minimized when
there are two domains, one for the kernel and one for all user mod-
ules. This protects kernel state from user wild writes, but allows
any module to corrupt any other module’s state. Alternatively, each
module might store its state in a separate protection domain. No
assumptions are made about layout of state within a domain. Run-
time checks restrict user modules from writing to memory outside
their domains. Checks are added to each memory write, and to
jumps and other control flow transfers. The latter checks prevent
applications from avoiding the former checks.

The domain protection model does not address all possible mem-
ory corruption faults; for example, modules can still corrupt their
own state. This form of corruption, though undesirable, is less se-
rious than corruption across domains, and stable kernel can always
ensure a clean re-start of user modules when corruption is detected.
On other hand, a corrupted kernel has truly unpredictable behav-
ior, leaving complete system reboot through a watchdog or grenade
timer as the only possible means of recovery [5].
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Figure 1: Protection Domains

3.3 System Components
Harbor’s four components are shown in Figure 2. The system’s

input consists of raw user module binaries generated by a cross-
compiler toolchain. The binary rewriter is a desktop application
that statically analyzes these binaries for potentially unsafe opera-
tions and inserts run-time checks to sandbox them. The sandboxed
binary is then distributed to a network of sensor nodes. A verifier
running on each node verifies that incoming binaries are correctly
sandboxed. Verified binaries admitted for execution interact closely
with Harbor’s run-time components, the memory map manager and
control flow manager.

2. Sandboxed Binary

1. Compiled Binary

3. Verified Memory−Safe Binary

Desktop Tool

Sensor Node

Manager
Control Flow

Binary

Binary
Verifier

Memory Map
Manager

Rewriter

Figure 2: System Overview

4. MEMORY MAP MANAGER
Creating and enforcing protection domains is a challenging task

on resource constrained embedded platforms. Initial SFI designs al-
lowed a sandboxed module to access a single contiguous range of



memory [22]. Motes’ limited physical memory and absence of vir-
tual memory precludes this partitioning, however; such a partition
would constrain applications by severely limiting available memory
and lead to internal fragmentation, extremely wasteful on severely
resource constrained platforms. Harbor’s memory map abstraction
was designed with the following requirements: first, it should have
a small and customizable memory footprint; second, it should per-
mit arbitrary layout of state within the data memory; and third, it
should be easy to incorporate into existing operating systems. We
propose a design that satisfies these requirements.

4.1 Data Structure
We assume a sensor node’s address space is partitioned by the

operating system into small, contiguous blocks of equal size, then
allocated to domains in segments consisting of sets of contiguous
blocks. (On AVR, SOS’s block size is 8 bytes.) The allocation of
segments to domains could be static (at compile time) or dynamic
(through malloc). A domain could be allocated multiple segments
that are scattered randomly across entire address space. The Harbor
memory map contains per-block access permissions for the entire
address space. The main operation of the memory map is to store
and retrieve access permissions for a given address. Its design goal
is to balance lookup efficiency and the extra storage required for
the permissions table. The memory map contains ownership infor-
mation (a domain identity) for every block of memory, and encodes
information about memory layout, such as the start of a logical al-
location segment. The memory map must contain sufficient permis-
sion bits per block to encode the total number of domains supported
by the system. Supporting two distinct domains (kernel and user)
requires just one domain bit per block, four domains require two
domain bits per block, and so forth. Table 1 shows an example of
Harbor’s memory map encoding in a system with 8 domains.

Code Meaning
1111 Free, or start of kernel allocated segment
1110 Later portion of kernel allocated segment
xxx1 Start of user allocated segment
xxx0 Later portion of user allocated segment

Table 1: Memory map information encoding for 8-domain pro-
tection.

Figure 3 shows how an address is looked up in the memory map.
Assuming a block size of 8 bytes, the last three bits of address
are an offset into a given block. The remaining bits of the address
represent a block number in data memory. Access permissions are
packed into a byte. If encoded information is stored in four bits
(for 8-domain protection), then each byte would contain informa-
tion for two contiguous memory blocks. Therefore, the last bit of
block number selects a memory map record from within an access
permissions byte. The remaining bits of the block number form an
index into the memory map table. This design was chosen to min-
imize memory footprint. The memory map is a configurable data
structure; tradeoffs between the inter-module protection and mem-
ory map size are discussed in Section 8. The memory map data
structure and address translation operations are encapsulated in an
object accessible through the API in Table 2.

4.2 Using the Memory Map for Protection
Information stored in the memory map can be used for a variety

of protection models; our protection model restricts programs from
writing to memory outside their domain.

Memmap Offset (11 − 6)

Memmap Table

Block Num. (11 − 3)

Address (11 − 0)

Offset (2 − 0)

8

Memmap Records

1

Figure 3: Address to memory map translation (8-domain mode)

Systems using a memory map need to ensure the following four
conditions. First, the memory map should accurately reflect the cur-
rent ownership and layout of memory. In any real system, mem-
ory is constantly allocated, freed, and/or transferred from one mod-
ule to another. The memory map should be immediately updated
when any of these events occur; thus, SOS’s malloc, free, and
change own system calls were modified to update the memory map
data structure. Second, only the block owner should be permitted to
free or change its ownership. This condition is necessary as one
module may accidentally (due to programming errors) attempt to
free memory being used by other modules. To enforce this condi-
tion, the system needs to track the currently active domain (Sec-
tion 5). Third, direct access to the memory map API (described in
Table 2) should be restricted to trusted domains, such as the kernel.
In addition, the blocks storing memory map data structures should
be owned by a trusted domain, preventing accidental corruption of
the memory map data structure.

A memory map can be easily incorporated into software systems.
As an example, we describe how SOS’s memory map provides
multi-domain protection. The memory map is initialized such that
all statically allocated kernel memory blocks are marked as owned
by kernel. The remaining portion of the address space is partitioned
into a heap, a safe stack (further described in Section 5.3), and a
run-time stack. The heap is divided into blocks, so the minimum
granularity of memory allocation is a block. The heap’s memory
map is initially marked as free. The safe stack is marked as belong-
ing to the kernel domain. The run-time stack has no memory map;
we discuss run-time stack protection in Section 5.2. Our implemen-
tation modified 150 lines of code, about 1% of the 12720-line SOS
kernel; the change was mostly localized to dynamic memory man-
agement routines.

4.3 Memory Map Checker
Harbor’s run-time checks validate memory accesses, in particu-

lar writes. These accesses are validated using a protection model.
Our memory map checker enforces the protection model described
earlier: each user module can write only into its own domain. The
memory map checker belongs to the trusted domain. Pseudocode
for a write access check in a system with 8-domain protection is
shown in Figure 4. The write access checker performs three op-
erations. First, it performs address translation to retrieve the byte
containing ownership information from the memory map table for
a given address. Second, it locates the appropriate record within
that byte and determines the domain of the block’s owner. Third, it
compares this domain ID and the current executing user module’s
domain ID. A store is allowed only if these domains match. As



Prototype Description
int8 t memmap set(uint8 t blkID, uint8 t nBlks, uint8 t domID) Set owner of segment [BlkID, BlkID + nBlks) to domID
uint8 t memmap get(uint8 t blkID) Get owner and layout of block number BlkID

Table 2: Memory map API

write_access_check(addr_t addr, data_t data) {

// Check is for writes outside stack region

if (addr < STACK_PTR) {

// Address translation: Get table index

uint16_t blk_num = (addr >> log2_blk_size);

uint16_t mmap_index = (blk_num >> log2_rec_per_byte);

// Retreive memory map byte

uint8_t mmap_byte = MEM_MAP_PERMS_TBL[mmap_index];

// Get the appropriate record in byte

if (blk_num & SWAP_MASK) swap(mmap_byte);

uint8_t mmap_owner = mmap_byte & OWNER_MASK;

uint8_t first_blk_in_segment = mmap_byte & 1;

// Validate access

if (mmap_owner != curr_dom_id

|| (first_blk_in_segment && addr points to block metadata))

mem_access_exception();

// Perform store

st addr, data;

} else {

// Check for writes to stack

stack_access_check(addr, data);

}

}

Figure 4: Pseudocode for Memory Map Checker (8-domain
protection)

mentioned previously, the memory map manager does not maintain
permissions for run-time stack; write accesses to the run-time stack
are subject to a different check described in Section 5.2.

An implementation detail involves the protection of heap meta-
data, such as the owner and/or size an allocated segment. SOS stores
this metadata in the segment itself. This complicates the write ac-
cess check, since heap metadata is effectively kernel-domain in-
formation and must be protected from wild writes. Since the SOS
kernel stores this metadata in a segment’s first memory block, the
memory map checker protects the metadata in the first block of any
segment from user writes. The memory map table’s layout infor-
mation supports this check by identifying the starting block of any
segment.

5. CONTROL FLOW MANAGER
Programming errors can cause a module to corrupt its own state,

even with protection domains. Unfortunately, a user module’s con-
trol flow might be affected by internal memory corruption. For ex-
ample, function pointers (commonly used to implement callbacks)
are stored in RAM. Return addresses to function call sites are stored
in stack. Corruption of these values might cause the processor to
execute arbitrary code, including the memory map API, violating
one of the requirements of using the memory map for protection.
The control flow manager ensures that control can never flow out
of a domain except via calls to functions exported by the kernel or
modules in other domains, and via the corresponding returns. Con-
versely, control flow can enter a domain only through an exported
function or through the return site of a call that was made to a func-
tion exported by some other domain. The control flow manager also
tracks the identity of the currently executing domain. This infor-
mation is required by the memory map checker to validate write
accesses. Harbor’s cross domain call mechanism is used to trans-
fer control safely from a caller to a callee domain. A corresponding
cross domain return mechanism restores control back to a caller do-
main. Control flow integrity within a domain is preserved through
a safe stack that stores return addresses.

5.1 Cross Domain Call
A cross domain call performs four operations. First, it verifies the

call’s target address, which should match the address of a function
officially exported by some module or the kernel. Second, it saves
the caller’s domain identity and return address. Third, it sets up a
stack bound, which prevents the callee from modifying portions of
the stack belonging to the caller. Finally, it jumps to the callee. The
cross domain call mechanism tries to optimize the performance of
these operations.

ret

call fooJT
DOMAIN A

foo:
DOMAIN B

cross_domain_call_stub:

fooJT: jmp foo
jmp exception
jmp exception

Program Memory

Jump Table

Figure 5: Cross Domain Call

Call address verification is accomplished with the help of a jump
table, an extra level of indirection in cross-domain function calls.
Modules in a domain are linked with modules in other domains at
load-time. A linker running on the sensor node parses the module’s
exported functions and writes them to the jump table. The jump
table, which is stored in flash memory, is similar in design to an in-
terrupt vector table. Each jump table entry is an instruction to jump
to an exported function; the function’s address is encoded within
the instruction stream. Each domain has its own jump table, con-
taining all the functions exported by modules in that domain (or,
for the kernel domain, all functions exported by the kernel). Since
modules cannot directly write to flash memory, they cannot corrupt
the jump table. Modules that subscribe to functions exported by
a particular module are redirected through the corresponding do-
main’s jump table. This is illustrated in Figure 5. The jump table
mechanism is independent of the process used for dynamic linking
(exporting and subscribing to functions), which might use several
other techniques [4].

Each domain is currently allocated one page of internal flash
memory for storing its jump table. In the AVR architecture, this
imposes a limit of 64 exported functions per domain. SOS limits
each module to exporting 12 functions, allowing at least 5 mod-
ules to share a domain. Empty entries in the jump table are filled
with a jump instruction to an exception routine. All domains’ jump
table pages are stored contiguously in flash memory, reducing the
overhead of verifying a call’s target address and domain.

All function calls made across modules need to pass through a
cross domain call stub. This stub, a part of the Harbor runtime, is
located in a trusted region of program memory. In SOS, cross mod-
ule calls use a macro SOS CALL; we modified its implementation to



force a call into the cross domain call stub. This is implemented as
an assembly routine within the SOS kernel, with pseudocode shown
in Figure 6.

cross_domain_call(addr_t addr) {

// Store current return addr in safe stack

push_ss ret_addr

// Check if target address is valid

if (addr > JMP_TBL_BASE) {

// Store current state in safe stack

push_ss curr_domain_id;

push_ss curr_stack_bound;

// Compute new domain ID

curr_domain_id = MSB((addr - JMP_TBL_BASE) << 1);

if (curr_domain_id > MAX_DOMAIN_ID)

control_flow_exception();

// Compute new stack bound (For run-time stack protection)

curr_statck_bound = STACK_PTR;

// Push the return address of cross domain return

push_ss cross_domain_return

// Call into jump table

call addr;

cross_domain_return:

// Restore previous state

pop_ss curr_stack_bound

pop_ss curr_domain_id

// Return to caller domain

ret

} else

control_flow_exception();

}

Figure 6: Pseudocode of Cross Domain Call Stub

The stub first stores the return address in the safe stack (Sec-
tion 5.3). All valid cross-module calls must have target addresses
that reside in the jump table, since modules subscribe to jump table
locations corresponding to the functions exported by other mod-
ules. A call into the jump table is checked by a simple compare
operation to the base address of jump table. The stub then stores
the current domain identifier and the stack bound in the safe stack.
A store into the stack is required because cross domain calls can be
chained: domain A calls domain B, which in turn calls domain C.
Next, the identity of the callee domain is computed by determining
the jump table page in which the target address falls. If the target
domain identifier exceeds the maximum number of domains in the
system, then the target address is greater than the upper bound of
jump table; an exception is generated. The callee domain may equal
the current domain when a module transfers control to another mod-
ule in the same domain. The cross domain return address is pushed
to the safe stack, ensuring that control flow will return to the stub.
Finally, a call is made into the jump table, which redirects it to the
actual entry point in the target domain. During cross domain return,
the previous domain identifier and stack bound are restored and the
control is transferred back to caller domain.

As all domains share a common run-time stack, the cross domain
call stub does not need to copy call arguments. Further, no modi-
fications are made to any data frames set up in the run-time stack
during function calls. Therefore, a single cross domain call and re-
turn stub sufficies for all cross domain calls, unlike the per-function
stub required by the original SFI [22]. The implementation of the
cross domain call stub only uses the caller-saved registers described
by the avr-gcc ABI.

Harbor currently disallows all computed branches except for cross
module calls. This ensures that applications cannot avoid memory
and/or control flow checks, but also prevents certain implementa-
tions of control flow structures like switch.

5.2 Run-Time Stack Protection
Harbor shares a common run-time stack across all domains. The

design alternative, allocating a private stack per domain, would re-
quire too much memory, since stack memory must be allocated con-
servatively (the stack can grow significantly during execution). Har-
bor implements a stack bound to prevent one domain from corrupt-
ing another domain’s local variables and other stack information.
The cross domain call stub sets up a stack bound before transfer-
ring control, and the cross domain return stub restores the previous
stack bound. As shown in Figure 4, the stack access checker is in-
voked for writes to the run-time stack, a statically allocated region
of memory at the high end of the address space. Harbor disallows
writes to memory addresses greater than the current stack bound.

The stack bound does prevent cross domain data sharing through
the stack, but we have never encountered an instance of such shar-
ing in the SOS system.

5.3 Safe Stack
Correct fault isolation requires that Harbor limit control flow

within modules, as well as across modules. A module must not be
able to jump into its code arbitarily, since this might allow it to
avoid a run-time check. The Harbor runtime therefore uses an ad-
ditional safe stack to preserve the integrity of control flow within
and across modules. The safe stack resides in the trusted domain,
preventing any corruption by application wild writes. Harbor stores
function calls’ return addresses on the safe stack, protecting them
from wild writes by applications in any domain. The cross domain
call stub also uses the safe stack to store the current domain ID
and run-time stack bound. The safe stack pointer is maintained as
a global variable, and manipulated by sequences of push and pop
operations. A function entry stub, func entry stub, copies the
return address from the run-time stack onto the safe stack. Simi-
larly, func exit stub pops the return address from the safe stack
and restores the run-time stack. The entry and exit points of every
local function within a domain are rewritten to invoke these stub
routines. We do not modify the run-time stack in any manner as
this would corrupt data frames setup by functions for storing local
data and function arguments.

The safe stack can be placed anywhere in data memory as long as
it is protected from accidental writes and overflow. We usually place
the safe stack at the end of all global data in the system and make
it grow upwards. The run-time stack and safe stack thus approach
one another.

6. BINARY REWRITER AND VERIFIER
As described above, memory protection is established through

run-time checks that are introduced by rewriting the binaries pro-
duced by a cross-compiler toolchain. The routines that implement
the checks are located in the trusted domain. The rewriter intro-
duces calls and jumps that invoke the runtime checks from the sand-
boxed binary. A verifier inspects the sandboxed binary to ensure
that sufficient checks have been introduced to prevent any possible
protection violation. The verifier and rewriter are completely inde-
pendent, and the node that executes a sandboxed binary needs to
trust only the verifier. The verifier could be a desktop application
that, for example, cryptographically signed binaries, or a trusted
component running on the sensor node. Our verifier is a trusted
component running on every sensor node that verifies sandboxed
binaries locally prior to admitting them for execution.1 An attrac-
tive feature of this architecture is that sensor nodes do not need to
1Sandboxed binaries can be seen as an example of proof-carrying
code (PCC) [15], even though they do not include any logical
proofs.



trust any external component. We discuss the tradeoffs involved in
the design of the verifier in Section 8.

6.1 Sandboxed Operations
Five types of operations are protected. First, all forms of store

instructions are sandboxed by a call to the memory map checker.
Second, all function call entry points are instrumented with calls to
the function entry stub, which uses the safe stack. Third, all return
instructions are redirected to the function exit stub. Fourth, all com-
puted calls are redirected to a stub that checks if the destination is
in the jump table. Fifth, the beginning of all the basic blocks are
marked by a special NOP symbol. An example of the sequence of
instructions introduced by the rewriter for the AVR architecture is
shown in Figure 7. The sequence is re-entrant; it can be preempted
by interrupts. The rewriter performs a basic block analysis of the bi-
nary and preserves the program’s original control flow by updating
static jump, call, and branch targets.

push R27
push R26
push R0
movw X,Z
mov R0, Rsrc

pop R0
pop R26
pop R27

st Z, Rsrc

call write_access_check

jmp func_exit_stub

ret

icall

call cross_domain_call

Figure 7: Inline Checks

The rewriter reads ELF object files. It uses symbol table infor-
mation to distinguish binary data representing code and constants.
Upon sandboxing, the rewriter outputs a new ELF object file. The
symbol table and the relocation records in the output ELF file are
suitably modified to reflect their updated positions within the sand-
boxed code. Since linkers such as avr-ld link object files in ELF
format, the binary rewriter can be used to sandbox only portions of
the complete binary. For example, only the device drivers in the fi-
nal image of an operating system can be sandboxed before installing
them on a sensor node.

6.2 Verifier
The verifier is a very simple program that maintains no state.

In Harbor, all potentially unsafe operations, such as store to mem-
ory, returns, and computed calls, are performed within the run-time
checkers. Therefore, the verifier performs a single pass over the en-
tire instruction sequence and raises an exception if it encounters any
of the potentially unsafe operations. It checks all static jump, call,
and branch targets to ensure that they are within domain bound-
aries. It also ensures that these targets point to valid instructions.
This check is necessary because AVR ISA has multi-word instruc-
tions. If control flow jumped into the middle of a multi-word in-
struction, run-time checks might be circumvented. Therefore, the
rewriter marks the beginning of basic blocks with a special NOP
symbol. The verifier checks that all static jump, call, and branch tar-
gets point to a NOP, and checks that the NOP symbol never appears in
the middle of a multi-word instruction. Function entry points (de-
termined from call instruction targets) are checked to ensure that
they store the return addresses on the safe stack. Finally, the verifier

does not permit store instructions that write to program memory.
The verifier calls an exception handler if any of these properties are
violated. Its total line count is only 211 lines.

7. EVALUATION
In this section, we analyze the protection benefits and overheads

introduced by Harbor’s protection mechanisms.

7.1 Overhead Microbenchmarks
We first present microbenchmarks that measure Harbor’s CPU

overhead. Overhead was measured using Avrora [21], a cycle ac-
curate node and network simulator for the Mica family of sensor
nodes. Measurements were averaged across multiple application
scenarios.

Function Name Cost
Write access check 65 cyc
Cross domain call 65 cyc
Cross domain return 28 cyc
Function entry stub 38 cyc
Function exit stub 38 cyc

Table 3: CPU Overhead of Memory Protection Routines

Table 3 summarizes the results for all of Harbor’s protection
primitives. All these routines are implemented in assembly for opti-
mizing performance. The registers used in these routines are saved
to the run-time stack. Many CPU cycles are spent in push and pop
operations. This overhead could be significantly reduced by dedi-
cating one or more registers for Harbor’s exclusive use; the cross-
compiler would be directed to ignore these registers entirely. How-
ever, avr-gcc does not have stable support for dedicated registers.
Overhead is also introduced during dynamic memory allocation,
deallocation, and transfer, since the memory map must be updated.
Table 4 compares the overhead of memory allocation routines in
the presence and absence of the protection mechanism. The over-
head depends upon the size of memory block that is being allocated,
freed or transferred. The average size of the memory block used
by all the three operations in our experiments was 16 bytes. The
numbers in Table 4 are an average measurement of the execution
time obtained from a long running simulation of the Surge appli-
cation [23]. The relatively higher overhead of ker_change_own

and ker_free calls is due to additional checks introduced to pre-
vent illegal ownership transfer or freeing of memory blocks by non-
owners.

Function Name Normal Protected
ker_malloc 343 cyc 610 cyc
ker_free 138 cyc 425 cyc
ker_change_own 55 cyc 365 cyc

Table 4: CPU Overhead for Dynamic Memory Calls

7.2 Resource Utilization Microbenchmarks
Increases in code and data memory utilization due to Harbor’s

protection mechanisms are shown in Table 5. Code memory us-
age increases by about 15% in a protected kernel relative to an un-
protected kernel. This increase is mainly due to the memory map
and cross domain call jump table mechanisms. There is no signif-
icant change in program memory usage going from two protection
domains to multiple protection domains. Data memory usage in-
creases relative to an unprotected kernel by at most 5% and 9.5% in



2-domain and 8-domain systems, respectively. The main culprit is
the memory map, which takes 128 and 256 bytes in 2- and 8-domain
systems. (There are 28 additional bytes of constant overhead.) This
is the maximum possible overhead, as this memory map configu-
ration stores layout and ownership information for the entire ad-
dress space. By modifying data layout, the portion of address space
that requires a memory map can be reduced. For example, in SOS,
memory map is needed only for the heap and the safe stack; by
abutting these data structures, the memory map can be reduced to
70 or 140 bytes for 2- and 8-domain protection, respectively.

Memory Raw ∆ (2 domains) ∆ (8 domains)
Flash 41796 B +6146 B +14.7% +6228 B +14.9%
RAM (Max) 2892 B +148 B +5.1% +276 B +9.5%
RAM (Min) 2892 B +98 B +3.4% +168 B +5.8%

Table 5: Code and Memory Overhead for Blank SOS Kernel
for Mica2

Module Raw ∆ (2 or 8 domains)
Blink 150 B +48 B +32%
Tree Routing 2820 B +1658 B +59%
Surge 542 B +350 B +65%
Outlier Det. 1312 B +738 B +56%
DVM 13072 B +6652 B +51%
FFT 3016 B +894 B +30%

Table 6: Code Size Increase of Mica2 SOS Modules

Finally, we evaluate the relative increase in size of modules due
to introduction of checks by the binary rewriter. As noted in Table 6,
there is a significant increase in the relative code size of sandboxed
binaries as compared to raw binaries. This is mainly caused due
rewriting all store instructions to a long sequence of instructions
that call the memory map checker (Figure 7). This overhead could
be significantly reduced by using dedicated registers to eliminate
all push/pop instructions in the sequence, and/or by adding static
analysis to eliminate some redundant checks.

7.3 Relative Application Performance
In this subsection, we measure Harbor’s performance impact.

Many sensor network applications are heavily duty-cycled and there-
fore not CPU intensive. However, some are not, and for our first
benchmark, we choose a CPU intensive Fast Fourier Transform
(FFT). This should present a realistic idea of Harbor’s costs for
challenging applications. The FFT module receives a buffer of sam-
ples represented as 16-bit fixed-point integers (we do not measure
the cycles required to obtain the samples). It transforms the sam-
ples in place and outputs results to the same buffer. As shown in
Table 7, FFT takes 3.6 ms to execute in normal mode and 17.3 ms
in the protected mode. This gives Harbor a slowdown factor of 4.8.

The next experiment is another challenging application, an out-
lier detector. The outlier detector samples a set of sensor values and
stores them in a buffer. Once the buffer is filled, it computes the
distance between all pairs of samples in the buffer and stores the
result in a matrix. Using a distance threshold, the algorithm marks
the distance measurements in the matrix that are greater than the
threshold. If the majority of the distance measurements for a sen-
sor readings are marked, then the sensor reading is classified as an
outlier. This application is memory write intensive and the matrix
operations are easily prone to buffer overflow errors.

We consider two systems that can protect against such errors,
Harbor and the Dynamic Virtual Machine (DVM) [2], an extensi-

Module Time (ms) Slowdown
FFT 3.6 —
FFT-Harbor 17.3 4.8
Outlier detector 0.18 —
Outlier-Harbor 1.47 7.9
Outlier-DVM 102.4 554.5
Outlier-DVM-Harbor 268.3 1453.0
Sort with Maté VM script [11] 115

Table 7: Relative Performance of Applications

ble domain-specific interpreter that performs a bounds check on ev-
ery write. DVM’s bounds checks are in some ways more stringent
than Harbor’s protection, since they also prevent scripts from cor-
rupting their own memory. However, errors in DVM’s native code
implementation might corrupt any memory on the node. We imple-
mented the outlier detector as a DVM script that is interpreted on
sensor sampling timer events. The execution time of the script was
measured to be 102.9 ms. However, some of this time is also spent
within the kernel to actually sample the sensor data. The sampling
time was measured to be 0.49 ms, so the script’s true execution
time is 102.41 ms. This is over 500 times longer than an outlier
detector implemented as a raw binary, as Table 7 shows. The high
overhead is due to DVM interpretation. The outlier detector script
uses many low-level operations. Prior work has shown that this kind
of script has high overhead; for example, a Maté script that sorts
an array using low-level operations takes 115 times longer than a
script that sorts an array with a single “sort” operation [11]. While
DVM’s overhead could be reduced by adding high-level instruc-
tions that perform complex operations in native code, these high-
level instructions might themselves contain bugs. Harbor’s protec-
tion is much less expensive than interpretation overhead. Sandbox-
ing slows down the native code implementation by a factor of 7.9.
Perhaps more surprising, sandboxing DVM slows it down only by
an additional factor of 2.6. Here, DVM provides fine grained pro-
tection (at the level of individual memory objects) to scripts and
Harbor provides coarse grained protection (at the level of domains)
to the system running DVM.

A final challenging, write-intensive application is a simple buffer
writer, which allocates a memory block and completely fills its con-
tents with arbitrary data. This application simulates a very common
behavior of sensor network applications, namely copying sampled
sensor data into a buffer that can be transmitted into the network.
A common programming mistake in such applications is to over-
flow the buffer. Figure 8 plots execution time of the buffer writer on
DVM, Harbor, and native SOS for varying buffer sizes. The average
slowdown factor of Harbor relative to native SOS for this applica-
tion was 13.3. The average slowdown factor of DVM relative to
native SOS was about 1200.

Figure 8: Buffer Writer Performance Overhead

We next consider a typical duty-cycled sensor network applica-



tion, namely data gathering through a collection tree. Our exper-
iment setup was a simulated network of 5 Mica2 motes arranged
in a linear topology to form a two-hop network to a base station.
All nodes were installed with an SOS kernel with 8-domain Harbor
protection. When the network was up, the two-module data collec-
tion application was installed on all nodes. First, a tree building
and maintenance module [23] was distributed; then the Surge mod-
ule, which periodically samples light sensor data and sends it to
the base station via the collection tree, was installed. The two mod-
ules were installed in different protection domains. Harbor’s impact
on the complete application was measured by profiling CPU active
time in the Avrora simulator. CPU active time was observed to be
8.41% and 8.56% over a duration of 30 minutes for normal and pro-
tected mode operation, respectively. The relative increase in CPU
utilization for a protected system is thus only 1.85% compared to
an unprotected system. In most sensor network applications, abso-
lute CPU utilization is even lower [7]. The increased overhead is
a small price to pay for the improved reliability provided by the
software-based memory protection.

7.4 Experience
Harbor has been in use in SOS for several months, and has dis-

covered two memory corruption faults in application modules that
had been in active use for several months previously. The first error
was discovered while executing the data collection application on a
SOS kernel with 2-domain Harbor protection. A programming error
in the Surge module triggered an invalid memory access exception.
Figure 9 demonstrates the error.

// Size of routing header
hdr_size = SOS_CALL(s->get_hdr_size, proto);
// Using return value without checking
s->smsg = (SurgeMsg*)(pkt + hdr_size);
// Memory Corruption
s->smsg->type = SURGE_TYPE_SENSORREADING;

Figure 9: Programming error in Surge module

The Surge module invokes a dynamic function call [8] to the tree
routing module to determine the size of the routing header. Dy-
namic function calls are linked at run time, and fail with an er-
ror code if the function provider is absent. The code above fails to
check whether hdr_size is an error code. Nodes where the Surge
module was installed before the tree routing module would use
an negative value for the routing header size and thereby corrupt
memory—specifically, heap metadata, which effectively resides in
the kernel domain. Harbor detected this error and killed the offend-
ing application.

A second programming error was discovered in the tree routing
module with 8-domain protection. There were three active domains
in the system: the kernel, the tree routing module, and the buffer
writer module. The SOS kernel tracks the ownership of a message
payload as it is passed from a source module to its destination mod-
ule. If the source module wishes to relinquish ownership, it sets a
release flag while posting the message. A destination module that
wishes to write into the message payload is required to gain own-
ership through a sys_msg_take_data system call. If the source
module set the release flag, this system call is effectively a no-op.
If the source module did not set the flag, however, then the sys-
tem call makes a private copy of the payload owned by the desti-
nation module. Failure to call sys_msg_take_data could corrupt
the source module’s memory. The buffer writer module was not
releasing the buffer, but the tree routing module was not calling

sys_msg_take_data. Harbor discovered this error when the tree
routing module tried to overwrite the message payload.

The errors described in this section occur under rare conditions
and are hard to detect during software testing. However, the im-
pact of these errors could be severe. A system that can guarantee
memory protection is indispensable for building robust embedded
software.

8. DESIGN ALTERNATIVES
Harbor provides a number of design knobs that allow systems to

trade off protection and resource utilization. First, the memory map
data structure is configured by changing the number of bits stored
per block to match the number of domains required by a system.
For example, four bits per block support up to eight protection do-
mains. We have found eight domains to be sufficient for most sensor
network systems using SOS. Two bits per block can create a two-
domain system (a user/kernel model). Increasing the number of bits
stored per block increases the size of the memory map.

Second, there is a tradeoff between the size of the memory map
and the amount of memory fragmentation. Larger block size leads
to increased internal fragmentation, but reduces the number of blocks
and thereby the size of the memory map. For example, a block
size of 256 bytes is suitable for the large image and matrix objects
passed around in the Cyclops imager [17]. Mica2 based modules
use a block size of 8 bytes. Harbor and SOS currently support a sin-
gle fixed block size for the entire heap; an extension might permit
using different block granularities in different memory regions.

Third, the memory map can be configured to track ownership
and layout in only a subset of the entire address space, reducing its
space overhead. For example, in SOS the memory map tracks only
the heap and safe stack. In general, the size of the memory map can
be reduced by decreasing the fraction of memory reserved for the
heap.

The Harbor design also allows trading off execution overhead,
and code size increase, against the complexity of the verifier. Per-
formance and code size increase are directly proportional to the
number of operations that are sandboxed. The current implemen-
tation sandboxes all unsafe operations. This severely penalizes per-
formance and code size but reduces the complexity of the verifier,
which requires only a single pass over the entire binary and main-
tains no additional state. Static analysis on the binary can reduce
the number of operations sandboxed by adding single checks that
safely protect a series of potentially unsafe operations. However,
the safety of such a check is harder to verify using a simple verifier.
We are currently exploring this design space to develop a rewriter–
verifier combination that consumes limited resources but improves
performance, and reduces code size, of sandboxed binaries.

9. CONCLUSION
We have explored the challenges in providing software based

memory protection through sandboxing in resource constrained em-
bedded sensor nodes. Though we have implemented the protection
technology in the SOS operating system, our general approach is
applicable elsewhere. As discussed in Section 8, there is a large
space of protection architectures that can be designed using Har-
bor components. A detailed exploration of the design space with an
evaluation of the various overheads is necessary to pick the most
appropriate operating point for a given system. We believe that a
complete system for memory protection would require combination
of two or more software based approaches. Of particular interest is a
system composed of ASVM with memory safe extensions. Finally,



we are also exploring low-cost extensions to micro-controller archi-
tecture to provide memory protection for embedded software. We
envision that the application of these techniques will create robust
software that would enable long term sensor network deployments.
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