
Efficiency and late data choice in a user-kernel interface for
congestion-controlled datagrams

Junwen Lai∗, Eddie Kohler†

∗Princeton University
†University of California, Los Angeles

ABSTRACT
Streaming media servers send many datagrams, very quickly, on many different connections, hopefully without con-
gesting the network. In addition, in order to adapt to constantly changing network conditions, they often demand the
capability of late data choice, where they choose which data to send immediately before transmission. In this paper,
we present a novel user-kernel interface for congestion-controlled datagram protocols that is bothefficientandflexible.
Our API consists of apacket ringlocated in shared memory. Applications enqueues packet descriptors directly onto the
ring, without crossing the user-kernel boundary, and the kernel dequeues packets from the ring and sends them. This
minimizes control and data transfers and gives good throughput. In addition, our API provides a mechanism that allows
the application to go back andsafelychange, remove or even reorder previously-enqueued packets, right up until the
kernel sends them. This design separates the mechanism for achieving QoS support from any particular QoS policy. We
describe the interface and evaluate its performance. By reducing control transfers, the packet ring can even send zero-
length packets through the kernel faster than conventional send()-based UDP. Furthermore, on a congested network, an
MPEG-like application using our DCCP API can deliver more than twice as many important “I-frames” than a CBR
UDP sender in the same network conditions.

Keywords: QoS, media application, DCCP, API, late date choice, congestion control.

1. INTRODUCTION
The factors that limit transfer rates on today’s fast networks are often found inside operating systems, and particularly
in the interface for transferring data between applications and the network.1 Much work has been done to optimize this
interface by reducing inter-domain control transfers2, 3 and data transfers,2–5 eliminating interrupts,6 and so forth.

Prior work has focused on both TCP performance and, more recently, UDP performance.7, 8 But emerging congestion-
controlled unreliable protocols,9, 10 such as the Datagram Congestion Control Protocol (DCCP),11 bring up issues not
directly applicable to either TCP or UDP. This kind of protocol was inspired by applications like streaming and interac-
tive media and on-line games, which share a preference for timeliness over reliability. Information has a useful lifetime,
after which it is better to drop old information and send newer information instead—an operation that violates TCP’s
reliable semantics. DCCP senders, then, would like control over the transmit buffer, so that old data can be removed. But
unlike UDP APIs, which generally send datagrams immediately, DCCP APIs must implement some transmit buffer to
give congestion control power over transmit rates. How can a high-performance API provide control over this transmit
buffer? Must it be done with reference to a particular QoS policy,12, 13 or can it be done generically?

Our goal was to build a fast, flexible, and relatively easy-to-use user-kernel API for DCCP senders (or other congestion-
controlled datagram senders) that provided generic control over the transmit buffer, a property we calllate data choice.
We wanted to make it possible for conventional PCs to serve DCCP media to thousands of clients simultaneously.
Therefore, we had to avoid control and data transfers and interrupts.

Our solution is apacket ringdata structure, used for send control and synchronization, stored in memory shared
between the application and the kernel. The packet ring, like the memory-mapped streams abstraction,3 resembles the
DMA rings used for kernel communication with network devices. The application enqueues packets for transmission by
putting them on the end of the packet ring, without bothering the kernel. When the kernel gets control, it can send as
many packets as have been enqueued. Keeping several packets on the queue is good for throughput; it smooths out bumps
in transmission rates, and allows packets to be rate-paced out even while other applications are running. However, unlike
memory-mapped streams, applications using packet rings can safely modify enqueued packets up until the kernel sends
them, thus achieving late data choice.

By reducing control transfers, the packet ring can send zero-length packets through the kernel faster than conventional
UDP. Furthermore, on a congested network, some packets sent using congestion-controlled DCCP can arrive at the
receiver faster than packets sent using simple constant-bit-rate UDP, and an MPEG-like application using our DCCP API



can deliver more than twice as many important “I-frames” than a CBR UDP sender in the same network conditions. This
demonstrates both the effectiveness of our API and the possible benefits of congestion control for media applications.

Our main contribution is the packet ring API, and particularly the mechanism that supports late data choice and
enables user space data scheduling policy without compromising throughput or latency. It does this by avoiding most, or
all, control and data transfers between the sending application and the kernel. Our secondary contribution is the evaluation
of this API that demonstrates its low overhead, low latency, and late data choice.

2. RELATED WORK
The Time-lined TCP system10 for media transfer adds data deadlines to a TCP-like transport protocol. This gives an in-
teresting mix of reliability and unreliability, but forces the application to express all its potential transmission preferences
in terms of deadlines. Our application-directed packet ring API is more flexible, allowing the application to implement
any policy.

The vast majority of the work on QoS support for multimedia streaming12, 14, 15 is orthogonal to ours. Our API by
itself does not implement, nor is it limited to, any specific QoS policy. Instead, it lets applications implement various
QoS or non-QoS policies without sacrificing safety or efficiency. As an example, Section 4 shows how, with our API’s
support, an application can adaptively provide media of different levels of quality to clients based on network conditions.

Packet rings are most closely related to Govindan and Anderson’s memory-mapped streams for speeding up contin-
uous media transfer.3 Like packet rings, memory-mapped streams use shared memory for control and synchronization,
hiding the latency of explicit control transfers. However, memory-mapped streams are designed for reliable transfers.
There’s no provision for late data choice, and no notification of which packets were delivered. Reliable transfer is a poor
match for media applications on possibly-congested networks. The packet ring abstraction adds support for unreliability
to memory-mapped streams—specifically, a mechanism by which the application can change or remove packets that have
already been queued, and a mechanism by which the application can learn which packets have been delivered.

Using buffer management to reduce the overhead of cross-domain data copies has been a major thread in operating
systems research, and variants of this work have been implemented in commodity operating systems like Linux and
Microsoft Windows. The basic techniques are virtual memory remapping and shared memory.16 IO-Lite is the fullest
recent development of this idea.17 These systems pass either descriptors or pages between domains; a descriptor points
to the actual data, which is either immutable, copy-on-write, or requires special function calls for an application to access
it. None of these systems appreciably reduce cross-domain control transfers; all of them are complementary to our work,
which can make good use of any means for reducing data transfers. We chose to implement zero-copy data transfers
using specialpacket zonesthat contain any DCCP packet data. This simplifies our design, but we do not claim it as
significantly different from existing work.

A system can remove all cross-domain control and data transfers by transferring data directly between kernel objects,
either through a splice() call2 or current operating systems’ sendfile() APIs. These mechanisms are better suited for
reliable transfer, which has far simpler semantics; media transfer works better if more flexibility is given. For example,
a media application may dynamically decide which parts of a given stream are less important, and thus can afford to be
dropped, on a per-connection basis.

Work in extensible operating systems and user-level networking18, 19 lets applications access the actual network
interface card’s send ring. The DCCP processing that we assume happens inside the kernel would then be taken care of
instead by the application, or by a shared library. This would eliminate some small latency introduced by the kernel, and
also extend late data choice right up to the moment the network interface grabs a packet to send.

3. PACKET RING
Our interface’s fundamental data structure is thepacket ring. A packet ring is an array ofpacket records, each of which
represents a single packet, coupled with fourindexesinto the array. Two of these indexes divide the packet ring into
two regions, packets enqueued for transmission and empty slots. The other two indexes support late packet modification,
where the application changes a packet it previously enqueued. These indexes add a third, semantically distinct region
to the packet ring: packets that were previously enqueued for transmission, but may now safely be modified by the
application.

3.1. Packet Record
The fundamental parts of a packet record identify the packet data to be transmitted using a pointer to the data and a
length. The packet ring interface could work with only these three fields, but three more make it more flexible. First, a



dev i = kern i = umod i = useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1
Figure 1. Empty packet ring.

dev i = kern i umod i = useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1

Figure 2. User adds packets, shifting useri and umodi. Packets
0–6 are owned by the kernel.

dev i kern i umod i = useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1

Figure 3. Kernel processes packets 0 and 1 and sends them to the
device, shifting kerni.

dev i kern i umod i = useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1

× × ×

Figure 4. User marks packet 1, 3 and 5 as dead. Note that no index
movement is needed and marking packet 1 as dead is safe.

dev i kern i
umod i

useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1

Figure 5. User wants to alter previously-sent packets, moves
umod i. Packets 3–6 are safe to modify.

dev i kern iumod i useri

0 1 2 3 4 5 6 7 8 9 10 11 N−1

Figure 6. Like Figure 5, but the kernel moved kerni simultane-
ously with the user moving umodi. Only packets 5 and 6 are safe
to modify.

user dead flag lets the application remove a packet from the queue without shifting possibly large numbers of packet
records. The kernel will skip over any packets with userdead flags. Second, akern acked flag lets the kernel inform
the user that a previously-sent packet was received and acknowledged. Finally, the application can assign local sequence
numbers to individual packets using auser seqfield. The kernel can then inform the application when and if packets
with specific userseq sequence numbers are acknowledged, even if the packet ring has wrapped since the packet was
sent (overwriting the kernacked flag).

3.2. Indexes
Two of the indexes into the packet record array are owned by the kernel, which protects them from accidental modification
by keeping private copies. They are:

dev i, thedevice index, points at the oldest packet enqueued for device transmission. The kernel moves devi forward
as packets are transmitted by the network device.

kern i, the kernel index, points at the oldest packet that the kernel hasn’t processed yet. The kernel moves kerni
forward as it turns packet records into DCCP packets.

The other two indexes are owned by the application. The kernel should keep private copies of these indexes to sanity-
check their values, ensuring, for instance, that useri does not move backwards.

umod i, theuser modification index, generally points at the oldest packet record that the user can safely modify. The
application moves this index forward to let the kernel transmit new packets, and moves it backward to attempt to modify
packets that the kernel hasn’t yet transmitted. umodi is the only index that can move backwards as well as forwards.

user i, theuser index, points immediately above the newest packet the application has sent. The application moves
this index forward to claim space for packet records it plans to send. It points immediately above the newest packet the
application has sent. The application will generally move umodi and useri together, unless it wants to go back and
modify a previously-sent packet.

When the packet ring is used properly, the kernel and user-modification pointers must lie between the other two
pointers: devi � kern i � useri and devi � umod i � useri. (Index comparisons are made in circular ring space; we
write x� y if and only if (x−dev i) modN ≤ (y−dev i) modN, whereN is the ring size.) The kernel can easily check
whether either of these invariants are violated. The ring is empty whenever devi = useri; thus, a ring can hold at most
N− 1 packets.

These pointers divide the packet records into several contiguous regions.

•dev i � i ≺ kern i. These packets have been processed by the kernel and are waiting to be transmitted by the
network device. The application shouldn’t modify the packet records or data. Modifying packet records shouldn’t have
any effect anyway, while modifying packet data might or might not change the data and/or checksums transmitted.

•kern i � i ≺ umod i. These packets are available for kernel processing, but haven’t been sent to any device. The
application shouldn’t modify the packet records or data without moving umodi backwards. Modifying packet records or
data might or might not affect the packets that will be transmitted.



•max{kern i, umod i} � i ≺ useri. The application prepared these slots for transmission, but the kernel may not
send the enclosed packets yet. This may be because the application moved umodi backwards in an attempt to modify
previously-prepared packets. The max operator handles the case where the application moved umodi backwards and the
kernel moved kerni forwards simultaneously.

•i � useri. These slots correspond to previously-sent packets. The kernel may modify some fields in these packet
records, to indicate whether the corresponding packets were acknowledged. The application can change packet records
or data in this region if it likes, but there’s no real point.

Figures 1 through 6 show several examples of packet rings.

3.3. Pacing Transmission
The connection’s congestion control mechanism generally determines when packets in the packet ring are actually sent.
This is particularly true when the connection’s peak rate is limited by congestion—the application provides packets as
fast as, or faster than, the connection can consume them. Thus, we always have kerni ≺ umod i. The kernel will send
packets using a combination of TCP-style ack pacing, conventional timers, and rate pacing depending on the congestion
control mechanism.

Many connections, however, have application-limited peak rates. That is, the application provides data slower than
the connection might consume it, and we often have kerni = umod i. To handle this, the kernel could poll application-
limited packet rings, sending packets as soon as they become available; but this doesn’t scale well as the number of
packet rings grows. Alternatively, the application could “wake up” the kernel with an explicit system call every time it
adds a packet to the packet ring, or at least when it adds a packet to a previously-empty ring. This would scale better, but
it introduces possibly many control transfers.

We split the difference, by adding a packet ring variable calledkern notify . The kernel sets a packet ring’s kernnotify
flag when it decides to stop polling a packet ring for new packets. The application is expected to check kernnotify when
it adds a new packet, and make a dccpnotify(packetring) system call if kernnotify is true. Thus, the kernel can poll
packet rings if it would like, or request explicit notification via dccpnotify() when that would be more prudent. (In our
current implementation, the kernel sets kernnotify whenever it runs out of packets to send.) Similarly, the application
can enqueue varying numbers of packets before calling dccpnotify().

The more frequently dccpnotify() is called, the more time is wasted in control transfers between application and
kernel. We therefore ran experiments where we called dccpnotify() with varying frequencies; the evaluation section
presents the results.

3.4. Implementation
The API has been implemented as part of our experimental in-kernel DCCP protocol implementation that runs on Linux
2.4.20. In our prototype, the buffers that store packet data are page-alined, and are allocated from shared memory between
user space applications and the kernel that we callpacket zones. Packets rings and packet zones can be shared amongst
multiple threads of a single process or even multiple mutually trustful processes.

For a stored video streaming application, data are loaded from disks directly into a packet buffer using raw disk
support or raw file support (In Linux, specify theO DIRECTflag when opening a file) to avoid the copy from file system
cache to a packet. For a live audio/video streaming application, the hardware and device drivers also allow data to be
directly loaded into a user specified buffer. This implementation decision is not fundamental to our design of the ring API
and in fact we plan to extend our API to support other zero-copy transfer mechanisms. However, our design of packet
zones does allow us to easily leverage the support in commodity operating systems.

4. EVALUATION
This section quantifies the costs and benefits of the packet ring API. Our performance hypothesis is that the packet ring,
combined with congestion-controlled DCCP, can simultaneously achieve low latency, high throughput, and late data
choice. We demonstrate low overhead (and therefore high throughput) by comparing with the existing lightweight UDP
API. The packet ring can achieve 44% less per-packet overhead than UDP sockets, even in the absence of data copies, by
avoiding context switches. We demonstrate late data choice with two sets of experiments. First, on a congested network,
we show that the packet ring achieves similar latency to UDP by avoiding retransmission and reordering delay. Second,
we perform some experiments on an MPEG-like microbenchmark, showing that our packet ring API (with DCCP) can
help an application prioritize its packets, delivering more “important” frames end-to-end than constant-bit-rate UDP or
TCP. All the experiments were conducted on machines of identical configurations. These machines use Intel Xeon 2.4



0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

P
er

-p
ac

ke
t o

ve
rh

ea
d 

(m
ic

ro
se

c)

Packet size (bytes)

UDP-ALL
DCCP-ALL
UDP-USER

DCCP-USER

Figure 7. Per-packet overhead for DCCP and UDP senders.

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400

P
er

-p
ac

ke
t o

ve
rh

ea
d 

(m
ic

ro
se

c)

Packet size (bytes)

UDP
DCCP-1
DCCP-4

DCCP-16
DCCP-64

DCCP-255

Figure 8. Per-packet overhead for varying context switch fre-
quencies.

GHz processors, 512 MB RAM and Intel PCI EtherExpress Pro 100 Ethernet cards. The operating system is Linux
2.4.20.

4.1. Microbenchmarks
First, we present several microbenchmarks that evaluate the packet ring API’s overhead relative to a conventional UDP
API which is already very lightweight. We address three questions: How expensive is a packet ring relative to the simpler
UDP send()? How effective and how important is the packet ring’s elimination of data transfers? And what about its
reduction of control transfers? In these experiments, the test packets are sent over a special software Ethernet-card em-
ulator that we have implemented. This measures DCCP protocol and API overhead without polluting the measurements
with network effects. The card also pretends to perform hardware DCCP/TCP/UDP/IP checksumming and scatter/gather
I/O.

Figure 7 compares the average time cost of sending a single packet using two different APIs (DCCP-ALL and UDP-
ALL) and the time spent in user space (DCCP-USER and UDP-USER). The DCCP application always calls dccpnotify()
after the packet is placed on the queue. With its zero-copy data transfer capability, DCCP sends small packets as fast as
UDP and larger packets much faster. For example, UDP takes 60% more time to send a 1400-byte packet.

Few applications need to call dccpnotify() for every packet, however. In Figure 8, “DCCP-k” lines plot the average
time cost of sending a packet if dccpnotify() is called only on everykth packet. It shows the effectiveness avoiding
calling dccpnotify(). For example, DCCP-16 outperforms DCCP-4 by 26% and UDP by 71% or more: even without
data copies, context switch overhead can be as high as 44% of overall running time in this microbenchmark. However,
reducing the dccpnotify() frequency beyond 1/16 doesn’t further reduce per-packet overhead, because user space buffer
management time and pure DCCP protocol processing time can’t be further compressed. DCCP server applications thus
don’t need to avoid every possible context switch to achieve optimal performance, which allows them more flexibility in
scheduling among different clients.

We also conducted an experiment in which 30 processes open concurrent UDP or DCCP connections and send packets
at their maximum rates. The performance trends are almost identical to Figure 8: our API scales well with the number of
connections.

4.2. Data Age
In this section, we use end-to-end results from a simple network—two identical machines connected by an emulated
point-to-point link—to show that late data choice and DCCP congestion control work, and have advantages for media
applications. We use a constant-bit-rate application that sends identically-sized packets at a fixed rate using one of TCP,
UDP, and the DCCP API. The packet size equals the TCP MTU (1500 bytes minus packet header length), so that all three
protocols act packet-based rather than byte-based. In our experiment, DCCP uses exactly the same congestion control
algorithm as TCP. The test flow shares the link with a single, long-lived TCP flow. The link is controlled by a token
bucket to reduce its nominal bandwidth to 50 kB/s. Our application generates one packet every 30 ms, which requires
more bandwidth than its fair share (roughly 25 kB/s) of the link. The DCCP and TCP senders are limited to their fair
share by congestion control, of course, but the UDP sender sends one packet every 30 ms regardless, causing a high loss
rate on the link. Finally, the DCCP application leverages DCCP’s late data choice feature and marks packets older than
three send intervals as dead using the userdead flag.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Delay (ms)

UDP
DCCP

TCP

Figure 9. Cumulative distribution of end-to-end delay.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Delay (ms)

UDP
DCCP

TCP

Figure 10.Cumulative distribution of in-sender delay.

Each packet is timestamped at four places: when the packet is sent by the application, when it reaches the sender’s
device driver, when it gets to the receiver’s device driver, and when it arrives at the receiving application. This lets us
separate the delays due to different stages of the process.

Figures 9 plots the cumulative distribution function, or CDF, for the end-to-end delay between the sending and
receiving applications. DCCP’s CDF is very close to UDP’s, and both distributions are relatively sharp (most packets
have the same delay). TCP’s latency distribution varies significantly, however. The average TCP packet is delayed twice
as much as the average DCCP packet, even though both flows are congestion controlled and achieve roughly the same
bandwidth. This is due to a combination of TCP’s reliable transmission, kernel buffering, and in-order delivery. TCP’s
maximum delay could be lowered somewhat by reducing the kernel’s socket buffer size. However, the delay could not
be eliminated, and a small socket buffer size would significantly hurt the throughput. Figure 9 also provides a hint of
evidence that congestion control might be good for a media flow. About 40% of DCCP packets arrive with lower latency
than any UDP packet. This is because the UDP application’s fast, constant rate results in a constantly-full link queue.

Figure 10 plots the CDF of the in-sender delay, from when the sender’s application sends a packet to when the
sender’s device driver gets it. In-sender delay captures the delay contribution from reliable retransmissions and kernel
buffering. For TCP packets, this component dominates the overall end-to-end delay. For UDP packets, it is negligible
since UDP has no kernel buffering or reliable transmission or congestion control. For DCCP packets, this component is
also very small due to DCCP’s unreliability semantics and its late data choice. TCP application’s CDF in Figure 9 has a
longer tail than that in Figure 10, the difference comes mostly from TCP receiver side’s in-order delivery delay.

4.3. Late Data Choice
We have shown that our packet ring API lets applications avoid sending stale packets by removing stale packets. Our
API gives applications much more flexibity than that without bothering the kernel. Consider a simple example. In MPEG
encoding, I-frames are key frames while B/P-frames are incremental data. If the total bandwidth requirement to stream
a MPEG video is higher than what is available, it is better to drop B/P-frames in favor of I-frames. In our experiment,
we assume that 10% of the packets are I-frames, which is in line with some real medium-quality MPEG4 sports videos
we collected. All frames have equal size. The link bandwidth is 50 kB/s. The sending application implements a simple
late-data-choice algorithm that preferentially removes B/P-frame packets from the packet ring when there are 3 or more
packets enqueued; I-frame packets are removed only when removing all stale B/P-frame packets is not enough. We run
experiments with sender application sending packets every 10 ms, 20 ms, and 25 ms respectively, all requiring more
bandwidth than the link provides.

Table 1 compares the percentages of I-frames among all received frames and the packet drop rates observed at the
token bucket link queue using UDP, TCP and DCCP transports. Neither UDP nor TCP is flexible; they treat I-frame
packets and B/P-frame packets equally, so roughly 10% of the packets received are I-frames, the same as that in the
original encoding. The DCCP application, however, can adaptively change the ratio to according to very different network
conditions, which results in only gracefully degraded video quality. Note that this adaptation would be impossible without
congestion control. Only after the DCCP sender reduces its rate to avoid congestion losses can it preferentially drop
packets, knowing that those remaining will probably get through the network.

The UDP application blindly sends out packets regardless of network conditions, and hence incurs high loss rates.
The congestion control mechanisms in TCP and DCCP keep the network loss rate low.



I-Frame Percentage Packet Drop Rate
Send interval UDP TCP DCCP UDP TCP DCCP

10 ms 10.1% 10% 23.8% 62% 1.2% 0.7%
20 ms 10.1% 10% 12.8% 37% 0.5% 0.5%
25 ms 10.1% 10% 10.1% 11% 0.6% 0.6%

Table 1.Comparison of I-frame percentages among all frames received and packet drop rates.

5. CONCLUSION
We have presented the design, implementation and evaluation of an efficient, flexible user-kernel interface for Datagram
Congestion Control Protocol. This API uses shared memory to achieve very high throughput; it can reduce the per-
packet number of user-kernel data and control transfers to zero. At the same time, it also lets applications flexibly make
last-minute choices of what data to send.

Experimental results from our prototype Linux implementation show that applications using our copy-free API out-
perform comparable UDP applications by up to 60%, and that reducing user-kernel crossings can further improve the
performance by up to 71%. The API has low overhead even in the worst case, and scales well with numbers of senders.
Most significantly, applications using our API can achieve congestion control, low packet delay and late data choice
at the same time: a hypothetical MPEG application using congestion-controlled DCCP sent more than twice as many
important “I-frames” as a congestion-unaware UDP application. Thus, a congestion-controlled datagram protocol with a
flexible API can form the basis of a responsive streaming media service that adapts to network conditions.

REFERENCES
1. J. Chase, A. Gallatin, and K. Yocum, “End system optimizations for high-speed TCP,”IEEE Communications Magazine39(4),

pp. 68–74, 2001.
2. K. R. Fall and J. Pasquale, “Exploiting in-kernel data paths to improve I/O throughput and CPU availability,” inProc. USENIX

Winter 1993 Technical Conference, pp. 327–334, Jan. 1993.
3. R. Govindan and D. P. Anderson, “Scheduling and IPC mechanisms for continuous media,” inProc. 13th ACM Symposium on

Operating Systems Principles (SOSP), pp. 68–80, Oct. 1991.
4. P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain transfer facility,” inProc. 14th ACM Symposium on

Operating Systems Principles (SOSP), pp. 189–202, Dec. 1993.
5. J. Pasquale, E. Anderson, and P. K. Muller, “Container shipping: Operating system support for I/O intensive applications,”IEEE

Computer27, pp. 84–93, Mar. 1994.
6. J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven kernel,”ACM Trans. on Computer

Systems15, pp. 217–252, Aug. 1997.
7. H. K. J. Chu, “Zero-copy TCP in solaris,” inUSENIX Annual Technical Conference, pp. 253–264, 1996.
8. A. Gallatin, J. Chase, and K. Yocum, “Trapeze/IP: TCP/IP at near-gigabit speeds,” inProceedings of the USENIX Annual Tech-

nical Conference, 1999.
9. S. Cen, C. Pu, and J. Walpole, “Flow and congestion control for Internet media streaming applications,” Tech. Rep. CS-97-03,

Oregon Graduate Institute, 1997.
10. B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly delivery of streaming media,” inProc. 8th International

Conference on Network Protocols, pp. 165–176, Nov. 2000.
11. E. Kohler, M. Handley, S. Floyd, and J. Padhye, “Datagram Congestion Control Protocol (DCCP),” Internet-Draft draft-ietf-

dccp-spec-05, Internet Engineering Task Force, Oct. 2003. Work in progress.
12. J. Huang, C. Krasic, J. Walpole, and W. chi Feng, “Adaptive live video streaming by priority drop,” inEEE Conference on

Advanced Video and Signal Based Surveillance, 2003.
13. S. H. Kang and A. Zakhor, “Packet scheduling algorithm for wireless video streaming,” in12th International Packet Video

Workshop, Apr. 2002.
14. W. Feng, M. Liu, B. Krishnaswami, and A. prabhudev, “A priority-based technique for the best-effort delivery of stored video,”

in Proceedigns of SPIE/IS&T Multimedia Computing and Networking, Jan. 1999.
15. D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha, “Streaming video over the internet: Approaches and directions,” in

IEEE Transactions on Circuits and Systems for Video Technology, Mar. 2001.
16. R. F. Rashid and G. F. Robinson, “Accent: A communication oriented network operating system kernel,” inProc. 8th ACM

Symposium on Operating Systems Principles (SOSP), pp. 64–75, Dec. 1981.
17. V. S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified I/O buffering and caching system,”ACM Trans. on Computer

Systems18, pp. 37–66, Feb. 2000.
18. R. Bhoedjang, T. R̈uhl, and H. E. Bal, “Design issues for user-level network interface protocols on Myrinet,”IEEE Computer

31, pp. 53–60, Nov. 1998.
19. D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr., “Exokernel: An operating system architecture for application-level resource

management,” inProc. 15th ACM Symposium on Operating Systems Principles (SOSP), pp. 251–266, Dec. 1995.


