
Paxos Made Practical

David Mazières

1 Introduction

Paxos [3] is a simple protocol that a group of ma-
chines in a distributed system can use to agree
on a value proposed by a member of the group.
If it terminates, the protocol reaches consensus
even if the network was unreliable and multiple
machines simultaneously tried to propose differ-
ent values. The basic idea is that each proposal
has a unique number. Higher numbered pro-
posals override lower-numbered ones. However,
a “proposer” machine must notify the group of
its proposal number before proposing a partic-
ular value. If, after hearing from a majority
of the group, the proposer learns one or more
values from previous proposals, it must re-use
the same value as the highest-numbered previ-
ous proposal. Otherwise, the proposer can select
any value to propose.

The protocol has three rounds. In the first
round, the proposer selects a proposal num-
ber, n > 0. n’s low-order bits should con-
tain a unique identifier for the proposer ma-
chine, so that two different machines never se-
lect the same n. The proposer then broadcasts
the message prepare(n). Each group member
either rejects this message if it has already seen
a prepare message greater than n, replies with
prepare-result(n′, v′) if the highest numbered
proposal it has seen is n′ < n for value v′, or
replies with prepare-result(0,nil) if it has not
yet seen any value proposed.

If at least a majority of the group (including
the proposer) accepts the prepare message, the
proposer moves to the second round. It sets v

to the value in the highest-numbered prepare-

result it received. If v is nil, it selects any
value it wishes for v. The proposer then broad-

casts the message propose(n, v). Again, each
group member rejects this message if it has seen
a prepare(n′′) message with n′′ > n. Other-
wise, it indicates acceptance in its reply to the
proposer.

If at least a majority of the group (includ-
ing the proposer) accepts the propose message,
the proposer broadcasts decide(n, v) to indicate
that the group has agreed on value v.

A number of fault-tolerant distributed sys-
tems [1, 4, 8] have been published that claim to
use Paxos for consensus. However, this is tanta-
mount to saying they use sockets for consensus—
it leaves many details unspecified. To begin with,
systems must agree on more than one value.
Moreover, in fault-tolerant systems, machines
come and go. If one is using Paxos to agree on
the set of machines replicating a service, does a
majority of machines mean a majority of the old
replica set, the new set, or both? How do you
know it is safe to agree on a new set of replicas?
Will the new set have all the state from the old
set? What about operations in progress at the
time of the change? What if machines fail and
none of the new replicas receive the decide mes-
sage? Many such complicated questions are just
not addressed in the literature.

The one paper that makes a comprehensive
effort to explain how to use a Paxos-like pro-
tocol in a real system is Viewstamped Replica-
tion [6]. However, that paper has two shortcom-
ings, the first cosmetic, the second substantive.
First, Viewstamped Replication is described in
terms of distributed transactions. As depicted
in Figure 1, a system consists of groups of ma-
chines. Each group contains of one or more co-

horts, which are machines that maintain replicas

1



group

cohort
primary

cohort cohort

group

cohort

two-phase commit

cohort

cohort
primary

group

primary
cohort

cohort cohort

Figure 1: Overview of viewstamped replication

of the same objects. Different groups store dif-
ferent objects. Transactions span objects in mul-
tiple groups, with a two-phase commit used to
commit transactions across groups. Distributed
transactions add a great deal of complexity that
not all applications need, making it harder to fig-
ure out how to replicate a simple system. Thus,
in this paper, we concentrate on implementing a
single group that replicates a state machine.

The second limitation of Viewstamped Repli-
cation is an assumption that the set of possible
cohorts is fixed over time. The system requires
participation of a majority of all possible cohorts,
when it would be far better to require only a
majority of all active cohorts. For example, if
a group has five cohorts and two of them fail,
the group will reconfigure itself to have three co-
horts and continue to operate. However, if one
more cohort fails before first two can be fixed, the
group will also fail. This is unfortunate, since a
majority of the three active cohorts is still func-
tioning. More generally, for many applications it
would be desirable to be able to add and remove
cohorts from a group dynamically, for instance
to facilitate migrating cohorts for maintenance
or load-balancing purposes.

The remainder of this paper describes a prac-
tical protocol one can use to replicate systems
for fault tolerance. Unlike other papers on repli-
cated systems, it doesn’t gloss over the details
of how to use Paxos. It also overcomes a signifi-
cant limitation of Viewstamped Replication and
likely other Paxos-based systems.

2 State machine replication

We describe the protocol in terms of state-
machine replication. A state machine is a deter-
ministic service that accepts requests and pro-
duces replies. Because the service is determin-
istic, if two instances of the same state machine
start in the same initial state and receive identi-
cal sequences of requests, they will also produce
identical replies.

To make this more concrete, let us design a
C++ interface that can be used between a ser-
vice to be replicated and an implementation of
the replication protocol described in this paper.
A replication system provides two libraries, a
server-side library, against which one links the
service-specific state machine implementation,
and a client-side library, which allows clients

2



to send requests to the state machine and get
replies. For the interface, let buf be a C++ data
structure implementing a variable-size array of
bytes that can be grown or shrunk as needed.

The server-side replication library provides
three functions:

id_t newgroup (char *path);

id_t joingroup (id_t group,

char *path);

int run (char *path,

sockaddr *other_cohort,

buf (*execute) (buf));

The newgroup function initializes a new repli-
cated state machine. The function creates a di-
rectory called path, and uses it to store persis-
tent state for the group. newgroup must only
be called once for each state machine you create.
When newgroup returns, a new group exists with
a single cohort, namely the machine on which
newgroup was invoked. We assume that id t,
the type used for group names, is large enough
that the probability of two newgroup invocations
selecting the same group name is negligible.

When another cohort wishes to join a partic-
ular group, it must initialize its own state di-
rectory by calling the joingroup function. This
creates the necessary files for the cohort to try to
join group, but the cohort will not actually be-
come a member of group until existing cohorts
accept it into the group, as described later.

Finally, the bulk of the work takes place in the
run function, which takes three arguments. path
is the directory containing the state machine’s
files. other cohort is an optional argument. If
it is NULL, run will attempt to join the group by
contacting the cohorts that existed the last time
this cohort was running. In some cases, such as
right after joining a group, the replication system
won’t know of other cohorts, in which case it is
necessary to tell the library how to contact at
least one cohort currently active in the group.

The final argument is a function pointer to a
single function that implements the state ma-
chine being replicated. Each state machine must
supply a function

buf execute (buf request);

that takes requests for the state machine and re-
turns replies. Note that unless there is an error,
run never returns; it just loops forever calling
execute.

On the client side, the replication library pro-
vides a matching function to execute:

buf invoke (id_t group,

sockaddr *cohort,

buf request);

When a client calls invoke, the library, using the
protocol described in this paper, attempts to call
execute with the exact same request argument
on every cohort in the group. If multiple clients
call invoke concurrently, the replication system
chooses the same execution order for requests on
all cohorts. Because the service is deterministic,
execute returns the same result on every cohort.
invoke returns a copy of this result on the client.
When invoking an operation in a group for the
first time, it may be necessary to tell the client
library how to contact members of the group.
The cohort argument, if not NULL, can tell the
library how to contact a member of the group.

One particularly easy way to implement an
execute function is to implement a server us-
ing a remote procedure call (RPC) interface.
An RPC library typically waits for a message
from the network, decodes the procedure num-
ber and marshaled arguments, calls the appro-
priate C++ function for the procedure, and then
marshals the results of the called function to be
shipped back to the client. One can implement
execute by just relaying the bytes for RPC re-
quests and responses to and from an instance of
the server (provided the server does not receive
requests from any other source). execute can
be in a small stand-alone program that talks to
an unmodified server over local stream sockets.
For efficiency, however, execute may be imple-
mented as a special type of RPC transport in the
same address space as the server.

Unfortunately, not all RPC servers are deter-
ministic. For example, a file server may set the

3



modification time in a file’s inode when it re-
ceives a write request. Even if two cohorts run-
ning the same file server code execute identical
write requests, they will likely use different time
values for the same write operation, thereby en-
tering divergent states. This problem can be
fixed, at the cost of some transparency, by hav-
ing one cohort choose all the non-deterministic
values for an operation and having all cohorts
use those values. To do this we change run’s
interface to take two function arguments:

buf choose (buf request);

buf execute (buf request,

buf extra);

The fist function, choose, selects any non-
deterministic values (such as the file modifica-
tion time) that must be used to execute request,
marshals them into a buffer, and returns the
buffer. The second function, execute, now has
a second argument, extra, that is the result of
calling choose. For any given request, the li-
brary calls choose on one cohort and supplies
its result as the extra argument to execute on
all cohorts.

3 The setting

The rest of this paper describes a protocol that
can be used to implement the replication system
whose interface was presented in the last section.
To be concrete about the protocol, we will de-
scribe the messages using Sun RPC’s XDR (ex-
ternal data representation) language [7]. XDR
types are similar to C data structures with a few
exceptions. Angle-brackets designate variable-
length arrays. For example,

cohort_t backups<>;

declares backups to be a variable length array
of objects of type cohort t. The special type
opaque is used to designate bytes (which can
only be declared in arrays), so that

opaque message<>;

declares message to be a variable-length array of
bytes, which might be represented as the C++
buf type from the previous section. Type hyper
designates a 64-bit integer. Structure declara-
tions are like C. Unions are different, but we ex-
plain when they arise.

We define a few data types without specify-
ing them, because the particular implementation
does not really matter. For example, we assume
every machine has a unique identifier of type
cid t, which can stand for cohort-id or client-id
depending on the context. cid t might be some
centrally assigned value, or just a large enough
array of bytes that if machines chose their identi-
fiers randomly, the probability of collision is neg-
ligible. We also represent a machine’s network
address as net address t, which might, for in-
stance, be an IP address and UDP port number.

There are two standard models for dealing
with persistence in a replicated system. One is to
treat reboots just like any other form of failure.
Since the system’s goal is to survive as long as
a majority of cohorts do not fail simultaneously,
we do not need to keep any persistent state when
viewing reboots as failures. We are assuming a
majority will always be up. In this model, a
cohort gets a fresh cid t after each reboot; we
assume it knows nothing about past operations,
except possibly as a bandwidth-saving optimiza-
tion for re-synchronizing state. Note that view-
stamped replication uses this model, but also re-
quires a few forced disk writes because cohorts
cannot choose fresh cid ts upon reboot.

The other model is to assume that any ma-
chine may reboot at any time, and that as long
as it doesn’t lose its disk, this doesn’t count as a
failure. Given three replicas in this model, if all
three are power-cycled simultaneously and one
loses a disk in the process, the system can con-
tinue working as soon as the other two machines
reboot. We will design our protocol to use this
second model. When we say that a cohort logs
information, we mean it does a forced write to
disk before proceeding. It is easy to convert our
protocol to the reboot-as-failure model by mak-

4



1

2

4

3

3

4

3

2

1

execute res

replicate res

replicate arg

execute arg

client

primary
cohort

backup
cohort

backup
cohort

Figure 2: Messages sent during normal-case op-
eration, when no cohorts fail or join the system.

ing all disk writes asynchronous.

4 Normal-case operation

In normal-case operation, when no cohorts fail
or join the system, one cohort in a group is des-
ignated the primary while the others are back-
ups, and all cohorts agree on this configuration
of the group. We use the term view to denote a
set of active cohorts with a designated primary.
The system also assigns each view a unique view-

id. As described in the next section, view-ids in-
crease monotonically each time the group’s view
changes.

When the system executes a request, four
types of message must be sent, as depicted in
Figure 2. At a very high level:

1. The client sends its request to the primary
cohort.

2. The primary cohort logs the request and for-
wards it to all other cohorts.

3. Cohorts log the operation and send an ac-
knowledgment back to the primary.

4. Once the primary knows that a majority of
cohorts (including itself) have logged the op-

eration, it executes the operation and sends
the result to the client.

In the remainder of this section, we describe the
contents of these messages in more detail.

Before initiating a request, the client must
learn the group’s current primary server and
view-id. How it learns these is outside the scope
of the protocol. One possibility is to rely on
some external directory service; another is to dis-
cover the identity of a cohort on the local net-
work through broadcast RPC. Once the client
knows the identity of any cohort in the group, it
can learn the group’s primary and view-id from
that cohort.

The client sends its request to the primary in
the following message:

struct execute_arg {

cid_t cid;

uid_t rid;

viewid_t vid;

opaque request<>;

};

Here cid is the client’s unique identifier. rid

(“request id”) is a unique identifier for this re-
quest. Its purpose is to allow the primary co-
hort to recognize duplicate requests and avoid re-
executing them. vid is the current view-id. Its
purpose is to prevent future primary cohorts, af-
ter view changes, from re-executing previous re-
quests they may not have known about. request
specifies the argument of the execute function.

The primary cohort numbers all requests it re-
ceives in a given view with consecutive times-

tamp values, starting at 1. Timestamps specify
the order in which cohorts must execute requests
within a view. Since view numbers are mono-
tonically increasing, the combination of view-id
and timestamp, which we call a viewstamp, de-
termines the execution order of all requests over
time. The primary server includes the view-
stamp it assigns an operation when forwarding
the operation to backups:

struct viewstamp_t {

5



viewid_t vid;

unsigned ts;

};

struct replicate_arg {

viewstamp_t vs;

execute_arg arg;

opaque extra<>;

viewstamp_t committed;

}

Here extra is any nondeterministic state to pass
as the second argument of execute. The field
committed specifies a viewstamp below which
the server has executed all requests and sent
their results back to clients. These committed
operations never need to be rolled back and can
therefore be executed at backups.

When executing a request, a cohort must per-
sistently record the result of the last operation
it has executed for each client, in case the pri-
mary’s reply to the client gets lost and the pri-
mary subsequently fails. This does not require
a forced disk write as long as the old state and
log are kept persistently, so that the cohort can
re-execute the request after a reboot. Cohorts
can safely delete log entries before committed,
although keeping old entries for a while makes it
more efficient to synchronize state with another
cohort that may have been partitioned from the
network and missed a few operations.

As previously described, the primary assigns
sequential timestamp (ts) values to viewstamps
within a view. Backups use this field to ensure
they have not missed any operations. A backup
only logs a request after logging all previous op-
erations, and only acknowledges a request once
it has been logged. The backup acknowledges
the request by viewstamp:

struct replicate_res {

viewstamp_t vs;

};

Finally, after receiving acknowledgments from
a majority of cohorts (including itself), the pri-

mary calls the execute function on request and
sends the reply back to the client:

struct execute_viewinfo {

viewid_t vid;

net_address_t primary;

};

union execute_res switch (bool ok) {

case TRUE:

opaque reply<>;

case FALSE:

execute_viewinfo viewinfo;

};

Here the RPC union syntax simply says that the
result can be one of two types. If ok is true, all
went well and the reply field contains the result
of the execute function. If ok is false, the client
either got the view-id wrong or sent the request
to a cohort other than the primary; in this case
the viewinfo field contains the current view-id
and primary.

5 View-change protocol

At some point, one of the cohorts may suspect
that another cohort has crashed because it fails
to respond to messages. Alternatively, a new co-
hort may wish to join the system, possibly to
replace a previously failed cohort. Either sce-
nario calls for the group’s membership to change.
Since the trigger for a such a change may be
the primary failing, any cohort that is part of
the current view may decide to try to change
the group’s configuration by initiating a view

change. This is a multi-step process like Paxos
that involves first proposing a new view-id, then
proposing the new view.

Figure 3 shows the state maintained by each
cohort for keeping track of view changes. When
a cohort updates this view-change state, it al-
ways record the new state to disk with a forced
write before sending its next network message.
We will discuss the meaning of the fields as we
develop the protocol. However, we note that a

6



struct vc_state {

enum {

/* active in a formed view: */

VC_ACTIVE,

/* proposing a new view: */

VC_MANAGER,

/* invited to join a new view: */

VC_UNDERLING

} mode;

/* last (or current) formed view: */

view_t view;

/* last committed op at any cohort*/

viewstamp_t latest_seen;

/* highest proposed new view-id: */

viewid_t proposed_vid;

/* accepted new view (if any): */

view_t *accepted_view;

};

Figure 3: View-change state maintained by each
cohort.

cohort only participates in the normal-case pro-
tocol of the last section when mode is VC ACTIVE.
If an execute or replicate RPC arrives when the
cohort is in one of the other states, it ignores the
request.

5.1 Proposing a new view-id

To initiate a view change, a cohort starts by
proposing a new view-id. The cohort propos-
ing the view-id is called the view manager for
the new view. (The view manager should not be
confused with the primary; if the view manager
succeeds in forming a new view, it may or may
not become the primary in that view.) The first
step is to select a view-id greater than the high-
est one the view manager has ever seen (which
it stores in proposed vid).

A view-id consists of two fields:

struct viewid_t {

unsigned hyper counter;

cid_t manager;

};

Given two view-ids a and b, we say a < b

iff (a.counter < b.counter or (a.counter =
b.counter and a.manager < b.manager)). The
view manager selects a new view-id by in-
crementing proposed vid.counter and setting
proposed vid.manager to its own cohort-id. By
including the manager’s cohort-id in the view-id,
we ensure no two view managers ever propose the
same view-id.

Figure 4 shows a typical instance of the view-
change protocol. Once the view manager has
selected a new view-id, it sends a view change

RPC to all the other cohorts that are either in
the current view or should join the new view.
The arguments are:

struct cohort_t {

cid_t id;

net_address_t addr;

};

struct view_t {

viewid_t vid;

cohort_t primary;

cohort_t backups<>;

};

struct view_change_arg {

view_t oldview;

viewid_t newvid;

};

Here newvid is the newly selected view-id, while
oldview is the most recent successfully formed
view that the view manager knows about. In
oldview, vid is the view-id of the view, primary
is the cohort-id and network address of the pri-
mary, while backups contains the cohort-ids and
network addresses of the backups.

The old view-id in the view change RPC ar-
gument, oldview.vid, plays an important role.
It identifies the instance of the Paxos protocol
being run. Paxos is invoked once for each view

7



1 3

2

2

4

4

4

5

2

4

5

3

1

2

cohort

view-
manager

cohort

cohort
underling

underling

new view res

new view arg

view change res

view change arg

init view arg

new primary
cohort

underling/

Figure 4: Messages sent during a view change.

to agree on the configuration of the next view
and ensure at most one such configuration can
proceed. The view-id plays a dual role. It is the
Paxos proposal number, but then, once a view
is formed, becomes the identifier that names the
next instance of Paxos.

We call cohorts that receive a view change re-
quest underlings, to distinguish them from the
view manager that sent the RPC. When an un-
derling receives a view change RPC, there are
four possible cases to consider:

1. oldview.vid in the view change request is
less than view.vid in the underling’s state.
Thus, at least one subsequent view has al-
ready successfully formed since the one the
manager wants to change. The underling
therefore rejects the view change RPC.

2. oldview.vid ≥ view.vid, but newvid in
the request is less than proposed vid in the
underling’s state. Thus, another manager
has already proposed a higher new view-id.
Again, the underling rejects the proposed
view change, but updates view ← oldview

in its state if view.vid < oldview.vid.

3. oldview.vid = view.vid and newvid ≥

proposed vid, so this is the highest new

view-id the underling has seen proposed.
However, accepted view is non-NULL,
meaning the underling has already agreed
to a particular configuration for the view
following oldview.vid. (We note, how-
ever, that the underling can change its mind
about this configuration if a majority of co-
horts from oldview didn’t agree on it.)

4. Either oldview.vid > view.vid (in which
case the underling was not even aware of the
last view), or else oldview.vid = view.id

and accepted view = NULL. This is like the
previous case, except the underling never
agreed to any particular configuration for
the view after oldview.

The underling sends one of two reply types to
a view change RPC, depending on whether it
rejects or accepts the view change request:

struct view_change_reject {

view_t oldview;

viewid_t newvid;

};

struct view_change_accept {

cit_t myid;

bool include_me;

viewstamp_t latest;

view_t *newview;

};

union view_change_res

switch (bool accepted) {

case FALSE:

view_change_reject reject;

case TRUE:

view_change_accept accept;

};

In cases 1 and 2, the underling rejects the view
change RPC. It refuses to continue as an un-
derling to this view manger, and sends back the
latest successful view and proposed view-id that
it knows about so that the failed view manager
can update its stale state.

In cases 3 and 4, the underling accepts the
view change RPC. It stops being an underling

8



to any other view manager, and it stops being
a view manager itself if it had previously initi-
ated a view change. The underling sends back
its cohort-id in accept.myid and indicates if it
wants to be included in the next view by set-
ting accept.include me. (For load-balancing
purposes, a functioning cohort might want to
leave a group.) The underling also sends back
the viewstamp on the last entry in its log in
accept.latest (not latest seen in the state,
which is only used by the view manager). In
case 3, the underling includes the configura-
tion it has agreed to for the next view by set-
ting *accept.newview to *accepted view. In
case 4, the underling sets accept.newview to
NULL, and updates its state so view← oldview

and accepted view← NULL.

5.2 Proposing a new view

The view manager collects replies to view change
RPCs until it either aborts the view change, all
cohorts reply, or, after a timeout, once it can
form a new view. It aborts the view change if any
of the underlings reject the view change request,
or if it accepts a view change from a different
view manager, thereby becoming an underling.

The view manager can form a new view V if
1) at least one cohort in V knows all past com-
mitted operations, and 2) no other view manager
can form a view that executes operations concur-
rently with V . The first condition will be met if
either a majority of cohorts in the previous view,
Vold, are also in V , or if the primary from Vold is
in V . The second condition can be met on two
more conditions: 1) a majority of cohorts in Vold

agree on the configuration of V , and 2) if a ma-
jority of Vold previously tried unsuccessfully to
form a new view V ′, then V contains the same
cohorts as V ′ and a majority of them agree V ′

never executed and never will execute a request.

Let us first consider the view manager’s be-
havior in the simpler case that this is the first
attempt to form a successor to view Vold. The
view manager has sent a view change RPC to ev-
ery other member of Vold and to any new cohorts

it wants to include in the next view. The RPC
arguments have oldview set to Vold. Because the
cohorts have not yet agreed on a successor view,
all replies to the RPC will have a NULL accept

.newview. Once all cohorts have replied, or a
timeout has expired and the cohorts that did re-
ply, together with the view manager, constitute
a majority of Vold, the view manager goes about
selecting the configuration of the new view.

The view manager first determines what co-
horts new view V will include. It starts by
including itself (if it wants to stay in the
group) and all cohorts that replied with accept

.include me set to true. If this set of cohorts is
not guaranteed to contain a member that knows
all past operations, the view manager starts ad-
ditionally conscripting cohorts that set accept

.include me to false. If the primary from Vold

replied with accept.include me false, the view
manager includes it in the new view, which is
sufficient. Otherwise, the view manager starts
including cohorts in order of decreasing accept

.latest fields until V contains a majority of
Vold. (It can break ties arbitrarily.)

Next, the view manager selects a primary. If
the primary from Vold is also in V , the view man-
ager keeps the same primary. Otherwise, it se-
lects the cohort in V with the highest accept

.latest field, breaking ties first by preferen-
tially selecting itself, then arbitrarily. The view
manager sends the proposed new view V to all
cohorts in Vold and V with a new view RPC.
The arguments also include the highest accept

.latest viewstamp reported by any cohort:

struct new_view_arg {

viewstamp_t latest;

view_t view;

};

If an underling has switched to a different view
manager with a higher proposed newvid, it re-
jects the new view RPC. Otherwise, it compares
latest to the viewstamp at the end of its own
log, and if any operations are missing brings itself
up to date by transferring the missing log entries

9



(or entire current state) from the proposed new
primary. Finally, it replies:

struct new_view_res {

bool accepted;

};

If the set of cohorts that has accepting the new
view RPC grows to include both a majority of
Vold and a majority of V , it is then safe to begin
executing operations in view V . If the manager
is not the primary, it notifies the new primary
with an init view RPC:

struct init_view_arg {

view_t view;

};

At this point, the new primary enters the
VC ACTIVE mode. It logs and broadcasts a
special replicate arg message to the backups
of the new view, setting vs.ts to 0 and arg

.request to the following structure:

struct init_view_request {

view_t newview;

viewstamp_t prev;

};

newview is the composition of the new view.
prev is the viewstamp of the last committed op-
eration in the previous view (to facilitate walk-
ing the log backwards). Recall that regular op-
erations start with timestamp 1; thus backups
recognize timestamp 0 as a special operation ini-
tializing the view. The backups log the opera-
tion, update view in their state, enter VC ACTIVE

mode, and reply. Once a majority of backups has
replied, the new view has formed and it is safe for
any cohorts that have dropped out of the group
to erase their state (though they must poll the
new primary to discover this).

If a view manager is not the first cohort to
attempt to form a new group, it is possible that
a previous view manager issued a new view RPC
proposing view V ′, and that one or more of the
cohorts accepted the new view. If a majority
of cohorts accepted V ′, the view may even have

formed. It is quite possible for the view manager
not to know that V ′ has formed, particularly if
there is little membership overlap between the
old and new views. However, if a majority of Vold

accepted V ′, and a majority of Vold also accepts
the new view manager’s view change RPC, then
at least one view change res will contain a non-
NULL accept.newview.

If the view manager receives a non-NULL
accept.newview, this specifies a new view V ′

that could potentially have formed. If there
are multiple non-NULL accept.newviews, the
view manager considers only the one with the
highest accept.newview->vid; let this poten-
tial view be V ′. The view manager then send
additional view change RPCs (with the same
view change arg) to any cohorts in V ′ to which
it didn’t already send the RPC. The view man-
ager must wait for both a majority of Vold and a
majority of V ′ to accept this view change RPC.

When it comes time to form the new view,
there are two possibilities to consider. Either
the primary in V ′ has replied to the view change
RPC, or it hasn’t. If it has, the view manager
chooses a new view V with exactly the same pri-
mary and backup cohorts as V ′; only the view-id
is different. It then proceeds with a new view
RPC as before. If the primary in V ′ does not re-
ply to the view change RPC, it may have failed,
either before or after forming a new view. The
view manager therefore constructs a new view V

that has the same set of cohorts as V ′ (includ-
ing the unresponsive primary), but for a primary
it chooses the responsive node with the highest
viewstamp in its latest field, then proceeds as
before.

6 Optimizations

A number of optimizations can make the repli-
cation protocol described more efficient. As de-
scribed, the protocol requires all requests to be
broadcast to backup cohorts, including read-only
operations. Otherwise, if the primary did not
wait to hear from a majority of backups before

10



replying to read-only requests, it might be un-
aware that the remaining replicas had formed
a new view (for instance because of a network
partition), and therefore return stale data. This
broadcast can be avoided through leases [2]. For
example, if a majority of backups promise not to
form a new view for 60 seconds, the primary can
temporarily respond to read-only requests with-
out involving backups.

Another optimization concerns hardware cost.
As described, the system requires at least three
full replicas to survive a failure, so that the re-
maining two constitute a majority. With only
two replicas, neither can form a view on its own
without running the risk that the other replica
also concurrently formed a view. A solution is to
employ a third machine, called a witness [5], that
ordinarily sits idle without executing requests,
but can participate in the consensus protocol to
allow one of the other two replicas to form a view
after a failure or network partition.

Acknowledgment

The author thanks Nickolai Zeldovich for his de-
tailed feedback on the paper and contributions
to the protocol.

References

[1] Mike Burrows. Chubby distributed lock ser-
vice. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementa-

tion, Seattle, WA, November 2006.

[2] Cary G. Gray and David R. Cheriton. Leases:
An efficient fault-tolerant mechanism for dis-
tributed file cache consistency. In Proceed-

ings of the 12th ACM Symposium on Op-

erating Systems Principles, pages 202–210.
ACM, 1989.

[3] Leslie Lamport. The part-time parliament.
ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[4] Edward K. Lee and Chandramohan
Thekkath. Petal: Distributed virtual
disks. In Proceedings of the 7th International

Conference on Architectural Support for

Programming Languages and Operating

Systems, pages 84–92. ACM, October 1996.

[5] Barbara Liskov, Sanjay Ghemawat, Robert
Gruber, Paul Johnson, and Liuba Shrira.
Replication in the harp file system. In Pro-

ceedings of the 13th ACM Symposium on Op-

erating Systems Principles, pages 226–238,
Pacific Grove, CA, October 1991. ACM.

[6] Brian M. Oki and Barbara H. Liskov.
Viewstamped replication: A new primary
copy method to support highly-available dis-
tributed systems. In Proceedings of the 7th

Annual Symposium on Principles of Dis-

tributed Computing, pages 8–17, 1988.

[7] R. Srinivasan. XDR: External data represen-
tation standard. RFC 1832, Network Work-
ing Group, August 1995.

[8] Chandramohan Thekkath, Timothy Mann,
and Edward K. Lee. Frangipani: A scal-
able distributed file system. In Proceedings of

the 16th ACM Symposium on Operating Sys-

tems Principles, pages 224–237, Saint-Malo,
France, October 1997. ACM.

11


