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ABSTRACT
The ability to extend kernel functionality safely has long
been a design goal for operating systems. Modern operating
systems, such as Linux, are structured for extensibility to en-
able sharing a single code base among many environments.
Unfortunately, safety has lagged behind, and bugs in ker-
nel extensions continue to cause problems. We study three
recent kernel extensions critical to Docker containers (Over-
lay File System, Open vSwitch Datapath, and AppArmor)
to guide further research in extension safety. We find that
all the studied kernel extensions suffer from the same set
of low-level memory, concurrency, and type errors. Though
safe kernel extensibility is a well-studied area, existing solu-
tions are heavyweight, requiring extensive changes to the
kernel and/or expensive runtime checks. We then explore the
feasibility of writing kernel extensions in a high-level, type
safe language (i.e., Rust) while preserving compatibility with
Linux and find this to be an appealing approach. We show
that there are key challenges to implementing this approach
and propose potential solutions.

CCS CONCEPTS
•Computer systems organization→Reliability; • Soft-
ware and its engineering → Language features.
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1 INTRODUCTION
Extensibility has long been a desired property of operating
systems as it allows users with diverse needs to share the
same core operating system codebase. This concept has been
widely incorporated, and Linux interfaces are designed to be
easily extensible. Today, kernel extensions provide critical
functionality to ensure security and efficiency in the cloud.
For example, Docker containers [8] rely on Open vSwitch
Datapath [22], AppArmor [2], and OverlayFS [21]. Bugs in
these extensions can affect the containers using them, the
user’s containerized applications, and potentially the rest of
the system. Ensuring the correctness of extensions is there-
fore necessary for the stability of modern cloud solutions.
Despite significant work in the area of safe extensibility,

such as VINO [24], SFI [27], and SPIN [3], existing solutions
are too heavyweight for modern operating systems, requir-
ing either expensive changes to the kernel and/or expensive
runtime checks. More lightweight solutions, such as lan-
guages like the Berkeley Packet Filter [18], do not support
the full complexity of kernel extensions. In Linux, the main
operating system used in the cloud, many kernel extensions
do not incorporate any of these existing solutions and remain
unprotected. Bugs in these unprotected extensions therefore
have the potential to affect the integrity of the underlying
system. Therefore, low-cost kernel extension safety is needed
to increase the stability of cloud systems.
We conduct a bug analysis of three kernel extensions

(Open vSwitch Datapath, AppArmor, and OverlayFS) in order
to understand the properties of errors in Linux extensions.
We focus on bugs that can be caught without knowledge
of the specific extension’s semantics and find that many of
these bugs relate to memory, concurrency, or typing. Linux
does little to isolate errors caused by kernel extensions, and
these bugs can cause undesirable behavior in the kernel
(e.g., panics, memory leaks, kernel thread crashes, deadlocks).
Moreover, 35% of the analyzed bugs involve multiple kernel-
to-extension transitions, and reasoning about this set of bugs
requires understanding the workflow between the kernel and
the extensions.
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We explore the feasibility of writing kernel extensions
in a type-safe, memory-safe, race-free language (i.e., Rust)
while maintaining compatibility with Linux. While using a
high-level, type-safe language for extensibility isn’t new [3, 7,
13, 15], previous works rewrite the whole operating system.
That approach doesn’t provide the interoperability and ease
of deployment that incremental extensibility requires. We
propose writing only extensions in the type-safe language.
This raises several questions: Can this approach provide rea-
sonable guarantees, and if so, what must be done to achieve
these guarantees? We find that Rust can provide the desired
properties, preventing 93% of analyzed bugs. We also explore
rewriting a simple file system—RomFS [23]—into Safe Rust
while maintaining compatibility with unmodified Linux.

While porting RomFS, we discovered challenges to sup-
porting this approach. First, Linux kernel interfaces are not
designed for compile-time safety checks. Linux interfaces
rely heavily on pointers that obscure type information. Since
Rust relies on its type system for safety, a naive implementa-
tion would not provide the full safety benefits. Second, the
hybrid code flow, where the code path repeatedly switches
between kernel and kernel extensions, causes challenges,
particularly for Rust’s resource management. Linux kernel
extensions commonly employ design patterns that involve
passing resources across the OS/extension boundary, but this
pattern complicates Rust’s automatic memory management.
Finally, translating C to Rust has general difficulties. Kernel
extensions rely heavily on pointer arithmetic and type cast-
ing, which are restricted in Rust for safety. In this paper, we
explore these issues further and propose possible solutions.
We believe that this approach has the potential to provide
incremental extensibility for Linux.

2 EXISTING ERRORS
To understand how to increase the safety of kernel exten-
sions, we analyzed the causes of errors found in several
existing Linux kernel extensions. We split bugs into two cat-
egories: high-level and low-level. High-level bugs are errors
in extension semantics and require extension-specific infor-
mation to detect and debug. In contrast, low-level bugs do
not require specific knowledge and are always bugs, such
as a NULL pointer dereference or an allocate without a free.
High-level bugs make up 50% of the analyzed bugs, but are
out of scope for this project and are left for future work.

Since our primary focus is on cloud systems, we analyzed
kernel extensions used to support Docker containers. For
diversity of behavior, we chose extensions related to secu-
rity, networking, and file systems. Respectively, the relevant
kernel extensions are AppArmor, Open vSwitch Datapath,
and OverlayFS. We analyzed the commit history of each

extension from 2014 to 2018. For each bug fix commit, we
determined the cause and effect of the bug.

In this analysis, we seek to provide information about the
general properties of bugs in kernel extensions. Our analysis
is limited by the small number of extensions we studied
and our method for discovering bugs. Since we rely on the
commit history, we only count bugs that have been found
and fixed. While our analysis is not a comprehensive bug
study, we identify broad categories of bugs that currently
exist in the selected extensions. We believe this information
can be used to guide future research in Linux extensibility.

We first describe how Linux handles errors. We then quan-
tify the distribution and effects of the analyzed bugs.

2.1 Linux Error Handling
Linux does relatively little to isolate the kernel from exten-
sions. Once an extension is loaded, it is treated as part of the
kernel and is given the same level of trust as the rest of the
kernel. Because of this, an extension can arbitrarily modify
any accessible kernel state and can be responsible for man-
aging memory of kernel data structures. Errors caused by
the kernel extension are handled in the same way as errors
from any other part of the kernel.
The Linux kernel as a whole tries to limit the effects of

errors on the system. Panics are relatively rare, and their
usage is generally discouraged. More commonly error paths
are oops and BUG. A kernel oops is a common error path for
issues in the Linux kernel. The kernel prints a stack trace and
tries to handle the issue if possible, panicing if the issue is
catastrophic.Oopses are caused by several types of low-level
bugs, such as NULL pointer dereferences and bad page faults.
An oops normally kills the offending kernel process, but can
panic when inside an interrupt (or, unlikely, if the kernel
is configured to panic on an oops). The offending kernel
thread is not given the chance to clean up, and the kernel
can be left in an inconsistent state. The BUG and BUG_ON
functions act as asserts in the kernel. When one of these
is hit, the kernel dumps register and stack information and
kills the kernel process. An extension usually causes a BUG
by freeing a junk value or potentially by executing a double
free. Like a kernel oops, a BUG can leave the kernel in an
inconsistent state.

2.2 Types of Errors
We defined three broad categories of low-level bugs: mem-
ory, concurrency, and type. Memory bugs relate to incorrect
memory usage, such as NULL pointer dereferences, use-after-
free, and memory leaks. Concurrency bugs involve locks or
data races. Type bugs result from a mismatch between the
variable’s type and how it is used. Often, this occurs because
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Bug Number Effect on Kernel
Use Before Allocate 6 Likely oops
Double Free 4 Undefined
NULL Dereference 5 oops
Use After Free 3 Likely oops
Over Allocation 1 Overutilization
Out of Bounds 4 Likely oops
Dangling Pointer 1 Likely oops
Missing Free 18 Memory Leak
Reference Count Leak 7 Memory Leak
Other Memory 1 Variable
Deadlock 5 Deadlock
Race Condition 5 Variable
Other Concurrency 1 Variable
Unchecked Error Value 5 Variable
Other Type Error 8 Variable

Table 1: Count of analyzed bugs with effects of each
bug, categorized as memory, concurrency, or type. Ef-
fects are described in subsection 2.1.

error values were treated as valid data. All of the analyzed
bugs fit into one of these three categories.
Table 1 shows the prevalence and effects of these bugs

in the kernel extensions we studied. Some bugs have “vari-
able” effects because the specific bug doesn’t always lead to
the same consequence. For example, a race condition on a
reference count can cause either a memory leak or a use-
after-free, depending on the exact interleaving of operations.
Most (68%) of the bugs we saw were memory bugs, and many
of these memory bugs (50%) were a form of memory leak.
An oops is the likely outcome of 26% of the bugs, while
other bugs have the potential to cause an oops; the “vari-
able” effect bugs can cause an oops, often because unknown
pointers are dereferenced. While memory leaks do not affect
the immediate functioning of the kernel, that memory is lost
from the system and can affect kernel operation unrelated
to the extension. Like the inconsistent state caused by an
oops, a memory leak cannot be fixed without restarting the
machine.

We noticed that many of the bugs appear in error handling
pathways or occur because of incorrect handling of error
values. We posit that it is difficult to test for bugs in error
handling code, so these errors are harder to catch by standard
testing infrastructure.

We found it helpful to also consider the resource lifetime
of some of the bugs. Both memory allocation and locking
involve a time frame when the relevant resource is needed.
Acquiring or releasing the resource at the wrong time often
results in bugs, such as deadlocks, memory leaks, use-after-
free bugs, or double frees. We classify these bugs by whether
the resource should only be held within one kernel call into

the extension or across multiple kernel calls. We found that
35% of relevant bugs involved behavior that spannedmultiple
kernel calls while the rest involved resources held within
one kernel call.

3 CURRENT APPROACHES
There has been significant work in the space of safe extensi-
bility. We classify previous projects into five categories.

High-level language. Operating systems such as Spin [3],
Singularity [13], Biscuit [7], and TockOS [15] are written in
high-level, type-safe languages. Spin, Singularity, and Biscuit
use garbage collected languages, while TockOS uses Rust
to provide safety without the added complexity of kernel
garbage collection. These solutions increase the safety of
kernel code using the memory and type safety properties of
the languages they employ. Since these guarantees depend
onmemory and type safety, many of the bugs analyzed above
would be impossible. These solutions require writing new
operating systems, and therefore do not provide incremental
extensibility to Linux. We can still use the knowledge from
these projects to influence our design. For example, TockOS
also faces challenges writing kernel data structures in Safe
Rust and integrating C and Rust.

Interpreted/JIT language. Languages such as the Berke-
ley Packet Filter (BPF) [18], or more recently the extended
Berkeley Packet Filter (eBPF), provide safety guarantees by
limiting the potential behavior of the extension. This ap-
proach allows user programs to run in an in-kernel virtual
machine, verifying safety properties and restricting permis-
sions when the code is loaded. eBPF does provide efficient
incremental extensibility, but imposes significant restrictions
on extensions. For example, eBPF disallows dynamic loops
and limits the maximum number of instructions. In addi-
tion, eBPF programs must fit within one of the provided
program types which define what permissions the program
has. eBPF primarily supports networking functionality, and
there has been work implementing Open vSwitch Datapath
using eBPF [26], but given the restrictions, it is difficult to
imagine this approach being feasible for general extensions.

Software fault isolation. Software fault isolation mecha-
nisms [4, 11, 17, 24, 27] apply runtime checks to ensure that
faults in extensions cannot affect the rest of the system. The
runtime checks needed to guarantee safety are extensive, and
even the relatively small performance overhead is more than
modern systems are willing to accept. In addition, SFI does
not solve the same problem that we would like to address.
SFI assumes that kernel extensions can be malicious, so it
focuses on restricting execution of extensions. We do not
address malicious code and instead focus on code quality,
helping well-meaning developers write correct code.
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Userspace. Another approach to extension safety is to
move extensions to userspace to limit their permissions. Sys-
tems with minimal kernels, such as the Exokernel [10] and
microkernel-based systems [1, 16], require this for all kernel
extensions. Some Linux kernel extensions can be structured
this way, such as implementing a file system using FUSE [12]
or implementing drivers in userspace [9]. However, this ap-
proach complicates development and can add performance
overhead. Since the in-kernel and system call interfaces are
so different, it is not obvious that all extensions, especially
security extensions, could be implemented in userspace.

Verification. One method of ensuring code safety is veri-
fication. There has been recent work [14, 20, 28] verifying
correctness of operating systems and file systems [5, 6, 25].
In one work focused on extensibility [19], kernel extensions
are verified, and the kernel requires the appropriate verifica-
tion when the extension is loaded. This approach can provide
strong safety guarantees, theoretically preventing all bugs
(including high-level bugs not addressed in this work), but
requires high development effort. There has been work on
reducing the burden of verifying operating systems [20, 28],
but we do not believe that verification is mature enough yet
to be widely accessible. Currently, employing verification
requires a significant time investment and expert knowledge
beyond what most developers have.

4 INCREMENTAL EXTENSIBILITY WITH
RUST

We explore a design that adapts the high-level language ap-
proach to provide incremental extensibility. In our proposed
approach, developers can write kernel extensions in Rust
without modifying the rest of the Linux kernel. We believe
that this approach has the potential to provide a practical
solution to safe incremental extensibility.

In our design, kernel extensions can be written purely in
Safe Rust, the subset of the language that does not allow
pointer dereferences. We chose Rust because it provides zero
cost abstractions and interoperates well with C. Like Modula-
3 used in Spin [3], Safe Rust provides strong safety guaran-
tees using a strict type system, preventing 93% of the bugs
we analyzed (only leaving deadlocks). Unlike Modula-3, Rust
does not have a garbage collector and has little performance
overhead compared to C. Rust has built in functionality to
interoperate with C, so C code can remain untouched.
We propose a lightweight framework for implementing

Linux kernel extensions in Safe Rust without modifying the
existing Linux kernel. Our system is impremented as a shim
layer between the kernel and the extension. This framework
implements safe wrappers around unsafe kernel functions
and enforces safe typing for the extension interface. The shim

static int romfs_fill_super(
struct super_block *sb,
void *data,
int silent

)

Figure 1: Function signature from RomFS showing
common pointer use.

layer and the kernel are trusted and can therefore contain
unsafe code.
As a proof of concept, we have applied this approach

to RomFS, a read-only, in-memory file system. RomFS is a
simple extension, only containing ~700 lines of code. This
endeavor brought our attention to some challenges with
implementing Linux extensions in Rust. We describe these
challenges and present possible solutions.

4.1 Challenges
While most code translation from C to Safe Rust has been
straightforward, some kernel design patterns require new
solutions. We identify two main sources of this difficulty:
kernel interfaces and the hybrid code flow involving code in
multiple languages.

Interfaces. Kernel interfaces, while designed for extensi-
bility, are not designed for type safety. Rust relies on its
strong type system to provide safety, however kernel inter-
faces use techniques that obscure type information. All data
structures and unstructured memory regions are given to
the extension as raw pointers. Pointers contain no built-in
guarantees about the size or validity of the region they point
to, so cannot be dereferenced in Safe Rust. This is a standard
mechanism of passing information in C, but isn’t compatible
with Rust’s safety checks. Without changes to the OS/ex-
tension interface, the benefit of using Rust will be severely
limited.

For example, file systems in the Linux kernel implement a
function that fills the kernel’s super_block data structure.
The RomFS function signature, using the kernel’s defined
interface, is provided in Figure 1. The kernel passes in two
pointers, one to the super_block data structure and the
other to a blob of file-system specific data. In this function,
the file system is expected to fill in the super_block data
structure, potentially using the extra data. Both of these
pointers are challenging to incorporate in Safe Rust. Writ-
ing to the super block would require dereferencing a raw
pointer. The data variable is even more difficult. While the
super_block has type information provided by the ker-
nel, data is completely opaque. In practice, this points to a
string containing options for the file system, but this type
information is obscured.
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struct romfs_inode_info {
struct inode vfs_inode;
struct metadata;

};

Figure 2: Internal RomFS inode data structure.

Kernel Extension

vfs_inode
metadata

Allocate

Readpage

Free

Figure 3: romfs_inode_indo control flow across the
kernel-to-extension boundary.

Hybrid Code Flow. Another fundamental challenge stems
from hybrid code flow—one code path involving multiple lan-
guages. As described in subsection 2.2, extensions currently
contain a significant number of bugs across the OS/extension
boundary, and any solution must address this problem. So far,
we have primarily analyzed resource management, specifi-
cally memory management. Rust’s memory model depends
on ownership and lifetimes. A resource owns the memory
region of its data. Memory is allocated when the resource
is created, and when the resources goes out of scope, the
resource’s lifetime ends and the memory is freed. This model
cleanly manages memory for resources that live purely in
Rust. However, some resources in our systemmust live across
the language boundary.
For example, RomFS allocates memory for an internal

structure called the romfs_inode_info, shown in Figure 2,
which contains the kernel inode as the vfs_inode field.
The general control flow for this data structure is shown in
Figure 3. When an inode is needed, the kernel requests one
from the extension. RomFS allocates a romfs_inode_info
and returns the pointer, as an inode pointer, to the kernel.
The kernel later passes the inode pointer back to the exten-
sion, and the extension assumes that this inode is part of a
romfs_inode_info and uses pointer arithmetic to access
the metada. When the inode is no longer needed, the ker-
nel instructs RomFS to free the inode, and the extension
frees the romfs_inode_info. This API is defined by the
Virtual Filesystem Switch (VFS) interface and is commonly
used in file system extensions. This design pattern allows the

extension to extend a kernel data structure, and this model
appears in every extension we have analyzed.

Even ignoring the unsafe pointer arithmetic, this model is
difficult to support in Rust. Since the kernel is written in C,
the Rust compiler cannot track the ownership of the inode
and cannot determine when its lifetime ends. Even if the Rust
compiler could be instructed to track the inode ownership
across the OS/extension boundary, the problem still remains
for the romfs_inode_info data structure. Since this data
structure is only accessed using pointer arithmetic, the Rust
compiler is given no indication that the data is still accessible
and should not be freed.

4.2 Proposed Solutions
We focus on solutions that require no changes to the Linux
kernel and few changes to the structure of the extension.
Our proposals below could be implemented as Rust code
around the extension or between the kernel and the exten-
sion. An extension developer would use the provided code
when applicable but would otherwise see few changes.

Interfaces. Our proposed solution to interface safety is
to add type information where possible (such as for data
above, and translate pointers provided by the kernel into
capabilities to access the relevant kernel resources. We trust
that the kernel is passing correct pointers to the extension so
the generated capabilities are guaranteed to be valid. Unlike
pointers, the extension cannot create capabilities or mod-
ify their locations using pointer arithmetic. For example,
the struct super_block pointer in Figure 1 would be
converted into a Rust SuperBlock type, and the extension
would use provided getters and setters to interact with it.
The getter and setter functions are implemented within the
framework’s shim layer and are most often automatically
generated using provided macros. Non-trivial conversions
are implemented using manually written functions, but fur-
ther automatic generation is preferred for future work.

Hybrid Code Flow. Our work on addressing the hybrid
code flow has so far focused on memory management. We
suggest three memory primitives for the extension: global
variables, kernel-call local variables, and kernel-object bound
variables. Global variables are supported by default in Rust,
and no extra support is needed. Kernel-call local variables
are standard Rust data structures and are appropriate for any
resource that exists within one call from the kernel into the
extension. The lifetime can be tracked by the Rust compiler,
and the memory will be automatically freed when the vari-
able goes out of scope. We introduce a MemContainer type
to represent unstructured regions of memory, such as buffers.
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The MemContainer can be created from kernel heap mem-
ory, using kmalloc when created and freeing the allocated
memory when the MemContainer goes out of scope.
In our experience, extension resources held across ker-

nel calls, such as RomFS’s romfs_inode_info, are always
associated with a kernel data structure, in this case the ker-
nel inode. As shown in Figure 3, the memory for this data
structure is allocated and deallocated by the extension, but
managed by the kernel through explicit calls to the extension.
We propose modeling this in Rust by binding the lifetimes of
extension data structures and the kernel data structures. This
means that when a kernel data structure is freed, any asso-
ciated extension data structures will be automatically freed.
We trust that the kernel correctly indicates when to free these
data structures, so memory leaks across multiple kernel calls
should be impossible. In RomFS, this involves tracking the
ownership of inodes through the hybrid code flow shown
in Figure 3. For example, after the romfs_inode_info is
allocated, ownership of the inode is passed to the kernel.
For Readpage, the kernel passes an inode reference to the
extension. When Free is called, ownership of the data struc-
ture is passed to the extension, and the romfs_inode_info
is freed.

5 DISCUSSION
We have so far only explored the feasibility of our approach
and have not developed a full solution. Synchronization tech-
niques used within the Linux kernel are critical areas for
further research. Kernel extensions can use kernel locks and
can therefore have resource management bugs associated
with those locks. While Rust does not guarantee deadlock
freedom, deadlocks are serious issues.
Converting C code into Safe Rust requires effort regard-

less of the use case. Some kernel design patterns make wide
use of pointer arithmetic, and these patterns must be re-
designed for our approach (see Section 3.1). Using mutable
global variables is also difficult in Rust because they require
synchronization for safety. These issues are not particular to
kernel extensibility, but are general drawbacks of program-
ming in Rust. Other projects that propose writing kernels in
Rust [15] have encountered and addressed these issues. We
intend to this knowledge to guide our solution.
We believe incremental extensibility has the potential

to change the nature of kernel extensions. By increasing
the safety of extension code, this approach can allow devel-
opers to write kernel extensions that would previously be
userspace programs. Applications could then take advantage
of the potential performance gains and flexibility of being
kernel extensions. Containers are popular, and adding con-
tainer features typically requires kernel modification. Our

approach could be an attractive option for implementing
advanced container features in Linux.

6 CONCLUSION
Safe kernel extensibility has been a desired property of oper-
ating systems, and has been a target of significant research.
Extensibility is widely used, but extension safety has lagged
behind. Extension safety is especially important today due
to the extensive use of containers in the cloud. Existing solu-
tions are heavyweight and add significant development cost
or runtime overhead.
We analyze the current state of Linux extension errors

and explore the feasibility of using a high-level, type-safe
language to allow developers to write Linux kernel exten-
sions in Rust. We identify key challenges to this approach
and propose possible solutions. Based on our experience, this
approach has the potential to provide attractive safety and
performance benefits to Linux extensions.
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