
A Case Against (Most) Context Switches
Jack Tigar Humphries∗

Stanford University
Kostis Kaffes∗
Stanford University

David Mazières
Stanford University

Christos Kozyrakis
Stanford University

Abstract
Multiplexing software threads onto hardware threads and
serving interrupts, VM-exits, and system calls require fre-
quent context switches, causing high overheads and sig-
nificant kernel and application complexity. We argue that
context switching is an idea whose time has come and gone,
and propose eliminating it through a radically different hard-
ware threading model targeted to solve software rather than
hardware problems. The new model adds a large number of
hardware threads to each physical core – making thread mul-
tiplexing unnecessary – and lets software manage them. The
only state change directly triggered in hardware by system
calls, exceptions, and asynchronous hardware events will be
blocking and unblocking hardware threads. We also present
ISA extensions to allow kernel and user software to exploit
this new threading model. Developers can use these exten-
sions to eliminate interrupts and implement fast I/O without
polling, exception-less system and hypervisor calls, practical
microkernels, simple distributed programming models, and
untrusted but fast hypervisors. Finally, we suggest practical
hardware implementations and discuss the hardware and
software challenges toward realizing this novel approach.

ACM Reference Format:
Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. 2021. A Case Against (Most) Context Switches. InWork-
shop on Hot Topics in Operating Systems (HotOS ’21), May 31–June
2, 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3458336.3465274

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465274

1 Introduction

Context switches complicate both operating system and ap-
plication design and add unnecessary performance over-
heads. Frequent switches – due to I/O interrupts, system
calls, and VM-exits – disrupt the regular execution stream,
require expensive state saving and restoration, and lead to
poor caching behavior. For example, waking up a thread
blocked on network I/O requires handling an interrupt from
the network interface (NIC), running the kernel scheduler,
potentially sending an inter-processor interrupt (IPI) to an-
other core, and sufferingmany cachemisses along theway. In
systems with modern SSDs and NICs, such context switches
occur too frequently, severely impacting the latency and
throughput of system and application code [40, 41, 49]. In
turn, system and application designers opt to avoid inter-
rupts, wake-ups, and scheduling altogether with polling,
which sacrifices one or more CPU cores and abandons the
more intuitive blocking programming model [24, 37, 46, 48,
55, 63, 65, 68]. Similarly, significant overheads plague the
transitions between CPU protection modes, inflating the cost
of system calls and virtual machine mode switches [20, 69].
Even switching between software threads in the same protec-
tion level incurs hundreds of cycles of overhead as registers
are saved/restored and caches are warmed [25, 46].

Such problems persist over decades due to shortcomings of
the hardware abstractions for threading. Threading support
in modern hardware has been designed to solve hardware
problems, i.e., mainly improve utilization of wide, out-of-
order cores. Existing multithreaded processors, such as Intel
Hyperthreaded CPUs, AMD SMT CPUs, and IBM Power
CPUs, implement multiple hardware threads per physical
core (2–8), each with its own architectural state and instruc-
tion stream. These instruction streams are multiplexed in
the processor pipeline in a fine-grained manner to best uti-
lize all available hardware resources such as arithmetic and
load/store units [75, 76]. If one thread has low instruction-
level parallelism (ILP), instructions from the other thread(s)
can utilize idling pipeline resources. While there is a large
body of work on scheduling software threads to hardware
threads [5, 12, 26, 31–33, 44, 59, 63, 64, 70, 71, 79], there is
little innovation in the interface exposed to system and user
software. The OS views each hardware thread as a standalone

17

https://doi.org/10.1145/3458336.3465274
https://doi.org/10.1145/3458336.3465274
mickens
Underline

mickens
Underline

mickens
Comment on Text
In the context of this paragraph, a "hardware thread" is a logical core. From the OS perspective, kernel-visible threads are scheduled upon logical cores. For example, on a computer that has two physical cores and four logical ones, the OS will perceive the availability of four cores that can be used to execute kernel-visible threads.



HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis

logical core to independently halt, interrupt, and assign a
software thread for execution. Logically, the availability of
multiple threads per core is no different from the availability
of multiple cores per CPU.
We argue it is time to redesign the hardware abstractions

for threading with software in mind. We propose two radical
changes that can drastically improve the efficiency and re-
duce the complexity of systems software. First, we propose
that hardware should directly support a much larger number
of hardware threads per core. There should be potentially
10s, 100s, or even 1000s of threads per core, where even 10
threads would be a meaningful step forward but we believe
far more will eventually be practical. Resuming execution for
one of these threads should be sufficiently fast (nanosecond
scale), even if just a subset of threads share the pipeline at
any given time. Second, software should have direct control
over hardware threads. It should be able to start and stop
them, i.e., determine which ones can be scheduled for ex-
ecution on the pipeline, and modify registers belonging to
different hardware threads.
Having a large number of software-controlled hardware

threads per core renders many ideas practical that improve
systems efficiency or simplicity. Interrupts and the design
complexities associated with them can be eliminated. Hard-
ware threads can wait on I/O queues when there are no
pending I/O events and immediately wake up when an event
arrives (e.g., a packet received by the NIC) without needing
an expensive transition to a hard IRQ context. Expensive
VM-exits [20] and system calls can simply make a special-
ized root-mode hardware thread runnable rather than waste
hundreds of nanoseconds context-switching to root-mode in
the same hardware thread. Microkernel components can run
on dedicated hardware threads, reducing the communica-
tion cost and avoiding scheduling delays. Similarly, isolation
necessary for hypervisors and sandboxes will be offered at
low cost through the use of different hardware threads. Fi-
nally, due to the large number of processor-resident threads,
blocking I/O will be cheaper, simplifying distributed systems’
design.
Fundamentally, these optimizations are based on the in-

sight that it can be faster and simpler to start and stop a large
number of hardware threads rather than to frequently mul-
tiplex a large number of software contexts on top of a single
hardware thread [53, 60, 69]. In addition to requiring mode
changes and state swapping, the latter often invokes the gen-
eral OS scheduler with unpredictable performance results.
The cost of starting and stopping the execution of hardware
threads can be kept low, and its impact on overall perfor-
mance can be predictable.

The rest of the paper is organized as follows. §2 provides
examples of long-standing system design problems that our

approach can address. §3 proposes the new hardware inter-
face for threading. Finally, §4 reviews hardware implemen-
tations and their tradeoffs.

2 Faster and Better Kernels

We argue that giving software the ability to control a large
number of hardware threads will lead to drastically different
and more efficient systems design:

NoMore Interrupts: Our design can remove all prepara-
tory work for interrupt processing. Instead of registering
interrupt handlers in the interrupt descriptor table (IDT), the
kernel can designate a hardware thread per core per inter-
rupt type. Each of these threads initially blocks on a memory
address using an mwait instruction. In place of sending an
interrupt, an event trigger – such as the timer in the local
APIC –writes to thememory address that its target hardware
thread is waiting on. The hardware thread becomes runnable
and handles the event without the need to jump into an IRQ
context and the associated overheads. In §4 we discuss how
we can use hardware thread priorities to eliminate delays for
time-critical interrupts.

Fast I/Owithout Inefficient Polling:Havingminimized
the cost of notifying a waiting thread, there is no need for
polling anymore. To improve performance under heavy I/O
load, kernel developers use polling threads rather than inter-
rupts. However, polling threads waste one or more cores and
complicate core allocation under varying I/O load [55, 63].
Given a large number of threads per core, polling is unnec-
essary; we can implement I/O fast and efficiently by having
threads wait on I/O events (mwait on the I/O queue tail in
the x86 case), letting other threads run until there is I/O
activity. Upon a new I/O event arrival, a waiting thread can
quickly start running to process the event. I/O-heavy appli-
cations can thus achieve high throughput and low latency
while other threads can efficiently consume spare cycles.
If the number of hardware threads is sufficiently high, we
can avoid the software and hardware complexities associ-
ated with having threads each busy poll multiple memory
locations [57].

Exception-less System Calls and No VM-Exits: We
can use the same approach to optimize system calls and
VM-exits. Currently, kernel developers have to make an un-
necessary trade-off. When a system call or VM-exit event
(e.g., a vmcall for x86, an interrupt, a privileged instruction
such as wrmsr, etc.) occurs, kernel code can either run in
the same thread as the application or in a separate dedicated
kernel thread. In the first case, the state management nec-
essary when switching privilege levels within a hardware
thread can take hundreds of cycles [46, 69]. The second op-
tion, used for serving both system calls (FlexSC [69]) and
VM-exits (SplitX [53]), requires complex asynchronous APIs

18

mickens
Comment on Text
I recommend that you read Section 3 and Section 4 first, and then come back to Section 2.

mickens
Underline

mickens
Comment on Text
This paragraph is a bit subtle. Earlier, the paper has defined a "hardware thread" as "a logical core that can run a kernel-visible thread." Here, the paper is using the term "hardware thread" to mean "an execution context that, when not actively running on a logical core, has its register state stored in new, fast-to-access, on-CPU hardware." This new, fast-to-access, on-CPU hardware doesn't exist in current processors; in current processors, when the OS context-switches a kernel-visible thread off of a logical core, the OS has to store the swapped-off thread's register state in RAM (e.g., the `struct proc` in Chickadee). From the perspective of a CPU pipeline, RAM is much slower to access than on-core registers. So, the paper is proposing that CPUs add a bunch more registers, such that, when a kernel-visible thread must be swapped off a logical core, the thread's register state can be copied from the registers of the logical core into "backing" registers assigned to that kernel-visible thread. Later, when the OS wants to resume execution of the thread, the OS copies the thread's register state from the backing registers onto the logical core that will resume execution of the thread. This approach eliminates the software-level overhead that OSes have traditionally paid to copy register state between RAM and a core's registers during context switches.

mickens
Comment on Text
The idea is that, when an IO device has data that a kernel-visible thread should examine, the IO device writes to a memory location that the kernel-visible thread is mwait'ing on. The thread can then start executing and interact with the IO device as appropriate.



A Case Against (Most) Context Switches HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

and scheduler fine-tuning so that kernel threads do not suf-
fer excessive delays. Due to its simplicity, the single-thread
approach has been dominating both commercial (Linux) and
research (Dune [23], IX [24], ZygOS [65]) operating sys-
tems. Our proposed threading model enables the best of both
worlds. System calls and VM-exits can be served in dedicated
hardware threads, avoiding the mode switching overheads.
Application threads can directly start kernel threads and use
the API in §3 to pass parameters, eliminating the need for
asynchronous API and scheduling complications. AWS Ni-
tro [2] catches VM-exits and ships the work to an offload
chip (Nitro controller), in essence, shipping them to another
"thread" similar to our proposal.

Access to All Registers in the Kernel: Kernels tradi-
tionally refrain from using floating-point and vector oper-
ations (e.g., for machine learning or cryptography). This
makes context switches faster as the FP and vector regis-
ters do not need to be saved and restored. With software-
managed hardware threads, kernel code can run in one hard-
ware thread and application code in a different hardware
thread. Kernels can then use FP and vector operations and
link with libraries that use themwithout affecting the system
call invocation latency.

Faster Microkernels and Container Proxies: Micro-
kernel OSes are becoming increasingly popular [3, 4, 7, 11,
14, 49, 54, 55] due to their modularity and the protection
from bugs and vulnerabilities they provide through isolation.
However, they suffer from the same problem as dedicated
kernel threads, i.e., potentially excessive scheduling delays.
With a large number of software-managed hardware threads,
when an application wishes to communicate with a micro-
kernel service such as the file system or the network stack,
it can directly start the service’s hardware thread achieving
the same result as XPC [30] while using a simpler hardware
mechanism. There is no need to move into kernel space
and invoke the scheduler. This improves performance for
I/O-intensive services, which have so far resorted to using
dedicated cores (TAS [48], Snap [55]). Even in monolithic
kernels, features such as kernel subsystem isolation can be
implemented easily with very low overhead. Previous so-
lutions such as LXDs [60] had to jump through hoops to
avoid the prohibitive cost of synchronous cross-domain in-
vocations. Such invocations will now come cheaply through
software-controlled hardware threads simplifying the code
and eliminating the need for helper threads that handle asyn-
chronous interactions. We can use similar functionality to
accelerate container proxies, such as Istio [15]. Container
proxies would benefit from the direct transfer of control
between the container and the proxy hardware threads.

Untrusted Hypervisors: Hypervisors [6, 23] on today’s
CPUs need privileged access to the host operating system for
good performance. For example, the KVM driver [6] used for

hardware virtualization in hypervisors such as QEMU [10]
needs to run in the kernel. A VM-exit from a virtual machine
switches to the hypervisor in the kernel and the hypervisor
uses its kernel access to service I/O requests and handle page
faults. Like amicrokernel design, isolating the hypervisor in a
less privileged mode (e.g., ring 3 in root mode for x86) would
require expensive scheduling and context switch overheads.
With many hardware threads per core, a hypervisor could be
isolated in its own unprivileged hardware thread. VM-exits
would stop the virtual machine’s hardware thread and start
the hypervisor’s hardware thread. If the hypervisor needs to
handle an I/O request or a page fault, it could, in turn, start
the kernel’s hardware thread. Thus, hypervisors still provide
the same functionality with the same performance without
privileged access to the kernel or the hardware.
Similar to hypervisors, other system components can be

isolated in a less privileged mode, such as binary transla-
tors [1, 16] and eBPF [13] code. For eBPF, we could even
relax some code restrictions if it ran in its own privilege
domain. Quick hand-offs between hardware threads allow
isolation without loss of performance.

SimplerDistributedProgramming:With a limited num-
ber of hardware threads per physical core, distributed ap-
plications either resort to event-based models or rely on
the scheduler to multiplex software threads on top of hard-
ware threads. Event-based models are more difficult to work
with than threading models due to their confusing control
flow [78]. Distributed systems prefer the simpler threading
abstraction and create large numbers of threads to hide inter-
node communication latencies with other work [61]. Even
though threading is a simpler abstraction for distributed
systems, multiplexing a large number of software threads
onto a small number of hardware threads is expensive. Mul-
tiplexing requires frequent scheduler interaction and good
application performance is dependent on the scheduling al-
gorithm, which is not necessarily well-suited to the applica-
tion [58, 63, 77]. Given a large number of hardware threads,
developers can assign one hardware thread per request and
use simple blocking I/O semantics without suffering from
significant thread scheduling overheads.

3 Hardware/Software Interface
We now summarize the ISA extensions that support large
numbers of software-controlled hardware threads. A CPU
core supports a large but fixed number of physical hard-
ware threads named by identifiers called ptids. To facilitate
virtualization, instruction operands specify virtual thread
identifiers, or vtids, transparently mapped to ptids.
At any point, a given ptid can be in one of three states:

runnable, waiting, or disabled. Runnable ptids can execute
instructions on the CPU core. The CPU may be executing
instructions only for a subset of runnable ptids on any clock

19

mickens
Comment on Text
To understand the highlighted text, first consider how a traditional SMT processor works. A single physical core supports multiple logical cores that are visible to the OS. At any given moment, a single physical core may be simultaneously executing instructions from multiple logical cores.

mickens
Sticky Note
The paper is proposing an extension to the traditional design of an SMT processor. In the Brave New World (tm), a physical SMT core will have a large array of register banks. Each bank represents a full set of ISA-visible registers; for example, on x86, a register set will contain %rax, %rbx, %rcx, %rbp, %rsp, etc. The full array will contain hundreds of such register banks. Each register rank represents what the paper calls a "physical hardware thread." A physical hardware thread is identified by a ptid. At any given moment, a physical SMT core may be simultaneously executing instructions from multiple ptids.

mickens
Sticky Note
So:*In a traditional SMT processor, a single physical core exposes multiple logical cores to the OS. The OS schedules kernel-visible threads to run on logical cores. Behind the scenes, the physical SMT core is simultaneously executing instructions from logical cores (i.e., multiple kernel-visible threads). If a kernel-visible thread isn't currently executing, its registers are stored in memory (because the OS saved the registers to memory when the thread was context-switched off the processor).*In the SMT processor proposed in this paper, a single physical SMT core also simultaneously executes instructions from multiple kernel-visible threads; in other words, each ptid has a corresponding kernel-visible thread. However, a key difference is that, in the Humphries et al. hardware design, each physical core has new, on-core hardware---namely, the register banks---which stores the register state for kernel-visible threads. The goal is to prevent the OS from having to execute kernel code to write and read register state to and from memory during a context switch. None of that OS code has to execute if (1) the register state from the thread being context-switched away from doesn't have to be written to memory, and (2) the register state for the thread being context-switched *to* is already in a register bank.

mickens
Underline

mickens
Comment on Text
You only need to read up to and including Section 3.1.



HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis

cycle. A ptid can voluntarily enter the waiting state through
the x86-inspired instructionsmonitor/mwait described below.
Finally, a disabled ptid does not execute instructions until it
is restarted by another ptid. Events such as page faults that
trigger exceptions in today’s CPUs simply write an exception
descriptor tomemory and disable the current ptid. A different
ptid monitors the exception descriptor to detect and handle
the exception.

3.1 Proposed instructions

• monitor <memory_address>
mwait
Like the x86 ISA [8, 9], these instructions pause the cur-
rent ptid until a write occurs to <memory_address>. A
hardware thread can monitor multiple memory locations.
Prior work on hardware transactional memory [36] and
RX queue notification mechanisms [57] has shown that
such monitoring is possible with relatively small over-
head. The difference in our design is that these instructions
monitor any write (including DMA) to any address, may
be used from any privilege level, and hence serve both
external event processing and inter-thread communica-
tion. For example, each core’s APIC timer can increment
a counter every time a timer interrupt is triggered. In
turn, the hardware thread hosting the kernel scheduler
can monitor/mwait on that memory location. Similarly, a
network thread can wait on the RX queue tail until packet
arrival. Unlike x86, one can monitor uncachable addresses
such as device memory or memory-mapped I/O registers;
§4 sketches a possible implementation.

• start <vtid>: Enable ptid mapped to vtid.
stop <vtid>: Disable ptid mapped to vtid.

• rpull <vtid>, <local-reg>, <remote-reg>
rpush <vtid>, <remote-reg>, <local-reg>
Used to read and write the registers of a disabled ptid, so as
to swap software threads in and out of hardware threads.
Note that in addition to normal registers, remote-reg can
be the program counter or various control registers in-
cluding a few novel ones: the exception descriptor pointer
register specifies where to write an exception descriptor
when the ptid becomes disabled, while a thread-descriptor-
table register specifies the location of a table mapping vtids
to ptids.

• invtid <vtid>, <remote-vtid>
Any update to a ptid’s TDT (described below) must be
followed by an invtid. Requiring explicit invalidation
facilitates hardware caching and virtualization.

3.2 Security Model

The security model is designed to facilitate process isolation,
kernel/hypervisor security, and virtualization. A ptid can be
in either user or supervisor mode. Access to certain registers

from user mode always disables the current ptid and writes
an exception descriptor to memory that a supervisor ptid can
use to emulate privileged instructions for guests running in
user ptids. In some cases, multiple ptids will need to report
their exceptions to the same hypervisor ptid, requiring a
software-based queuing design.

Consecutive Exceptions.What happens if thread𝐵 causes
an exception while handing a previous exception in thread
𝐴? For example,𝐴 could divide by 0, and 𝐵 could experience a
page fault in the exception handler, or could even divide by 0
itself. Nothing prevents arbitrarily nested exceptions, so long
as another thread 𝐶 handles 𝐵’s exceptions. However, any
handler chain must end somewhere, at a lowest-level kernel
thread that does not have an exception handler. Triggering
an exception in a thread without a handler for that exception
type indicates a serious kernel bug akin to a triple-fault, and
can be handled by halting or resetting the CPU.

Thread Descriptor Table. One particularly important
privileged register is the thread descriptor table pointer, or
TDT, which maps vtids to ptids and permissions. A ptid must
be in supervisor mode to set this register in its own context
or any other vtid. However, the TDT table may allow a user
ptid to start, stop, and modify other less privileged registers
in other ptids. Table 1 shows an example TDT.

vtid ptid Permissions
0x0 0x01 0b1000
0x1 0x00 0b0000 (invalid)
0x2 0x10 0b1111
0x3 0x11 0b1110

Table 1: Example Thread Descriptor Table. The 4 per-
mission bits allow the caller to start - stop - modify
some registers -modify most registers of the callee.

This TDT design allows for flexible, non-hierarchical priv-
ilege levels that facilitate the sandbox use cases discussed
in §2. For example, thread B might have permission to stop
thread A, and thread Cmight have permission to stop thread
B, but thread C does not necessarily have any permission
over thread A. Such a configuration is impossible in existing
protection-ring-based designs.
An alternative to the TDT could be a secret-key-based

design. Threads that perform thread management would
need to provide the target thread’s secret key if they are not
running in privileged mode. Each thread would set its own
key and share it with other threads using existing software
mechanisms, e.g., shared memory or pipes.
3.3 Microarchitectural Security

The Spectre [50] attack demonstrates that sibling threads
sharing microarchitectural resources may spy on each other.

20

mickens
Comment on Text

mickens
Comment on Text
We'll discuss DMA (direct memory access) in more detail later in the semester. For now, suffice it to say that DMA allows an IO device (e.g., an SSD or a network card) to copy data from the device into RAM, or from RAM into the device, without assistance from the CPU. In the context of this paper, a DMA write from a device to RAM can trigger an mwait'ed ptid.

mickens
Comment on Text
We'll discuss the details of networking later in the semester. The basic idea of the highlighted sentence is that, when a network card receives new information from the network, the network card DMAs the new data into RAM, and then updates a queue pointer in memory. The update to the queue pointer can trigger an mwait'ed ptid.

mickens
Comment on Text
These instructions are used by the OS's scheduling code. rpull allows the OS to copy a kernel-visible thread's registers from a logical core into the thread's register bank. rpush allows the kernel to copy a kernel-visible thread's registers from the register bank onto a logical core.

mickens
Comment on Text
A logical core's %cr3 register points to a page table that translates virtual memory addresses to physical ones. Similarly, the paper proposes to give each logical core another control register that points to a vtid-to-ptid table. Software running on the logical core manipulates vtids that are translated to ptids by the table. Since the OS is the software that manipulates kernel-visible threads (e.g., to create, schedule, and destroy those threads), you might wonder why the vtid-to-ptid indirection is necessary---why shouldn't the hardware directly expose ptids to the OS? The reason will become clearer later in the semester, and involved hypervisors. A hypervisor is management software that runs *beneath* an OS, and presents an OS with the illusion that the OS is running directly atop the hardware. In such an environment, the virtual tids manipulated by the OS are mapped to physical tids by a vtid-to-ptid table managed by the hypervisor. Hypervisors are cool because they allow a single computer to simultaneously run multiple OSes, possibly even different ones (e.g., a Linux instance and a Windows instance). For example, the VirtualBox hypervisor allows (say) a Windows machine to run a Linux OS within a "virtual machine."

mickens
Comment on Text
You don't need to read this part of the paper, but if you do, keep in mind that this part of the paper has non-standard definitions for "user mode" and "supervisor mode"---"supervisor mode" is the mode that the hypervisor runs in, whereas "user mode" is the mode that a VM's user code and kernel code run in. The paper doesn't describe the hardware mechanisms that are needed for the processor to distinguish between "user mode" code belonging to the VM's OS and the VM's user applications; we'll discuss such mechanisms later in class when we discuss Intel's VT-x technology.



A Case Against (Most) Context Switches HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

While there is ongoing work to fix this vulnerability [21, 22,
34, 35, 51, 62], it is unclear whether Spectre can ever be fully
mitigated. From initial glance, it may seem that our proposal
futher aggravates microarchitectural security vulnerabilities.

We argue that these vulnerabilities are orthogonal to our
proposal. While we do propose that there should be many
more hardware threads, they are not SMT threads – they are
hardware threads multiplexed onto a small number of SMT
threads. Thus, with regard to Spectre, our proposal is no
different from software-thread context-switching today: We
still just multiplex on top of SMT threads. These SMT threads
may spy on each other, but that is not a consequence of hav-
ing many hardware threads. Our changes to the threading
API will allow developers to build reasonable security poli-
cies, but beyond this, security policy for microarchitectural
vulnerabilities is not our focus.

4 The Space of Hardware Designs

We now discuss the key requirements and implementation
options for hardware that supports a large number of software-
controlled threads. While there are important issues to ad-
dress in future research, we believe that the required hard-
ware is feasible and practical.

Storage for Thread State: Our proposal relies on hard-
ware to store state for a large number of threads so that
start and stop are fast (nanosecond scale). The state in-
cludes all general-purpose and control registers. For x86-64,
a thread has 272 bytes of register state that goes up to 784
bytes if SSE3 vector extensions are used.

A first option is to implement hardware threads as SMT hy-
perthreads in modern CPUs [75, 76]. Hyperthreads execute
concurrently by sharing pipeline resources in a fine-grain
manner. Their implementation is expensive as all pipeline
buffers must be tagged, partitioned, or replicated. This is why
most popular CPUs support up to 2 hyperthreads and few
designs have gone up to 4 or 8 hyperthreads [74]. We believe
that the two concerns should be separated: use a small number
of hyperthreads to best utilize the complex pipeline (likely
2-4) and multiplex additional runnable hardware threads on
the available hyperthreads in hardware.

The state for additional hardware threads can be stored in
large register files, similar to early multithreaded CPUs for
coarse-grain thread interleaving [17–19]. The overhead of
starting execution of a thread stored in these register files
would be proportional to the length of the pipeline, roughly
20 clock cycles in modern processors. Modern GPUs have
demonstrated the practicality of implementing multi-ported
register files that store 10s of KBytes and support 10s of
hardware threads. For example, the 64KByte register file
in the sub-core of a Nvidia Tesla V100 GPU can store the
state for 83 to 224 x86-64 threads [27]. GPUs only support

a restricted execution model designed for bulk parallelism
across a large number of threads. We believe that our design
will allow for concurrent general-purpose CPU execution of
a smaller number of hardware threads while enabling fast
switching to other register-file-resident threads. For a CPU
with 100 cores, the cost is 6.4MB in register file space, which
is non-trivial but well within what is possible given that
upcoming CPU chips feature L3 caches with a capacity of
256MB or higher [72].
A further option is to utilize larger caches, such as the

private (per-core) L2 caches or the shared L3 caches, to also
store state for the additional hardware threads, similar to Du-
plexity [56]. A fraction of a 512KB private L2 cache can store
the state of tens of threads, while a few MB of an L3 cache
can support hundreds of threads. Modern CPUs use wide
interconnect links (32-byte or wider) and scalable topologies
to connect the cache hierarchy levels. Hence, the additional
cost of a bulk transfer of register state from the L2 or L3
cache is limited to 10 to 50 clock cycles (i.e., 3ns to 16ns for a
3GHz CPU). While software can save thread contexts itself,
delegating this responsibility to hardware ensures that the
contexts are pinned to caches and reduces software complex-
ity. Combining these three options can support hundreds
to thousands of threads per core in a cost-effective man-
ner. There are several optimizations to consider: selecting
which threads are stored closer to the core based on criti-
cality, tracking used/modified registers to avoid redundant
transfers, and hardware prefetching of the state of recently
woken up threads closer to the processor core.

Managing Non-register State: As is the case with ordi-
nary context switching [69], managing register state may
only be a fraction of the cost of supporting a large number
of hardware threads. Misses in caches and TLBs can lead
to significant performance loss and even thrashing as nu-
merous hardware threads start and stop. However, for many
use cases, the working set size and the process count will
not increase, so our proposal should not add significant addi-
tional burden to caches and the TLB. Moreover, there are two
complementary techniques to alleviate caching problems for
large thread counts.

First, we can pin the most critical instructions/data/trans-
lations (few KBytes) for performance-sensitive threads in
caches, using fine-grain cache partitioning techniques that
allow hundreds of small partitions without loss of associativ-
ity [66]. Second, we can use prefetching techniques that
warm up caches of all types as soon as threads become
runnable. For that, it is critical to capture threads’ work-
ing sets [38, 43, 45], including their instructions and their
data such as the cache line they perform an mwait on and
memory regions written to by I/O devices.

21

mickens
Comment on Text
In the highlighted text, a "hyperthread" is "a logical core," and a "hardware thread" is "an execution context whose registers are stored in the register bank when the context is not actively running on a logical core."

mickens
Underline

mickens
Underline

mickens
Comment on Text
You only need to read the discussion of "Storage for Thread State" and "Support for Thread Scheduling."



HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis

Neither prefetching nor caching have to be perfect. Mod-
ern out-of-order processors feature techniques that can hide
a reasonable amount of latency due to cache and TLB misses.
If these misses are served on-chip (e.g., by an L2 or L3 cache)
and there is sufficient instruction-level parallelism (ILP), per-
formance loss is minimal [47]. However, L3 misses served
by off-chip memory lead to severe performance losses. The
first goal of the hardware design should be to keep all critical
state for threads on-chip. The on-chip capacity will serve
as the upper bound on the number of threads a CPU can
support across all cores.

Generalized monitor - mwait: In our proposal, hardware
threads use monitor - mwait to express blocking andwakeup
conditions. Hence, these two instructions must support more
than the use cases in current x86 implementations [42]. Hard-
ware should monitor updates to any address by any source.
Current CPUs monitor writes by CPU cores that map to
DRAM main memory. Future hardware should also moni-
tor updates by I/O devices or specialized accelerators. For
instance, this will enable monitoring addresses updated by a
DMA engine when a new packet arrives in a network inter-
face. The switch of external interfaces from legacy I/O speci-
fications like PCIe to memory-based and partially-coherent
specifications like CXL [28] will greatly simplify monitoring
memory and caches in both the CPU and devices/accelerators.
Lastly, since future hardware should be compatible with
legacy devices, hardware must translate external interrupts
to memory writes (similar to PCIe MSI-x functionality).

Support for Thread Scheduling: Hardware must also
play an important role in thread scheduling. At a minimum,
it must ensure that critical threads associated with the ker-
nel – handlers for exceptions and external events, or the
kernel scheduler – get to execute instructions when they are
runnable. A simple way to meet this requirement is to exe-
cute runnable hardware threads in a fine-grain, round-robin
(RR) manner, which emulates processor sharing (PS) and al-
lows all runnable threads to make progress without the need
for interrupts. The combination of PS scheduling with thread-
per-request will actually provide superior performance for
server workloads with high execution-time variability [46,
80]. In addition to RR scheduling, we can introduce hard-
ware support for thread priorities (e.g., threads used for serv-
ing time-sensitive interrupts receive more cycles [56]) or
even hardware-based (but software-managed) thread queu-
ing, load balancing, priorities, and scheduling [29, 52, 67].
Hardware support will be needed for fine-grain tracking of
threads’ resource consumption for cloud billing or software
decisions. Part of scheduling, such as associating hardware
threads with I/O events, could also be transparently offloaded
to peripheral devices such as smartNICs [39, 73].

The role of the OS scheduler will also change. Its main
task today is to decide which software thread runs on each
hardware thread. With a large number of hardware threads,
the scheduler will rarely need to swap a software thread in
and out of a hardware thread. This operation should become
as uncommon as swapping memory pages to disk. The OS
scheduler will enforce software policies by starting and stop-
ping hardware threads and setting their priorities. It will also
manage the mapping of threads to cores in order to improve
locality. Since starting and stopping threads incurs low over-
head, the scheduler will run in much tighter loops, drastically
improving application performance (reduced queuing time,
more time for higher-quality management decisions [46, 63]).

5 Conclusion
Context switches and their associated overheads and limita-
tions should be eliminated altogether through the adoption
of a new hardware threading model that gives software con-
trol over a large number of hardware threads per core. While
there are software and hardware research questions to ad-
dress, we argue that the proposed threading model will lead
to significant simplification and performance gains for both
systems and application code.

6 Acknowledgments
We thank Adam Belay, Frans Kaashoek, Paul Turner, Xi
Wang, Neel Natu, Thomas Wenisch, Partha Ranganathan,
Hudson Ayers, Deepti Raghavan, Gina Yuan, and the anony-
mous HotOS reviewers for their helpful feedback. This work
is partially supported by Stanford Platform Lab sponsors and
Facebook.

References
[1] About the rosetta translation environment. https://developer.apple.

com/documentation/apple_silicon/about_the_rosetta_translation_
environment. Last accessed: 2021-02-01.

[2] Aws nitro system. https://aws.amazon.com/ec2/nitro/. Last accessed:
2020-11-29.

[3] Data plane development kit. https://www.dpdk.org. Last accessed:
2021-01-29.

[4] Driverkit | apple developer documentation. https://developer.apple.
com/documentation/driverkit. Last accessed: 2021-01-29.

[5] "fully HT-aware scheduler" support, 2.5.31-BK-curr. https://lwn.net/
Articles/8553/. Last accessed: 2021-01-18.

[6] Kernel virtual machine. https://www.linux-kvm.org/page/Main_Page.
Last accessed: 2021-01-31.

[7] libfuse. https://github.com/libfuse/libfuse. Last accessed: 2021-01-29.
[8] Monitor x86 instruction. https://www.felixcloutier.com/x86/monitor.

Last accessed: 2021-02-01.
[9] Mwait x86 instruction. https://www.felixcloutier.com/x86/mwait. Last

accessed: 2021-02-01.
[10] Qemu. https://www.qemu.org. Last accessed: 2021-05-11.
[11] Storage performance development kit. https://spdk.io. Last accessed:

2021-01-29.
[12] The scheduler and hyperthreading. https://lwn.net/Articles/8720/. Last

accessed: 2021-01-18.

22

https://developer.apple.com/documentation/apple_silicon/about_the_rosetta_translation_environment
https://developer.apple.com/documentation/apple_silicon/about_the_rosetta_translation_environment
https://developer.apple.com/documentation/apple_silicon/about_the_rosetta_translation_environment
https://aws.amazon.com/ec2/nitro/
https://www.dpdk.org
https://developer.apple.com/documentation/driverkit
https://developer.apple.com/documentation/driverkit
https://lwn.net/Articles/8553/
https://lwn.net/Articles/8553/
https://www.linux-kvm.org/page/Main_Page
https://github.com/libfuse/libfuse
https://www.felixcloutier.com/x86/monitor
https://www.felixcloutier.com/x86/mwait
https://www.qemu.org
https://spdk.io
https://lwn.net/Articles/8720/
mickens
Underline

mickens
Comment on Text
In other words, the authors are proposing that hardware (instead of the OS) should implement a round-robin scheduling mechanism for ptids (i.e., kernel-visible threads) that are runnable.

mickens
Comment on Text
As with earlier in the paper, the authors are using the term "hardware thread" in two different ways here. The second highlighted sentence is saying that a current OS is responsible for mapping kernel-visible threads to logical cores. The last highlighted sentence is saying that, in the paper's proposed CPU, the OS scheduler is just responsible for creating kernel-visible threads, setting their priorities, and destroying those kernel-visible threads. The hardware is then responsible for scheduling those kernel-visible threads.



A Case Against (Most) Context Switches HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

[13] A thorough introduction to ebpf. https://lwn.net/Articles/740157/.
Last accessed: 2020-12-10.

[14] The userspace i/o howto. https://www.kernel.org/doc/html/v4.14/
driver-api/uio-howto.html. Last accessed: 2021-01-29.

[15] What is istio? https://istio.io/latest/docs/concepts/what-is-istio. Last
accessed: 2021-01-30.

[16] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XII, page 2–13, New York, NY, USA,
2006. Association for Computing Machinery.

[17] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kuri-
hara, B. H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. The
mit alewife machine: A large-scale distributed-memory multiprocessor.
Technical report, USA, 1991.

[18] A. Agarwal, J. Kubiatowicz, D. Kranz, B. H. Lim, D. Yeung, G. D’Souza,
and M. Parkin. Sparcle: an evolutionary processor design for large-
scale multiprocessors. IEEE Micro, 13(3):48–61, 1993.

[19] A. Agarwal, B. . Lim, D. Kranz, and J. Kubiatowicz. April: a processor
architecture for multiprocessing. In [1990] Proceedings. The 17th Annual
International Symposium on Computer Architecture, pages 104–114,
1990.

[20] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. Soft-
ware Techniques for Avoiding Hardware Virtualization Exits. In 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 373–385,
Boston, MA, June 2012. USENIX Association.

[21] G. Barthe, S. Cauligi, B. Gregoire, A. Koutsos, K. Liao, T. Oliveira,
S. Priya, T. Rezk, and P. Schwabe. High-assurance cryptography in the
spectre era. In 2021 2021 IEEE Symposium on Security and Privacy (SP),
pages 788–805, Los Alamitos, CA, USA, may 2021. IEEE Computer
Society.

[22] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans
Kaashoek, and Nickolai Zeldovich. Efficiently mitigating transient
execution attacks using the unmapped speculation contract. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 1139–1154. USENIX Association, November 2020.

[23] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 335–348, Hollywood, CA, October
2012. USENIX Association.

[24] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A Protected Dataplane Operat-
ing System for High Throughput and Low Latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pages 49–65, Broomfield, CO, October 2014. USENIX Association.

[25] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
Lightweight preemptible functions. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 465–477. USENIX Association, July
2020.

[26] James R. Bulpin and Ian A. Pratt. Hyper-Threading Aware Process
Scheduling Heuristics. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, page 27, USA, 2005.
USENIX Association.

[27] Jack Choquette. NVIDIA’s Volta GPU: Programmability and Perfor-
mance for GPU Computing. In Proceedings of the 2017 Hot Chips
Technical Conference, 2017.

[28] Compute Express Link Specification 2.0. https://www.
computeexpresslink.org, 2020.

[29] Intel data streaming accelerator preliminary architecture specifica-
tion. https://software.intel.com/sites/default/files/341204-inteldata-
streaming-accelerator-spec.pdf, 2019.

[30] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and Haibo Chen. Xpc:
Architectural support for secure and efficient cross process call. In
Proceedings of the 46th International Symposium on Computer Architec-
ture, ISCA ’19, page 671–684, Phoenix, Arizona, 2019. Association for
Computing Machinery.

[31] S. Eyerman, P. Michaud, and W. Rogiest. Revisiting symbiotic job
scheduling. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 124–134, 2015.

[32] Alexandra Fedorova, Christopher Small, Daniel Nussbaum, and Margo
Seltzer. Chip Multithreading Systems Need a New Operating Sys-
tem Scheduler. In Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop, EW 11, page 9–es, New York, NY, USA, 2004.
Association for Computing Machinery.

[33] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pages 281–297. USENIX Association, November 2020.

[34] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1–19, 2020.

[35] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-
software contracts for secure speculation, 2020.

[36] Lance Hammond, VickyWong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional Memory Coherence
and Consistency. SIGARCH Comput. Archit. News, 32(2):102, March
2004.

[37] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. SoftNIC: A Software NIC to Augment Hardware.
Technical Report UCB/EECS-2015-155, EECS Department, University
of California, Berkeley, May 2015.

[38] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner
Litz, Jichuan Chang, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Learning memory access patterns, 2018.

[39] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. Mind the gap: A case for informed request scheduling at the
nic. In Proceedings of the 18th ACMWorkshop on Hot Topics in Networks,
HotNets ’19, page 60–68, Princeton, NJ, USA, 2019. Association for
Computing Machinery.

[40] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. TCP ≈
RDMA: Cpu-efficient remote storage access with i10. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 127–140, Santa Clara, CA, February 2020. USENIX Association.

[41] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muham-
mad Shahbaz, Nick McKeown, and Changhoon Kim. The nanopu:
Redesigning the cpu-network interface to minimize rpc tail latency,
2020.

[42] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
11 2020.

[43] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses
for improved correlated prefetching. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-46,
page 247–259, Davis, California, 2013. Association for Computing
Machinery.

[44] Weiwei Jia, Jianchen Shan, Tsz On Li, Xiaowei Shang, Heming Cui,
and Xiaoning Ding. vSMT-IO: Improving I/O Performance and Ef-
ficiency on SMT Processors in Virtualized Clouds. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages 449–463. USENIX
Association, July 2020.

[45] Norman P. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buffers. In

23

https://lwn.net/Articles/740157/
https://www.kernel.org/doc/html/v4.14/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v4.14/driver-api/uio-howto.html
https://istio.io/latest/docs/concepts/what-is-istio
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://software.intel.com/sites/default/files/341204-inteldata-streaming-accelerator-spec.pdf
https://software.intel.com/sites/default/files/341204-inteldata-streaming-accelerator-spec.pdf


HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos Kozyrakis

Proceedings of the 17th Annual International Symposium on Computer
Architecture, ISCA ’90, page 364–373, Seattle, Washington, USA, 1990.
Association for Computing Machinery.

[46] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. Shinjuku: Preemptive Sched-
uling for `second-scale Tail Latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
345–360, Boston, MA, February 2019. USENIX Association.

[47] Tejas Karkhanis and J. E. Smith. A day in the life of a data cache miss.
In In Workshop on Memory Performance Issues, 2002.

[48] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. Tas: Tcp acceleration
as an os service. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, Dresden, Germany, 2019. Association for Computing
Machinery.

[49] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote
flash ≈ local flash. SIGARCH Comput. Archit. News, 45(1):345–359,
April 2017.

[50] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1–19, 2019.

[51] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N.
Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. Speccfi: Miti-
gating spectre attacks using cfi informed speculation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 39–53, 2020.

[52] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon:
Architectural support for fine-grained parallelism on chip multipro-
cessors. In Proceedings of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, page 162–173, San Diego, California,
USA, 2007. Association for Computing Machinery.

[53] Alex Landau, Muli Ben-Yehuda, and Abel Gordon. SplitX: Split
Guest/Hypervisor Execution on Multi-Core. In Proceedings of the
3rd Conference on I/O Virtualization, WIOV’11, page 1, Portland, OR,
2011. USENIX Association.

[54] Jing Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Sudarsun Kannan. File systems as processes. In 11th USENIXWorkshop
on Hot Topics in Storage and File Systems (HotStorage 19), Renton, WA,
July 2019. USENIX Association.

[55] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: A microkernel approach to host
networking. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, SOSP ’19, page 399–413, Huntsville, Ontario,
Canada, 2019. Association for Computing Machinery.

[56] A. Mirhosseini, A. Sriraman, and T. F. Wenisch. Enhancing server
efficiency in the face of killer microseconds. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
185–198, 2019.

[57] Amirhossein Mirhosseini, H. Golestani, and T. Wenisch. HyperPlane:
A Scalable Low-Latency Notification Accelerator for Software Data
Planes. 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 852–867, 2020.

[58] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 561–577, Carlsbad,

CA, October 2018. USENIX Association.
[59] Jun Nakajima and Venkatesh Pallipadi. Enhancements for hyper-

threading technology in the operating system: Seeking the optimal
scheduling. In Proceedings of the 2nd Conference on Industrial Experi-
ences with Systems Software - Volume 2, WIESS’02, page 3, USA, 2002.
USENIX Association.

[60] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. Lxds:
Towards isolation of kernel subsystems. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 269–284, Renton, WA, July
2019. USENIX Association.

[61] Jacob Nelson, Brandon Holt, BrandonMyers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin. Latency-tolerant software distributed
shared memory. In Proceedings of the 2015 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’15, page 291–305,
USA, 2015. USENIX Association.

[62] Oleksii Oleksenko, Bohdan Trach,Mark Silberstein, and Christof Fetzer.
Specfuzz: Bringing spectre-type vulnerabilities to the surface. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1481–1498.
USENIX Association, August 2020.

[63] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), pages
361–378, Boston, MA, February 2019. USENIX Association.

[64] Peng Jianzhang, Gu Naijie, Li Yehua, and Zhang Xu. Tuning linux’s
load balancing algorithm for cmt system. In IEEE Conference Anthology,
pages 1–4, 2013.

[65] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing Low Tail Latency for Microsecond-Scale Networked Tasks. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 325–341, Shanghai, China, 2017. Association for Com-
puting Machinery.

[66] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and Effi-
cient Fine-Grain Cache Partitioning. In Proceedings of the 38th annual
International Symposium in Computer Architecture (ISCA-38), June 2011.

[67] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexi-
ble architectural support for fine-grain scheduling. SIGPLAN Not.,
45(3):311–322, March 2010.

[68] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda.
IsoStack: Highly Efficient Network Processing on Dedicated Cores. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIXATC’10, page 5, Boston, MA, 2010. USENIX
Association.

[69] Livio Soares andMichael Stumm. FlexSC: Flexible System Call Schedul-
ing with Exception-Less System Calls. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10,
page 33–46, USA, 2010. USENIX Association.

[70] Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B. Bobba,
Sibin Mohan, and Roy H. Campbell. A Novel Scheduling Framework
Leveraging Hardware Cache Partitioning for Cache-Side-Channel
Elimination in Clouds. CoRR, abs/1708.09538, 2017.

[71] S. Srikanthan, S. Dwarkadas, and K. Shen. Coherence Stalls or Latency
Tolerance: Informed CPU Scheduling for Socket and Core Sharing. In
USENIX Annual Technical Conference, 2016.

[72] David Suggs and Dan Bouvier. AMD Zen2 Processors. In Proceedings
of the 2019 Hot Chips Technical Conference, 2019.

[73] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe,
Dionisios Pnevmatikatos, and Alexandres Daglis. The NeBuLa RPC-
Optimized Architecture, page 199–212. IEEE Press, 2020.

24



A Case Against (Most) Context Switches HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

[74] Brian Thompto. POWER9 Processor for the Cognitive Era. In Proceed-
ings of the 2016 Hot Chips Technical Conference, 2016.

[75] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L.
Lo, and Rebecca L. Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multithreading processor. In
Proceedings of the 23rd Annual International Symposium on Computer
Architecture, ISCA ’96, page 191–202, Philadelphia, Pennsylvania, USA,
1996. Association for Computing Machinery.

[76] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture,
ISCA ’95, page 392–403, New York, NY, USA, 1995. Association for
Computing Machinery.

[77] Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg. Tableau:
A high-throughput and predictable vm scheduler for high-density
workloads. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for Computing Machinery.

[78] J. Robert von Behren, Jeremy Condit, and Eric A. Brewer. Why events
are a bad idea (for high-concurrency servers). In Michael B. Jones,
editor, Proceedings of HotOS’03: 9thWorkshop on Hot Topics in Operating
Systems, May 18-21, 2003, Lihue (Kauai), Hawaii, USA, pages 19–24.
USENIX, 2003.

[79] Yaohua Wang, Rongze Li, Zhentao Huang, and Xu Zhou. An In-Depth
Analysis of System-Level Techniques for SimultaneousMulti-Threaded
Processors in Clouds. In Proceedings of the 2020 4th International Con-
ference on High Performance Compilation, Computing and Communica-
tions, HP3C 2020, page 145–149, New York, NY, USA, 2020. Association
for Computing Machinery.

[80] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis,
Ion Stoica, and Xin Jin. Racksched: A microsecond-scale scheduler for
rack-scale computers. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 1225–1240. USENIX
Association, November 2020.

25


	Abstract
	1 Introduction
	2 Faster and Better Kernels
	3 Hardware/Software Interface
	3.1 Proposed instructions
	3.2 Security Model
	3.3 Microarchitectural Security

	4 The Space of Hardware Designs
	5 Conclusion
	6 Acknowledgments
	References



