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Abstract
Multiplexing software threads onto hardware threads and
serving interrupts, VM-exits, and system calls require fre-
quent context switches, causing high overheads and sig-
nificant kernel and application complexity. We argue that
context switching is an idea whose time has come and gone,
and propose eliminating it through a radically different hard-
ware threading model targeted to solve software rather than
hardware problems. The new model adds a large number of
hardware threads to each physical core – making thread mul-
tiplexing unnecessary – and lets software manage them. The
only state change directly triggered in hardware by system
calls, exceptions, and asynchronous hardware events will be
blocking and unblocking hardware threads. We also present
ISA extensions to allow kernel and user software to exploit
this new threading model. Developers can use these exten-
sions to eliminate interrupts and implement fast I/O without
polling, exception-less system and hypervisor calls, practical
microkernels, simple distributed programming models, and
untrusted but fast hypervisors. Finally, we suggest practical
hardware implementations and discuss the hardware and
software challenges toward realizing this novel approach.
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1 Introduction

Context switches complicate both operating system and ap-
plication design and add unnecessary performance over-
heads. Frequent switches – due to I/O interrupts, system
calls, and VM-exits – disrupt the regular execution stream,
require expensive state saving and restoration, and lead to
poor caching behavior. For example, waking up a thread
blocked on network I/O requires handling an interrupt from
the network interface (NIC), running the kernel scheduler,
potentially sending an inter-processor interrupt (IPI) to an-
other core, and sufferingmany cachemisses along theway. In
systems with modern SSDs and NICs, such context switches
occur too frequently, severely impacting the latency and
throughput of system and application code [40, 41, 49]. In
turn, system and application designers opt to avoid inter-
rupts, wake-ups, and scheduling altogether with polling,
which sacrifices one or more CPU cores and abandons the
more intuitive blocking programming model [24, 37, 46, 48,
55, 63, 65, 68]. Similarly, significant overheads plague the
transitions between CPU protection modes, inflating the cost
of system calls and virtual machine mode switches [20, 69].
Even switching between software threads in the same protec-
tion level incurs hundreds of cycles of overhead as registers
are saved/restored and caches are warmed [25, 46].

Such problems persist over decades due to shortcomings of
the hardware abstractions for threading. Threading support
in modern hardware has been designed to solve hardware
problems, i.e., mainly improve utilization of wide, out-of-
order cores. Existing multithreaded processors, such as Intel
Hyperthreaded CPUs, AMD SMT CPUs, and IBM Power
CPUs, implement multiple hardware threads per physical
core (2–8), each with its own architectural state and instruc-
tion stream. These instruction streams are multiplexed in
the processor pipeline in a fine-grained manner to best uti-
lize all available hardware resources such as arithmetic and
load/store units [75, 76]. If one thread has low instruction-
level parallelism (ILP), instructions from the other thread(s)
can utilize idling pipeline resources. While there is a large
body of work on scheduling software threads to hardware
threads [5, 12, 26, 31–33, 44, 59, 63, 64, 70, 71, 79], there is
little innovation in the interface exposed to system and user
software. The OS views each hardware thread as a standalone
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logical core to independently halt, interrupt, and assign a
software thread for execution. Logically, the availability of
multiple threads per core is no different from the availability
of multiple cores per CPU.
We argue it is time to redesign the hardware abstractions

for threading with software in mind. We propose two radical
changes that can drastically improve the efficiency and re-
duce the complexity of systems software. First, we propose
that hardware should directly support a much larger number
of hardware threads per core. There should be potentially
10s, 100s, or even 1000s of threads per core, where even 10
threads would be a meaningful step forward but we believe
far more will eventually be practical. Resuming execution for
one of these threads should be sufficiently fast (nanosecond
scale), even if just a subset of threads share the pipeline at
any given time. Second, software should have direct control
over hardware threads. It should be able to start and stop
them, i.e., determine which ones can be scheduled for ex-
ecution on the pipeline, and modify registers belonging to
different hardware threads.
Having a large number of software-controlled hardware

threads per core renders many ideas practical that improve
systems efficiency or simplicity. Interrupts and the design
complexities associated with them can be eliminated. Hard-
ware threads can wait on I/O queues when there are no
pending I/O events and immediately wake up when an event
arrives (e.g., a packet received by the NIC) without needing
an expensive transition to a hard IRQ context. Expensive
VM-exits [20] and system calls can simply make a special-
ized root-mode hardware thread runnable rather than waste
hundreds of nanoseconds context-switching to root-mode in
the same hardware thread. Microkernel components can run
on dedicated hardware threads, reducing the communica-
tion cost and avoiding scheduling delays. Similarly, isolation
necessary for hypervisors and sandboxes will be offered at
low cost through the use of different hardware threads. Fi-
nally, due to the large number of processor-resident threads,
blocking I/O will be cheaper, simplifying distributed systems’
design.
Fundamentally, these optimizations are based on the in-

sight that it can be faster and simpler to start and stop a large
number of hardware threads rather than to frequently mul-
tiplex a large number of software contexts on top of a single
hardware thread [53, 60, 69]. In addition to requiring mode
changes and state swapping, the latter often invokes the gen-
eral OS scheduler with unpredictable performance results.
The cost of starting and stopping the execution of hardware
threads can be kept low, and its impact on overall perfor-
mance can be predictable.

The rest of the paper is organized as follows. §2 provides
examples of long-standing system design problems that our

approach can address. §3 proposes the new hardware inter-
face for threading. Finally, §4 reviews hardware implemen-
tations and their tradeoffs.

2 Faster and Better Kernels

We argue that giving software the ability to control a large
number of hardware threads will lead to drastically different
and more efficient systems design:

NoMore Interrupts: Our design can remove all prepara-
tory work for interrupt processing. Instead of registering
interrupt handlers in the interrupt descriptor table (IDT), the
kernel can designate a hardware thread per core per inter-
rupt type. Each of these threads initially blocks on a memory
address using an mwait instruction. In place of sending an
interrupt, an event trigger – such as the timer in the local
APIC –writes to thememory address that its target hardware
thread is waiting on. The hardware thread becomes runnable
and handles the event without the need to jump into an IRQ
context and the associated overheads. In §4 we discuss how
we can use hardware thread priorities to eliminate delays for
time-critical interrupts.

Fast I/Owithout Inefficient Polling:Havingminimized
the cost of notifying a waiting thread, there is no need for
polling anymore. To improve performance under heavy I/O
load, kernel developers use polling threads rather than inter-
rupts. However, polling threads waste one or more cores and
complicate core allocation under varying I/O load [55, 63].
Given a large number of threads per core, polling is unnec-
essary; we can implement I/O fast and efficiently by having
threads wait on I/O events (mwait on the I/O queue tail in
the x86 case), letting other threads run until there is I/O
activity. Upon a new I/O event arrival, a waiting thread can
quickly start running to process the event. I/O-heavy appli-
cations can thus achieve high throughput and low latency
while other threads can efficiently consume spare cycles.
If the number of hardware threads is sufficiently high, we
can avoid the software and hardware complexities associ-
ated with having threads each busy poll multiple memory
locations [57].

Exception-less System Calls and No VM-Exits: We
can use the same approach to optimize system calls and
VM-exits. Currently, kernel developers have to make an un-
necessary trade-off. When a system call or VM-exit event
(e.g., a vmcall for x86, an interrupt, a privileged instruction
such as wrmsr, etc.) occurs, kernel code can either run in
the same thread as the application or in a separate dedicated
kernel thread. In the first case, the state management nec-
essary when switching privilege levels within a hardware
thread can take hundreds of cycles [46, 69]. The second op-
tion, used for serving both system calls (FlexSC [69]) and
VM-exits (SplitX [53]), requires complex asynchronous APIs
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and scheduler fine-tuning so that kernel threads do not suf-
fer excessive delays. Due to its simplicity, the single-thread
approach has been dominating both commercial (Linux) and
research (Dune [23], IX [24], ZygOS [65]) operating sys-
tems. Our proposed threading model enables the best of both
worlds. System calls and VM-exits can be served in dedicated
hardware threads, avoiding the mode switching overheads.
Application threads can directly start kernel threads and use
the API in §3 to pass parameters, eliminating the need for
asynchronous API and scheduling complications. AWS Ni-
tro [2] catches VM-exits and ships the work to an offload
chip (Nitro controller), in essence, shipping them to another
"thread" similar to our proposal.

Access to All Registers in the Kernel: Kernels tradi-
tionally refrain from using floating-point and vector oper-
ations (e.g., for machine learning or cryptography). This
makes context switches faster as the FP and vector regis-
ters do not need to be saved and restored. With software-
managed hardware threads, kernel code can run in one hard-
ware thread and application code in a different hardware
thread. Kernels can then use FP and vector operations and
link with libraries that use themwithout affecting the system
call invocation latency.

Faster Microkernels and Container Proxies: Micro-
kernel OSes are becoming increasingly popular [3, 4, 7, 11,
14, 49, 54, 55] due to their modularity and the protection
from bugs and vulnerabilities they provide through isolation.
However, they suffer from the same problem as dedicated
kernel threads, i.e., potentially excessive scheduling delays.
With a large number of software-managed hardware threads,
when an application wishes to communicate with a micro-
kernel service such as the file system or the network stack,
it can directly start the service’s hardware thread achieving
the same result as XPC [30] while using a simpler hardware
mechanism. There is no need to move into kernel space
and invoke the scheduler. This improves performance for
I/O-intensive services, which have so far resorted to using
dedicated cores (TAS [48], Snap [55]). Even in monolithic
kernels, features such as kernel subsystem isolation can be
implemented easily with very low overhead. Previous so-
lutions such as LXDs [60] had to jump through hoops to
avoid the prohibitive cost of synchronous cross-domain in-
vocations. Such invocations will now come cheaply through
software-controlled hardware threads simplifying the code
and eliminating the need for helper threads that handle asyn-
chronous interactions. We can use similar functionality to
accelerate container proxies, such as Istio [15]. Container
proxies would benefit from the direct transfer of control
between the container and the proxy hardware threads.

Untrusted Hypervisors: Hypervisors [6, 23] on today’s
CPUs need privileged access to the host operating system for
good performance. For example, the KVM driver [6] used for

hardware virtualization in hypervisors such as QEMU [10]
needs to run in the kernel. A VM-exit from a virtual machine
switches to the hypervisor in the kernel and the hypervisor
uses its kernel access to service I/O requests and handle page
faults. Like amicrokernel design, isolating the hypervisor in a
less privileged mode (e.g., ring 3 in root mode for x86) would
require expensive scheduling and context switch overheads.
With many hardware threads per core, a hypervisor could be
isolated in its own unprivileged hardware thread. VM-exits
would stop the virtual machine’s hardware thread and start
the hypervisor’s hardware thread. If the hypervisor needs to
handle an I/O request or a page fault, it could, in turn, start
the kernel’s hardware thread. Thus, hypervisors still provide
the same functionality with the same performance without
privileged access to the kernel or the hardware.
Similar to hypervisors, other system components can be

isolated in a less privileged mode, such as binary transla-
tors [1, 16] and eBPF [13] code. For eBPF, we could even
relax some code restrictions if it ran in its own privilege
domain. Quick hand-offs between hardware threads allow
isolation without loss of performance.

SimplerDistributedProgramming:With a limited num-
ber of hardware threads per physical core, distributed ap-
plications either resort to event-based models or rely on
the scheduler to multiplex software threads on top of hard-
ware threads. Event-based models are more difficult to work
with than threading models due to their confusing control
flow [78]. Distributed systems prefer the simpler threading
abstraction and create large numbers of threads to hide inter-
node communication latencies with other work [61]. Even
though threading is a simpler abstraction for distributed
systems, multiplexing a large number of software threads
onto a small number of hardware threads is expensive. Mul-
tiplexing requires frequent scheduler interaction and good
application performance is dependent on the scheduling al-
gorithm, which is not necessarily well-suited to the applica-
tion [58, 63, 77]. Given a large number of hardware threads,
developers can assign one hardware thread per request and
use simple blocking I/O semantics without suffering from
significant thread scheduling overheads.

3 Hardware/Software Interface
We now summarize the ISA extensions that support large
numbers of software-controlled hardware threads. A CPU
core supports a large but fixed number of physical hard-
ware threads named by identifiers called ptids. To facilitate
virtualization, instruction operands specify virtual thread
identifiers, or vtids, transparently mapped to ptids.
At any point, a given ptid can be in one of three states:

runnable, waiting, or disabled. Runnable ptids can execute
instructions on the CPU core. The CPU may be executing
instructions only for a subset of runnable ptids on any clock
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cycle. A ptid can voluntarily enter the waiting state through
the x86-inspired instructionsmonitor/mwait described below.
Finally, a disabled ptid does not execute instructions until it
is restarted by another ptid. Events such as page faults that
trigger exceptions in today’s CPUs simply write an exception
descriptor tomemory and disable the current ptid. A different
ptid monitors the exception descriptor to detect and handle
the exception.

3.1 Proposed instructions

• monitor <memory_address>
mwait
Like the x86 ISA [8, 9], these instructions pause the cur-
rent ptid until a write occurs to <memory_address>. A
hardware thread can monitor multiple memory locations.
Prior work on hardware transactional memory [36] and
RX queue notification mechanisms [57] has shown that
such monitoring is possible with relatively small over-
head. The difference in our design is that these instructions
monitor any write (including DMA) to any address, may
be used from any privilege level, and hence serve both
external event processing and inter-thread communica-
tion. For example, each core’s APIC timer can increment
a counter every time a timer interrupt is triggered. In
turn, the hardware thread hosting the kernel scheduler
can monitor/mwait on that memory location. Similarly, a
network thread can wait on the RX queue tail until packet
arrival. Unlike x86, one can monitor uncachable addresses
such as device memory or memory-mapped I/O registers;
§4 sketches a possible implementation.

• start <vtid>: Enable ptid mapped to vtid.
stop <vtid>: Disable ptid mapped to vtid.

• rpull <vtid>, <local-reg>, <remote-reg>
rpush <vtid>, <remote-reg>, <local-reg>
Used to read and write the registers of a disabled ptid, so as
to swap software threads in and out of hardware threads.
Note that in addition to normal registers, remote-reg can
be the program counter or various control registers in-
cluding a few novel ones: the exception descriptor pointer
register specifies where to write an exception descriptor
when the ptid becomes disabled, while a thread-descriptor-
table register specifies the location of a table mapping vtids
to ptids.

• invtid <vtid>, <remote-vtid>
Any update to a ptid’s TDT (described below) must be
followed by an invtid. Requiring explicit invalidation
facilitates hardware caching and virtualization.

3.2 Security Model

The security model is designed to facilitate process isolation,
kernel/hypervisor security, and virtualization. A ptid can be
in either user or supervisor mode. Access to certain registers

from user mode always disables the current ptid and writes
an exception descriptor to memory that a supervisor ptid can
use to emulate privileged instructions for guests running in
user ptids. In some cases, multiple ptids will need to report
their exceptions to the same hypervisor ptid, requiring a
software-based queuing design.

Consecutive Exceptions.What happens if thread𝐵 causes
an exception while handing a previous exception in thread
𝐴? For example,𝐴 could divide by 0, and 𝐵 could experience a
page fault in the exception handler, or could even divide by 0
itself. Nothing prevents arbitrarily nested exceptions, so long
as another thread 𝐶 handles 𝐵’s exceptions. However, any
handler chain must end somewhere, at a lowest-level kernel
thread that does not have an exception handler. Triggering
an exception in a thread without a handler for that exception
type indicates a serious kernel bug akin to a triple-fault, and
can be handled by halting or resetting the CPU.

Thread Descriptor Table. One particularly important
privileged register is the thread descriptor table pointer, or
TDT, which maps vtids to ptids and permissions. A ptid must
be in supervisor mode to set this register in its own context
or any other vtid. However, the TDT table may allow a user
ptid to start, stop, and modify other less privileged registers
in other ptids. Table 1 shows an example TDT.

vtid ptid Permissions
0x0 0x01 0b1000
0x1 0x00 0b0000 (invalid)
0x2 0x10 0b1111
0x3 0x11 0b1110

Table 1: Example Thread Descriptor Table. The 4 per-
mission bits allow the caller to start - stop - modify
some registers -modify most registers of the callee.

This TDT design allows for flexible, non-hierarchical priv-
ilege levels that facilitate the sandbox use cases discussed
in §2. For example, thread B might have permission to stop
thread A, and thread Cmight have permission to stop thread
B, but thread C does not necessarily have any permission
over thread A. Such a configuration is impossible in existing
protection-ring-based designs.
An alternative to the TDT could be a secret-key-based

design. Threads that perform thread management would
need to provide the target thread’s secret key if they are not
running in privileged mode. Each thread would set its own
key and share it with other threads using existing software
mechanisms, e.g., shared memory or pipes.
3.3 Microarchitectural Security

The Spectre [50] attack demonstrates that sibling threads
sharing microarchitectural resources may spy on each other.
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While there is ongoing work to fix this vulnerability [21, 22,
34, 35, 51, 62], it is unclear whether Spectre can ever be fully
mitigated. From initial glance, it may seem that our proposal
futher aggravates microarchitectural security vulnerabilities.

We argue that these vulnerabilities are orthogonal to our
proposal. While we do propose that there should be many
more hardware threads, they are not SMT threads – they are
hardware threads multiplexed onto a small number of SMT
threads. Thus, with regard to Spectre, our proposal is no
different from software-thread context-switching today: We
still just multiplex on top of SMT threads. These SMT threads
may spy on each other, but that is not a consequence of hav-
ing many hardware threads. Our changes to the threading
API will allow developers to build reasonable security poli-
cies, but beyond this, security policy for microarchitectural
vulnerabilities is not our focus.

4 The Space of Hardware Designs

We now discuss the key requirements and implementation
options for hardware that supports a large number of software-
controlled threads. While there are important issues to ad-
dress in future research, we believe that the required hard-
ware is feasible and practical.

Storage for Thread State: Our proposal relies on hard-
ware to store state for a large number of threads so that
start and stop are fast (nanosecond scale). The state in-
cludes all general-purpose and control registers. For x86-64,
a thread has 272 bytes of register state that goes up to 784
bytes if SSE3 vector extensions are used.

A first option is to implement hardware threads as SMT hy-
perthreads in modern CPUs [75, 76]. Hyperthreads execute
concurrently by sharing pipeline resources in a fine-grain
manner. Their implementation is expensive as all pipeline
buffers must be tagged, partitioned, or replicated. This is why
most popular CPUs support up to 2 hyperthreads and few
designs have gone up to 4 or 8 hyperthreads [74]. We believe
that the two concerns should be separated: use a small number
of hyperthreads to best utilize the complex pipeline (likely
2-4) and multiplex additional runnable hardware threads on
the available hyperthreads in hardware.

The state for additional hardware threads can be stored in
large register files, similar to early multithreaded CPUs for
coarse-grain thread interleaving [17–19]. The overhead of
starting execution of a thread stored in these register files
would be proportional to the length of the pipeline, roughly
20 clock cycles in modern processors. Modern GPUs have
demonstrated the practicality of implementing multi-ported
register files that store 10s of KBytes and support 10s of
hardware threads. For example, the 64KByte register file
in the sub-core of a Nvidia Tesla V100 GPU can store the
state for 83 to 224 x86-64 threads [27]. GPUs only support

a restricted execution model designed for bulk parallelism
across a large number of threads. We believe that our design
will allow for concurrent general-purpose CPU execution of
a smaller number of hardware threads while enabling fast
switching to other register-file-resident threads. For a CPU
with 100 cores, the cost is 6.4MB in register file space, which
is non-trivial but well within what is possible given that
upcoming CPU chips feature L3 caches with a capacity of
256MB or higher [72].
A further option is to utilize larger caches, such as the

private (per-core) L2 caches or the shared L3 caches, to also
store state for the additional hardware threads, similar to Du-
plexity [56]. A fraction of a 512KB private L2 cache can store
the state of tens of threads, while a few MB of an L3 cache
can support hundreds of threads. Modern CPUs use wide
interconnect links (32-byte or wider) and scalable topologies
to connect the cache hierarchy levels. Hence, the additional
cost of a bulk transfer of register state from the L2 or L3
cache is limited to 10 to 50 clock cycles (i.e., 3ns to 16ns for a
3GHz CPU). While software can save thread contexts itself,
delegating this responsibility to hardware ensures that the
contexts are pinned to caches and reduces software complex-
ity. Combining these three options can support hundreds
to thousands of threads per core in a cost-effective man-
ner. There are several optimizations to consider: selecting
which threads are stored closer to the core based on criti-
cality, tracking used/modified registers to avoid redundant
transfers, and hardware prefetching of the state of recently
woken up threads closer to the processor core.

Managing Non-register State: As is the case with ordi-
nary context switching [69], managing register state may
only be a fraction of the cost of supporting a large number
of hardware threads. Misses in caches and TLBs can lead
to significant performance loss and even thrashing as nu-
merous hardware threads start and stop. However, for many
use cases, the working set size and the process count will
not increase, so our proposal should not add significant addi-
tional burden to caches and the TLB. Moreover, there are two
complementary techniques to alleviate caching problems for
large thread counts.

First, we can pin the most critical instructions/data/trans-
lations (few KBytes) for performance-sensitive threads in
caches, using fine-grain cache partitioning techniques that
allow hundreds of small partitions without loss of associativ-
ity [66]. Second, we can use prefetching techniques that
warm up caches of all types as soon as threads become
runnable. For that, it is critical to capture threads’ work-
ing sets [38, 43, 45], including their instructions and their
data such as the cache line they perform an mwait on and
memory regions written to by I/O devices.
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Neither prefetching nor caching have to be perfect. Mod-
ern out-of-order processors feature techniques that can hide
a reasonable amount of latency due to cache and TLB misses.
If these misses are served on-chip (e.g., by an L2 or L3 cache)
and there is sufficient instruction-level parallelism (ILP), per-
formance loss is minimal [47]. However, L3 misses served
by off-chip memory lead to severe performance losses. The
first goal of the hardware design should be to keep all critical
state for threads on-chip. The on-chip capacity will serve
as the upper bound on the number of threads a CPU can
support across all cores.

Generalized monitor - mwait: In our proposal, hardware
threads use monitor - mwait to express blocking andwakeup
conditions. Hence, these two instructions must support more
than the use cases in current x86 implementations [42]. Hard-
ware should monitor updates to any address by any source.
Current CPUs monitor writes by CPU cores that map to
DRAM main memory. Future hardware should also moni-
tor updates by I/O devices or specialized accelerators. For
instance, this will enable monitoring addresses updated by a
DMA engine when a new packet arrives in a network inter-
face. The switch of external interfaces from legacy I/O speci-
fications like PCIe to memory-based and partially-coherent
specifications like CXL [28] will greatly simplify monitoring
memory and caches in both the CPU and devices/accelerators.
Lastly, since future hardware should be compatible with
legacy devices, hardware must translate external interrupts
to memory writes (similar to PCIe MSI-x functionality).

Support for Thread Scheduling: Hardware must also
play an important role in thread scheduling. At a minimum,
it must ensure that critical threads associated with the ker-
nel – handlers for exceptions and external events, or the
kernel scheduler – get to execute instructions when they are
runnable. A simple way to meet this requirement is to exe-
cute runnable hardware threads in a fine-grain, round-robin
(RR) manner, which emulates processor sharing (PS) and al-
lows all runnable threads to make progress without the need
for interrupts. The combination of PS scheduling with thread-
per-request will actually provide superior performance for
server workloads with high execution-time variability [46,
80]. In addition to RR scheduling, we can introduce hard-
ware support for thread priorities (e.g., threads used for serv-
ing time-sensitive interrupts receive more cycles [56]) or
even hardware-based (but software-managed) thread queu-
ing, load balancing, priorities, and scheduling [29, 52, 67].
Hardware support will be needed for fine-grain tracking of
threads’ resource consumption for cloud billing or software
decisions. Part of scheduling, such as associating hardware
threads with I/O events, could also be transparently offloaded
to peripheral devices such as smartNICs [39, 73].

The role of the OS scheduler will also change. Its main
task today is to decide which software thread runs on each
hardware thread. With a large number of hardware threads,
the scheduler will rarely need to swap a software thread in
and out of a hardware thread. This operation should become
as uncommon as swapping memory pages to disk. The OS
scheduler will enforce software policies by starting and stop-
ping hardware threads and setting their priorities. It will also
manage the mapping of threads to cores in order to improve
locality. Since starting and stopping threads incurs low over-
head, the scheduler will run in much tighter loops, drastically
improving application performance (reduced queuing time,
more time for higher-quality management decisions [46, 63]).

5 Conclusion
Context switches and their associated overheads and limita-
tions should be eliminated altogether through the adoption
of a new hardware threading model that gives software con-
trol over a large number of hardware threads per core. While
there are software and hardware research questions to ad-
dress, we argue that the proposed threading model will lead
to significant simplification and performance gains for both
systems and application code.
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