
As the processor community prepares
for a billion transistors on a chip,
researchers continue to debate the

most effective way to use them. One
approach is to add more memory (either
cache or primary memory) to the chip, but
the performance gain from memory alone is
limited. Another approach is to increase the
level of systems integration, bringing sup-
port functions like graphics accelerators and
I/O controllers on chip. Although integra-
tion lowers system costs and communica-
tion latency, the overall performance gain to
applications is again marginal.

We believe the only way to significantly
improve performance is to enhance the
processor’s computational capabilities. In
general, this means increasing parallelism—
in all its available forms. At present only cer-
tain forms of parallelism are being exploited.
Current superscalars, for example, can exe-
cute four or more instructions per cycle; in
practice, however, they achieve only one or
two, because current applications have low
instruction-level parallelism. Placing multi-
ple superscalar processors on a chip is also
not an effective solution, because, in addi-
tion to the low instruction-level parallelism,
performance suffers when there is little
thread-level parallelism. A better solution is
to design a processor that can exploit all
types of parallelism well.

Simultaneous multithreading is a processor
design that meets this goal, because it con-
sumes both thread-level and instruction-level
parallelism. In SMT processors, thread-level
parallelism can come from either multi-
threaded, parallel programs or individual,
independent programs in a multiprogram-
ming workload. Instruction-level parallelism
comes from each single program or thread.
Because it successfully (and simultaneously)

exploits both types of parallelism, SMT
processors use resources more efficiently, and
both instruction throughput and speedups are
greater.

Simultaneous multithreading combines
hardware features of wide-issue superscalars
and multithreaded processors. From super-
scalars, it inherits the ability to issue multi-
ple instructions each cycle; and like
multithreaded processors it contains hard-
ware state for several programs (or threads).
The result is a processor that can issue mul-
tiple instructions from multiple threads each
cycle, achieving better performance for a
variety of workloads. For a mix of indepen-
dent programs (multiprogramming), the
overall throughput of the machine is
improved. Similarly, programs that are par-
allelizable, either by a compiler or a pro-
grammer, reap the same throughput
benefits, resulting in program speedup.
Finally, a single-threaded program that must
execute alone will have all machine
resources available to it and will maintain
roughly the same level of performance as
when executing on a single-threaded, wide-
issue processor.

Equal in importance to its performance ben-
efits is the simplicity of SMT’s design.
Simultaneous multithreading adds minimal
hardware complexity to, and, in fact, is a
straightforward extension of, conventional
dynamically scheduled superscalars. Hardware
designers can focus on building a fast, single-
threaded superscalar, and add SMT’s multi-
thread capability on top.

Given the enormous transistor budget in
the next computer era, we believe simulta-
neous multithreading provides an efficient
base technology that can be used in many
ways to extract improved performance. For
example, on a one billion transistor chip, 20

12 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

Simultaneous

multithreading exploits

both instruction-level

and thread-level

parallelism by issuing

instructions from

different threads in the

same cycle.

SIMULTANEOUS
MULTITHREADING:

A Platform for Next-Generation Processors

Susan J. Eggers
University of Washington

Joel S. Emer
Digital Equipment Corp.

Henry M. Levy
University of Washington

Jack L. Lo
University of Washington

Rebecca L. Stamm
Digital Equipment Corp.

Dean M. Tullsen
University of California,

San Diego

.

to 40 SMTs could be used side-by-side to that of achieve per-
formance comparable to a much larger number of conven-
tional superscalars. With IRAM technology, SMT’s high
execution rate, which currently doubles memory bandwidth
requirements, can fully exploit the increased bandwidth
capability. In both billion-transistor scenarios, the SMT
processor we describe here could serve as the processor
building block.

How SMT works
The difference between superscalar, multithreading, and

simultaneous multithreading is pictured in Figure 1, which
shows sample execution sequences for the three architec-
tures. Each row represents the issue slots for a single exe-
cution cycle: a filled box indicates that the processor found
an instruction to execute in that issue slot on that cycle; an
empty box denotes an unused slot. We characterize the
unused slots as horizontal or vertical waste. Horizontal waste
occurs when some, but not all, of the issue slots in a cycle
can be used. It typically occurs because of poor instruction-
level parallelism. Vertical waste occurs when a cycle goes
completely unused. This can be caused by a long latency
instruction (such as a memory access) that inhibits further
instruction issue.

Figure 1a shows a sequence from a conventional super-
scalar. As in all superscalars, it is executing a single program,
or thread, from which it attempts to find multiple instruc-
tions to issue each cycle. When it cannot, the issue slots go
unused, and it incurs both horizontal and vertical waste.

Figure 1b shows a sequence from a multithreaded archi-
tecture, such as the Tera.1 Multithreaded processors contain
hardware state (a program counter and registers) for sever-
al threads. On any given cycle a processor executes instruc-
tions from one of the threads. On the next cycle, it switches
to a different thread context and executes instructions from
the new thread. As the figure shows, the primary advantage
of multithreaded processors is that they better tolerate long-
latency operations, effectively eliminating vertical waste.
However, they cannot remove horizontal waste. Conse-
quently, as instruction issue width continues to increase, mul-
tithreaded architectures will ultimately suffer the same fate
as superscalars: they will be limited by the instruction-level
parallelism in a single thread.

Figure 1c shows how each cycle an SMT processor selects
instructions for execution from all threads. It exploits instruc-
tion-level parallelism by selecting instructions from any
thread that can (potentially) issue. The processor then
dynamically schedules machine resources among the instruc-
tions, providing the greatest chance for the highest hardware
utilization. If one thread has high instruction-level paral-
lelism, that parallelism can be satisfied; if multiple threads
each have low instruction-level parallelism, they can be exe-
cuted together to compensate. In this way, SMT can recov-
er issue slots lost to both horizontal and vertical waste.

SMT model
We derived our SMT model from a high-performance, out-

of-order, superscalar architecture whose dynamic schedul-
ing core is similar to that of the Mips R10000. In each cycle

the processor fetches eight instructions from the instruction
cache. After instruction decoding, the register-renaming logic
maps the architectural registers to the hardware renaming
registers to remove false dependencies. Instructions are then
fed to either the integer or floating-point dispatch queues.
When their operands become available, instructions are
issued from these queues to their corresponding functional
units. To support out-of-order execution, the processor tracks
instruction and operand dependencies so that it can deter-
mine which instructions it can issue and which must wait for
previously issued instructions to finish. After instructions
complete execution, the processor retires them in order and
frees hardware registers that are no longer needed.

Our SMT model, which can simultaneously execute
threads from up to eight hardware contexts, is a straightfor-
ward extension of this conventional superscalar. We repli-
cated some superscalar resources to support simultaneous
multithreading: state for the hardware contexts (registers and
program counters) and per-thread mechanisms for pipeline
flushing, instruction retirement, trapping, precise interrupts,
and subroutine return. We also added per-thread (address-
space) identifiers to the branch target buffer and translation
look-aside buffer. Only two components, the instruction fetch
unit and the processor pipeline, were redesigned to benefit
from SMT’s multithread instruction issue.

Simultaneous multithreading needs no special hardware to
schedule instructions from the different threads onto the
functional units. Dynamic scheduling hardware in current
out-of-order superscalars is already functionally capable of
simultaneous multithreaded scheduling. Register renaming
eliminates register name conflicts both within and between
threads by mapping thread-specific architectural registers
onto the hardware registers; the processor then issues instruc-
tions (after their operands have been calculated or loaded
from memory) without regard to thread.

This minimal redesign has two important consequences.
First, since most hardware resources are still available to a
single thread executing alone, SMT provides good perfor-

September/October 1997 13

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

T
im

e
(p

ro
ce

ss
or

 c
yc

le
s)

(a) (b) (c)

Figure 1. How architectures partition issue slots (function-
al units): a superscalar (a), a fine-grained multithreaded
superscalar (b), and a simultaneous multithreaded proces-
sor (c). The rows of squares represent issue slots. The pro-
cessor either finds an instruction to execute (filled box) or
the slot goes unused (empty box).

.

mance for programs that cannot be parallelized. Second,
because the changes to enable simultaneous multithreading
are minimal, the commercial transition from current super-
scalars to SMT processors should be fairly smooth.

However, should an SMT implementation negatively
impact either the targeted processor cycle time or the time
to design completion, designers could take several approach-
es to simplify it. Because most of SMT’s implementation com-
plexity stems from its wide-issue superscalar underpinnings,
many of the alternatives involve altering the superscalar. One
solution is to partition the functional units across a dupli-
cated register file (as in the Alpha 21264) to reduce ports on
the register file and dispatch queues.2 Another is to build
interleaved caches augmented with multiple, independent-
ly addressed banks, or phase-pipeline cache accesses to
increase the number of simultaneous cache accesses. A third
alternative would subdivide the dispatch queue to reduce
instruction issue delays.3 As a last resort, a designer could
reduce the number of register and cache ports by using a
narrower issue width. This alternative would have the great-
est impact on performance.

Instruction fetching. In a conventional processor, the
instruction unit fetches instructions from a single thread into
the execution unit. Performance issues revolve around max-
imizing the number of useful instructions that can be fetched
(by minimizing branch mispredictions, for example) and
fetching independent instructions quickly enough to keep
functional units busy. An SMT processor places additional
stress on the fetch unit. The fetch unit must now fetch instruc-
tions more quickly to satisfy SMT’s more efficient dynamic
scheduler, which issues more instructions each cycle
(because it takes them from multiple threads). Thus, the fetch
unit becomes SMT’s performance bottleneck.

On the other hand, an SMT fetch unit can take advantage
of the interthread competition for instruction bandwidth to
enhance performance. First, it can partition this bandwidth
among the threads. This is an advantage, because branch
instructions and cache-line boundaries often make it diffi-
cult to fill issue slots if the fetch unit can access only one
thread at a time. We fetch from two threads each cycle to
increase the probability of fetching only useful (nonspecu-
lative) instructions. In addition, the fetch unit can be smart
about which threads it fetches, fetching those that will pro-
vide the most immediate performance benefit.

2.8 fetching. The fetch unit we propose is the 2.8 scheme.4

The unit has eight program counters, one for each thread
context. On each cycle, it selects two different threads (from
those not already incurring instruction cache misses) and

fetches eight instructions from each thread. To match the
issue hardware’s lower instruction width, it then chooses a
subset of these instructions for decoding. It takes instruc-
tions from the first thread until it encounters a branch instruc-
tion or the end of a cache line and then takes the remaining
instructions from the second thread.

Because the instructions come from two different
threads, there is a greater likelihood of fetching useful
instructions—indeed, the 2.8 scheme performed 10% bet-
ter than fetching from one thread at a time. Its hardware
cost is only an additional port on the instruction cache and
logic to locate the branch instruction—nothing extraordi-
nary for near-future processors. A less hardware intensive
alternative is to fetch from multiple threads while limiting
the fetch bandwidth to eight instructions. However, the
performance gain here is lower: for example, the 2.8
scheme performed 5% better than fetching four instruc-
tions from each of two threads.

Icount feedback. Because it can fetch instructions from
more than one thread, an SMT processor can be selective
about which threads it fetches. Not all threads provide equal-
ly useful instructions in a particular cycle. If the processor
can predict which threads will produce the fewest delays,
performance should improve. Our thread selection hard-
ware uses the Icount feedback technique,4 which gives high-
est priority to the threads with the fewest instructions in the
decode, renaming, and queue pipeline stages.

Icount increases performance in several ways. First, it
replenishes the dispatch queues with instructions from the
fast-moving threads, avoiding those that will fill the queues
with instructions that depend on and are consequently
blocked behind long-latency instructions. Second and most
important, it maintains in the queues a fairly even distribu-
tion of instructions among these fast-moving threads, there-
by increasing interthread parallelism (and the ability to hide
more latencies). Finally, it avoids thread starvation, because
threads whose instructions are not executing will eventual-
ly have few instructions in the pipeline and will be chosen
for fetching. Thus, even though eight threads are sharing and
competing for slots in the dispatch queues, the percentage
of cycles in which the queues are full is actually less than on
a single-threaded superscalar (8 % of cycles versus 21%).

This performance also comes with a very low hardware
cost. Icount requires only a small amount of additional logic
to increment (decrement) per-thread counters when instruc-
tions enter the decode stage (exit the dispatch queues) and
to pick the two smallest counter values.

Icount feedback works because it addresses all causes
of dispatch queue inefficiency. In our experiments,4 it out-
performed alternative schemes that addressed a particular
cause of dispatch queue inefficiency, such as those that
minimize branch mispredictions (by giving priority to
threads with the fewest outstanding branches) or minimize
load delays (by giving priority to threads with the fewest
outstanding on-chip cache misses).

Register file and pipeline. In simultaneous multi-
threading (as in a superscalar processor), each thread can
address 32 architectural integer (and floating-point) regis-
ters. The register-renaming mechanism maps these archi-

14 IEEE Micro

Simultaneous multithreading

Because it can fetch instructions

from more than one thread, an

SMT processor can be selective

about which threads it fetches.

.

tectural registers onto a hardware register file whose size is
determined by the number of architectural registers in all
thread contexts, plus a set of additional renaming registers.
The larger SMT register file requires a longer access time; to
avoid increasing the processor cycle time, we extended the
SMT pipeline two stages to allow two-cycle register reads
and two-cycle writes.

The two-stage register access has several ramifications on
the architecture. For example, the extra stage between instruc-
tion fetch and execute increases the branch misprediction
penalty by one cycle. The two extra stages between register
renaming and instruction commit increase the minimum time
that an executing instruction can hold a hardware register;
this, in turn, increases the pressure on the renaming registers.
Finally, the extra stage needed to write back results to the reg-
ister file requires an extra level of bypass logic.

Implementation parameters. SMT’s implementation
parameters will, of course, change as technologies shrink.
In our simulations, they targeted an implementation that
should be realized approximately three years from now.

For the CPU, the parameters are

• an eight-instruction fetch/decode width;
• six integer units, four of which can load (store) from

(to) memory;
• four floating-point units;
• 32-entry integer and floating-point dispatch queues;
• hardware contexts for eight threads;
• 100 additional integer renaming registers;
• 100 additional floating-point renaming registers; and
• retirement of up to 12 instructions per cycle.

For the memory subsystem, the parameters are

• 128-Kbyte, two-way set associative, L1 instruction and
data caches; the D-cache has four dual-ported banks;
the I-cache has eight single-ported banks; the access
time per bank is two cycles;

• a 16-Mbyte, direct-mapped, unified L2 cache; the single
bank has a transfer time of 12 cycles on a 256-bit bus;

• an 80-cycle memory latency on a 128-bit bus;
• 64-byte blocks on all caches;
• 16 outstanding cache misses;
• data and instruction TLBs that contain 128 entries each;

and
• McFarling-style branch prediction hardware:5 a 256-

entry, four-way set-associative branch target buffer with
an additional thread identifier field, and a hybrid branch
predictor that selects between global and local predic-
tors. The global predictor has 13 history bits; the local
predictor has a 2,048-entry local history table that index-
es into a 4,096-entry prediction table.

Simulation environment
We compared SMT with its two ancestral processor archi-

tectures, wide-issue superscalars and fine-grained, multi-
threaded superscalars. Both are single-processor architectures,
designed to improve instruction throughput. Superscalars do
so by issuing and executing multiple instructions from a sin-

gle thread, exploiting instruction-level parallelism. Multi-
threaded superscalars, in addition to heightening instruction-
level parallelism, hide latencies of one thread by switching to
and executing instructions from another thread, thereby
exploiting thread-level parallelism.

To gauge SMT’s potential for executing parallel workloads,
we also compared it to a third alternative for improving
instruction throughput: small-scale, single-chip shared-mem-
ory multiprocessors, whose processors are also superscalars.
We examined both two- and four-processor multiprocessors,
partitioning their scheduling unit resources (the functional
units—and therefore the issue width—dispatch queues, and
renaming registers) differently for each case. In the two-
processor multiprocessor (MP2), each processor received
half of SMT’s execution resources, so that the total resources
of the two architectures were comparable. Each processor
of the four-processor multiprocessor (MP4) contains approx-
imately one-fourth of SMT’s chip resources. For some exper-
iments we increased these base configurations until each MP
processor had the resource capability of a single SMT.

MP2 and MP4 represent an interesting trade-off between
thread-level and instruction-level parallelism. MP2 can
exploit more instruction-level parallelism, because each
processor has more functional units than its MP4 counter-
part. On the other hand, MP4 has two more processors to
take advantage of more thread-level parallelism.

All processor simulators are execution-driven, cycle-level
simulators; they model the processor pipelines and memo-
ry subsystems (including interthread contention for all struc-
tures in the memory hierarchy and the buses between them)
in great detail. The simulators for the three alternative archi-
tectures reflect the SMT implementation model, but without
the simultaneous multithreading extensions. Instead they use
single-threaded fetching (per processor) and the shorter
pipeline, without simultaneous multithreaded issue. The fine-
grained multithreaded processor simulator context switches
between threads each cycle in a round-robin fashion for
instruction fetch, issue, and retirement. Table 1 (next page)
summarizes the characteristics of each architecture.

We evaluated simultaneous multithreading on a multipro-
gramming workload consisting of several single-threaded
programs and a group of parallel (multithreaded) applica-
tions. We used both types of workloads, because each exer-
cises different parts of an SMT processor.

The larger (workload-wide) working set of the multipro-
gramming workload should stress the shared structures in
an SMT processor (for example, the caches, TLB, and branch
prediction hardware) more than the largely identical threads
of the parallel programs, which share both instructions and
data. We chose the programs in the multiprogramming work-
load from the Spec95 and Splash2 benchmark suites. Each
SMT program executed as a separate thread. To eliminate
the effects of benchmark differences when simulating fewer
than eight threads, each data point in Table 2 and Figure 2
comprises at least four simulation runs, where each run used
a different combination of the benchmarks. The data repre-
sent continuous execution with a particular number of
threads; that is, we stopped simulating when one of the
threads completed.

September/October 1997 15

.

The parallel workload consists of coarse-grained (paral-
lel threads) and medium-grained (parallel loop iterations)
parallel programs targeted for shared-memory multiproces-
sors. As such, it was a fair basis for evaluating MP2 and MP4.
It also presents a different, but equally challenging, test of
SMT. Unlike the multiprogramming workload, all threads in
a parallel application execute the same code, and therefore,
have similar execution resource requirements (they may
need the same functional units at the same time, for exam-
ple). Consequently, there is potentially more contention for
these resources.

We also selected the parallel applications from the Spec95
and Splash2 suites. Where feasible, we executed the entire
parallel portions of the programs; for the long-running
Spec95 programs, we simulated several iterations of the main
loops, using their reference data sets. The Spec95 programs
were parallelized with the SUIF compiler,6 using policies
developed for shared-memory machines.

We compiled the multiprogramming workload with cc and
the parallel benchmarks with a version of the Multiflow com-
piler7 that produces Alpha executables. For all programs we
set compiler optimizations to maximize each program’s per-
formance on the superscalar; however, we disabled trace
scheduling, so that speculation could be guided by the branch
prediction and out-of-order execution hardware.

Simulation results
As Table 2 shows, simultaneous multithreading achieved

much higher throughput than the one to two instructions
per cycle normally reported for current wide-issue super-
scalars. Throughput rose consistently with the number of
threads; at eight threads, it reached 6.2 for the multipro-
gramming workload and 6.1 for the parallel applications. As
Figure 2b shows, speedups for parallel applications at eight
threads averaged 1.9 over the same processor with one
thread, demonstrating SMT’s parallel processing capability.

As we explained earlier, SMT’s
pipeline is two cycles longer than
that of the superscalar and the
processors of the single-chip multi-
processor. Therefore, a single thread
executing on an SMT processor has
additional latencies and should have
lower performance. However, as
Figure 2 shows, SMT’s single-thread
performance was only one percent
(parallel workload) and 1.5% (mul-
tiprogramming workload) worse
than that of the single-threaded
superscalar. Accurate branch predic-
tion hardware and the shared pool
of renaming registers prevented
additional penalties from occurring
frequently.

Resource contention on SMT is also
a potential problem. Many of SMT’s
hardware structures, such as the
caches, TLBs, and branch prediction
tables, are shared by all threads. The

unified organization allows a more flexible, and therefore high-
er, utilization of these structures, as executing threads place
different usage demands on them. It also makes the entire
structures available when fewer than eight threads—most
importantly, a single thread—are executing. On the downside,
interthread use leads to competition for the shared resources,
potentially driving up cache misses, TLB misses, and branch
mispredictions.

We found that interthread interference was significant only
for the L1 data cache and the branch prediction tables; the
data sets of our workload fit comfortably into the off-chip
L2 cache, and conflicts in the TLBs and the L1 instruction
cache were minimal. L1 data cache misses rose by 68% (par-
allel workload) and 66% (multiprogramming workload) and
branch mispredictions by 50% and 27%, as the number of
threads went from one to eight.

SMT was able to absorb the additional conflicts. Many
of the L1 misses were covered by the fully pipelined 16-
Mbyte L2 cache, whose latency was only 10 cycles longer
than that of the L1 cache. Consequently, L1 interthread
conflict misses degraded performance by less than one
percent.8 The most important factor, however, was SMT’s
ability to simultaneously issue instructions from multiple
threads. Thus, although simultaneous multithreading intro-
duces additional conflicts for the shared hardware struc-
tures, it has a greater ability to hide them.

SMT vs. the superscalar. The single-threaded superscalar
fell far short of SMT’s performance. As Table 2 shows, the
superscalar’s instruction throughput averaged 2.7 instruc-
tions per cycle, out of a potential of eight, for the multipro-
gramming workload; the parallel workload had a slightly
higher average throughput of 3.3.

Consequently, SMT executed the multiprogramming
workload 2.3 times faster and the parallel workload 1.9
times faster (at eight threads). The superscalar’s inability to
exploit more instruction-level parallelism and any thread-

16 IEEE Micro

Simultaneous multithreading

Table 1. Comparison of processor architectures.*

Features SS MP2 MP4 FGMT SMT

CPUs 1 2 4 1 1
Functional units/CPU 10 5 3 10 10
Architectural registers/CPU

(integer or floating point) 32 32 32 256 256
(8 contexts) (8 contexts)

Dispatch queue size
(integer or floating point) 32 16 8 32 32

Renaming registers/CPU
(integer or floating point) 100 50 25 100 100

Pipe stages 7 7 7 9 9
Threads fetched/cycle 1 1 1 1 2
Multithread fetch algorithm n/a n/a n/a Round-robin Icount

*SS represents a wide-issue superscalar, MP2 and MP4 represent small-scale,
single-chip, shared-memory multiprocessors, whose processors (two and four,
respectively) are also superscalars, and FGMT represents a fine-grained multi-
threaded superscalar.

.

level parallelism (and consequent-
ly hide horizontal and vertical
waste) contributed to its lower per-
formance.

SMT vs. fine-grained multi-
threading. By eliminating vertical
waste, the fine-grained multithread-
ed architecture provided speedups
over the superscalar as high as 1.3 on
both workloads. However, this max-
imum speedup occurred at only four
threads; with additional threads,
performance fell. Two factors con-
tribute. First, fine-grained multi-
threading eliminates only vertical
waste; given the latency-hiding capa-
bility of its out-of-order processor
and lockup-free caches, four threads
were sufficient to do that. Second,
fine-grained multithreading cannot
hide the additional conflicts from
interthread competition for shared
resources, because it can issue
instructions from only one thread
each cycle. Neither limitation applies
to simultaneous multithreading.
Consequently, SMT was able to get
higher instruction throughput and
greater program speedups than the
fine-grained multithreaded processor.

SMT vs. the multiprocessors.
SMT obtained better speedups than
the multiprocessors (MP2 and MP4), not only when simu-
lating the machines at their maximum thread capability (eight
for SMT, four for MP4, and two for MP2), but also for a given
number of threads. At maximum thread capability, SMT’s
throughput reached 6.1 instructions per cycle, compared
with 4.3 for MP2 and 4.2 for MP4.

Speedups on the multiprocessors were hindered by the
fixed partitioning of their hardware resources across proces-
sors, which prevents them from responding well to changes
in instruction- and thread-level parallelism. Processors were
idle when thread-level parallelism was insufficient; and the
multiprocessor’s narrower processors had trouble exploiting
large amounts of instruction-level parallelism in the unrolled
loops of individual threads. An SMT processor, on the other
hand, dynamically partitions its resources among threads,
and therefore can respond well to variations in both types of
parallelism, exploiting them interchangeably. When only one
thread is executing, (almost) all machine resources can be
dedicated to it; and additional threads (more thread-level
parallelism) can compensate for a lack of instruction-level
parallelism in any single thread.

To understand how fixed partitioning can hurt multi-
processor performance, we measured the number of cycles
in which one processor needed an additional hardware
resource and the resource was idle in another processor. (In
SMT, the idle resource would have been used.) Fixed parti-
tioning of the integer units, for both arithmetic and memo-

ry operations, was responsible for most of MP2’s and MP4’s
inefficient resource use. The floating-point units were also a
bottleneck for MP4 on this largely floating-point-intensive
workload. Selectively increasing the hardware resources of
MP2 and MP4 to match those of SMT eliminated a particu-
lar bottleneck. However, it did not improve speedups,
because the bottleneck simply shifted to a different resource.
Only when we gave each processor within MP2 and MP4 all
the hardware resources of SMT did the multiprocessors
obtain greater speedups. However, this occurred only when
the architecture executed the same number of threads; at
maximum thread capability, SMT still did better.

The speedup results also affect the implementation of
these machines. Because of their narrower issue width, the
multiprocessors could very well be built with a shorter cycle
time. The speedups indicate that a multiprocessor’s cycle
time must be less than 70% of SMT’s before its performance
is comparable.

SIMULTANEOUS MULTITHREADING is an evolution-
ary design that attacks multiple sources of waste in wide-
issue processors. Without sacrificing single-thread
performance, SMT uses instruction-level and thread-level
parallelism to substantially increase effective processor uti-
lization and to accelerate both multiprogramming and par-
allel workloads. Our measurements show that an SMT

September/October 1997 17

Table 2. Instruction throughput executing a multiprogramming
workload and a parallel workload.

Multiprogramming
workload Parallel workload

Threads SS FGMT SMT SS MP2 MP4 FGMT SMT

1 2.7 2.6 3.1 3.3 2.4 1.5 3.3 3.3
2 — 3.3 3.5 — 4.3 2.6 4.1 4.7
4 — 3.6 5.7 — — 4.2 4.2 5.6
8 — 2.8 6.2 — — — 3.5 6.1

Number of threads

0.0

1.0

2.0

3.0

S
pe

ed
up

1 2 4 8
Number of threads

0.0

1.0

2.0

3.0

S
pe

ed
up

1 2 4 8

(a) (b)

SMT
MP2
MP4
FGMT

Figure 2. Speedups with the multiprogramming workload (a) and parallel
workload (b).

.

processor achieves performance superior to that of several
competing designs, such as superscalar, traditional multi-
threaded, and on-chip multiprocessor architectures. We
believe that the efficiency of a simultaneous multithreaded
processor makes it an excellent building block for future
technologies and machine designs.

Several issues remain whose resolution should improve
SMT’s performance even more. Our future work includes
compiler and operating systems support for optimizing pro-
grams targeted for SMT and combining SMT’s multithreading
capability with multiprocessing architectures.

Acknowledgments
We thank John O’Donnell of Equator Technologies, Inc.

and Tryggve Fossum of Digital Equipment Corp. for the
source to the Alpha AXP version of the Multiflow compiler.
We also thank Jennifer Anderson of DEC Western Research
Laboratory for copies of the SpecFP95 benchmarks, paral-
lelized by the most recent version of the SUIF compiler, and

Sujay Parekh for comments on an earlier draft.
This research was supported by NSF grants MIP-9632977,

CCR-9200832, and CCR-9632769, NSF PYI Award MIP-9058439,
DEC Western Research Laboratory, and several fellowships
(Intel, Microsoft, and the Computer Measurement Group).

References
1. R. Alverson et al., “The Tera Computer System,” Proc. Int’l Conf.

Supercomputing, Assoc. of Computing Machinery, N.Y., 1990,
pp. 1-6.

2. K. Farkas et al., “The Multicluster Architecture: Reducing Cycle
Time Through Partitioning,” to appear in Proc. 30th Ann.
IEEE/ACM Int’l Symp. Microarchitecture, IEEE Computer Society
Press, Los Alamitos, Calif., Dec. 1997.

3. S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. Int’l Symp. Computer
Architecture, ACM, 1997, pp. 206-218.

4. D. M. Tullsen et al., “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading

18 IEEE Micro

Simultaneous multithreading

Other researchers have studied simultaneous multi-
threading designs, as well as several architectures that rep-
resent alternative approaches to exploiting parallelism.
Hirata and colleagues,1 presented an architecture for an
SMT processor and simulated its performance on a ray-trac-
ing application. Gulati and Bagherzadeh2 proposed an SMT
processor with four-way issue. Yamamoto and Nemirovsky3

evaluated an SMT architecture with separate dispatch
queues for up to four threads.

Thread-level parallelism is also essential to other next-
generation architectures. Olukotun and colleagues4 inves-
tigated design trade-offs for a single-chip multiprocessor
and compared the performance and estimated area of this
architecture with that of superscalars. Rather than building
wider superscalar processors, they advocate the use of
multiple, simpler superscalars on the same chip.

Multithreaded architectures have also been widely inves-
tigated. The Tera5 is a fine-grained multithreaded processor
that issues up to three operations each cycle. Keckler and
Dally6 describe an architecture that dynamically interleaves
operations from LIW instructions onto individual function-
al units. Their M-Machine can be viewed as a coarser
grained, compiler-driven SMT processor.

Some architectures use threads in a speculative manner
to exploit both thread-level and instruction-level paral-
lelism. Multiscalar7 speculatively executes threads using
dynamic branch prediction techniques and squashes
threads if control (branches) or data (memory) specula-
tion is incorrect. The superthreaded architecture8 also exe-
cutes multiple threads concurrently, but does not speculate
on data dependencies.

Although all of these architectures exploit multiple forms
of parallelism, only simultaneous multithreading has the
ability to dynamically share execution resources among

all threads. In contrast, the others partition resources either
in space or in time, thereby limiting their flexibility to adapt
to available parallelism.

References
1. H. Hirata et al., “An Elementary Processor Architecture with

Simultaneous Instruction Issuing from Multiple Threads,”
Proc. Int’l Symp. Computer Architecture, Assoc. of
Computing Machinery, N.Y., 1992, pp. 136-145.

2. M. Gulati and N. Bagherzadeh, “Performance Study of a
Multithreaded Superscalar Microprocessor,” Proc. Int’l Symp.
High-Performance Computer Architecture, ACM, 1996,
pp.291-301.

3. W. Yamamoto and M. Nemirovsky, “Increasing Superscalar
Performance through Multistreaming,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, IFIP,
Laxenburg, Austria, 1995, pp. 49-58.

4. K. Olukotun et al., “The Case for a Single-Chip Multiprocessor,”
Proc. Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, ACM, 1996, pp. 2-11.

5. R. Alverson et al., “The Tera Computer System,” Proc. Int’l
Conf. Supercomputing, ACM, 1990, pp. 1-6.

6. S.W. Keckler and W.J. Dally, “Processor Coupling: Integrating
Compile Time and Runtime Scheduling for Parallelism,” Proc.
Int’l Symp. Computer Architecture, ACM, 1992, pp. 202-213.

7. G.S. Sohi, S.E. Breach, and T. Vijaykumar, “Multiscalar
Processors,” Proc. Int’l Symp. Computer Architecture, ACM,
1995, pp. 414-425.

8. J.-Y. Tsai and P.-C. Yew, “The Superthreaded Architecture:
Thread Pipelining with Run-time Data Dependence Checking
and Control Speculation,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques, IEEE Computer
Society Press, Los Alamitos, Calif., 1996, pp. 49-58.

Alternative approaches to exploiting parallelism

.

Processor,” Proc. Int’l Symp. Computer Architecture, ACM,
1996, pp. 191-202.

5. S. McFarling, “Combining Branch Predictors,” Tech. Report TN-
36, Western Research Laboratory, Digital Equipment Corp., Palo
Alto, Calif., June 1993.

6. M.W. Hall et al., “Maximizing Multiprocessor Performance with
the SUIF Compiler,” Computer, Dec. 1996, pp. 84-89.

7. P.G. Lowney et al., “The Multiflow Trace Scheduling Compiler,”
J. Supercomputing, May 1993, pp. 51-142.

8. J.L. Lo et al., “Converting Thread-level Parallelism to Instruction-
level Parallelism via Simultaneous Multithreading,” ACM Trans.
Computer Systems, ACM, Aug. 1997.

Susan J. Eggers is an associate profes-
sor of computer science and engineer-
ing at the University of Washington. Her
research interests are computer archi-
tecture and back-end compilation, with
an emphasis on experimental perfor-
mance analysis. Her current focus is on

issues in compiler optimization (dynamic compilation and
compiling for multithreaded machines) and processor design
(multithreaded architectures).

Eggers received a PhD in computer science from the
University of California at Berkeley. She is a recipient of an
NSF Presidential Young Investigator award and a member of
the IEEE and ACM.

Joel S. Emer is a senior consulting engi-
neer at Digital Equipment Corp., where
he has worked on processor perfor-
mance analysis and performance mod-
eling methodologies for a number of
VAX and Alpha CPUs. His current
research interests include multithreaded

processor organizations, techniques for increased instruc-
tion-level parallelism, instruction and data cache organiza-
tions, branch-prediction schemes, and data-prefetch
strategies for future Alpha processors.

Emer received a PhD in electrical engineering from the
University of Illinois. He is a member of the IEEE, ACM, Tau
Beta Pi, and Eta Kappa Nu.

Henry M. Levy is professor of comput-
er science and engineering at the
University of Washington, where his
research involves operating systems, dis-
tributed and parallel systems, and com-
puter architecture. His current research
interests include operating system sup-

port for simultaneous multithreaded processors and distrib-
uted resource management in local-area and wide-area
networks.

Levy received an MS in computer science from the
University of Washington. He is a senior member of IEEE, a
fellow of the ACM, and a recipient of a Fulbright Research
Scholar award.

Jack L. Lo is currently a PhD candidate
in computer science at the University of
Washington. His research interests
include architectural and compiler issues
for simultaneous multithreading, proces-
sor microarchitecture, instruction-level
parallelism, and code scheduling.

Lo received a BS and an MS in computer science from
Stanford University. He is a member of the ACM.

Rebecca L. Stamm is a principal hard-
ware engineer in Digital Semiconduc-
tor’s Advanced Development Group at
Digital Equipment Corp. She has worked
on the architecture, logic and circuit
design, performance analysis, verifica-
tion, and debugging of four generations

of VAX and Alpha microprocessors and is currently doing
research in hardware multithreading. She holds 10 US patents
in computer architecture.

Stamm received a BSEE from the Massachusetts Institute
of Technology and a BA in history from Swarthmore College.
She is a member of the IEEE and the ACM.

Dean M. Tullsen is a faculty member in
computer science at the University of
California, San Diego. His research inter-
ests include simultaneous multithread-
ing, novel branch architectures,
compiling for multithreaded and other
high-performance processor architec-

tures, and memory subsystem design. He received a 1997
Career SA ard from the National Science Foundation.

Tullsen received a PhD in computer science from the
University of Washington, with emphasis on simultaneous
multithreading. He is a member of the ACM.

Direct questions concerning this article to Eggers at Dept.
of Computer Science and Engineering, Box 352350,
University of Washington, Seattle WA 98115; eggers@cs.wash-
ington.edu.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Interest Card.

Low 150 Medium 151 High 152

September/October 1997 19

.

