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Overview of Intel® Hyper-Threading Technology
Intel has extended and enhanced the microprocessor architecture over several
generations to improve performance. But applications typically only make use 
of about one-third of processors’ execution resources at any one time. To improve 
usage of execution resources, Intel introduced Hyper-Threading Technology, which
enables better processor utilization and more efficient utilization of resources. 

Included in this technical user’s guide are:

■ An overview of Hyper-Threading Technology and a description of how it 
increases the performance of the operating system and application software 
written to run on Intel® architecture-based processors.

■ A discussion of how to maximize performance of an application using 
Hyper-Threading Technology.

■ In-depth information on how to identify and lessen the impact of performance 
bottlenecks in applications using Hyper-Threading Technology.

■ An overview of the resources available for programmers developing applications
using Hyper-Threading Technology, including a comprehensive glossary.

To understand Hyper-Threading Technology and its role in application 
performance, it is first necessary to get a handle on some of the underlying 
multitasking, multithreading and multiprocessing concepts. The easiest way 
to keep the concepts straight is to review their evolution. 

The Evolution of System and Processor Architectures 
Originally, personal computing meant a desktop system with one processor that 
ran one program at a time. When a user ran a program, the operating system loaded 
it into memory and the processor was entirely devoted to its execution until the program
completed. If the operating system needed the processor, it issued an interrupt. In
response to the interrupt, the program would save its current state, suspend opera-
tions and surrender control to the operating system. MS-DOS,* for example, was a
single-threaded operating system intended to run on a single processor – the simplest 
of all configurations.

While other ways of handling interrupts were introduced later on, including some
that would allow two programs to run simultaneously – the result of these creative work-
arounds early on was greatly reduced stability and reliability. This is because the software
was trying to force the operating system to do something it was not designed to 
handle – switch between two running programs.
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Single Processor Systems
Efforts to improve system performance on single processor systems have traditionally
focused on making the processor more capable. These approaches to processor design
have focused on making it possible for the processor to process more instructions
faster through higher clock speeds, instruction-level parallelism (ILP) and caches.
Techniques to achieve higher clock speeds include pipelining the microarchitecture to
finer granularities, which is also called super-pipelining. Higher clock frequencies can
greatly improve performance by increasing the number of instructions that can be 
executed each second. But because there are far more instructions being executed 
in a super-pipelined microarchitecture, handling of events that disrupt the pipeline,
such as cache misses, interrupts and branch mispredictions, is much more critical 
and failures more costly.

ILP refers to techniques to increase the number of instructions executed each clock
cycle. For example, many super-scalar processor implementations have multiple 
execution units that can process instructions simultaneously. In these super-scalar
implementations, several instructions can be executed each clock cycle. With simple 
in-order execution, however, it is not enough to simply have multiple execution units.
The challenge is to find enough instructions to execute. One technique is out-of-order
execution where a large window of instructions is simultaneously evaluated and sent 
to execution units, based on instruction dependencies rather than program order.

Accesses to system memory are slow, though faster than accessing the hard disk, 
but when compared to execution speeds of the processor, they are slower by orders 
of magnitude. One technique to reduce the delays introduced by accessing system
memory (called latency) is to add fast caches close to the processor. Caches provide
fast memory access to frequently accessed data or instructions. As cache speeds
increase, however, so does the problem of heat dissipation and of cost. For this reason,
processors often are designed with a cache hierarchy in which fast, small caches 
are located near and operated at access latencies close to that of the processor core.
Progressively larger caches, which handle less frequently accessed data or instructions,
are implemented with longer access latencies. Nonetheless, times can occur when 
the needed data is not in any processor cache. Handling such cache misses requires
accessing system memory or the hard disk, and during these times, the processor 
is likely to stall while waiting for memory transactions to finish. 

Most techniques for improving processor performance from one generation to the
next are complex and often add significant die-size and power costs. None of these
techniques operate at 100 percent efficiency thanks to limited parallelism in instruction
flows. As a result, doubling the number of execution units in a processor does not 
double the performance of the processor. Similarly, simply doubling the clock rate
does not double the performance due to the number of processor cycles lost to a
slower memory subsystem.



Figure 1 Single stream performance vs. cost.

Figure 1 shows the relative increase in performance and the costs, such as die 
size and power, over the last ten years on Intel® processors1. To isolate the impact 
of microarchitecture, this comparison assumes that the four generations of proces-
sors are on the same silicon process technology and that the speed improvements are
normalized to the performance of an Intel486TM processor2. The Intel processor perform-
ance, due to microarchitecture advances alone, has improved integer performance
five- or six-fold3. 

Multithreading
As processor capabilities have increased, so have demands on performance, which 
has increased pressure on processor resources with maximum efficiency. Noticing the
time that processors wasted running single tasks while waiting for certain events to
complete, software developers began wondering if the processor could be doing 
some other work at the same time. 

To arrive at a solution, software architects began writing operating systems that sup-
ported running pieces of programs, called threads. Threads are small tasks that can
run independently. Each thread gets its own time slice, so each thread represents 
one basic unit of processor utilization. Threads are organized into processes, which 
are composed of one or more threads. All threads in a process share access to the
process resources. 
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These multithreading operating systems
made it possible for one thread to run
while another was waiting for something
to happen. On Intel processor-based
personal computers and servers, today’s
operating systems, such as Microsoft
Windows* 2000 and Windows* XP, 
all support multithreading. In fact, the
operating systems themselves are 
multithreaded. Portions of them can 
run while other portions are stalled. 

To benefit from multithreading, programs
need to possess executable sections
that can run in parallel. That is, rather
than being developed as a long single
sequence of instructions, programs are
broken into logical operating sections. 
In this way, if the application performs
operations that run independently of each
other, those operations can be broken up
into threads whose execution is scheduled
and controlled by the operating system.
These sections can be created to do 

different things, such as allowing Microsoft Word* to repaginate a document while the
user is typing. Repagination occurs on one thread and handling keystrokes occurs on
another. On single processor systems, these threads are executed sequentially, not
concurrently. The processor switches back and forth between the keystroke thread 
and the repagination thread quickly enough that both processes appear to occur 
simultaneously. This is called functionally decomposed multithreading. 

Multithreaded programs can also be written to execute the same task on parallel
threads. This is called data-decomposed multithreaded, where the threads differ only 
in the data that is processed. For example, a scene in a graphic application could be
drawn so that each thread works on half of the scene. Typically, data-decomposed
applications are threaded for throughput performance while functionally decomposed
applications are threaded for user responsiveness or functionality concerns.

When multithreaded programs are executing on a single processor machine, some
overhead is incurred when switching context between the threads. Because switching
between threads costs time, it appears that running the two threads this way is less
efficient than running two threads in succession. If either thread has to wait on a 
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Figure 2 Multiple applications running on a
single-processor system. An application can
have one or more threads. For each application,
a primary thread is created. The application can
create more threads for secondary tasks by mak-
ing calls to the operating system. Every thread is
prioritized to use the processor resources. The
operating system time slices the processor to run
on each thread.
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system device for the user, however, the ability to have the other thread continue operating
compensates very quickly for all the overhead of the switching. Since one thread in the
graphic application example handles user input, frequent periods when it is just waiting
certainly occur. By switching between threads, operating systems that support multi-
threaded programs can improve performance and user responsiveness, even if they 
are running on a single processor system. 

In the real world, large programs that use multithreading often run many more than two
threads. Software such as database engines creates a new processing thread for every
request for a record that is received. In this way, no single I/O operation prevents new
requests from executing and bottlenecks can be avoided. On some servers, this approach
can mean that thousands of threads are running concurrently on the same machine.

Multiprocessing
Multiprocessing systems have multiple processors running at the same time. Traditional
Intel® architecture multiprocessing systems have anywhere from two to about 512 proces-
sors. Multiprocessing systems allow different threads to run on different processors.
This capability considerably accelerates program performance. Now two threads can
run more or less independently of each other without requiring thread switches to get at
the resources of the processor. Multiprocessor operating systems are themselves multi-
threaded, and the threads can use the separate processors to the best advantage. 

Originally, there were two kinds of multiprocessing: asymmetrical and symmetrical.
On an asymmetrical system, one or more processors were exclusively dedicated 
to specific tasks, such as running the operating system. The remaining processors
were available for all other tasks (generally, the user applications). It quickly became
apparent that this configuration was not optimal. On some machines, the operating-
system processors were running at 100 percent capacity, while the user-assigned
processors were doing nothing. In short order, system designers came to favor an
architecture that balanced the processing load better: symmetrical multiprocessing (SMP).
The “symmetry” refers to the fact that any thread – be it from the operating system or 
the user application – can run on any processor. In this way, the total computing load 
is spread evenly across all computing resources. Today, symmetrical multiprocessing 
systems are the norm and asymmetrical designs have nearly disappeared. 

SMP systems use double the number of processors, however performance will 
not double. Two factors that inhibit performance from simply doubling are:

■ How well the workload can be parallelized
■ System overhead

Two factors govern the efficiency of interactions between threads:

■ How they compete for the same resources
■ How they communicate with other threads

8



When two threads both need access to the same resource – such as a disk drive, 
a record in a database that another thread is writing to, or any other system resource –
one has to wait. The penalties imposed when threads have to wait for each other are so
steep that minimizing this delay is a central design issue for hardware installations and
the software they run. It is generally the largest factor in preventing perfect scalability of
performance of multiprocessing systems, because running threads that never contend
for the same resource is effectively impossible. 

A second factor is thread synchronization. When a program is designed in threads,
many occasions arise where the threads need to interact, and the interaction points
require delicate handling. For example, if one thread is preparing data for another
thread to process, delays can occur when the first thread does not have data ready
when the processing thread needs it. Another example occurs when two threads need to
share a common area of memory. If both threads can write to the same area in memory,
then the thread that wrote first has to either check to make sure that what it wrote has
not been overwritten, or it must lock out other threads until it has finished using the
data. This synchronization and inter-thread management does not benefit from having
more available processing resources. 

System overhead is the thread management done by the operating system or appli-
cation. With more processors running, the operating system has to coordinate more.
As a result, each new processor adds incrementally to the system-management work of
the operating system. This means that each new processor contributes less and less
to the overall system performance.

Multiprocessor Systems
Today’s server applications consist of multiple threads or processes that can be executed
in parallel. Online transaction processing and Web services have an abundance of soft-
ware threads that can be executed simultaneously for faster performance. Even desktop
applications are becoming increasingly parallel. Intel architects have implemented
thread-level parallelism (TLP) to improve performance relative to transistor count and
power consumption.

In both the high-end and mid-range server markets, multiprocessors have been commonly
used to get more performance from the system. By adding more processors, applications
potentially get substantial performance improvement by executing multiple threads on
multiple processors at the same time. These threads might be from the same application,
from different applications running simultaneously, from operating-system services, or
from operating-system threads doing background maintenance. Multiprocessor systems
have been used for many years, and programmers are familiar with the techniques to
exploit multiprocessors for higher performance levels.

9



In recent years, a number of other techniques to further exploit TLP have been 
discussed, such as:

■ Chip multiprocessing
■ Time-slice multithreading
■ Switch-on-event multithreading
■ Simultaneous multithreading

Hyper-Threading Technology brings the simultaneous multithreading approach 
to the Intel architecture.
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Figure 3 Simultaneous Multithreading.

A. Traditional multiprocessing with two physi-
cal processors. One processor is executing
the blue thread, and the other is executing the
light blue thread. The peak execution band-
width is six instructions per cycle, three on each
processor. The system may operate at less than
peak bandwidth, as indicated by the large num-
ber of idle (white) execution units. 

B. Hyper-Threading Technology on a multipro-
cessing system. This configuration shows a
multiprocessor system with two processors 
featuring Hyper-Threading Technology. One
processor is simultaneously executing the dark 
and light blue threads, while the other executes 
the patterned threads. Such a system operates
closer to peak bandwidth, as indicated by the
small number of idle (white) execution units.
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Multitasking versus multithreading 
Multitasking is the operating system’s ability to run several programs simultaneously
on a single processor by allocating the time slices of the processor to each program.
For instance, if there are n tasks to perform, the operating system will divide up the
time between the n tasks. 

Multithreading facilitates work to be done in parallel. Multithreaded programming is 
implementing software to perform two or more tasks in parallel within the same appli-
cation. Multithreading is spawning multiple threads to perform each task. If thread 1 is
busy waiting for I/O to complete, thread 2 uses the processor during this time and then
switches back to thread 1 to complete. 

Hyper-Threading Technology
To keep up with today’s demand for increasingly higher processor performance, traditional
approaches to processor design have to be re-examined. Microarchitecture techniques
used to improve processor performance in the past, such as super-pipelining, branch
prediction, super-scalar execution, out-of-order execution and caches, have allowed
microprocessors to become more complex, provide more transistors and consume
more power. These processors operate faster, but speed alone does not always improve
processor performance. As an example, consider code that produces cache misses
frequently. A higher frequency processor will only miss the cache faster. Increasing
processor frequency alone does not do anything to improve processor-utilization rates. 

What is needed is an approach that allows the processor resources to be used in a
highly efficient way. Hyper-Threading Technology is designed to increase the ability to
use a processor efficiently. Hyper-Threading Technology boosts performance by allow-
ing multiple threads of software applications to run on a single processor at one time,
sharing the same core processor resources.

Hyper-Threading Technology is a form of simultaneous multithreading technology (SMT)
introduced by Intel. Architecturally, a processor with Hyper-Threading Technology 
consists of two logical processors, each of which has its own processor architectural
state4. After power-up and initialization, each logical processor can be individually halt-
ed, interrupted or directed to execute a specified thread, independently from the other
logical processor on the chip. Unlike a traditional dual processor (DP) configuration
that uses two separate physical processors (such as two Intel® XeonTM processors), the
logical processors in a processor with Hyper-Threading Technology share the execution
resources of the processor core. These resources include the execution engine, the
caches, the system-bus interface and the firmware.

11

4 The architectural state that is duplicated for each logical processor consists of the processor data registers, 
segment registers, control registers, debug registers, and most of the model specific registers (MSRs). Each logical
processor also has its own advanced programmable interrupt controller (APIC).
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In Figure 4, the left-hand configuration represents a traditional multiprocessor system
with two discrete physical processors. Each processor has its own set of processor-
execution resources and its own single architectural state. The right-hand configuration
represents an Intel Xeon processor family-based multiprocessor system where each
processor features Hyper-Threading Technology. As you can see, the architectural
state for each processor is duplicated, but each still has one set of execution resources.
When scheduling threads, the operating system treats the two separate architectural
states as two separate “logical” processors.

Multiprocessor-capable software applications can run unmodified with twice as many
logical processors to use. Each logical processor can respond to interrupts independ-
ently. The first logical processor can track one software thread while the second logical
processor tracks another software thread simultaneously. Because the two threads share
one set of execution resources, the second thread can use resources that would be idle
if only one thread were executing. The result is an increased utilization of the execution
resources within each physical processor package.

Hyper-Threading Technology represents a new approach to improving the instruction through-
put of processors that are targeted for servers, high-performance workstations and desktops. 
It also provides a view into the future of microprocessor design where the performance of a
processor when executing a specific type of application or the space and power requirements
of a physical processor within a server may be as important as its raw processing speed.

Figure 4 Hyper-Threading Technology enables a single physical processor to execute two separate
code streams (or threads) concurrently. A multiprocessor system with Hyper-Threading Technology
duplicates the architectural state on each physical processor, providing two “logical” processors per
physical processor. It is achieved by duplicating the architectural state on each processor, while
sharing one set of processor-execution resources. The architectural state tracks the flow of a program
or thread, and the execution resources are the units on the processor that do the work.

Traditional Multiprocessor System

Processor
Execution Resources

Architecture State

System Bus System Bus

Processor
Execution Resources

Architecture State

Dual Intel®  XeonTM Processor System
with Hyper-Threading Technology

Processor
Execution Resources

Architecture State

Processor
Execution Resources

Architecture State

Architecture State Architecture State
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Hyper-Threading Technology is feasible for platforms ranging from mobile processors
to servers. Its introduction into market segments other than servers is gated only by the
availability and prevalence of threaded applications and workloads in these markets.

Although existing operating systems and application codes will run correctly on a
processor with Hyper-Threading Technology, some relatively simple code practices
are recommended to get the optimum benefit from Hyper-Threading Technology.

Hyper-Threading Technology does not deliver multiprocessor scaling. Typically, applica-
tions make use of about 35 percent of the internal processor execution resources. The
idea behind Hyper-Threading Technology is to enable better processor usage and to
achieve about 50 percent utilization of resources.

A processor with Hyper-Threading
Technology may provide a performance
gain of 30 percent when executing multi-
threaded operating system and application
code over that of a comparable Intel archi-
tecture processor without Hyper-Threading
Technology. When placed in a multiprocessor-
based system, the increase in computing
power generally scales linearly as the number
of physical processors in a system is increased;
although as in any multiprocessor system,
the scalability of performance is highly
dependent on the nature of the application.

On-Die Cache

System Bus

Processor Execution Resource

Architecture State

Adv. Programmable
Interrupt Contol

Adv. Programmable
Interrupt Contol

Architecture State

CPU

On-Die Cache

Processor Core
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Architecture State

APIC APIC

Architecture State

Cache Cache

Dual Processor Hyper-Threading Technology

Figure 5 Architecture of processor 
with Hyper-Threading Technology.

Figure 6 Two logical processors do not provide the same level of performance 
as a dual processor-based system.
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Each logical processor 

■ Has its own architecture state
■ Executes its own code stream concurrently
■ Can be interrupted and halted independently

The two logical processors share the same

■ Execution engine and the caches 
■ Firmware and system bus interface

Virtually all contemporary operating systems (including Microsoft Windows and Linux*)
divide their workload up into processes and threads that can be independently scheduled
and dispatched to run on a processor. The same division of workload can be found in
many high-performance applications such as database engines, scientific computation
programs, engineering-workstation tools and multimedia programs. To gain access to
increased processing power, most contemporary operating systems and applications
are also designed to execute in DP or multiprocessor (MP) environments, where, through
the use of SMP processes, threads can be dispatched to run on a pool of processors.

Hyper-Threading Technology uses the process- and thread-level parallelism found in
contemporary operating systems and high-performance applications by implementing
two logical processors on a single chip. This configuration allows a thread to be exe-
cuted on each logical processor. Instructions from both threads are simultaneously
dispatched for execution by the processor core. The processor core executes these
two threads concurrently, using out-of-order instruction scheduling to keep as many
of its execution units as possible busy during each clock cycle.

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

T0 T1 T2 T3 T4 T5

Thread Pool

Time

CPU

CPU

App 0 App 1 App 2

T0 T1 T2 T3 T4 T5

T0 T2 T4

T1 T3 T5

Thread Pool

Time

CPU

LP0

LP1

CPU

2 threads per
processor

Multithreading Hyper-Threading Technology

Figure 7 The time taken to process n threads on a single processor is significantly more than a 
single-processor system with Hyper-Threading Technology enabled. This is because with Hyper-
Threading Technology enabled, there are two logical processors for one physical processor 
processing two threads concurrently. 



Keys to Hyper-Threading 
Technology Performance
Understand and Have Clear Performance Expectations
All applications have bottlenecks – places where the application slows down, either
waiting for something to happen before it can proceed, or processing commands
extraneous to the task at hand. Eliminating bottlenecks in the application is the goal 
of performance tuning. Removing all bottlenecks in an application is usually impossible,
but minimizing bottlenecks often provides significant performance benefits.

Bottlenecks can be discovered using profiling tools such as the VTuneTM Performance
Analyzer. A profiling tool keeps track of where an application spends 
its time during execution, giving a snapshot of portions of code that take a lot of 
time to execute. 

Bottleneck The application is

File and network I/O Waiting to read or write to the network or disk

Processor Waiting for the processor to become available

Memory Busy allocating or swapping memory

Exceptions Busy processing exceptions

Synchronization Waiting for a shared resource to become available

Database Waiting for a response or processing the results
from a database query

Table 1 Common application bottlenecks. 

Understand Hyper-Threading 
Technology Processor Resources
Each logical processor maintains a complete set of the architecture state. The 
architecture state consists of registers including the general-purpose registers, the
control registers, the advanced programmable interrupt controller (APIC) registers and
some machine-state registers. From a software perspective, once the architecture state
is duplicated, the processor appears to be two processors. The number of transistors
to store the architecture state is an extremely small fraction of the total. Logical
processors share nearly all other resources on the physical processor, such as 
caches, execution units, branch predictors, control logic and buses. 
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Maximize Parallel Activity 
When an application employs multithreading to exploit task-level parallelism in a work-
load, the control flow of the multithreaded software can be divided into two parts:
parallel tasks and sequential tasks.

Amdahl’s law describes an application’s performance gain to the degree of parallelism
in the control flow. It is a useful guide for selecting the code modules, functions or
instruction sequences that are likely to realize the most gains from transforming
sequential tasks and control flows into parallel code to take advantage of MP systems
and Hyper-Threading Technology. 

Figure 9 illustrates how performance gains can be realized for any workload according
to Amdahl’s law. The bar in Figure 9 represents an individual task unit or the collective
workload of an entire application. In general, the speed-up of running multiple threads
on MP systems with N physical processors (not logical processors), over single-
threaded execution, can be expressed as

where P is the fraction of workload that can be parallelized, and O represents 
the overhead of multithreading and may vary between different operating systems. 
The performance gain is the inverse of the relative response, in this case.

T sequential = the total time to complete work (1-P)+P
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Figure 8 Hyper-Threading Technology resources.
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When optimizing application performance in a multithreaded environment, control-
flow parallelism is likely to have the largest impact on performance scaling with respect
to the number of physical processors and to the number of logical processors per
physical processor.

If the control flow of a multithreaded application contains a workload in which only 
50 percent can be executed in parallel, the maximum performance gain using two
physical processors is only 33 percent over the gain using a single processor. Four 
parallel processors could deliver no more than a 60 percent speed-up over a single
processor. Thus, it is critical to maximize the portion of control flow that can take
advantage of parallelism. Improper implementation of thread synchronization can 
significantly increase the proportion of serial control flow and further reduce the 
application’s performance scaling.

In addition to maximizing the parallelism of control flows, multithreaded applications
should ensure each thread has good frequency scaling. In the first implementation of
the Hyper-Threading Technology execution environment by Intel, one common cause of
poor performance scaling includes excessive cache misses. Excessive cache misses
can occur due to:

■ Aliased stack accesses by different threads in the same process
■ Thread contention resulting in cache-line evictions
■ False sharing of cache lines between different processors

17
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Code-tuning techniques to address each of these situations and other important 
areas are described later in this chapter. Some examples are:

■ Create a thread pool and re-use threads.
- For data-domain decomposition, use as many threads as processors.

■ Minimize operating system calls.
- May cause implicit synchronization.
- May cause premature context switch.
- Copy thread invariant results.

■ Avoid data sharing between threads.
- Cache invariant results locally to the thread.
- Avoid false cache-line sharing.

■ Hyper-Threading Technology shares or splits physical processor resources, 
such as memory bandwidth, cache, execution units, and so on.
- Improve use of under-utilized resources for performance gains. 
- Try not to over-use shared resources. This can diminish concurrency.

Best Practices for Optimizing Multitasking Performance
In addition to the information in this manual, refer to the application note Threading
Methodology: Principles and Practices.

18

Master Thread

Parallel Regions

Figure 10 Fork-join control-flow paradigm. The master thread spawns additional threads as
needed. This process allows parallelism to be added to a program incrementally.



Identifying Hyper-Threading Technology
Performance Bottlenecks in an Application
The following sections describe important practices, tools, coding rules and recom-
mendations that will aid in optimizing application performance on Intel processors.

Logical vs. Physical Processors
Programmers need to know which logical processors share the same physical 
processor for the purposes of load balancing and application licensing strategy.
The following sections tell how to:

■ Detect a Hyper-Threading Technology-enabled processor.
■ Identify the number of logical processors per physical processor package.
■ Associate logical processors with the individual physical processors. 

Note that all physical processors present on the platform must support 
the same number of logical processors.

The cpuid instruction is used to perform these tasks. It is not necessary 
to make a separate call to the cpuid instruction for each task.

Validate“Genuine Intel® Processor”with Hyper-Threading Technology
The presence of Hyper-Threading Technology in 32-bit Intel architecture processors can
be detected by reading the cpuid feature flag bit 28 (in the edx register). A return value
of 1 in bit 28 and greater than one logical processor per package indicates that Hyper-
Threading Technology is present in the processor. The application must also check how
many logical processors are provided under the operating system by making the appro-
priate operating system calls. See the application notes Intel Processor Identification and
the CPUID Instruction and Detecting Support for Hyper-Threading Technology Enabled
Processors for more information.

Query number of logical processors
The cpuid instruction is used to determine the number of logical processors in 
a single processor system and to determine the mapping of logical processors 
in a multiprocessor system. For further information about CPU counting,

http://www.intel.com/cd/ids/developer/asmo-na/eng/20417.htm
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Associate logical to physical processors using APIC IDs
Each logical processor has a unique APIC identification (ID). The APIC ID is initially
assigned by the hardware at system reset and can be reprogrammed later by the BIOS
or the operating system. The cpuid instruction also provides the initial APIC ID for a
logical processor prior to any changes by the BIOS or operating system.

00000111 00000110

APIC ID APIC ID

Logical
Processor 1

Logical
Processor 0

Physical Processor 1

00000001 00000000

APIC ID APIC ID

Logical
Processor 1

Logical
Processor 0

Physical Processor 0

ebx bits 31:24

Shift according to the 
number of logical processors

CPUID

ebx bits 23:16
CPUID

edx bit 28
CPUID Supporting Hyper-Threading

Technology

Identify Number of 
Logical Processors

Retrieve the initial
Processor xAPIC ID

Logical Shift of the initial
xAPIC ID

Iterate for each processor

Prior to issuing CPUID for 
the first time, set eax to 1.

Figure 12 Processor-affinity algorithm.

Figure 11 This is an example of the APIC ID numbers using a Hyper-Threading Technology-
capable version of the Intel® XeonTM processor MP in a dual-processor system configuration. 
The lowest order bit of the APIC ID distinguishes between the two logical processors. Keep 
in mind that these numbers are the initial values of the APIC ID at power-on reset, which can 
be subsequently changed by software.



The initial APIC ID is composed of the physical processor’s ID and the logical 
processor’s ID within the physical processor. 

■ The least significant bits of the APIC ID are used to identify the logical processor 
within a given physical processor. The number of logical processors per physical
processor package determines the number of least significant bits needed.

■ The most significant bits identify the physical processor ID.

Note that APIC ID numbers are not necessarily consecutive numbers starting from 0.

In addition to non-consecutive initial APIC ID numbers, the operating-system 
processor ID numbers are also not guaranteed to be consecutive in value.

Initial APIC ID helps software sort out the relationship between logical processors 
and physical processors.

Gather Initial Performance Data
Before attempting to optimize the behavior of an application, gather performance
information regarding the application across platforms and configurations. What results
from determining how the application currently performs is a baseline that can be used
for comparison as the application’s performance is tuned. The performance measure-
ments to take depend on the application you are testing. The suggested minimum set
is response time and transactions per unit of time. When gathering performance data,
it’s important to make sure that the same amount of work is done in the application
with all the results. Recording the processor and memory utilization on the server during
the tests is useful in predicting the application’s scalability.

In general, an application spends 80 percent of its time executing 20 percent of the
code. You need to identify and isolate that 20 percent to make changes that will impact
performance. You can use the VTune Performance Analyzer to find the sections of code
that occupy most of the computation time. 

Implement a Single Change and Benchmark Process
As you begin optimizing an application’s performance, implement changes one at 
a time and, after making each change, retest it using the VTune Performance Analyzer
to verify that it actually improved performance. If multiple changes are made at once, 
it is difficult to determine which changes improved performance and which didn’t.
Always verify that the performance improvement didn’t introduce any other problems
into the application.

Continue this step until the bottlenecks have been addressed. Performance tuning 
is an incremental, iterative process. Plan to continue measuring and profiling the 
application until performance requirements are met.
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General Performance Issues
Before attempting to optimize an application for Hyper-Threading Technology, use
available resources to optimize for an Intel® Pentium® 4 processor-based system 
or Intel Xeon processor-based system including branch prediction, memory access,
floating point performance, instruction selection, instruction scheduling and vectoriza-
tion. For details and examples, see the Intel® Pentium® 4 and Intel® XeonTM Processor
Optimization Guide, http://developer.intel.com/design/pentium4/manuals

Identify Performance Discrepancies
To identify performance discrepancies and possible areas for optimizations, 
examine these program characteristics:

■ Examine the number of instructions retired. Instructions retired provide a measure 
of how much work is being done to multithread an application if the amount of work
is held constant across the multithreaded and single-threaded binary executable.

■ Identify single-threaded modules and functions. 
■ Identify multithreaded modules and functions. By examining both single-

threaded and multithreaded modules and functions and their relative 
performance, potential performance improvement areas can be identified. 

■ Identify performance discrepancies between single-threaded and 
multithreading overhead.

Dealing with Multithreading Code Pitfalls
This section summarizes the optimization guideline for tuning multithreaded 
applications. The optimization guideline covers five specific areas (arranged 
in order of importance):

■ Thread synchronization
■ Bus optimization
■ Memory optimization
■ Front-end optimization
■ Execution-resource optimization

The key practices associated with each area are listed in this section. The guidelines
for each area are discussed in greater detail in separate sections following this one.
Most of the coding recommendations improve performance scaling with the number 
of physical processors and scaling due to Hyper-Threading Technology. Techniques
that apply to only one or the other are specifically noted.
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Key practices of thread synchronization
Key practices for minimizing the cost of thread synchronization are 
summarized below:

■ Insert the pause instruction in fast spin loops and keep the number of 
loop repetitions to a minimum to improve overall system performance.

■ Replace a spin lock that may be acquired by multiple threads with pipelined 
locks so that no more than two threads have write accesses to one lock. If only 
one thread needs to write to a variable shared by two threads, there is no need 
to acquire a lock.

■ Use a thread-blocking API in a long idle loop to free up the processor.
■ Prevent false sharing of per-thread data between two threads.
■ Place each synchronization variable alone, separated by a cache line 

(128 bytes for Intel Pentium 4 processors).
■ Always regression test an application with the number of threads limited to one, 

so that its performance can be assessed in situations where multiple threads 
are not available or do not work.

Key practices of system-bus optimization
Managing bus traffic can significantly impact the overall performance of multi-
threaded software and MP systems. Key practices of system-bus optimization for
achieving high data throughput and quick response are:

■ Improve data and code locality to conserve bus-command bandwidth.
■ Avoid excessive use of software prefetch instructions and allow the 

automatic hardware prefetcher to work. Excessive use of software prefetches 
can significantly and unnecessarily increase bus utilization if used inappropriately.

■ Consider using overlapping multiple back-to-back memory reads to improve 
effective cache-miss latencies.

■ Use full write transactions to achieve higher data throughput.

Key practices of memory optimization
Key practices for optimizing memory operations are summarized below:

■ Use cache blocking to improve locality of data access. Target one-quarter to 
one-half of the cache size when targeting Intel architecture 32-bit processors 
with Hyper-Threading Technology.

■ Minimize the sharing of data between threads that execute on different 
physical processors sharing a common bus.

■ Minimize data-access patterns that are offset by multiples of 64KB in each thread.
■ Adjust the private stack of each thread in an application so the spacing between

these stacks is not offset by multiples of 64KB or 1MB to prevent unnecessary
cache-line evictions, when targeting Intel architecture 32-bit processors with 
Hyper-Threading Technology.



■ When targeting Intel architecture 32-bit processors with Hyper-Threading
Technology, add a per-instance stack offset when two instances of the same 
application are executing in lock steps to avoid memory accesses that are offset 
by multiples of 64KB or 1MB.

■ Evenly balance workloads between processors, physical or logical. Load imbalance
occurs when one or more processors sit idle waiting for other processors to finish.
Load imbalance issues can be as simple as one thread completing its allocated work
before the others. Resolving imbalance issues typically requires splitting the work 
into smaller units that can be more evenly distributed across available resources.

Key practices of front-end optimization
Key practices for front-end optimization are:

■ Avoid excessive loop unrolling to ensure the trace cache is operating efficiently.
■ Optimize code size to improve locality of trace cache and increase delivered trace length.

Key practices of execution-resource optimization
Each physical processor has dedicated execution resources, and the logical processors
in each physical processor that supports Hyper-Threading Technology share on-chip
execution resources. Key practices for execution-resource optimization include:

■ Optimize each thread to achieve optimal frequency scaling first.
■ Optimize multithreaded applications to achieve optimal scaling with respect 

to the number of physical processors. 
■ To ensure compatibility with future processor implementations, do not hard 

code the value of cache sizes or cache lines into an application; instead, always
query the processor to determine the sizes of the shared cache resources.

■ Use on-chip execution resources cooperatively if two threads are sharing 
the execution resources in the same physical processor package.

■ For each processor with Hyper-Threading Technology, consider adding 
functionally uncorrelated threads to increase the hardware-resource utilization 
of each physical processor package. 

Optimization Techniques
Typically, a given application only needs to apply a few optimization techniques in
selected areas to combine multiple scaling factors (frequency, number of physical
processors and Hyper-Threading Technology). The following section describes some
typical performance bottlenecks and provides guidelines for optimizing applications
that encounter these problems.

Eliminate or reduce the impact of spin-wait loops 
The frequency and duration with which a thread needs to synchronize with other
threads depends on the characteristics of an application. When a synchronization 
loop needs a very fast response, an application may use a spin-wait loop.
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A spin-wait loop is typically used when one thread needs to wait for a short amount 
of time for another thread to reach a point of synchronization. The basic structure of 
a spin-wait loop consists of a loop that compares a synchronization variable with
some pre-defined value.

Spin-wait loops are used:

■ For synchronization
■ To avoid overhead of operating system calls or context-switches
■ When relatively short durations are expected
■ To have limited or no impact on other physical processors

Conversely, when a worker thread is expected to remain busy for an extended 
period (for example, longer than the operating-system time quanta for task switching),
a different coding technique is needed to implement the synchronization between the
worker threads and the control thread. 

Spin-wait loops should be used sparingly, if at all, in hyper-threaded 
applications because:

■ They create very high throughput loops.
■ They consume split or shared resources without producing useful work. Spin-wait

loops running on one logical processor consume the shared processor resources 
of the physical processor, and so cause execution of other threads to slow down.

■ They can also cause memory-order conflicts.
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Thread takes on CPU

Case 1: Two threads complete
the work at the same time.

Case 2: One thread completes
the work sooner, main thread 
takes on one CPU to do spin wait

Main Thread

Worker Thread2

Worker Thread1

Worker threads perform transformation.
Main thread waits for all threads to complete the work.

Thread relinquishes CPU

Figure 13 Example of overhead created due to the use of spin-wait loops 
in a multithreaded application.
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To avoid these performance problems, use Hyper-Threading Technology-aware 
operating-system synchronization constructs.

■ For Win32 applications use the synchronization function 
WaitForMultipleObjects(). The WaitForMultipleObjects()
processor usage of main thread reduces execution time significantly.

■ Insert a new pause instruction if a spin wait cannot be avoided. On 32-bit Intel 
architecture-based processor generations earlier than the Pentium 4 processor, 
a pause instruction is treated as a nop instruction.

Avoiding 64K aliasing in 
the first level data cache
A 64-byte or greater data structure or 
array should be aligned so that its base
address is a multiple of 64. Sorting data 
in decreasing size order is one heuristic 
for assisting with natural alignment. 
As long as 16-byte boundaries (and 
cache lines) are never crossed, natural
alignment is not strictly necessary, 
though it is an easy way to enforce this.

Two memory references that access linear address ranges whose cache line bound-
aries are offset by multiples of 64K bytes. This condition affects both single-threaded
and multi-threaded applications.

Figure 14 Two stores that alias the second
store do so because it lies within a cache
boundary that is modulo 64k.

and edi, 0xffff0000

mov ebx, 0x 10000

mov [edi], eax

mov [edi + ebx +32], eax

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 . . . . . . .

Two threads update the contiguous Point P[k] and P[k+1],
which would be in the same cache for most of the time

Size of struct Point_3d is 12 bytes, size of one cache line on P4 is 64 bytes

Xk Yk Zk Xk+1 Yk+1

Pk Pk+1

Zk+1. . . . . . . . . . . . . .

12 bytes12 bytes

Cache line 64 bytes

Thread 1 Thread 2

Figure 15 Example showing false sharing. Thread 1 (in black) and thread 2 (in blue) divide the
work by taking on the elements of one array alternately.
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Figure 16 Two threads divide the array so that thread 1 takes the first half and thread 2 
takes the second.

Some operating systems create threads with stack spaces aligned on 1MB boundaries,
which is modulo 64K. Two threads executing simultaneously are likely to have many
stack variables located at address ranges that meet the 64K aliasing condition. Access
to any variable declared in the stack may therefore use 64K aliasing. 

Solve this problem by assigning a stack offset value, which will vary each stack offset
for each thread and thereby avoid 64K aliasing conflicts on the stack.

If you suspect that 64K aliasing is a problem, use the VTune Performance Analyzer to
monitor 64K aliasing events. This allows you to find 64K aliasing problems associated
with thread stacks and in other places in the code. Assign a stack offset value and
recompile, then retest using the VTune Performance Analyzer to ensure that the prob-
lem has been addressed. To assign a stack offset value, allocate memory from 
the program stack for each thread. For example void * pOff=_alloca(size); 
with a different size for each thread will assign a stack offset value of size bytes.
Manipulating the stack offset can assist with reducing the number 64K aliasing events.

. . . . . . . . . .

Thread 1 Thread 2

P0 P1 P2 PN2 PN2+1 PN2+2 PN2+3 PN-1

Figure 17 Effect of stack alignment on first-level cache aliasing.

Alias to the same cache line

Local 
stack variables

Modulo
1MB boundary

Local 
stack variables

First-Level Cache

Thread Stack 1

Thread Stack 2



Figure 18 Adding a stack offset eliminates aliasing to the same cache line.

No aliasing to the same cache line

Local 
stack variables

Modulo
1MB boundary

Local 
stack variables

First-Level Cache

Thread Stack 1

Thread Stack 2

Offset

Balance the impact of background task priorities 
on physical processors

Background tasks are used for:

■ Accomplishing low priority tasks
■ Running when available resources allow
■ Making little impact on the user experience
■ Making limited or no impact on other physical processors

Background tasks can consume resources needed by higher priority tasks. To avoid this,
adjust the frequency and duration of background tasks based on physical processors.

Avoid serializing events and instructions
Processor serial events are used to:

■ Ensure coherency and consistency
■ Handle unusual events

Serializing events cause:

■ Pipelines and caches to be emptied
■ Significant performance impact
■ All logical processors to be affected
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To optimize performance of a multithreaded application, avoid processor 
serializing events, such as:

■ Floating-point denormals
■ Memory-order conflicts
■ Self-modifying code (SMC)

Optimize cache sharing
The use of caches and shared cache data is key to building high performance multi-
threaded applications. The basic unit of sharing between processes is a cache line,
as opposed to data variables. Processors with Hyper-Threading Technology enabled
use shared cache space, and as a result, how the cache space is used has a great
impact on the performance of a hyper-threaded application. 

Overcoming false sharing in data cache 
When two threads must share data, it is important to avoid what is commonly called
false sharing. False sharing applies to data used by one thread that happens to reside
on the same cache line as different data used by another thread. In some cases, one
part of a cache line can be written while at the same time, a different part of the cache
line is being read by another thread.

An example of false sharing is when thread-private data and a thread synchronization
variable are located within the line-size boundary (64 bytes for write, 128 bytes for read).
When one thread modifies the synchronization variable, the “dirty” cache line must be
written out to memory and updated to each physical processor sharing the bus.

Subsequently, data is fetched into each target processor 128 bytes at a time, 
causing previously cached data to be evicted from its cache on each target processor.

False-sharing incurs a performance penalty, when two threads run on different physical
processors or on two logical processors in the physical processor package. In the first
case, the performance penalty is due to cache evictions to maintain cache coherency. 
In the latter case, performance penalty is due to memory-order machine-clear conditions.

When a common block of parameters is passed from a parent thread to several worker
threads, it is desirable for each worker thread to create a private copy of frequently
accessed data in the parameter block.
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To solve false sharing problems, follow these guidelines:

■ Use the VTune Performance Analyzer to monitor “machine clear caused by other
thread.” Avoid accessing data on the same cache line with multiple threads 
by partitioning data.

■ Make copies of the structure for each thread to eliminate false sharing.
■ Pad structures so that they are twice the size of a read cache line  

(128 bytes for Intel Pentium 4 processor).

Synchronization overhead greater than parallel region
When threads access shared resources, they use signals (called semaphores) to 
ensure that the data is not corrupted. Problems occur when the overhead associated
with using a synchronization mechanism (semaphores, locks or other methods) takes 
a significant amount of time compared to the time it takes the parallel sections of code
take to execute. When this is the case, there is no point in threading that section of 
the application since the synchronization mechanism takes too much time. When this
problem is identified, either reduce the synchronization time or eliminate the thread.

Take advantage of write combining buffers
Intel® NetBurstTM microarchitecture supports six write combining store buffers, each
buffering one cache line. Write combining provides a fast and efficient method of data
transfer between the store buffers used when write instructions are executed to the first
and second level caches. 

When optimizing single-threaded inner-loops for the NetBurst microarchitecture, it 
is recommended that the inner loop perform no more than four cache-line writes per 
iteration. By doing so, the inner loop benefits from optimal usage of the write combin-
ing buffers. When two or more threads are used, it is best to restrict the inner loop to
only two cache-line writes per inner loop iteration to obtain the benefit of the write
combining buffers.

One method for taking advantage of the writing combining performance benefits is to
split the inner loop into multiple loops. The example following shows a code segment
that initially does not benefit from the write combining buffers if two threads are used.
After the inner loop in split up into two loops, however, the benefits of using the write
combining buffers can be obtained.
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Correct load imbalance
Load imbalance occurs when one or more processors, logical or physical, sit idle waiting
for others processors to finish work. Load imbalance can be the result of a number 
of underlying causes, but most of the time, it is as simple as one thread finishing its
allocated work before the other. Load imbalance usually gets worse as the number of
processors increase, because as a general rule, it becomes progressively more difficult
to evenly split workloads into smaller and smaller units of work. Improving balance
often means rethinking the design and redesigning the work so that it can be divided
into more evenly distributed workloads.

Reducing excessive idle time generally requires recoding. Sometimes calling a 
different operating system function, such as PostMessage instead of SendMessage,
or EnterCriticalSection instead of WaitForSingleObject, can reduce idle time 
sufficiently to avoid the need for more extensive recoding. Other times, redesign is 
the only option.

for() {

for( I )  {

pA[I] = data1;

pB[I] = data2;

pC[I] = data3;

pD[I] = data4;

}

}

for() {

for( I )  {

pA[I] = data1;

pB[I] = data2;

}

for( I )  {

pC[I] = data3;

pD[I] = data4;

}

Figure 19 Before optimizing. Figure 20 After optimizing to take advantage
of write combining buffers.



Hyper-Threading Technology 
Application Development Resources
Intel offers several tools that can help you optimize your application’s performance.

Intel® C++ Compiler
Programming directly to a multithreading application-programming interface (API) 
is not the only method for creating multithreaded applications. New tools such as 
the Intel® C++ Compiler with OpenMP* support has become available with capabilities 
that make the challenge of creating multithreaded applications much easier.

Two features available in the latest Intel C++ Compilers are:

■ Generating multithreaded code using OpenMP directives
■ Generating multithreaded code automatically from unmodified high-level code

Use the Intel C++ Compiler following the recommendations described here wherever
possible. The Intel C++ Compiler’s advanced optimization features provide good per-
formance without the need to hand-tune assembly code. The following features may
enhance performance even further:

■ Inlined assembly
■ Intrinsics, which have a one-to-one correspondence with assembly 

language instructions, but allow the compiler to perform register allocation 
and instruction scheduling so the user does not need to do this. (Refer to 
the “Intel® C++ Intrinsics Reference” section of the Intel®C++ Compiler 
User’s Guide.)

■ C++ class libraries. (Refer to the “Intel® C++ Class Libraries for SIMD 
Operations Reference” section of the Intel® C++ Compiler User’s Guide.)

■ Vectorization, in conjunction with compiler directives (pragmas). 
(Refer to the “Compiler Vectorization Support and Guidelines” section of the 
Intel® C++ Compiler User’s Guide.)

The Intel C++ Compiler can generate a single executable that uses features such as
SSE2 to maximize performance on a Pentium 4 processor, but which still executes
correctly on older processors without such features. (See the “Processor Dispatch
Support” section in the Intel® C++ Compiler User’s Guide.)

General compiler recommendations
Any compiler that has been extensively tuned for the Pentium 4 processor can be
expected to match or outperform hand coding, in general. If particular performance
problems are noted with the compiled code, however, some compilers (such as the
Intel C++ and Fortran Compilers) allow the coder to insert intrinsics or inline 
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assembly, to exert greater control over what code is generated. If inlined assembly is
used, the user should verify that the code generated to integrate the inline assembly 
is of good quality and yields good overall performance.

Default compiler switches are generally targeted in most cases. That is, an optimization
may be the default solution if it is beneficial for most programs. In the unlikely event
that a performance problem is the root-cause of a poor choice on the part of the com-
piler, using different switches for that compiler, or compiling that module with a
different compiler may help.

Performance of compiler-generated code may vary from one compiler vendor to another.
The Intel C++ Compiler and The Intel Fortran Compiler are highly optimized for the
Pentium 4 processor. You may find significant performance advantages to using one 
of these as your back-end compiler.

VTuneTM Performance Analyzer
Where performance is of critical concern, use performance-monitoring hardware 
and software tools to tune your application and its interaction with the hardware. The
Pentium 4 processor provides counters that monitor a large number of performance-
related events affecting overall performance, branch prediction, the number and type 
of cache misses and average trace length. The counters also provide information that
helps resolve coding pitfalls.

The VTune Performance Analyzer uses these counters to provide you 
with two kinds of feedback:

■ An indication of a performance improvement from using a specific coding 
recommendation or microarchitecture feature

■ Information on whether a change in the program has improved or degraded 
performance with respect to a particular metric

The VTune Performance Analyzer contains many features that may help in determining
the thread performance issues. As discussed early in this document, performance
limiting issues such as load imbalance, excessive overhead, idle time, and processor
architectural issues like memory aliasing can be identified using the VTune
Performance Analyzer. 

See the VTune Performance Analyzer online help for instructions on how to use this
tool. See the application note Optimizing for Hyper-Threading Technology Using the
VTuneTM  Performance Analyzer for additional information on using this tool to optimize
applications targeted for Hyper-Threaded deployment. 
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Automatic parallelization of code
Intel C++ Compiler 7.0 supports an option -Qparallel, which can automatically
identify certain loop structures that contain parallelism. During program compilation, the
compiler automatically attempts to decompose the parallelism into threads for parallel
processing. No other intervention or effort by the programmer is needed.

Thread APIs
The OpenMP API is an easy-to-use API for writing multithreaded programs. OpenMP
provides a standardized, non-proprietary, portable set of FORTRAN and C++ compiler
directives supporting shared memory parallelism in applications and library routines for
parallel application programmers. OpenMP supports directive-based processing, which
uses special preprocessors or modified compilers to interpret the parallelism expressed
in FORTRAN comments or C/C++ pragmas. This makes it easier to convert serial appli-
cations into parallel applications. The benefits of directive-based processing include:

■ Original source is compiled unmodified.
■ Incremental code changes are possible, which preserve the algorithms 

of the original code and enable rapid debugging.
■ Incremental code changes help programmers maintain serial consistency. 

When the code is run on one processor, it gives the same result as the 
unmodified source code.

Most of the constructs in OpenMP are compiler directives or pragmas.

For C and C++, the pragmas take the form of: 

#pragma omp construct [clause [clause].] construct [clause [clause].]

For FORTRAN, the directives take one of these forms:

■ C$OMP construct [clause [clause].] construct [clause [clause].]

■ !$OMP construct [clause [clause].] construct [clause [clause].]

■ *$OMP construct [clause [clause].] construct [clause [clause].]

To incorporate OpenMP into a C/C++ application, include the omp.h file or for a 
FORTRAN application include the omp_lib.h file and OMP_LIB.mod module. In 
addition, the compiler flag /Qopenmp must be used to notify that OpenMP is used 
within the application.
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Most OpenMP constructs apply to structured blocks. A structured block is a block 
with one point of entry at the top and one point of exit at the bottom, with the only
branches allowed being STOP statements in FORTRAN and exit() in C and C++.

Parallel regions
You create parallel threads using the omp parallel pragma.

#pragma omp parallel
{

int id = omp_get_thread_num();
more: res(id) = do_big_job(id);

if(conv(res(id))goto more;
}
  printf("All done \n");

if(go_now())goto more;
#pragma omp parallel
{

int id = omp_get_thread_num();
more: res(id) = do_big_job(id);

if(conv(res(id))goto done;
goto more;

}
done: if(!really_done())goto more;

Master Thread

Parallel Regions

Figure 21 Structured block of code on the left; invalid code on the right.

Figure 22 Parallel regions. 



OpenMP uses a shared-memory programming model. Most variables defined 
prior to a parallel region are shared.

Global variables are shared among threads:

■ In FORTRAN, these include: COMMON blocks, SAVE and MODULE variables
■ In C, these include: File scope variables, static and heap memory (malloc)

But some variables are local to a thread, or private. These include:

■ Local variables in sub-programs called from parallel regions
■ Automatic variables within a statement block
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double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread
executes a 
copy of the 
code within the 
structured block

Runtime function
to request a 
certain number
of threads

Runtime function
returning a thread ID

Each thread calls pooh(ID,A) for ID = 0 to 3

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int id = omp_get_thread_num();
pooh(ID,A);

}
printf("all done\n");

A single 
copy of A 
is shared
between 
all threads

Threads wait here for all threads to finish 
before proceeding (i.e. a barrier)

Each thread 
executes the same 
code redundantly

double A[1000];

omp_set_num_threads(4);

pooh(0,A) pooh(1,A) pooh(2,A) pooh(3,A)

printf("all done\n");

Figure 23 Example showing how to create a 4-thread parallel region. 

Figure 24 Code for a 4-thread parallel region. 
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Clauses on directives can declare variables to be either shared or private.

Work sharing
The for work-sharing construct splits loop iterations among the threads in a team.

By default, there is a barrier at the end of the omp for construct. Use the nowait
clause to turn off the barrier.

Using work-sharing code can simplify programming. The following examples 
show four sections of code. Figure 26 is the code written for sequential processing. 
Figure 27 shows equivalent code written for parallel processing using OpenMP, 
but without using work sharing. 

Figure 25 Shared data example.

float A[10]; 
main()
{ int index[10];
#pragma omp parallel

work(index);
printf("%d\n", index[1]);

}

void work (int *index); 
{

float temp[10];
static int count;
extern float A[];
  .........

}

A, index and count are 
shared by all threads.

Temp is local to 
each thread.

A, index, count

temp temp temp

A, index, count

#pragma omp parallel

#pragma omp for 

for (i=0;i<N;i++){

NEAT_STUFF(i);

}

for(i=0;i<N;i++) { a[i] =

a[i] + b[i];}

Figure 27 Example of the for work-
sharing construct.

Figure 26 Sequential code.
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Figure 28 is showing how to break up the for construct into parallel regions. 
Figure 29 shows the equivalent code written for parallel processing using work sharing.

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

Figure 28 OpenMP parallel region.

#pragma omp parallel

#pragma omp for 

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Figure 29 OpenMP parallel region and a work-sharing for construct.
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Reduction
Loop iterations must be independent for work sharing to be valid. 
Consider the very common pattern shown in the following example:

The reduction clause lets you parallelize loops with dependencies similar to 
the one shown in the previous example using the pragma omp for reduction.

Each thread gets a private copy of res. Accumulation is in the private copy. When 
the loop is complete, the private copies are combined into a single shared copy.

for (i+0; i< 10000; i++){

ZZ = func(i);

res = res + ZZ;

}

Figure 30 Loop-carried dependency example. The variable res creates 
a loop-carried dependency, and therefore, parallelization does not work.

#pragma omp for reduction(+:res)

for (i+0; i< 10000; i++){

ZZ = func(i);

res = res + ZZ;

}

Figure 31 Example showing use of the reduction clause to create parallel loops.
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Glossary
APIC
An abbreviation for advanced programmable 
interrupt controller. The APIC handles interrupts 
sent to a specified logical processor.

Application
Refers to the primary code being characterized; 
a self-contained program that performs a specific
function directly for the user.

Chip multiprocessing
One of these techniques is chip multiprocessing (CMP),
where two or more processors are put on a single
die. Each processor can have multiple sets of full
execution and architectural resources. The proces-
sors may or may not share a large on-chip cache.
CMP is largely orthogonal to conventional multi-
processor systems, as you can have multiple CMP
processors in a multiprocessor configuration. A CMP
chip is significantly larger, however, than the size of 
a single-core chip and therefore more expensive to
manufacture; moreover, it does not begin to address
the die size and power considerations..

Clockticks
Refers to the basic unit of time recognized by a
processor. It can also be used to indicate the time
required by the processor to execute an instruction.

Conditional variables
A simple supplement to mutexes to synchronize 
time access.

Context switching
Refers to a situation when the current software
thread transitions out of a processor and another
thread transitions into the processor.

Critical sections
These are blocks of codes that can be executed 
by only one thread at a time.

Decomposition
■ Domain decomposition: 

Different threads for different data.
■ Functional decomposition: 

Different threads for different tasks.

DP
An abbreviation for dual processor, meaning two
physical processors working together in a system.

DP scaling
A quantity derived by dividing a DP system 
performance by a UP system performance.

DTLB misses
Refers to the number of retired load or store
instructions that experienced data translation 
lookaside buffer (DTLB) misses.

Events
A signal used for synchronization methods to 
denote when a resource is active or ready.

False sharing
Refers to different processors working on 
different data within the same cache line.

Front end
The front end of the pipeline is responsible for 
delivering instructions to the later pipe stages.

FSB data ready
Counts the number of front-side bus clocks that 
the bus is transmitting, including full reads|writes 
and partial reads|writes and implicit writebacks.

H-T
An abbreviation for Hyper-Threading Technology, 
the multithreading design technique that allows an
operating system to view a single physical processor 
as if it were two logical processors.

Hyper-Threading Technology
Hyper-Threading Technology makes a single physical
processor appear as multiple logical processors.
Through simultaneous multithreading, Hyper-Threading
Technology allows a single processor to manage
data as if it were two processors by handling data
instructions in parallel rather than one at a time. 

Hyper-Threading Technology 
effectiveness
A quantity derived by describing the effectiveness 
of Hyper-Threading Technology while taking the 
scalability of the workload into account. 

Hyper-Threading Technology scaling
A quantity derived by dividing a Hyper-Threading
Technology-enabled system performance by the 
performance number obtained on the Hyper-
Threading Technology-disabled system. 

Instruction-level parallelism (ILP)
Refers to techniques to increase the number of
instructions executed each clock cycle. ILP causes the
overlap of the execution of independent instructions.

ITLB misses
Instruction translation lookaside buffer (ITLB) misses
are triggered by a TC miss. The ITLB receives a request
from the TC to deliver new instructions and translates
the 32-bit linear address to a 32-bit memory physical
address before the cache lookup is performed. 

Logical processor
Hyper-Threading Technology makes a single physical
processor appear to the operating system as multiple
logical processors. Each logical processor retains a
copy of the architecture state, while sharing a single
set of physical execution resources. 
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Memory-order machine clears
Refers to the number of times the entire pipeline 
of the machine is cleared due to memory ordering.

Message passing interface (MPI)
Refers to a library of routines that can be used 
to create parallel programs.

MP
An abbreviation for multiprocessor, meaning four or
more physical processors working together in a system.

MP scaling
A quantity derived by dividing the MP system perform-
ance by the UP system performance. MP scaling has to
be quantified by providing the number of processors.

Multiprocessing
Refers to a state where the system is running parallel
tasks using two or more physical processors.

Multitasking
Refers to multiple applications running concurrently
or simultaneously in one computer. The number of
programs that can be effectively multitasked depends
on the type of multitasking performed (preemptive
versus cooperative), processor speed and memory
and disk capacity.

Multithreading
Refers to a processing state that allows multiple
streams of execution to take place concurrently 
within the same program, each stream processing 
a different transaction or message.

Mutexes
Refers to simple lock primitives that can be used 
to control access to shared resources.

Non-scalable workload
Specifically refers to an application workload,
because the performance of an application work-
load does not increase on a DP or MP system
compared to a UP system.

OpenMP
A particular threading model where the programmer
introduces parallelism or threading by using direc-
tives or pragmas. This API makes it easier to create
multithreaded programs in FORTRAN, C and C++.

Physical processor
Refers to the actual processor die that when 
Hyper-Threading Technology is added, includes 
two logical processors. With first implementation of
Hyper-Threading Technology, there are two logical
processors per physical processor. 

Process
An instance of running a program with the 
attendant states needed to keep it running.

Scalable workload
Refers to a performance increase on a DP or MP
system compared to a UP system. The workload
scalability, however, is determined by the relative
performance difference between a DP/MP system
and a UP system.

Semaphores
Refers to a counting primitive that allows access 
to shared data between threads.

Simultaneous multithreading
Finally, there is simultaneous multithreading, where
multiple threads can execute on a single processor
without switching. The threads execute simultaneously
and make much better use of the resources. This
approach makes the most effective use of processor
resources: it maximizes the performance versus
transistor count and power consumption.

Spin-locks
Blocking method used to ensure data integrity 
when multiple processors access it.

Switch-on-event multithreading
Switch-on-event multithreading would switch threads
on long latency events such as cache misses. This
approach can work well for server applications that
have large numbers of cache misses and where the
two threads are executing similar tasks. Neither the
time-slice nor the switch-on-event multithreading
techniques, however, achieve optimal overlap of
many sources of inefficient resource usage, such 
as branch mispredictions, instruction dependencies
and so on.

Symmetric multiprocessors (SMP)
Processors that have a symmetric relationship 
to a main memory and a uniform access time 
from each processor.

TC deliver mode
Execution trace cache (TC) counts the number 
of cycles that the trace cache delivers instructions
from the trace cache, as opposed to decoding and
building traces.

TC misses
TC misses count the times an instruction needed
wasn’t available in the trace cache. 

Threading
Refers to a method of writing a program that divides
it into multiple tasks. Each task may handle a different
function (I/O, GUI, etc.). A particularly time-intensive
function can be divided so that two or more threads
cooperate to complete the overall task.

Thread-level parallelism (TLP)
Refers to a state whereby multiple threads or
processes can be executed in parallel, such as 
the sharing of code and address space during 
the execution of a process. 
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Time-slice multithreading
Another approach to exploiting TLP is to allow a 
single processor to execute multiple threads by
switching between them. Time-slice multithreading 
is where the processor switches between software
threads after a fixed time period. Time-slice multi-
threading can result in wasted execution slots but
can effectively minimize the effects of long latencies 
to memory5.

µops retired
Counts the number of µops (also known as micro-
operations) retired. Each instruction is made up of
one or more micro-operations. This number count
doesn’t include false micro-operations, however,
because they are typically in a mis-predicted branch
path and are not retired. 

UP
An abbreviation for the term uni-processor, meaning
one physical processor existing in a system. 

VTA
VTune Performance Analyzer threading analysis. 
A series of tools or VTune Performance Analyzer
views that will help in analyzing threaded applications
running on typical UP, DP or MP systems with or
without Hyper-Threading Technology.

Workload
Refers to the constant work being done by an 
application – the output must be repeatable.

5 Microsoft Windows implements time slices as quanta.
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