
CS 111
Scribe Notes for 4/6/05

by Conrad Chan, Derek Chu, Amer Marji & James Szeto

Overview
The purpose of this lecture is to build up the modern operating system with its different
components, starting with a very simple operating system.

Fig. 2-1: Device access uses memory & programmed I/O.

The "Print 111" Operating System
Let's begin with the "Print 111" operating system. A machine running this simple operating
system will:

1) turn on, and
2) print "111" to the console.

This is a fairly simple task, so how should we go about doing this? Well, we know that the
console is broken up into many sections and each section's position is mapped in memory. So,
with a bit of assembly language code, we can literally tell the console to write the corresponding
output to the appropriate position on the console, such as this:

 movw $49, 0xB8000
 movw $49, 0xB8002
 movw $49, 0xB8004
 I: jmp I // after print "111" go to infinite loop

Now that we know this is what this simple program acting as an operating system will do, how
do we go about getting this "Print 111" program loaded on the computer so that when the
machine turns on, this code will be run? We could put the program in the BIOS, a region of
stable memory that is read-only. That could make sense, because when the computer turns on it
is hardwired to immediately jump to this memory location and would then run this code. But
then if this memory for the BIOS is read-only, that means if we ever want to change the software
(as if there were any other need besides printing "111" to a screen) we would have to scrap the
entire computer and build a new one with different code written on that read-only BIOS memory.
(If we're lucky, the machine would have an updatable BIOS, but still, changing the BIOS is
difficult and can really screw up the machine!)

What else can we do then? Well, instead, let's put the program on the disk at a known location.
The BIOS code will simply load that known part of the disk into memory, then jump to it. In fact
the BIOS reads the first sector of the disk (offset 0), and writes it to address 0x7C00. But this
raises the issue of knowing how to access the disk. To solve this problem, the ISA uses a
specified block of memory, addresses 0x1F0-0x1F7, that can use the special instructions inb/outb,
as demonstrated in the following code:

 while ((inb(0x1F7) & 0xC0) != 0x40)
 /* spin */;
 outb(0x1F2,1); // number of sectors to read
 outb(0x1F3,0); // bits 0-7 (low bits) of 28-bit offset
 outb(0x1F4,0); // bits 8-15 of 28-bit offset
 outb(0x1F5,0); // bits 16-23 of 28-bit offset
 outb(0x1F6,0xE0); // bits 24-27 of 28-bit offset
 // bit 28 (= 0) means Disk 0
 // other bits (29-31) must be set to one
 outb(0x1F7,0x20); // READ SECTORS command
 while ((inb(0x1F7) & 0xC0) != 0x40)
 /* spin */;
 insl(0x1F0,0x7C00,128); // get results as 128 "long words"
 // 1 long word == 4 bytes; 128 * 4 == 512 bytes,
 // the length of a sector

The clause in the while statement basically checks to see if the disk is ready. Once it is ready, we
use the outb instructions to write commands to the disk and then the last line, the insl instruction,
reads the result back. Using these instructions, the operating system can manage the hardware.

The "Password Checking" Operating System
We now try to implement a slightly more complex operating system, the "Password Checking"
OS. We want this "operating system" to accomplish two tasks:

1) print the password, and

2) check the password.

Let's choose an arbitrary password, let's say we use our most valuable string "111" again. This
following code represents program P, the printing of the password:

 int main(int c, char* v[]) { // program P
 printf("111\n");
 return 0;
 }

And the following code represents program C, the checking of the password:

 int main() { // program C
 char buf[1000];
 fgets(buf,1000,stdin);
 if(strcmp(buf,"111")==0)
 printf("Y");
 else
 printf("N");
 }

Processes
We see here that this operating system is performing two tasks: printing the password and
checking the password. Now we ask the question, is there a way to optimize the operating system
by interweaving the two programs? To answer that question, we introduce the concept of
processes to the operating system. So how do we interweave the two? Let's take a close look at
what's really going on. We see that when P prints "111", what it really does is print one character
at a time:

 Print("1"), Print("1"), Print("1"), Print("\n")

At the same time, what C is really doing is walking along an array that reads in the input and
checks each character, one by one. So we see that we can switch back and forth between the two
tasks as each character is being printed or read. We accomplish this implementation of processes
by having two execution pointers, a program counter, registers, and stack space (memory to hold
local variables). In order to switch between processes the operating system must:
1) save the current state of the program being executed, and
2) load the next state of the other program to be executed.
(in x86: pushflags, popflags, iret).

Fig. 2-2: Interweaving programs P and C.

Protection
Now we have two tasks concurrently running and performing the task of inputting a password
and checking for correctness. So here we raise the issue of memory protection. It would be
really easy for task P ("Print 111") to hack into task C ("Check 111") and obtain the password
and get permissions to the system if there were no protection. This can be done in multiple ways.
For example, if the password was saved in some memory location or on the disk, task P could
read this password and then supply it as input for C. Another way is for P to change some
instructions in C by going straight to the saved code and change some conditions in the "if"
statement.

Fig. 2-3: An x86 Page Table.

So here comes the role of memory protection, which is to protect a process's code, data, stack,
and registers from unauthorized intrusion. In modern x86 operating systems, memory protection
is maintained through protection flags on the processor's page table, and through a global
privilege level that says how privileged the currently running process is. For example, a
particular chunk of memory might be labeled "readable, but only to supervisor processes (= most
privileged)", or "read/write for user processes (= least privileged)". See Fig. 2-3.

There are 4 levels of privilege that go between 0 and 3, 0 being the most privileged level
(supervisor) and 3 being the least (user). These privilege levels are represented in a ring structure.

Fig. 2-4: Ring structure of authority levels

(supervisor mode --> user mode).

The Kernel & Memory Protection

Fig. 2-5: Protection of P and C.

The final portion of the lecture deals with the kernel's role in memory protection. With so much
risk involved in programs and memory protection, the kernel is in fact the only program that is
allowed to run in supervisor mode. This policy maintains safe access to files and programs. The
kernel is the only program that starts and maintains user processes.

This seems like a fairly simple idea but how exactly is this carried out? User processes, which
are running in user mode, obviously need to call in to the kernel from time to time, to get access
to files and such. But user processes can't be allowed to jump into the kernel code at an arbitrary
place, and they can't be allowed to raise their own privilege! (It would be a massive security hole
if unprivileged code could raise its privilege whenever it wanted.) In fact, the architecture
ensures that processes never lower their own privilege level (they can only raise it). So how do
we do this? The answer is with traps. Traps are user mode function calls that transfer control to
the kernel. It is very similar to interrupts that we have studied in CS33. When a process needs to
call into the system, it executes a special kind of interrupt to ask for attention from the kernel. In
fact, in the x86 machine, the command from user to kernel is "int" while the command from
kernel to user is "iret".

Now we turn our attention back to a question we asked earlier: can we still access the disk? The
answer is obviously yes, but we do so via the kernel. We first consider raw disk access. Although
raw disk access has very advantages speed characteristics, the problems outweigh the quickness
of file access.

Fig. 2-6: Illustration of disk access.

Raw disk access has problems with concurrency, protection, safety, and programming. The
users to kernel API for disks and file systems have commands in which the kernel manages the
file systems interface. These commands are read(), write(), open() and unlink(). The first three
are pretty intuitive. Unlink() is another name for deletion.

This is all the time we had for lecture. The main goals for Wednesday's lectures the following:

• Understanding that device access uses memory and programmed I/O
• The concept of processes
• The importance of memory protection, privileged instructions, and the kernel and traps.
• Abstraction

We will continue exploring these topics and others in future lectures

	CS 111
	Scribe Notes for 4/6/05
	Overview
	The "Print 111" Operating System
	The "Password Checking" Operating System
	Processes
	Protection
	The Kernel & Memory Protection

