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Overview 
The purpose of this lecture is to build up the modern operating system with its different 
components, starting with a very simple operating system. 

 
Fig. 2-1: Device access uses memory & programmed I/O. 

The "Print 111" Operating System 
Let's begin with the "Print 111" operating system. A machine running this simple operating 
system will: 
 
1) turn on, and 
2) print "111" to the console. 
 
This is a fairly simple task, so how should we go about doing this? Well, we know that the 
console is broken up into many sections and each section's position is mapped in memory. So, 
with a bit of assembly language code, we can literally tell the console to write the corresponding 
output to the appropriate position on the console, such as this: 



    movw $49, 0xB8000 
    movw $49, 0xB8002 
    movw $49, 0xB8004 
    I: jmp I    // after print "111" go to infinite loop 

Now that we know this is what this simple program acting as an operating system will do, how 
do we go about getting this "Print 111" program loaded on the computer so that when the 
machine turns on, this code will be run? We could put the program in the BIOS, a region of 
stable memory that is read-only. That could make sense, because when the computer turns on it 
is hardwired to immediately jump to this memory location and would then run this code. But 
then if this memory for the BIOS is read-only, that means if we ever want to change the software 
(as if there were any other need besides printing "111" to a screen) we would have to scrap the 
entire computer and build a new one with different code written on that read-only BIOS memory. 
(If we're lucky, the machine would have an updatable BIOS, but still, changing the BIOS is 
difficult and can really screw up the machine!) 

What else can we do then? Well, instead, let's put the program on the disk at a known location. 
The BIOS code will simply load that known part of the disk into memory, then jump to it. In fact 
the BIOS reads the first sector of the disk (offset 0), and writes it to address 0x7C00. But this 
raises the issue of knowing how to access the disk. To solve this problem, the ISA uses a 
specified block of memory, addresses 0x1F0-0x1F7, that can use the special instructions inb/outb, 
as demonstrated in the following code: 

    while ((inb(0x1F7) & 0xC0) != 0x40) 
        /* spin */; 
    outb(0x1F2,1); // number of sectors to read 
    outb(0x1F3,0); // bits 0-7 (low bits) of 28-bit offset 
    outb(0x1F4,0); // bits 8-15 of 28-bit offset 
    outb(0x1F5,0); // bits 16-23 of 28-bit offset 
    outb(0x1F6,0xE0); // bits 24-27 of 28-bit offset 
   // bit 28 (= 0) means Disk 0 
   // other bits (29-31) must be set to one 
    outb(0x1F7,0x20); // READ SECTORS command 
    while ((inb(0x1F7) & 0xC0) != 0x40) 
        /* spin */; 
    insl(0x1F0,0x7C00,128); // get results as 128 "long words" 
                        // 1 long word == 4 bytes; 128 * 4 == 512 bytes, 
   // the length of a sector 

The clause in the while statement basically checks to see if the disk is ready. Once it is ready, we 
use the outb instructions to write commands to the disk and then the last line, the insl instruction, 
reads the result back. Using these instructions, the operating system can manage the hardware. 

The "Password Checking" Operating System 
We now try to implement a slightly more complex operating system, the "Password Checking" 
OS. We want this "operating system" to accomplish two tasks: 
 
1) print the password, and 



2) check the password. 
 
Let's choose an arbitrary password, let's say we use our most valuable string "111" again. This 
following code represents program P, the printing of the password: 

    int main(int c, char* v[]) {    // program P 
        printf("111\n"); 
        return 0; 
    } 

And the following code represents program C, the checking of the password: 

    int main() {    // program C 
        char buf[1000]; 
        fgets(buf,1000,stdin); 
        if(strcmp(buf,"111")==0) 
            printf("Y"); 
        else 
            printf("N"); 
    } 

Processes 
We see here that this operating system is performing two tasks: printing the password and 
checking the password. Now we ask the question, is there a way to optimize the operating system 
by interweaving the two programs? To answer that question, we introduce the concept of 
processes to the operating system. So how do we interweave the two? Let's take a close look at 
what's really going on. We see that when P prints "111", what it really does is print one character 
at a time: 

    Print("1"), Print("1"), Print("1"), Print("\n") 

At the same time, what C is really doing is walking along an array that reads in the input and 
checks each character, one by one. So we see that we can switch back and forth between the two 
tasks as each character is being printed or read. We accomplish this implementation of processes 
by having two execution pointers, a program counter, registers, and stack space (memory to hold 
local variables). In order to switch between processes the operating system must: 
1) save the current state of the program being executed, and 
2) load the next state of the other program to be executed. 
(in x86: pushflags, popflags, iret). 



 
Fig. 2-2: Interweaving programs P and C. 

Protection 
Now we have two tasks concurrently running and performing the task of inputting a password 
and checking for correctness. So here we raise the issue of memory protection. It would be 
really easy for task P ("Print 111") to hack into task C ("Check 111") and obtain the password 
and get permissions to the system if there were no protection. This can be done in multiple ways. 
For example, if the password was saved in some memory location or on the disk, task P could 
read this password and then supply it as input for C. Another way is for P to change some 
instructions in C by going straight to the saved code and change some conditions in the "if" 
statement. 

 
Fig. 2-3: An x86 Page Table. 

So here comes the role of memory protection, which is to protect a process's code, data, stack, 
and registers from unauthorized intrusion. In modern x86 operating systems, memory protection 
is maintained through protection flags on the processor's page table, and through a global 
privilege level that says how privileged the currently running process is. For example, a 
particular chunk of memory might be labeled "readable, but only to supervisor processes (= most 
privileged)", or "read/write for user processes (= least privileged)". See Fig. 2-3. 

There are 4 levels of privilege that go between 0 and 3, 0 being the most privileged level 
(supervisor) and 3 being the least (user). These privilege levels are represented in a ring structure. 



 
Fig. 2-4: Ring structure of authority levels 

(supervisor mode --> user mode). 

The Kernel & Memory Protection 

 
Fig. 2-5: Protection of P and C. 

The final portion of the lecture deals with the kernel's role in memory protection. With so much 
risk involved in programs and memory protection, the kernel is in fact the only program that is 
allowed to run in supervisor mode. This policy maintains safe access to files and programs. The 
kernel is the only program that starts and maintains user processes. 

This seems like a fairly simple idea but how exactly is this carried out? User processes, which 
are running in user mode, obviously need to call in to the kernel from time to time, to get access 
to files and such. But user processes can't be allowed to jump into the kernel code at an arbitrary 
place, and they can't be allowed to raise their own privilege! (It would be a massive security hole 
if unprivileged code could raise its privilege whenever it wanted.) In fact, the architecture 
ensures that processes never lower their own privilege level (they can only raise it). So how do 
we do this? The answer is with traps. Traps are user mode function calls that transfer control to 
the kernel. It is very similar to interrupts that we have studied in CS33. When a process needs to 
call into the system, it executes a special kind of interrupt to ask for attention from the kernel. In 
fact, in the x86 machine, the command from user to kernel is "int" while the command from 
kernel to user is "iret". 

Now we turn our attention back to a question we asked earlier: can we still access the disk? The 
answer is obviously yes, but we do so via the kernel. We first consider raw disk access. Although 
raw disk access has very advantages speed characteristics, the problems outweigh the quickness 
of file access. 



 
Fig. 2-6: Illustration of disk access. 

Raw disk access has problems with concurrency, protection, safety, and programming. The 
users to kernel API for disks and file systems have commands in which the kernel manages the 
file systems interface. These commands are read(), write(), open() and unlink(). The first three 
are pretty intuitive. Unlink() is another name for deletion. 

This is all the time we had for lecture. The main goals for Wednesday's lectures the following:  

• Understanding that device access uses memory and programmed I/O  
• The concept of processes  
• The importance of memory protection, privileged instructions, and the kernel and traps.  
• Abstraction  

We will continue exploring these topics and others in future lectures 
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