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Processes 
 

What is a process? 
A process is a running instance of a program. The Web browser you're using to read these notes, 
for example, is a program: a sequence of machine instructions. The program becomes a process 
when it starts running, and develops some execution state. A computer can have multiple 
processes running the same program simultaneously. 

A process has a program counter (or, equivalently, instruction pointer) specifying the next 
instruction to execute, and a set of other resources too: 

• A program counter 
• Contents of registers 
• A stack (Local Variables, Temporary Data) 
• Data section (Global Variables) 
• Heap (memory allocated dynamically at run time with malloc or similar functions) 

In our first lecture, we took a look at a simple C program that accomplished two tasks -- counting 
to five, and printing "Hello". Looking at this program as an "operating system" running two 
"processes", we can find several of these process features. (The "kernel" is in black in this figure; 
the two processes in orange and purple.) 

int main (int argc,  char *argv[]) 
{ 
    int state = 0;                   // Kernel state: Current Process
    int x = 0;                       // 1st process Global Variable
    int printed = 0;                 // 2nd process Global Variable
    while (1) { 
        if (state % 2 == 0) {        
            if (x < 5)               // 1st process code 
                  x++; 
        } else {                 
            if (!printed) {          // 2nd process code 
                printf("Hello"); 
                printed = 1; 
            } 
        } 
        state++;                     // Round-robin "process scheduler" 



    } 
}  

We can also compare a process with a Turing Machine. 

Turing Machine 
---------------- 

Process State 
---------------- 

Tape Read-Write Data (Global Variables) 
Transition Function Instructions (Program text) which is read only 

Current Turing Machine State  Instruction Pointer (IP) 

Memory Layout of the Process in x86 

 

Registers 

 

Stack (LastInFirstOut) 

We need to keep local variables that are used during the running program somewhere in memory. 
Where can we keep Local Variables in memory? To place Local Variables where Global 
Variables are kept is a bad idea. Here is why. 

Thought Experiment: Let's treat local variables like global variables. That is, every function 
will reserve some space in the global variable area (Read-Write Data) for its local variables. 

What's wrong? Recursion: Functions that can call themselves! When a function calls itself (see 
below for an example), the function is effectively running twice, and each copy needs its own 
local variables. Thus, we need to allocate the function space in the different location. All modern 
machines do this with a stack.  



 

The stack is an area of memory reserved for function arguments and local variables. The stack is 
allocated a function at a time: when we call a function, we push more space onto the stack to 
hold that function's local variables; and when the function returns, we pop its local variable space 
off the stack. The architecture has a special register, called the stack pointer (%esp on x86), that 
points to the current stack location. Stacks generally grow from the top down, so when a function 
is called, the stack pointer is set to a smaller value. 

Let's take a look at a simple recursive function -- namely, Factorial -- and its pseudo-assembly 
code. 

... factorial(5); ... 
 
 
 
 
 
int factorial(int f) { 
    if (f == 0) 
 
        return 1; 
 
    else 
        return f * 
factorial(f - 1); 
} 

    

// Call 'factorial(5)' 
0x02: pushl $5 
0x05: call _factorial 
0x06: popl %eax             // pop the 
argument we pushed 
0x09: ... continue ...  
 
_factorial:     // The 'factorial' function 
definition 
0x10: cmpl 4(%esp), $0      // Is f == 0? 
0x12: jne 0x1D              // If not, jump 
ahead 
0x14: movl $1, %eax         // Return 1 
0x17: ret 
0x1D: movl 4(%esp), %eax    // %eax = f; 
0x20: subl %eax, $1         // %eax--; 
0x22: pushl %eax            // push 'f - 1' 
as argument 
0x24: call _factorial       // call 
'factorial' recursively 
                            // result is 
returned in '%eax' 
0x26: mull 4(%esp), %eax    // %eax *= f; 
                            // now %eax == f 
* factorial(f - 1) 
0x29: ret                   // So return! 

When the function is called: 

1. Any function arguments are pushed on the Stack. (In some architectures, the first couple 
arguments are stored in registers; but on x86, everything goes on the stack.) See the 
pushl instruction at 0x02. 

2. The return address (the next instruction's address from where the function was called) is 
pushed on the Stack. 

3. The processor jumps to the start of the function code. On x86, steps 2 and 3 are combined 
into one instruction, call (see instructions 0x05 and 0x24). The call instruction pushes 
the return address and jumps to a function atomically. 



4. The function pushes space for its local variables onto the stack. (In our example, 
factorial has no local variables, so it doesn't need to do this.) 

5. Within the function code, arguments and local variables are referred to using stack-
indirect addressing. For example, in factorial, the address "4(%esp)" refers to the 
function's argument f. Why? The last thing pushed onto the stack was the return address 
(Step 2), so the stack pointer points there. Four bytes above that address -- at 4(%esp) -- 
is the first argument. 

6. When the function is done, it pops its local variable space off the stack. 
7. Then it pops the return address from the stack, and jumps to that address. In x86, the ret 

instruction does this, and the function's return value is stored in the %eax register. 
8. Finally, the caller pops off any arguments it pushed. 

These steps are repeated for reach function call.  

 

Why do stacks grow downwards? Because it is much more natural and convenient to refer to 
arguments and local variables with positive offsets, such as 4(%esp). 

The stack assumes that function never returns more than once. It is a feature that almost every 
programming language has. (There are functions in Scheme that could return more than once.) 
The reason can be described as the following: When a function returns all the local variables and 
also the state that the function was in it will be deleted. Therefore that functions state and 
variables will not exist any more.  

Heap (Dynamic Memory Allocation) 

Memory Layout (4 GB) 



 

Let's introduce another section of memory which is called heap. In the heap we store 
dynamically allocated memories. Dynamic memory is being used to limit the process resource 
usage dynamically based on availability. We use the following commands to allocate and free 
memory. 

• Malloc( ) ' Memory allocation. 
• Free( ) ' Free Memory 

In edition we also have to store the register state and the program counter. The main reason is 
that we must be able to run more than one process at a time. Let's introduce the Process Control 
Block. It is located in the kernel memory and has the following structure  

Kernel Memory (Process Control Block) 

 

Scheduling and Processes 



What is a scheduler? 
Piece of OS that determines: 1) what process is running now? 2) What process will it run next? 

RUN QUEUE: Set of processes that are ready to go. "Ready to go" status does not mean that the 
process is 'useful'. We generally want a small run queue (minimal amount of programs on it). 

WAIT QUEUE: A queue holding processes that are waiting for some event to happen. When the 
event happens, the process will be moved to the run queue so it can run. There are many wait 
queues, one per event that a process can wait for. For instance, we can have a wait queue for the 
following: 1) Other processes to finish 2) Input devices 3) Output devices 4) Inter-process 
communication 5) Timers, and so forth.  

Goal of RUN QUEUE and WAIT QUEUE: 
Take processes off run queue until they DEFINITELY have work to do with a MINIMUM wait 
time. This is to maximize efficiency and the available resources.  

Blocking vs. Non-Blocking (System Calls) 

Blocking: doesn't return until finished (forces process to wait until done). A blocking system call 
might put a process on a wait queue, if the operation can't complete right away. Non-blocking: 
returns an error, such as EAGAIN, if the system can't complete the system call right away. This 
doesn't force the process to wait. Non-blocking system calls never cause a process to be put on a 
wait queue. This lets the process itself decide how to react if an operation can't complete right 
away. For instance, the process might go ahead and try to do something else.  

Input Devices 

Examples of Input Devices: disk, keyboard, joystick... CLOCK: interrupt processor N times a 
second, kernel takes control.  

Timer Wait Queue 

There are many ways to implement run queues and wait queues, from simple linked lists to 
complicated ring data structures and so forth. To get a feeling, let's take a look at how a timer 
wait queue might be implemented. A process goes onto the timer wait queue to wait until a 
certain time -- maybe 1 second from now, maybe 20 hours from now. Different processes on the 
timer wait queue are waiting for different times. How might we implement this? 

• Every process on the timer queue could store the number of clock ticks remaining until 
the wakeup time. Then, on every clock tick, the kernel would decrement this number for 
every process on the timer queue, and wake up any process with number <= 0. What's 
wrong with this method? This would take too long because we would have to modify 
every process on the queue, for every clock tick. 

• How could we make this faster? Well, we could store an additional variable, mindelay: 
the minimum number of clock ticks remaining, for any process on the wait queue. Then 
on most clock ticks, we just decrement mindelay; we only need to walk the list when 



mindelay <= 0. This is an improvement, but it still requires that we walk the whole list 
from time to time. 

• Instead of this, we could store each process's absolute wake time. Then we could keep the 
timer queue sorted in increasing order of wake time. When a clock tick happens, we walk 
the timer queue, starting with the lowest wake time. If a process's wake time is <= the 
current time, we wake up the process and keep going. But if the wake time is > the 
current time, we can stop walking the list: since the queue is kept sorted, no one further 
down the list needs to wake up. Thus, we avoid ever walking the whole list on timer 
interrupt. There's a tradeoff here, of course, since we do need to keep the list in sorted 
order. Real operating systems use interesting data structures to get the best of both worlds. 

Context Switch 
Switching the CPU to another process requires saving the state of the old process and loading the 
saved state of the new process. When a context switch occurs, the Kernel saves the context of the 
old process in its Process Control Block and loads the saved context of the new process 
scheduled to run. Context Switch time is pure overhead, because the system does no useful work 
while switching. Its speed varies from machine to machine, depending on the memory speed, the 
number of registers that must be copied, and the existence of any special instructions (such as a 
single instruction to load or store all the registers). Typical speeds are less than 10 milliseconds, 
but tens or hundreds of times more expensive than simple function calls. 

Requirements: 

• Context Switch requires setting up the processor's state to setup the environment for the 
destination process  

• Context Switch requires saving the source process state which includes: Registers, IP, 
Virtual Memory State, Privilege Levels  

The cheapest Context Switch is 100 times more expensive than a function call. Because of huge 
extra overhead Context Switching has become such a performance bottleneck that programmers 
are using alternative structures (threads) to speed it up and possibly avoid it, whenever possible.  

Creating Processes 

Fork System Call 

A process may be create several new processes, via a create-process system call, during the 
course of execution. The creating process is called a Parent process, and new processes are called 
the Children of that process. Each of these new processes may in turn create other processes 
forming a tree of processes. In general, a process will need certain resources (CPU time, memory, 
files, I/O devices) to accomplish its task. When a process creates a subprocess, that subprocess 
may be able to obtain its resources directly from the operating system, or it may be constrained 
to a subset of resources of the parent process. 
When a process creates a new process, two possibilities exist in terms of execution.  



• A new process can be created by fork() system call and identified by its process identifier. 
Every created process has a unique identifier. The created process (Child Process) 
consists of a copy of the address space of the original process. - The returned code for the 
fork() is zero for the Child process, whereas the nonzero process identifier of the child is 
returned to the parent. Both the parent and the child will continue their execution at the 
same instruction pointer.  

• Bootstrapping Process by exec() System call: This system call is used after fork() system 
call by one of the two processes to replace the processes memory space with a new 
program. The exec() system call loads a binary file into memory (destroying the memory 
image of the program containing the exec () system call) and starts its execution. In this 
manner, the two processes are able to communicate and then go their separate ways  

How To Use Fork? 

pid_t p = fork(); 
if (p < 0) 
    printf("Error\n"); 
else if (p == 0) 
    printf("Child\n"); 
else /* p > 0 */ 
    printf("Parent of %d\n", p); 

One interesting way to think about fork and exec is to think about how a process can find a 
consistent state to start running. The operating system can't just randomly copy a process, then 
jump wildly into its program code, and expect everything to work!! The fork() system call 
shows one way to start the new process from a consistent state: namely, start it from the copy of 
an existing consistent state. The exec() call shows the other: namely, start it from the single 
entry point defined by the compiler. 

Wait System Call 

A parent process can waits for a its child process to finish or exit. 
System Call is:  

 waitpid (pid_t pid,int *status,..........); 
pid =>the process id of the child that the parent is waiting for. 
status => variable that will notify the parent whether the child exited successfully of not.  

If the parent terminates, however, all its children have assigned a new parent, the init process. 
Thus, the children still have a parent to collect their status and execution statistics.  

Exit system call 

Via the exit() system call, A process terminates its execution and asks the operating system to 
delete all the resources that it was using. Such as: Virtual Memory, Open Files and Input Output 
Buffers. However, not all resources are released. In particular, the Process Control Block hangs 
around to store the process's exit status, until the parent calls waitpid appropriately. (This is 



what a "zombie" process is: a process that has died, but whose parent hasn't waited for it yet.) 
Processes can also cause each other to exit with signals (see the next lecture). Usually such 
system calls have special access checks -- for example, a process owned by user U can only kill 
other processes owned by user U. Otherwise, users could arbitrarily kill each other's jobs. 

Note that a parent needs to know the identities of its children in order to terminate their processes. 
In addition to above, some older systems do not allow a child to exist if its parent has terminated. 
In such systems, if a process terminates (either successful or unsuccessful), then all its children 
must also be terminated. This phenomenon is called Cascading termination, which is initiated by 
the operating system. 
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