
CS 111
Scribe Notes for 4/11/05

by Marina Cholakyan, Hyduke Noshadi, Sepehr Sahba and Young Cha

Processes

What is a process?
A process is a running instance of a program. The Web browser you're using to read these notes,
for example, is a program: a sequence of machine instructions. The program becomes a process
when it starts running, and develops some execution state. A computer can have multiple
processes running the same program simultaneously.

A process has a program counter (or, equivalently, instruction pointer) specifying the next
instruction to execute, and a set of other resources too:

• A program counter
• Contents of registers
• A stack (Local Variables, Temporary Data)
• Data section (Global Variables)
• Heap (memory allocated dynamically at run time with malloc or similar functions)

In our first lecture, we took a look at a simple C program that accomplished two tasks -- counting
to five, and printing "Hello". Looking at this program as an "operating system" running two
"processes", we can find several of these process features. (The "kernel" is in black in this figure;
the two processes in orange and purple.)

int main (int argc, char *argv[])
{
 int state = 0; // Kernel state: Current Process
 int x = 0; // 1st process Global Variable
 int printed = 0; // 2nd process Global Variable
 while (1) {
 if (state % 2 == 0) {
 if (x < 5) // 1st process code
 x++;
 } else {
 if (!printed) { // 2nd process code
 printf("Hello");
 printed = 1;
 }
 }
 state++; // Round-robin "process scheduler"

 }
}

We can also compare a process with a Turing Machine.

Turing Machine

Process State

Tape Read-Write Data (Global Variables)
Transition Function Instructions (Program text) which is read only

Current Turing Machine State Instruction Pointer (IP)

Memory Layout of the Process in x86

Registers

Stack (LastInFirstOut)

We need to keep local variables that are used during the running program somewhere in memory.
Where can we keep Local Variables in memory? To place Local Variables where Global
Variables are kept is a bad idea. Here is why.

Thought Experiment: Let's treat local variables like global variables. That is, every function
will reserve some space in the global variable area (Read-Write Data) for its local variables.

What's wrong? Recursion: Functions that can call themselves! When a function calls itself (see
below for an example), the function is effectively running twice, and each copy needs its own
local variables. Thus, we need to allocate the function space in the different location. All modern
machines do this with a stack.

The stack is an area of memory reserved for function arguments and local variables. The stack is
allocated a function at a time: when we call a function, we push more space onto the stack to
hold that function's local variables; and when the function returns, we pop its local variable space
off the stack. The architecture has a special register, called the stack pointer (%esp on x86), that
points to the current stack location. Stacks generally grow from the top down, so when a function
is called, the stack pointer is set to a smaller value.

Let's take a look at a simple recursive function -- namely, Factorial -- and its pseudo-assembly
code.

... factorial(5); ...

int factorial(int f) {
 if (f == 0)

 return 1;

 else
 return f *
factorial(f - 1);
}

// Call 'factorial(5)'
0x02: pushl $5
0x05: call _factorial
0x06: popl %eax // pop the
argument we pushed
0x09: ... continue ...

_factorial: // The 'factorial' function
definition
0x10: cmpl 4(%esp), $0 // Is f == 0?
0x12: jne 0x1D // If not, jump
ahead
0x14: movl $1, %eax // Return 1
0x17: ret
0x1D: movl 4(%esp), %eax // %eax = f;
0x20: subl %eax, $1 // %eax--;
0x22: pushl %eax // push 'f - 1'
as argument
0x24: call _factorial // call
'factorial' recursively
 // result is
returned in '%eax'
0x26: mull 4(%esp), %eax // %eax *= f;
 // now %eax == f
* factorial(f - 1)
0x29: ret // So return!

When the function is called:

1. Any function arguments are pushed on the Stack. (In some architectures, the first couple
arguments are stored in registers; but on x86, everything goes on the stack.) See the
pushl instruction at 0x02.

2. The return address (the next instruction's address from where the function was called) is
pushed on the Stack.

3. The processor jumps to the start of the function code. On x86, steps 2 and 3 are combined
into one instruction, call (see instructions 0x05 and 0x24). The call instruction pushes
the return address and jumps to a function atomically.

4. The function pushes space for its local variables onto the stack. (In our example,
factorial has no local variables, so it doesn't need to do this.)

5. Within the function code, arguments and local variables are referred to using stack-
indirect addressing. For example, in factorial, the address "4(%esp)" refers to the
function's argument f. Why? The last thing pushed onto the stack was the return address
(Step 2), so the stack pointer points there. Four bytes above that address -- at 4(%esp) --
is the first argument.

6. When the function is done, it pops its local variable space off the stack.
7. Then it pops the return address from the stack, and jumps to that address. In x86, the ret

instruction does this, and the function's return value is stored in the %eax register.
8. Finally, the caller pops off any arguments it pushed.

These steps are repeated for reach function call.

Why do stacks grow downwards? Because it is much more natural and convenient to refer to
arguments and local variables with positive offsets, such as 4(%esp).

The stack assumes that function never returns more than once. It is a feature that almost every
programming language has. (There are functions in Scheme that could return more than once.)
The reason can be described as the following: When a function returns all the local variables and
also the state that the function was in it will be deleted. Therefore that functions state and
variables will not exist any more.

Heap (Dynamic Memory Allocation)

Memory Layout (4 GB)

Let's introduce another section of memory which is called heap. In the heap we store
dynamically allocated memories. Dynamic memory is being used to limit the process resource
usage dynamically based on availability. We use the following commands to allocate and free
memory.

• Malloc() ' Memory allocation.
• Free() ' Free Memory

In edition we also have to store the register state and the program counter. The main reason is
that we must be able to run more than one process at a time. Let's introduce the Process Control
Block. It is located in the kernel memory and has the following structure

Kernel Memory (Process Control Block)

Scheduling and Processes

What is a scheduler?
Piece of OS that determines: 1) what process is running now? 2) What process will it run next?

RUN QUEUE: Set of processes that are ready to go. "Ready to go" status does not mean that the
process is 'useful'. We generally want a small run queue (minimal amount of programs on it).

WAIT QUEUE: A queue holding processes that are waiting for some event to happen. When the
event happens, the process will be moved to the run queue so it can run. There are many wait
queues, one per event that a process can wait for. For instance, we can have a wait queue for the
following: 1) Other processes to finish 2) Input devices 3) Output devices 4) Inter-process
communication 5) Timers, and so forth.

Goal of RUN QUEUE and WAIT QUEUE:
Take processes off run queue until they DEFINITELY have work to do with a MINIMUM wait
time. This is to maximize efficiency and the available resources.

Blocking vs. Non-Blocking (System Calls)

Blocking: doesn't return until finished (forces process to wait until done). A blocking system call
might put a process on a wait queue, if the operation can't complete right away. Non-blocking:
returns an error, such as EAGAIN, if the system can't complete the system call right away. This
doesn't force the process to wait. Non-blocking system calls never cause a process to be put on a
wait queue. This lets the process itself decide how to react if an operation can't complete right
away. For instance, the process might go ahead and try to do something else.

Input Devices

Examples of Input Devices: disk, keyboard, joystick... CLOCK: interrupt processor N times a
second, kernel takes control.

Timer Wait Queue

There are many ways to implement run queues and wait queues, from simple linked lists to
complicated ring data structures and so forth. To get a feeling, let's take a look at how a timer
wait queue might be implemented. A process goes onto the timer wait queue to wait until a
certain time -- maybe 1 second from now, maybe 20 hours from now. Different processes on the
timer wait queue are waiting for different times. How might we implement this?

• Every process on the timer queue could store the number of clock ticks remaining until
the wakeup time. Then, on every clock tick, the kernel would decrement this number for
every process on the timer queue, and wake up any process with number <= 0. What's
wrong with this method? This would take too long because we would have to modify
every process on the queue, for every clock tick.

• How could we make this faster? Well, we could store an additional variable, mindelay:
the minimum number of clock ticks remaining, for any process on the wait queue. Then
on most clock ticks, we just decrement mindelay; we only need to walk the list when

mindelay <= 0. This is an improvement, but it still requires that we walk the whole list
from time to time.

• Instead of this, we could store each process's absolute wake time. Then we could keep the
timer queue sorted in increasing order of wake time. When a clock tick happens, we walk
the timer queue, starting with the lowest wake time. If a process's wake time is <= the
current time, we wake up the process and keep going. But if the wake time is > the
current time, we can stop walking the list: since the queue is kept sorted, no one further
down the list needs to wake up. Thus, we avoid ever walking the whole list on timer
interrupt. There's a tradeoff here, of course, since we do need to keep the list in sorted
order. Real operating systems use interesting data structures to get the best of both worlds.

Context Switch
Switching the CPU to another process requires saving the state of the old process and loading the
saved state of the new process. When a context switch occurs, the Kernel saves the context of the
old process in its Process Control Block and loads the saved context of the new process
scheduled to run. Context Switch time is pure overhead, because the system does no useful work
while switching. Its speed varies from machine to machine, depending on the memory speed, the
number of registers that must be copied, and the existence of any special instructions (such as a
single instruction to load or store all the registers). Typical speeds are less than 10 milliseconds,
but tens or hundreds of times more expensive than simple function calls.

Requirements:

• Context Switch requires setting up the processor's state to setup the environment for the
destination process

• Context Switch requires saving the source process state which includes: Registers, IP,
Virtual Memory State, Privilege Levels

The cheapest Context Switch is 100 times more expensive than a function call. Because of huge
extra overhead Context Switching has become such a performance bottleneck that programmers
are using alternative structures (threads) to speed it up and possibly avoid it, whenever possible.

Creating Processes

Fork System Call

A process may be create several new processes, via a create-process system call, during the
course of execution. The creating process is called a Parent process, and new processes are called
the Children of that process. Each of these new processes may in turn create other processes
forming a tree of processes. In general, a process will need certain resources (CPU time, memory,
files, I/O devices) to accomplish its task. When a process creates a subprocess, that subprocess
may be able to obtain its resources directly from the operating system, or it may be constrained
to a subset of resources of the parent process.
When a process creates a new process, two possibilities exist in terms of execution.

• A new process can be created by fork() system call and identified by its process identifier.
Every created process has a unique identifier. The created process (Child Process)
consists of a copy of the address space of the original process. - The returned code for the
fork() is zero for the Child process, whereas the nonzero process identifier of the child is
returned to the parent. Both the parent and the child will continue their execution at the
same instruction pointer.

• Bootstrapping Process by exec() System call: This system call is used after fork() system
call by one of the two processes to replace the processes memory space with a new
program. The exec() system call loads a binary file into memory (destroying the memory
image of the program containing the exec () system call) and starts its execution. In this
manner, the two processes are able to communicate and then go their separate ways

How To Use Fork?

pid_t p = fork();
if (p < 0)
 printf("Error\n");
else if (p == 0)
 printf("Child\n");
else /* p > 0 */
 printf("Parent of %d\n", p);

One interesting way to think about fork and exec is to think about how a process can find a
consistent state to start running. The operating system can't just randomly copy a process, then
jump wildly into its program code, and expect everything to work!! The fork() system call
shows one way to start the new process from a consistent state: namely, start it from the copy of
an existing consistent state. The exec() call shows the other: namely, start it from the single
entry point defined by the compiler.

Wait System Call

A parent process can waits for a its child process to finish or exit.
System Call is:

 waitpid (pid_t pid,int *status,..........);
pid =>the process id of the child that the parent is waiting for.
status => variable that will notify the parent whether the child exited successfully of not.

If the parent terminates, however, all its children have assigned a new parent, the init process.
Thus, the children still have a parent to collect their status and execution statistics.

Exit system call

Via the exit() system call, A process terminates its execution and asks the operating system to
delete all the resources that it was using. Such as: Virtual Memory, Open Files and Input Output
Buffers. However, not all resources are released. In particular, the Process Control Block hangs
around to store the process's exit status, until the parent calls waitpid appropriately. (This is

what a "zombie" process is: a process that has died, but whose parent hasn't waited for it yet.)
Processes can also cause each other to exit with signals (see the next lecture). Usually such
system calls have special access checks -- for example, a process owned by user U can only kill
other processes owned by user U. Otherwise, users could arbitrarily kill each other's jobs.

Note that a parent needs to know the identities of its children in order to terminate their processes.
In addition to above, some older systems do not allow a child to exist if its parent has terminated.
In such systems, if a process terminates (either successful or unsuccessful), then all its children
must also be terminated. This phenomenon is called Cascading termination, which is initiated by
the operating system.

	CS 111
	Scribe Notes for 4/11/05

	Processes
	What is a process?
	Memory Layout of the Process in x86
	Registers
	Stack (LastInFirstOut)
	Heap (Dynamic Memory Allocation)

	Scheduling and Processes
	Blocking vs. Non-Blocking (System Calls)
	Input Devices
	Timer Wait Queue

	Context Switch
	Creating Processes
	Fork System Call
	Wait System Call
	Exit system call

