
Scheduling

The OS’s scheduler decides when to run which process.

Performance metrics include:

• CPU Utilization - Percentage of time that the CPU is doing useful work

 (i.e. not idling). 100% is perfect.

• Wait time - Average time a process spends in the run queue.
• Throughput - Number of processes completed / time unit.
• Response Time - Average time elapsed from when process is submitted

 until useful output is obtained.

• Turnaround Time - Average time elapsed from when process is submitted to

when it has completed.

Typically, Utilization and Throughput are traded off for better Response Time. Response time is important for
OS’s that aim to be user-friendly. In general, we would like to optimize the average measure. In some cases,
minimum and maximum values are optimized, e.g. it might be a good idea to minimize the maximum response
time.

Types of Schedulers include:

1. First-Come, First-Served (FCFS)
2. Round-Robin (RR)
3. Shortest-Job-First (SJF)
4. Priority Scheduling (PS)

First-Come, First-Served (FCFS)

The FCFS scheduler simply executes processes to completion in the order they are submitted. We will
implement FCFS using a queue data structure. Given a group of processes to run, insert them all into the queue
and execute them in that order. Thus, our API will need the following methods and data structures and methods:

fifo_queue Q; // the queue containing the processes

add_task(proc) { // method to add a process to the queue

 Q.add_tail(proc); // by inserting it at the tail end

 Q.size++; // Accounting

}

reschedule() { // remove process from queue

 p = Q.remove_head();

 Accounting;

 return p;

}

Performance Evaluation

When evaluating a scheduler’s performance, we use a Gantt Chart, which is a horizontal timeline
indicating which processes are run and at what times they run starting from when all tasks are submitted
and ending when all tasks have been completed.

To illustrate it, suppose the scheduler is given 4 tasks, A, B, C and D. Each task requires a certain number of
time units to complete.

Task Time units
A 8
B 4
C 9
D 5

The FCFS scheduler’s Gantt chart for these tasks would be:

The tasks are inserted into the queue in order A, B, C and D. as shown above. Task A takes 8 time units to
complete, B takes 4 units to complete (therefore, B completes at time 12), etc. Task D ends at time 26, which is
the time it took to run and complete all processes.

Now we will measure the FCFS scheduler’s performance using the metrics mentioned earlier. The OS
incurs some overhead each time it switches between processes due to context switching. We will call
this overhead “cs”.

Metric FCFS
CPU Utilization 26/(26+3cs)
Turn around time (8+12+21+25+6cs)/4 = 16.5 ignoring cs
Waiting (0+8+12+21+6cs)/4 = 10.25 ignoring cs
Throughput 4/(26 + 3cs)
Response (0+8+cs+12+2cs+21+3cs)/4 = 10.25 ignoring cs

The average waiting time for FCFS is usually quite long and there is a possible convoy effect in which all
processes wait for one big process to get off the CPU.

Shortest-Job-First (SJF)

The SJF scheduler is exactly like FCFS except that instead of choosing the job at the front of the queue, it will
always choose the shortest job (i.e. the job that takes the least time) available. We will use a sorted list to order
the processes from longest to shortest. When adding a new process/task, we need to figure out the where in the
list to insert it. Our API will need:

sorted_list sl // sorted list data structure
add_task(proc, expected_runtime) { // method to add a process to the list.
 sl.insert(proc, proc.runtime); // we input the process’s expected runtime
} // to indicate where it should be inserted.

reschedule() { // method to remove the shortest job from
 return sl.remove_head(); // the list and run it.
}

For the jobs A, B, C and D used in the previous example, The SJF Gantt Chart would be:

Metric SJF
Utilization 26/(26+3CS)
Turn around time (4+9+CS+17+2CS+26+3CS)/4 = 14 ignoring CS
Waiting (0+4+CS+9+2CS+17+3CS)/4 = 7.5 ignoring CS
Throughput 4/(26 + 3CS)
Response (0+4+CS+9+2CS+17+3CS)/4 = 7.5 ignoring CS

From the metrics, we see that SJF achieves better performance than FCFS. However, unlike FCFS, there is
the potential for starvation in SJF. Starvation occurs when a large process never gets run to run
because shorter jobs keep entering the queue.

In addition, SJF needs to know how long a process is going to run (i.e. it needs to predict the future). This
runtime estimation feature may be hard to implement, and thus SJF is not a widely used scheduling
scheme.

Round-Robin (RR)

RR is a preemptive scheduler, which is designed especially for time-sharing systems. In other words, it
does not wait for a process to finish or give up control. In RR, each process is given a time slot to run. If
the process does not finish, it will “get back in line” and receive another time slot until it has completed.
We will implement RR using a FIFO queue where new jobs are inserted at the tail end.

fifo_queue fQ // FIFO queue

add_task (proc) { // method to add a task
 fQ.add_tail(proc)
}

reschedule(why) { // method to remove the next process and run it
 if (why == timer)

 add_task(current);
 set_timer(time quanta);
 return fQ.remove_head;
}

RR assigns a time quanta (i.e. time slot) to each process waiting to be run. For the jobs A, B, C and D in
the previous example, RR’s Gantt chart would be:

If time quanta = 3

If time quanta = 6

 RR
Utilization 26/(26+9CS)
Turn around time (23+16+26+21)/4 = 21.5 ignoring CS
Waiting (15+12+17+16)/4 = 15 ignoring CS
Throughput 4/(26 + 9CS)
Response (0+3+6+9)/4 = 4.5 ignoring CS

The performance of RR depends on the size of the time quantum, and if the time quantum is large, RR will
behave jus like the FCFS policy. In general, we want the time quantum to be large with respect to the
context-switch time(cs should be around 10% of time quantum)

Priority (PRI)

A priority is associated with each process. We can think of the SJF algorithm as a special case of PRI. Processes
with equal priorities may be scheduled in accordance with FCFS.

PRI (L, M, H (RR)) // using Round-Robin

fifo_queue fQ[3] // data structure

add_task(proc, pri)
 fQ[pri].add_tail(proc)

reschedule(why)

 if (why == timer)
 add_task(current, current.pri);
 set_timer(TQ);
 for pri=H to L
 if(fQ[pri].empty())
 return fQ[pri].remove_head();

TQ=6

 PRI
Utilization 26/(26+4CS)
Response (0+8+14+21+4CS)/4 = 10.75 ignoring CS

PRI (L, M, H (RR) + aging):
fifo_queue fQ[3]

add_task(proc.pri)
 fQ[pri].add_task(proc)

reschedule(why)
 if (why=timer)
 add_task(current, current.pri);
 set_timer(TQ);
 for pri=M to L
 for p in fQ[pri]
 if now-p.list> limit
 remove(p)
 add_task(p, pri+1)
 for pri=H to L
 if(fQ[pri].empty())
 return fQ[pri].remove_head();

Limit=12

Note: in this case, it’s the same as the regular pri, but that’s not always the case. For this specific case,
it’s the same because C goes before D in M pri when D gets aged to M. There is a problem with PRI,
which is indefinite blocking (or starvation). The technique of aging, which gradually increase the priorities
of the waiting processes, is used to solve the problem.

