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CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: 
System Programming Guide, Part 1 (order number 253668) and the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B: System Programming 
Guide, Part 2 (order number 253669) are part of a set that describes the architecture 
and programming environment of Intel 64 and IA-32 Architecture processors. The 
other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic 

Architecture (order number 253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 

2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
describes the basic architecture and programming environment of Intel 64 and IA-32 
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who 
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support 
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3B, addresses the programming environment for 
classes of software that host operating systems. 

1.1 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel® 
64 and IA-32 processors, which include: 
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
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• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor 
• Intel® CoreTM i5 processor 
• Intel® Xeon® processor E7-8800/4800/2800 product families 

P6 family processors are IA-32 processors based on the P6 family microarchitecture. 
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon® 
processors. 

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based 
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are 
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100 
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV 
are based on an improved Pentium® M processor microarchitecture. 

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® 
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2 
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor 
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel® 
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture 
and supports Intel 64 architecture.
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The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the 
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64 
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core 
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon 
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series 
support IA-32 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 product families, Intel® Xeon® 
processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 
series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad 
processors, Pentium® D processors, Pentium® Dual-Core processor, newer genera-
tions of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment 
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with 
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes 
the notational conventions in these manuals and lists related Intel manuals and 
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation 
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented 
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter 
explains how they can be used to implement a “flat” (unsegmented) memory model 
or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32 
processors.

Chapter 5 — Protection. Describes the support for page and segment protection 
provided in the Intel 64 and IA-32 architectures. This chapter also explains the 
implementation of privilege rules, stack switching, pointer validation, user and 
supervisor modes.
Vol. 3A 1-3



ABOUT THIS MANUAL
Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt 
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts 
and exceptions relate to protection, and describes how the architecture handles each 
exception type. Reference information for each exception is given at the end of this 
chapter.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32 
architectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and 
flags that support multiple processors with shared memory, memory ordering, and 
Intel® Hyper-Threading Technology.

Chapter 9 — Processor Management and Initialization. Defines the state of an 
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to 
set up an Intel 64 or IA-32 processor for real-address mode operation and protected- 
mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC). 
Describes the programming interface to the local APIC and gives an overview of the 
interface between the local APIC and the I/O APIC.

Chapter 11 — Memory Cache Control. Describes the general concept of caching 
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This 
chapter also describes the memory type range registers (MTRRs) and how they can 
be used to map memory types of physical memory. Information on using the new 
cache control and memory streaming instructions introduced with the Pentium III, 
Pentium 4, and Intel Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes 
those aspects of the Intel® MMX™ technology that must be handled and considered 
at the system programming level, including: task switching, exception handling, and 
compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And 
Processor Extended States. Describes the operating system requirements to 
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of 
this chapter describes the extensible framework of operating system requirements to 
support processor extended states. Processor extended state may be required by 
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64 
and IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check 
architecture and machine-check exception mechanism found in the Pentium 
4, Intel Xeon, and P6 family processors. Additionally, a signaling mechanism 
for software to respond to hardware corrected machine check error is 
covered.
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Chapter 16 — Debugging, Branch Profiles and Time-Stamp Counter. 
Describes the debugging registers and other debug mechanism provided in Intel 64 
or IA-32 processors. This chapter also describes the time-stamp counter. 

Chapter 17 — 8086 Emulation. Describes the real-address and virtual-8086 
modes of the IA-32 architecture. 

Chapter 18 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and 
32-bit code modules within the same program or task.

Chapter 19 — IA-32 Architecture Compatibility. Describes architectural 
compatibility among IA-32 processors.

Chapter 20 — Introduction to Virtual-Machine Extensions. Describes the basic 
elements of virtual machine architecture and the virtual-machine extensions for 
Intel 64 and IA-32 Architectures.

Chapter 21 — Virtual-Machine Control Structures. Describes components that 
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 22— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted 
programmatically such that certain operations, events or conditions can cause the 
processor to transfer control from the guest (running in VMX non-root mode) to the 
monitor software (running in VMX root mode).

Chapter 23 — VM Entries. Describes VM entries. VM entry transitions the processor 
from the VMM running in VMX root-mode to a VM running in VMX non-root mode. 
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 24 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions. 
In addition, VM exits can also occur on failed VM entries.

Chapter 25 — VMX Support for Address Translation. Describes virtual-machine 
extensions that support address translation and the virtualization of physical 
memory.

Chapter 26 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 27 — Virtual-Machine Monitoring Programming Considerations. 
Describes programming considerations for VMMs. VMMs manage virtual machines 
(VMs).

Chapter 28 — Virtualization of System Resources. Describes the virtualization 
of the system resources. These include: debugging facilities, address translation, 
physical memory, and microcode update facilities.

Chapter 29 — Handling Boundary Conditions in a Virtual Machine Monitor. 
Describes what a VMM must consider when handling exceptions, interrupts, error 
conditions, and transitions between activity states.
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Chapter 30 — Performance Monitoring. Describes the Intel 64 and IA-32 archi-
tectures’ facilities for monitoring performance.

Appendix A — Performance-Monitoring Events. Lists architectural performance 
events. Non-architectural performance events (i.e. model-specific events) are listed 
for each generation of microarchitecture. 

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the 
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core 
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes 
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of 
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of 
how to program the LINT0 and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of 
how to interpret the error codes for a machine-check error that occurred on a P6 
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for 
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability 
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and 
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode 
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and 
triple faults.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this 
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the 
bottom of the figure; addresses increase toward the top. Bit positions are numbered 
from right to left. The numerical value of a set bit is equal to two raised to the power 
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this 
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means the bytes of a word are numbered starting from the least significant byte. 
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as 
reserved. When bits are marked as reserved, it is essential for compatibility with 
future processors that software treat these bits as having a future, though unknown, 
effect. The behavior of reserved bits should be regarded as not only undefined, but 
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a 

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in 
Intel 64 and IA-32 registers. Depending upon the values of reserved 
register bits will make software dependent upon the unspecified 
manner in which the processor handles these bits. Programs that 
depend upon reserved values risk incompatibility with future 
processors.

Figure 1-1.  Bit and Byte Order

Byte 3

Highest
Data Structure 

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0
Address

Lowest

Bit offset

28

24
20
16
12
8

4

0 Address

Byte Offset
Vol. 3A 1-7



ABOUT THIS MANUAL
1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is 
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have 

the same function.
• The operands argument1, argument2, and argument3 are optional. There 

may be from zero to three operands, depending on the opcode. When present, 
they take the form of either literals or identifiers for data items. Operand 
identifiers are either reserved names of registers or are assumed to be assigned 
to data items declared in another part of the program (which may not be shown 
in the example).

When two operands are present in an arithmetic or logical instruction, the right 
operand is the source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, 
EAX is the destination operand, and SUBTOTAL is the source operand. Some 
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits 
followed by the character H (for example, F82EH). A hexadecimal digit is a character 
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes 
followed by the character B (for example, 1010B). The “B” designation is only used in 
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed 
as a sequence of bytes. Whether one or more bytes are being accessed, a byte 
address is used to locate the byte or bytes memory. The range of memory that can 
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing 
where a program may have many independent address spaces, called segments. 
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For example, a program can keep its code (instructions) and stack in separate 
segments. Code addresses would always refer to the code space, and stack 
addresses would always refer to the stack space. The following notation is used to 
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in 
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. 
The CS register points to the code segment and the EIP register contains the address 
of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction, 
by checking control register bits, and by reading model-specific registers. We are 
moving toward a single syntax to represent this type of information. See Figure 1-2.
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1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error. 
For example, an attempt to divide by zero generates an exception. However, some 
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the 
error. An example of the notation used to show an exception and error code is shown 
below:

#PF(fault code)

Figure 1-2.  Syntax for CPUID, CR, and MSR Data Presentation
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This example refers to a page-fault exception under conditions where an error code 
naming a type of fault is reported. Under some conditions, exceptions which produce 
error codes may not be able to report an accurate code. In this case, the error code 
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at: 

http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be 
ordered. The literature available is listed by Intel processor and then by the following 
literature types: applications notes, data sheets, manuals, papers, and specification 
updates. 

See also: 
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® Fortran Compiler documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® VTune™ Performance Analyzer documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm 
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual 

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® Processor Identification with the CPUID Instruction, AP-485

http://www.intel.com/design/processor/applnots/241618.htm
• Intel® 64 Architecture Memory Ordering White Paper, 

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® 64 Architecture x2APIC Specification:

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® Virtualization Technology for Directed I/O, Rev 1.2 specification

http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_I
O.pdf
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• Intel® 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment 
Programming Guide, http://www.intel.com/technology/security/index.htm

• Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® multi-core technology:

http://developer.intel.com/multi-core/index.htm
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://developer.intel.com/technology/hyperthread/
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive 
support for operating-system and system-development software. This support offers 
multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode. 

These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available 
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that 
supports a 64-bit programming environment. IA-32e mode allows software to 
operate in one of two sub-modes: 
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit 

applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following 
operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes 
the system registers that are used to set up and control the processor at the system 
level and gives a brief overview of the processor’s system-level (operating system) 
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the 
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode 
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described. 

All Intel 64 and IA-32 processors enter real-address mode following a power-up or 
reset (see Chapter 9, “Processor Management and Initialization”). Software then 
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initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e 
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple 
processors.

Figure 2-1 provides a summary of system registers and data structures that applies 
to 32-bit modes. System registers and data structures that apply to IA-32e mode are 
shown in Figure 2-2.
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Figure 2-1.  IA-32 System-Level Registers and Data Structures
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Figure 2-2.  System-Level Registers and Data Structures in IA-32e Mode
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2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the 
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in 
Figure 2-1. These tables contain entries called segment descriptors. Segment 
descriptors provide the base address of segments well as access rights, type, and 
usage information.

Each segment descriptor has an associated segment selector. A segment selector 
provides the software that uses it with an index into the GDT or LDT (the offset of its 
associated segment descriptor), a global/local flag (determines whether the selector 
points to the GDT or the LDT), and access rights information. 

To access a byte in a segment, a segment selector and an offset must be supplied. 
The segment selector provides access to the segment descriptor for the segment (in 
the GDT or LDT). From the segment descriptor, the processor obtains the base 
address of the segment in the linear address space. The offset then provides the 
location of the byte relative to the base address. This mechanism can be used to 
access any valid code, data, or stack segment, provided the segment is accessible 
from the current privilege level (CPL) at which the processor is operating. The CPL is 
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines 
indicate a segment selector, and the dotted arrows indicate a physical address. For 
simplicity, many of the segment selectors are shown as direct pointers to a segment. 
However, the actual path from a segment selector to its associated segment is always 
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); 
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1  Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes 
(64-bit mode and compatibility mode). For more information: see Section 3.5.2, 
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base 
addresses, (16-byte LDT descriptors hold a 64-bit base address and various 
attributes). In compatibility mode, descriptors are not expanded. 

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of 
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is 
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs 
have segment descriptors defined for them.
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The architecture also defines a set of special descriptors called gates (call gates, 
interrupt gates, trap gates, and task gates). These provide protected gateways to 
system procedures and handlers that may operate at a different privilege level than 
application programs and most procedures. For example, a CALL to a call gate can 
provide access to a procedure in a code segment that is at the same or a numerically 
lower privilege level (more privileged) than the current code segment. To access a 
procedure through a call gate, the calling procedure1 supplies the selector for the call 
gate. The processor then performs an access rights check on the call gate, comparing 
the CPL with the privilege level of the call gate and the destination code segment 
pointed to by the call gate. 

If access to the destination code segment is allowed, the processor gets the segment 
selector for the destination code segment and an offset into that code segment from 
the call gate. If the call requires a change in privilege level, the processor also 
switches to the stack for the targeted privilege level. The segment selector for the 
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa. 

2.1.2.1  Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow 
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap 
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task 
gates are not supported in IA-32e mode. On privilege level changes, stack segment 
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task. 
It includes the state of general-purpose registers, segment registers, the EFLAGS 
register, the EIP register, and segment selectors with stack pointers for three stack 
segments (one stack for each privilege level). The TSS also includes the segment 
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy. 

All program execution in protected mode happens within the context of a task (called 
the current task). The segment selector for the TSS for the current task is stored in 
the task register. The simplest method for switching to a task is to make a call or 
jump to the new task. Here, the segment selector for the TSS of the new task is given 
in the CALL or JMP instruction. In switching tasks, the processor performs the 
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or 
block of code (such as a program, procedure, function, or routine). 
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2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose 
registers, the segment registers, the LDTR, control register CR3 (base address of 
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, 
except that it provides access (through a segment selector) to a TSS rather than a 
code segment. 

2.1.3.1  Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue 
to exist. The base address of a TSS is specified by its descriptor. 

A 64-bit TSS holds the following information that is important to 64-bit operation: 
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See 
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the 
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that 
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a 
segment. The linear address for the base of the IDT is contained in the IDT register 
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access 
an interrupt or exception handler, the processor first receives an interrupt vector 
(interrupt number) from internal hardware, an external interrupt controller, or from 
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt 
vector provides an index into the IDT. If the selected gate descriptor is an interrupt 
gate or a trap gate, the associated handler procedure is accessed in a manner similar 
to calling a procedure through a call gate. If the descriptor is a task gate, the handler 
is accessed through a task switch.

2.1.4.1  Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit 
base addresses. This is true for 64-bit mode and compatibility mode. 
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The IDTR register is expanded to hold a 64-bit base address. Task gates are not 
supported.

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual 
memory (through paging). When physical addressing is used, a linear address is 
treated as a physical address. When paging is used: all code, data, stack, and system 
segments (including the GDT and IDT) can be paged with only the most recently 
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is 
contained in the paging structures. These structures reside in physical memory (see 
Figure 2-1 for the case of 32-bit paging). 

The base physical address of the paging-structure hierarchy is contained in control 
register CR3. The entries in the paging structures determine the physical address of 
the base of a page frame, access rights and memory management information. 

To use this paging mechanism, a linear address is broken into parts. The parts 
provide separate offsets into the paging structures and the page frame. A system can 
have a single hierarchy of paging structures or several. For example, each task can 
have its own hierarchy.

2.1.5.1  Memory Management in IA-32e Mode 
In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures 
are used. These include: 
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical 

address of the base of a page directory pointer table, access rights, and memory 
management information. The base physical address of the PML4 is stored in 
CR3.

• A set of page directory pointer tables — An entry in a page directory pointer 
table contains the physical address of the base of a page directory table, access 
rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the 
physical address of the base of a page table, access rights, and memory 
management information.

• Sets of page tables — An entry in a page table contains the physical address of 
a page frame, access rights, and memory management information.
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2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system 
architecture provides system flags in the EFLAGS register and several system 
registers:
• The system flags and IOPL field in the EFLAGS register control task and mode 

switching, interrupt handling, instruction tracing, and access rights. See also: 
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and 
data fields for controlling system-level operations. Other flags in these registers 
are used to indicate support for specific processor capabilities within the 
operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for 
use in debugging programs and systems software. See also: Chapter 16, 
“Debugging, Profiling Branches and Time-Stamp Counter.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes 
(limits) of their respective tables. See also: Section 2.4, “Memory-Management 
Registers.”

• The task register contains the linear address and size of the TSS for the current 
task. See also: Section 2.4, “Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to 
operating-system or executive procedures (that is, code running at privilege level 0). 
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges 
(MTRRs). 

The number and function of these registers varies among different members of the 
Intel 64 and IA-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by 
application programs. Systems can be designed, however, where all programs and 
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1  System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and 
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the 
64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. CR8 becomes available. 
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts. 

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode, 
address-matching in DR0–DR3 is also done at 64-bit granularity.
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On systems that support IA-32e mode, the extended feature enable register 
(IA32_EFER) is available. This model-specific register controls activation of IA-32e 
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:
• IA32_KernelGSbase — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections, 
system architecture provides the following additional resources:
• Operating system instructions (see also: Section 2.7, “System Instruction 

Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to 
count processor events such as the number of instructions decoded, the number of 
interrupts received, or the number of cache loads. See also: Section 20, “Introduc-
tion to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to 
store both data and instructions. The buffers are used to store things like decoded 
addresses to system and application segments and write operations waiting to be 
performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 supports three operating modes and one quasi-operating mode: 
• Protected mode — This is the native operating mode of the processor. It 

provides a rich set of architectural features, flexibility, high performance and 
backward compatibility to existing software base.

• Real-address mode — This operating mode provides the programming 
environment of the Intel 8086 processor, with a few extensions (such as the 
ability to switch to protected or system management mode).

• System management mode (SMM) — SMM is a standard architectural feature 
in all IA-32 processors, beginning with the Intel386 SL processor. This mode 
provides an operating system or executive with a transparent mechanism for 
implementing power management and OEM differentiation features. SMM is 
entered through activation of an external system interrupt pin (SMI#), which 
generates a system management interrupt (SMI). In SMM, the processor 
switches to a separate address space while saving the context of the currently 
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running program or task. SMM-specific code may then be executed transparently. 
Upon returning from SMM, the processor is placed back into its state prior to the 
SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor 
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e 
modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes: 

compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear 
addressing and support for physical address space larger than 64 GBytes. 
Compatibility mode allows most legacy protected-mode applications to run 
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE 
flag in control register CR0 then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.” and Section 
4.1.2, “Paging-Mode Enabling.”

Figure 2-3.  Transitions Among the Processor’s Operating Modes
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The VM flag in the EFLAGS register determines whether the processor is operating in 
protected mode or virtual-8086 mode. Transitions between protected mode and 
virtual-8086 mode are generally carried out as part of a task switch or a return from 
an interrupt or exception handler. See also: Section 17.2.5, “Entering Virtual-8086 
Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating 
in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode 
operation is determined by CS.L bit of the code segment. The processor enters into 
IA-32e mode from protected mode by enabling paging and setting the LME bit 
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initializa-
tion.”

The processor switches to SMM whenever it receives an SMI while the processor is in 
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM 
instruction, the processor always returns to the mode it was in when the SMI 
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS 
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see 
Figure 2-4). Only privileged code (typically operating system or executive code) 
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to 
disable single-step mode. In single-step mode, the processor generates a 
debug exception after each instruction. This allows the execution state of a 
program to be inspected after each instruction. If an application program 
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception 
is generated after the instruction that follows the POPF, POPFD, or IRET.
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IF Interrupt enable (bit 9) — Controls the response of the processor to 
maskable hardware interrupt requests (see also: Section 6.3.2, “Maskable 
Hardware Interrupts”). The flag is set to respond to maskable hardware 
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does 
not affect the generation of exceptions or nonmaskable interrupts (NMI 
interrupts). The CPL, IOPL, and the state of the VME flag in control register 
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, 
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege 
level (IOPL) of the currently running program or task. The CPL of the 
currently running program or task must be less than or equal to the IOPL to 
access the I/O address space. This field can only be modified by the POPF 
and IRET instructions when operating at a CPL of 0. 

The IOPL is also one of the mechanisms that controls the modification of the 
IF flag and the handling of interrupts in virtual-8086 mode when virtual 
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13, 
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called 
tasks. The processor sets this flag on calls to a task initiated with a CALL 
instruction, an interrupt, or an exception. It examines and modifies this flag 
on returns from a task initiated with the IRET instruction. The flag can be 
explicitly set or cleared with the POPF/POPFD instructions; however, 

Figure 2-4.  System Flags in the EFLAGS Register
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changing to the state of this flag can generate unexpected exceptions in 
application programs. 

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions 
(#DB) from being generated for instruction breakpoints (although other 
exception conditions can cause an exception to be generated). When clear, 
instruction breakpoints will generate debug exceptions. 

The primary function of the RF flag is to allow the restarting of an instruction 
following a debug exception that was caused by an instruction breakpoint 
condition. Here, debug software must set this flag in the EFLAGS image on 
the stack just prior to returning to the interrupted program with IRETD (to 
prevent the instruction breakpoint from causing another debug exception). 
The processor then automatically clears this flag after the instruction 
returned to has been successfully executed, enabling instruction breakpoint 
faults again.

See also: Section 16.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to 
return to protected mode. 

See also: Section 17.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register 
CR0 to enable alignment checking of memory references; clear the AC flag 
and/or the AM flag to disable alignment checking. An alignment-check 
exception is generated when reference is made to an unaligned operand, 
such as a word at an odd byte address or a doubleword at an address which 
is not an integral multiple of four. Alignment-check exceptions are generated 
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This 
is useful when exchanging data with processors which require all data to be 
aligned. The alignment-check exception can also be used by interpreters to 
flag some pointers as special by misaligning the pointer. This eliminates 
overhead of checking each pointer and only handles the special pointer when 
used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This 
flag is used in conjunction with the VIP flag. The processor only recognizes 
the VIF flag when either the VME flag or the PVI flag in control register CR4 is 
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode 
extensions; the PVI flag enables the protected-mode virtual interrupts.) 

See also: Section 17.3.3.5, “Method 6: Software Interrupt Handling,” and 
Section 17.4, “Protected-Mode Virtual Interrupts.”
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VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an 
interrupt is pending; cleared to indicate that no interrupt is pending. This flag 
is used in conjunction with the VIF flag. The processor reads this flag but 
never modifies it. The processor only recognizes the VIP flag when either the 
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than 
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag 
enables the protected-mode virtual interrupts. 

See Section 17.3.3.5, “Method 6: Software Interrupt Handling,” and Section 
17.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or 
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits 
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode) 
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor 
will not set the NT bit. The processor does, however, allow software to set the NT bit 
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is 
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of 
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore 
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR, 
and TR) that specify the locations of the data structures which control segmented 
memory management (see Figure 2-5). Special instructions are provided for loading 
and storing these registers.
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2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the 
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in 
the table. 

The LGDT and SGDT instructions load and store the GDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. A new base address must be loaded into the GDTR as 
part of the processor initialization process for protected-mode operation. 

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the LDT. The base address specifies the linear address of byte 0 of the LDT 
segment; the segment limit specifies the number of bytes in the segment. See also: 
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR 
register, respectively. The segment that contains the LDT must have a segment 
descriptor in the GDT. When the LLDT instruction loads a segment selector in the 
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are 
automatically loaded in the LDTR. 

When a task switch occurs, the LDTR is automatically loaded with the segment 
selector and descriptor for the LDT for the new task. The contents of the LDTR are not 
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set 
to the default value of 0 and the limit is set to 0FFFFH.

Figure 2-5.  Memory Management Registers
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2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in 
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear 
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table. 
The LIDT and SIDT instructions load and store the IDTR register, respectively. On 
power up or reset of the processor, the base address is set to the default value of 0 
and the limit is set to 0FFFFH. The base address and limit in the register can then be 
changed as part of the processor initialization process. 

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in 
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes 
for the TSS of the current task. The selector references the TSS descriptor in the GDT. 
The base address specifies the linear address of byte 0 of the TSS; the segment limit 
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task 
register, respectively. When the LTR instruction loads a segment selector in the task 
register, the base address, limit, and descriptor attributes from the TSS descriptor 
are automatically loaded into the task register. On power up or reset of the processor, 
the base address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the 
segment selector and descriptor for the TSS for the new task. The contents of the 
task register are not automatically saved prior to writing the new TSS information 
into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task. 
These registers are 32 bits in all 32-bit modes and compatibility mode. 

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions 
are used to manipulate the register bits. Operand-size prefixes for these instructions 
are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing 

a nonzero value to any of the upper 32 bits results in a general-protection 
exception, #GP(0). 

• All 64 bits of CR2 are writable by software. 
• Bits 51:40 of CR3 are reserved and must be 0. 
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• The MOV CRn instructions do not check that addresses written to CR2 and CR3 
are within the linear-address or physical-address limitations of the implemen-
tation. 

• Register CR8 is available in 64-bit mode only. 

The control registers are summarized below, and each architecturally defined control 
field in these control registers are described individually. In Figure 2-6, the width of 
the register in 64-bit mode is indicated in parenthesis (except for CR0).
• CR0 — Contains system control flags that control operating mode and states of 

the processor. 
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a 

page fault).
• CR3 — Contains the physical address of the base of the paging-structure 

hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the 
lower 12 bits) of the base address are specified; the lower 12 bits of the address 
are assumed to be 0. The first paging structure must thus be aligned to a page 
(4-KByte) boundary. The PCD and PWT flags control caching of that paging 
structure in the processor’s internal data caches (they do not control TLB caching 
of page-directory information).

When using the physical address extension, the CR3 register contains the base 
address of the page-directory-pointer table In IA-32e mode, the CR3 register 
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions, 

and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode, 
the MOV instructions allow the control registers to be read or loaded (at privilege 
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from 
reading or loading the control registers. 

• CR8 — Provides read and write access to the Task Priority Register (TPR). It 
specifies the priority threshold value that operating systems use to control the 
priority class of external interrupts allowed to interrupt the processor. This 
register is available only in 64-bit mode. However, interrupt filtering continues to 
apply in compatibility mode.
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When loading a control register, reserved bits should always be set to the values 
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when 
clear. When paging is disabled, all linear addresses are treated as physical 
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is 
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also 
requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, 
caching of memory locations for the whole of physical memory in the 
processor’s internal (and external) caches is enabled. When the CD flag is 
set, caching is restricted as described in Table 11-5. To prevent the processor 
from accessing and updating its caches, the CD flag must be set and the 
caches must be invalidated so that no cache hits can occur.

Figure 2-6.  Control Registers
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See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache 
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are 
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit 
the cache and invalidation cycles are enabled. See Table 11-5 for detailed 
information about the affect of the NW flag on caching for other settings of 
the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking 
when set; disables alignment checking when clear. Alignment checking is 
performed only when the AM flag is set, the AC flag in the EFLAGS register is 
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level 
procedures to write into read-only pages (regardless of the U/S bit setting; 
see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the 
copy-on-write method of creating a new process (forking) used by operating 
systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism 
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error 
reporting mechanism when clear. When the NE flag is clear and the IGNNE# 
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and 
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the 
processor to assert the FERR# pin to generate an external interrupt and to 
stop instruction execution immediately before executing the next waiting 
floating-point instruction or WAIT/FWAIT instruction. 

The FERR# pin is intended to drive an input to an external interrupt 
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and 
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin 
are used with external logic to implement PC-style error reporting. Using 
FERR# and IGNNE# to handle floating-point exceptions is deprecated by 
modern operating systems; this non-native approach also limits newer 
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with 
the x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6 
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family 
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be 
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delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is 
actually executed by the new task. The processor sets this flag on every task 
switch and tests it when executing x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87 
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception 
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT. See the paragraph below for the special case of the 
WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an 
#NM exception is not raised prior to the execution of an x87 FPU 
WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the 
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87 
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1 
and 13-1 show the actions taken when the processor encounters an 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, 
and MXCSR registers on a task switch. Instead, it sets the TS flag, which 
causes the processor to raise an #NM exception whenever it encounters an 
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction 
stream for the new task (with the exception of the instructions listed above). 

The fault handler for the #NM exception can then be used to clear the TS flag (with 
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4 
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1.  Action Taken By x87 FPU Instructions for Different 
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.
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EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an 
internal or external x87 FPU when set; indicates an x87 FPU is present when 
clear. This flag also affects the execution of 
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a 
device-not-available exception (#NM). This flag must be set when the 
processor does not have an internal x87 FPU or is not connected to an 
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU 
or math coprocessor present in the system. Table 2-1 shows the interaction 
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an 
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an 
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must 
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is 
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an 
invalid opcode exception (#UD) to be generated (see Table 13-1). If an IA-32 
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions. 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag 
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, 
CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the 
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is 
set, a WAIT instruction generates a device-not-available exception (#NM) if 
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the 
setting of the TS flag. Table 9-2 shows the recommended setting of this flag, 
depending on the IA-32 processor and x87 FPU or math coprocessor present 
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set; 
enables real-address mode when clear. This flag does not enable paging 
directly. It only enables segment-level protection. To enable paging, both the 
PE and PG flags must be set. 

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type 
used to access the first paging structure of the current paging-structure hier-

1 1 1 #NM Exception #NM exception.

Table 2-1.  Action Taken By x87 FPU Instructions for Different 
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type
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archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if 
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type 
used to access the first paging structure of the current paging-structure hier-
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if 
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and 
exception-handling extensions in virtual-8086 mode when set; disables the 
extensions when clear. Use of the virtual mode extensions can improve the 
performance of virtual-8086 applications by eliminating the overhead of 
calling the virtual-8086 monitor to handle interrupts and exceptions that 
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides 
hardware support for a virtual interrupt flag (VIF) to improve reliability of 
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 17.3, “Interrupt and Exception Handling in Virtual-8086 
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware 
support for a virtual interrupt flag (VIF) in protected mode when set; disables 
the VIF flag in protected mode when clear. 

See also: Section 17.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the 
RDTSC instruction (including RDTSCP instruction if 
CPUID.80000001H:EDX[27] = 1) to procedures running at privilege level 0 
when set; allows RDTSC instruction (including RDTSCP instruction if 
CPUID.80000001H:EDX[27] = 1) to be executed at any privilege level when 
clear.

DE Debugging Extensions (bit 3 of CR4) — References to debug registers 
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated 
when set; when clear, processor aliases references to registers DR4 and DR5 
for compatibility with software written to run on earlier IA-32 processors. 

See also: Section 16.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit 
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging 
to produce physical addresses with more than 32 bits. When clear, restricts 
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

See also: Chapter 4, “Paging.”
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MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check 
exception when set; disables the machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page 
feature when clear. The global page feature allows frequently used or shared 
pages to be marked as global to all users (done with the global flag, bit 8, in 
a page-directory or page-table entry). Global pages are not flushed from the 
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting 
the PG flag in control register CR0) before the PGE flag is set. Reversing this 
sequence may affect program correctness, and processor performance will 
be impacted. 

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables 
execution of the RDPMC instruction for programs or procedures running at 
any protection level when set; RDPMC instruction can be executed only at 
protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions 
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2) 
enables the FXSAVE and FXRSTOR instructions to save and restore the 
contents of the XMM and MXCSR registers along with the contents of the x87 
FPU and MMX registers, and (3) enables the processor to execute 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. 

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and 
restore the contents of the x87 FPU and MMX instructions, but they may not 
save and restore the contents of the XMM and MXCSR registers. Also, the 
processor will generate an invalid opcode exception (#UD) if it attempts to 
execute any SSE/SSE2/SSE3 instruction, with the exception of PAUSE, 
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and 
POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the 
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating 
system software with a means of enabling FXSAVE/FXRSTOR to 
save/restore the contents of the X87 FPU, XMM and MXCSR registers. 
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Consequently OSFXSR bit indicates that the operating system 
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system 
supports the handling of unmasked SIMD floating-point exceptions through 
an exception handler that is invoked when a SIMD floating-point exception 
(#XF) is generated. SIMD floating-point exceptions are only generated by 
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions. 

The operating system or executive must explicitly set this flag. If this flag is 
not set, the processor will generate an invalid opcode exception (#UD) 
whenever it detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See 
Chapter 20, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See 
Chapter 6, “Safer Mode Extensions Reference” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers 
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers 
(PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — 
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27]) 
that the operating system supports the use of the XGETBV, XSAVE and 
XRSTOR instructions by general software; (2) enables the XSAVE and 
XRSTOR instructions to save and restore the x87 FPU state (including MMX 
registers), the SSE state (XMM registers and MXCSR), along with other 
processor extended states enabled in XCR0; (3) enables the processor to 
execute XGETBV and XSETBV instructions in order to read and write XCR0. 
See Section 2.6 and Chapter 13, “System Programming for Instruction Set 
Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution 
prevention (SMEP) when set. See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means 
all interrupts are enabled. This field is available in 64-bit mode. A value of 15 
means all interrupts will be disabled.
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2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the 
exception of the PCE flag, they can be qualified with the CPUID instruction to deter-
mine if they are implemented on the processor before they are used. 

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more 
extended control registers (XCRs). Currently, the only such register defined is 
XCR0. This register specifies the set of processor states that the operating system 
enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other 
processor extended states that Intel 64 architecture may introduce in the future. The 
OS programs XCR0 to reflect the features it supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable 
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow 
software to use CPUID leaf function 0DH to enumerate the set of bits that the 
processor supports in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU 
state, SSE state, AVX state, or a future processor extended state) is represented by 
a bit in XCR0. The OS can enable future processor extended states in a forward 
manner by specifying the appropriate bit mask value using the XSETBV instruction 
according to the results of the CPUID leaf 0DH.
With the exception of bit 63, each bit in XCR0 corresponds to a subset of the 
processor states. XCR0 thus provides space for up to 63 sets of processor state 
extensions. Bit 63 of XCR0 is reserved for future expansion and will not represent a 
processor extended state.

Figure 2-7.  XCR0
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Currently, XCR0 has three processor states defined, with up to 61 bits reserved for 
future processor extended states:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a 

#GP exception.
• XCR0.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage 

MXCSR and XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMM0-
XMM7). 

• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT, 
and XRSTOR can be used to manage the upper halves of the YMM registers 
(YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX 
after executing CPUID with EAX=0DH, ECX= 0H) in XCR0 for a given processor will 
result in a #GP exception. An attempt to write 0 to XCR0.x87 (bit 0) will result in a 
#GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCR0.AVX (bit 2) 
also results in a #GP exception.

If a bit in XCR0 is 1, software can use the XSAVE instruction to save the corre-
sponding processor state to memory (see XSAVE instruction in Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers, 
managing the cache, managing interrupts, or setting up the debug registers. Many of 
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at 
any privilege level and are thus available to application programs. 

Table 2-2 lists the system instructions and indicates whether they are available and 
useful for application programs. These instructions are described in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

Table 2-2.  Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No
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LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management 
mode

No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring 
Counter

Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor 
extended states

No6 Yes

Table 2-2.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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2.7.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for 
loading data into and storing data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from 

memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from 

the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from 

memory into the IDTR register.
• SIDT (Load IDTR Register — Stores the IDT base address and limit from the 

IDTR register into memory.
• LLDT (Load LDT Register) — Loads the LDT segment selector and segment 

descriptor from memory into the LDTR. (The segment selector operand can also 
be located in a general-purpose register.)

• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR 
register into memory or a general-purpose register.

• LTR (Load Task Register) — Loads segment selector and segment descriptor 
for a TSS from memory into the task register. (The segment selector operand can 
also be located in a general-purpose register.)

• STR (Store Task Register) — Stores the segment selector for the current task 
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) 
instructions operate on bits 0 through 15 of control register CR0. These instructions 
are provided for compatibility with the 16-bit Intel 286 processor. Programs written 
to run on 32-bit IA-32 processors should not use these instructions. Instead, they 
should access the control register CR0 using the MOV instruction.

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application 

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and 

the Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-2.  Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
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The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-
not-available exception (#NM) that occurs when the processor attempts to execute a 
floating-point instruction when the TS flag is set. This instruction allows the TS flag to 
be cleared after the x87 FPU context has been saved, preventing further #NM excep-
tions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV 
instruction. The instruction loads a control register from a general-purpose register 
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and 
segment descriptors to determine if access to their associated segments is allowed. 
These instructions duplicate some of the automatic access rights and type checking 
done by the processor, thus allowing operating-system or executive software to 
prevent exceptions from being generated. 

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a 
segment selector to match that of the program or procedure that supplied the 
segment selector. See Section 5.10.4, “Checking Caller Access Privileges (ARPL 
Instruction),” for a detailed explanation of the function and use of this instruction. 
Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified 
segment and loads access rights information from the segment’s segment descriptor 
into a general-purpose register. Software can then examine the access rights to 
determine if the segment type is compatible with its intended use. See Section 
5.10.1, “Checking Access Rights (LAR Instruction),” for a detailed explanation of the 
function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified 
segment and loads the segment limit from the segment’s segment descriptor into a 
general-purpose register. Software can then compare the segment limit with an 
offset into the segment to determine whether the offset lies within the segment. See 
Section 5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),” 
for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a 
selected segment is readable or writable, respectively, at a given CPL. See Section 
5.10.2, “Checking Read/Write Rights (VERR and VERW Instructions),” for a detailed 
explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0-DR7). The MOV instruction allows setup data to be loaded to and stored 
from these registers.
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On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64 
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper 
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits 
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the 
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register 
(operand-size prefixes are ignored). All 64 bits of DR0-DR3 are writable by software. 
However, MOV DRn instructions do not check that addresses written to DR0-DR3 are 
in the limits of the implementation. Address matching is supported only on valid 
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches 
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the 
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal 
caches to memory before it invalidates the caches. After invalidating the internal 
caches, WBINVD signals external caches to write back modified data and invalidate 
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for 
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt 
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT# 
signal, the INIT# signal, or the RESET# signal is received. The processor generates a 
special bus cycle to indicate that the halt mode has been entered. 

Hardware may respond to this signal in a number of ways. An indicator light on the 
front panel may be turned on. An NMI interrupt for recording diagnostic information 
may be generated. Reset initialization may be invoked (note that the BINIT# pin was 
introduced with the Pentium Pro processor). If any non-wake events are pending 
during shutdown, they will be handled after the wake event from shutdown is 
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications 
between processors in multiprocessor systems, as described below:
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• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes 
the processor to assert the LOCK# signal during the instruction. This always 
causes an explicit bus lock to occur. 

• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is 
handled with either a cache lock or bus lock. If a memory access is cacheable and 
affects only a single cache line, a cache lock is invoked and the system bus and 
the actual memory location in system memory are not locked during the 
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus 
write-back any modified data and invalidate their caches as necessary to 
maintain system memory coherency. If the memory access is not cacheable 
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted 
and the processor does not respond to requests for bus control during the locked 
operation.

The RSM (return from SMM) instruction restores the processor (from a context 
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp 
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel 
NetBurst® microarchitecture have eighteen 40-bit performance-monitoring 
counters; P6 family processors have two 40-bit counters. Intel® Atom™ processors 
and most of the processors based on the Intel Core microarchitecture support two 
types of performance monitoring counters: two programmable performance 
counters similar to those available in the P6 family, and three fixed-function perfor-
mance monitoring counters.

The programmable performance counters can support counting either the occurrence 
or duration of events. Events that can be monitored on programmable counters 
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf 0AH); they may include the number of instructions decoded, 
interrupts received, or the number of cache loads. Individual counters can be set up 
to monitor different events. Use the system instruction WRMSR to set up values in 
IA32_PERFEVTSEL0/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel 
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for 
Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR 
(for the P6 family processors). The RDPMC instruction loads the current count from 
the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in 
Chapter 20, “Introduction to Virtual-Machine Extensions”, and the width/number of 
fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each 
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016 

times per year when the processor is operating at a clock rate of 3GHz. At this 
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clock frequency, it would take over 190 years for the counter to wrap around. The 
RDTSC instruction loads the current count of the time-stamp counter into the 
EDX:EAX registers.

See Section 30.1, “Performance Monitoring Overview,” and Section 16.12, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium 
processor. The RDPMC instruction was introduced into the IA-32 architecture with the 
Pentium Pro processor and the Pentium processor with MMX technology. Earlier 
Pentium processors have two performance-monitoring counters, but they can be 
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1  Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the 
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with 
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring 
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is 
specified in ECX[30:0]. The current count of the performance-monitoring counter is 
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] 
cleared).

2.7.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be 
read and written, respectively. The MSR to be read or written is specified by the value 
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR 
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR 
were introduced into the IA-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1  Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit 
mode, the index is 32 bits; it is specified using ECX.
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2.7.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor 
extended states in XCR0 (see Section 2.6).
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory 
management facilities, including the physical memory requirements, segmentation 
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection 
mechanism) and Chapter 17, “8086 Emulation” (for a description of memory 
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two 
parts: segmentation and paging. Segmentation provides a mechanism of isolating 
individual code, data, and stack modules so that multiple programs (or tasks) can 
run on the same processor without interfering with one another. Paging provides a 
mechanism for implementing a conventional demand-paged, virtual-memory system 
where sections of a program’s execution environment are mapped into physical 
memory as needed. Paging can also be used to provide isolation between multiple 
tasks. When operating in protected mode, some form of segmentation must be used. 
There is no mode bit to disable segmentation. The use of paging, however, is 
optional.

These two mechanisms (segmentation and paging) can be configured to support 
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the 
processor’s addressable memory space (called the linear address space) into 
smaller protected address spaces called segments. Segments can be used to hold 
the code, data, and stack for a program or to hold system data structures (such as a 
TSS or LDT). If more than one program (or task) is running on a processor, each 
program can be assigned its own set of segments. The processor then enforces the 
boundaries between these segments and insures that one program does not interfere 
with the execution of another program by writing into the other program’s segments. 
The segmentation mechanism also allows typing of segments so that the operations 
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. 
To locate a byte in a particular segment, a logical address (also called a far pointer) 
must be provided. A logical address consists of a segment selector and an offset. The 
segment selector is a unique identifier for a segment. Among other things it provides 
an offset into a descriptor table (such as the global descriptor table, GDT) to a data 
structure called a segment descriptor. Each segment has a segment descriptor, which 
specifies the size of the segment, the access rights and privilege level for the 
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segment, the segment type, and the location of the first byte of the segment in the 
linear address space (called the base address of the segment). The offset part of the 
logical address is added to the base address for the segment to locate a byte within 
the segment. The base address plus the offset thus forms a linear address in the 
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly 
into the physical address space of processor. The physical address space is defined as 
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space 
much larger than it is economically feasible to contain all at once in physical memory, 
some method of “virtualizing” the linear address space is needed. This virtualization 
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space 
is simulated with a small amount of physical memory (RAM and ROM) and some disk 

Figure 3-1.  Segmentation and Paging
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storage. When using paging, each segment is divided into pages (typically 4 KBytes 
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep 
track of the pages. When a program (or task) attempts to access an address location 
in the linear address space, the processor uses the page directory and page tables to 
translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk 
and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the 
swapping of pages between physical memory and the disk is transparent to the 
correct execution of a program. Even programs written for 16-bit IA-32 processors 
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to 
implement a wide variety of system designs. These designs range from flat models 
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed 
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented 
address space. To the greatest extent possible, this basic flat model hides the 
segmentation mechanism of the architecture from both the system designer and the 
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two 
segment descriptors must be created, one for referencing a code segment and one 
for referencing a data segment (see Figure 3-2). Both of these segments, however, 
are mapped to the entire linear address space: that is, both segment descriptors 
have the same base address value of 0 and the same segment limit of 4 GBytes. By 
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from 
generating exceptions for out of limit memory references, even if no physical 
memory resides at a particular address. ROM (EPROM) is generally located at the top 
of the physical address space, because the processor begins execution at 
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FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the 
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits 
are set to include only the range of addresses for which physical memory actually 
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on 
any attempt to access nonexistent memory. This model provides a minimum level of 
hardware protection against some kinds of program bugs.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and 
supervisor code and data, four segments need to be defined: code and data 
segments at privilege level 3 for the user, and code and data segments at privilege 
level 0 for the supervisor. Usually these segments all overlay each other and start at 
address 0 in the linear address space. This flat segmentation model along with a 
simple paging structure can protect the operating system from applications, and by 
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking 
operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of 
code, data structures, and programs and tasks. Here, each program (or task) is given 
its own table of segment descriptors and its own segments. The segments can be 
completely private to their assigned programs or shared among programs. Access to 
all segments and to the execution environments of individual programs running on 
the system is controlled by hardware.
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Access checks can be used to protect not only against referencing an address outside 
the limit of a segment, but also against performing disallowed operations in certain 
segments. For example, since code segments are designated as read-only segments, 
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. 
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on 
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit 
protected mode semantics.

Figure 3-4.  Multi-Segment Model
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In 64-bit mode, segmentation is generally (but not completely) disabled, creating a 
flat 64-bit linear-address space. The processor treats the segment base of CS, DS, 
ES, SS as zero, creating a linear address that is equal to the effective address. The FS 
and GS segments are exceptions. These segment registers (which hold the segment 
base) can be used as an additional base registers in linear address calculations. They 
facilitate addressing local data and certain operating system data structures. 

Note that the processor does not perform segment limit checks at runtime in 64-bit 
mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2, 
3-3, and 3-4. The processor’s paging mechanism divides the linear address space 
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The 
paging mechanism offers several page-level protection facilities that can be used 
with or instead of the segment-protection facilities. For example, it lets read-write 
protection be enforced on a page-by-page basis. The paging mechanism also 
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space 
of 4 GBytes (232

 bytes). This is the address space that the processor can address on 
its address bus. This address space is flat (unsegmented), with addresses ranging 
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to 
read-write memory, read-only memory, and memory mapped I/O. The memory 
mapping facilities described in this chapter can be used to divide this physical 
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an 
extension of the physical address space to 236 bytes (64 GBytes); with a maximum 
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control 

register CR4. 
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium 

III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, 
“Paging” for more information about 36-bit physical addressing.
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3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1), 
the size of the physical address range is implementation-specific and indicated by 
CPUID.80000008H:EAX[bits 7-0]. 

For the format of information returned in EAX, see “CPUID—CPU Identification” in 
Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of 
address translation to arrive at a physical address: logical-address translation and 
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address 
space is accessed with a logical address. A logical address consists of a 16-bit 
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte 
in the segment relative to the base address of the segment. 

The processor translates every logical address into a linear address. A linear address 
is a 32-bit address in the processor’s linear address space. Like the physical address 
space, the linear address space is a flat (unsegmented), 232-byte address space, 
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all 
the segments and system tables defined for a system. 

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the 
segment in the GDT or LDT and reads it into the processor. (This step is needed 
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the 
segment to insure that the segment is accessible and that the offset is within the 
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset 
to form a linear address.
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If paging is not used, the processor maps the linear address directly to a physical 
address (that is, the linear address goes out on the processor’s address bus). If the 
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address. 

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a 
logical address to a linear address. In 64-bit mode, the offset and base address of the 
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide 
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to 
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not 
point directly to the segment, but instead points to the segment descriptor that 
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or 
LDT. The processor multiplies the index value by 8 (the number of 
bytes in a segment descriptor) and adds the result to the base address 
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Figure 3-5.  Logical Address to Linear Address Translation
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TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag 
selects the GDT; setting this flag selects the current LDT.

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged 
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and 
the descriptor privilege level (DPL) of the descriptor the segment 
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points 
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag 
set to 0) is used as a “null segment selector.” The processor does not generate an 
exception when a segment register (other than the CS or SS registers) is loaded with 
a null selector. It does, however, generate an exception when a segment register 
holding a null selector is used to access memory. A null selector can be used to 
initialize unused segment registers. Loading the CS or SS register with a null 
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, 
but the values of selectors are usually assigned or modified by link editors or linking 
loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides 
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these 
segment registers support a specific kind of memory reference (code, stack, or 
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be 
loaded with valid segment selectors. The processor also provides three additional 
data-segment registers (ES, FS, and GS), which can be used to make additional data 
segments available to the currently executing program (or task).

Figure 3-6.  Segment Selector
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For a program to access a segment, the segment selector for the segment must have 
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can 
be made available by loading their segment selectors into these registers during 
program execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is 
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a 
segment selector is loaded into the visible part of a segment register, the processor 
also loads the hidden part of the segment register with the base address, segment 
limit, and access control information from the segment descriptor pointed to by the 
segment selector. The information cached in the segment register (visible and 
hidden) allows the processor to translate addresses without taking extra bus cycles 
to read the base address and limit from the segment descriptor. In systems in which 
multiple processors have access to the same descriptor tables, it is the responsibility 
of software to reload the segment registers when the descriptor tables are modified. 
If this is not done, an old segment descriptor cached in a segment register might be 
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS 
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and 
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn, 
INTO and INT3 instructions. These instructions change the contents of the CS 
register (and sometimes other segment registers) as an incidental part of their 
operation.

The MOV instruction can also be used to store visible part of a segment register in a 
general-purpose register.

Figure 3-7.  Segment Registers
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3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields 
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms 
of segment load instructions are also invalid (for example, LDS, POP ES). Address 
calculations that reference the ES, DS, or SS segments are treated as if the segment 
base is zero. 

The processor checks that all linear-address references are in canonical form instead 
of performing limit checks. Mode switching does not change the contents of the 
segment registers or the associated descriptor registers. These registers are also not 
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions 
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the 
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the 
segment descriptor register. The descriptor-register base, limit, and attribute fields 
are all loaded. However, the contents of the data and stack segment selector and the 
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base 
addresses are used in the linear address calculation: (FS or GS).base + index + 
displacement. FS.base and GS.base are then expanded to the full linear-address size 
supported by the implementation. The resulting effective address calculation can 
wrap across positive and negative addresses; the resulting linear address must be 
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are 
not checked for a runtime limit nor subjected to attribute-checking. Normal segment 
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value 
in the hidden portion of the segment descriptor register. The base address bits above 
the standard 32 bits are cleared to 0 to allow consistency for implementations that 
use less than 64 bits. 

The hidden descriptor register fields for FS.base and GS.base are physically mapped 
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits 
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and 
GS.base registers must be in canonical form. A WRMSR instruction that attempts to 
write a non-canonical address to those registers causes a #GP fault. 

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode 
behavior regardless of the value loaded into the upper 32 linear-address bits of the 
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits 
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS 
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with 
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value 
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.
3-12 Vol. 3A



PROTECTED-MODE MEMORY MANAGEMENT
3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor 
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the 
operating system or executive, but not application programs. Figure 3-8 illustrates 
the general descriptor format for all types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the 
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting 
of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 
1 byte to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from 
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, 
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment 
Descriptor Types”, for more information about segment types. For 
expand-up segments, the offset in a logical address can range from 0 

Figure 3-8.  Segment Descriptor
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to the segment limit. Offsets greater than the segment limit generate 
general-protection exceptions (#GP, for all segment other than SS) or 
stack-fault exceptions (#SS for the SS segment). For expand-down 
segments, the segment limit has the reverse function; the offset can 
range from the segment limit plus 1 to FFFFFFFFH or FFFFH, 
depending on the setting of the B flag. Offsets less than or equal to 
the segment limit generate general-protection exceptions or stack-
fault exceptions. Decreasing the value in the segment limit field for an 
expand-down segment allocates new memory at the bottom of the 
segment's address space, rather than at the top. IA-32 architecture 
stacks always grow downwards, making this mechanism convenient 
for expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte 
linear address space. The processor puts together the three base 
address fields to form a single 32-bit value. Segment base addresses 
should be aligned to 16-byte boundaries. Although 16-byte alignment 
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access 
that can be made to the segment and the direction of growth. The 
interpretation of this field depends on whether the descriptor type flag 
specifies an application (code or data) descriptor or a system 
descriptor. The encoding of the type field is different for code, data, 
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types”, for a description of how this 
field is used to specify code and data-segment types. 

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment 
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can 
range from 0 to 3, with 0 being the most privileged level. The DPL is 
used to control access to the segment. See Section 5.5, “Privilege 
Levels”, for a description of the relationship of the DPL to the CPL of 
the executing code segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not 
present (clear). If this flag is clear, the processor generates a 
segment-not-present exception (#NP) when a segment selector that 
points to the segment descriptor is loaded into a segment register. 
Memory management software can use this flag to control which 
segments are actually loaded into physical memory at a given time. It 
offers a control in addition to paging for managing virtual memory.
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Figure 3-9 shows the format of a segment descriptor when the 
segment-present flag is clear. When this flag is clear, the operating 
system or executive is free to use the locations marked “Available” to 
store its own data, such as information regarding the whereabouts of 
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) 
flag
Performs different functions depending on whether the segment 
descriptor is an executable code segment, an expand-down data 
segment, or a stack segment. (This flag should always be set to 1 for 
32-bit code and data segments and to 0 for 16-bit code and data 
segments.)

• Executable code segment. The flag is called the D flag and it 
indicates the default length for effective addresses and operands 
referenced by instructions in the segment. If the flag is set, 32-bit 
addresses and 32-bit or 8-bit operands are assumed; if it is clear, 
16-bit addresses and 16-bit or 8-bit operands are assumed. 
The instruction prefix 66H can be used to select an operand size 
other than the default, and the prefix 67H can be used select an 
address size other than the default.

• Stack segment (data segment pointed to by the SS 
register). The flag is called the B (big) flag and it specifies the 
size of the stack pointer used for implicit stack operations (such as 
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is 
used, which is stored in the 32-bit ESP register; if the flag is clear, 
a 16-bit stack pointer is used, which is stored in the 16-bit SP 
register. If the stack segment is set up to be an expand-down data 
segment (described in the next paragraph), the B flag also 
specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it 
specifies the upper bound of the segment. If the flag is set, the 
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the 
upper bound is FFFFH (64 KBytes).

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear

31 16 15 1314 12 11 8 7 0

0Available
D
P
L

TypeS 4

31 0

Available 0

Available
Vol. 3A 3-15



PROTECTED-MODE MEMORY MANAGEMENT
G (granularity) flag
Determines the scaling of the segment limit field. When the granu-
larity flag is clear, the segment limit is interpreted in byte units; when 
flag is set, the segment limit is interpreted in 4-KByte units. (This flag 
does not affect the granularity of the base address; it is always byte 
granular.) When the granularity flag is set, the twelve least significant 
bits of an offset are not tested when checking the offset against the 
segment limit. For example, when the granularity flag is set, a limit of 
0 results in valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment 
descriptor indicates whether a code segment contains native 64-bit 
code. A value of 1 indicates instructions in this code segment are 
executed in 64-bit mode. A value of 0 indicates the instructions in this 
code segment are executed in compatibility mode. If L-bit is set, then 
D-bit must be cleared. When not in IA-32e mode or for non-code 
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available 
for use by system software.

3.4.5.1  Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for 
either a code or a data segment. The highest order bit of the type field (bit 11 of the 
second double word of the segment descriptor) then determines whether the 
descriptor is for a data segment (clear) or a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are 
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See 
Table 3-1 for a description of the encoding of the bits in the type field for code and 
data segments. Data segments can be read-only or read/write segments, depending 
on the setting of the write-enable bit. 
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Stack segments are data segments which must be read/write segments. Loading the 
SS register with a segment selector for a nonwritable data segment generates a 
general-protection exception (#GP). If the size of a stack segment needs to be 
changed dynamically, the stack segment can be an expand-down data segment 
(expansion-direction flag set). Here, dynamically changing the segment limit causes 
stack space to be added to the bottom of the stack. If the size of a stack segment is 
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last 
time the operating-system or executive cleared the bit. The processor sets this bit 
whenever it loads a segment selector for the segment into a segment register, 
assuming that the type of memory that contains the segment descriptor supports 
processor writes. The bit remains set until explicitly cleared. This bit can be used both 
for virtual memory management and for debugging. 

Table 3-1.  Code- and Data-Segment Types 

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
Vol. 3A 3-17



PROTECTED-MODE MEMORY MANAGEMENT
For code segments, the three low-order bits of the type field are interpreted as 
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An 
execute/read segment might be used when constants or other static data have been 
placed with instruction code in a ROM. Here, data can be read from the code segment 
either by using an instruction with a CS override prefix or by loading a segment 
selector for the code segment in a data-segment register (the DS, ES, FS, or GS 
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution 
into a more-privileged conforming segment allows execution to continue at the 
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task 
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more 
information on conforming and nonconforming code segments). System utilities that 
do not access protected facilities and handlers for some types of exceptions (such as, 
divide error or overflow) may be loaded in conforming code segments. Utilities that 
need to be protected from less privileged programs and procedures should be placed 
in nonconforming code segments. 

NOTE
Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment, 
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will 
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less 
privileged programs or procedures (code executing at numerically high privilege 
levels). Unlike code segments, however, data segments can be accessed by more 
privileged programs or procedures (code executing at numerically lower privilege 
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can 
enter an indefinite loop if software or the processor attempts to update (write to) the 
ROM-based segment descriptors. To prevent this problem, set the accessed bits for 
all segment descriptors placed in a ROM. Also, remove operating-system or executive 
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type 
is a system descriptor. The processor recognizes the following types of system 
descriptors:
• Local descriptor-table (LDT) segment descriptor.
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• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate 
descriptors. System-segment descriptors point to system segments (LDT and TSS 
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold 
segment selectors for TSS’s (task gates). 

Table 3-2 shows the encoding of the type field for system-segment descriptors and 
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead 
of 8 bytes.

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
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See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS 
Descriptor” (for more information on the system-segment descriptors); see Section 
5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 7.2.5, “Task-Gate 
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A 
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Figure 3-10.  Global and Local Descriptor Tables
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Each system must have one GDT defined, which may be used for all programs and 
tasks in the system. Optionally, one or more LDTs can be defined. For example, an 
LDT can be defined for each separate task being run, or some or all tasks can share 
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. 
The base linear address and limit of the GDT must be loaded into the GDTR register 
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT 
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit 
value is added to the base address to get the address of the last valid byte. A limit 
value of 0 results in exactly one valid byte. Because segment descriptors are always 
8 bytes long, the GDT limit should always be one less than an integral multiple of 
eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to 
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection 
exception (#GP) when an attempt is made to access memory using the descriptor. By 
initializing the segment registers with this segment selector, accidental reference to 
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a 
segment descriptor for the LDT segment. If the system supports multiple LDTs, each 
must have a separate segment selector and segment descriptor in the GDT. The 
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5, 
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when 
accessing the LDT, the segment selector, base linear address, limit, and access rights 
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management 
Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment 
check faults in user mode (privilege level 3), the pseudo-descriptor should be located 
at an odd word address (that is, address MOD 4 is equal to 2). This causes the 
processor to store an aligned word, followed by an aligned doubleword. User-mode 
programs normally do not store pseudo-descriptors, but the possibility of generating 
an alignment check fault can be avoided by aligning pseudo-descriptors in this way. 
The same alignment should be used when storing the IDTR register using the SIDT 
instruction. When storing the LDTR or task register (using the SLTR or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address 
(that is, address MOD 4 is equal to 0).
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3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte 
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries). 

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit 
mode”).

Figure 3-11.  Pseudo-Descriptor Formats
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CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses. 
Paging (or linear-address translation) is the process of translating linear addresses 
so that they can be used to access memory or I/O devices. Paging translates each 
linear address to a physical address and determines, for each translation, what 
accesses to the linear address are allowed (the address’s access rights) and the 
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation 
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5 
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7 
discusses exceptions that may be generated by paging (page-fault exceptions). 
Section 4.8 considers data which the processor writes in response to linear-address 
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to 
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between 
paging and certain VMX features. Section 4.12 gives an overview of how paging can 
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5, 

bit 7, bit 17, and bit 20 respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before 
doing so, software should ensure that control register CR3 contains the physical 
address of the first paging structure that the processor will use for linear-address 
translation (see Section 4.2) and that structure is initialized as desired. See 
Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging 
modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME 
determine whether paging is in use and, if so, which of three paging modes is in use. 
Section 4.1.2 explains how to manage these bits to establish or make changes in 
Vol. 3A 4-1



PAGING
paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE, 
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as 
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the 
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled 
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of 
CR4.PAE and IA32_EFER.LME determine which paging mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed 

in Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as 
described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE 
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP, 
and IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1 
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE, 
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3. 
IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear 

addresses on the same page are translated to corresponding physical addresses 
on the same page.

• Support for execute-disable access rights. In some paging modes, software can 
be prevented from fetching instructions from pages that are otherwise readable.

• Support for PCIDs. In some paging modes, software can enable a facility by 
which a logical processor caches information for multiple linear-address spaces. 

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets 
IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA; 
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.
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The processor may retain cached information when software switches between 
different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is 
used only in legacy protected mode. Because legacy protected mode cannot produce 
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit 
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e 
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e 
mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging 

treats bits 47:32 of such an address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor 

ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not 
use bits 63:48 of such addresses.

Table 4-1.  Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and 
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

IA-32e 1 1 2 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.
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4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the 
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can 
enable these modes and make transitions between them. The following items identify 
certain limitations and other details:

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Figure 4-1.  Enabling and Changing Paging Modes
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• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1). 
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and 
IA32_EFER.LME = 1. Attempts to do so using MOV to CR0 cause a general-
protection exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and 
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing 
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by 
changing the value of CR4.PAE with MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of 
the other two paging modes. It must first disable paging (by clearing CR0.PG with 
MOV to CR0), then set CR4.PAE and IA32_EFER.LME to the desired values (with 
MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with 
MOV to CR0). As noted earlier, an attempt to clear either CR4.PAE or 
IA32_EFER.LME cause a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible 
using MOV to CR or WRMSR. This is because VMX transitions can load CR0, CR4, 
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control 
bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20, 

respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0, 
software operating with CPL < 3 (supervisor mode) can write to linear addresses 
with read-only access rights; if CR0.WP = 1, it cannot. (Software operating with 
CPL = 3 — user mode — cannot write to linear addresses with read-only access 
rights, regardless of the value of CR0.WP.) Section 4.6 explains how access rights are 
determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can 
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages 

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); soft-
ware should clear CR4.PCIDE before attempting to disable paging.
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and 4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e 
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across 
address spaces; if CR4.PGE = 1, specified translations may be shared across address 
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging 
(CR4.PCIDE can be 1 only when IA-32e paging is in use). PCIDs allow a logical 
processor to cache information for multiple linear-address spaces. See Section 
4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If 
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch 
instructions from linear addresses that are accessible in user mode (CPL = 3). 
Section 4.6 explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e 
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified 
linear addresses (even if data reads from the addresses are allowed). Section 4.6 
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-
bit paging. Software that wants to use this feature to limit instruction fetches from 
readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruc-
tion:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support 
for 4-MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE 
paging (this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the 
global-page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is 
supported. When the PAT is supported, three bits in certain paging-structure 
entries select a memory type (used to determine type of caching used) from the 
PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported, 
indicating that translations using 4-MByte pages with 32-bit paging may produce 
physical addresses with up to 40 bits (see Section 4.3).
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• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling 
process-context identifiers (see Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1, 
enabling supervisor-mode execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1, 
allowing PAE paging and IA-32e paging to disable execute access to selected 
pages (see Section 4.6). (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported 
with IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1, 
enabling IA-32e paging. (Processors that do not support CPUID function 
80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by 
the processor. (For processors that do not support CPUID function 80000008H, 
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.) 
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the 
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1 
and 32 otherwise. (Processors that do not support CPUID function 80000008H, 
support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4, 
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual 
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024 
entries in each structure. With PAE paging and IA-32e paging, each entry is 64 bits 
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one 
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of 
paging-structure entries. The last of these entries identifies the physical address of 
the region to which the linear address translates (called the page frame). The lower 
portion of the linear address (called the page offset) identifies the specific address 
within that region to which the linear address translates.
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Each paging-structure entry contains a physical address, which is either the address 
of another paging structure or the address of a page frame. In the first case, the 
entry is said to reference the other paging structure; in the latter, the entry is said 
to map a page.

The first paging structure used for any translation is located at the physical address 
in CR3. A linear address is translated using the following iterative procedure. A 
portion of the linear address (initially the uppermost bits) select an entry in a paging 
structure (initially the one located using CR3). If that entry references another 
paging structure, the process continues with that paging structure and with the 
portion of the linear address immediately below that just used. If instead the entry 
maps a page, the process completes: the physical address in the entry is that of the 
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each 
example locates a 4-KByte page frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this 

reason, the translation process uses 10 bits at a time from a 32-bit linear 
address. Bits 31:22 identify the first paging-structure entry and bits 21:12 
identify a second. The latter identifies the page frame. Bits 11:0 of the linear 
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for 
an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries. 
Translation thus begins by using bits 31:30 from a 32-bit linear address to 
identify the first paging-structure entry. Other paging structures comprise 
512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21 
identify a second paging-structure entry and bits 20:12 identify a third. This last 
identifies the page frame. (See Figure 4-5 for an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and 
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify 
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third, 
and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See 
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a 
page frame. However, the paging structures may be configured so that translation 
terminates before doing so. This occurs if process encounters a paging-structure 
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which 
a reserved bit is set. In this case, there is no translation for the linear address; an 
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page 
frame when only 12 bits remain in the linear address; entries identified earlier always 
reference other paging structures. That may not apply in other cases. The following 
items identify when an entry maps a page and when it references another paging 
structure:
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• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the 
current paging-structure entry is consulted. If the bit is 0, the entry references 
another paging structure; if the bit is 1, the entry maps a page.

• If only 12 bits remain in the linear address, the current paging-structure entry 
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear 
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit 
paging uses the upper 10 bits of a linear address to locate the first paging-structure 
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4 
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and 
IA-32e paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e 
paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation 
process. Table 4-2 gives the names of the different paging structures. It also 
provides, for each structure, the source of the physical address used to locate it (CR3 
or a different paging-structure entry); the bits in the linear address used to select an 
entry from the structure; and details of about whether and how such an entry can 
map a page.

Table 4-2.   Paging Structures in the Different Paging Modes

Paging 
Structure

Entry 
Name Paging Mode

Physical 
Address of 
Structure

Bits 
Selecting 
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine 

whether 1-GByte pages are supported.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page
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4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging 
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits 
corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of 
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a 
linear address. CR3 is used to locate the first paging-structure, the page directory. 
Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages. 
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3 
covers the case of a 4-MByte page. The following items describe the 32-bit paging 
process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address 

specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024 
32-bit entries (PDEs). A PDE is selected using the physical address defined as 
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access 
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE 
and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see 

Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless 
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine 
whether 4-MByte pages are supported with 32-bit paging.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to 
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also 
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36 
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical 
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section 
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
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— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is 

located at the physical address specified in bits 31:12 of the PDE (see Table 4-5). 
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the 
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE 

maps a 4-KByte page (see Table 4-6). The final physical address is computed as 
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. 
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend 

on MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where 
M is the minimum of 40 and MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

1. The upper bits in the final physical address do not all come from corresponding positions in the 
PDE; the physical-address bits in the PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is 
supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.
Vol. 3A 4-11



PAGING
A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries 
with 32-bit paging. For the paging structure entries, it identifies separately the 
format of entries that map pages, those that reference other paging structures, and 
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are 
highlighted because they determine how such an entry is used.

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Table 4-3.  Use of CR3 with 32-Bit Paging

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address 
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)
4-14 Vol. 3A



PAGING
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36 

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if 
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the 
PSE-36 mechanism is supported.

Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

Table 4-4.  Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page 

Bit 
Position(s)

Contents
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6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see 
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6.  Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

Table 4-5.  Format of a 32-Bit Page-Directory Entry that References a Page Table 

Bit 
Position(s)

Contents
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4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical 
addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses are limited to 
32 bits; at most 4 GBytes of linear-address space may be accessed at any given 
time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers, 
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-
ters. (This is different from the other paging modes, in which there is one hierarchy 
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address 
translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs. 
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTEs, the logical processor maintains a set of four (4) internal, 
non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3. 

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used 
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section 
4.1.4 for how to determine MAXPHYADDR.

Table 4-7.  Use of CR3 with PAE Paging

Bit 
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for 
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
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The logical processor loads these registers from the PDPTEs in memory as part of 
certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to 

CR4 (see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW, 
CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded 
from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the 
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs 
are loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag 
(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection 
exception (#GP(0)) and the PDPTEs are not loaded.1 As shown in Table 4-8, bits 2:1, 
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

Table 4-8.  Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
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4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages. 
Figure 4-5 illustrates the translation process when it produces a 4-KByte page; 
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE 
paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this 

is PDPTEi, where i is the value of bits 31:30.1 Because a PDPTE register is 
identified using bits 31:30 of the linear address, it controls access to a 1-GByte 
region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the 
processor ignores bits 63:1, and there is no mapping for the 1-GByte region 
controlled by PDPTEi. A reference using a linear address in this region causes a 
page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at 
the physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section 
4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected 
using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access 
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS 
flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final 

physical address is computed as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the 

physical address specified in bits 51:12 of the PDE (see Table 4-10). A page 
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the 
physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps 

a 4-KByte page (see Table 4-11). The final physical address is computed as 
follows:

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does 
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.
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— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit, 
the entry is used neither to reference another paging-structure entry nor to map a 
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) 

is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5.  Linear-Address Translation to a 4-KByte Page using PAE Paging
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Figure 4-6.  Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see 
Table 4-10)
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8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

Table 4-9.  Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit 
Position(s)

Contents
4-22 Vol. 3A



PAGING
6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the 
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved 
(must be 0)1

Table 4-10.  Format of a PAE Page-Directory Entry that References a Page Table 

Bit 
Position(s)

Contents
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Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries 
with PAE paging. For the paging structure entries, it identifies separately the format 
of entries that map pages, those that reference other paging structures, and those 
that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
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Figure 4-7.  Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11.  Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit 
Position(s)

Contents
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NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with 

PAE paging.
3. Reserved fields must be 0.
4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.
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4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and 
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e 
paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52 
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256 
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a 
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use 
of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs) 
have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used 
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

Table 4-12.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit 
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address 
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
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• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately 
begins using CR3 as specified for the new value. For example, if software changes 
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to 
000H (see also Section 4.10.4.1). In addition, the logical processor subsequently 
determines the memory type used to access the PML4 table using CR3.PWT and 
CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-
GByte pages.1 Figure 4-8 illustrates the translation process when it produces a 4-
KByte page; Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case 
of a 1-GByte page.

Table 4-13.  Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit 
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4 

table during linear-address translation with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address 
translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.
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Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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Figure 4-9.  Linear-Address Translation to a 2-MByte Page using IA-32e Paging
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The following items describe the IA-32e paging process in more detail as well has 
how the page size is determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address 

specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as 
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls 
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is 
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10.  Linear-Address Translation to a 1-GByte Page using IA-32e Paging
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— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls 
access to a 1-GByte region of the linear-address space. Use of the PDPTE depends on 
its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The 
final physical address is computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at 

the physical address specified in bits 51:12 of the PDPTE (see Table 4-16). A 
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the 
physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access 
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS 
flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address 

is computed as shown in Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the 

physical address specified in bits 51:12 of the PDE (see Table 4-18). A page table 
comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address 
defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE 

maps a 4-KByte page (see Table 4-19). The final physical address is computed as 
follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not sup-
ported. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
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If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the 
entry is used neither to reference another paging-structure entry nor to map a page. 
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is 

reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag 

(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical 
address is performed only if allowed by the access rights of the translation; see 
Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure 
entries. For the paging structure entries, it identifies separately the format of entries 
that map pages, those that reference other paging structures, and those that do 
neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted 
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
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Table 4-14.  Format of an IA-32e PML4 Entry (PML4E) that References a Page-
Directory-Pointer Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte 
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by 
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-15.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that 
Maps a 1-GByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see 
Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page 
referenced by this entry (see Section 4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
4-34 Vol. 3A



PAGING
NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Table 4-16.  Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that 
References a Page Directory

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-17.  Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by 
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see 
Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page 
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-18.  Format of an IA-32e Page-Directory Entry that References a Page Table

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region 
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address 
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Table 4-19.  Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit 
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by 
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page 
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access 
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced 
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by 
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page 
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed 
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise, 
reserved (must be 0)
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Figure 4-11.  Formats of CR3 and Paging-Structure Entries with IA-32e Paging
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4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3, 
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and 
produces a physical address. The accesses permitted by a translation is determined 
by the access rights specified by the paging-structure entries controlling the transla-
tion.1 The following items detail how paging determines access rights:
• For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid 
translation.

• If CR0.WP = 1, data may be written to any linear address with a valid 
translation for which the R/W flag (bit 1) is 1 in every paging-structure 
entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the 
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear 
address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear 
address with a valid translation for which the U/S flag (bit 2) is 0 in at 
least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights 
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear 
address with a valid translation for which the XD flag (bit 63) is 0 in 
every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear 
address with a valid translation for which (1) the U/S flag is 0 in at 
least one of the paging-structure entries controlling the translation; 
and (2) the XD flag is 0 in every paging-structure entry controlling 
the translation.

• For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which 
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

1. With PAE paging, the PDPTEs do not determine access rights.
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— Data writes.
Data may be written to any linear address with a valid translation for which 
both the R/W flag and the U/S flag are 1 in every paging-structure entry 
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched 
from any linear address with a valid translation for which the U/S flag is 1 
in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions 
may be fetched from any linear address with a valid translation for which 
the U/S flag is 1 and the XD flag is 0 in every paging-structure entry 
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs 
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access 
rights, the processor might not use that change for a subsequent access to an 
affected linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 
14). An access to a linear address may cause page-fault exception for either of two 
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid 
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation 
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there 
is a valid translation for a linear address, its access rights are determined as specified 
in Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a 
page-fault exception. The following items explain how the bits in the error code 
describe the nature of the page-fault exception:
• P flag (bit 0).

This flag is 0 if there is no valid translation for the linear address because the P 
flag was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; 
otherwise, it is 0. This flag describes the access causing the page-fault exception, 
not the access rights specified by paging.
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• U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flag is 1; it 
is 0 if a supervisor-mode (CPL < 3) access did so. This flag describes the access 
causing the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a 
reserved bit was set in one of the paging-structure entries used to translate that 
address. (Because reserved bits are not checked in a paging-structure entry 
whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality. 
Software developers should be aware that such bits may be used in the future 
and that a paging-structure entry that causes a page-fault exception on one 
processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction 
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE 
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the 
flag is 0. This flag describes the access causing the page-fault exception, not the 
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures 
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

 

Figure 4-12.  Page-Fault Error Code
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4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is 
the accessed flag.1 For paging-structure entries that map a page (as opposed to 
referencing another paging structure), bit 6 is the dirty flag. These flags are 
provided for use by memory-management software to manage the transfer of pages 
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address 
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is 
not already set) in the paging-structure entry that identifies the final physical 
address for the linear address (either a PTE or a paging-structure entry in which the 
PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that, 
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). This fact implies that, if software 
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the 
corresponding bit in memory on a subsequent access using an affected linear 
address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure 
that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not 
be exposed to the processor’s self-modifying code detection logic. If 
the processor is executing code from the same memory area that is 
being used for the paging structures, the setting of these flags may 
or may not result in an immediate change to the executing code 
stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that 
access. Chapter 11, “Memory Cache Control” provides many details regarding 
memory typing in the Intel-64 and IA-32 architectures. This section describes how 
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the 
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section 

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the 
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging. 
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4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending 
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported 
(Pentium Pro and Pentium II Processors)

NOTE
The PAT is supported on all processors that support IA-32e paging. 
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with 
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section 
11.5.2.1.

For any access to a physical address, the table combines the memory type specified 
for that physical address by the MTRRs with a PCD value and a PWT value. The latter 
two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from 

CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the 

relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address, 

the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

• With PAE paging, the UC memory type is used when loading the PDPTEs (see 
Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported 
(Pentium III and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the 
PAT and the memory-type range registers (MTRRs) as specified in Table 11-7 in 
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit 
entries (entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified 
for that physical address by the MTRRs with a memory type selected from the PAT. 

2. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for 
how to determine whether the PAT is supported.
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Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT. 
Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the 

PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3. 
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and 

PWT values come from the relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-

structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address, 

i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the 
relevant PTE (if the translation uses a 4-KByte page), the relevant PDE (if the 
translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if 
the translation uses a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see 
Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and 
paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may use memory-typing information from 
the TLBs and paging-structure caches instead of from the paging structures in 
memory.

This fact implies that, if software modifies a paging-structure entry to change the 
memory-typing bits, the processor might not use that change for a subsequent 
translation using that entry or for access to an affected linear address. See Section 
4.10.4.2 for how software can ensure that the processor uses the modified memory 
typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process 
by caching data from the paging structures on the processor. Because the processor 
does not ensure that the data that it caches are always consistent with the structures 
in memory, it is important for software developers to understand how and when the 

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some proces-
sors may use the UC memory type if CR0.CD = 1 or if the MTRRs are disabled. These behaviors 
are model-specific and not architectural.
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processor may cache such data. They should also understand what actions software 
can take to remove cached data that may be inconsistent and when it should do so. 
This section provides software developers information about the relevant processor 
operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical 
processor may use to distinguish information cached for different linear-address 
spaces. Section 4.10.2 and Section 4.10.3 describe how the processor may cache 
information in translation lookaside buffers (TLBs) and paging-structure caches, 
respectively. Section 4.10.4 explains how software can remove inconsistent cached 
information by invalidating portions of the TLBs and paging-structure caches. Section 
4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may 
cache information for multiple linear-address spaces. The processor may retain 
cached information when software switches to a different linear-address space with a 
different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag 
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the 
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to 
be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit 
paging and PAE paging use only PCID 000H). In addition, software can change 
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced 
by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change 

CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0 

while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-
structure caches (Section 4.10.3), it associates those entries with the current PCID. 
When using entries in the TLBs and paging-structure caches to translate a linear 
address, a logical processor uses only those entries associated with the current PCID 
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other 
than 000H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate 
any newly cached information with the current PCID, 000H; and (2) if MOV to CR4 
clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors 
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching 
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of translation information without any reference to PCIDs. While the 
section now refers to PCIDs in its specification of this caching, this 
documentation change is not intended to imply any change to the 
behavior of processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page 
numbers to page frames; these terms are defined in Section 4.10.2.1. Section 
4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3 
gives details of TLB usage. Section 4.10.2.4 explains the global-page feature, which 
allows software to indicate that certain translations should receive special treatment 
when cached in the TLBs.

4.10.2.1  Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging 
modes translate linear addresses to physical addresses. Specifically, the upper bits of 
a linear address (called the page number) determine the upper bits of the physical 
address (called the page frame); the lower bits of the linear address (called the 
page offset) determine the lower bits of the physical address. The boundary 
between the page number and the page offset is determined by the page size. 
Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is 
1 in the PDE used), the page size is 4 MBytes and the page number comprises 
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page 
number comprises bits 31:12 of the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE 
used), the page size is 2 MBytes and the page number comprises bits 31:21 
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page 
number comprises bits 31:12 of the linear address.

• IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE 
used), the page size is 1 GBytes and the page number comprises bits 47:30 
of the linear address.
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— If the translation does use a PDE but does not uses a PTE (because the PS flag 
is 1 in the PDE used), the page size is 2 MBytes and the page number 
comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page 
number comprises bits 47:12 of the linear address.

4.10.2.2  Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations 
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following 
information from the paging-structure entries used to translate linear addresses with 
the page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear 

addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for 

the page number (either a PTE or a paging-structure entry in which the PS flag is 
1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement 
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if 
it is not necessary. For example, a TLB used only for instruction fetches need not 
contain information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associ-
ated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may 
invalidate any TLB entry at any time. Software should not rely on the existence of 
TLBs or on the retention of TLB entries.

4.10.2.3  Details of TLB Use
Because the TLBs cache only valid translations, there can be a TLB entry for a page 
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not 
cache a translation for a page number unless the accessed flag is 1 in each of the 
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paging-structure entries used during translation; before caching a translation, the 
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that 
are a result of speculative execution that would never actually occur in the executed 
code path.

If the page number of a linear address corresponds to a TLB entry associated with the 
current PCID, the processor may use that TLB entry to determine the page frame, 
access rights, and other attributes for accesses to that linear address. In this case, 
the processor may not actually consult the paging structures in memory. The 
processor may retain a TLB entry unmodified even if software subsequently modifies 
the relevant paging-structure entries in memory. See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some 
processors may choose to cache multiple smaller-page TLB entries for that transla-
tion. Each such TLB entry would be associated with a page number corresponding to 
the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even 
though part of that page number (e.g., bits 20:12) are part of the offset with respect 
to the page specified by the paging structures. The upper bits of the physical address 
in such a TLB entry are derived from the physical address in the PDE used to create 
the translation, while the lower bits come from the linear address of the access for 
which the translation is created. There is no way for software to be aware that 
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte 
range of linear addresses changes, the TLBs may subsequently contain multiple 
translations for the address range (one for each page size). A reference to a linear 
address in the address range may use any of these translations. Which translation is 
used may vary from one execution to another, and the choice may be implementa-
tion-specific.

4.10.2.4  Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag 
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a 
page (either a PTE or a paging-structure entry in which the PS flag is 1), any TLB 
entry cached for a linear address using that paging-structure entry is considered to 
be global. Because the G flag is used only in paging-structure entries that map a 
page, and because information from such entries are not cached in the paging-struc-
ture caches, the global-page feature does not affect the behavior of the paging-
structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if 
the TLB entry is associated with a PCID different from the current PCID.
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4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging 
structures in memory.

4.10.3.1  Caches for Paging Structures
A processor may support any or of all the following paging-structure caches:
• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-

bit value and is used for linear addresses for which bits 47:39 have that value. 
The entry contains information from the PML4E used to translate such linear 
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and 
all reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is 
1 in the PML4E in memory; before caching a translation, the processor sets 
the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P 
flags are 0 in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E 
in memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by 
an 18-bit value and is used for linear addresses for which bits 47:30 have that 
value. The entry contains information from the PML4E and PDPTE used to 
translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No 
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of 
these registers is described in Section 4.4.1 and differs from that described here.
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— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E and the 
PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the 
PS flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in 
memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags 
are 1 in the PML4E and the PDPTE in memory; before caching a translation, 
the processor sets any accessed flags that are not already 1.

— The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E 
or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and 
is used for linear addresses for which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is 
used for linear addresses for which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and 
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to 
translate the relevant linear addresses (for 32-bit paging and PAE paging, only 
the PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references 
below to PML4Es and PDPTEs apply on to IA-32e paging):
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— If the processor has a PDE-cache entry for a linear address, it may use that 
entry when translating the linear address (instead of the PML4E, the PDPTE, 
and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS 
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in 
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is 
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations 
for any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it 
unmodified even if software subsequently modifies the corresponding PML4E, 
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry. 
For example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that 
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries 
that reference other paging structures (and not those that map pages). Because the 
G flag is not used in such paging-structure entries, the global-page feature does not 
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations 
required for prefetches and for accesses that are a result of speculative execution 
that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a 
logical processor are associated with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software 
should rely on neither their presence nor their absence. The processor may invalidate 
entries in these caches at any time. Because the processor may create the cache 
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate 
the cache entries appropriately when causing such modifications. The invalidation of 
TLBs and the paging-structure caches is described in Section 4.10.4.

4.10.3.2  Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the 
following to determine the physical address to which it translates and whether the 
access should be allowed:
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• If the processor finds a TLB entry that is for the page number of the linear 
address and that is associated with the current PCID (or which is global), it may 
use the physical address, access rights, and other attributes from that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of 
the linear address to select an entry from the PDE cache that is associated with 
the current PCID (Section 4.10.3.1 indicates which bits are used in each paging 
mode). It can then use that entry to complete the translation process (locating a 
PTE, etc.) as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and 
PML4) corresponding to the PDE-cache entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache 
entry, it may use bits 47:30 of the linear address to select an entry from the 
PDPTE cache that is associated with the current PCID. It can then use that 
entry to complete the translation process (locating a PDE, etc.) as if it had 
traversed the PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache 
entry, or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear 
address to select an entry from the PML4 cache that is associated with the 
current PCID. It can then use that entry to complete the translation process 
(locating a PDPTE, etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache 
in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear 
address, it uses the linear address to traverse the entire paging-structure hierarchy, 
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3  Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs and paging-structure caches may contain 
multiple entries associated with a single PCID and with information derived from a 
single paging-structure entry. The following items give some examples for IA-32e 
paging:
• Suppose that two PML4Es contain the same physical address and thus reference 

the same page-directory-pointer table. Any PDPTE in that table may result in two 
PDPTE-cache entries, each associated with a different set of linear addresses. 
Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the 

same physical address. This implies that the physical address in the mth PDPTE in 
the page-directory-pointer table would appear in the PDPTE-cache entries 
associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 & 
1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the 
same PDPTE, one resulting from a reference from the n1

th PML4E and one from 
the n2

th PML4E.
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• Suppose that the first PML4E (i.e., the one in position 0) contains the physical 
address X in CR3 (the physical address of the PML4 table). This implies the 
following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39 
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30 
contains address X. This is because the translation for a linear address for 
which the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a 
page-directory-pointer table at address X (the address of the PML4 table). It 
then uses the value of bits 38:30 (also 0) to find address X again and to store 
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21 
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in 
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the 
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a 
PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in 
the TLBs and the paging-structure caches when linear addresses are translated, and 
it may retain these entries even after the paging structures used to create them have 
been modified. To ensure that linear-address translation uses the modified paging 
structures, software should take action to invalidate any cached entries that may 
contain information that has since been modified.

4.10.4.1  Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure 
caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The 

instruction invalidates any TLB entries that are for a page number corresponding 
to the linear address and that are associated with the current PCID. It also 
invalidates any global TLB entries with that page number, regardless of PCID 
(see Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure 
caches associated with the current PCID, regardless of the linear addresses to 
which they correspond.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are 
multiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.
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• MOV to CR0. The instruction invalidates all TLB entries (including global entries) 
and all entries in all paging-structure caches (for all PCIDs) if it changes the 
value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with 
PCID 000H except those for global pages. It also invalidates all entries in all 
paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the 
instruction invalidates all TLB entries associated with the PCID specified in 
bits 11:0 of the instruction’s source operand except those for global pages. It 
also invalidates all entries in all paging-structure caches associated with that 
PCID. It is not required to invalidate entries in the TLBs and paging-structure 
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the 
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all 
entries in all paging-structure caches (for all PCIDs) if (1) it changes the 
value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-
structure caches for the current PCID if (1) it changes the value of CR4.PAE; 
or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB 
entries associated with PCID 000H except those for global pages. It also 
invalidates all entries in all paging-structure caches for associated with PCID 
000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to 

its linear-address operand. It may invalidate TLB entries and paging-structure-
cache entries associated with PCIDs other than the current PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For 
example, this may occur if either CR0.CD or CR0.NW is modified.

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if 
CR4.PGE is changing from 1 to 0, there will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since 
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.
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• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and 
bit 63 of the instruction’s source operand is 0, it may invalidate TLB entries and 
entries in the paging-structure caches associated with PCIDs other than the 
current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the 
instruction’s source operand is 1. 

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when 
changing CR4.SMEP from 1 to 0.

• On a processor supporting Hyper-Threading Technology, invalidations performed 
on one logical processor may invalidate entries in the TLBs and paging-structure 
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the 
TLBs and paging-structure caches. In particular, a page-fault exception resulting 
from an attempt to use a linear address will invalidate any TLB entries that are for a 
page number corresponding to that linear address and that are associated with the 
current PCID. it also invalidates all entries in the paging-structure caches that would 
be used for that linear address and that are associated with the current PCID.1 These 
invalidations ensure that the page-fault exception will not recur (if the faulting 
instruction is re-executed) if it would not be caused by the contents of the paging 
structures in memory (and if, therefore, it resulted from cached entries that were not 
invalidated after the paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page 
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and 
page faults provide the same assurances that they provide when a single TLB entry 
is used: they invalidate all TLB entries corresponding to the translation specified by 
the paging structures.

4.10.4.2  Recommended Invalidation
The following items provide some recommendations regarding when software should 
perform invalidations:
• If software modifies a paging-structure entry that identifies the final page frame 

for a page number (either a PTE or a paging-structure entry in which the PS flag 
is 1), it should execute INVLPG for any linear address with a page number whose 
translation uses that PTE.2

(If the paging-structure entry may be used in the translation of different page 
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear 

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only 
those that would be used to translate the faulting linear address.

2. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
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addresses with each of those page numbers; alternatively, it could use MOV to 
CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging 
structure, it may use one of the following approaches depending upon the types 
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with 
translations that would use the entry. However, if no page numbers that 
would use the entry have translations (e.g., because the P flags are 0 in all 
entries in the paging structure referenced by the modified entry), it remains 
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not 

map a page or in which the G flag (bit 8) is 0, additional steps are required if the 
entry may be used for PCIDs other than the current one. Any one of the following 
suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again 
using any of the affected PCIDs. For example, software could use different 
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and 
to load the address of the appropriate PML4 table). If the modified entry 
controls no global pages and bit 63 of the source operand to MOV to CR3 was 
0, no further steps are required. Otherwise, execute INVLPG for linear 
addresses with each of the page numbers with translations that would use 
the entry; if no page numbers that would use the entry have translations, 
execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the 
register’s current value to ensure that the modified PDPTE is loaded into the 
corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for 
multiple purposes (see Section 4.10.3.3), software should perform invalidations 
for all of these purposes. For example, if a single entry might serve as both a PDE 
and PTE, it may be necessary to execute INVLPG with two (or more) linear 
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the 
page size used for a 4-KByte range of linear addresses changes. A reference to a 
linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page 
size and either the page frame, access rights, or other attributes. It can instead 
use the following algorithm: first clear the P flag in the relevant paging-structure 
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entry (e.g., PDE); then invalidate any translations for the affected linear 
addresses (see above); and then modify the relevant paging-structure entry to 
set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction 
that establishes a PCID that had been used earlier for a different linear-address 
space (e.g., with a different value in bits 51:12 of CR3). This ensures invalidation 
of any information that may have been cached for the previous linear-address 
space.
This assumes that both linear-address spaces use the same global pages and 
that it is thus not necessary to invalidate any global TLB entries. If that is not the 
case, software should invalidate those entries by executing MOV to CR4 to modify 
CR4.PGE.

4.10.4.3  Optional Invalidation
The following items describe cases in which software may choose not to invalidate 
and the potential consequences of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-

idation is necessary. This is because no TLB entry or paging-structure cache 
entry is created with information from a paging-structure entry in which the P 
flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1, 
no invalidation is necessary (assuming that an invalidation was performed the 
last time the accessed flag was changed from 1 to 0). This is because no TLB 
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure 
to perform an invalidation may result in a “spurious” page-fault exception (e.g., 
in response to an attempted write access) but no other adverse behavior. Such 
an exception will occur at most once for each affected linear address (see Section 
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag 
from 0 to 1, failure to perform an invalidation may result in a “spurious” page-
fault exception (e.g., in response to an attempted user-mode access) but no 
other adverse behavior. Such an exception will occur at most once for each 
affected linear address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure 
to perform an invalidation may result in a “spurious” page-fault exception (e.g., 
in response to an attempted instruction fetch) but no other adverse behavior. 

1. If it is also the case that no invalidation was performed the last time the P flag was changed 
from 1 to 0, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.
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Such an exception will occur at most once for each affected linear address (see 
Section 4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0, 
failure to perform an invalidation may result in the processor not setting that bit 
in response to a subsequent access to a linear address whose translation uses the 
entry. Software cannot interpret the bit being clear as an indication that such an 
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical 
address for a linear address (either a PTE or a paging-structure entry in which the 
PS flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation 
may result in the processor not setting that bit in response to a subsequent write 
to a linear address whose translation uses the entry. Software cannot interpret 
the bit being clear as an indication that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch 
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the 
instruction fetch. Note that the invalidating instructions identified in Section 
4.10.4.1 are all serializing instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry 
may contain information cached in multiple entries in the paging-structure 
caches. Because all entries in these caches are invalidated by any execution of 
INVLPG, it is not necessary to follow the modification of such a paging-structure 
entry by executing INVLPG multiple times solely for the purpose of invalidating 
these multiple cached entries. (It may be necessary to do so to invalidate 
multiple TLB entries.)

4.10.4.4  Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software devel-
opers should understand that, between the modification of a paging-structure entry 
and execution of the invalidation instruction recommended in Section 4.10.4.2, the 
processor may use translations based on either the old value or the new value of the 
paging-structure entry. The following items describe some of the potential conse-
quences of delayed invalidation:
• If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to 

0, an access to a linear address whose translation is controlled by this entry may 
or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write 
accesses to linear addresses whose translation is controlled by this entry may or 
may not cause a page-fault exception.

• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-
mode accesses to linear addresses whose translation is controlled by this entry 
may or may not cause a page-fault exception.
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• If a paging-structure entry is modified to change the XD flag from 1 to 0, 
instruction fetches from linear addresses whose translation is controlled by this 
entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data 
larger than a quadword may be implemented using multiple memory accesses. If 
such an instruction stores to memory and invalidation has been delayed, some of the 
accesses may complete (writing to memory) while another causes a page-fault 
exception.1 In this case, the effects of the completed accesses may be visible to soft-
ware even though the overall instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software 
adversely. For example, when freeing a portion of the linear-address space (by 
marking paging-structure entries “not present”), invalidation using INVLPG may be 
delayed if software does not re-allocate that portion of the linear-address space or 
the memory that had been associated with it. However, because of speculative 
execution (or errant software), there may be accesses to the freed portion of the 
linear-address space before the invalidations occur. In this case, the following can 
happen:
• Reads can occur to the freed portion of the linear-address space. Therefore, 

invalidation should not be delayed for an address range that has read side 
effects.

• The processor may retain entries in the TLBs and paging-structure caches for an 
extended period of time. Software should not assume that the processor will not 
use entries associated with a linear address simply because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-
structure cache even if there are no translations for any linear address that might 
use that entry. Thus, if software has marked “not present” all entries in page 
table, the processor may subsequently create a PDE-cache entry for the PDE that 
references that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the 
processor might not generate a page fault. (Such an attempt would likely be the 
result of a software error.) For that reason, the page frames previously 
associated with the freed portion of the linear-address space should not be 
reallocated for another purpose until the appropriate invalidations have been 
performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple 
Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may 
need to invalidate entries in the TLBs and paging-structure caches that were derived 
from the modified entry before it was modified. In a system containing more than 

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
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one logical processor, software must account for the fact that there may be entries in 
the TLBs and paging-structure caches of logical processors other than the one used 
to modify the paging-structure entry. The process of propagating the changes to a 
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor 
interrupts (IPI). The following items describe a simple but inefficient example of a 
TLB shootdown algorithm for processors supporting the Intel-64 and IA-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to 
execute the HLT instruction or to enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure 
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed; 
however, software developers must take care to ensure that the following conditions 
are met:
• All logical processors that are using the paging structures that are being modified 

must participate and perform appropriate invalidations after the modifications 
are made.

• If the modifications to the paging-structure entries are made before the barrier 
or if there is no barrier, the operating system must ensure one of the following: 
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the 
consequences of the affected linear-address range being used during that period. 
For example, if the operating system does not allow pages being freed to be 
reallocated for another purpose until after the required invalidations, writes to 
those pages by errant software will not unexpectedly modify memory that is in 
use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch 
requests to the affected linear-address range that are a result of speculative 
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the 
same time, they must coordinate before any request to modify the paging-structure 
entries that control that linear-address space. In these cases, the barrier in the TLB 
shootdown routine may not be required. For example, when freeing a range of linear 
addresses, some other mechanism can assure no logical processor is using that 
range before the request to free it is made. In this case, a logical processor freeing 
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the 
affected logical processors must complete their invalidations before the linear-
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address range and the physical page frames previously associated with that range 
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE 
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact 
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers, 
called VMX transitions specially affect paging. Section 4.11.2 gives an overview of 
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits; 
collectively, these are called VMX transitions. VM entries and VM exits are 
described in detail in Chapter 23 and Chapter 24, respectively, in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B. The following items 
identify paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR 

concurrently. For this reason, they allow transitions between paging modes that 
would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit 
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to 
IA-32e paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section 
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being 
loaded into CR3 or from the virtual-machine control structure (VMCS); see 
Section 23.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into 
CR3; see Section 24.5.4.

• VMX transitions invalidate the TLBs and paging-structure caches based on certain 
control settings. See Section 23.3.2.5 and Section 24.5.5 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B.

4.11.2 VMX Support for Address Translation
Chapter 25, “Support for Address Translation,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B describe two features of the virtual-
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machine extensions (VMX) that interact directly with paging. These are virtual-
processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for 
different “virtual processors.” The processor may use this identification to maintain 
concurrently information for multiple address spaces in its TLBs and paging-structure 
caches, even when non-zero PCIDs are not being used. See Section 25.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical 
addresses to access memory and memory-mapped I/O. Instead, they are treated as 
guest-physical addresses and are translated through a set of EPT paging structures 
to produce physical addresses. EPT can also specify its own access rights and 
memory typing; these are used on conjunction with those specified in this chapter. 
See Section 25.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in 
TLBs and paging structure caches and the ways in which software can manage that 
information. Some of the behaviors documented in Section 4.10 may change. See 
Section 25.3 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g., 
on disk). This method of mapping the linear-address space is referred to as virtual 
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into 
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into 
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in 
Section 4.7. The handler for page-fault exceptions typically directs the operating 
system or executive to load data for the unmapped page from external storage into 
physical memory (perhaps writing a different page from physical memory out to 
external storage in the process) and to map it using paging (by updating the paging 
structures). When the page has been loaded into physical memory, a return from the 
exception handler causes the instruction that generated the exception to be 
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike 
segments, which usually are the same size as the code or data structures they hold, 
pages have a fixed size. If segmentation is the only form of address translation used, 
a data structure present in physical memory will have all of its parts in memory. If 
paging is used, a data structure can be partly in memory and partly in disk storage.
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4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide in the support a wide variety of 
approaches to memory management. When segmentation and paging are combined, 
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules 
can be mapped to one or more large segments (up to 4-GBytes) that share same 
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are 
essentially invisible to applications and the operating-system or executive. If paging 
is used, the paging mechanism can map a single linear-address space (contained in 
a single segment) into virtual memory. Alternatively, each program (or task) can 
have its own large linear-address space (contained in its own segment), which is 
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed 
in a page which is not shared with another segment, the extra memory is wasted. For 
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it 
is placed in a page by itself. If many semaphores are used, it is more efficient to pack 
them into a single page.

The Intel-64 and IA-32 architectures do not enforce correspondence between the 
boundaries of pages and segments. A page can contain the end of one segment and 
the beginning of another. Similarly, a segment can contain the end of one page and 
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some 
alignment between page and segment boundaries. For example, if a segment which 
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in 
Figure 4-13. This convention gives the segment a single entry in the page directory, 
and this entry provides the access control information for paging the entire segment.
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Figure 4-13.  Memory Management Convention That Assigns a Page Table
to Each Segment
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CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection 
mechanism provides the ability to limit access to certain segments or pages based on 
privilege levels (four privilege levels for segments and two privilege levels for pages). 
For example, critical operating-system code and data can be protected by placing 
them in more privileged segments than those that contain applications code. The 
processor’s protection mechanism will then prevent application code from accessing 
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to 
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify 
that it satisfies various protection checks. All checks are made before the memory 
cycle is started; any violation results in an exception. Because checks are performed 
in parallel with address translation, there is no performance penalty. The protection 
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6, 
“Interrupt and Exception Handling,” for an explanation of the exception mechanism. 
This chapter describes the protection mechanism and the violations which lead to 
exceptions.

The following sections describe the protection mechanism available in protected 
mode. See Chapter 17, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE 
PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode, 
which in turn enables the segment-protection mechanism. Once in protected mode, 
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there is no control bit for turning the protection mechanism on or off. The part of the 
segment-protection mechanism that is based on privilege levels can essentially be 
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the 
privilege level protection barriers between segments, but other protection checks 
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the 
PG flag in register CR0). Here again there is no mode bit for turning off page-level 
protection once paging is enabled. However, page-level protection can be disabled by 
performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory 

and page-table entry. 

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND 
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the 
system data structures to control access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment 

descriptor.) Determines if the segment descriptor is for a system segment or a 
code or data segment.

• Type field — (Bits 8 through 11 in the second doubleword of a segment 
descriptor.) Determines the type of code, data, or system segment.

• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19 
of the second doubleword of a segment descriptor.) Determines the size of the 
segment, along with the G flag and E flag (for data segments).

• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines 
the size of the segment, along with the limit field and E flag (for data segments).

• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.) 
Determines the size of the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second 
doubleword of a segment descriptor.) Determines the privilege level of the 
segment.

• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment 
selector.) Specifies the requested privilege level of a segment selector. 

• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment 
register.) Indicates the privilege level of the currently executing program or 
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procedure. The term current privilege level (CPL) refers to the setting of this 
field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines 
the type of page: user or supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the 
type of access allowed to a page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.) 
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and 
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field 
in a segment selector (or the CS register); and Chapter 4 identifies the locations of 
the U/S, R/W, and XD flags in the paging-structure entries.
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Many different styles of protection schemes can be implemented with these fields 
and flags. When the operating system creates a descriptor, it places values in these 
fields and flags in keeping with the particular protection style chosen for an operating 
system or executive. Application program do not generally access or modify these 
fields and flags. 

Figure 5-1.  Descriptor Fields Used for Protection

Base 23:16

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

B
AWE0

Data-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

D
ARC1

Code-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-Segment Descriptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0

AVL Available to Sys. Programmer’s
5-4 Vol. 3A



PROTECTION
The following sections describe how the processor uses these fields and flags to 
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor 
content (the base address and limit fields) is ignored; the remaining fields function 
normally (except for the readable bit in the type field). 

Code segment descriptors and selectors are needed in IA-32e mode to establish the 
processor’s operating mode and execution privilege-level. The usage is as follows:
• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined 

as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility 
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses. 
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the 
default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This 
setting indicates a default operand size of 32 bits and a default address size 
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future 
use and a #GP fault will be generated on an attempt to use a code segment 
with these bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks 
(as in legacy 32-bit mode).
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5.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from 
addressing memory locations outside the segment. The effective value of the limit 
depends on the setting of the G (granularity) flag (see Figure 5-1). For data 
segments, the limit also depends on the E (expansion direction) flag and the B 
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in 
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the 
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH 
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales 
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective 
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling 
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked 
against the limit; for example, note that if the segment limit is 0, offsets 0 through 
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is 
the last address that is allowed to be accessed in the segment, which is one less than 
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion (or, if the segment is SS, a stack-fault exception) any time an attempt is made to 
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)

Figure 5-2.  Descriptor Fields with Flags used in IA-32e Mode
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• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)
• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not 
cause the indicated exceptions. Behavior is implementation-specific and may vary 
from one execution to another.

For expand-down data segments, the segment limit has the same function but is 
interpreted differently. Here, the effective limit specifies the last address that is not 
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH 
if the B flag is clear. An expand-down segment has maximum size when the segment 
limit is 0.

Limit checking catches programming errors such as runaway code, runaway 
subscripts, and invalid pointer calculations. These errors are detected when they 
occur, so identification of the cause is easier. Without limit checking, these errors 
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table 
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor 
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value 
(read from the segment descriptors for the current LDT and TSS, respectively). The 
processor uses these segment limits to prevent accesses beyond the bounds of the 
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table 
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task 
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or 
data segments. However, the processor does check descriptor-table limits.

5.4 TYPE CHECKING
Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an 
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The 
type field provides 4 additional bits for use in defining various types of code, data, 
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and system descriptors. Table 3-1 shows the encoding of the type field for code and 
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on 
segment selectors and segment descriptors. The following list gives examples of 
typical operations where type checking is performed (this list is not exhaustive):
• When a segment selector is loaded into a segment register — Certain 

segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system 
segments cannot be loaded into data-segment registers (DS, ES, FS, and 
GS).

— Only segment selectors of writable data segments can be loaded into the SS 
register.

• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already 

loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is 
set.

• When an instruction operand contains a segment selector — Certain 
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a 
conforming code segment, nonconforming code segment, call gate, task 
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT, 
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code 
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the 
processor determines the type of control transfer to be carried out (call or 
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jump to another code segment, a call or jump through a gate, or a task 
switch) by checking the type field in the segment (or gate) descriptor pointed 
to by the segment (or gate) selector given as an operand in the CALL or JMP 
instruction. If the descriptor type is for a code segment or call gate, a call or 
jump to another code segment is indicated; if the descriptor type is for a TSS 
or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler 
call through a trap or interrupt gate), the processor automatically checks that 
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or 
exception-handler call to a new task through a task gate), the processor 
automatically checks that the segment descriptor being pointed to by the 
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor 
automatically checks that the segment descriptor being pointed to by the 
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor 
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”) 
into the CS or SS segment register generates a general-protection exception (#GP). 
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any 
attempt to access a segment through one of these registers when it is loaded with a 
null segment selector results in a #GP exception being generated. Loading unused 
data-segment registers with a null segment selector is a useful method of detecting 
accesses to unused segment registers and/or preventing unwanted accesses to data 
segments.

5.4.1.1  NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment 
selectors. The processor does not cause a #GP fault when an attempt is made to 
access memory where the referenced segment register has a NULL segment selector. 

5.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels, 
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 5-3 
shows how these levels of privilege can be interpreted as rings of protection. 
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The center (reserved for the most privileged code, data, and stacks) is used for the 
segments containing the critical software, usually the kernel of an operating system. 
Outer rings are used for less critical software. (Systems that use only 2 of the 4 
possible privilege levels should use levels 0 and 3.) 

The processor uses privilege levels to prevent a program or task operating at a lesser 
privilege level from accessing a segment with a greater privilege, except under 
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the 
processor recognizes the following three types of privilege levels: 
• Current privilege level (CPL) — The CPL is the privilege level of the currently 

executing program or task. It is stored in bits 0 and 1 of the CS and SS segment 
registers. Normally, the CPL is equal to the privilege level of the code segment 
from which instructions are being fetched. The processor changes the CPL when 
program control is transferred to a code segment with a different privilege level. 
The CPL is treated slightly differently when accessing conforming code segments. 
Conforming code segments can be accessed from any privilege level that is equal 
to or numerically greater (less privileged) than the DPL of the conforming code 
segment. Also, the CPL is not changed when the processor accesses a conforming 
code segment that has a different privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment 
or gate. It is stored in the DPL field of the segment or gate descriptor for the 
segment or gate. When the currently executing code segment attempts to access 
a segment or gate, the DPL of the segment or gate is compared to the CPL and 
RPL of the segment or gate selector (as described later in this section). The DPL 

Figure 5-3.  Protection Rings
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is interpreted differently, depending on the type of segment or gate being 
accessed:

— Data segment — The DPL indicates the numerically highest privilege level 
that a program or task can have to be allowed to access the segment. For 
example, if the DPL of a data segment is 1, only programs running at a CPL of 
0 or 1 can access the segment. 

— Nonconforming code segment (without using a call gate) — The DPL 
indicates the privilege level that a program or task must be at to access the 
segment. For example, if the DPL of a nonconforming code segment is 0, only 
programs running at a CPL of 0 can access the segment. 

— Call gate — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment 
accessed through a call gate — The DPL indicates the numerically lowest 
privilege level that a program or task can have to be allowed to access the 
segment. For example, if the DPL of a conforming code segment is 2, 
programs running at a CPL of 0 or 1 cannot access the segment. 

— TSS — The DPL indicates the numerically highest privilege level that the 
currently executing program or task can be at and still be able to access the 
TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that 
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment 
selector. The processor checks the RPL along with the CPL to determine if access 
to a segment is allowed. Even if the program or task requesting access to a 
segment has sufficient privilege to access the segment, access is denied if the 
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is 
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The 
RPL can be used to insure that privileged code does not access a segment on 
behalf of an application program unless the program itself has access privileges 
for that segment. See Section 5.10.4, “Checking Caller Access Privileges (ARPL 
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is 
loaded into a segment register. The checks used for data access differ from those 
used for transfers of program control among code segments; therefore, the two 
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA 
SEGMENTS

To access operands in a data segment, the segment selector for the data segment 
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
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segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS, 
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector 
into a segment register, it performs a privilege check (see Figure 5-4) by comparing 
the privilege levels of the currently running program or task (the CPL), the RPL of the 
segment selector, and the DPL of the segment’s segment descriptor. The processor 
loads the segment selector into the segment register if the DPL is numerically greater 
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is 
generated and the segment register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each 
running at different privilege levels and each attempting to access the same data 
segment. 

1. The procedure in code segment A is able to access data segment E using segment 
selector E1, because the CPL of code segment A and the RPL of segment selector 
E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment 
selector E2, because the CPL of code segment B and the RPL of segment selector 
E2 are both numerically lower than (more privileged) than the DPL of data 
segment E. A code segment B procedure can also access data segment E using 
segment selector E1.

3. The procedure in code segment C is not able to access data segment E using 
segment selector E3 (dotted line), because the CPL of code segment C and the 
RPL of segment selector E3 are both numerically greater than (less privileged) 
than the DPL of data segment E. Even if a code segment C procedure were to use 
segment selector E1 or E2, such that the RPL would be acceptable, it still could 
not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E 
because code segment D’s CPL is numerically less than the DPL of data segment 

Figure 5-4.  Privilege Check for Data Access
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E. However, the RPL of segment selector E3 (which the code segment D 
procedure is using to access data segment E) is numerically greater than the DPL 
of data segment E, so access is not allowed. If the code segment D procedure 
were to use segment selector E1 or E2 to access the data segment, access would 
be allowed.

As demonstrated in the previous examples, the addressable domain of a program or 
task varies as its CPL changes. When the CPL is 0, data segments at all privilege 
levels are accessible; when the CPL is 1, only data segments at privilege levels 1 
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3 
are accessible. 

The RPL of a segment selector can always override the addressable domain of a 
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less 
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under 
software control. For example, an application program running at a CPL of 3 can set 
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks, 
not the RPL checks, will provide protection against deliberate, direct attempts to 
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges 
whenever it receives a data-segment selector from another procedure (see Section 
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

Figure 5-5.  Examples of Accessing Data Segments From Various Privilege Levels
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5.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in 
a code segment. The following methods of accessing data in code segments are 
possible:
• Load a data-segment register with a segment selector for a nonconforming, 

readable, code segment.
• Load a data-segment register with a segment selector for a conforming, 

readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment 

whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always 
valid because the privilege level of a conforming code segment is effectively the 
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of 
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS 
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment 
selector for a stack segment. Here all privilege levels related to the stack segment 
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the 
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not 
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING 
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector 
for the destination code segment must be loaded into the code-segment register 
(CS). As part of this loading process, the processor examines the segment descriptor 
for the destination code segment and performs various limit, type, and privilege 
checks. If these checks are successful, the CS register is loaded, program control is 
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register. 

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER, 
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt 
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases 
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses 
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
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• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment 

selector for the target code segment.
• The target operand points to a TSS, which contains the segment selector for the 

target code segment. 
• The target operand points to a task gate, which points to a TSS, which in turn 

contains the segment selector for the target code segment. 

The following sections describe first two types of references. See Section 7.3, “Task 
Switching,” for information on transferring program control through a task gate 
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls 
to and returns from operating system or executive procedures. These instructions 
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control 
within the current code segment, so privilege-level checks are not performed. The far 
forms of the JMP, CALL, and RET instructions transfer control to other code segments, 
so the processor does perform privilege-level checks. 

When transferring program control to another code segment without going through a 
call gate, the processor examines four kinds of privilege level and type information 
(see Figure 5-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is, 

the code segment that contains the procedure that is making the call or jump.)

Figure 5-6.  Privilege Check for Control Transfer Without Using a Gate
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• The DPL of the segment descriptor for the destination code segment that 
contains the called procedure. 

• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code 

segment, which determines whether the segment is a conforming (C flag is set) 
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code- 
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the 
setting of the C flag, as described in the following sections.

5.8.1.1  Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure 
must be equal to the DPL of the destination code segment; otherwise, the processor 
generates a general-protection exception (#GP). For example in Figure 5-7:
• Code segment C is a nonconforming code segment. A procedure in code segment 

A can call a procedure in code segment C (using segment selector C1) because 
they are at the same privilege level (CPL of code segment A is equal to the DPL of 
code segment C). 

• A procedure in code segment B cannot call a procedure in code segment C (using 
segment selector C2 or C1) because the two code segments are at different 
privilege levels.
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The RPL of the segment selector that points to a nonconforming code segment has a 
limited effect on the privilege check. The RPL must be numerically less than or equal 
to the CPL of the calling procedure for a successful control transfer to occur. So, in the 
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set 
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS 
register, the privilege level field is not changed; that is, it remains at the CPL (which 
is the privilege level of the calling procedure). This is true, even if the RPL of the 
segment selector is different from the CPL.

5.8.1.2  Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be 
numerically equal to or greater than (less privileged) the DPL of the destination code 
segment; the processor generates a general-protection exception (#GP) only if the 
CPL is less than the DPL. (The segment selector RPL for the destination code segment 
is not checked if the segment is a conforming code segment.)

Figure 5-7.  Examples of Accessing Conforming and Nonconforming Code Segments 
From Various Privilege Levels
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In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D 
(using either segment selector D1 or D2, respectively), because they both have CPLs 
that are greater than or equal to the DPL of the conforming code segment. For 
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to 
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective 
RPLs. But since RPLs are not checked when accessing conforming code segments, 
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not 
change, even if the DPL of the destination code segment is less than the CPL. This 
situation is the only one where the CPL may be different from the DPL of the current 
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected 
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged 
levels). Keeping the CPL at the level of a calling code segment when switching to a 
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code 
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can 
be transferred only to code segments at the same level of privilege, unless the 
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the 
processor provides special set of descriptors called gate descriptors. There are four 
kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception 
Handling.” This chapter is concerned only with call gates. 
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5.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privi-
lege levels. They are typically used only in operating systems or executives that use 
the privilege-level protection mechanism. Call gates are also useful for transferring 
program control between 16-bit and 32-bit code segments, as described in Section 
18.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may 
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It 
performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be 
copied between stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force 
16-bit pushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid. 

The segment selector field in a call gate specifies the code segment to be accessed. 
The offset field specifies the entry point in the code segment. This entry point is 
generally to the first instruction of a specific procedure. The DPL field indicates the 
privilege level of the call gate, which in turn is the privilege level required to access 
the selected procedure through the gate. The P flag indicates whether the call-gate 
descriptor is valid. (The presence of the code segment to which the gate points is 
indicated by the P flag in the code segment’s descriptor.) The parameter count field 
indicates the number of parameters to copy from the calling procedures stack to the 
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for 
32-bit call gates.

Figure 5-8.  Call-Gate Descriptor
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Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a 
not present (#NP) exception is generated when a program attempts to access the 
descriptor. The operating system can use the P flag for special purposes. For 
example, it could be used to track the number of times the gate is used. Here, the P 
flag is initially set to 0 causing a trap to the not-present exception handler. The 
exception handler then increments a counter and sets the P flag to 1, so that on 
returning from the handler, the gate descriptor will be valid.

5.8.3.1  IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer 
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store 
64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not 

identical to legacy 32-bit mode call gates. The parameter-copy-count field has 
been removed. 

• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form. 
A general-protection exception (#GP) is generated if software attempts to use a 
call gate with a target offset that is not in canonical form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and 
32-bit descriptors. A type field, used for consistency checking, is defined in bits 
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half 
of a 64-bit mode descriptor as a 32-bit mode descriptor.
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• Target code segments referenced by a 64-bit call gate must be 64-bit code 
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector). 

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and 
compatibility mode). The legacy 32-bit mode call gate type (0CH) is redefined in 
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e 
mode. 

• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those 
taken in 32-bit mode, with the following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit 
calls must be performed with a 64-bit operand-size return to process the stack 
correctly).

Figure 5-9.  Call-Gate Descriptor in IA-32e Mode
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5.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a 
CALL or JMP instruction. The segment selector from this pointer identifies the call 
gate (see Figure 5-10); the offset from the pointer is required, but not used or 
checked by the processor. (The offset can be set to any value.) 

When the processor has accessed the call gate, it uses the segment selector from the 
call gate to locate the segment descriptor for the destination code segment. (This 
segment descriptor can be in the GDT or the LDT.) It then combines the base address 
from the code-segment descriptor with the offset from the call gate to form the linear 
address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity 
of a program control transfer through a call gate:
• The CPL (current privilege level).
• The RPL (requestor's privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment 
is also checked.

Figure 5-10.  Call-Gate Mechanism
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The privilege checking rules are different depending on whether the control transfer 
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege 
level from which a calling procedure can access the call gate; that is, to access a call 
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call 
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at 
all CPLs (0 through 3) can access this call gate, which includes calling procedures in 
code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at 
a CPL or 0, 1, or 2 can access call gate B, which includes calling procedures in code 

Figure 5-11.  Privilege Check for Control Transfer with Call Gate

Table 5-1.  Privilege Check Rules for Call Gates
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segments B and C. The dotted line shows that a calling procedure in code segment A 
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL 
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the 
call gate. In the example in Figure 5-15, a calling procedure in code segment C can 
access call gate B using gate selector B2 or B1, but it could not use gate selector B3 
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the 
processor then checks the DPL of the code-segment descriptor against the CPL of the 
calling procedure. Here, the privilege check rules vary between CALL and JMP 
instructions. Only CALL instructions can use call gates to transfer program control to 
more privileged (numerically lower privilege level) nonconforming code segments; 
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code 
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer 
program control to a more privileged conforming code segment; that is, to a 
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination 
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a 
call or jump is made to a more privileged conforming destination code segment, the 
CPL is not changed and no stack switch occurs. 
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Call gates allow a single code segment to have procedures that can be accessed at 
different privilege levels. For example, an operating system located in a code 
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character 
I/O). Call gates for these procedures can be set up that allow access at all privilege 
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set 
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged 
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the 
stack for the destination code segment’s privilege level. This stack switching is 
carried out to prevent more privileged procedures from crashing due to insufficient 
stack space. It also prevents less privileged procedures from interfering (by accident 
or intent) with more privileged procedures through a shared stack.

Figure 5-12.  Example of Accessing Call Gates At Various Privilege Levels
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Each task must define up to 4 stacks: one for applications code (running at privilege 
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two 
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of 
these stacks is located in a separate segment and is identified with a segment 
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the 
SS and ESP registers, respectively, when privilege-level-3 code is being executed and 
is automatically stored on the called procedure’s stack when a stack switch occurs. 

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently 
running task (see Figure 7-2). Each of these pointers consists of a segment selector 
and a stack pointer (loaded into the ESP register). These initial pointers are strictly 
read-only values. The processor does not change them while the task is running. 
They are used only to create new stacks when calls are made to more privileged 
levels (numerically lower privilege levels). These stacks are disposed of when a 
return is made from the called procedure. The next time the procedure is called, a 
new stack is created using the initial stack pointer. (The TSS does not specify a stack 
for privilege level 3 because the processor does not allow a transfer of program 
control from a procedure running at a CPL of 0, 1, or 2 to a procedure running at a 
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these 
stacks into the TSS. Each stack must be read/write accessible (as specified in the 
type field of its segment descriptor) and must contain enough space (as specified in 
the limit field) to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception 

or interrupt handler.

The stack will need to require enough space to contain many frames of these items, 
because procedures often call other procedures, and an operating system may 
support nesting of multiple interrupts. Each stack should be large enough to allow for 
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still 
must create at least one TSS for this stack-related purpose.) 

When a procedure call through a call gate results in a change in privilege level, the 
processor performs the following steps to switch stacks and begin execution of the 
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer
to the new stack (segment selector and stack pointer) from the TSS. 

2. Reads the segment selector and stack pointer for the stack to be switched to from 
the current TSS. Any limit violations detected while reading the stack-segment 
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS) 
exception to be generated.
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3. Checks the stack-segment descriptor for the proper privileges and type and 
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP 
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling 
procedure) onto the new stack (see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call 
gate from the calling procedure’s stack to the new stack. If the count is 0, no 
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP 
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction 
pointer from the call gate into the CS and EIP registers, respectively, and begins 
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in 
the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed 
description of the privilege level checks and other protection checks that the 
processor performs on a far call through a call gate.

The parameter count field in a call gate specifies the number of data items (up to 31) 
that the processor should copy from the calling procedure’s stack to the stack of the 
called procedure. If more than 31 data items need to be passed to the called proce-

Figure 5-13.  Stack Switching During an Interprivilege-Level Call
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dure, one of the parameters can be a pointer to a data structure, or the saved 
contents of the SS and ESP registers may be used to access parameters in the old 
stack space. The size of the data items passed to the called procedure depends on 
the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1  Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode, 
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a 
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads 
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s 
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle 
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP 
are saved on the new stack. 

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS 
register. See Table 5-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or 
far return are eight-bytes wide and change the RSP by eight. The mode does not 
support the automatic parameter-copy feature found in 32-bit mode. The call-gate 
count field is ignored. Software can access the old stack, if necessary, by referencing 
the old stack-segment selector and stack pointer saved on the new process stack. 

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with 
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to 
tell the processor not to load a new SS descriptor.

5.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same 
privilege level, and a far return to a different privilege level. This instruction is 

Table 5-2.  64-Bit-Mode Stack Layout After CALLF with CPL Change
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP  RSP 0 RIP

< 4 Bytes  > < 8 Bytes >
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intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction 
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return 
instruction pointer from the stack into the EIP register, it checks that the pointer does 
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment 
selector for the code segment being returned to and a return instruction pointer from 
the stack. Under normal conditions, these pointers should be valid, because they 
were pushed on the stack by the CALL instruction. However, the processor performs 
privilege checks to detect situations where the current procedure might have altered 
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a 
less privileged level (that is, the DPL of the return code segment is numerically 
greater than the CPL). The processor uses the RPL field from the CS register value 
saved for the calling procedure (see Figure 5-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs. 

The processor performs the following steps when performing a far return to a calling 
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to 
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. 
(Type and privilege level checks are performed on the code-segment descriptor 
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return 
requires a privilege level change.) Adds the parameter count (in bytes obtained 
from the RET instruction) to the current ESP register value (after popping the CS 
and EIP values), to step past the parameters on the called procedure’s stack. The 
resulting value in the ESP register points to the saved SS and ESP values for the 
calling procedure’s stack. (Note that the byte count in the RET instruction must 
be chosen to match the parameter count in the call gate that the calling 
procedure referenced when it made the original call multiplied by the size of the 
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers 
with the saved SS and ESP values and switches back to the calling procedure’s 
stack. The SS and ESP values for the called procedure’s stack are discarded. Any 
limit violations detected while loading the stack-segment selector or stack 
pointer cause a general-protection exception (#GP) to be generated. The new 
stack-segment descriptor is also checked for type and privilege violations.
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5. (If the RET instruction includes a parameter count operand.) Adds the parameter 
count (in bytes obtained from the RET instruction) to the current ESP register 
value, to step past the parameters on the calling procedure’s stack. The resulting 
ESP value is not checked against the limit of the stack segment. If the ESP value 
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, 
ES, FS, and GS segment registers. If any of these registers refer to segments 
whose DPL is less than the new CPL (excluding conforming code segments), the 
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of 
the privilege level checks and other protection checks that the processor performs on 
a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture 
in the Pentium II processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended 
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege 
level 0 operating system or executive procedures for fast returns to privilege level 3 
user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT 
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not 
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified 
through instruction operands. Instead, they are specified through parameters 
entered in MSRs and general-purpose registers. 

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the 

IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
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• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because 
they force the processor into a predefined privilege level 0 state when SYSENTER is 
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By 
forcing predefined and consistent processor states, the number of privilege checks 
ordinarily required to perform a far call to another privilege levels are greatly 
reduced. Also, by predefining the target context state in MSRs and general-purpose 
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure 
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

5.8.7.1  SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to 
allow fast system calls from user code running at privilege level 3 (in compatibility 
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0. 
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold 
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored 
in these MSRs are used. If 64-bit mode is active, addresses stored in 
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in 
64-bit mode, IA32_SYSENTER_CS must not contain a NULL selector. 

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from 

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from 

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using 
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in 

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.
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When SYSEXIT transfers control to compatibility mode user code when the operand 
size attribute is 32 bits, the following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in 

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a 
flat memory model (segmentation is not used). The instructions, along with 
SYSENTER and SYSEXIT, are suited for IA-32e mode operation. SYSCALL and 
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if 
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1). 

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is 
intended for use by privilege level 0 operating system or executive procedures for 
fast returns to privilege level 3 user code. 

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed. 
SYSCALL/SYSRET save and restore the RFLAGS register. 

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruc-
tion into RCX; it then gets the privilege-level 0 target instruction and stack pointer 
from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction — Reads a 64-bit canonical address from IA32_LSTAR.
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• System flags — The processor sets RFLAGS to the logical-AND of its current 

value with the complement of the value in the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor 
gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] + 

16.
• Target instruction — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.
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When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size, 
the processor gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond 
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and 
attribute values forced by the instructions). 

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical 
form. If an address is not canonical, an exception is generated (#GP). 

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

5.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from 
use by application programs. The privileged instructions control system functions 
(such as the loading of system registers). They can be executed only when the CPL is 
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a 

Figure 5-14.  MSRs Used by SYSCALL and SYSRET
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general-protection exception (#GP) is generated. The following system instructions 
are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.
• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of 
Intel 64 and IA-32 processors (see Section 19.13, “New Instructions In the Pentium 
and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC 
and RDTSC instructions, respectively, to be executed at any CPL.

5.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce 
protection between segments and maintain isolation between privilege levels. 
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its
use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.
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The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL 
instruction. The fifth check (offset alignment) is performed automatically at privilege 
level 3 if alignment checking is turned on. Offset alignment does not affect isolation 
of privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access 
rights check on the segment descriptor pointed to by the far pointer. This check is 
performed to determine if type and privilege level (DPL) of the segment descriptor 
are compatible with the operation to be performed. For example, when making a far 
call in protected mode, the segment-descriptor type must be for a conforming or 
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to 
a nonconforming code segment, the DPL of the code segment must be equal to the 
CPL, and the RPL of the code segment’s segment selector must be less than or equal 
to the DPL. If type or privilege level are found to be incompatible, the appropriate 
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check 
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor 
whose access rights are to be checked and a destination register. The instruction then 
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or 
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the 
segment descriptor into the destination register (masked by the value 
00FXFF00H, where X indicates that the corresponding 4 bits are undefined) and 
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at 
the current privilege level or is an invalid type for the LAR instruction, the 
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on 
the access rights information.
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5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is 
allowed. Software can check read/write rights using the VERR (verify for reading) 
and VERW (verify for writing) instructions. Both these instructions specify the 
segment selector for the segment being checked. The instructions then perform the 
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for 
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible 
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these 
checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL 
Instruction)

When the processor accesses any segment it performs a limit check to insure that the 
offset is within the limit of the segment. Software can perform this limit check using 
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction 
specifies the segment selector for the segment descriptor whose limit is to be 
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within 
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment 
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment 
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit 
scaled according to the setting of the G flag in the segment descriptor) into the 
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destination register and sets the ZF flag in the EFLAGS register. If the segment 
selector is not visible at the current privilege level or is an invalid type for the LSL 
instruction, the instruction does not modify the destination register and clears 
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with 
the offset of a pointer. 

5.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry 
the privilege level of a calling procedure (the calling procedure’s CPL) to a called 
procedure. The called procedure then uses the RPL to determine if access to a 
segment is allowed. The RPL is said to “weaken” the privilege level of the called 
procedure to that of the RPL. 

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an 
operating-system procedure (the called procedure) receives a segment selector from 
an application program (the calling procedure), it sets the segment selector’s RPL to 
the privilege level of the calling procedure. Then, when the operating system uses 
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather 
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on 
behalf of an application program unless that program itself has access to the 
segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this 
example, an application program (located in code segment A) possesses a segment 
selector (segment selector D1) that points to a privileged data structure (that is, a 
data structure located in a data segment D at privilege level 0). 

The application program cannot access data segment D, because it does not have 
sufficient privilege, but the operating system (located in code segment C) can. So, in 
an attempt to access data segment D, the application program executes a call to the 
operating system and passes segment selector D1 to the operating system as a 
parameter on the stack. Before passing the segment selector, the (well behaved) 
application program sets the RPL of the segment selector to its current privilege level 
(which in this example is 3). If the operating system attempts to access data 
segment D using segment selector D1, the processor compares the CPL (which is 
now 0 following the call), the RPL of segment selector D1, and the DPL of data 
segment D (which is 0). Since the RPL is greater than the DPL, access to data 
segment D is denied. The processor’s protection mechanism thus protects data 
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of 
data segment D.
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Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to 0 (segment selector D2). The operating system can 
now access data segment D, because its CPL and the RPL of segment selector D2 are 
both equal to the DPL of data segment D. 

Because the application program is able to change the RPL of a segment selector to 
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a 
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL 
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for 
this purpose. This instruction adjusts the RPL of one segment selector to match that 
of another segment selector.

Figure 5-15.  Use of RPL to Weaken Privilege Level of Called Procedure
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The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be 
used. When the operating-system receives segment selector D2 from the application 
program, it uses the ARPL instruction to compare the RPL of the segment selector 
with the privilege level of the application program (represented by the code-segment 
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the 
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from 
accessing numerically lower privilege-level (more privileged) segments by lowering 
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading 
the RPL field of the segment selector for the application-program’s code segment. 
This segment selector is stored on the stack as part of the call to the operating 
system. The operating system can copy the segment selector from the stack into a 
register for use as an operand for the ARPL instruction.

5.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the 
AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory 
references generate alignment exceptions (#AC). The processor does not generate 
alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a 
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level 
protection is used with the flat memory model, it allows supervisor code and data 
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When 
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made 
before the memory cycle is started, and any violation prevents the cycle from 
starting and results in a page-fault exception being generated. Because checks are 
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. 
See Chapter 6, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the 
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page-fault exception mechanism. This chapter describes the protection violations 
which lead to page-fault exceptions.

5.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a paging-structure entry 
(see Chapter 4): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The 
protection checks use the flags in all paging structures. 

5.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on 
two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or 

executive, other system software (such as device drivers), and protected system 
data (such as page tables).

• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the 
processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is 
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode, 
it can access all pages; when in user mode, it can access only user-level pages. (Note 
that the WP flag in control register CR0 modifies the supervisor permissions, as 
described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must 
be set up for at least two segment-based privilege levels: level 0 for supervisor code 
and data segments and level 3 for user code and data segments. (In this model, the 
stacks are placed in the data segments.) To minimize the use of segments, a flat 
memory model can be used (see Section 3.2.1, “Basic Flat Model”). 

Here, the user and supervisor code and data segments all begin at address zero in 
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the 
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level 
protection mechanism. 

5.11.3 Page Type
The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).
5-40 Vol. 3A



PROTECTION
When the processor is in supervisor mode and the WP flag in register CR0 is clear (its 
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or 
read-only are readable; supervisor-mode pages are neither readable nor writable 
from user mode. A page-fault exception is generated on any attempt to violate the 
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to write protected pages. If CR0.WP = 1, read-only pages are not 
writable from any privilege level. This supervisor write-protect feature is useful for 
implementing a “copy-on-write” strategy used by some operating systems, such as 
UNIX*, for task creation (also called forking or spawning). When a new task is 
created, it is possible to copy the entire address space of the parent task. This gives 
the child task a complete, duplicate set of the parent's segments and pages. An alter-
native copy-on-write strategy saves memory space and time by mapping the child's 
segments and pages to the same segments and pages used by the parent task. A 
private copy of a page gets created only when one of the tasks writes to the page. By 
using the WP flag and marking the shared pages as read-only, the supervisor can 
detect an attempt to write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level 
page table) may differ from those of its page-table entry (second-level page table). 
The processor checks the protection for a page in both its page-directory and the 
page-table entries. Table 5-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

5.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0 
accesses, regardless of the CPL at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a 

call to in exception or interrupt handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then 
evaluates page protection. If the processor detects a protection violation at either 
the segment level or the page level, the memory access is not carried out and an 
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exception is generated. If an exception is generated by segmentation, no paging 
exception is generated.

Page-level protections cannot be used to override segment-level protection. For 
example, a code segment is by definition not writable. If a code segment is paged, 
setting the R/W flag for the pages to read-write does not make the pages writable. 
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For 
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 5-3.  Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only 

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table 

entries. IF CR0.WP = 0, supervisor privilege permits read-write access.
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5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE 
BIT

In addition to page-level protection offered by the U/S and R/W flags, paging struc-
tures used with PAE paging and IA-32e paging (see Chapter 4) provide the execute-
disable bit. This bit offers additional protection for data pages. 

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent 
data pages from being used by malicious software to execute code. This capability is 
provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does 
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages. 

If the execute-disable bit of a memory page is set, that page can be used only as 
data. An attempt to execute code from a memory page with the execute-disable bit 
set causes a page-fault exception. 

The execute-disable capability is supported only with PAE paging and IA-32e paging. 
It is not supported with 32-bit paging. Existing page-level protection mechanisms 
(see Section 5.11, “Page-Level Protection”) continue to apply to memory pages inde-
pendent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability
Software can detect the presence of the execute-disable capability using the CPUID 
instruction. CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is avail-
able.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11] 
to 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or 29] = 1. 

If the execute-disable capability is not available, a write to set IA32_EFER.NXE 
produces a #GP exception. See Table 5-4.

Table 5-4.  Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-
disable bit 
enable (NXE)

IA-32e mode 
active (LMA)

Reserve
d

IA-32e mode 
enable (LME)

Reserve
d

SysCall enable 
(SCE)
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5.13.2 Execute-Disable Page Protection
The execute-disable bit in the paging structures enhances page protection for data 
pages. Instructions cannot be fetched from a memory page if IA32_EFER.NXE =1 
and the execute-disable bit is set in any of the paging-structure entries used to map 
the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-
disable bit (bit 63) of the corresponding entry in each level of the paging structures. 
Execute-disable protection can be activated using the execute-disable bit at any level 
of the paging structure, irrespective of the corresponding entry in other levels. When 
execute-disable protection is not activated, the page can be used as code or data.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the 
execute-disable bit for code and data pages.
 

Table 5-5.  IA-32e Mode Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.
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5.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The 
bits being checked varies with paging mode and may vary with the size of physical 
address space. 

Table 5-8 shows the reserved bits that are checked when the execute disable bit 
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 5-8 and Table  
show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0, 

CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the 
implementation, which is reported in CPUID.80000008H. See the table note.

Table 5-6.  Legacy PAE-Enabled 4-KByte Page Level Protection Matrix 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
*  Value not checked.

Table 5-7.  Legacy PAE-Enabled 2-MByte Page Level Protection 
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
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If execute disable bit capability is not enabled or not available, reserved bit checking 
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for 
legacy 32-bit paging modes are shown in Table 5-10.

 

Table 5-8.  IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit 
Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21] 

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by 

CPUID.80000008H:EAX[bits 7-0].
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5.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for 
a page fault to occur include the same conditions that apply to an Intel 64 or IA-32 
processor without execute disable bit capability plus the following new condition: an 
instruction fetch to a linear address that translates to physical address in a memory 
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any 
instruction fetch, including (but not limited to): near branches, far branches, 
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The 
execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is 

not already present in the ITLB.

Table 5-9.  Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE)  No reserved bits checked

PSE36 - PDE, 4-MByte page  Bit [21] 

PSE36 - PDE, 4-KByte page  No reserved bits checked

PSE36 - PTE  No reserved bits checked

PAE - PDP table entry  Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page  Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page  Bits [63:MAXPHYADDR]*

PAE - PTE  Bits [63:MAXPHYADDR]*

64-bit PML4E  Bit [63], bits [51:MAXPHYADDR]* 

PDPTE  Bit [63], bits [51:MAXPHYADDR]* 

PDE, 2-MByte page  Bit [63], bits [51:MAXPHYADDR] & [20:13]* 

PDE, 4-KByte page  Bit [63], bits [51:MAXPHYADDR]* 

PTE  Bit [63], bits [51:MAXPHYADDR]* 

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by 

CPUID.80000008H:EAX[bits 7-0].
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CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information 
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode. 

Chapter 17, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 6.14, “Exception 
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt 
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere 
in the system, the processor, or within the currently executing program or task that 
requires the attention of a processor. They typically result in a forced transfer of 
execution from the currently running program or task to a special software routine or 
task called an interrupt handler or an exception handler. The action taken by a 
processor in response to an interrupt or exception is referred to as servicing or 
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to 
signals from hardware. System hardware uses interrupts to handle events external 
to the processor, such as requests to service peripheral devices. Software can also 
generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an 
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The 
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium 
processors also permits a machine-check exception to be generated when internal 
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running 
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes 
execution of the interrupted procedure or task. The resumption of the interrupted 
procedure or task happens without loss of program continuity, unless recovery from 
an exception was not possible or an interrupt caused the currently running program 
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, 
when operating in protected mode. A description of the exceptions and the conditions 
that cause them to be generated is given at the end of this chapter.
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6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception 
and each interrupt condition requiring special handling by the processor is assigned 
a unique identification number, called a vector number. The processor uses the vector 
number assigned to an exception or interrupt as an index into the interrupt 
descriptor table (IDT). The table provides the entry point to an exception or interrupt 
handler (see Section 6.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 
through 31 are reserved by the Intel 64 and IA-32 architectures for architecture-
defined exceptions and interrupts. Not all of the vector numbers in this range have a 
currently defined function. The unassigned vector numbers in this range are 
reserved. Do not use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and 
are not reserved by the Intel 64 and IA-32 architecture. These interrupts are gener-
ally assigned to external I/O devices to enable those devices to send interrupts to the 
processor through one of the external hardware interrupt mechanisms (see Section 
6.3, “Sources of Interrupts”).

Table 6-1 shows vector number assignments for architecturally defined exceptions 
and for the NMI interrupt. This table gives the exception type (see Section 6.5, 
“Exception Classifications”) and indicates whether an error code is saved on the stack 
for the exception. The source of each predefined exception and the NMI interrupt is 
also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local 
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium 
processors are the LINT[1:0] pins, which are connected to the local APIC (see 
Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local 
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local 
vector table (LVT) to be associated with any of the processor’s exception or interrupt 
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR 
and NMI pins, respectively. Asserting the INTR pin signals the processor that an 
external interrupt has occurred. The processor reads from the system bus the inter-
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rupt vector number provided by an external interrupt controller, such as an 8259A 
(see Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a 
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts 

Vector 
No.

Mne-
monic

Description Type Error 
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ 
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external 
interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined 
Opcode)

Fault No UD2 instruction or reserved 
opcode.1

 7 #NM Device Not Available (No 
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT 
instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can 
generate an exception, an NMI, 
or an INTR.

 9 Coprocessor Segment 
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or 
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS 
register loads.

13 #GP General Protection Fault Yes Any memory reference and 
other protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not 
use.)

No

16 #MF x87 FPU Floating-Point 
Error (Math Fault)

Fault No x87 FPU floating-point or 
WAIT/FWAIT instruction.
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The processor’s local APIC is normally connected to a system-based I/O APIC. Here, 
external interrupts received at the I/O APIC’s pins can be directed to the local APIC 
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel® Atom™, and 
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). 
The I/O APIC determines the vector number of the interrupt and sends this number 
to the local APIC. When a system contains multiple processors, processors can also 
send interrupts to one another by means of the system bus (Pentium 4, Intel Core 
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 
family and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium 
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically 
generated by a system-based interrupt controller (8259A), with the interrupts being 
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to 
occur. However, these interrupts are not handled by the interrupt and exception 
mechanism described in this chapter. These pins include the RESET#, FLUSH#, 
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular 
processor is implementation dependent. Pin functions are described in the data 
books for the individual processors. The SMI# pin is described in Chapter 26, 
“System Management.”

17 #AC Alignment Check Fault Yes 
(Zero
)

Any data reference in 
memory.3

18 #MC Machine Check Abort No Error codes (if any) and source 
are model dependent.4

19 #XM SIMD Floating-Point 
Exception

Fault No SSE/SSE2/SSE3 floating-point 
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n 
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family proces-

sors.
5. This exception was introduced in the Pentium III processor.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)
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6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or 
through the local APIC is called a maskable hardware interrupt. Maskable hardware 
interrupts that can be delivered through the INTR pin include all IA-32 architecture 
defined interrupt vectors from 0 through 255; those that can be delivered through 
the local APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be 
masked as a group (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). 
Note that when interrupts 0 through 15 are delivered through the local APIC, the 
APIC indicates the receipt of an illegal vector. 

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by 
supplying an interrupt vector number as an operand. For example, the INT 35 
instruction forces an implicit call to the interrupt handler for interrupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the 
processor will not be the same as it would be from an NMI interrupt generated in the 
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the 
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not 
activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the 
IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors 
during the execution in an application program or the operating system or executive. 
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section 
6.5, “Exception Classifications”).
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6.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at 
points in the instruction stream. For example, INT 3 causes a breakpoint exception to 
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a 
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the 
exception handler) but does not push an error code on the stack. This is true even if 
the associated hardware-generated exception normally produces an error code. The 
exception handler will still attempt to pop an error code from the stack while handling 
the exception. Because no error code was pushed, the handler will pop off and 
discard the EIP instead (in place of the missing error code). This sends the return to 
the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus 
transactions. These mechanisms are implementation dependent. When a machine-
check error is detected, the processor signals a machine-check exception (vector 18) 
and returns an error code. 

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, 
“Machine-Check Architecture,” for more information about the machine-check 
mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are 
reported and whether the instruction that caused the exception can be restarted 
without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once 

corrected, allows the program to be restarted with no loss of continuity. When a 
fault is reported, the processor restores the machine state to the state prior to 
the beginning of execution of the faulting instruction. The return address (saved 
contents of the CS and EIP registers) for the fault handler points to the faulting 
instruction, rather than to the instruction following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the 
execution of the trapping instruction. Traps allow execution of a program or task 
to be continued without loss of program continuity. The return address for the 
trap handler points to the instruction to be executed after the trapping 
instruction.
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• Aborts — An abort is an exception that does not always report the precise 
location of the instruction causing the exception and does not allow a restart of 
the program or task that caused the exception. Aborts are used to report severe 
errors, such as hardware errors and inconsistent or illegal values in system 
tables.

NOTE
One exception subset normally reported as a fault is not restartable. 
Such exceptions result in loss of some processor state. For example, 
executing a POPAD instruction where the stack frame crosses over 
the end of the stack segment causes a fault to be reported. In this 
situation, the exception handler sees that the instruction pointer 
(CS:EIP) has been restored as if the POPAD instruction had not been 
executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered 
programming errors. An application causing this class of exceptions 
should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or 
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on 
an instruction boundary. All interrupts are guaranteed to be taken on an instruction 
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor 
generates an exception) points to the faulting instruction. So, when a program or task 
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions 
that are generated when access to an operand is blocked. The most common example 
of this type of fault is a page-fault exception (#PF) that occurs when a program or 
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and 
resume execution of the program or task by restarting the faulting instruction. To 
insure that the restart is handled transparently to the currently executing program or 
task, the processor saves the necessary registers and stack pointers to allow a restart 
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction 
following the trapping instruction. If a trap is detected during an instruction which 
transfers execution, the return instruction pointer reflects the transfer. For example, 
if a trap is detected while executing a JMP instruction, the return instruction pointer 
points to the destination of the JMP instruction, not to the next address past the JMP 
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return 
instruction pointer points to the instruction following the INTO instruction that tested 
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EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow 
condition. Upon return from the trap handler, program or task execution continues at 
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. 
Abort handlers are designed to collect diagnostic information about the state of the 
processor when the abort exception occurred and then shut down the application and 
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without 
loss of continuity. The return instruction pointer saved for an interrupt points to the 
next instruction to be executed at the instruction boundary where the processor took 
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is 
taken at the end of the current iteration with the registers set to execute the next 
iteration. 

The ability of a P6 family processor to speculatively execute instructions does not 
affect the taking of interrupts by the processor. Interrupts are taken at instruction 
boundaries located during the retirement phase of instruction execution; so they are 
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying 
amounts of prefetching and preliminary decoding. With these processors as well, 
exceptions and interrupts are not signaled until actual “in-order” execution of the 
instructions. For a given code sample, the signaling of exceptions occurs uniformly 
when the code is executed on any family of IA-32 processors (except where new 
exceptions or new opcodes have been defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, 

Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor 
handles it immediately by calling the NMI handler pointed to by interrupt vector 
number 2. The processor also invokes certain hardware conditions to insure that no 
other interrupts, including NMI interrupts, are received until the NMI handler has 
completed executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked 
by the IF flag in the EFLAGS register.
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It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI 
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware 
can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to 
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the 
NMI interrupt handler be accessed through an interrupt gate to disable maskable 
hardware interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). If 
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction 
issued from the handler generates a general-protection exception (see Section 
17.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the 
general-protection exception handler is invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of 
the processor and of the IF and RF flags in the EFLAGS register, as described in the 
following sections.

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the 
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt 
request; when the IF flag is set, interrupts delivered to the INTR or through the local 
APIC pin are processed as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin 
or delivery mode NMI messages delivered through the local APIC, nor does it affect 
processor generated exceptions. As with the other flags in the EFLAGS register, the 
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can 
be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate 
an interrupt and call the interrupt or exception handler pointed to by the vector 
number. So for example, it is possible to invoke the page-fault handler through the 
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It 
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is an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated 
Exceptions”), when an interrupt is generated through the INTR pin to an exception 
vector, the processor does not push an error code on the stack, so the exception 
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI 
(clear interrupt-enable flag) instructions, respectively. These instructions may be 
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL. 
(The effect of the IOPL on these instructions is modified slightly when the virtual 
mode extension is enabled by setting the VME flag in control register CR4: see 
Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is 
also impacted by the PVI flag: see Section 17.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined 

and modified. The POPF instruction can be used to load the modified flags back 
into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register; 
therefore, they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is 
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 
3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, for a detailed description of the operations 
these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor 
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3, 
“System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception 
(#DB); when clear, instruction breakpoints will generate debug exceptions. The 
primary function of the RF flag is to prevent the processor from going into a debug 
exception loop on an instruction-breakpoint. See Section 16.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.
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6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for 
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into 
the SS register but before the ESP register has been loaded, these two parts of the 
logical address into the stack space are inconsistent for the duration of the interrupt 
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and 
single-step trap exceptions after either a MOV to SS instruction or a POP to SS 
instruction, until the instruction boundary following the next instruction is reached. 
All other faults may still be generated. If the LSS instruction is used to modify the 
contents of the SS register (which is the recommended method of modifying this 
register), this problem does not occur.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND 
INTERRUPTS 

If more than one exception or interrupt is pending at an instruction boundary, the 
processor services them in a predictable order. Table 6-2 shows the priority among 
classes of exception and interrupt sources. 

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
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While priority among these classes listed in Table 6-2 is consistent throughout the 
architecture, exceptions within each class are implementation-dependent and may 
vary from processor to processor. The processor first services a pending exception or 
interrupt from the class which has the highest priority, transferring execution to the 
first instruction of the handler. Lower priority exceptions are discarded; lower priority 
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred. 

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector 
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in 

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in 
the same priority class.

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts (Contd.)
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protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. 
To form an index into the IDT, the processor scales the exception or interrupt vector 
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can 
contain fewer than 256 descriptors, because descriptors are required only for the 
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT 
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize 
performance of cache line fills. The limit value is expressed in bytes and is added to 
the base address to get the address of the last valid byte. A limit value of 0 results in 
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, 
the processor locates the IDT using the IDTR register. This register holds both a 
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store 
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR 
register with the base address and limit held in a memory operand. This instruction 
can be executed only when the CPL is 0. It normally is used by the initialization code 
of an operating system when creating an IDT. An operating system also may use it to 
change from one IDT to another. The SIDT instruction copies the base and limit value 
stored in IDTR to memory. This instruction can be executed at any privilege level. 

If a vector references a descriptor beyond the limit of the IDT, a general-protection 
exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an 
incorrectly configured IDT could result in incomplete interrupt 
handling and/or the blocking of interrupt delivery. 
IA-32 architecture rules need to be followed for setting up IDTR 
base/limit/access fields and each field in the gate descriptors. The 
same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT 
and accessing the stack.
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6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate 
descriptors. The format of a task gate used in an IDT is the same as that of a task 
gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate Descriptor”). The task 
gate contains the segment selector for a TSS for an exception and/or interrupt 
handler task. 

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call 
Gates”). They contain a far pointer (segment selector and offset) that the processor 
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the 
IF flag in the EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or 
Interrupt-Handler Procedure”).

Figure 6-1.  Relationship of the IDTR and IDT
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6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it 
handles calls with a CALL instruction to a procedure or a task. When responding to an 
exception or interrupt, the processor uses the exception or interrupt vector as an 
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL 
to a call gate (see Section 5.8.2, “Gate Descriptors,” through Section 5.8.6, 

Figure 6-2.  IDT Gate Descriptors
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“Returning from a Called Procedure”). If index points to a task gate, the processor 
executes a task switch to the exception- or interrupt-handler task in a manner similar 
to a CALL to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 6-3). The 
segment selector for the gate points to a segment descriptor for an executable code 
segment in either the GDT or the current LDT. The offset field of the gate descriptor 
points to the beginning of the exception- or interrupt-handling procedure.

Figure 6-3.  Interrupt Procedure Call
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When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege 

level, a stack switch occurs. When the stack switch occurs: 

a. The segment selector and stack pointer for the stack to be used by the 
handler are obtained from the TSS for the currently executing task. On this 
new stack, the processor pushes the stack segment selector and stack 
pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP 
registers on the new stack (see Figures 6-4). 

c. If an exception causes an error code to be saved, it is pushed on the new 
stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the 
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers 
on the current stack (see Figures 6-4). 

b. If an exception causes an error code to be saved, it is pushed on the current 
stack after the EIP value.
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To return from an exception- or interrupt-handler procedure, the handler must use 
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction 
except that it restores the saved flags into the EFLAGS register. The IOPL field of the 
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for 
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction 
switches back to the interrupted procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is 
similar to that used for ordinary procedure calls when called through a call gate (see 
Section 5.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does 

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines
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not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The 
protection mechanism for exception- and interrupt-handler procedures is different in 
the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on 

implicit calls to exception and interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or 

interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL 
must be less than or equal to the DPL of the gate. This restriction prevents 
application programs or procedures running at privilege level 3 from using a 
software interrupt to access critical exception handlers, such as the page-fault 
handler, providing that those handlers are placed in more privileged code 
segments (numerically lower privilege level). For hardware-generated interrupts 
and processor-detected exceptions, the processor ignores the DPL of interrupt 
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these 
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques 
can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment. 

This technique can be used for handlers that only need to access data available 
on the stack (for example, divide error exceptions). If the handler needs data 
from a data segment, the data segment needs to be accessible from privilege 
level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 
0. This handler would always run, regardless of the CPL that the interrupted 
program or task is running at.

6.12.1.2  Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or 
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the 
contents of the EFLAGS register on the stack. (On calls to exception and interrupt 
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, 
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing 
from affecting interrupt response. A subsequent IRET instruction restores the TF 
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register 
on the stack.

The only difference between an interrupt gate and a trap gate is the way the 
processor handles the IF flag in the EFLAGS register. When accessing an exception- 
or interrupt-handling procedure through an interrupt gate, the processor clears the 
IF flag to prevent other interrupts from interfering with the current interrupt handler. 
A subsequent IRET instruction restores the IF flag to its value in the saved contents 
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of the EFLAGS register on the stack. Accessing a handler procedure through a trap 
gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a 
task switch results. Handling an exception or interrupt with a separate task offers 
several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling 

the exception or interrupt. If an exception or interrupt occurs when the current 
privilege level 0 stack is corrupted, accessing the handler through a task gate can 
prevent a system crash by providing the handler with a new privilege level 0 
stack.

• The handler can be further isolated from other tasks by giving it a separate 
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of 
machine state that must be saved on a task switch makes it slower than using an 
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A 
switch to the handler task is handled in the same manner as an ordinary task switch 
(see Section 7.3, “Task Switching”). The link back to the interrupted task is stored in 
the previous task link field of the handler task’s TSS. If an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there 
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the 
processor's interrupt mechanism). The software scheduler needs to accommodate 
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes 
handling the interrupt and the time it executes the IRET instruction. 
This action prevents another interrupt from occurring while the 
interrupt task’s TSS is still marked busy, which would cause a 
general-protection (#GP) exception.
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6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, 
the processor pushes an error code onto the stack of the exception handler (whether 
it is a procedure or task). The error code has the format shown in Figure 6-6. The 
error code resembles a segment selector; however, instead of a TI flag and RPL field, 
the error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception 
occurred during delivery of an event external to the program, such as 
an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index 
portion of the error code refers to a gate descriptor in the IDT; when 

Figure 6-5.  Interrupt Task Switch
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clear, indicates that the index refers to a descriptor in the GDT or the 
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, 
the TI flag indicates that the index portion of the error code refers to 
a segment or gate descriptor in the LDT; when clear, it indicates that 
the index refers to a descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT 
to the segment or gate selector being referenced by the error code. In some cases 
the error code is null (all bits are clear except possibly EXT). A null error code indi-
cates that the error was not caused by a reference to a specific segment or that a null 
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the 
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the 
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword 
pushes, the upper half of the error code is reserved. Note that the error code is not 
popped when the IRET instruction is executed to return from an exception handler, so 
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally 
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is 
normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT 
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been 
described for non-64-bit modes. The following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to 

the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 

8-byte, zero extended stores.

Figure 6-6.  Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

6-22 Vol. 3A



INTERRUPT AND EXCEPTION HANDLING
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy 
modes, this push is conditional and based on a change in current privilege level 
(CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the 
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors 
allows an interrupt service routine to be located anywhere in the linear-address 
space. See Figure 6-7.

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The 
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is 
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is 
used by the stack switching mechanisms described in Section 6.14.5, “Interrupt 
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment 
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Figure 6-7.  64-Bit IDT Gate Descriptors
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ware attempts to reference an interrupt gate with a target RIP that is not in canonical 
form.

The target code segment referenced by the interrupt gate must be a 64-bit code 
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the 
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode 
and compatibility mode). Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are 
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt 
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of 
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit 
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because 
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems 
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or 
external INTR# signal can push an additional error code place-holder to maintain 
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or 
exception causes a stack frame to be pushed. This causes the stack frame and 
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In 
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack 
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt 
handler is called. The processor can arbitrarily realign the new RSP on interrupts 
because the previous (possibly unaligned) RSP is unconditionally saved on the newly 
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte 
boundary before interrupts are re-enabled. This allows the stack to be formatted for 
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use 
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a 
stack switch or IST, the OS would have presumably put suitably aligned RSP values in 
the TSS.
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6.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that 
forces this requirement. The stack is formatted in such a way that for actions where 
IRET is required, the 8-byte IRET operand size works correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an 
IRET must pop eight byte items off the stack. This is accomplished by preceding the 
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the 
address size of the instruction. The SS/ESP/RSP size adjustment is determined by 
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is 
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only 
if there is a CPL change. This allows legacy applications to execute properly in 
compatibility mode when using the IRET instruction. 64-bit interrupt service routines 
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, 
even if the target code segment is running in 64-bit mode or at CPL = 0. This is 
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the 
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded 
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and 
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set 
to NULL in order to properly handle returns from subsequent nested far transfers. If 
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. 
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor 
not to load a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in 
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a 
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e 
mode, the legacy stack-switch mechanism is modified. When stacks are switched as 
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS 
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. 
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT, 
interrupts and exceptions). The old SS and RSP are saved on the new stack 
(Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and 
loaded into the SS register.
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In summary, a stack switch in IA-32e mode works like the legacy stack switch, 
except that a new SS selector is not loaded from the TSS. Instead, the new SS is 
forced to NULL.

6.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This 
mechanism unconditionally switches stacks when it is enabled. It can be enabled on 
an individual interrupt-vector basis using a field in the IDT entry. This means that 
some interrupt vectors can use the modified legacy mechanism and others can use 
the IST mechanism. 

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode 
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known 
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up 
a known-good stack by accessing the interrupt service routine through a task gate 
located in the IDT. However, the legacy task-switch mechanism is not supported in 
IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are 
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT); 
see Figure 6-7. The gate descriptor contains a 3-bit IST index field that provides an 
offset into the IST section of the TSS. Using the IST mechanism, the processor loads 
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s 
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed 
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is 
zero, the modified legacy stack-switching mechanism described above is used.

Figure 6-8.  IA-32e Mode Stack Usage After Privilege Level Change
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6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. 
They are arranged in the order of vector numbers. The information contained in 
these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or 

abort type. Some exceptions can be either a fault or trap type, depending on 
when the error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or 
interrupt type. It also describes how the processor handles the exception or 
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the 
exception. If one is saved, the contents of the error code are described. (This 
section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return) 
instruction pointer points to. It also indicates whether the pointer can be used to 
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on 
the state of the currently running program or task and the possibilities of 
restarting the program or task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result 
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception 
occurs before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish 
between traps or faults by examining the contents of DR6 
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. 
Whether the exception is a fault or a trap depends on the condition (see Table 6-3). 
See Chapter 16, “Debugging, Profiling Branches and Time-Stamp Counter,” for 
detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which 
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the 
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because 
the exception occurs before the faulting instruction is executed. The program can 
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the 
instruction or task switch being executed is allowed to complete before the exception 
is generated. However, the new state of the program is not corrupted and execution 
of the program can continue reliably.

Table 6-3.  Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
Vol. 3A 6-29



INTERRUPT AND EXCEPTION HANDLING
Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the 
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC. 
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved 
contents of CS and EIP registers point to the next instruction to be executed at the 
point the interrupt is taken. See Section 6.5, “Exception Classifications,” for more 
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the 
NMI is generated. A program or task can thus be restarted upon returning from an 
interrupt handler without loss of continuity, provided the interrupt handler saves the 
state of the processor before handling the interrupt and restores the processor’s 
state prior to a return.
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Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint 
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first 
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3 
instruction is one byte long, which makes it easy to replace an opcode in a code 
segment in RAM with the breakpoint opcode.) The operating system or a debugging 
tool can use a data segment mapped to the same physical address space as the code 
segment to place an INT 3 instruction in places where it is desired to call the 
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient 
to set breakpoints with the debug registers. (See Section 16.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If 
more breakpoints are needed beyond what the debug registers allow, the INT 3 
instruction can be used. 

The breakpoint (#BP) exception can also be generated by executing the INT n 
instruction with an operand of 3. The action of this instruction (INT 3) is slightly 
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt 
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the 
state of the program is essentially unchanged because the INT 3 instruction does not 
affect any register or memory locations. The debugger can thus resume the 
suspended program by replacing the INT 3 instruction that caused the breakpoint 
with the original opcode and decrementing the saved contents of the EIP register. 
Upon returning from the debugger, program execution resumes with the replaced 
instruction.
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Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The 
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag 
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and 
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS 
register to indicate signed overflow and unsigned overflow, respectively. When 
performing arithmetic on signed operands, the OF flag can be tested directly or the 
INTO instruction can be used. The benefit of using the INTO instruction is that if the 
overflow exception is detected, an exception handler can be called automatically to 
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO 
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state 
of the program is essentially unchanged because the INTO instruction does not affect 
any register or memory locations. The program can thus resume normal execution 
upon returning from the overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction 
was executed. The BOUND instruction checks that a signed array index is within the 
upper and lower bounds of an array located in memory. If the array index is not 
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that 
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the 
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its 

accompanying opcode; for example, the source operand for a LES instruction is 
not a memory location.

• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or 
IA-32 processor that does not support the MMX technology or 
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit 
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate 
support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD 
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE, 
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM 
flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit 
in control register CR4 is clear (0). Note this does not include the following 
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh, 
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, 
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, 
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD, 
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW, 
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or 
IA-32 processor that caused a SIMD floating-point exception when the 
OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2 
instruction that causes the invalid opcode exception, the saved instruction 
pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or 
one that may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL 
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result 
of executing an invalid instruction; that is, decoding and speculatively attempting to 
execute an invalid opcode does not generate this exception. Likewise, in the Pentium 
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processor and earlier IA-32 processors, this exception is not generated as the result 
of prefetching and preliminary decoding of an invalid instruction. (See Section 6.5, 
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 
architectures. These opcodes, even though undefined, do not generate an invalid 
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the 
invalid instruction is not executed.
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Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in 

control register CR0 was set (1). See the paragraph below for the special case of 
the WAIT/FWAIT instruction.

• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of 
register CR0 were set, regardless of the setting of the EM flag.

• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with 
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and 
CLFLUSH) while the TS flag in control register CR0 was set and the EM flag is 
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU 
floating-point instruction is encountered, allowing an exception handler to call 
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last 
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but 
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When 
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction 
is encountered (with the exception of the instructions listed above). The exception 
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before 
it executes the instruction. See Section 2.5, “Control Registers,” for more information 
about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT 
or FWAIT instructions should generate a device-not-available exception. It extends 
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception 
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT 
instruction is executed. The MP flag is provided primarily for use with the Intel 286 
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6 
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP 
flag should always be set; for programs running on the Intel486 SX processor, the MP 
flag should be clear. 

Exception Error Code

None.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or 
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because 
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can 
save the context of the x87 FPU, clear the TS flag, and continue execution at the 
interrupted floating-point or WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception 
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault 
exception. To determine when two faults need to be signalled as a double fault, the 
processor divides the exceptions into three classes: benign exceptions, contributory 
exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double 
fault to be generated. A double-fault exception falls in the abort class of exceptions. 
The program or task cannot be restarted or resumed. The double-fault handler can 
be used to collect diagnostic information about the state of the machine and/or, when 
possible, to shut the application and/or system down gracefully or restart the 
system.

Table 6-4.  Interrupt and Exception Classes 

Class Vector Number Description

Benign Exceptions and 
Interrupts

 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions  0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault
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A segment or page fault may be encountered while prefetching instructions; 
however, this behavior is outside the domain of Table 6-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault 
handler could still lead to a double-fault sequence.

If another exception occurs while attempting to call the double-fault handler, the 
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions 
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The 
processor generates a special bus cycle to indicate that it has entered shutdown 
mode. Software designers may need to be aware of the response of hardware when 
it goes into shutdown mode. For example, hardware may turn on an indicator light on 
the front panel, generate an NMI interrupt to record diagnostic information, invoke 
reset initialization, generate an INIT initialization, or generate an SMI. If any events 
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then 
only a hardware reset can restart the processor. Likewise, if the shutdown occurs 
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler. 

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task 
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and 
then close the application and/or shut down or reset the processor.

Table 6-5.  Conditions for Generating a Double Fault 

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions 
Serially

Handle Exceptions 
Serially

Handle Exceptions 
Serially

Contributory Handle Exceptions 
Serially

Generate a Double 
Fault

Handle Exceptions 
Serially

Page Fault Handle Exceptions 
Serially

Generate a Double 
Fault

Generate a Double 
Fault
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If the double fault occurs when any portion of the exception handling machine state 
is corrupted, the handler cannot be invoked and the processor must be reset.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors 
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor 
detected a page or segment violation while transferring the middle portion of an 
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general 
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action 
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU 
using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected 
during a task switch or during the execution of instructions that use information from 
a TSS. Table 6-6 shows the conditions that cause an invalid TSS exception to be 
generated.

Table 6-6.  Invalid TSS Conditions 
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than 
2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector 
indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds 
descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor 
indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit 
faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor 
which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task 
switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task 
switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the 
new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an 
attempt to lock the new TSS.

LDT segment selector index LDT or LDT not present.
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Stack segment selector 
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector 
index

The stack segment selector is NULL.

Stack segment selector 
index

The stack segment descriptor is a non-data segment.

Stack segment selector 
index

The stack segment is not writable.

Stack segment selector 
index

The stack segment DPL != CPL.

Stack segment selector 
index

The stack segment selector RPL != CPL.

Code segment selector 
index

The code segment selector exceeds descriptor table limit.

Code segment selector 
index

The code segment selector is NULL.

Code segment selector 
index

The code segment descriptor is not a code segment type.

Code segment selector 
index

The nonconforming code segment DPL != CPL.

Code segment selector 
index

The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and 
RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL 
> DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT 
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e 
mode.

Table 6-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
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This exception can generated either in the context of the original task or in the 
context of the new task (see Section 7.3, “Task Switching”). Until the processor has 
completely verified the presence of the new TSS, the exception is generated in the 
context of the original task. Once the existence of the new TSS is verified, the task 
switch is considered complete. Any invalid-TSS conditions detected after this point 
are handled in the context of the new task. (A task switch is considered complete 
when the task register is loaded with the segment selector for the new TSS and, if the 
switch is due to a procedure call or interrupt, the previous task link field of the new 
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state 
may not be consistent. 

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception was caused by an event external to the currently 
running program (for example, if an external interrupt handler using a task gate 
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the 
saved contents of CS and EIP registers point to the instruction that invoked the task 
switch. If the exception condition was detected after the task switch was carried out, 
the saved contents of CS and EIP registers point to the first instruction of the new 
task. 

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error 
condition than causes the fault. See Section 7.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP 
from a TSS on a call or exception which changes privilege levels in 
legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP 
or IST from a TSS on a call or exception which changes privilege 
levels in IA-32e mode.

Table 6-6.  Invalid TSS Conditions  (Contd.)
Error Code Index Invalid Condition
6-44 Vol. 3A



INTERRUPT AND EXCEPTION HANDLING
If an invalid TSS exception occurs during a task switch, it can occur before or after 
the commit-to-new-task point. If it occurs before the commit point, no program state 
change occurs. If it occurs after the commit point (when the segment descriptor 
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it 
generates the exception. During a task switch, the processor first loads all the 
segment registers with segment selectors from the TSS, then checks their contents 
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the 
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing 
another exception. The exception handler should load all segment registers before 
trying to resume the new task; otherwise, general-protection exceptions (#GP) may 
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception 
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them 
from the TSS.
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Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor 
can generate this exception during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-

present segment while loading the SS register causes a stack fault exception 
(#SS) to be generated.] This situation can occur while performing a task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an 
invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-

present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement 
virtual memory at the segment level. If the exception handler loads the segment and 
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a 
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of 
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present 
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that 
caused the violation is pushed onto the stack of the exception handler. If the EXT flag 
is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently 

referenced a not-present segment
• a benign exception that subsequently referenced a not-present segment 

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT 
entry for an interrupt being serviced references a not-present gate. Such an event 
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that 
generated the exception. If the exception occurred while loading segment descrip-
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tors for the segment selectors in a new TSS, the CS and EIP registers point to the first 
instruction in the new task. If the exception occurred while accessing a gate 
descriptor, the CS and EIP registers point to the instruction that invoked the access 
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, 
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by 
simply loading the missing segment into memory and setting the present flag in the 
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a 
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before 
or after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it 
occurs before the commit point, no program state change occurs. If it occurs after 
the commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The segment-not-present exception handler should not rely on being 
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers 
without causing another exception. (See the Program State Change description for 
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information 
on how to handle this situation.) 
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Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register. 

Operations that can cause a limit violation include stack-oriented instructions 
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory 
references which implicitly or explicitly use the SS register (for example, MOV 
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this 
exception when there is not enough stack space for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register. 
This violation can occur during the execution of a task switch, a CALL instruction 
to a different privilege level, a return to a different privilege level, an LSS 
instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that 
reference memory using the stack pointer register containing a non-canonical 
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment 
(in the case of a limit violation) or loading the missing stack segment into memory (in 
the case of a not-present violation. 

In the case of a canonical violation that was caused intentionally by software, 
recovery is possible by loading the correct canonical value into RSP. Otherwise, a 
canonical violation of the address in RSP likely reflects some register corruption in 
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new 
stack during an inter-privilege-level call, the error code contains a segment selector 
for the segment that caused the exception. Here, the exception handler can test the 
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment 
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. However, when the exception results from attempting to 
load a not-present stack segment during a task switch, the CS and EIP registers point 
to the first instruction of the new task.
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Program State Change

A program-state change does not generally accompany a stack-fault exception, 
because the instruction that generated the fault is not executed. Here, the instruction 
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task 
point (see Section 7.3, “Task Switching”). Here, the processor loads all the state 
information from the new TSS (without performing any additional limit, present, or 
type checks) before it generates the exception. The stack fault handler should thus 
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, 
and GS registers without causing another exception. The exception handler should 
check all segment registers before trying to resume the new task; otherwise, general 
protection faults may result later under conditions that are more difficult to diagnose. 
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception 
(#TS)” in this chapter for additional information on how to handle this situation.) 
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Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called 
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be 
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault 
exceptions). The following conditions cause general-protection exceptions to be 
generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS 

segments.
• Exceeding the segment limit when referencing a descriptor table (except during a 

task switch or a stack switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless 

the selector comes from a TSS during a task switch, in which case an invalid-TSS 
exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system 
segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

• Loading the SS register with the segment selector of an executable segment or a 
null segment selector.

• Loading the CS register with a segment selector for a data segment or a null 
segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null 
segment selector.

• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS 

descriptor in the current LDT. TSS descriptors can only reside in the GDT. This 
condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when 

redundant prefixes are placed before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag 

(protection disabled).
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• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not 

an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or 

trap gate from virtual-8086 mode when the handler’s code segment DPL is 
greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see 

Section 5.9, “Privileged Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the 

referenced interrupt, trap, or task gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code 

segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is 

set) or does not point to a segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS 

that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects 

any reserved bits in a page-directory-pointer-table entry set to 1. These bits are 
checked during a write to control registers CR0, CR3, or CR4 that causes a 
reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit 

memory location that is not aligned on a 16-byte boundary when the instruction 
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the 
exception occurs while attempting to call an interrupt handler, the interrupted 
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault 
condition was detected while loading a segment descriptor, the error code contains a 
segment selector to or IDT vector number for the descriptor; otherwise, the error 
code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
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• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception 
handler can be designed to correct all of the conditions that cause general-protection 
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or 
after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it occurs 
before the commit point, no program state change occurs. If it occurs after the 
commit point, the processor will load all the state information from the new TSS 
(without performing any additional limit, present, or type checks) before it generates 
the exception. The general-protection exception handler should thus not rely on 
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS 
registers without causing another exception. (See the Program State Change 
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical 

form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate 

doesn't have the L-bit set and the D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility 

mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-

CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the 

L-bit set.
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• If the segment descriptor pointed to by the segment selector in the destination 
operand is a code segment and it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit 

call-gate.
• If the upper type field of a 64-bit call gate is not 0x0.
• If an attempt is made to load a null selector in the SS register in compatibility 

mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit 

mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and 

64-bit mode where RPL is not equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
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Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the 
processor detected one of the following conditions while using the page-translation 
mechanism to translate a linear address to a physical address:
• The P (present) flag in a page-directory or page-table entry needed for the 

address translation is clear, indicating that a page table or the page containing 
the operand is not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page 
(that is, a procedure running in user mode attempts to access a supervisor-mode 
page).

• Code running in user mode attempts to write to a read-only page. In the Intel486 
and later processors, if the WP flag is set in CR0, the page fault will also be 
triggered by code running in supervisor mode that tries to write to a read-only 
page.

• An instruction fetch to a linear address that translates to a physical address in a 
memory page with the execute-disable bit set (for information about the 
execute-disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description 
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the 
program or task without any loss of program continuity. It can also restart the 
program or task after a privilege violation, but the problem that caused the privilege 
violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of 
information to aid in diagnosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different 

from that for other exceptions (see Figure 6-9). The error code tells the 
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0) 
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception 
was a read (0) or write (1).
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— The U/S flag indicates whether the processor was executing at user mode (1) 
or supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the 
page directory, when the PSE or PAE flags in control register CR4 are set to 1. 
Note: 

• The PSE flag is only available in recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors. 

• The PAE flag is only available on recent Intel 64 and IA-32 processors 
including the Pentium 4, Intel Xeon, and P6 family processors. 

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved 
and is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction 
fetch. This flag is reserved and cleared to 0 if CR4.PAE = 0 (32-bit paging is 
in use) or IA32_EFER.NXE= 0 (the execute-disable feature is either 
unsupported or not enabled). See Section 4.7, “Page-Fault Exceptions,” for 
details. 

• The contents of the CR2 register. The processor loads the CR2 register with the 
32-bit linear address that generated the exception. The page-fault handler can 
use this address to locate the corresponding page directory and page-table 
entries. Another page fault can potentially occur during execution of the page-
fault handler; the handler should save the contents of the CR2 register before a 

 

Figure 6-9.  Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.
The access causing the fault originated when the processor
was executing in user mode.   

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD
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second page fault can occur.1 If a page fault is caused by a page-level protection 
violation, the access flag in the page-directory entry is set when the fault occurs. 
The behavior of IA-32 processors regarding the access flag in the corresponding 
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that 
generated the exception. If the page-fault exception occurred during a task switch, 
the CS and EIP registers may point to the first instruction of the new task (as 
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, 
because the instruction that causes the exception to be generated is not executed. 
After the page-fault exception handler has corrected the violation (for example, 
loaded the missing page into memory), execution of the program or task can be 
resumed.

When a page-fault exception is generated during a task switch, the program-state 
may change, as follows. During a task switch, a page-fault exception can occur 
during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the 

new task.
• While reading the LDT of the new task to verify the segment registers stored in 

the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which 
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type 
checks) before it generates the exception. The page-fault handler should thus not 
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and 
GS registers without causing another exception. (See the Program State Change 

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an 
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite 
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the 
page fault results in a double fault or occurs during the delivery of a double fault.
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description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.) 

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an 
explicit stack switch does not cause the processor to use an invalid stack pointer 
(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get 
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the 
segment selector has been loaded into the SS register but before the ESP register 
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are 
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler 
switches to a well defined stack (that is, the handler is a task or a more privileged 
procedure). However, if the exception handler is called at the same privilege level 
and from the same task, the processor will attempt to use the inconsistent stack 
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the 
same privilege level as the exception handler should initialize a new stack by using 
the LSS instruction rather than a pair of MOV instructions, as described earlier in this 
note. When the exception handler is running at privilege level 0 (the normal case), 
the problem is limited to procedures or tasks that run at privilege level 0, typically 
the kernel of the operating system.
Vol. 3A 6-57



INTERRUPT AND EXCEPTION HANDLING
Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the 
register CR0 must be set for an interrupt 16 (floating-point error exception) to be 
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE 
flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 
19. 

While executing x87 FPU instructions, the x87 FPU detects and reports six types of 
floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of 
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask 
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and 
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program 
execution. The default responses have been designed to provide a reasonable result 
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87 
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is 
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a 
floating-point exception (#MF).
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Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the 
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2 
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87 
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, 
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored 
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU 
floating-point-error exception handler can determine the error condition that caused 
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU 
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT 
instruction that was about to be executed when the floating-point-error exception 
was generated. This is not the faulting instruction in which the error condition was 
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in 
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, for more information about information the FPU saves for use in handling 
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception 
because the handling of the exception is delayed until the next waiting x87 FPU 
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87 
FPU, however, saves sufficient information about the error condition to allow 
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of 
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in 
front of a dependent instruction to force a pending x87 FPU floating-point exception 
to be handled before the dependent instruction is executed. See “x87 FPU Exception 
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about synchronization of x87 
floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment 
checking was enabled. Alignment checks are only carried out in data (or stack) 
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored 
at an address that is not an integer multiple of 4. Table 6-7 lists the alignment 
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that 
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a 
16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.

Table 6-7.  Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
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• AC flag in the EFLAGS register is set.
• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege 
level 3 (user mode). Memory references that default to privilege level 0, such as 
segment descriptor loads, do not generate alignment-check exceptions, even when 
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at 
privilege level 3 can generate an alignment-check exception. Although application 
programs do not normally store these registers, the fault can be avoided by aligning 
the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte 
data structure, the first byte of which must be aligned on a 16-byte boundary. If the 
alignment-check exception (#AC) is enabled when executing these instructions (and 
CPL is 3), a misaligned memory operand can cause either an alignment-check excep-
tion or a general-protection exception (#GP) depending on the processor implemen-
tation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-
Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save 
Processor Extended States” and “XRSTOR—Restore Processor Extended States” in 
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads 
or stores. The LDDQU instructions loads 128-bit unaligned data.They do not generate 
general-protection exceptions (#GP) when operands are not aligned on a 16-byte 
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may 
or may not be generated depending on processor implementation when data 
addresses are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause 
alignment-check faults. These instructions are rarely needed by application 
programs. 

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section 
6.13. EXT is set if the #AC is recognized during delivery of an event other than a soft-
ware interrupt (see “INT n/INTO/INT 3—Call to Interrupt Procedure” in Chapter 3 of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the 
exception.
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Program State Change

A program-state change does not accompany an alignment-check fault, because the 
instruction is not executed.
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Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that 
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor 
families, and these implementations may not be compatible with future Intel 64 or 
IA-32 processors. (Use the CPUID instruction to determine whether this feature is 
present.)

Bus errors detected by external agents are signaled to the processor on dedicated 
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family 
processors and the BUSCHK# pin on the Pentium processor. When one of these pins 
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail 
in Chapter 15, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information. 

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended 
machine-check state registers are directly associated with the error that caused the 
machine-check exception to be generated (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine 
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the 
saved contents of CS and EIP registers are directly associated with the error that 
caused the machine-check exception to be generated; if the flag is clear, the saved 
instruction pointer may not be associated with the error (see Section 15.3.1.2, 
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register 
CR4. 
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For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state 
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be 
collected from the machine-check MSRs, but the program cannot generally be 
restarted. 

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 
is clear), a machine-check exception causes the processor to enter the shutdown 
state.
6-64 Vol. 3A



INTERRUPT AND EXCEPTION HANDLING
Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular 
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing 
an SSE/ SSE2/SSE3 SIMD floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation 
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are 
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for additional information 
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the 
following things:
• It handles the exception automatically by producing the most reasonable result 

and allowing program execution to continue undisturbed. This is the response to 
masked exceptions.

• It generates a SIMD floating-point exception, which in turn invokes a software 
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit 
and mask bit in the MXCSR register. If an exception is masked (the corresponding 
mask bit in the MXCSR register is set), the processor takes an appropriate automatic 
default action and continues with the computation. If the exception is unmasked (the 
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software 
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating 
system does not support unmasked SIMD floating-point exceptions), an invalid 
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
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Note that because SIMD floating-point exceptions are precise and occur immediately, 
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction, 
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD 
floating-point exceptions were masked (causing the corresponding exception flag to 
be set) and the SIMD floating-point exception was subsequently unmasked, then no 
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands 
(made up of two or four sub-operands), multiple SIMD floating-point exception 
conditions may be detected. If no more than one exception condition is detected for 
one or more sets of sub-operands, the exception flags are set for each exception 
condition detected. For example, an invalid exception detected for one sub-operand 
will not prevent the reporting of a divide-by-zero exception for another sub-operand. 
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences 
shown in Table 6-8. This exception precedence sometimes results in the higher 
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Exception Error Code

None.

Table 6-8.  SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for 
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero 
exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the 
inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over 

lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as 
well.
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Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction 
that was executed when the SIMD floating-point exception was generated. This is the 
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception 
because the handling of the exception is immediate unless the particular exception is 
masked. The available state information is often sufficient to allow recovery from the 
error and re-execution of the faulting instruction if needed.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector 

numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when 

the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the 
INT n instruction or instruction following the instruction on which the INTR signal 
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n 
instruction or the INTR signal. The INT n instruction generates the interrupt within 
the instruction stream. When the processor receives an INTR signal, it commits all 
state changes for all previous instructions before it responds to the interrupt; so, 
program execution can resume upon returning from the interrupt handler.
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CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These 
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 
16-bit tasks and the 16-bit TSS structure, see Section 7.6, “16-Bit Task-State 
Segment (TSS).” For information specific to task management in 64-bit mode, see 
Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can 
be used to execute a program, a task or process, an operating-system service utility, 
an interrupt or exception handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for 
dispatching tasks for execution, and for switching from one task to another. When 
operating in protected mode, all processor execution takes place from within a task. 
Even simple systems must define at least one task. More complex systems can use 
the processor’s task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment 
(TSS). The task execution space consists of a code segment, a stack segment, and 
one or more data segments (see Figure 7-1). If an operating system or executive 
uses the processor’s privilege-level protection mechanism, the task execution space 
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides 
a storage place for task state information. In multitasking systems, the TSS also 
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the 
processor for execution, the segment selector, base address, limit, and segment 
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4, 
“Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by 
the task is loaded into control register CR3.
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7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the 

segment registers (CS, DS, SS, ES, FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except 
the state of the task register. Also, the complete contents of the LDTR register are not 
contained in the TSS, only the segment selector for the LDT.

Figure 7-1.  Structure of a Task
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7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following 
ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS 

register is set.

All of these methods for dispatching a task identify the task to be dispatched with a 
segment selector that points to a task gate or the TSS for the task. When dispatching 
a task with a CALL or JMP instruction, the selector in the instruction may select the 
TSS directly or a task gate that holds the selector for the TSS. When dispatching a 
task to handle an interrupt or exception, the IDT entry for the interrupt or exception 
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS. 

When a task is dispatched for execution, a task switch occurs between the currently 
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in 
its TSS and execution of the task is suspended. The context for the dispatched task is 
then loaded into the processor and execution of that task begins with the instruction 
pointed to by the newly loaded EIP register. If the task has not been run since the 
system was last initialized, the EIP will point to the first instruction of the task’s code; 
otherwise, it will point to the next instruction after the last instruction that the task 
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the 
called task), the TSS segment selector for the calling task is stored in the TSS of the 
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, 
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts 
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each 
task to have a different logical-to-physical address mapping for LDT-based segments. 
The page-directory base register (CR3) also is reloaded on a task switch, allowing 
each task to have its own set of page tables. These protection facilities help isolate 
tasks and prevent them from interfering with one another. 

If protection mechanisms are not used, the processor provides no protection 
between tasks. This is true even with operating systems that use multiple privilege 
levels for protection. A task running at privilege level 3 that uses the same LDT and 
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page tables as other privilege-level-3 tasks can access code and corrupt data and the 
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional. 
Multitasking can be handled in software, with each software defined task executed in 
the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at 
least one task, and the segment selector for the TSS must be loaded into the task 
register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system 
segment called the task-state segment (TSS). Figure 7-2 shows the format of a TSS 
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, 
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 7.7, “Task Management in 64-bit Mode.”
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The processor updates dynamic fields when a task is suspended during a task switch. 
The following are dynamic fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, 

ESI, and EDI registers prior to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, 

and GS registers prior to the task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.

Figure 7-2.  32-Bit Task-State Segment (TSS)
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• EIP (instruction pointer) field — State of the EIP register prior to the task 
switch.

• Previous task link field — Contains the segment selector for the TSS of the 
previous task (updated on a task switch that was initiated by a call, interrupt, or 
exception). This field (which is sometimes called the back link field) permits a 
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These 
fields are set up when a task is created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's 

LDT.
• CR3 control register field — Contains the base physical address of the page 

directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers 
consist of a logical address made up of the segment selector for the stack 
segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, ESP1, and 
ESP2). Note that the values in these fields are static for a particular task; 
whereas, the SS and ESP values will change if stack switching occurs within the 
task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the 
processor to raise a debug exception when a task switch to this task occurs (see 
Section 16.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the 
TSS to the I/O permission bit map and interrupt redirection bitmap. When 
present, these maps are stored in the TSS at higher addresses. The I/O map base 
address points to the beginning of the I/O permission bit map and the end of the 
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 1, for more 
information about the I/O permission bit map. See Section 17.3, “Interrupt and 
Exception Handling in Virtual-8086 Mode,” for a detailed description of the 
interrupt redirection bit map.

If paging is used: 
• Avoid placing a page boundary in the part of the TSS that the processor reads 

during a task switch (the first 104 bytes). The processor may not correctly 
perform address translations if a boundary occurs in this area. During a task 
switch, the processor reads and writes into the first 104 bytes of each TSS (using 
contiguous physical addresses beginning with the physical address of the first 
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not 
physically contiguous, the processor will access incorrect information without 
generating a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the 
descriptor table entries for each all should be marked as read/write. 
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• Task switches are carried out faster if the pages containing these structures are 
present in memory before the task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT; 
they cannot be placed in an LDT or the IDT. 

An attempt to access a TSS using a segment selector with its TI flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated 
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A 
general-protection exception is also generated if an attempt is made to load a 
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is 
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The 
processor uses the busy flag to detect an attempt to call a task whose execution has 
been interrupted. To insure that there is only one busy flag is associated with a task, 
each TSS should have only one TSS descriptor that points to it.

The base, limit, and DPL fields and the granularity and present flags have functions 
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment 
Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field 
must have a value equal to or greater than 67H, one byte less than the minimum size 

Figure 7-3.  TSS Descriptor
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of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 
67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O 
permission bit map is included or if the operating system stores additional data. The 
processor does not check for a limit greater than 67H on a task switch; however, it 
does check when accessing the I/O permission bit map or interrupt redirection bit 
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is 
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task 
with a call or a jump. 

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that 
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the 
application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The 
format of a 64-bit TSS is described in Section 7.7. 

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This 
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the 
encoding information for the segment type field.
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7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment 
descriptor (32-bit base address (64 bits in IA-32e mode), 16-bit segment limit, and 
descriptor attributes) for the TSS of the current task (see Figure 2-5). This informa-
tion is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 
shows the path the processor uses to access the TSS (using the information in the 
task register).

The task register has a visible part (that can be read and changed by software) and 
an invisible part (maintained by the processor and is inaccessible by software). The 
segment selector in the visible portion points to a TSS descriptor in the GDT. The 
processor uses the invisible portion of the task register to cache the segment 
descriptor for the TSS. Caching these values in a register makes execution of the task 
more efficient. The LTR (load task register) and STR (store task register) instructions 
load and read the visible portion of the task register: 

Figure 7-4.  Format of TSS and LDT Descriptors in 64-bit Mode
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The LTR instruction loads a segment selector (source operand) into the task register 
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the 
task register with information from the TSS descriptor. LTR is a privileged instruction 
that may be executed only when the CPL is 0. It’s used during system initialization to 
put an initial value in the task register. Afterwards, the contents of the task register 
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register 
in a general-purpose register or memory. This instruction can be executed by code 
running at any privilege level in order to identify the currently running task. However, 
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to 
the default value of 0; the limit is set to FFFFH.

Figure 7-5.  Task Register

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base Address
Task

Invisible PartVisible Part

TSS

Register
7-10 Vol. 3A



TASK MANAGEMENT
7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see 
Figure 7-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment 
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL 
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task 
switch. When a program or procedure makes a call or jump to a task through a task 
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be 
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate 
is used, the DPL of the destination TSS descriptor is not used.

A task can be accessed either through a task-gate descriptor or a TSS descriptor. 
Both of these structures satisfy the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task 

is stored in the TSS descriptor, each task should have only one TSS descriptor. 
There may, however, be several task gates that reference the same TSS 
descriptor. 

• Need to provide selective access to tasks — Task gates fill this need, because 
they can reside in an LDT and can have a DPL that is different from the TSS 
descriptor's DPL. A program or procedure that does not have sufficient privilege 
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) 
may be allowed access to the task through a task gate with a higher DPL. Task 
gates give the operating system greater latitude for limiting access to specific 
tasks.

• Need for an interrupt or exception to be handled by an independent task 
— Task gates may also reside in the IDT, which allows interrupts and exceptions 

Figure 7-6.  Task-Gate Descriptor
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to be handled by handler tasks. When an interrupt or exception vector points to 
a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task 
gate in the IDT can all point to the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a 

TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a 

task-gate descriptor in the GDT or the current LDT.

Figure 7-7.  Task Gates Referencing the Same Task

LDT

Task Gate

TSSGDT

TSS Descriptor

IDT

Task Gate

Task Gate
7-12 Vol. 3A



TASK MANAGEMENT
• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate 
(when calling or jumping to a task) or the state of the NT flag (when executing an 
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or 
CALL instruction, from a task gate, or from the previous task link field (for a task 
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current 
(old) task and the RPL of the segment selector for the new task must be less than 
or equal to the DPL of the TSS descriptor or task gate being referenced. 
Exceptions, interrupts (except for interrupts generated by the INT n instruction), 
and the IRET instruction are permitted to switch tasks regardless of the DPL of 
the destination task-gate or TSS descriptor. For interrupts generated by the INT n 
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid 
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy 
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in 
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor 
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with 
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set. 
(See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the 
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a 
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left 
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor 
finds the base address of the current TSS in the task register and then copies the 
states of the following registers into the current TSS: all the general-purpose 
registers, segment selectors from the segment registers, the temporarily saved 
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an 
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new 
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect 
the state of NT in the EFLAGS loaded from the new task (see Table 7-2).
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10. If the task switch was initiated with a CALL instruction, JMP instruction, an 
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s 
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new 
task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the 
PDBR (control register CR3), the EFLAGS register, the EIP register, the general-
purpose registers, and the segment selectors. A fault during the load of this state 
may corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified. 
Any errors associated with this loading and qualification occur in the context of 
the new task and may corrupt architectural state.

NOTES
If all checks and saves have been carried out successfully, the 
processor commits to the task switch. If an unrecoverable error 
occurs in steps 1 through 11, the processor does not complete the 
task switch and insures that the processor is returned to its state 
prior to the execution of the instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may 
be corrupted, but an attempt will be made to handle the error in the 
prior execution environment. If an unrecoverable error occurs after 
the commit point (in step 13), the processor completes the task 
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to 
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler 
must finish the task switch itself before allowing the processor to 
begin executing the new task. See Chapter 6, “Interrupt 10—Invalid 
TSS Exception (#TS),” for more information about the affect of 
exceptions on a task when they occur after the commit point of a task 
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of 
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task 
switch occurs. If the task is resumed, execution starts with the instruction pointed to 
by the saved EIP value, and the registers are restored to the values they held when 
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege 
level from the suspended task. The new task begins executing at the privilege level 
specified in the CPL field of the CS register, which is loaded from the TSS. Because 
tasks are isolated by their separate address spaces and TSSs and because privilege 
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rules control access to a TSS, software does not need to perform explicit privilege 
checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when 
switching tasks. It also shows the exception that is generated for each check if an 
error is detected and the segment that the error code references. (The order of the 
checks in the table is the order used in the P6 family processors. The exact order is 
model specific and may be different for other IA-32 processors.) Exception handlers 
designed to handle these exceptions may be subject to recursive calls if they attempt 
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1.  Exception Conditions Checked During a Task Switch 
Condition Checked Exception1 Error Code 

Reference2

Segment selector for a TSS descriptor references 
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated 
by a call, interrupt, or exception).

#GP (for JMP, CALL, 
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated 
by an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for 
32-bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
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The TS (task switched) flag in the control register CR0 is set every time a task switch 
occurs. System software uses the TS flag to coordinate the actions of floating-point 
unit when generating floating-point exceptions with the rest of the processor. The TS 
flag indicates that the context of the floating-point unit may be different from that of 
the current task. See Section 2.5, “Control Registers”, for a detailed description of 
the function and use of the TS flag.

7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT 
flag in the EFLAGS register are used to return execution to the previous task. 
EFLAGS.NT = 1 indicates that the currently executing task is nested within the 
execution of another task. 

When a CALL instruction, an interrupt, or an exception causes a task switch: the 
processor copies the segment selector for the current TSS to the previous task link 
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an 
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; 
it then uses the value in the previous task link field to return to the previous task. See 
Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The 
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to 
dispatch a new task when nesting is not desired.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or 
equal to CPL (unless these are 
conforming segments).

#TS New Data Segment

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS 

exception, and #SS is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address 

within the table's segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

Table 7-1.  Exception Conditions Checked During a Task Switch  (Contd.)
Condition Checked Exception1 Error Code 

Reference2
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Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the 
previous task link field, and TS flag (in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is 
possible for a program to set the NT flag and execute an IRET instruction. This might 
randomly invoke the task specified in the previous link field of the current task's TSS. 
To keep such spurious task switches from succeeding, the operating system should 
initialize the previous task link field in every TSS that it creates to 0.

Figure 7-8.  Nested Tasks

Table 7-2.  Effect of a Task Switch on Busy Flag, NT Flag, 
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP 
instruction

Effect of CALL 
Instruction or 

Interrupt

Effect of IRET
Instruction

Busy (B) flag of new 
task.

Flag is set. Must have 
been clear before.

Flag is set. Must have 
been clear before.

No change. Must have 
been set.

Busy flag of old task. Flag is cleared. No change. Flag is 
currently set.

Flag is cleared.

NT flag of new task. Set to value from TSS 
of new task.

Flag is set. Set to value from TSS 
of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field 
of new task.

No change. Loaded with selector 
for old task’s TSS.

No change.

Previous task link field 
of old task.

No change. No change. No change.

TS flag in control 
register CR0.

Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Previous

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1

EFLAGS

Task RegisterTask Link
Previous

Task Link
Previous

Task Link
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7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called 
(dispatched), a recursive (or re-entrant) call to the task would cause the current 
state of the task to be lost. The busy flag in the TSS segment descriptor is provided 
to prevent re-entrant task switching and a subsequent loss of task state information. 
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task 
switch is being generated by a CALL instruction, an interrupt, or an exception), 
the busy flag for the current task remains set. 

3. When switching to the new task (initiated by a CALL instruction, interrupt, or 
exception), the processor generates a general-protection exception (#GP) if the 
busy flag of the new task is already set. If the task switch is initiated with an IRET 
instruction, the exception is not raised because the processor expects the busy 
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP 
instruction in the task code) or by an IRET instruction in the task code, the 
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching 
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks 
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy 
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor 
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy 
flag. This lock keeps two processors from invoking the same task at the same time. 
See Section 8.1.2.1, “Automatic Locking,” for more information about setting the 
busy flag in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a 
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task 
that suspended the task to be removed). It is assumed that the pre-empting task 
is the next task (newer task) in the chain from the task to be removed. Change 
the previous task link field to point to the TSS of the next oldest task in the chain 
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed 
from the chain. If more than one task is being removed from the chain, the busy 
flag for each task being remove must be cleared.

4. Enable interrupts.
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In a multiprocessing system, additional synchronization and serialization operations 
must be added to this procedure to insure that the TSS and its segment descriptor 
are both locked when the previous task link field is changed and the busy flag is 
cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access. 
These segments include the code, data, stack, and system segments referenced in 
the TSS and any other segments accessed by the task code. The segments are 
mapped into the processor’s linear address space, which is in turn mapped into the 
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a 
task its own LDT allows the task address space to be isolated from other tasks by 
placing the segment descriptors for all the segments associated with the task in the 
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient 
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared 
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to 
have its own set of page tables for mapping linear addresses to physical addresses. 
Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one 
of two ways:
• One linear-to-physical address space mapping is shared among all tasks. 

— When paging is not enabled, this is the only choice. Without paging, all linear 
addresses map to the same physical addresses. When paging is enabled, this 
form of linear-to-physical address space mapping is obtained by using one page 
directory for all tasks. The linear address space may exceed the available 
physical space if demand-paged virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical 
address space. — This form of mapping is accomplished by using a different 
page directory for each task. Because the PDBR (control register CR3) is loaded 
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical 
addresses. If the entries of different page directories point to different page tables 
Vol. 3A 7-19



TASK MANAGEMENT
and the page tables point to different pages of physical memory, then the tasks do 
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks 
must lie in a shared area of the physical space, which is accessible to all tasks. This 
mapping is required so that the mapping of TSS addresses does not change while the 
processor is reading and updating the TSSs during a task switch. The linear address 
space mapped by the GDT also should be mapped to a shared area of the physical 
space; otherwise, the purpose of the GDT is defeated. Figure 7-9 shows how the 
linear address spaces of two tasks can overlap in the physical space by sharing page 
tables. 

7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create 
shared logical-to-physical address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access 

to the segment descriptors in the GDT. If some segment descriptors in the GDT 
point to segments in the linear-address space that are mapped into an area of the 
physical-address space common to all tasks, then all tasks can share the data 
and code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT 
fields in their TSSs point to the same LDT. If some segment descriptors in a 

Figure 7-9.  Overlapping Linear-to-Physical Mappings
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shared LDT point to segments that are mapped to a common area of the physical 
address space, the data and code in those segments can be shared among the 
tasks that share the LDT. This method of sharing is more selective than sharing 
through the GDT, because the sharing can be limited to specific tasks. Other 
tasks in the system may have different LDTs that do not give them access to the 
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to 
common addresses in linear address space — If this common area of the 
linear address space is mapped to the same area of the physical address space 
for each task, these segment descriptors permit the tasks to share segments. 
Such segment descriptors are commonly called aliases. This method of sharing is 
even more selective than those listed above, because, other segment descriptors 
in the LDTs may point to independent linear addresses which are not shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in 
Intel 286 processors (see Figure 7-10). This format is supported for compatibility 
with software written to run on earlier IA-32 processors. 

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory, 

which is loaded into control register CR3. A separate set of page tables for each 
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of 
the I/O map are supported.

• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register 
and the EIP register are lost.

• When the general-purpose registers are loaded or saved from a 16-bit TSS, the 
upper 16 bits of the registers are modified and not maintained.
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7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode. 
However, the task switching mechanism available in protected mode is not supported 
in 64-bit mode. Task management and switching must be performed by software. 
The processor issues a general-protection exception (#GP) if the following is 
attempted in 64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 7-10.  16-Bit TSS Format
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Although hardware task-switching is not supported in 64-bit mode, a 64-bit task 
state segment (TSS) must exist. Figure 7-11 shows the format of a 64-bit TSS. The 
TSS holds information important to 64-bit mode and that is not directly related to the 
task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege 

levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from 

the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e 
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register 
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and 
compatibility-mode programs.
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Figure 7-11.  64-Bit TSS Format

031

100

96

92

88

84

80

76

I/O Map Base Address

15

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

0

RSP0 (lower 32 bits)

RSP1 (lower 32 bits)

RSP2 (lower 32 bits)

Reserved bits. Set to 0.

RSP0 (upper 32 bits)

RSP1 (upper 32 bits)

RSP2 (upper 32 bits)

IST1 (lower 32 bits)

IST1 (upper 32 bits)

IST2 (lower 32 bits)

IST3 (lower 32 bits)

IST4 (lower 32 bits)

IST5 (lower 32 bits)

IST6 (lower 32 bits)

IST7 (lower 32 bits)

IST2 (upper 32 bits)

IST3 (upper 32 bits)

IST4 (upper 32 bits)

IST5 (upper 32 bits)

IST6 (upper 32 bits)

IST7 (upper 32 bits)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
7-24 Vol. 3A



CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and 
improving the performance of multiple processors connected to the same system 
bus. These include:
• Bus locking and/or cache coherency management for performing atomic 

operations on system memory.
• Serializing instructions. These instructions apply only to the Pentium 4, Intel 

Xeon, P6 family, and Pentium processors.
• An advance programmable interrupt controller (APIC) located on the processor 

chip (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). 
This feature was introduced by the Pentium processor.

• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family 
processors, the L2 cache is included in the processor package and is tightly 
coupled to the processor. For the Pentium and Intel486 processors, pins are 
provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is 
included in the processor package and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 archi-
tectures enables a single processor core to execute two or more threads concur-
rently (see Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-
Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP) 
systems. However, they can also be used when an Intel 64 or IA-32 processor and a 
special-purpose processor (such as a communications, graphics, or video processor) 
share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are 

attempting simultaneously to access the same address in system memory, some 
communication mechanism or memory access protocol must be available to 
promote data coherency and, in some instances, to allow one processor to 
temporarily lock a memory location.

• To maintain cache consistency — When one processor accesses data cached on 
another processor, it must not receive incorrect data. If it modifies data, all other 
processors that access that data must receive the modified data.

• To allow predictable ordering of writes to memory — In some circumstances, it is 
important that memory writes be observed externally in precisely the same order 
as programmed.
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• To distribute interrupt handling among a group of processors — When several 
processors are operating in a system in parallel, it is useful to have a centralized 
mechanism for receiving interrupts and distributing them to available processors 
for servicing.

• To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are 
discussed in Chapter 11. The APIC architecture is described in Chapter 10. Bus and 
memory locking, serializing instructions, memory ordering, and Intel Hyper-
Threading Technology are discussed in the following sections. 

8.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system 
memory. These operations are typically used to manage shared data structures (such 
as semaphores, segment descriptors, system segments, or page tables) in which two 
or more processors may try simultaneously to modify the same field or flag. The 
processor uses three interdependent mechanisms for carrying out locked atomic 
operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
• Cache coherency protocols that ensure that atomic operations can be carried out 

on cached data structures (cache lock); this mechanism is present in the 
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory 
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that 
the operation will be completed before another processor or bus agent is allowed 
access to the memory location. The processor also supports bus locking for 
performing selected memory operations (such as a read-modify-write operation in a 
shared area of memory) that typically need to be handled atomically, but are not 
automatically handled this way. Because frequently used memory locations are often 
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out 
inside a processor’s caches without asserting the bus lock. Here the processor’s 
cache coherency protocols ensure that other processors that are caching the same 
memory locations are managed properly while atomic operations are performed on 
cached memory locations.

NOTE
Where there are contested lock accesses, software may need to 
implement algorithms that ensure fair access to resources in order to 
prevent lock starvation. The hardware provides no resource that 
guarantees fairness to participating agents. It is the responsibility of 
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software to manage the fairness of semaphores and exclusive locking 
functions.

The mechanisms for handling locked atomic operations have evolved with the 
complexity of IA-32 processors. More recent IA-32 processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined 
locking mechanism than earlier processors. These mechanisms are described in the 
following sections.

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following 
basic memory operations will always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following 
additional memory operations will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following 
additional memory operation will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache 

line

Accesses to cacheable memory that are split across cache lines and page boundaries 
are not guaranteed to be atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors. 
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon, 
and P6 family processors provide bus control signals that permit external memory 
subsystems to make split accesses atomic; however, nonaligned data accesses will 
seriously impact the performance of the processor and should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword 
may be implemented using multiple memory accesses. If such an instruction stores 
to memory, some of the accesses may complete (writing to memory) while another 
causes the operation to fault for architectural reasons (e.g. due an page-table entry 
that is marked “not present”). In this case, the effects of the completed accesses 
may be visible to software even though the overall instruction caused a fault. If TLB 
invalidation has been delayed (see Section 4.10.4.4), such page faults may occur 
even if all accesses are to the same page.
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8.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically 
during certain critical memory operations to lock the system bus or equivalent link. 
While this output signal is asserted, requests from other processors or bus agents for 
control of the bus are blocked. Software can specify other occasions when the LOCK 
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked 
instructions will result in the assertion of the LOCK# signal. It is the responsibility of 
the hardware designer to make the LOCK# signal available in system hardware to 
control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is 
cached internally in the processor, the LOCK# signal is generally not asserted; 
instead, locking is only applied to the processor’s caches (see Section 8.1.4, “Effects 
of a LOCK Operation on Internal Processor Caches”).

8.1.2.1  Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are 
as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests 

and sets the busy flag in the type field of the TSS descriptor when switching to a 
task. To ensure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this 
flag.

• When updating segment descriptors — When loading a segment descriptor, 
the processor will set the accessed flag in the segment descriptor if the flag is 
clear. During this operation, the processor follows the LOCK semantics so that the 
descriptor will not be modified by another processor while it is being updated. For 
this action to be effective, operating-system procedures that update descriptors 
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is not-present, and specify a value for the type field that 
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require 
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the 
segment descriptor is valid and present.

• The Intel386 processor always updates the accessed flag in the segment 
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors only update this flag if it is not already set.
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• When updating page-directory and page-table entries — When updating 
page-directory and page-table entries, the processor uses locked cycles to set 
the accessed and dirty flag in the page-directory and page-table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller 
may use the data bus to send the interrupt vector for the interrupt to the 
processor. The processor follows the LOCK semantics during this time to ensure 
that no other data appears on the data bus when the interrupt vector is being 
transmitted.

8.1.2.2  Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the 
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other 
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B). 
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT, 

and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, 

SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may be interpreted by the system as a lock for a larger 
memory area.

Software should access semaphores (shared memory used for signalling between 
multiple processors) using identical addresses and operand lengths. For example, if 
one processor accesses a semaphore using a word access, other processors should 
not access the semaphore using a byte access. 

NOTE
Do not implement semaphores using the WC memory type. Do not 
perform non-temporal stores to a cache line containing a location 
used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The 
LOCK semantics are followed for as many bus cycles as necessary to update the 
entire operand. However, it is recommend that locked accesses be aligned on their 
natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
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• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all 
externally visible events. Only instruction fetch and page table accesses can pass 
locked instructions. Locked instructions can be used to synchronize data written by 
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and 
store operations (that is, wait for them to complete). This rule is also true for the 
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-
ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to ensure that data written can be fetched as 
instructions. 

NOTE
The locked instructions for the current versions of the Pentium 4, 
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data 
written to be fetched as instructions. However, Intel recommends 
that developers who require the use of self-modifying code use a 
different synchronizing mechanism, described in the following 
sections.

8.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with 
the intent of executing that data as code is called self-modifying code. IA-32 
processors exhibit model-specific behavior when executing self-modified code, 
depending upon how far ahead of the current execution pointer the code has been 
modified. 

As processor microarchitectures become more complex and start to speculatively 
execute code ahead of the retirement point (as in P6 and more recent processor 
families), the rules regarding which code should execute, pre- or post-modification, 
become blurred. To write self-modifying code and ensure that it is compliant with 
current and future versions of the IA-32 architectures, use one of the following 
coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment; 
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
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Execute new code;

The use of one of these options is not required for programs intended to run on the 
Pentium or Intel486 processors, but are recommended to ensure compatibility with 
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon 
the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a 
second processor with the intent of having the second processor execute that data as 
code is called cross-modifying code. As with self-modifying code, IA-32 processors 
exhibit model-specific behavior when executing cross-modifying code, depending 
upon how far ahead of the executing processors current execution pointer the code 
has been modified. 

To write cross-modifying code and ensure that it is compliant with current and future 
versions of the IA-32 architecture, the following processor synchronization algorithm 
must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486 
processor, but is recommended to ensure compatibility with the Pentium 4, Intel 
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of 
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the 
Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the 
bus during a LOCK operation, even if the area of memory being locked is cached in 
the processor.
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For the P6 and more recent processor families, if the area of memory being locked 
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the 
processor may not assert the LOCK# signal on the bus. Instead, it will modify the 
memory location internally and allow it’s cache coherency mechanism to ensure that 
the operation is carried out atomically. This operation is called “cache locking.” The 
cache coherency mechanism automatically prevents two or more processors that 
have cached the same area of memory from simultaneously modifying data in that 
area.

8.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads 
(loads) and writes (stores) through the system bus to system memory. The Intel 64 
and IA-32 architectures support several memory-ordering models depending on the 
implementation of the architecture. For example, the Intel386 processor enforces 
program ordering (generally referred to as strong ordering), where reads and 
writes are issued on the system bus in the order they occur in the instruction stream 
under all circumstances. 

To allow performance optimization of instruction execution, the IA-32 architecture 
allows departures from strong-ordering model called processor ordering in 
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the memory-ordering model) allow performance enhancing 
operations such as allowing reads to go ahead of buffered writes. The goal of any of 
these variations is to increase instruction execution speeds, while maintaining 
memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by 
Intel486, Pentium, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel 
Xeon, and P6 family processors. Section 8.2.3 gives examples illustrating the 
behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section 
8.2.4 considers the special treatment of stores for string operations and Section 
8.2.5 discusses how memory-ordering behavior may be modified through the use of 
specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model; 
however, they operate as strongly-ordered processors under most circumstances. 
Reads and writes always appear in programmed order at the system bus—except for 
the following situation where processor ordering is exhibited. Read misses are 
permitted to go ahead of buffered writes on the system bus when all the buffered 
writes are cache hits and, therefore, are not directed to the same address being 
accessed by the read miss. 
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In the case of I/O operations, both reads and writes always appear in programmed 
order.

Software intended to operate correctly in processor-ordered processors (such as the 
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively 
strong ordering of the Pentium or Intel486 processors. Instead, it should ensure 
that accesses to shared variables that are intended to control concurrent execution 
among processors are explicitly required to obey program ordering through the use 
of appropriate locking or serializing operations (see Section 8.2.5, “Strengthening or 
Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further 
defined as “write ordered with store-buffer forwarding.” This model can be character-
ized as follows. 

In a single-processor system for memory regions defined as write-back cacheable, 
the memory-ordering model respects the following principles (Note the memory-
ordering principles for single-processor and multiple-processor systems are written 
from the perspective of software executing on the processor, where the term 
“processor” refers to a logical processor. For example, a physical processor 
supporting multiple cores and/or HyperThreading Technology is treated as a multi-
processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following 

exceptions:

— writes executed with the CLFLUSH instruction;

— streaming stores (writes) executed with the non-temporal move instructions 
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• Reads may be reordered with older writes to different locations but not with older 

writes to the same location. 
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or 

serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes.
• MFENCE instructions cannot pass earlier reads or writes.
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In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor 

system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes 

from other processors.
• Memory ordering obeys causality (memory ordering respects transitive 

visibility).
• Any two stores are seen in a consistent order by processors other than those 

performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each 
processor performs three writes, one to each of three defined locations (A, B, and C). 
Individually, the processors perform the writes in the same program order, but 
because of bus arbitration and other memory access mechanisms, the order that the 
three processors write the individual memory locations can differ each time the 
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that 
used by the Pentium and Intel486 processors. The only enhancements in the Pentium 
4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering 

principles above.
• Store-buffer forwarding, when a read passes a write to the same memory 

location.
• Out of order store from long string store and string move operations (see Section 

8.2.4, “Out-of-Order Stores and Fast-String Operation,” below).
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NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from 
streaming stores to the same address does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-
ordering principles introduced in Section 8.2.2. They are designed to give software 
writers an understanding of how memory ordering may affect the results of different 
sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back 
cacheable (WB). (Section 8.2.3.1 describes other limitations on the generality of the 
examples.) The reader should understand that they describe only software-visible 
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software 
cannot detect that such a reordering occurred. Similarly, a logical processor may 
execute a memory access more than once as long as the behavior visible to software 
is consistent with a single execution of the memory access.

Figure 8-1.  Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3

Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to 
individual processes.

Example of order of actual writes
from all processors to memory
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8.2.3.1  Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory 
regions defined as write-back cacheable (WB). They apply only to ordinary loads 
stores and to locked read-modify-write instructions. They do not necessarily apply to 
any of the following: out-of-order stores for string instructions (see Section 8.2.4); 
accesses with a non-temporal hint; reads from memory by the processor as part of 
address translation (e.g., page walks); and updates to segmentation and paging 
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory 
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory 
access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2 

byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned 

on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on 

an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write 
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a 
memory-ordering point of view, there are no guarantees regarding the relative order 
in which the constituent memory accesses are made. There is also no guarantee that 
the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction. 
The principles that underlie these examples apply to load and store accesses in 
general and to other instructions that load from or store to memory. Section 8.2.3.8 
and Section 8.2.3.9 give examples using the XCHG instruction. The principles that 
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples 
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX) 

visible only to the processor being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [ _x], val, which implies that val is being stored into 

the memory location x.
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• Loads are written as mov r, [ _x], which implies that the contents of the memory 
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the 
succeeding sections make statement such as “the two stores are reordered,” the 
implication is only that “the two stores appear to be reordered from the point of view 
of software.”

8.2.3.2  Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered 
with the same kind of operation. That is, it ensures that loads are seen in program 
order and that stores are seen in program order. This is illustrated by the following 
example:

The disallowed return values could be exhibited only if processor 0’s two stores are 
reordered (with the two loads occurring between them) or if processor 1’s two loads 
are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-
ordering model does not allow stores to be reordered, the earlier store to x occurs 
before the load from y. Because the Intel-64 memory-ordering model does not allow 
loads to be reordered, the store to x also occurs before the later load from x. This 
r2 = 1.

8.2.3.3  Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not 
occur before a previous load by the same processor. This is illustrated by the 
following example:

Example 8-1.  Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [ _x], 1 mov r1, [ _y]

mov [ _y], 1 mov r2, [ _x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2.  Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [ _x] mov r2, [ _y]

mov [ _y], 1 mov [ _x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed
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Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being 

reordered with the earlier load by the same processor, processor 1’s load from y 
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying 

r2 = 0.

8.2.3.4  Loads May Be Reordered with Earlier Stores to Different 
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier 
store to a different location. However, loads are not reordered with stores to the 
same location.

The fact that a load may be reordered with an earlier store to a different location is 
illustrated by the following example:

At each processor, the load and the store are to different locations and hence may be 
reordered. Any interleaving of the operations is thus allowed. One such interleaving 
has the two loads occurring before the two stores. This would result in each load 
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location 
is illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with 
the earlier store because the accesses are to the same location. Therefore, r1 = 1 
must hold.

Example 8-3.  Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _y] mov r2, [ _x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4.  Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [ _x], 1

mov r1, [ _x]

Initially x = 0

r1 = 0 is not allowed
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8.2.3.5  Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen 
in different orders by those two processors; specifically, each processor may perceive 
its own store occurring before that of the other. This is illustrated by the following 
example:

The memory-ordering model imposes no constraints on the order in which the two 
stores appear to execute by the two processors. This fact allows processor 0 to see 
its store before seeing processor 1's, while processor 1 sees its store before seeing 
processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer 
forwarding. While a store is temporarily held in a processor's store buffer, it can 
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by 
other processors.

8.2.3.6  Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are 
causally related appear to all processors to occur in an order consistent with the 
causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with 

an earlier load (see Section 8.2.3.3), processor 1’s load occurs before its store. 
Thus, processor 0’s store causally precedes processor 1’s store.

Example 8-5.  Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [ _x], 1 mov [ _y], 1

mov r1, [ _x] mov r3, [ _y]

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6.  Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [ _x], 1 mov r1, [ _x]

mov [ _y], 1 mov r2, [ _y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
Vol. 3A 8-15



MULTIPLE-PROCESSOR MANAGEMENT
• Because processor 0’s store causally precedes processor 1’s store, the memory-
ordering model ensures that processor 0’s store appears to occur before 
processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being 

reordered (see Section 8.2.3.2), processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s 

load from x. This implies that r3 = 1.

8.2.3.7  Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two 
processors to be seen in different orders by those two processors.  However, any two 
stores must appear to execute in the same order to all processors other than those 
performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2, 
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered. 
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store 

with respect to processor 2. 
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede 

processor 0’s store with respect to processor 1. 

Because the memory-ordering model ensures that any two stores appear to execute 
in the same order to all processors (other than those performing the stores), this set 
of return values is not allowed

Example 8-7.  Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [ _x], 1 mov [ _y], 1 mov r1, [ _x] mov r3, [_y] 

mov r2, [ _y] mov r4, [_x] 

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed
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8.2.3.8  Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution 
order of all locked instructions, including those that are larger than 8 bytes or are not 
naturally aligned. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG. 
Without loss of generality, suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being 

reordered (see Section 8.2.3.2), processor 3’s loads occur in order and, 
therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by 
assumption), it occurs before processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s 
XCHG occurs before processor 0’s XCHG.

8.2.3.9  Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with 
locked instructions that execute earlier or later. The examples in this section illustrate 
only cases in which a locked instruction is executed before a load or a store. The 
reader should note that reordering is prevented also if the locked instruction is 
executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked 
instructions:

Example 8-8.  Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [ _x], r1 xchg [ _y], r2

mov r3, [ _x] mov r5, [_y]

mov r4, [ _y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

Example 8-9.  Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 xchg [ _y], r3

mov r2, [ _y] mov r4, [ _x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed
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As explained in Section 8.2.3.8, there is a total order of the executions of locked 
instructions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from 
being reordered with its earlier XCHG, processor 0’s XCHG occurs before 
processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if 
processor 1’s XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier 
locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with 

an earlier locked instruction, processor 0’s XCHG into x occurs before its store to 
y. Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see 
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1’s 
XCHG into x occurs before processor 1’s load from x. Thus, r3 = 1.

8.2.4 Out-of-Order Stores and Fast-String Operation 
The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the 
processors operation during the string store operations (initiated with the MOVS and 
STOS instructions) to maximize performance. This optimized operation (called fast-
string operation) is used if certain initial conditions are met (see below). With fast-
string operation, the processor operates on (from an external perspective) the string 
in a cache line by cache line mode. This results in the processor looping on issuing a 
cache-line read for the source address and an invalidation on the external bus for the 
destination address, knowing that all bytes in the destination cache line will be modi-
fied, for the length of the string. With fast-string operation, interrupts are accepted 
by the processor only on cache line boundaries. It is possible that, with fast-string 
operation, the destination line invalidations (and therefore stores) will be issued on 
the external bus out of order. 

Code dependent upon sequential store ordering should not use string operations for 
the entire data structure to be stored. Data and semaphores should be separated. 
Order-dependent code should write to a discrete semaphore variable after any string 
operations to allow correctly ordered data to be seen by all processors.

Example 8-10.  Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [ _x], r1 mov r2, [ _y]

mov [ _y], 1 mov r3, [ _x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
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Initial conditions for fast-string operation are implementation specific. Example 
conditions include:
• EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-

byte aligned for the Pentium 4 processor.
• String operation must be performed in ascending address order.
• The initial operation counter (ECX) must be equal to or greater than 64.
• Source and destination must not overlap by less than a cache line (64 bytes, for 

Intel Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6 
family and Pentium processors).

• The memory type for both source and destination addresses must be either WB 
or WC.

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32 
processor families may differ from above.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 
0) of IA32_MISC_ENABLE MSR. However, Intel recommends that system software 
always enable fast-string operation. 

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some 
processors may further enhance the operation of the REP MOVSB and REP STOSB 
instructions. A processors supports these enhancements if 
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1.

8.2.4.1  Memory-Ordering Model for String Operations on Write-back (WB) 
Memory

This section deals with the memory-ordering model for string operations on write-
back (WB) memory for the Intel 64 architecture. 

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive 
string operations) do not execute out of order. All the stores from an earlier string 
operation will complete before any store from a later string operation. 

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instruc-
tions and the REP prefix) may be interrupted by exceptions or interrupts. The inter-
rupts are precise but may be delayed - for example, the interruptions may be taken 
at cache line boundaries, after every few iterations of the loop, or after operating on 
every few bytes. Different implementations may choose different options, or may 
even choose not to delay interrupt handling, so software should not rely on the delay. 
When the interrupt/trap handler is reached, the source/destination registers point to 
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the next string element to be operated on, while the EIP stored in the stack points to 
the string instruction, and the ECX register has the value it held following the last 
successful iteration. The return from that trap/interrupt handler should cause the 
string instruction to be resumed from the point where it was interrupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be 
interpreted by taking the incorruptibility of fast string operations into account. For 
example, if a fast string operation gets interrupted after k iterations, then stores 
performed by the interrupt handler will become visible after the fast string stores 
from iteration 0 to k, and before the fast string stores from the (k+1)th iteration 
onward. 

Stores within a single string operation may execute out of order (item 1 above) only 
if fast string operation is enabled. Fast string operations are enabled/disabled 
through the IA32_MISC_ENABLE model specific register. 

8.2.4.2  Examples Illustrating Memory-Ordering Principles for String 
Operations

The following examples uses the same notation and convention as described in 
Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string 
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512 
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation 
stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX). 
The block of memory initially contained 0. Processor 1 is reading two memory loca-
tions that are part of the memory block being updated by processor 0, i.e, reading 
locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor 
0 are happening out of order. Assume that fast string operations are enabled on 
processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128 
doubleword stores, writing the value 1 (value in EAX) into the first block of 512 bytes 
from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second 
block of memory from (_x+512) to (_x+1023). All of the memory locations initially 

Example 8-11.  Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed
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contain 0. The block of memory initially contained 0. Processor 1 performs two load 
operations from the two blocks of memory.

It is not possible in the above example for processor 1 to perceive any of the stores 
from the later string operation (to the second 512 block) in processor 0 before seeing 
the stores from the earlier string operation to the first 512 block. 

The above example assumes that writes to the second block (_x+512 to _x+1023) 
does not get executed while processor 0’s string operation to the first block has been 
interrupted. If the string operation to the first block by processor 0 is interrupted, 
and a write to the second memory block is executed by the interrupt handler, then 
that change in the second memory block will be visible before the string operation to 
the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string 
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512 
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second 
memory location outside the memory block of the previous string operation. 
Processor 1 performs two read operations, the first read is from an address outside 
the 512-byte block but to be updated by processor 0, the second ready is from inside 
the block of memory of string operation.

Example 8-12.  Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [ _x]

mov r1, [ _z]

mov ecx, $128

mov r2, [ _y]

rep:stosd 512[ _x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 8-13.  String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [ _x] mov r1, [ _z]

mov [_z], $1 mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
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Processor 1 cannot perceive the later store by processor 0 until it sees all the stores 
from the string operation. Example 8-13 assumes that processor 0’s store to [_z] is 
not executed while the string operation has been interrupted. If the string operation 
is interrupted and the store to [_z] by processor 0 is executed by the interrupt 
handler, then changes to [_z] will become visible before the string operation 
resumes. 

Example 8-14 illustrates the visibility principle when a string operation is interrupted. 

In Example 8-14, processor 0 started a string operation to write to a memory block 
of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations of 
store operations. The address _y has not yet been updated by processor 0 when 
processor 0 got interrupted. The interrupt handler that took control on processor 0 
writes to the address _z. Processor 1 may see the store to _z from the interrupt 
handler, before seeing the remaining stores to the 512-byte memory block that are 
executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No 
store from a string operation can be visible before all prior stores are visible.

Example 8-14.  Interrupted String Operation
Processor 0 Processor 1

rep:stosd [ _x] // interrupted before es:edi reach 
_y

mov r1, [ _z]

mov [_z], $1 // interrupt handler mov r2, [ _y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed

Example 8-15.  String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [ _y]

rep:stosd [ _x] mov r2, [ _z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x 

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
8-22 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
8.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening 
or weakening the memory-ordering model to handle special programming situations. 
These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing 

instructions force stronger ordering on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III 

processor) and the LFENCE and MFENCE instructions (introduced in the Pentium 
4 processor) provide memory-ordering and serialization capabilities for specific 
types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken 
memory ordering for specific area of physical memory (see Section 11.11, 
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the 
Pentium 4, Intel Xeon, and P6 family processors. 

• The page attribute table (PAT) can be used to strengthen memory ordering for a 
specific page or group of pages (see Section 11.12, “Page Attribute Table (PAT)”). 
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium III processors. 

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the 
order of writes to their I/O buffers. I/O instructions can be used to (the IN and OUT 
instructions) impose strong write ordering on such accesses as follows. Prior to 
executing an I/O instruction, the processor waits for all previous instructions in the 
program to complete and for all buffered writes to drain to memory. Only instruction 
fetch and page tables walks can pass I/O instructions. Execution of subsequent 
instructions do not begin until the processor determines that the I/O instruction has 
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a 
strong memory-ordering model. Here, a program can use a locking instruction such 
as the XCHG instruction or the LOCK prefix to ensure that a read-modify-write oper-
ation on memory is carried out atomically. Locking operations typically operate like 
I/O operations in that they wait for all previous instructions to complete and for all 
buffered writes to drain to memory (see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see 
Section 8.3). These instructions are typically used at critical procedure or task 
boundaries to force completion of all previous instructions before a jump to a new 
section of code or a context switch occurs. Like the I/O and locking instructions, the 
processor waits until all previous instructions have been completed and all buffered 
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way 
of ensuring load and store memory ordering between routines that produce weakly-
ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:
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• SFENCE — Serializes all store (write) operations that occurred prior to the 
SFENCE instruction in the program instruction stream, but does not affect load 
operations.

• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE 
instruction in the program instruction stream, but does not affect store 
operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the 
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient 
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of 
how memory types set up with MTRRs can be used strengthen or weaken memory 
ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on 

memory accesses. Here, all reads and writes to the UC memory region appear on 
the bus and out-of-order or speculative accesses are not performed. This 
memory type can be applied to an address range dedicated to memory mapped 
I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB) 
memory type can be chosen. Here, reads can be performed speculatively and 
writes can be buffered and combined. For this type of memory, cache locking is 
performed on atomic (locked) operations that do not split across cache lines, 
which helps to reduce the performance penalty associated with the use of the 
typical synchronization instructions, such as XCHG, that lock the bus during the 
entire read-modify-write operation. With the WB memory type, the XCHG 
instruction locks the cache instead of the bus if the memory access is contained 
within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching charac-
teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the 
caching characteristics established by the MTRRs. Table 11-7 shows the interaction of 
the PAT with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel 
Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not imple-

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no 
later instruction begins execution until LFENCE completes. As a result, an instruction that loads 
from memory and that precedes an LFENCE receives data from memory prior to completion of 
the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before 
the data being stored have become globally visible. Instructions following an LFENCE may be 
fetched from memory before the LFENCE, but they will not execute until the LFENCE completes.
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ment a strong memory-ordering model, except when using the UC memory type. 
Despite the fact that Pentium 4, Intel Xeon, and P6 family processors support 
processor ordering, Intel does not guarantee that future processors will support this 
model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (appli-
cation program interfaces) based on I/O, locking, and/or serializing instructions be 
used to synchronize access to shared areas of memory in multiple-processor 
systems. Also, software should not depend on processor ordering in situations where 
the system hardware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These 
instructions force the processor to complete all modifications to flags, registers, and 
memory by previous instructions and to drain all buffered writes to memory before 
the next instruction is fetched and executed. For example, when a MOV to control 
register instruction is used to load a new value into control register CR0 to enable 
protected mode, the processor must perform a serializing operation before it enters 
protected mode. This serializing operation ensures that all operations that were 
started while the processor was in real-address mode are completed before the 
switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture 
with the Pentium processor to support parallel instruction execution. Serializing 
instructions have no meaning for the Intel486 and earlier processors that do not 
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more 
recent processor families constrain speculative execution because the results of 
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT, 

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR82), MOV 
(to debug register), WBINVD, and WRMSR3.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending 
memory transactions are completed (including writes stored in its store buffer) 
before it executes the next  instruction. Nothing can pass a serializing instruction and 
a serializing instruction cannot pass any other instruction (read, write, instruction 
fetch, or I/O). For example, CPUID can be executed at any privilege level to serialize 

2. MOV CR8 is not defined architecturally as a serializing instruction.

3. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices 
802H to 83FH) are not serializing.
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instruction execution with no effect on program flow, except that the EAX, EBX, ECX, 
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not serialize the instruction 
execution stream:4

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and 
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 8.2.5, “Strengthening 
or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instruc-
tions:
• The processor does not writeback the contents of modified data in its data cache 

to external memory when it serializes instruction execution. Software can force 
modified data to be written back by executing the WBINVD instruction, which is a 
serializing instruction. The amount of time or cycles for WBINVD to complete will 
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on 
interrupt/event response time.

• When an instruction is executed that enables or disables paging (that is, changes 
the PG flag in control register CR0), the instruction should be followed by a jump 
instruction. The target instruction of the jump instruction is fetched with the new 
setting of the PG flag (that is, paging is enabled or disabled), but the jump 
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon, 
and P6 family processors do not require the jump operation following the move to 
register CR0 (because any use of the MOV instruction in a Pentium 4, Intel Xeon, 
or P6 family processor to write to CR0 is completely serializing). However, to 
maintain backwards and forward compatibility with code written to run on other 
IA-32 processors, it is recommended that the jump operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging 
is enabled, the next instruction is fetched using the translation tables that 
correspond to the new value of CR3. Therefore the next instruction and the 
sequentially following instructions should have a mapping based upon the new 
value of CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4, 
“Invalidation of TLBs and Paging-Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction 
techniques to improve performance by prefetching the destination of a branch 
instruction before the branch instruction is executed. Consequently, instruction 
execution is not deterministically serialized when a branch instruction is 
executed.

4. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior 
instructions have completed locally, and no later instruction begins execution until LFENCE com-
pletes.
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8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version 
1.4. This specification defines the boot protocol to be used by IA-32 processors in 
multiple-processor systems. (Here, multiple processors is defined as two or more 
processors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated 

system hardware.
• It allows hardware to initiate the booting of a system without the need for a 

dedicated signal or a predefined boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those 

supporting Intel Hyper-Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64 

processors.

The mechanism for carrying out the MP initialization protocol differs depending on 
the IA-32 processor family, as follows:
• For P6 family processors — The selection of the BSP and APs (see Section 

8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus, 
using BIPI and FIPI messages. See Appendix C, “MP Initialization For P6 Family 
Processors,” for a complete discussion of MP initialization for P6 family 
processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H — 
The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) is 
handled through arbitration on the system bus, using BIPI and FIPI messages 
(see Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and 
beyond, 6E0H and beyond, 6F0H and beyond — The selection of the BSP and 
APs is handled through a special system bus cycle, without using BIPI and FIPI 
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for 
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when 
the CPUID instruction is executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap 
processor (BSP) and the application processors (APs). Following a power-up or 
RESET of an MP system, system hardware dynamically selects one of the processors 
on the system bus as the BSP. The remaining processors are designated as APs.
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As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE 
MSR (see Figure 10-5) of the BSP, indicating that it is the BSP. This flag is cleared for 
all other processors. 

The BSP executes the BIOS’s boot-strap code to configure the APIC environment, 
sets up system-wide data structures, and starts and initializes the APs. When the BSP 
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then 
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a 
SIPI message, an AP executes the BIOS AP configuration code, which ends with the 
AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the 
MP initialization protocol treats each of the logical processors on the system bus or 
coherent link domain as a separate processor (with a unique APIC ID). During boot-
up, one of the logical processors is selected as the BSP and the remainder of the 
logical processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on 
the system:
• The MP protocol is executed only after a power-up or RESET. If the MP protocol 

has completed and a BSP is chosen, subsequent INITs (either to a specific 
processor or system wide) do not cause the MP protocol to be repeated. Instead, 
each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to 
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or 
enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the 
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the 
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and 
when the AP responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for 
Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system 
execute the MP initialization protocol algorithm to initialize each of the logical proces-
sors on the system bus or coherent link domain. In the course of executing this algo-
rithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology. 
The unique ID is a 32-bit value if the processor supports CPUID leaf 0BH, 
otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identifying Logical 
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Processors in an MP System”). This ID is written into the local APIC ID register for 
each processor.

2. Each logical processor is assigned a unique arbitration priority based on its 
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other 
logical processors on the system bus. 

4. Upon completion of the BIST, the logical processors use a hardware-defined 
selection mechanism to select the BSP and the APs from the available logical 
processors on the system bus. The BSP selection mechanism differs depending 
on the family, model, and stepping IDs of the processors, as follows: 

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is 
toggling. When the BNR# pin stops toggling, each processor attempts to 
issue a NOP special cycle on the system bus. 

• The logical processor with the highest arbitration priority succeeds in 
issuing a NOP special cycle and is nominated the BSP. This processor sets 
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins 
executing BIOS boot-strap code, beginning at the reset vector (physical 
address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special 
cycle) are designated as APs. They leave their BSP flags in the clear state 
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor 
that broadcasts a BIPI (and thus receives its own BIPI vector), selects 
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See 
Appendix C.1, “Overview of the MP Initialization Process For P6 Family 
Processors,” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are 
designated as APs. They leave their BSP flags in the clear state and enter 
a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including 
self,” which the BSP and APs treat as an end of MP initialization signal. 
Only the processor with its BSP flag set responds to the FIPI message. It 
responds by fetching and executing the BIOS boot-strap code, beginning 
at the reset vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and 
adds its initial APIC ID to these tables as appropriate. 

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1, 
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI 
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message contains a vector to the BIOS AP initialization code (at 000VV000H, 
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to 
a BIOS initialization semaphore. The first AP to the semaphore begins executing 
the initialization code. (See Section 8.4.4, “MP Initialization Example,” for 
semaphore implementation details.) As part of the AP initialization procedure, 
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and 
increments the processor counter by 1. At the completion of the initialization 
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP 
initialization code, the BSP establishes a count for the number of processors 
connected to the system bus, completes executing the BIOS boot-strap code, 
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the 
APs remain in the halted state. In this state they will respond only to INITs, NMIs, 
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol 
for multiple Intel Xeon processors operating in an MP configuration.

Appendix B, “Model-Specific Registers (MSRs),” describes how to program the 
LINT[0:1] pins of the processor’s local APICs after an MP configuration has been 
completed.

8.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to 
initialize processors in an MP system after the BSP and APs have been established. 
The code runs on Intel 64 or IA-32 processors that use a protocol. This includes P6 
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel 
Xeon processors.

The following constants and data definitions are used in the accompanying 
code examples. They are based on the addresses of the APIC registers defined in 
Table 10-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H
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8.4.4.1  Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see 
Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the 
BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 architecture 
starting address (FFFF FFF0H). The boot-strap code typically performs the following 
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1 
MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the 
code snippet below is an example that applies to logical processors in a system 
whose local APIC units operate in xAPIC mode that APIC registers are accessed 
using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit 
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address 
mode address space (1-MByte space). For example, a vector of 0BDH specifies a 
start-up memory address of 000BD000H. 

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR  EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;
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12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC 
error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler. 
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this 
semaphore to determine the order in which they execute BIOS AP initialization 
code.

14. Performs the following operation to set up the BSP to detect the presence of APs 
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP 
BIOS initialization code, the AP will increment the COUNT variable to indicate 
its presence. When the timer expires, the BSP checks the value of the COUNT 
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and 
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI 
; to all APs into EAX.
MOV [ESI], EAX; Broadcast INIT IPI to all APs
; 10-millisecond delay loop.
MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs
; 200-microsecond delay loop
MOV [ESI], EAX; Broadcast second SIPI IPI to all APs
; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system 
diagnostics as appropriate.
8-32 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
8.4.4.2  Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the 
vector encoded in the SIPI. The AP initialization code typically performs the following 
operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore 
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads 
the EBX, ECX, and EDX registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves 
the values in the EAX, ECX, and EDX registers in a system configuration space in 
RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped 
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP 
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and 
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10 
in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have 
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor 
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in 
either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read 

APIC ID in one of two ways depending on the local APIC unit is operating in 
x2APIC mode (see Intel® 64 Architecture x2APIC Specification)or in xAPIC 
mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-
bit APIC ID can be read by executing a RDMSR instruction to read the 
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processor’s x2APIC ID register. This method is equivalent to executing CPUID 
leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by 
executing a MOV instruction to read the processor’s local APIC ID register 
(see Section 10.4.6, “Local APIC ID”). This is the ID to use for directing 
physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS 
creates an ACPI table and an MP table. These tables are defined in the Multipro-
cessor Specification Version 1.4 and provide software with a list of the processors 
in the system and their local APIC IDs. The format of the ACPI table is derived 
from the ACPI specification, which is an industry standard power management 
and platform configuration specification for MP systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An 
APIC ID is assigned to a logical processor during power up. This is the initial APIC 
ID reported by CPUID.1:EBX[31:24] and may be different from the current value 
read from the local APIC. The initial APIC ID can be used to determine the 
topological relationship between logical processors for multi-processor systems 
that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each 
bit mask can be used to extract an identifier to represent a hierarchical level of 
the multi-threading resource topology in an MP system (See Section 8.9.1, 
“Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of 
up to four bit-fields. In a non-clustered MP system, the field consists of up to 
three bit fields. 

• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID 
leaf 0BH) — A unique APIC ID is assigned to a logical processor during power up. 
This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-bit value. Use the 32-
bit APIC ID and CPUID leaf 0BH to determine the topological relationship between 
logical processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH 
parameters. (See Section 8.9.1, “Hierarchical Mapping of Shared Resources”). 

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors. 
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor 
during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package 
identifier (which can also be thought of as a socket identifier). In systems that 
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used 
in the Intel Xeon processor MP to identify the two logical processors within the 
package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”). 
For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit 
0 is always set to 0; for Intel Xeon processors supporting Intel Hyper-Threading 
Technology, bit 0 performs the same function as it does for Intel Xeon processor MP. 

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of 
Shared Resources” for a complete description of the topological relationships 
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between logical processors and bit field locations within an initial APIC ID across Intel 
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor 
and platform hardware capabilities. Software should determine these at runtime. 
When initial APIC IDs are assigned to logical processors, the value of APIC ID 
assigned to a logical processor will respect the bit-field boundaries corresponding 
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID 
of multi-threading capable systems are shown in Section 8.9.

For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 8-2). Here, bits 0 and 1 form a 2-bit 
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID. 

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND 
INTEL® MULTI-CORE TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to 
Intel 64 and IA-32 architectures that enable a single physical processor to execute 
two or more separate code streams (called threads) concurrently. In Intel Hyper-
Threading Technology, a single processor core provides two logical processors that 
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology 
Architecture”). In Intel multi-core technology, a physical processor package provides 

Figure 8-2.  Interpretation of APIC ID in Early MP Systems
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two or more processor cores. Both configurations require chipsets and a BIOS that 
support the technologies.

Software should not rely on processor names to determine whether a processor 
supports Intel Hyper-Threading Technology or Intel multi-core technology. Use the 
CPUID instruction to determine processor capability (see Section 8.6.2, “Initializing 
Multi-Core Processors”). 

8.6 DETECTING HARDWARE MULTI-THREADING 
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading 
support in a physical processor. Hardware multi-threading can support several vari-
eties of multigrade and/or Intel Hyper-Threading Technology. CPUID instruction 
provides several sets of parameter information to aid software enumerating topology 
information. The relevant topology enumeration parameters provided by CPUID 
include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) — 

Indicates when set that the physical package is capable of supporting Intel 
Hyper-Threading Technology and/or multiple cores. 

• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package 
(CPUID.1:EBX[23:16]) — Indicates the maximum number of addressable 
ID for logical processors in a physical package. Within a physical package, 
there may be addressable IDs that are not occupied by any logical 
processors. This parameter does not represents the hardware capability of 
the physical processor.5

• Addressable IDs for processor cores in the same Package6 
(CPUID.(EAX=4, ECX=07):EAX[31:26] + 1 = Y) — Indicates the maximum 
number of addressable IDs attributable to processor cores (Y) in the physical 
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC 
ID: Intel 64 processors supporting CPUID leaf 0BH will assign unique APIC IDs to 
each logical processor in the system. CPUID leaf 0BH reports the 32-bit APIC ID 

5. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

6. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If 
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only 
one core per package.

7. Maximum number of cores in the physical package must be queried by executing CPUID with 
EAX=4 and a valid ECX input value. Valid ECX input values start from 0.
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and provide topology enumeration parameters. See CPUID instruction reference 
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only 
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “Addressable IDs for Logical processors”. Simi-
larly, the number of cores enabled by system software may be less than the value of 
“Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf 
(0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID 

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed 
to next step,

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. Note the presence of CPUID leaf 0BH in a processor does not guarantee support 
that the local APIC supports x2APIC. If CPUID.(EAX=0BH, ECX=0H):EBX returns 
zero and maximum input value for basic CPUID information is greater than 0BH, then 
CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors 
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel 
Hyper-Threading Technology is the same as for conventional MP systems (see 
Section 8.4, “Multiple-Processor (MP) Initialization”). One logical processor in the 
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 8.4.3, 
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 8.4.4, 
“MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in 
the local APIC ID register for each logical processor. If two or more processors 
supporting Intel Hyper-Threading Technology are present, each logical processor on 
the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical 
Processors in an MP System”). Once logical processors have APIC IDs, software 
communicates with them by sending APIC IPI messages.
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8.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32 
processors is the same as for conventional MP systems (see Section 8.4, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP; 
other logical processors are designated as APs. 

During initialization, each logical processor is assigned an APIC ID. Once logical 
processors have APIC IDs, software may communicate with them by sending APIC 
IPI messages.

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor 
(BSP) executes operating system code. Other logical processors are placed in the 
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IPI) addressed to the halted logical 
processor. In response to the IPI, the processor wakes up and begins executing the 
thread identified by the interrupt vector received as part of the IPI. 

To manage execution of multiple threads on logical processors, an operating system 
can use conventional symmetric multiprocessing (SMP) techniques. For example, the 
operating-system can use a time-slice or load balancing mechanism to periodically 
interrupt each of the active logical processors. Upon interrupting a logical processor, 
the operating system checks its run queue for a thread waiting to be executed and 
dispatches the thread to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting 
Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology 
as they are on conventional MP systems. External interrupts are received by the I/O 
APIC, which distributes them as interrupt messages to specific logical processors 
(see Figure 8-3). 

Logical processors can also send IPIs to other logical processors by writing to the ICR 
register of its local APIC (see Section 10.6, “Issuing Interprocessor Interrupts”). This 
also applies to dual-core processors.
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8.7 INTEL® HYPER-THREADING TECHNOLOGY 
ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example. 
This implementation of the Intel Hyper-Threading Technology consists of two logical 
processors (each represented by a separate architectural state) which share the 
processor’s execution engine and the bus interface. Each logical processor also has 
its own advanced programmable interrupt controller (APIC).

 

Figure 8-3.  Local APICs and I/O APIC in MP System Supporting Intel HT Technology
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8.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within 
Intel 64 or IA-32 processors supporting Intel Hyper-Threading Technology. The 
features can be subdivided into three groups: 
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical 

processor point to the instruction stream for the thread being executed by the 
logical processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data 
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task 

register)

Figure 8-4.  IA-32 Processor with Two Logical Processors Supporting Intel HT 
Technology
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• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability 

(IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the 

exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), 

control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and 

IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized, 
each logical processor is assigned a local APIC ID (see Table 10-1). The local APIC ID 
serves as an ID for the logical processor and is stored in the logical processor’s APIC 
ID register. If two or more processors supporting Intel Hyper-Threading Technology 
are present in a dual processor (DP) or MP system, each logical processor on the 
system bus is assigned a unique local APIC ID (see Section 8.9.3, “Hierarchical ID of 
Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-
rupt (IPI) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter 
10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by 
logical processors. When one logical processor updates the setting of the MTRRs, 
settings are automatically shared with the other logical processors in the same phys-
ical package. 

The architectures require that all MP systems based on Intel 64 and IA-32 processors 
(this includes logical processors) must use an identical MTRR memory map. This 
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gives software a consistent view of memory, independent of the processor on which 
it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for infor-
mation on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in 
Section 11.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the same 
for all processors in a system, including the logical processors.

8.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel 
NetBurst® microarchitecture, all of the machine check architecture (MCA) MSRs 
(except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for 
each logical processor. This permits logical processors to initialize, configure, query, 
and handle machine-check exceptions simultaneously within the same physical 
processor. The design is compatible with machine check exception handlers that 
follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its 
machine check in progress bit field (MCIP) can be used to detect recursion on the 
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of 
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with 
respect to shared hardware resources, both logical processors are notified of 
machine check errors that occur within a given physical processor. If machine-check 
exceptions are enabled when a fatal error is reported, all the logical processors within 
a physical package are dispatched to the machine-check exception handler. If 
machine-check exceptions are disabled, the logical processors enter the shutdown 
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 
should be set for each logical processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the 
MCA facilities are shared between all logical processors on the same processor core.

8.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6, 
DR7) and its own debug control MSR. These can be set to control and record debug 
information for each logical processor independently. Each logical processor also has 
its own last branch records (LBR) stack.
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8.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the 
logical processors within a processor core for processors based on Intel NetBurst 
microarchitecture. As a result, software must manage the use of these resources. 
The performance counter interrupts, events, and precise event monitoring support 
can be set up and allocated on a per thread (per logical processor) basis. 

See Section 30.10, “Performance Monitoring and Intel Hyper-Threading Technology 
in Processors Based on Intel NetBurst® Microarchitecture,” for a discussion of perfor-
mance monitoring in the Intel Xeon processor MP. 

In Intel Atom processor family that support Intel Hyper-Threading Technology, the 
performance counters (general-purpose and fixed-function counters) and their 
companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the 
logical processors in a processor core supporting Intel Hyper-Threading Technology. 
However, some bit fields within IA32_MISC_ENABLE MSR may be duplicated per 
logical processor. The partition of shared or duplicated bit fields within 
IA32_MISC_ENABLE is implementation dependent. Software should program dupli-
cated fields carefully on all logical processors in the system to ensure consistent 
behavior.

8.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-
Threading Technology obey the same rules for memory ordering as Intel 64 or IA-32 
processors without Intel HT Technology (see Section 8.2, “Memory Ordering”). Each 
logical processor uses a processor-ordered memory model that can be further 
defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory-ordering model to handle special programming situ-
ations apply to each logical processor.

8.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-
Threading Technology executes a serializing instruction, only that logical processor is 
affected by the operation. An exception to this rule is the execution of the WBINVD, 
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD 
flag in control register CR0 is modified. Here, both logical processors are serialized.
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8.7.11 MICROCODE UPDATE Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode 
update facilities are shared between the logical processors; either logical processor 
can initiate an update. Each logical processor has its own BIOS signature MSR 
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an 
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical 
processors are updated with identical information. If logical processors initiate an 
update simultaneously, the processor core provides the necessary synchronization 
needed to ensure that only one update is performed at a time. 

NOTE
Some processors (prior to the introduction of Intel 64 Architecture 
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors 
in the same core. All other processors support logical processors 
initiating an update simultaneously. Intel recommends a common 
approach that the microcode loader use the sequential technique 
described in Section 9.11.6.3.

8.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying 
code, where data writes modify instructions cached or currently in flight. They also 
support cross-modifying code, where on an MP system writes generated by one 
processor modify instructions cached or currently in flight on another. See Section 
8.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 proces-
sors supporting Intel Hyper-Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1  Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared. 
Any cache manipulation instruction that is executed on one logical processor has a 
global effect on the cache hierarchy of the physical processor. Note the following:
8-44 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
• WBINVD instruction — The entire cache hierarchy is invalidated after modified 
data is written back to memory. All logical processors are stopped from executing 
until after the write-back and invalidate operation is completed. A special bus 
cycle is sent to all caching agents. The amount of time or cycles for WBINVD to 
complete will vary due to the size of different cache hierarchies and other factors. 
As a consequence, the use of the WBINVD instruction can have an impact on 
interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing 
back modified data to memory. All logical processors are stopped from executing 
until after the invalidate operation is completed. A special bus cycle is sent to all 
caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache 
hierarchy after any modified data is written back to memory and a bus cycle is 
sent to all caching agents, regardless of which logical processor caused the cache 
line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0 
control register, and thus its own CD flag in CR0. The CD flags for the two logical 
processors are ORed together, such that when any logical processor sets its CD 
flag, the entire cache is nominally disabled. 

8.7.13.2  Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are 
shared. The instruction cache TLB may be duplicated or shared in each logical 
processor, depending on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that 
initiated the translation. This tag applies even for translations that are marked global 
using the page-global feature for memory paging. See Section 4.10, “Caching Trans-
lation Information,” for information about global translations.

When a logical processor performs a TLB invalidation operation, only the TLB entries 
that are tagged for that logical processor are guaranteed to be flushed. This protocol 
applies to all TLB invalidation operations, including writes to control registers CR3 
and CR4 and uses of the INVLPG instruction.

8.7.13.3  Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors 
share the catastrophic shutdown detector and the automatic thermal monitoring 
mechanism (see Section 14.5, “Thermal Monitoring and Protection”). Sharing results 
in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown 

temperature, the processor core halts execution, which causes both logical 
processors to stop execution.
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• When the processor’s core temperature rises above the preset automatic thermal 
monitor trip temperature, the clock speed of the processor core is automatically 
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own 
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or 
disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors 
within a physical processor and the modulation duty cycle must be set to the same 
value for each logical processor. If the duty cycle values differ between the logical 
processors, the processor clock will be modulated at the highest duty cycle selected.

8.7.13.4  External Signal Compatibility
This section describes the constraints on external signals received through the pins 
of a processor supporting Intel Hyper-Threading Technology and how these signals 
are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the 

Intel Xeon processor MP. External control logic uses this pin for power 
management within the system. When the STPCLK# signal is asserted, the 
processor core transitions to the stop-grant state, where instruction execution is 
halted but the processor core continues to respond to snoop transactions. 
Regardless of whether the logical processors are active or halted when the 
STPCLK# signal is asserted, execution is stopped on both logical processors and 
neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied 
together. As a result this signal affects all the logical processors within the system 
simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading 
Technology has only one set of LINT0 and LINT1 pins, which are shared between 
the logical processors. When one of these pins is asserted, both logical 
processors respond unless the pin has been masked in the APIC local vector 
tables for one or both of the logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver 
interrupts to the logical processors. Instead all interrupts are delivered to the 
local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for 
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the 
physical address to be masked (forced to zero) for all external bus memory 
accesses. Processors supporting Intel Hyper-Threading Technology provide one 
A20M# pin, which affects the operation of both logical processors within the 
physical processor. 
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The functionality of A20M# is used primarily by older operating systems and not 
used by modern operating systems. On newer Intel 64 processors, A20M# may 
be absent. 

8.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting 
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium 
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core 
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon 
processors. Features vary across different microarchitectures and are detectable 
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical 
to a single-processor implementation of the underlying microarchitecture without 
hardware multi-threading capability. Each logical processor in a dual-core processor 
(whether supporting Intel Hyper-Threading Technology or not) has its own APIC 
functionality, PAT, machine check architecture, debug registers and extensions. Each 
logical processor handles serialization instructions or self-modifying code on its own. 
Memory order is handled the same way as in Intel Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is 
shared by one or more processor cores or by all logical processors in the physical 
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing 
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core 
processor can be discovered using CPUID. Within each processor core, one or more 
logical processors may be available. 

System software must follow the requirement MP initialization sequences (see 
Section 8.4, “Multiple-Processor (MP) Initialization”) to recognize and enable logical 
processors. At runtime, software can enumerate those logical processors enabled by 
system software to identify the topological relationships between these logical 
processors. (See Section 8.9.5, “Identifying Topological Relationships in a MP 
System”). 

8.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Intel Hyper-Threading Technology. MTRR is not shared 
between logical processors located in different cores or different physical packages. 
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The Intel 64 and IA-32 architectures require that all logical processors in an MP 
system use an identical MTRR memory map. This gives software a consistent view of 
memory, independent of the processor on which it is running. 

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two 
logical processors sharing a processor core if the processor core supports Intel 
Hyper-Threading Technology and is based on Intel NetBurst microarchitecture. They 
are not shared between logical processors in different cores or different physical 
packages. As a result, software must manage the use of these resources, based on 
the topology of performance monitoring resources. Performance counter interrupts, 
events, and precise event monitoring support can be set up and allocated on a per 
thread (per logical processor) basis. 

See Section 30.10, “Performance Monitoring and Intel Hyper-Threading Technology 
in Processors Based on Intel NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared 
between two logical processors sharing a processor core, or may be shared between 
different cores in a physical processor. See Appendix B, “Model-Specific Registers 
(MSRs)”.

8.8.5 MICROCODE UPDATE Resources
Microcode update facilities are shared between two logical processors sharing a 
processor core if the physical package supports Intel Hyper-Threading Technology. 
They are not shared between logical processors in different cores or different phys-
ical packages. Either logical processor that has access to the microcode update 
facility can initiate an update. 

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR 
address 8BH). When a logical processor performs an update for the physical 
processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are 
updated with identical information. 

NOTE
Some processors (prior to the introduction of Intel 64 Architecture 
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors 
in the same core. All other processors support logical processors 
initiating an update simultaneously. Intel recommends a common 
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approach that the microcode loader use the sequential technique 
described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE 
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are 
physically shared at some level of the hardware topology. In the multi-processor 
systems, typically bus and memory sub-systems are physically shared between 
multiple sockets. Within a hardware multi-threading capable processors, certain 
resources are provided for each processor core, while other resources may be 
provided for each logical processors (see Section 8.7, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 8.8, “Multi-Core Architecture”). 

From a software programming perspective, control transfer of processor operation is 
managed at the granularity of logical processor (operating systems dispatch a 
runnable task by allocating an available logical processor on the platform). To 
manage the topology of shared resources in a multi-threading environment, it may 
be useful for software to understand and manage resources that are shared by more 
than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor 
system is unique (see Section 8.6, “Detecting Hardware Multi-Threading Support and 
Topology”). This 8-bit or 32-bit value can be decomposed into sub-fields, where each 
sub-field corresponds a hierarchical level of the topological mapping of hardware 
resources. 

The decomposition of an APIC_ID may consist of several sub fields representing the 
topology within a physical processor package, the higher-order bits of an APIC ID 
may also be used by cluster vendors to represent the topology of cluster nodes of 
each coherent multiprocessor systems. If the processor does not support CPUID leaf 
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of 

multi-processor systems. The CLUSTER_ID sub-field is usually supported by 
vendor firmware to distinguish different clusters. For non-clustered systems, 
CLUSTER_ID is usually 0 and system topology is reduced to three levels of 
hierarchy.

• Package — A multi-processor system consists of two or more sockets, each 
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.
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• Core — A physical processor package consists of one or more processor cores. 
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing 
execution resources. The SMT_ID sub-field distinguishes logical processors in a 
core. The width of this bit field is non-zero if a processor core provides more than 
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see 
Figure 8-5). 

If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster 
plus several levels of topology within the physical processor package. The exact 
number of hierarchical levels within a physical processor package must be enumer-
ated through CPUID leaf 0BH. Common processor families may employ topology 
similar to that represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can 
support topology enumeration algorithm that decompose a 32-bit APIC ID into more 
than four sub-fields (see Figure 8-6). 

The width of each sub-field depends on hardware and software configurations. Field 
widths can be determined at runtime using the algorithm discussed below (Example 
8-16 through Example 8-20). 

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypo-
thetical MP system. The value of valid APIC_IDs need not be contiguous across 
package boundary or core boundaries.

Figure 8-5.  Generalized Four level Interpretation of the APIC ID

0

Package ID

SMT ID

X

Cluster ID

Reserved

Core ID

X=31 if x2APIC is supported

Otherwise X= 7
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8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf 
CPUID leaf 0BH provides enumeration parameters for software to identify each hier-
archy of the processor topology in a deterministic manner. Each hierarchical level of 
the topology starting from the SMT level is represented numerically by a sub-leaf 
index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field 
in the APIC ID, following the general relationship depicted in Figure 8-6. This mech-
anism allows software to query the exact number of levels within a physical 
processor package and the bit-width of each sub-field of x2APIC ID directly. For 
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH, 

ECX=N):ECX[15:8] returns an invalid “level type“ encoding. The number of 
levels within the physical processor package is “N“ (excluding PACKAGE). Using 
Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report 
00H, indicating sub leaf 03H is invalid. This is also depicted by a pseudo code 
example:

Example 8-16.  Number of Levels Below the Physical Processor Package

Byte type = 1;
s = 0;
While ( type ) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH
ECX = s;
CPUID; 
type = ECX[15:8]; // examine level type encoding
s ++;

Figure 8-6.  Conceptual Five-level Topology and 32-bit APIC ID Composition
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}
N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract 
the SMT sub-field of x2APIC ID. If EAX = 0BH, and ECX =0 is specified as input 
when executing CPUID, CPUID.(EAX=0BH, ECX=0):EAX[4:0] reports a value (a 
right-shift count) that allow software to extract part of x2APIC ID to distinguish 
the next higher topological entities above the SMT level. This value also 
corresponds to the bit-width of the sub-field of x2APIC ID corresponding the 
hierarchical level with sub-leaf index 0. 

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH, 
ECX=m):EAX[4:0] reports the right-shift count that will allow software to extract 
part of x2APIC ID to distinguish higher-level topological entities. This means the 
right-shift value at of sub-leaf m, corresponds to the least significant (m+1) 
subfields of the 32-bit x2APIC ID. 

Example 8-17.  BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0 
(invalid), 1 (SMT), and 2 (core). Software must not assume any “level type“ encoding 
value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID 
leaf 0BH to enumerate processor topology of more than two levels of hierarchy inside 
a physical package. Most processor families to date requires only “SMT” and “CORE” 
levels within a physical package. The examples in later sections will focus on these 
three-level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC 
ID (or 32-bit APIC ID if the processor supports CPUID leaf 0BH) that is unique for 
each logical processor following power-up or RESET (see Section 8.6.1). Each logical 
processor on the system is allocated an initial APIC ID. BIOS may implement features 
that tell the OS to support less than the total number of logical processors on the 
system bus. Those logical processors that are not available to applications at runtime 
are halted during the OS boot process. As a result, the number valid local APIC_IDs 
that can be queried by affinitizing-current-thread-context (See Example 8-22) is 
limited to the number of logical processors enabled at runtime by the OS boot 
process.
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Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical 
processors in a system with four Intel Xeon MP processors that support Intel Hyper-
Threading Technology (a total of 8 logical processors, each physical package has two 
processor cores and supports Intel Hyper-Threading Technology). Of the two logical 
processors within a Intel Xeon processor MP, logical processor 0 is designated the 
primary logical processor and logical processor 1 as the secondary logical processor.

Figure 8-7.  Topological Relationships between Hierarchical IDs in a Hypothetical MP 
Platform

Table 8-1.  Initial APIC IDs for the Logical Processors in a System that has Four Intel 
Xeon MP Processors Supporting Intel Hyper-Threading Technology1 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available 

in early single-core processors supporting Intel Hyper-Threading Technology, the core ID can be 
treated as 0.
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Core 0

T0 T1

Core1

T0 T1

Package 1
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T0 T1
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T0 T1 SMT_ID

Core ID
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Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor 
system. Each physical package providing two processor cores, and each processor 
core also supporting Intel Hyper-Threading Technology.

8.9.3.1  Hierarchical ID of Logical Processors with x2APIC ID
Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor 
system that support x2APIC. Each physical package providing four processor cores, 
and each processor core also supporting Intel Hyper-Threading Technology. Note that 
the x2APIC ID need not be contiguous in the system.

Table 8-2.  Initial APIC IDs for the Logical Processors in a System that has Two 
Physical Processors Supporting Dual-Core and Intel Hyper-Threading Technology 

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Table 8-3.  Example of Possible x2APIC ID Assignment in a System that has Two 
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology 

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H
8-54 Vol. 3A



MULTIPLE-PROCESSOR MANAGEMENT
8.9.4 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the 
operating system at runtime8 and extract identifiers corresponding to the three 
levels of sharing topology (package, core, and SMT). The three-level algorithms 
below focus on a non-clustered MP system for simplicity. They do not assume APIC 
IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical 
values in CPUID leaf 0BH, CPUID.1:EBX[23:16]), CPUID.49:EAX[31:26], and 
CPUID.410:EAX[25:14]. The algorithms below assume the target system has 
symmetry across physical package boundaries with respect to the number of logical 
processors per package, number of cores per package, and cache topology within a 
package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the 
general procedure depicted in Example 8-18, and is supplemented by more detailed 
descriptions on the derivation of topology enumeration parameters for extraction bit 
masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of 
the topology. The algorithm to derive extraction bit masks for 
SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3 
below) or 8-bit (see step 4 below):

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

8. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS 
at runtime may be less than the total number logical processors available in the platform hard-
ware.

9. Maximum number of addressable ID for processor cores in a physical processor is obtained by 
executing CPUID with EAX=4 and a valid ECX index, The ECX index start at 0.

10. Maximum number addressable ID for processor cores sharing the target cache level is obtained 
by executing CPUID with EAX = 4 and the ECX index corresponding to the target cache level.

Table 8-3.  Example of Possible x2APIC ID Assignment in a System that has Two 
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology 

x2APIC ID Package ID Core ID SMT ID
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3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value, 
the topology enumeration parameters needed to derive three-level extraction bit 
masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf 
0BH with ECX =0H as input. The number of bits to shift-right on x2APIC ID 
(EAX[4:0]) can distinguish different higher-level entities above SMT (e.g. 
processor cores) in the same physical package. This is also the width of the 
bit mask to extract the SMT_ID. 

b. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-
level entities (e.g. physical processor packages) in the system. This describes 
an explicit three-level-topology situation for commonly available processors. 
Consult Example 8-17 to adapt to situations beyond three-level topology of a 
physical processor. The width of the extraction bit mask can be used to derive 
the cumulative extraction bitmask to extract the sub IDs of logical processors 
(including different processor cores) in the same physical package. The 
extraction bit mask to distinguish merely different processor cores can be 
derived by xor’ing the SMT extraction bit mask from the cumulative 
extraction bit mask.

c. Query the 32-bit x2APIC ID for the logical processor where the current thread 
is executing.

d. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and 
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field 
IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains 
an 8-bit value, the topology enumeration parameters needed to derive extraction 
bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical 
processors in a physical processor package. This size parameters 
(CPUID.1:EBX[23:16]) can be used to derive the width of an extraction 
bitmask to enumerate the sub IDs of different logical processors in the same 
physical package.

b. Query the size of address space for sub IDs that can accommodate processor 
cores in a physical processor package. This size parameters can be used to 
derive the width of an extraction bitmask to enumerate the sub IDs of 
processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current 
thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding 
to SMT_ID, CORE_ID, and PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field 
IDs.
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Example 8-18.  Support Routines for Detecting Hardware Multi-Threading and Identifying the 
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading 
// support in the physical package where the current logical processor is located. 
// This does not guarantee BIOS or OS will enable all logical processors in the physical 
// package and make them available to applications. 
// Returns zero if hardware multi-threading is not present. 

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor 

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 8-19.  Support Routines for Identifying Package, Core and Logical Processors from 
32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and
associated mask offset for different cores.

int DeriveSMT_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~( (-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return 0;

}

b. Derive the extraction bitmask for processor cores in a physical processor package
and associated mask offset for different packages.
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int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while( ECX[15:8] ) { // level type encoding is valid
If (returned level type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages
COREPlusSMT_MASK = ~( (-1) << Mask_Core_shift);
CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return 0

}
ECX ++;
execute cpuid with eax = 11;

}
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 8-20.  Support Routines for Identifying Package, Core and Logical Processors from 8-
bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000 
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package, 

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.
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unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4 
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code. 
// Software can use OS services to affinitize the current thread to each logical processor 
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

d. Find the width of an extraction bitmask from the maximum count of the bit-field
(address size).
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// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(), 
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov  mask_width, ecx
next:  
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift
count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init 
APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT 
extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value 

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char 
Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}
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Software must not assume local APIC_ID values in an MP system are consecutive. 
Non-consecutive local APIC_IDs may be the result of hardware configurations or 
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using 
the support routines illustrated in Example 8-20. The appropriate bit mask and shift 
value to construct the appropriate bit mask for each level must be determined 
dynamically at runtime. 

8.9.5 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological 
relationships in a MP system, the following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor 

enabled by system software. The sequence is as follows (See the pseudo code 
shown in Example 8-21 and support routines shown in Example 8-18):

• The extraction start from the right-most bit field, corresponding to 
SMT_ID, the innermost hierarchy in a three-level topology (See Figure 
8-7). For the right-most bit field, the shift value of the working mask is 
zero. The width of the bit field is determined dynamically using the 
maximum number of logical processor per core, which can be derived 
from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is 
determined from the width of the bit mask of the previous step. The width 
of the bit field is determined dynamically using the maximum number of 
cores per package.

• To extract the remaining bit-field, the shift value of the working mask is 
determined from the maximum number of logical processor per package. 
So the remaining bits in the APIC ID (excluding those bits already 
extracted in the two previous steps) are extracted as the third identifier. 
This applies to a non-clustered MP system, or if there is no need to 
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID, 
PACKAGE_ID can be extracted using an algorithm similar to the 
extraction of CORE_ID, assuming the number of physical packages in 
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into 
arrays for each enabled logical processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those 
logical processors that reside in the same physical package. This is shown in 
Example 8-22b. This example also depicts a technique to construct a mask to 
represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical 
processors that reside in the same core. This is shown in Example 8-22. This 
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example also depicts a technique to construct a mask to represent the logical 
processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted 
with the mask by shifting it right by shift count. Algorithms below do not shift the 
value. The assumption is that the SubID values can be compared for equivalence 
without the need to shift. 

Example 8-21.  Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID, 
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 8-19);
// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit 0, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:
// Assume single cluster. 
// Shift out the mask width for maximum logical processors per package
// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}

Example 8-22.  Compute the Number of Packages, Cores, and Processor Relationships in a MP 
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications 
// after system boot. The below algorithm will compute topology for the processors visible 
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
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using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.
 

ThreadAffinityMask = 1;
     ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example 
8-20

Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction 
algorithm of Example 8-21

PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and 
construct, for each package, a multi-bit mask corresponding to those logical processors residing in 
the same package.

// Compute the number of packages by counting the number of processors 
// with unique PACKAGE_IDs in the PackageID array. 
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID 
The algorithm below assumes there is symmetry across package boundary if more than 
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
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PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each 
core, a multi-bit mask corresponding to those logical processors residing in the same core. 

Processors in the same core can be determined by bucketing the processors with the same 
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID 
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket 
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) { 

ProcessorMask << = 1; 
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
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}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be 
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[]. 

The algorithm shown above can be adapted to work with earlier generations of 
single-core IA-32 processors that support Intel Hyper-Threading Technology and in 
situations that the deterministic cache parameter leaf is not supported (provided 
CPUID supports initial APIC ID). A reference code example is available (see Intel® 64 
Architecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Intel Hyper-Threading Technology) is idle (no work to do) or blocked 
(on a lock or semaphore), additional management of the core execution engine 
resource can be accomplished by using the HLT (halt), PAUSE, or the 
MONITOR/MWAIT instructions.

8.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is 
executed and places it in a halted state until further notice (see the description of the 
HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A). When a logical processor is halted, active logical 
processors continue to have full access to the shared resources within the physical 
package. Here shared resources that were being used by the halted logical processor 
become available to active logical processors, allowing them to execute at greater 
efficiency. When the halted logical processor resumes execution, shared resources 
are again shared among all active logical processors. (See Section 8.10.6.3, “Halt 
Idle Logical Processors,” for more information about using the HLT instruction with 
processors supporting Intel Hyper-Threading Technology.)
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8.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel 
Hyper-Threading Technology when executing “spin-wait loops” and other routines 
where one thread is accessing a shared lock or semaphore in a tight polling loop. 
When executing a spin-wait loop, the processor can suffer a severe performance 
penalty when exiting the loop because it detects a possible memory order violation 
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to 
the processor that the code sequence is a spin-wait loop. The processor uses this hint 
to avoid the memory order violation and prevent the pipeline flush. In addition, the 
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming 
execution resources excessively and consume power needlessly. (See Section 
8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information 
about using the PAUSE instruction with IA-32 processors supporting Intel Hyper-
Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to 
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions 
are conditionally available at levels greater than 0. Use the following steps to detect 
the availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception 

handler and trap for an exception. If an exception occurs, MONITOR and MWAIT 
are not supported at a privilege level greater than 0. See Example 8-23.

Example 8-23.  Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor 
}

        // Use monitor
} except (UNWIND) {
        // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}
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8.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In 
a typical idle-loop scenario, there could be several “busy loops” and they would use a 
set of memory locations. An impacted processor waits in a loop and poll a memory 
location to determine if there is available work to execute. The posting of work is 
typically a write to memory (the work-queue of the waiting processor). The time for 
initiating a work request and getting it scheduled is on the order of a few bus cycles. 

From a resource sharing perspective (logical processors sharing execution 
resources), use of the HLT instruction in an OS idle loop is desirable but has implica-
tions. Executing the HLT instruction on a idle logical processor puts the targeted 
processor in a non-execution state. This requires another processor (when posting 
work for the halted logical processor) to wake up the halted processor using an inter-
processor interrupt. The posting and servicing of such an interrupt introduces a delay 
in the servicing of new work requests. 

In a shared memory configuration, exits from busy loops usually occur because of a 
state change applicable to a specific memory location; such a change tends to be 
triggered by writes to the memory location by another agent (typically a processor). 

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient parti-
tioning and un-partitioning of shared resources among logical processors sharing 
physical resources. MONITOR sets up an effective address range that is monitored for 
write-to-memory activities; MWAIT places the processor in an optimized state (this 
may vary between different implementations) until a write to the monitored address 
range occurs. 

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0 
only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor 
hardware can be either armed (by executing the MONITOR instruction) or triggered 
(due to a variety of events, including a store to the monitored memory region). If 
upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves 
as a NOP and execution continues at the next instruction in the execution stream. 
The state of monitor hardware is not architecturally visible except through the 
behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a 
processor that executed MWAIT to wake up. These include events that would lead to 
voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR 

writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the 
monitor)

• Voluntary transitions due to fast system call and far calls (occurring prior to 
issuing MWAIT but after setting the monitor)
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Power management related events (such as Thermal Monitor 2 or chipset driven 
STPCLK# assertion) will not cause the monitor event pending flag to be cleared. 
Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between 
MONITOR/MWAIT in the instruction flow. Note that execution of MWAIT does not re-
arm the monitor hardware. This means that MONITOR/MWAIT need to be executed in 
a loop. Also note that exits from the MWAIT state could be due to a condition other 
than a write to the triggering address; software should explicitly check the triggering 
data location to determine if the write occurred. Software should also check the value 
of the triggering address following the execution of the monitor instruction (and prior 
to the execution of the MWAIT instruction). This check is to identify any writes to the 
triggering address that occurred during the course of MONITOR execution. 

The address range provided to the MONITOR instruction must be of write-back 
caching type. Only write-back memory type stores to the monitored address range 
will trigger the monitor hardware. If the address range is not in memory of write-
back type, the address monitor hardware may not be set up properly or the monitor 
hardware may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a 

location within the address region being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the 

monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due 
to a write to the intended data location). These have negative performance implica-
tions. It might be necessary for software to use padding to prevent false wakeups. 
CPUID provides a mechanism for determining the size data locations for monitoring 
as well as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the 
region monitored by the MONITOR/MWAIT instructions and the size of the coherence 
line size for cache-snoop traffic in a multiprocessor system. This information can be 
queried using the CPUID monitor leaf function (EAX = 05H). You will need the 
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor 

writes fits within the smallest monitor line-size. Otherwise, the processor may 
not wake up after a write intended to trigger an exit from MWAIT. 

• To avoid false wake-ups; use the largest monitor line size to pad the data 
structure used to monitor writes. Software must make sure that beyond the data 
structure, no unrelated data variable exists in the triggering area for MWAIT. A 
pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and soft-
ware should not make any assumptions to that effect. Within a single-cluster system, 
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the two parameters should default to be the same (the size of the monitor triggering 
area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically 
allocate structures with appropriate padding. If static data structures must be used 
by an OS, attempt to adapt the data structure and use a dynamically allocated data 
buffer for thread synchronization. When the latter technique is not possible, consider 
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered 
systems: interaction between processors, chipsets, and the BIOS is required (system 
coherence line size may depend on the chipset used in the system; the size could be 
different from the processor’s monitor triggering area). The BIOS is responsible to 
set the correct value for system coherence line size using the 
IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative magnitude of 
the size of the monitor triggering area versus the value written into the 
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be 
reported as the Smallest Monitor Line Size. The larger of the parameters will be 
reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on 
processors supporting Intel Hyper-Threading Technology. It also describes optimiza-
tions that can help an operating system make more efficient use of the logical 
processors sharing execution resources. The required changes and suggested opti-
mizations are representative of the types of modifications that appear in Windows* 
XP and Linux* kernel 2.4.0 operating systems for Intel processors supporting Intel 
Hyper-Threading Technology. Additional optimizations for processors supporting 
Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architec-
tures Optimization Reference Manual.

8.10.6.1  Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run 
on Intel processors supporting Intel Hyper-Threading Technology and multi-core 
processors. 

Software routines that use spin-wait loops include multiprocessor synchronization 
primitives (spin-locks, semaphores, and mutex variables) and idle loops. Such 
routines keep the processor core busy executing a load-compare-branch loop while a 
thread waits for a resource to become available. Including a PAUSE instruction in such 
a loop greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The 
following routine gives an example of a spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
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JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the 
availability of the synchronization variable. This technique is recommended when 
writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE 
instruction is treated as a NOP instruction.

8.10.6.2  Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A 
typical OS idle loop on an ACPI-compatible OS is shown in Example 8-24: 

Example 8-24.  A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} ELSE {

// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 handler 
// shown below
}

}
}
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// C1 handler uses a Halt instruction
VOID C1Handler() 
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if 
MONITOR and MWAIT are supported. 

Example 8-25.  An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} ELSE {

// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated.

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress, 
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
MWAIT

}

}
}

}
// C1 handler uses a Halt instruction.

VOID C1Handler() 
{ STI

HLT
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}

8.10.6.3  Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly 
halt that processor by means of a HLT instruction. 

In an MP system, operating systems can place idle processors into a loop that contin-
uously checks the run queue for runnable software tasks. Logical processors that 
execute idle loops consume a significant amount of core’s execution resources that 
might otherwise be used by the other logical processors in the physical package. For 
this reason, halting idle logical processors optimizes the performance.11 If all logical 
processors within a physical package are halted, the processor will enter a power-
saving state.

8.10.6.4  Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1 
idle loop. An example is shown in Example 8-26: 

Example 8-26.  An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread 
// ready to run.  A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been 
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.
WHILE (1) {

IF (WorkQueue) THEN {
// Schedule work at WorkQueue

} ELSE {
// No work to do - wait in appropriate C-state handler depending 
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 
// handler shown below
}

}
}
// C1 handler uses a Halt instruction
VOID C1Handler() 

11. Excessive transitions into and out of the HALT state could also incur performance penalties. 
Operating systems should evaluate the performance trade-offs for their operating system.
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{
MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress, 

// ECX, EDX = 0
IF (WorkQueue != 0) THEN {

STI
MWAIT // EAX, ECX = 0

}

}

8.10.6.5  Guidelines for Scheduling Threads on Logical Processors Sharing 
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical 
processors for execution can affect the overall efficiency of a system. The following 
guidelines are recommended for scheduling threads for execution.
• Dispatch threads to one logical processor per processor core before dispatching 

threads to the other logical processor sharing execution resources in the same 
processor core. 

• In an MP system with two or more physical packages, distribute threads out over 
all the physical processors, rather than concentrate them in one or two physical 
processors.

• Use processor affinity to assign a thread to a specific processor core or package, 
depending on the cache-sharing topology. The practice increases the chance that 
the processor’s caches will contain some of the thread’s code and data when it is 
dispatched for execution after being suspended. 

8.10.6.6  Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution 
speed to measure time. There are several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor 

running at one clock speed and then executed on a processor running at another 
clock speed. 

• Routines for calibrating execution-based timing loops produce unpredictable 
results when run on an IA-32 processor supporting Intel Hyper-Threading 
Technology. This is due to the sharing of execution resources between the logical 
processors within a physical package. 

To avoid the problems described, timing loop routines must use a timing mechanism 
for the loop that does not depend on the execution speed of the logical processors in 
the system. The following sources are generally available:
• A high resolution system timer (for example, an Intel 8254).
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• A high resolution timer within the processor (such as, the local APIC timer or the 
time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization 
Reference Manual.

8.10.6.7  Place Locks and Semaphores in Aligned, 128-Byte Blocks of 
Memory

When software uses locks or semaphores to synchronize processes, threads, or other 
code sections; Intel recommends that only one lock or semaphore be present within 
a cache line (or 128 byte sector, if 128-byte sector is supported). In processors based 
on Intel NetBurst microarchitecture (which support 128-byte sector consisting of two 
cache lines), following this recommendation means that each lock or semaphore 
should be contained in a 128-byte block of memory that begins on a 128-byte 
boundary. The practice minimizes the bus traffic required to service locks.
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CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions 
and for initializing the processor. The subjects covered include: processor initializa-
tion, x87 FPU initialization, processor configuration, feature determination, mode 
switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system 
bus performs a hardware initialization of the processor (known as a hardware reset) 
and an optional built-in self-test (BIST). A hardware reset sets each processor’s 
registers to a known state and places the processor in real-address mode. It also 
invalidates the internal caches, translation lookaside buffers (TLBs) and the branch 
target buffer (BTB). At this point, the action taken depends on the processor family:
• Pentium 4 and Intel Xeon processors — All the processors on the system bus 

(including a single processor in a uniprocessor system) execute the multiple 
processor (MP) initialization protocol. The processor that is selected through this 
protocol as the bootstrap processor (BSP) then immediately starts executing 
software-initialization code in the current code segment beginning at the offset in 
the EIP register. The application (non-BSP) processors (APs) go into a Wait For 
Startup IPI (SIPI) state while the BSP is executing initialization code. See Section 
8.4, “Multiple-Processor (MP) Initialization,” for more details. Note that in a 
uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically 
becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and 
Intel Xeon processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single 
Pentium processor is always pre-designated as the primary processor. Following 
a reset, the primary processor behaves as follows in both single- and dual-
processor systems. Using the dual-processor (DP) ready initialization protocol, 
the primary processor immediately starts executing software-initialization code 
in the current code segment beginning at the offset in the EIP register. The 
secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a unipro-
cessor system) immediately starts executing software-initialization code in the 
current code segment beginning at the offset in the EIP register. (The Intel486 
does not automatically execute a DP or MP initialization protocol to determine 
which processor is the primary processor.)
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The software-initialization code performs all system-specific initialization of the BSP 
or primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each 
AP (or secondary) processor to enable those processors to execute self-configuration 
code.

When all processors are initialized, configured, and synchronized, the BSP or primary 
processor begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU soft-
ware initialization code can then be executed to perform operations such as setting 
the precision of the x87 FPU and the exception masks. No special initialization of the 
x87 FPU is required to switch operating modes. 

Asserting the INIT# pin on the processor invokes a similar response to a hardware 
reset. The major difference is that during an INIT, the internal caches, MSRs, MTRRs, 
and x87 FPU state are left unchanged (although, the TLBs and BTB are invalidated as 
with a hardware reset). An INIT provides a method for switching from protected to 
real-address mode while maintaining the contents of the internal caches.

9.1.1 Processor State After Reset
Table 9-1 shows the state of the flags and other registers following power-up for the 
Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state of control 
register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-
address mode with paging disabled. 

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is 
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register 
after the BIST indicates that a processor fault was detected. If the BIST is not 
requested, the contents of the EAX register after a hardware reset is 0H. 

The overhead for performing a BIST varies between processor families. For example, 
the BIST takes approximately 30 million processor clock periods to execute on the 
Pentium 4 processor. This clock count is model-specific; Intel reserves the right to 
change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT 

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2
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CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W, 
Accessed

EDX 00000FxxH  000n06xxH3 000005xxH 

EAX 04 04 04

EBX, ECX, ESI, EDI, 
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control 
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status 
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag 
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data 
Operand and CS 
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data 
Operand and Inst. 
Pointers5

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset: 
   00000000H
FINIT/FNINIT: 00000000H

MM0 through 
MM75

Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium II and Pentium III 
Processors Only—
Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

Pentium with MMX 
Technology Only—
Pwr up or Reset:
   0000000000000000H
INIT or FINIT/FNINIT:
   Unchanged

XMM0 through 
XMM7

Pwr up or Reset:
   0000000000000000H
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset:
   0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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LDTR, Task 
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2, 
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp 
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and 
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Pwr up or Reset:
   Undefined
INIT: Unchanged

Data and Code 
Cache, TLBs

Invalid Invalid Invalid

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check 
Architecture

Pwr up or Reset:
    Undefined
INIT: Unchanged

Pwr up or Reset:
    Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES: 
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software 

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST 

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

Table 9-1.  IA-32 Processor States Following Power-up, Reset, or INIT  (Contd.)

Register Pentium 4 and Intel 
Xeon Processor

P6 Family Processor Pentium Processor
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9.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and 
revision information (see Figure 9-2). For example, the model, family, and processor 
type returned for the first processor in the Intel Pentium 4 family is as follows: model 
(0000B), family (1111B), and processor type (00B). 

The stepping ID field contains a unique identifier for the processor’s stepping ID or 
revision level. The extended family and extended model fields were added to the 
IA-32 architecture in the Pentium 4 processors.

Figure 9-1.  Contents of CR0 Register after Reset

Figure 9-2.  Version Information in the EDX Register after Reset

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0
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Alignment check disabled: 0
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9.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is 
located at physical address FFFFFFF0H. This address is 16 bytes below the 
processor’s uppermost physical address. The EPROM containing the software-
initialization code must be located at this address. 

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor 
while in real-address mode. The processor is initialized to this starting address as 
follows. The CS register has two parts: the visible segment selector part and the 
hidden base address part. In real-address mode, the base address is normally 
formed by shifting the 16-bit segment selector value 4 bits to the left to produce a 
20-bit base address. However, during a hardware reset, the segment selector in the 
CS register is loaded with F000H and the base address is loaded with FFFF0000H. The 
starting address is thus formed by adding the base address to the value in the EIP 
register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the 
processor will follow the normal rule for address translation in real-address mode 
(that is, [CS base address = CS segment selector * 16]). To insure that the base 
address in the CS register remains unchanged until the EPROM based software-
initialization code is completed, the code must not contain a far jump or far call or 
allow an interrupt to occur (which would cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an 
x87 FPU by using the CPUID instruction. The code must then initialize the x87 FPU 
and set flags in control register CR0 to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is 
different from the state the x87 FPU is placed in following the execution of an FINIT 
or FNINIT instruction (also shown in Table 9-1). If the x87 FPU is to be used, the soft-
ware-initialization code should execute an FINIT/FNINIT instruction following a hard-
ware reset. These instructions, tag all data registers as empty, clear all the exception 
masks, set the TOP-of-stack value to 0, and select the default rounding and precision 
controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of 
control register CR0. These bits are cleared on hardware reset of the processor. 
Figure 9-2 shows the suggested settings for these flags, depending on the IA-32 
processor being initialized. Initialization code can test for the type of processor 
present before setting or clearing these flags.
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The EM flag determines whether floating-point instructions are executed by the x87 
FPU (EM is cleared) or a device-not-available exception (#NM) is generated for all 
floating-point instructions so that an exception handler can emulate the floating-
point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math 
coprocessor is present and set if they are not present. If the EM flag is set and no x87 
FPU, math coprocessor, or floating-point emulator is present, the processor will hang 
when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the 
TS flag. If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS 
flag; if the MP flag is set, they will generate a device-not-available exception (#NM) 
if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a 
math coprocessor present. However, an operating system can choose to save the 
floating-point context at every context switch, in which case there would be no need 
to set the MP bit. 

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions 
based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by 
generating a floating-point error exception internally (NE is set, native mode) or 
through an external interrupt (NE is cleared). In systems where an external interrupt 
controller is used to invoke numeric exception handlers (such as MS-DOS-based 
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available excep-
tion (#NM) and trap to a software exception handler whenever it encounters a 
floating-point instruction. (Table 9-2 shows when it is appropriate to use this flag.) 
Setting this flag has two functions:

Table 9-2.  Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors 
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and 
Intel 487 SX processors, and Intel386 DX and Intel386 SX 
processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
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• It allows x87 FPU code to run on an IA-32 processor that has neither an 
integrated x87 FPU nor is connected to an external math coprocessor, by using a 
floating-point emulator. 

• It allows floating-point code to be executed using a special or nonstandard 
floating-point emulator, selected for a particular application, regardless of 
whether an x87 FPU or math coprocessor is present. 

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0 
should be set as shown in Table 9-3.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-
not-available exception (#NM) upon encountering any floating-point instruction.

9.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors 
contain internal instruction and data caches. These caches are enabled by clearing 
the CD and NW flags in control register CR0. (They are set during a hardware reset.) 
Because all internal cache lines are invalid following reset initialization, it is not 
necessary to invalidate the cache before enabling caching. Any external caches may 
require initialization and invalidation using a system-specific initialization and invali-
dation code sequence.

Depending on the hardware and operating system or executive requirements, addi-
tional configuration of the processor’s caching facilities will probably be required. 
Beginning with the Intel486 processor, page-level caching can be controlled with the 
PCD and PWT flags in page-directory and page-table entries. Beginning with the P6 
family processors, the memory type range registers (MTRRs) control the caching 
characteristics of the regions of physical memory. (For the Intel486 and Pentium 
processors, external hardware can be used to control the caching characteristics of 
regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed 
information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and 
P6 family processors and system memory.

Table 9-3.  Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
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9.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors 
contain a model-specific registers (MSRs). A given MSR may not be supported across 
all families and models for Intel 64 and IA-32 processors. Some MSRs are designated 
as architectural to simplify software programming; a feature introduced by an archi-
tectural MSR is expected to be supported in future processors. Non-architectural 
MSRs are not guaranteed to be supported or to have the same functions on future 
processors.   

MSRs that provide control for a number of hardware and software-related features, 
include:
• Performance-monitoring counters (see Chapter 20, “Introduction to Virtual-

Machine Extensions”).
• Debug extensions (see Chapter 20, “Introduction to Virtual-Machine Exten-

sions.”).
• Machine-check exception capability and its accompanying machine-check archi-

tecture (see Chapter 15, “Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER, 

IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, 
respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of 
the MSRs will need to be initialized to set up things like performance-monitoring 
events, run-time machine checks, and memory types for physical memory.

Lists of available performance-monitoring events are given in Appendix A, “Perfor-
mance Monitoring Events”, and lists of available MSRs are given in Appendix B, 
“Model-Specific Registers (MSRs)” The references earlier in this section show where 
the functions of the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture 
with the Pentium Pro processor. They allow the type of caching (or no caching) to be 
specified in system memory for selected physical address ranges. They allow 
memory accesses to be optimized for various types of memory such as RAM, ROM, 
frame buffer memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization 
code or BIOS and is not an operating system or executive function. At the very least, 
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all the MTRRs must be cleared to 0, which selects the uncached (UC) memory type. 
See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken 
when initializing the processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3 
extensions (respectively: EDX bits 25 and 26, ECX bit 0 and 9) and support for 
the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check for support for 
the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the 
EDX and ECX registers when the CPUID instruction is executed with a 1 in the 
EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating 
system supports saving and restoring the SSE/SSE2/SSE3/SSSE3 execution 
environment (XXM and MXCSR registers) with the FXSAVE and FXRSTOR instruc-
tions, respectively. See Section 2.5, “Control Registers,” for a description of the 
OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the 
operating system supports the handling of SSE/SSE2/SSE3 SIMD floating-point 
exceptions (#XF). See Section 2.5, “Control Registers,” for a description of the 
OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of 
operation desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See 
“MXCSR Control and Status Register” in Chapter 10, “Programming with 
Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 1, for a detailed description of the bits and 
flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS 
MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the 
RESET# pin) the processor is placed in real-address mode and begins executing soft-
ware initialization code from physical address FFFFFFF0H. Software initialization code 
must first set up the necessary data structures for handling basic system functions, 
such as a real-mode IDT for handling interrupts and exceptions. If the processor is to 
remain in real-address mode, software must then load additional operating-system 
or executive code modules and data structures to allow reliable execution of applica-
tion programs in real-address mode.

If the processor is going to operate in protected mode, software must load the neces-
sary data structures to operate in protected mode and then switch to protected 
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mode. The protected-mode data structures that must be loaded are described in 
Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into 
memory is the IDT (also called the “interrupt vector table”). By default, the address 
of the base of the IDT is physical address 0H. This address can be changed by using 
the LIDT instruction to change the base address value in the IDTR. Software initial-
ization code needs to load interrupt- and exception-handler pointers into the IDT 
before interrupts can be enabled. 

The actual interrupt- and exception-handler code can be contained either in EPROM 
or RAM; however, the code must be located within the 1-MByte addressable range of 
the processor in real-address mode. If the handler code is to be stored in RAM, it 
must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the 
IDT and the NMI interrupt handler need to be loaded into RAM, there will be a period 
of time following hardware reset when an NMI interrupt cannot be handled. During 
this time, hardware must provide a mechanism to prevent an NMI interrupt from 
halting code execution until the IDT and the necessary NMI handler software is 
loaded. Here are two examples of how NMIs can be handled during the initial states 
of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an 

NMI interrupt to be handled immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by 

passing the NMI# signal through an AND gate controlled by a flag in an I/O port. 
Hardware can clear the flag when the processor is reset, and software can set the 
flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE 
OPERATION

The processor is placed in real-address mode following a hardware reset. At this 
point in the initialization process, some basic data structures and code modules must 
be loaded into physical memory to support further initialization of the processor, as 
described in Section 9.7, “Software Initialization for Real-Address Mode Operation.” 
Before the processor can be switched to protected mode, the software initialization 
code must load a minimum number of protected mode data structures and code 
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modules into memory to support reliable operation of the processor in protected 
mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor 

switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception 

handlers.

Software initialization code must also initialize the following system registers before 
the processor can be switched to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after 

switching to protected mode, prior to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range 

registers (MTRRs).

With these data structures, code modules, and system registers initialized, the 
processor can be switched to protected mode by loading control register CR0 with a 
value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory 
during software initialization, depend largely on the type of memory management 
the protected-mode operating-system or executive is going to support: flat, flat with 
paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must 
at a minimum load a GDT with one code and one data-segment descriptor. A null 
descriptor in the first GDT entry is also required. The stack can be placed in a normal 
read/write data segment, so no dedicated descriptor for the stack is required. A flat 
memory model with paging also requires a page directory and at least one page table 
(unless all pages are 4 MBytes in which case only a page directory is required). See 
Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded 
into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system, 
as well as segments and LDTs for each application program. LDTs require segment 
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descriptors in the GDT. Some operating systems allocate new segments and LDTs as 
they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks, 
allocating GDT entries in advance. An embedded system, such as a process 
controller, might pre-allocate a fixed number of segments and LDTs for a fixed 
number of application programs. This would be a simple and efficient way to struc-
ture the software environment of a real-time system.

9.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate 
descriptor for each exception vector that the processor can generate. If interrupt or 
trap gates are used, the gate descriptors can all point to the same code segment, 
which contains the necessary exception handlers. If task gates are used, one TSS 
and accompanying code, data, and task segments are required for each exception 
handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in 
the IDT for one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded 
into the IDTR register using an LIDT instruction. This operation is typically carried out 
immediately after switching to protected mode.

9.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its 
state following a hardware reset), the paging mechanism is turned off; when it is set, 
paging is enabled. Before setting the PG flag, the following data structures and regis-
ters must be initialized:
• Software must load at least one page directory and one page table into physical 

memory. The page table can be eliminated if the page directory contains a 
directory entry pointing to itself (here, the page directory and page table reside 
in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical 
base address of the page directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT 
or in an LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is 
switched to protected mode at the same time by loading control register CR0 with an 
image in which the PG and PE flags are set. (Paging cannot be enabled before the 
processor is switched to protected mode.)
Vol. 3A 9-13



PROCESSOR MANAGEMENT AND INITIALIZATION
9.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege 
levels are not allowed, it is not necessary load a TSS into memory or to initialize the 
task register.

If the multitasking mechanism is going to be used and/or changes between privilege 
levels are allowed, software initialization code must load at least one TSS and an 
accompanying TSS descriptor. (A TSS is required to change privilege levels because 
pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for 
these stacks are obtained from the TSS.) TSS descriptors must not be marked as 
busy when they are created; they should be marked busy by the processor only as a 
side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors 
reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used 
to load a segment selector for a TSS descriptor into the task register. This instruction 
marks the TSS descriptor as busy, but does not perform a task switch. The processor 
can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The 
segment selector for the TSS must be loaded before software performs its first task 
switch in protected mode, because a task switch copies the current task state into 
the TSS.

After the LTR instruction has been executed, further operations on the task register 
are performed by task switching. As with other segments and LDTs, TSSs and TSS 
descriptors can be either pre-allocated or allocated as needed.

9.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The oper-
ating system must be in protected mode with paging enabled before attempting to 
initialize IA-32e mode. IA-32e mode operation also requires physical-address exten-
sions with four levels of enhanced paging structures (see Section 4.5, “IA-32e 
Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the 
MOV CR0 instruction to disable paging (the instruction must be located in an 
identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to 
enable PAE will result in a #GP fault when an attempt is made to initialize IA-32e 
mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the 
IA32_EFER.LMA bit to 1. The MOV CR0 instruction that enables paging and the 
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following instructions must be located in an identity-mapped page (until such 
time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address 
space prior to activating IA-32e mode. This is necessary because the MOV CR3 
instruction used to initialize the page-directory base must be executed in legacy 
mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). 
Because MOV CR3 is executed in protected mode, only the lower 32 bits of the 
register are written, limiting the table location to the low 4 GBytes of memory. Soft-
ware can relocate the page tables anywhere in physical memory after IA-32e mode 
is activated.

The processor performs 64-bit mode consistency checks whenever software 
attempts to modify any of the enable bits directly involved in activating IA-32e mode 
(IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general protection fault 
(#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the 
processor does not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to 

enabling physical-address extensions (PAE).
• IA-32e mode is active and an attempt is made to disable physical-address 

extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS.

9.8.5.1  IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, 
IDTR, TR) continue to reference legacy protected-mode descriptor tables. Tables 
referenced by the descriptors all reside in the lower 4 GBytes of linear-address space. 
After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT, 
LIDT, and LTR instructions to load the system-descriptor-table registers with refer-
ences to 64-bit descriptor tables.

9.8.5.2  IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e 
mode is activated and the update of the interrupt-descriptor-table register (IDTR) 
that establishes references to a 64-bit interrupt-descriptor table (IDT). This is 
because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit inter-
rupt gate will be referenced and interpreted as a 64-bit interrupt gate with unpredict-
able results. External interrupts can be disabled by using the CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.
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9.8.5.3  64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8) 
to control the operating modes after IA-32e mode is initialized. If CS.L = 1 and CS.D = 
0, the processor is running in 64-bit mode. With this encoding, the default operand 
size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand 
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits. 

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility 
mode. In this mode, CS.D controls default operand and address sizes exactly as it 
does in the IA-32 architecture. Setting CS.D = 1 specifies default operand and 
address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size 
as 16 bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows 
legacy applications to coexist with 64-bit applications running in 64-bit mode. An 
operating system running in IA-32e mode can execute existing 16-bit and 32-bit 
applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate 
using the IA-32e-mode architectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-

translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using 

the IA-32e mode mechanisms.

9.8.5.4  Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation. Operating systems 
must use the following sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set 
IA32_EFER.LMA = 0. The MOV CR0 instruction used to disable paging and 
subsequent instructions must be located in an identity-mapped page.

3. Load CR3 with the physical base address of the legacy page-table-directory base 
address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV 
CR0 and the branch instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved 
across transitions from 64-bit mode into compatibility mode then back into 64-bit 
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions 
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from 64-bit mode through compatibility mode to legacy or real mode and then back 
through compatibility mode to 64-bit mode.

9.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode 
switch must be performed from real-address mode. Once in protected mode, soft-
ware generally does not need to return to real-address mode. To run software written 
to run in real-address mode (8086 mode), it is generally more convenient to run the 
software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data 
structures and code modules must be loaded into memory, as described in Section 
9.8, “Software Initialization for Protected-Mode Operation.” Once these tables are 
created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag 
in the CR0 register. (In the same instruction, the PG flag in register CR0 can be set to 
enable paging.) Execution in protected mode begins with a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to 
protected mode. To insure upwards and downwards code compatibility with Intel 64 
and IA-32 processors, we recommend that you follow these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry. (Software must guarantee that 
no exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of 
the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) 
in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL 
instruction. (This operation is typically a far jump or call to the next instruction in 
the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes 
the flow of execution and serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL 
instruction must come from a page that is identity mapped (that is, the linear 
address before the jump is the same as the physical address after paging and 
protected mode is enabled). The target instruction for the JMP or CALL instruction 
does not need to be identity mapped.
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7. If a local descriptor table is going to be used, execute the LLDT instruction to load 
the segment selector for the LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to 
the initial protected-mode task or to a writable area of memory that can be used 
to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the 
contents they had in real-address mode. The JMP or CALL instruction in step 4 
resets the CS register. Perform one of the following operations to update the 
contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS 
registers are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets 
the values of the segment registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit 
of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. 
Failures will be readily seen in some situations, such as when instructions that refer-
ence memory are inserted between steps 3 and 4 while in system management 
mode.

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software 
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI 
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to 
physical addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes 
(FFFFH). This operation loads the CS register with the segment limit required in 
real-address mode.
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4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor 
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the 
segment registers will be unusable in real-address mode. Note that if the 
segment registers are not reloaded, execution continues using the descriptor 
attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is 
within the 1-MByte real-address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This 
operation flushes the instruction queue and loads the appropriate base-address 
value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode 
code. If any of the registers are not going to be used in real-address mode, write 
0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform 
the necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single 
page and the linear addresses in that page must be identity mapped 
to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incor-
porated into an application. This code was originally written to initialize the Intel386 
processor, but it will execute successfully on the Pentium 4, Intel Xeon, P6 family, 
Pentium, and Intel486 processors. The code in this example is intended to reside in 
EPROM and to run following a hardware reset of the processor. The function of the 
code is to do the following:
• Establish a basic real-address mode operating environment.
• Load the necessary protected-mode system data structures into RAM.
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• Load the system registers with the necessary pointers to the data structures and 
the appropriate flag settings for protected-mode operation.

• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware 
reset and the starting point of this example. The EPROM that contains the initializa-
tion code resides at the upper end of the processor’s physical memory address range, 
starting at address FFFFFFFFH and going down from there. The address of the first 
instruction to be executed is at FFFFFFF0H, the default starting address for the 
processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-4. The source 
listing for the example (with the filename STARTUP.ASM) is given in Example 9-1. 
The line numbers given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment 

base-address value of FFFF0000H (located in the hidden part of the CS register) 
is retained and execution continues from the current offset in the EIP register. 
The processor will thus continue to execute code in the EPROM until a far jump or 
call is made to a new code segment, at which time, the base address in the CS 
register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should 
remain disabled until the necessary interrupt handlers have been installed. The 
NMI interrupt is not disabled following a reset. The NMI# pin must thus be 
inhibited from being asserted until an NMI handler has been loaded and made 
available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to 
anywhere in the RAM area. A GDT entry is constructed with its base pointing to 
address 0 and a limit of 4 GBytes. When the DS and ES registers are loaded with 
this descriptor, the temporary GDT is no longer needed and can be replaced by 
the application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they 
must be loaded into RAM. If there are LDTs they may be loaded as well.
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Figure 9-3.  Processor State After Reset

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line 
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the 
entire physical memory space

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
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9.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to 
assemble and build the initialization code module. The following assumptions are 
used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-

segment attribute. The attribute is assigned either by the ASM386 invocation 
controls or in the code-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be 
set to a USE 16 attribute. If a 32-bit operand is used in an instruction in this code 
segment (for example, MOV EAX, EBX), the assembler automatically generates 
an operand prefix for the instruction that forces the processor to execute a 32-bit 
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for 
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the 
default- segment attribute will be used to generate the right opcode.

188 195 Perform specific board initialization that is imposed by the new 
protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT 
alias) 

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 9-4.  Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line 
Numbers

Description

From To
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9.10.2 STARTUP.ASM Listing
Example 9-1 provides high-level sample code designed to move the processor into 
protected mode. This listing does not include any opcode and offset information.

Example 9-1.  STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP  09:44:51 08/19/92 
PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE 
STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132 )

LINE     SOURCE

   1      NAME    STARTUP

   2  

   3  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

   4  ;

   5  ;   ASSUMPTIONS:

   6  ;

   7  ;     1.  The bottom 64K of memory is ram, and can be used for

   8  ;         scratch space by this module.

   9  ;

  10  ;     2.  The system has sufficient free usable ram to copy the

  11  ;         initial GDT, IDT, and TSS

  12  ;

  13  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  14  

  15  ; configuration data - must match with build definition

  16  

  17  CS_BASE       EQU     0FFFF0000H

  18  

  19   ; CS_BASE is the linear address of the segment STARTUP_CODE

  20   ; - this is specified in the build language file

  21  

  22  RAM_START     EQU     400H

  23  

  24  ; RAM_START  is the start of free, usable ram in the linear

  25  ; memory  space.   The GDT,  IDT, and  initial TSS  will be

  26  ; copied above this space, and a small data segment will be

  27  ; discarded at  this linear  address.   The 32-bit  word at
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  28  ; RAM_START will contain  the linear  address of  the first

  29  ; free byte above the copied tables - this may be useful if

  30  ; a memory manager is used.

  31  

  32  TSS_INDEX    EQU     10

  33  

  34  ; TSS_INDEX is the  index of the  TSS of the  first task to

  35  ; run after startup

  36  

  37  

  38   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

  39  

  40  ; ------------------------- STRUCTURES and EQU ---------------

  41  ; structures for system data

  42  

  43  ; TSS structure

  44  TASK_STATE  STRUC

  45      link DW ?

  46      link_h DW ?

  47      ESP0 DD ?

  48      SS0 DW ?

  49      SS0_h DW ?

  50      ESP1 DD ?

  51      SS1 DW ?

  52      SS1_h DW ?

  53      ESP2 DD ?

  54      SS2 DW ?

  55      SS2_h DW ?

  56      CR3_reg DD ?

  57      EIP_reg DD ?

  58      EFLAGS_regDD ?

  59      EAX_reg DD ?

  60      ECX_reg DD ?

  61      EDX_reg DD ?

  62      EBX_reg DD ?

  63      ESP_reg DD ?

  64      EBP_reg DD ?

  65      ESI_reg DD ?

  66      EDI_reg DD ?

  67      ES_reg DW ?

  68      ES_h DW ?

  69      CS_reg DW ?

  70      CS_h DW ?
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  71      SS_reg DW ?

  72      SS_h   DW ?

  73      DS_reg DW ?

  74      DS_h DW ?

  75      FS_reg DW ?

  76      FS_h DW ?

  77      GS_reg DW ?

  78      GS_h DW ?

  79      LDT_reg DW ?

  80      LDT_h DW ?

  81      TRAP_reg DW ?

  82      IO_map_baseDW ?

  83  TASK_STATE  ENDS

  84  

  85  ; basic structure of a descriptor

  86  DESC    STRUC

  87      lim_0_15 DW ?

  88      bas_0_15 DW ?

  89      bas_16_23DB ?

  90      access DB ?

  91      gran DB ?

  92      bas_24_31DB ?

  93  DESC    ENDS

  94  

  95  ; structure for use with LGDT and LIDT instructions

  96  TABLE_REG   STRUC

  97      table_limDW ?

  98      table_linearDD ?

  99  TABLE_REG   ENDS

 100  

 101  ; offset of GDT and IDT descriptors in builder generated GDT

 102  GDT_DESC_OFF    EQU 1*SIZE(DESC)

 103  IDT_DESC_OFF    EQU 2*SIZE(DESC)

 104  

 105  ; equates for building temporary GDT in RAM

 106  LINEAR_SEL          EQU     1*SIZE (DESC)

 107  LINEAR_PROTO_LO     EQU     00000FFFFH  ; LINEAR_ALIAS

 108  LINEAR_PROTO_HI     EQU     000CF9200H

 109  

 110  ; Protection Enable Bit in CR0

 111  PE_BIT  EQU 1B

 112  

 113  ; ------------------------------------------------------------
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 114  

 115  ; ------------------------- DATA SEGMENT----------------------

 116  

 117  ; Initially, this  data segment starts at linear 0, according

 118  ; to the processor’s power-up state.

 119  

 120  STARTUP_DATA    SEGMENT RW

 121  

 122  free_mem_linear_base    LABEL   DWORD

 123  TEMP_GDT                LABEL   BYTE  ; must be first in segment

 124  TEMP_GDT_NULL_DESC   DESC    <>

 125  TEMP_GDT_LINEAR_DESC DESC    <>

 126  

 127  ; scratch areas for LGDT and LIDT instructions

 128  TEMP_GDT_SCRATCH TABLE_REG   <>

 129  APP_GDT_RAM     TABLE_REG    <>

 130  APP_IDT_RAM     TABLE_REG    <>

 131          ; align end_data

 132  fill    DW      ?

 133   

 134  ; last thing in this segment - should be on a dword boundary

 135  end_data    LABEL   BYTE

 136  

 137  STARTUP_DATA    ENDS

 138  ; ------------------------------------------------------------

 139  

 140  

 141  ; ------------------------- CODE SEGMENT----------------------

 142  STARTUP_CODE SEGMENT ER PUBLIC USE16

 143  

 144  ; filled in by builder

 145      PUBLIC  GDT_EPROM

 146  GDT_EPROM   TABLE_REG   <>

 147  

 148  ; filled in by builder

 149      PUBLIC  IDT_EPROM

 150  IDT_EPROM   TABLE_REG   <>

 151  

 152  ; entry point into startup code - the bootstrap will vector

 153  ; here  with a  near JMP  generated by  the builder.   This

 154  ; label must be in the top 64K of linear memory.

 155  

 156      PUBLIC  STARTUP

 157  STARTUP:

 158  
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 159  ; DS,ES address the bottom 64K of flat linear memory

 160      ASSUME  DS:STARTUP_DATA, ES:STARTUP_DATA

 161  ; See Figure 9-4

 162  ; load GDTR with temporary GDT

 163          LEA     EBX,TEMP_GDT  ; build the TEMP_GDT in low ram,

 164          MOV     DWORD PTR [EBX],0   ; where we can address

 165          MOV     DWORD PTR [EBX]+4,0

 166          MOV     DWORD PTR [EBX]+8, LINEAR_PROTO_LO

 167          MOV     DWORD PTR [EBX]+12, LINEAR_PROTO_HI

 168          MOV     TEMP_GDT_scratch.table_linear,EBX

 169          MOV     TEMP_GDT_scratch.table_lim,15

 170  

 171 DB 66H; execute a 32 bit LGDT

 172          LGDT    TEMP_GDT_scratch

 173  

 174  ; enter protected mode

 175          MOV     EBX,CR0

 176          OR      EBX,PE_BIT

 177          MOV     CR0,EBX

 178  

 179   ; clear prefetch queue

 180          JMP     CLEAR_LABEL

 181  CLEAR_LABEL:

 182  

 183   ; make DS and ES address 4G of linear memory

 184          MOV     CX,LINEAR_SEL

 185          MOV     DS,CX

 186          MOV     ES,CX

 187  

 188    ; do board specific initialization 

 189    ;

 190                  ; 

 191                  ; ......

 192                  ; 

 193  

 194  

 195          ; See Figure 9-5

 196          ; copy EPROM GDT to ram at:

 197          ;                RAM_START + size (STARTUP_DATA)

 198          MOV     EAX,RAM_START

 199          ADD     EAX,OFFSET (end_data)   

 200          MOV     EBX,RAM_START
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 201          MOV     ECX, CS_BASE

 202          ADD     ECX, OFFSET (GDT_EPROM) 

 203          MOV     ESI, [ECX].table_linear

 204          MOV     EDI,EAX

 205          MOVZX   ECX, [ECX].table_lim

 206          MOV     APP_GDT_ram[EBX].table_lim,CX

 207          INC     ECX

 208          MOV     EDX,EAX

 209          MOV     APP_GDT_ram[EBX].table_linear,EAX

 210          ADD     EAX,ECX

 211      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 212  

 213          ; fixup GDT base in descriptor

 214          MOV     ECX,EDX

 215          MOV     [EDX].bas_0_15+GDT_DESC_OFF,CX

 216          ROR     ECX,16

 217          MOV     [EDX].bas_16_23+GDT_DESC_OFF,CL

 218          MOV     [EDX].bas_24_31+GDT_DESC_OFF,CH

 219  

 220          ; copy EPROM IDT to ram at:

 221          ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)

 222          MOV     ECX, CS_BASE

 223          ADD     ECX, OFFSET (IDT_EPROM)     

 224          MOV     ESI, [ECX].table_linear

 225          MOV     EDI,EAX

 226          MOVZX   ECX, [ECX].table_lim

 227          MOV     APP_IDT_ram[EBX].table_lim,CX

 228          INC     ECX

 229          MOV     APP_IDT_ram[EBX].table_linear,EAX

 230          MOV     EBX,EAX

 231          ADD     EAX,ECX

 232      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 233  

 234                  ; fixup IDT pointer in GDT

 235          MOV     [EDX].bas_0_15+IDT_DESC_OFF,BX

 236          ROR     EBX,16

 237          MOV     [EDX].bas_16_23+IDT_DESC_OFF,BL

 238          MOV     [EDX].bas_24_31+IDT_DESC_OFF,BH

 239  

 240                  ; load GDTR and IDTR

 241          MOV     EBX,RAM_START

 242                  DB      66H         ; execute a 32 bit LGDT

 243          LGDT    APP_GDT_ram[EBX]    

 244                  DB      66H         ; execute a 32 bit LIDT

 245          LIDT    APP_IDT_ram[EBX]    
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 246  

 247                  ; move the TSS

 248          MOV     EDI,EAX

 249          MOV     EBX,TSS_INDEX*SIZE(DESC)

 250          MOV     ECX,GDT_DESC_OFF ;build linear address for TSS

 251          MOV     GS,CX

 252          MOV     DH,GS:[EBX].bas_24_31

 253          MOV     DL,GS:[EBX].bas_16_23

 254          ROL     EDX,16

 255          MOV     DX,GS:[EBX].bas_0_15

 256          MOV     ESI,EDX

 257          LSL     ECX,EBX

 258          INC     ECX

 259          MOV     EDX,EAX

 260          ADD     EAX,ECX

 261      REP MOVS    BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 262

 263                  ; fixup TSS pointer

 264          MOV     GS:[EBX].bas_0_15,DX

 265          ROL     EDX,16

 266          MOV     GS:[EBX].bas_24_31,DH

 267          MOV     GS:[EBX].bas_16_23,DL

 268          ROL     EDX,16

 269      ;save start of free ram at linear location RAMSTART

 270          MOV     free_mem_linear_base+RAM_START,EAX

 271

 272      ;assume no  LDT used in  the initial task  - if necessary,

 273      ;code  to move the LDT could be added, and should resemble

 274      ;that used to move the TSS

 275

 276      ; load task register

 277          LTR     BX   ; No task switch, only descriptor loading

 278      ; See Figure 9-6

 279      ; load minimal set of registers necessary to simulate task

 280      ; switch

 281  

 282

 283          MOV     AX,[EDX].SS_reg     ; start loading registers

 284          MOV     EDI,[EDX].ESP_reg

 285          MOV     SS,AX

 286          MOV     ESP,EDI             ; stack now valid

 287          PUSH    DWORD PTR [EDX].EFLAGS_reg

 288          PUSH    DWORD PTR [EDX].CS_reg
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 289          PUSH    DWORD PTR [EDX].EIP_reg

 290          MOV     AX,[EDX].DS_reg

 291          MOV     BX,[EDX].ES_reg

 292          MOV     DS,AX     ; DS and ES no longer linear memory

 293          MOV     ES,BX

294

 295          ; simulate far jump to initial task

 296          IRETD

 297

 298  STARTUP_CODE  ENDS

*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED 
INSTRUCTION(S)

 299

 300  END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

 301

 302

ASSEMBLY COMPLETE,   1 WARNING,   NO ERRORS.
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Figure 9-4.  Constructing Temporary GDT and Switching to Protected Mode (Lines 
162-172 of List File)
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Figure 9-5.  Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List 
File)
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9.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for 
this application and can be substituted with the main module task written in a high-
level language that is invoked by the IRET instruction executed by STARTUP.ASM. 

Example 9-2.  MAIN.ASM

NAME    main_module
data    SEGMENT RW

dw 1000 dup(?)
DATA    ENDS

stack stackseg 800

Figure 9-6.  Task Switching (Lines 282-296 of List File)
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CODE SEGMENT ER  use32 PUBLIC
main_start:

nop
nop
nop

CODE  ENDS

END main_start, ds:data, ss:stack

9.10.4 Supporting Files
The batch file shown in Example 9-3 can be used to assemble the source code files 
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3.  Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP) 
Bootload

BLD386 performs several operations in this example:

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above 
functions.

Example 9-4.  Build File

INIT_BLD_EXAMPLE;

SEGMENT

        *SEGMENTS(DPL = 0)

    ,   startup.startup_code(BASE = 0FFFF0000H)

    ;

TASK

        BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0, 

NOT INTENABLED)

,       PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0, 

NOT INTENABLED)

    ;
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TABLE

    GDT (

        LOCATION = GDT_EPROM

    ,   ENTRY = (

            10:   PROTECTED_MODE_TASK

    , startup.startup_code

    ,       startup.startup_data

    ,       main_module.data

    ,       main_module.code

    ,       main_module.stack

          )

        ),

    IDT (

        LOCATION = IDT_EPROM

        );

MEMORY

    (

        RESERVE = (0..3FFFH 

-- Area for the GDT, IDT, TSS copied from ROM

    ,              60000H..0FFFEFFFFH)

    ,   RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH)) 

-- Eprom size 64K

    ,   RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

    );

END

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5.  Relationship Between BLD Item and ASM Source File 

Item ASM386 and 
Startup.A58

BLD386 Controls 
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H 
to start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG  <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT 
will be programmed into 
the GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG  <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT 
will be programmed into 
the IDT_EPROM location.
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9.11 MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct 
errata by loading an Intel-supplied data block into the processor. The data block is 
called a microcode update. This section describes the mechanisms the BIOS needs to 
provide in order to use this feature during system initialization. It also describes a 
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the 
equivalent of a processor stepping and completes a full-stepping level validation for 
releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has 
an update loader, is responsible for loading the update on processors during system 
initialization (Figure 9-7). There are two steps to this process: the first is to incorpo-
rate the necessary update data blocks into the BIOS; the second is to load update 
data blocks into the processor.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as 
the ram destination for 
moving the tables. It must 
be excluded from the 
application's segment 
area.

Location of the 
application TSS 
in the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10: 
PROTECTED_MODE_
TASK))

Put the descriptor of the 
application TSS in GDT 
entry 10.

EPROM size 
and location

size and location of the 
initialization code

SEGMENT startup.code (base = 
0FFFF0000H) ...memory 
(RANGE(
ROM_AREA = ROM(x..y)) 

Initialization code size 
must be less than 64K 
and resides at upper most 
64K of the 4-GByte 
memory space.

Table 9-5.  Relationship Between BLD Item and ASM Source File  (Contd.)

Item ASM386 and 
Startup.A58

BLD386 Controls 
and BLD file

Effect
9-36 Vol. 3A



PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive 
header and data. No executable code resides within the update. Each microcode 
update is tailored for a specific list of processor signatures. A mismatch of the 
processor’s signature with the signature contained in the update will result in a 
failure to load. A processor signature includes the extended family, extended model, 
type, family, model, and stepping of the processor (starting with processor family 
0fH, model 03H, a given microcode update may be associated with one of multiple 
processor signatures; see Section 9.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data 
and then by an optional extended signature table. Table 9-6 provides a definition of 
the fields; Table 9-7 shows the format of an update. 

The header is 48 bytes. The first 4 bytes of the header contain the header version. 
The update header and its reserved fields are interpreted by software based upon the 
header version. An encoding scheme guards against tampering and provides a 
means for determining the authenticity of any given update. For microcode updates 
with a data size field equal to 00000000H, the size of the microcode update is 2048 
bytes. The first 48 bytes contain the microcode update header. The remaining 2000 
bytes contain encrypted data. 

For microcode updates with a data size not equal to 00000000H, the total size field 
specifies the size of the microcode update. The first 48 bytes contain the microcode 
update header. The second part of the microcode update is the encrypted data.  The 
data size field of the microcode update header specifies the encrypted data size, its 
value must be a multiple of the size of DWORD. The total size field of the microcode 
update header specifies the encrypted data size plus the header size; its value must 
be in multiples of 1024 bytes (1 KBytes). The optional extended signature table if 
implemented follows the encrypted data, and its size is calculated by (Total Size – 
(Data Size + 48)). 

Figure 9-7.  Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader
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NOTE
The optional extended signature table is supported starting with 
processor family 0FH, model 03H.

. 
Table 9-6.  Microcode Update Field Definitions

Field Name Offset 
(bytes)

Length 
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the 
update signature provided by the processor to indicate 
the current update functioning within the processor.  
Used by the BIOS to authenticate the update and verify 
that the processor loads successfully.  The value in this 
field cannot be used for processor stepping identification 
alone.  This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy 
(e.g. 07/18/98 is 07181998H).

Processor 
Signature

12 4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor. 

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the 
integrity of the update header and data. Checksum is 
correct when the summation of all the DWORDs (including 
the extended Processor Signature Table) that comprise 
the microcode update result in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to 
correctly load this update. The initial version is 
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and 
must be a multiple of DWORDs.  If this value is 
00000000H, then the microcode update encrypted data 
is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.  
It is the summation of the header size, the encrypted 
data size and the size of the optional extended signature 
table. This value is always a multiple of 1024.
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Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or 
2000

Update data

Extended Signature 
Count

Data Size + 
48 

4 Specifies the number of extended signature structures 
(Processor Signature[n], processor flags[n] and 
checksum[n]) that exist in this microcode update.

Extended 
Checksum

Data Size + 
52

4 Checksum of update extended processor signature table.  
Used to verify the integrity of the extended processor 
signature table.  Checksum is correct when the 
summation of the DWORDs that comprise the extended 
processor signature table results in 00000000H.

Reserved Data Size + 
56

12 Reserved fields

Processor 
Signature[n]

Data Size + 
68 + (n * 12)

4 Extended family, extended model, type, family, model, 
and stepping of processor that requires this particular 
update revision (e.g., 00000650H). Each microcode 
update is designed specifically for a given extended 
family, extended model, type, family, model, and stepping 
of the processor. 

The BIOS uses the processor signature field in 
conjunction with the CPUID instruction to determine 
whether or not an update is appropriate to load on a 
processor. The information encoded within this field 
exactly corresponds to the bit representations returned 
by the CPUID instruction.

Processor Flags[n] Data Size + 
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits 
of this 4-byte field.  Each bit represents a particular 
platform type for a given CPUID.  The BIOS uses the 
processor flags field in conjunction with the platform Id 
bits in MSR (17H) to determine whether or not an update 
is appropriate to load on a processor.  Multiple bits may be 
set representing support for multiple platform IDs.

Checksum[n] Data Size + 
76 + (n * 12)

4 Used by utility software to decompose a microcode 
update into multiple microcode updates where each of 
the new updates is constructed without the optional 
Extended Processor Signature Table.

To calculate the Checksum, substitute the Primary 
Processor Signature entry and the Processor Flags entry 
with the corresponding Extended Patch entry. Delete the 
Extended Processor Signature Table entries. The 
Checksum is correct when the summation of all DWORDs 
that comprise the created Extended Processor Patch 
results in 00000000H.

Table 9-6.  Microcode Update Field Definitions (Contd.)

Field Name Offset 
(bytes)

Length 
(bytes)

Description
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Table 9-7.  Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended 
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size 
+ 48

Extended Processor Signature Table Checksum Data Size 
+ 52

Reserved (12 Bytes) Data Size 
+ 56

Processor Signature[n] Data Size 
+ 68 + 
(n * 12)

Processor Flags[n] Data Size 
+ 72 + 
(n * 12)

Checksum[n] Data Size 
+ 76 + 
(n * 12)
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9.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the 
encrypted data when the encrypted data only supports a single processor signature 
(optional case). The extended signature table will always be present when the 
encrypted data supports multiple processor steppings and/or models (required 
case). 

The extended signature table consists of a 20-byte extended signature header struc-
ture, which contains the extended signature count, the extended processor signature 
table checksum, and 12 reserved bytes (Table 9-8). Following the extended signa-
ture header structure, the extended signature table contains 0-to-n extended 
processor signature structures.

Each processor signature structure consist of the processor signature, processor 
flags, and a checksum (Table 9-9). 

The extended signature count in the extended signature header structure indicates 
the number of processor signature structures that exist in the extended signature 
table.  

The extended processor signature table checksum is a checksum of all DWORDs that 
comprise the extended signature table. That includes the extended signature count, 
extended processor signature table checksum, 12 reserved bytes and the n 
processor signature structures. A valid extended signature table exists when the 
result of a DWORD checksum is 00000000H.

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To 
determine the correct microcode update to load, software must ensure that one of 
the processor signatures embedded in the microcode update matches the 32-bit 
processor signature returned by the CPUID instruction when executed by the target 
processor with EAX = 1.  Attempting to load a microcode update that does not match 

Table 9-8.  Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-9.  Processor Signature Structure 

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)
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a processor signature embedded in the microcode update with the processor signa-
ture returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the 
processor and microcode update.

Example 9-5.  Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND 
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail 

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type 
must be determined to properly target the microcode update. The intended 
processor platform type is determined by reading the IA32_PLATFORM_ID register, 
(MSR 17H).  This 64-bit register must be read using the RDMSR instruction. 
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The three platform ID bits, when read as a binary coded decimal (BCD) number, indi-
cate the bit position in the microcode update header’s processor flags field associated 
with the installed processor.  The processor flags in the 48-byte header and the 
processor flags field associated with the extended processor signature structures 
may have multiple bits set. Each set bit represents a different platform ID that the 
update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a 
RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to 
the algorithms in Example 9-6.

Example 9-6.  Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update

Table 9-10.  Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for 

the processor. See also Table 9-7.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
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}
Else
{

//
// Assume the Data Size has been used to calculate the 
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It 
is software’s responsibility to ensure that a microcode update is not corrupt. To check 
for a corrupt microcode update, software must perform a unsigned DWORD (32-bit) 
checksum of the microcode update. Even though some fields are signed, the 
checksum procedure treats all DWORDs as unsigned. Microcode updates with a 
header version equal to 00000001H must sum all DWORDs that comprise the micro-
code update. A valid checksum check will yield a value of 00000000H. Any other 
value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the micro-
code update as an array of unsigned DWORDs. If the data size DWORD field at byte 
offset 32 equals 00000000H, the size of the encrypted data is 2000 bytes, resulting 
in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4), 
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7.  Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}
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If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel 
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS 
to ensure proper loading. The update loader described contains the minimal instruc-
tions needed to load an update. The specific instruction sequence that is required to 
load an update is dependent upon the loader revision field contained within the 
update header. This revision is expected to change infrequently (potentially, only 
when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of 
00000001H. Note that the microcode update must be aligned on a 16-byte boundary 
and the size of the microcode update must be 1-KByte granular.

Example 9-8.  Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode 
update (header and data) embedded within the code segment of the BIOS. It also 
assumes that the processor is operating in real mode. The data may reside anywhere 
in memory, aligned on a 16-byte boundary, that is accessible by the processor within 
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the 
following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear 

address. In protected mode, EAX contains the full 32-bit linear address of the 
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear 
address. In protected mode, EDX equals zero.
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• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data 

may not cross a segment boundary.
• If the update is loaded while the processor is in real mode, then the update data 

may not exceed a segment limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1  Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset. 
Therefore, each time a hard reset is asserted during the BIOS POST, the update must 
be reloaded on all processors that observed the reset. The effects of a loaded update 
are, however, maintained across a processor INIT. There are no side effects caused 
by loading an update into a processor multiple times.

9.11.6.2  Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data 
appropriate for its CPUID and platform ID bits. The BIOS is responsible for ensuring 
that this requirement is met and that the loader is located in a module executed by 
all processors in the system. If a system design permits multiple steppings of 
Pentium 4, Intel Xeon, and P6 family processors to exist concurrently; then the BIOS 
must verify individual processors against the update header information to ensure 
appropriate loading. Given these considerations, it is most practical to load the 
update during MP initialization.

9.11.6.3  Update in a System Supporting Intel Hyper-Threading Technology 
Intel Hyper-Threading Technology has implications on the loading of the microcode 
update. The update must be loaded for each core in a physical processor. Thus, for a 
processor supporting Intel Hyper-Threading Technology, only one logical processor 
per core is required to load the microcode update. Each individual logical processor 
can independently load the update. However, MP initialization must provide some 
mechanism (e.g. a software semaphore) to force serialization of microcode update 
loads and to prevent simultaneous load attempts to the same core.

9.11.6.4  Update in a System Supporting Dual-Core Technology 
Dual-core technology has implications on the loading of the microcode update. The 
microcode update facility is not shared between processor cores in the same physical 
package. The update must be loaded for each core in a physical processor. 
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If processor core supports Intel Hyper-Threading Technology, the guideline described 
in Section 9.11.6.3 also applies.

9.11.6.5  Update Loader Enhancements
The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a 
minimal implementation that can be enhanced to provide additional functionality. 
Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the 

Pentium 4, Intel Xeon, and P6 family processors. This feature provides for 
operating in a mixed stepping environment on an MP system and enables a user 
to upgrade to a later version of the processor. In this case, modify the loader to 
check the CPUID and platform ID bits of the processor that it is running on 
against the available headers before loading a particular update. The number of 
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update 
was loaded correctly. See Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on 
the double words of the update summing to zero. See Section 9.11.5, “Microcode 
Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an 
update.

9.11.7 Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the 
authenticity of a particular update and to identify the current update revision. This 
section describes the model-specific extensions of processors that support this 
feature. The update verification method below assumes that the BIOS will only verify 
an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register 
return values. The semantics of CPUID cause it to deposit an update ID value in the 
64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update 
is present in the processor, the value in the MSR remains unmodified. The BIOS must 
pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still 
returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the 
revision of the update loaded in the processor. This value, in combination with the 
CPUID value returned in the EAX register, uniquely identifies a particular update. The 
signature ID can be directly compared with the update revision field in a microcode 
update header for verification of a correct load. No consecutive updates released for 
a given stepping of a processor may share the same signature. The processor signa-
ture returned by CPUID differentiates updates for different steppings.
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9.11.7.1  Determining the Signature
An update that is successfully loaded into the processor provides a signature that 
matches the update revision of the currently functioning revision. This signature is 
available any time after the actual update has been loaded. Requesting the signature 
does not have a negative impact upon a loaded update.  

The procedure for determining this signature shown in Example 9-9.

Example 9-9.  Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

XOR EAX, EAX ;clear EAX

XOR EDX, EDX ;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX 
register after the RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register 
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature 
when CPUID executes. The signature is returned in the upper DWORD (Table 9-11).

9.11.7.2  Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive, 
described above, and the algorithm in Example 9-10.

Table 9-11.  Microcode Update Signature 
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded 
microcode update when read following the execution of the CPUID instruction, function 
1. It is required that this register field be pre-loaded with zero prior to executing the 
CPUID, function 1. If the field remains equal to zero, then there is no microcode update 
loaded. Another non-zero value will be the signature.

31:0 Reserved.
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Example 9-10.  Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a 
numerically larger revision than the currently loaded revision, where Current Signa-
ture (X) < New Update Revision (Z). A processor with no loaded update is considered 
to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to 
verify an update from a potentially hostile source.  As an example, this mechanism in 
conjunction with other safeguards provides security for dynamically incorporating 
field updates into the BIOS.

9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically inte-
grate processor-specific updates into the system BIOS. In this discussion, the appli-
cation is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM 
BIOS. This extension allows an application to read and modify the contents of the 
microcode update data in NVRAM. The update loader, which is part of the system 
BIOS, cannot be updated by the interface. All of the functions defined in the specifi-
cation must be implemented for a system to be considered compliant with the speci-
fication. The INT15 functions are accessible only from real mode.

9.11.8.1  Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must imple-
ment all of the sub-functions defined in the INT 15H, AX = 0D042H specification. 
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There are no optional functions. BIOS must load the appropriate update for each 
processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that 
the update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for 
each potential processor stepping within a system. This storage unit consists of one 
or more update blocks. An update block is a contiguous 2048-byte block of memory. 
The BIOS for a single processor system need only provide update blocks to store one 
microcode update. If the BIOS for a multiple processor system is intended to support 
mixed processor steppings, then the BIOS needs to provide enough update blocks to 
store each unique microcode update or for each processor socket on the OEM’s 
system board. 

The BIOS is responsible for managing the NVRAM update blocks. This includes 
garbage collection, such as removing microcode updates that exist in NVRAM for 
which a corresponding processor does not exist in the system. This specification only 
provides the mechanism for ensuring security, the uniqueness of an entry, and that 
stale entries are not loaded. The actual update block management is implementation 
specific on a per-BIOS basis. 

As an example, the BIOS may use update blocks sequentially in ascending order with 
CPU signatures sorted versus the first available block. In addition, garbage collection 
may be implemented as a setup option to clear all NVRAM slots or as BIOS code that 
searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and 
Intel 64 processors, the microcode update may be as large as 16 
KBytes. Thus, BIOS must allocate 8 update blocks for each microcode 
update. In a MP system, a common microcode update may be 
sufficient for each socket in the system. 
For IA-32 processors earlier than family 0FH and model 03H, the 
microcode update is 2 KBytes. An MP-capable BIOS that supports 
multiple steppings must allocate a block for each socket in the system.
A single-processor BIOS that supports variable-sized microcode 
update and fixed-sized microcode update must allocate one 16-KByte 
region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS 
initialization used to load the updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version 

or loader version that does not match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.
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These requirements are checked by the BIOS during the execution of the write 
update function of this interface. The BIOS sequentially scans through all of the 
update blocks in NVRAM starting with index 0. The BIOS scans until it finds an update 
where the processor fields in the header match the processor signature (extended 
family, extended model, type, family, model, and stepping) as well as the platform 
bits of the current processor.

Example 9-11.  Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor 
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] = 
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}
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}
}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-
bit binary coded decimal field. The platform bits in the microcode 
update header are individually bit encoded. The algorithm must do a 
translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the 
caller has no knowledge of platform specific requirements. It is the responsibility of 
BIOS calls to manage all chipset and platform specific prerequisites for managing the 
NVRAM device. When writing the update data using the Write Update sub-function, 
the BIOS must maintain implementation specific data requirements (such as the 
update of NVRAM checksum). The BIOS should also attempt to verify the success of 
write operations on the storage device used to record the update.

9.11.8.2  Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the 
interface specifications to load microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real 

mode program and should be executing on a system that is running in pure real 
mode. 

• The caller should issue the presence test function (sub function 0) and verify the 
signature and return codes of that function. 

• It is important that the calling program provides the required scratch RAM buffers 
for the BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS 
in order to make decisions about the appropriateness of loading the update. The 
BIOS must refuse to overwrite a newer update with an older version. The update 
header contains information about version and processor specifics for the calling 
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple 
updates for the same CPU to exist at the same time; it also must refuse to load 
updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the 
update write function successfully completes. This function reads back the 
update and verifies that the BIOS returned an image identical to the one that was 
written. 

Example 9-12 represents a calling program.
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Example 9-12.  INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated 
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature 
(i.e.,Extended Family, Extended Model, Type, Family, Model, 

Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
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// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor 
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all?  If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit
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}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

9.11.8.3  Microcode Update Functions
Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode 
update functions.

9.11.8.4  INT 15H-based Interface
Intel recommends that a BIOS interface be provided that allows additional microcode 
updates to be added to system flash. The INT15H interface is the Intel-defined 
method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte 
RAM areas for BIOS use during calls to the read and write functions. These RAM 
scratch pads can be used by the BIOS for any purpose, but only for the duration of 
the function call. The calling routine places real mode segments pointing to the RAM 
blocks in the CX, DX and SI registers. Calls to functions in this interface must be 
made with a minimum of 32 kilobytes of stack available to the BIOS.

Table 9-12.  Microcode Update Functions 
Microcode Update 
Function

Function 
Number

Description Required/Optional

Presence test 00H Returns information about the 
supported functions.

Required

Write update data 01H Writes one of the update data areas 
(slots).

Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas 
(slots).

Required
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In general, each function returns with CF cleared and AH contains the returned 
status. The general return codes and other constant definitions are listed in Section 
9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error informa-
tion specific to the platform. If the BIOS provides no additional information about the 
error, OEM error must be set to SUCCESS. The OEM error field is undefined if AH 
contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it 
must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5  Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update 
functions. Table 9-13 lists the parameters and return codes for the function.

In order to assure that the BIOS function is present, the caller must verify the carry 
flag, the return code, and the 64-bit signature. The update count reflects the number 
of 2048-byte blocks available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is 
included in the system BIOS image.

Table 9-13.  Parameters for the Presence Test 

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code  

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature 

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS 
allocated to storing microcode updates 

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 
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9.11.8.6  Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table 
9-14 lists the parameters and return codes for the function.

Table 9-14.  Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This 
buffer is 2048 bytes in length if the processor supports 
only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This 
buffer is 64 KBytes in length if the processor supports a 
variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented. 

WRITE_FAILURE A failure occurred because of the inability to write the 
storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the 
storage device.

READ_FAILURE A failure occurred because of the inability to read the 
storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.
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Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile 
storage for storing the new update. This BIOS is also responsible for ensuring the 
integrity of the information provided by the caller, including authenticating the 
proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update 
structure meets the following criteria in the following order:

1. The update header version should be equal to an update header version 
recognized by the BIOS.

2. The update loader version in the update header should be equal to the update 
loader version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit 
summation of all double words in the structure, including the header, data, and 
processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate 
update. The BIOS can select any available update block as long as it guarantees that 
only a single update exists for any given processor stepping in non-volatile storage. 
If the update block selected already contains an update, the following additional 
criteria apply to overwrite it:
• The processor signature in the proposed update must be equal to the processor 

signature in the header of the current update in NVRAM (Processor Signature + 
platform ID bits).

• The update revision in the proposed update should be greater than the update 
revision in the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS 
can overwrite update block(s) for a processor stepping that is no longer present in 
the system. This can be done by scanning the update blocks and comparing the 
processor steppings, identified in the MP Specification table, to the processor step-
pings that currently exist in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the 
system.

INVALID_HEADER The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in 
the storage device. 

Table 9-14.  Parameters for the Write Update Data Function (Contd.)

Input
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Finally, before storing the proposed update in NVRAM, the BIOS must verify the 
authenticity of the update via the mechanism described in Section 9.11.6, “Micro-
code Update Loader.” This includes loading the update into the current processor, 
executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated 
value with the update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update, 
including the header, the update data, and the extended processor signature table (if 
applicable). When writing an update, the original contents may be overwritten, 
assuming the above criteria have been met. It is the responsibility of the BIOS to 
ensure that more recent updates are not overwritten through the use of this BIOS 
call, and that only a single update exists within the NVRAM for any processor step-
ping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update 
block and ensure the integrity of the data when it stores the new microcode update. 
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Figure 9-8.  Microcode Update Write Operation Flow [1]
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Figure 9-9.  Microcode Update Write Operation Flow [2]
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9.11.8.7  Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 9-15 lists 
the parameters and return codes for the function.

This control is provided on a global basis for all updates and processors. The caller 
can determine the current status of update loading (enabled or disabled) without 
changing the state. The function does not allow the caller to disable loading of binary 
updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table 
9-16 in the BH register. After successfully completing this function, the BL register 
contains either the enable or the disable designator. Note that if the function fails, the 
update status return value is undefined.

Table 9-15.  Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information. 

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the 
storage device. 
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The READ_FAILURE error code returned by this function has meaning only if the 
control function is implemented in the BIOS NVRAM. The state of this feature 
(enabled/disabled) can also be implemented using CMOS RAM bits where READ 
failure errors cannot occur. 

9.11.8.8  Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into 
a caller-provided RAM buffer. Table 9-17 lists the parameters and return codes. 

Table 9-16.  Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without 
changing its status.

Table 9-17.  Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update 
structure that will be written with the 
binary data

ECX Scratch Pad1 Real Mode Segment address of 64 
KBytes of RAM Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64 
KBytes of RAM Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64 
KBytes of RAM Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update 
block to be read. This value is zero based 
and must be less than the update count 
returned from the presence test 
function.

Output

CF Carry Flag Carry Set     - Failure - AH contains Status

Carry Clear - All return 
values are valid.

AH Return Code Status of the Call
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The read function enables the caller to read any microcode update data that already 
exists in a BIOS and make decisions about the addition of new updates.  As a result 
of a successful call, the BIOS copies the microcode update into the location pointed 
to by ES:DI, with the contents of all Update block(s) that are used to store the spec-
ified microcode update.

If the specified block is not a header block, but does contain valid data from a micro-
code update that spans multiple update blocks, then the BIOS must return Failure 
with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its 
Header Version contains the value 0FFFFFFFFH after return from this function call.  
The actual implementation of NVRAM storage management is not specified here and 
is BIOS dependent.  As an example, the actual data value used to represent an 
empty block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is respon-
sible for translating this information into the header provided by this function.

9.11.8.9  Return Codes
After the call has been made, the return codes listed in Table 9-18 are available in the 
AH register.

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the 
inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum 
number of update blocks implemented 
by the BIOS.

NOT_EMPTY The specified update block is a 
subsequent block in use to store a valid 
microcode update that spans multiple 
blocks. 

The specified block is not a header block 
and is not empty. 

Table 9-17.  Parameters for the Read Microcode Update Data Function (Contd.)
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Table 9-18.  Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage 
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage 
device.

READ_FAILURE 92H A failure because of the inability to read the storage 
device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to 
accommodate the update because all available update 
blocks are filled with updates that are needed for 
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the 
system.

INVALID_HEADER 95H The update header contains a header or loader version 
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists 
in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of 
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use 
to store a valid microcode update that spans multiple 
blocks. 

The specified block is not a header block and is not 
empty.
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CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following 
sections as the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (see Section 19.27, “Advanced Programmable Interrupt Controller 
(APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other 
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of 
the Local APIC”). The local APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources 

and from an external I/O APIC (or other external interrupt controller). It sends 
these to the processor core for handling.

• In multiple processor (MP) systems, it sends and receives interprocessor 
interrupt (IPI) messages to and from other logical processors on the system bus. 
IPI messages can be used to distribute interrupts among the processors in the 
system or to execute system wide functions (such as, booting up processors or 
distributing work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to 
receive external interrupt events from the system and its associated I/O devices and 
relay them to the local APIC as interrupt messages. In MP systems, the I/O APIC also 
provides a mechanism for distributing external interrupts to the local APICs of 
selected processors or groups of processors on the system bus. 

This chapter provides a description of the local APIC and its programming interface. 
It also provides an overview of the interface between the local APIC and the I/O 
APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the 
processor uses the interrupt and exception handling mechanism described in Chapter 
6, “Interrupt and Exception Handling.” See Section 6.1, “Interrupt and Exception 
Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated 
hardware that control the delivery of interrupts to the processor core and the gener-
ation of IPI messages. The APIC registers are memory mapped and can be read and 
written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or 

level asserted by an I/O device that is connected directly to the processor’s local 
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interrupt pins (LINT0 and LINT1). The I/O devices may also be connected to an 
8259-type interrupt controller that is in turn connected to the processor through 
one of the local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or 
level asserted by an I/O device that is connected to the interrupt input pins of an 
I/O APIC. Interrupts are sent as I/O interrupt messages from the I/O APIC to one 
or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use 
the IPI mechanism to interrupt another processor or group of processors on the 
system bus. IPIs are used for software self-interrupts, interrupt forwarding, or 
preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed 
to send a local interrupt to its associated processor when a programmed count is 
reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and 
Intel Xeon processors provide the ability to send an interrupt to its associated 
processor when a performance-monitoring counter overflows (see Section 
30.9.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the 
ability to send an interrupt to themselves when the internal thermal sensor has 
been tripped (see Section 14.5.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within 
the local APIC (such as an attempt to access an unimplemented register), the 
APIC can be programmed to send an interrupt to its associated processor (see 
Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the 
performance-monitoring counters, the thermal sensor, and the internal APIC error 
detector are referred to as local interrupt sources. Upon receiving a signal from a 
local interrupt source, the local APIC delivers the interrupt to the processor core 
using an interrupt delivery protocol that has been set up through a group of APIC 
registers called the local vector table or LVT (see Section 10.5.1, “Local Vector 
Table”). A separate entry is provided in the local vector table for each local interrupt 
source, which allows a specific interrupt delivery protocol to be set up for each 
source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1 
entry in the local vector table can be set up to deliver an interrupt with vector number 
2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally 
connected I/O devices and IPIs) through its IPI message handling facilities. 

A processor can generate IPIs by programming the interrupt command register (ICR) 
in its local APIC (see Section 10.6.1, “Interrupt Command Register (ICR)”). The act 
of writing to the ICR causes an IPI message to be generated and issued on the 
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for 
Pentium and P6 family processors). See Section 10.2, “System Bus Vs. APIC Bus.”
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IPIs can be sent to other processors in the system or to the originating processor 
(self-interrupts). When the target processor receives an IPI message, its local APIC 
handles the message automatically (using information included in the message such 
as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor 
Interrupts,” for a detailed explanation of the local APIC’s IPI message delivery and 
acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through 
the I/O APIC (see Figure 10-1). The I/O APIC is responsible for receiving interrupts 
generated by system hardware and I/O devices and forwarding them to the local 
APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt 
vector when asserted. The I/O APIC also has a “virtual wire mode” that allows it to 
communicate with a standard 8259A-style external interrupt controller. Note that the 
local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local 
APIC”). This allows an associated processor core to receive interrupts directly from 
an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see 
Figures 10-2 and 10-3). Each local APIC handles interrupts from the I/O APIC, IPIs 
from processors on the system bus, and self-generated interrupts. Interrupts can 

 

Figure 10-1.  Relationship of Local APIC and I/O APIC In Single-Processor Systems
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also be delivered to the individual processors through the local interrupt pins; 
however, this mechanism is commonly not used in MP systems.

 

Figure 10-2.  Local APICs and I/O APIC When Intel Xeon Processors Are Used in 
Multiple-Processor Systems

 

Figure 10-3.  Local APICs and I/O APIC When P6 Family Processors Are Used in 
Multiple-Processor Systems
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The IPI mechanism is typically used in MP systems to send fixed interrupts (inter-
rupts for a specific vector number) and special-purpose interrupts to processors on 
the system bus. For example, a local APIC can use an IPI to forward a fixed interrupt 
to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI 
and SIPI IPIs) allow one or more processors on the system bus to perform system-
wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the 
Pentium 4, Intel Xeon, and P6 family processors. In these sections, the terms “local 
APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 family processors 
and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see 
Section 10.3, “The Intel® 82489DX External APIC, The APIC, the xAPIC, AND THE 
X2APIC”). 

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate 
through the 3-wire inter-APIC bus (see Figure 10-3). Local APICs also use the APIC 
bus to send and receive IPIs. The APIC bus and its messages are invisible to software 
and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local 
APICs (using the xAPIC architecture) communicate through the system bus (see 
Figure 10-2). The I/O APIC sends interrupt requests to the processors on the system 
bus through bridge hardware that is part of the Intel chip set. The bridge hardware 
generates the interrupt messages that go to the local APICs. IPIs between local 
APICs are transmitted directly on the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC, 
THE APIC, THE XAPIC, AND THE X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of 
the Intel® 82489DX external APIC. See Section 19.27.1, “Software Visible Differ-
ences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the 
xAPIC architecture) is an extension of the APIC architecture found in the P6 family 
processors. The primary difference between the APIC and xAPIC architectures is that 
with the xAPIC architecture, the local APICs and the I/O APIC communicate through 
the system bus. With the APIC architecture, they communication through the APIC 
bus (see Section 10.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural 
features have been extended and/or modified in the xAPIC architecture. These 
extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is 
an extension of the xAPIC architecture, primarily to increase processor address-
Vol. 3A 10-5



ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
ability. The x2APIC architecture provides backward compatibility to the xAPIC archi-
tecture and forward extendability for future Intel platform innovations. These 
extensions and modifications are supported by a new mode of execution (x2APIC 
mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect 
it, identify it, and determine its status. Descriptions of how to program the local APIC 
are given in Section 10.5.1, “Local Vector Table,” and Section 10.6.1, “Interrupt 
Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts 
with the local APIC by reading and writing its registers. APIC registers are memory-
mapped to a 4-KByte region of the processor’s physical address space with an initial 
starting address of FEE00000H. For correct APIC operation, this address space must 
be mapped to an area of memory that has been designated as strong uncacheable 
(UC). See Section 11.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on 
the system bus are initially mapped to the same 4-KByte region of the physical 
address space. Software has the option of changing initial mapping to a different 
4-KByte region for all the local APICs or of mapping the APIC registers for each local 
APIC to its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Regis-
ters,” describes how to relocate the base address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] = 
1), the local APIC supports operation both in xAPIC mode and (if enabled by soft-
ware) in x2APIC mode. x2APIC mode provides extended processor addressability 
(see Section 10.12).

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC 
handles all memory accesses to addresses within the 4-KByte APIC 
register space internally and no external bus cycles are produced. For 
the Pentium processors with an on-chip APIC, bus cycles are 
produced for accesses to the APIC register space. Thus, for software 
intended to run on Pentium processors, system software should 
explicitly not map the APIC register space to regular system memory. 
Doing so can result in an invalid opcode exception (#UD) being 
generated or unpredictable execution.
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Figure 10-4.  Local APIC Structure
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Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register 
space. Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit 
boundaries. All 32-bit registers should be accessed using 128-bit aligned 32-bit loads 
or stores. Some processors may support loads and stores of less than 32 bits to some 
of the APIC registers. This is model specific behavior and is not guaranteed to work 
on all processors. Any FP/MMX/SSE access to an APIC register, or any access that 
touches bytes 4 through 15 of an APIC register may cause undefined behavior and 
must not be executed. This undefined behavior could include hangs, incorrect results 
or unexpected exceptions, including machine checks, and may vary between imple-
mentations. Wider registers (64-bit or 256-bit) must be accessed using multiple 32-
bit loads or stores, with all accesses being 128-bit aligned. 

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated 
with the programming of the local APIC is the IA32_APIC_BASE MSR (see Section 
10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem 
the Local APIC ID Register is no longer Read/Write; it is Read Only.

Table 10-1 Local APIC Register Address Map 

Address Register Name Software 
Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see 
Section 10.6.2.2).
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FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see 
Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128  Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT CMCI Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local 
APIC can be detected using the CPUID instruction. When the CPUID instruction is 
executed with a source operand of 1 in the EAX register, bit 9 of the CPUID feature 
flags returned in the EDX register indicates the presence (set) or absence (clear) of a 
local APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters 
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through 
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of 

the ESR will not be set when writing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated 

function are implementation dependent and may not be present in future IA-32 or Intel 64 pro-
cessors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are 
implementation dependent and may not be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map  (Contd.)

Address Register Name Software 
Read/Write
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1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR 
address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to 
an IA-32 processor without an on-chip APIC. The CPUID feature flag for the 
APIC (see Section 10.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire 
APIC bus cannot be generally re-enabled until a system hardware reset. The 
3-wire bus loses track of arbitration that would be necessary for complete re-
enabling. Certain APIC functionality can be enabled (for example: 
performance and thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software 
may disable or enable the APIC by setting and resetting 
IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC 
functionality, if software guarantees no interrupt will be sent to the APIC as 
IA32_APIC_BASE[11] is cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be 
lost and the APIC may return to the state described in Section 10.4.7.1, 
“Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector 
register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at 
any time by clearing the APIC software enable/disable flag in the spurious-
interrupt vector register (see Figure 10-23). The state of the local APIC when 
in this software-disabled state is described in Section 10.4.7.2, “Local APIC 
State After It Has Been Software Disabled.” 

— When the local APIC is in the software-disabled state, it can be re-enabled at 
any time by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is 
used during power-up or reset to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts 
from being delivered to the processor from selected local interrupt sources (the 
LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the 
thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR 
(see Figure 10-5). MSR bit functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP). 

See Section 8.4, “Multiple-Processor (MP) Initialization.” Following a power-up or 
reset, this flag is set to 1 for the processor selected as the BSP and set to 0 for the 
remaining processors (APs).
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• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see 
Section 10.4.3, “Enabling or Disabling the Local APIC”). This flag is available in 
the Pentium 4, Intel Xeon, and P6 family processors. It is not guaranteed to be 
available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC 
registers. This 24-bit value is extended by 12 bits at the low end to form the base 
address. This automatically aligns the address on a 4-KByte boundary. Following 
a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the 
IA32_APIC_BASE MSR are reserved.

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of 
the APIC registers to be relocated from FEE00000H to another physical address by 
modifying the value in the 24-bit base address field of the IA32_APIC_BASE MSR. 
This extension of the APIC architecture is provided to help resolve conflicts with 
memory maps of existing systems and to allow individual processors in an MP system 
to map their APIC registers to different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the 
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6 
family and Pentium processors). The hardware assigned APIC ID is based on system 
topology and includes encoding for socket position and cluster information (see 
Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the 
operating system. Some processors permit software to modify the APIC ID. However, 
the ability of software to modify the APIC ID is processor model specific. Because of 

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indi-
cated by CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5.  IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP

APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved
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this, operating system software should avoid writing to the local APIC ID register. The 
value returned by bits 31-24 of the EBX register (when the CPUID instruction is 
executed with a source operand value of 1 in the EAX register) is always the Initial 
APIC ID (determined by the platform initialization). This is true even if software has 
changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by 
sampling pins A11# and A12# and pins BR0# through BR3# (for the Pentium 4, Intel 
Xeon, and P6 family processors) and pins BE0# through BE3# (for the Pentium 
processor). The APIC ID latched from these pins is stored in the APIC ID field of the 
local APIC ID register (see Figure 10-6), and is used as the Initial APIC ID for the 
processor. 

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID 
register is 4 bits. Encodings 0H through EH can be used to uniquely identify 15 
different processors connected to the APIC bus. For the Pentium 4 and Intel Xeon 
processors, the xAPIC specification extends the local APIC ID field to 8 bits. These 
can be used to identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following 
a power-up or reset, after the local APIC has been software disabled, following an 
INIT reset, and following an INIT-deassert message.

Figure 10-6.  Local APIC ID Register

31 27 24 0

ReservedAPIC ID

Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors 

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H

31     0

x2APIC ID

x2APIC Mode
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x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1  Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its regis-
ters are as follows:
• The following registers are reset to all 0s: 

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family 

processors only). The Arb ID register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8 

to 0, software disables the local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP 

system (see Section 8.4.1, “BSP and AP Processors”); the local APIC will respond 
normally to INIT and NMI messages, to INIT# signals and to STPCLK# signals. If 
the processor is in an MP system and has been designated as an AP; the local 
APIC will respond the same as for the BSP. In addition, it will respond to SIPI 
messages. For P6 family processors only, an AP will not respond to a STPCLK# 
signal.

10.4.7.2  Local APIC State After It Has Been Software Disabled 
When the APIC software enable/disable flag in the spurious interrupt vector register 
has been explicitly cleared (as opposed to being cleared during a power up or reset), 
the local APIC is temporarily disabled (see Section 10.4.3, “Enabling or Disabling the 
Local APIC”). The operation and response of a local APIC while in this software-
disabled state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or 

handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing 

IPIs through the IPI mechanism and the ICR register if sending interrupts 
through this mechanism is not desired.

• The reception or transmission of any IPIs that are in progress when the local APIC 
is disabled are completed before the local APIC enters the software-disabled 
state.
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• The mask bits for all the LVT entries are set. Attempts to reset these bits will be 
ignored.

• (For Pentium and P6 family processors) The local APIC continues to listen to all 
bus messages in order to keep its arbitration ID synchronized with the rest of the 
system.

10.4.7.3  Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds 
by beginning the initialization process of the processor core and the local APIC. The 
state of the local APIC following an INIT reset is the same as it is after a power-up or 
hardware reset, except that the APIC ID and arbitration ID registers are not affected. 
This state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP 
Initialization Protocol Requirements and Restrictions”).

10.4.7.4  Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-
disassert IPI has no affect on the state of the APIC, other than to reload the arbitra-
tion ID register with the value in the APIC ID register. 

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to 
identify the APIC version (see Figure 10-7). In addition, the register specifies the 
number of entries in the local vector table (LVT) for a specific implementation. 

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

1XH Local APIC. For Pentium 4 and Intel Xeon 
processors, 14H is returned.

0XH 82489DX external APIC.

20H - FFH Reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and 

Intel Xeon processors (which have 6 LVT entries), the value 
returned in the Max LVT field is 5; for the P6 family processors 
(which have 5 LVT entries), the value returned is 4; for the 
Pentium processor (which has 4 LVT entries), the value returned 
is 3.
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Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI 
message by setting bit 12 of the Spurious Interrupt Vector 
Register; see Section 10.8.5 and Section 10.9.

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for 
handling local interrupts. These include: the processor’s LINT0 and LINT1 pins, the 
APIC timer, the performance-monitoring counters, the thermal sensor, and the 
internal APIC error detector. Local interrupt handling facilities include: the LVT, the 
error status register (ESR), the divide configuration register (DCR), and the initial 
count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local 
interrupts are delivered to the processor core. It consists of the following 32-bit APIC 
registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an 

overflow condition of corrected machine check error count reaching a threshold 
value occurred in a machine check bank supporting CMCI (see Section 15.5.1, 
“CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the 
APIC timer signals an interrupt (see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery 
when the thermal sensor generates an interrupt (see Section 14.5.2, “Thermal 
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

Figure 10-7.  Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
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• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt 
delivery when a performance counter generates an interrupt on overflow (see 
Section 30.9.5.8, “Generating an Interrupt on Overflow”). This LVT entry is 
implementation specific, not architectural. If implemented, it is not guaranteed 
to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an 
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the 
APIC detects an internal error (see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in 
the P6 processors and are also present in the Pentium 4 and Intel Xeon processors. 
The LVT thermal monitor register and its associated interrupt were introduced in the 
Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and 
reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as 
follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some 

delivery modes will only operate as intended when used in 
conjunction with a specific trigger mode. The allowable delivery 
modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector 
field.

010 (SMI) Delivers an SMI interrupt to the processor 
core through the processor’s local SMI signal 
path. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility.

100 (NMI) Delivers an NMI interrupt to the processor. 
The vector information is ignored. 

101 (INIT) Delivers an INIT request to the processor 
core, which causes the processor to perform 
an INIT. When using this delivery mode, the 
vector field should be set to 00H for future 
compatibility. Not supported for the LVT 
CMCI register, the LVT thermal monitor reg-
ister, or the LVT performance counter regis-
ter.
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Figure 10-8.  Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a 

performance monitoring counters interrupt is generated, 
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
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110 Reserved; not supported for any LVT regis-
ter.

111 (ExtINT) Causes the processor to respond to the in-
terrupt as if the interrupt originated in an 
externally connected (8259A-compatible) 
interrupt controller. A special INTA bus cycle 
corresponding to ExtINT, is routed to the ex-
ternal controller. The external controller is 
expected to supply the vector information. 
The APIC architecture supports only one Ex-
tINT source in a system, usually contained in 
the compatibility bridge. Not supported for 
the LVT CMCI register, the LVT thermal mon-
itor register, or the LVT performance counter 
register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this inter-
rupt source, or the previous interrupt from 
this source was delivered to the processor 
core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source 
has been delivered to the processor core but 
has not yet been accepted (see Section 
10.5.5, “Local Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) 
active high or (1) active low. 

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when 
the local APIC accepts the interrupt for servicing and is reset 
when an EOI command is received from the processor. The 
meaning of this flag is undefined for edge-triggered interrupts 
and other delivery modes. 

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0) 
edge sensitive and (1) level sensitive. This flag is only used 
when the delivery mode is Fixed. When the delivery mode is 
NMI, SMI, or INIT, the trigger mode is always edge sensitive. 
When the delivery mode is ExtINT, the trigger mode is always 
level sensitive. The timer and error interrupts are always treated 
as edge sensitive. 
If the local APIC is not used in conjunction with an I/O APIC and 
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and 
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P6 family processors will always use level-sensitive triggering, 
regardless if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1) 
inhibits reception of the interrupt. When the local APIC handles 
a performance-monitoring counters interrupt, it automatically 
sets the mask flag in the LVT performance counter register. This 
flag is set to 1 on reset. It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4): 
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in 
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0 
through 255 (see Section 6.2, “Exception and Interrupt Vectors”). Local and I/O 
APICs support 240 of these vectors (in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local 
APIC, the APIC indicates an illegal vector in its Error Status Register (see Section 
10.5.3, “Error Handling”). The Intel 64 and IA-32 architectures reserve vectors 16 
through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see 
Table 6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery 
mode is Fixed (bits 8-11 equal 0), the APIC may signal an illegal vector error, without 
regard to whether the mask bit is set or whether an interrupt is actually seen on the 
input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status 
register (ESR). The format of the ESR is given in Figure 10-9; it contains the 
following flags:
• Bit 0: Send Checksum Error.

Set when the local APIC detects a checksum error for a message that it sent on 
the APIC bus. Used only on P6 family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received 
on the APIC bus. Used only on P6 family and Pentium processors.
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• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any 
APIC on the APIC bus. Used only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by 
any APIC on the APIC bus, including itself. Used only on P6 family and Pentium 
processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority 
delivery mode and the local APIC does not support the sending of such IPIs. This 
bit is used on some Intel Core and Intel Xeon processors. As noted in Section 
10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific 
and should be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the 
message that it is sending. This occurs as the result of a write to the ICR (in both 
xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode only) with an 
illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software 
writes the ICR to send a lowest-priority IPI with an illegal vector, the local APIC 

Figure 10-9.  Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
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sets only the “redirectible IPI” error bit. The interrupt is not processed and hence 
the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an 
interrupt message it receives or in an interrupt generated locally from the local 
vector table or via a self IPI. Such interrupts are not be delivered to the 
processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a 
register that is reserved in the processor's local-APIC register-address space; see 
Table 10-1. (The local-APIC register-address space comprises the 4 KBytes at the 
physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel 
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and 
WRMSR instructions. Use of one of these instructions to access a reserved 
register cause a general-protection exception (see Section 10.12.1.3). They do 
not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software 
should first write to it. (The value written does not affect the values read subse-
quently; only zero may be written in x2APIC mode.) This write clears any previously 
logged errors and updates the ESR with any errors detected since the last write to the 
ESR.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the 
interrupt to be delivered to the processor core when APIC error is detected. The 
register also provides a means of masking an APIC-error interrupt. This masking only 
prevents delivery of APIC-error interrupts; the APIC continues to record errors in the 
ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to soft-
ware to time events or operations. This timer is set up by programming four regis-
ters: the divide configuration register (see Figure 10-10), the initial-count and 
current-count registers (see Figure 10-11), and the LVT timer register (see 
Figure 10-8). 

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant 
rate regardless of P-state transitions and it continues to run at the same rate in deep 
C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer 
may temporarily stop while the processor is in deep C-states or during transitions 
caused by Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the 
value specified in the divide configuration register.
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The timer can be configured through the timer LVT entry for one-shot or periodic 
operation. In one-shot mode, the timer is started by programming its initial-count 
register. The initial count value is then copied into the current-count register and 
count-down begins. After the timer reaches zero, an timer interrupt is generated and 
the timer remains at its 0 value until reprogrammed. 

In periodic mode, the current-count register is automatically reloaded from the 
initial-count register when the count reaches 0 and a timer interrupt is generated, 
and the count-down is repeated. If during the count-down process the initial-count 
register is set, counting will restart, using the new initial-count value. The initial-
count register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both 
one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the 
processor with the timer interrupt that is generated when the timer count reaches 
zero. The mask flag in the LVT timer register can be used to mask the timer interrupt.

Figure 10-10.  Divide Configuration Register

 

Figure 10-11.  Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
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10.5.4.1  TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer 
Register. Specifically, if CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is 
determined by bit 17 of the register; if CPUID.01H:ECX.TSC_Deadline[bit 24] = 1, 
the mode is determined by bits 18:17. See Figure 10-8. (If 
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write 
to the LVT Timer Register that changes the timer mode disarms the local APIC timer. 
The supported timer modes are given in Table 10-2. The three modes of the local 
APIC timer are mutually exclusive.

The TSC-deadline mode allows software to use local APIC timer to single interrupt at 
an absolute time. In TSC-deadline mode, writes to the initial-count register are 
ignored; and current-count register always reads 0. Instead, timer behavior is 
controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR 
that specifies the time at which a timer interrupt should occur. Writing a non-zero 64-
bit value into IA32_TSC_DEADLINE arms the timer. An interrupt is generated when 
the logical processor’s time-stamp counter equals or exceeds the target value in the 
IA32_TSC_DEADLINE MSR.2 When the timer generates an interrupt, it disarms itself 
and clears the IA32_TSC_DEADLINE MSR. Thus, each write to the 
IA32_TSC_DEADLINE MSR generates at most one timer interrupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-
APIC timer. Transitioning between TSC-deadline mode and other timer modes also 
disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer 
modes (LVT bit 18 = 0), the IA32_TSC_DEADLINE MSR reads zero and writes are 
ignored.

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count 
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See 
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE 
MSR.

11b Reserved

2. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using 
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; 
see Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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Software can configure the TSC-deadline timer to deliver a single interrupt using the 
following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer 
register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the 
timer interrupt is desired. This causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter 
is greater than or equal to that of IA32_TSC_DEADLINE. It then disarms the 
timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-stamp counter 
and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system 

software should not use WRMSR to the IA32_TSC_DEADLINE MSR as a serializing 
instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR 
registers will occur in program order. 

• Software can disarm the timer at any time by writing 0 to the 
IA32_TSC_DEADLINE MSR. 

• If timer is armed, software can change the deadline (forward or backward) by 
writing a new value to the IA32_TSC_DEADLINE MSR.

• If software disarms the timer or postpones the deadline, race conditions may 
result in the delivery of a spurious timer interrupt. Software is expected to detect 
such spurious interrupts by checking the current value of the time-stamp counter 
to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software 
must serialize between the memory-mapped write to the LVT entry and the 
WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serialization is required 
between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-
stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using 
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter; 
see Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
3B. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
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4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline. 

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance 
criteria specified in the interrupt acceptance flow chart in Figure 10-17. If the inter-
rupt is accepted, it is logged into the IRR register and handled by the processor 
according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Inter-
rupts”). If the interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing 
interprocessor interrupts (IPIs) from software. The primary local APIC facility for 
issuing IPIs is the interrupt command register (ICR). The ICR can be used for the 
following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to 

another processor for servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other 

processors. 

Interrupts generated with this facility are delivered to the other processors in the 
system through the system bus (for Pentium 4 and Intel Xeon processors) or the 
APIC bus (for P6 family and Pentium processors). The ability for a processor to send 
a lowest priority IPI is model specific and should be avoided by BIOS and operating 
system software.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see 
Figure 10-12) that allows software running on the processor to specify and send 
interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to 
be sent and the destination processor or processors. (All fields of the ICR are read-
write by software with the exception of the delivery status field, which is read-only.) 
The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and 
ICR_HIGH (FFE0 0310H).
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The ICR consists of the following fields. 
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the 

IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector 
field to the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the inter-
rupt is delivered to the processor executing 
at the lowest priority among the set of pro-
cessors specified in the destination field. The 

Figure 10-12.  Interrupt Command Register (ICR)

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field

56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
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ability for a processor to send a lowest prior-
ity IPI is model specific and should be avoid-
ed by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target pro-
cessor or processors. The vector field must 
be programmed to 00H for future compati-
bility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target pro-
cessor or processors. The vector information 
is ignored. 

101 (INIT) Delivers an INIT request to the target pro-
cessor or processors, which causes them to 
perform an INIT. As a result of this IPI mes-
sage, all the target processors perform an 
INIT. The vector field must be programmed 
to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel 
Xeon processors.) Sends a synchronization 
message to all the local APICs in the system 
to set their arbitration IDs (stored in their 
Arb ID registers) to the values of their APIC 
IDs (see Section 10.7, “System and APIC 
Bus Arbitration”). For this delivery mode, 
the level flag must be set to 0 and trigger 
mode flag to 1. This IPI is sent to all proces-
sors, regardless of the value in the destina-
tion field or the destination shorthand field; 
however, software should specify the “all in-
cluding self” shorthand. 

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI) 
to the target processor or processors. The 
vector typically points to a start-up routine 
that is part of the BIOS boot-strap code (see 
Section 8.4, “Multiple-Processor (MP) Initial-
ization”). IPIs sent with this delivery mode 
are not automatically retried if the source 
APIC is unable to deliver it. It is up to the 
software to determine if the SIPI was not 
successfully delivered and to reissue the 
SIPI if necessary.
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Destination Mode Selects either physical (0) or logical (1) destination mode (see 
Section 10.6.2, “Determining IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed 
sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not com-
pleted sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set 
to 0; for all other delivery modes it must be set to 1. (This flag 
has no meaning in Pentium 4 and Intel Xeon processors, and will 
always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert 
delivery mode: edge (0) or level (1). It is ignored for all other 
delivery modes. (This flag has no meaning in Pentium 4 and 
Intel Xeon processors, and will always be issued as a 0.) 

Destination Shorthand
Indicates whether a shorthand notation is used to specify the 
destination of the interrupt and, if so, which shorthand is used. 
Destination shorthands are used in place of the 8-bit destination 
field, and can be sent by software using a single write to the low 
doubleword of the ICR. Shorthands are defined for the following 
cases: software self interrupt, IPIs to all processors in the 
system including the sender, IPIs to all processors in the system 
excluding the sender.

00: (No Shorthand)
The destination is specified in the destination 
field.

01: (Self) The issuing APIC is the one and only destina-
tion of the IPI. This destination shorthand al-
lows software to interrupt the processor on 
which it is executing. An APIC implementa-
tion is free to deliver the self-interrupt mes-
sage internally or to issue the message to 
the bus and “snoop” it as with any other IPI 
message.

10: (All Including Self)
The IPI is sent to all processors in the system 
including the processor sending the IPI. The 
APIC will broadcast an IPI message with the 
destination field set to FH for Pentium and P6 
family processors and to FFH for Pentium 4 
and Intel Xeon processors.
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11: (All Excluding Self)
The IPI is sent to all processors in a system 
with the exception of the processor sending 
the IPI. The APIC broadcasts a message with 
the physical destination mode and destina-
tion field set to 0xFH for Pentium and P6 
family processors and to 0xFFH for Pentium 
4 and Intel Xeon processors. Support for this 
destination shorthand in conjunction with 
the lowest-priority delivery mode is model 
specific. For Pentium 4 and Intel Xeon pro-
cessors, when this shorthand is used togeth-
er with lowest priority delivery mode, the IPI 
may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only 
used when the destination shorthand field is set to 00B. If the 
destination mode is set to physical, then bits 56 through 59 
contain the APIC ID of the target processor for Pentium and P6 
family processors and bits 56 through 63 contain the APIC ID of 
the target processor the for Pentium 4 and Intel Xeon proces-
sors. If the destination mode is set to logical, the interpretation 
of the 8-bit destination field depends on the settings of the DFR 
and LDR registers of the local APICs in all the processors in the 
system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid 
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors; 
Table 10-4 shows the valid combinations for the fields in the ICR for the P6 family 
processors. Also note that the lower half of the ICR may not be preserved over tran-
sitions to the deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination 
Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Including Self Valid Edge Fixed X
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All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Excluding 
Self

Valid Edge Fixed, Lowest Priority1,4, NMI, INIT, 
SMI, Start-Up

X

All Excluding 
Self

Invalid2 Level FIxed, Lowest Priority4, NMI, INIT, 
SMI, Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit set-

ting and issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI 

can be redirected back to the issuing APIC, which is essentially the same as the “all including 
self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT, 
SMI, Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ 
Local xAPIC Interrupt Command Register (Contd.)

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode

Destination 
Mode
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10.6.2 Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the 
system bus. The sender of the IPI specifies the destination of an IPI with the 
following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the 

destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or 
logical).

— Destination Field — In physical destination mode, used to specify the APIC 
ID of the destination processor; in logical destination mode, used to specify a 
message destination address (MDA) that can be used to select specific 
processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all 
excluding self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-
priority arbitration mechanism be used to select a destination processor from 
a specified group of processors. The ability of a processor to send a lowest 
priority IPI is model specific and should be avoided by BIOS and operating 
system software.

• Local destination register (LDR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical 
destination mode and MDAs to select the destination processors.

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message 

when level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the 
level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Contd.)

Destination 
Shorthand

Valid/
Invalid

Trigger 
Mode Delivery Mode Destination Mode
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How the ICR, LDR, and DFR are used to select an IPI destination depends on the 
destination mode used: physical, logical, broadcast/self, or lowest-priority delivery 
mode. These destination modes are described in the following sections.

Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10.6.2.1  Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC 
ID (see Section 10.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors, 
either a single destination (local APIC IDs 00H through FEH) or a broadcast to all 
APICs (the APIC ID is FFH) may be specified in physical destination mode. 

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt 
with lowest priority delivery mode is not supported in physical destination mode and 
must not be configured by software. Also, for any non-broadcast IPI or I/O 
subsystem initiated interrupt with lowest priority delivery mode, software must 
ensure that APICs defined in the interrupt address are present and enabled to receive 
interrupts. 

For the P6 family and Pentium processors, a single destination is specified in physical 
destination mode with a local APIC ID of 0H through 0EH, allowing up to 15 local 
APICs to be addressed on the APIC bus. A broadcast to all local APICs is specified with 
0FH.

NOTE
The number of local APICs that can be addressed on the system bus 
may be restricted by hardware.

10.6.2.2  Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message desti-
nation address (MDA), which is entered in the destination field of the ICR. Upon 
receiving an IPI message that was sent using logical destination mode, a local APIC 
compares the MDA in the message with the values in its LDR and DFR to determine if 
it should accept and handle the IPI. For both configurations of logical destination 
mode, when combined with lowest priority delivery mode, software is responsible for 
ensuring that all of the local APICs included in or addressed by the IPI or I/O 
subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit 
logical APIC ID field in this register is used to create an identifier that can be 
compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that 
is contained in the local APIC ID register.
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Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit 
model field in this register selects one of two models (flat or cluster) that can be used 
to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following para-
graphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to 
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by 
setting a different bit in the logical APIC ID field of the LDR for each local APIC. A 
group of local APICs can then be selected by setting one or more bits in the MDA. 
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a 
true condition is detected, the local APIC accepts the IPI message. A broadcast to 
all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31 
to 0000. This model supports two basic destination schemes: flat cluster and 
hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium 
processors. Using this model, all APICs are assumed to be connected through the 
APIC bus. Bits 60 through 63 of the MDA contains the encoded address of the 
destination cluster and bits 56 through 59 identify up to four local APICs within 
the cluster (each bit is assigned to one local APIC in the cluster, as in the flat 
connection model). To identify one or more local APICs, bits 60 through 63 of the 

Figure 10-13.  Logical Destination Register (LDR)

Figure 10-14.  Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
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MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC 
is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24 
through 27 of the LDR to identify a local APICs within the cluster. 
Sets of processors within a cluster can be specified by writing the target cluster 
address in bits 60 through 63 of the MDA and setting selected bits in bits 56 
through 59 of the MDA, corresponding to the chosen members of the cluster. In 
this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4 
local APICs can be specified in the message. For the P6 and Pentium processor’s 
local APICs, however, the APIC arbitration ID supports only 15 APIC agents. 
Therefore, the total number of processors and their local APICs supported in 
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all 
destination bits to one. This guarantees a match on all clusters and selects all 
APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt with 
lowest priority delivery mode is not supported in cluster mode and must not be 
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel 
Xeon, P6 family, or Pentium processors. With this model, a hierarchical network 
can be created by connecting different flat clusters via independent system or 
APIC buses. This scheme requires a cluster manager within each cluster, which is 
responsible for handling message passing between system or APIC buses. One 
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, 
can form a network of up to 60 APIC agents. Note that hierarchical APIC networks 
requires a special cluster manager device, which is not part of the local or the I/O 
APIC units.

NOTES
All processors that have their APIC software enabled (using the 
spurious vector enable/disable bit) must have their DFRs (Desti-
nation Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode, 
DFRs must be programmed before the APIC is software enabled. 
Since some chipsets do not accurately track a system view of the 
logical mode, program DFRs as soon as possible after starting the 
processor.

10.6.2.3  Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed 
in favor of broadcasting the IPI to all the processors on the system bus and/or back 
to itself (see Section 10.6.1, “Interrupt Command Register (ICR)”). Three destina-
tion shorthands are supported: self, all excluding self, and all including self. The 
destination mode is ignored when a destination shorthand is used.
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10.6.2.4  Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several 
processors on the system bus, using the logical or shorthand destination mechanism 
for selecting the processor. The selected processors then arbitrate with one another 
over the system bus or the APIC bus, with the lowest-priority processor accepting the 
IPI. 

For systems based on the Intel Xeon processor, the chipset bus controller accepts 
messages from the I/O APIC agents in the system and directs interrupts to the 
processors on the system bus. When using the lowest priority delivery mode, the 
chipset chooses a target processor to receive the interrupt out of the set of possible 
targets. The Pentium 4 processor provides a special bus cycle on the system bus that 
informs the chipset of the current task priority for each logical processor in the 
system. The chipset saves this information and uses it to choose the lowest priority 
processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-
priority arbitration is contained in the arbitration priority register (APR) in each local 
APIC. Figure 10-15 shows the layout of the APR. 

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4]) 
THEN 

APR[7:0] ← TPR[7:0]
ELSE 

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV 
value is the vector number for the highest priority bit that is set in the IRR (see 
Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value is the vector number 
for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitra-
tion among the destination processors, the processor with the lowest value in its APR 
handles the IPI and the other processors ignore it.

 

Figure 10-15.  Arbitration Priority Register (APR)
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(P6 family and Pentium processors.) For these processors, if a focus processor 
exists, it may accept the interrupt, regardless of its priority. A processor is said to be 
the focus of an interrupt if it is currently servicing that interrupt or if it has a pending 
request for that interrupt. For Intel Xeon processors, the concept of a focus processor 
is not supported.

In operating systems that use the lowest priority delivery mode but do not update 
the TPR, the TPR information saved in the chipset will potentially cause the interrupt 
to be always delivered to the same processor from the logical set. This behavior is 
functionally backward compatible with the P6 family processor but may result in 
unexpected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI 
message from the information contained in the ICR and sends the message out on 
the system bus (Pentium 4 and Intel Xeon processors) or the APIC bus (P6 family and 
Pentium processors). The manner in which these IPIs are handled after being issues 
in described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages 
on the system bus (or APIC bus), the order in which the messages are sent and 
handled is determined through bus arbitration. 

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitra-
tion mechanism defined for the system bus to determine the order in which IPIs are 
handled. This mechanism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based 
arbitration mechanism to determine the order in which IPIs are handled. Here, each 
local APIC is given an arbitration priority of from 0 to 15, which the I/O APIC uses 
during arbitration to determine which local APIC should be given access to the APIC 
bus. The local APIC with the highest arbitration priority always wins bus access. Upon 
completion of an arbitration round, the winning local APIC lowers its arbitration 
priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-trans-
parent arbitration ID (Arb ID) register. During reset, this register is initialized to the 
APIC ID number (stored in the local APIC ID register). The INIT level-deassert IPI, 
which is issued with and ICR command, can be used to resynchronize the arbitration 
priorities of the local APICs by resetting Arb ID register of each agent to its current 
APIC ID value. (The Pentium 4 and Intel Xeon processors do not implement the Arb 
ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family, 
Pentium Processors),” describes the APIC bus arbitration protocols and bus message 
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formats, while Section 10.6.1, “Interrupt Command Register (ICR),” describes the 
INIT level de-assert IPI message. 

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register 
(ICR)”), all bus messages that fail to be delivered to their specified destination or 
destinations are automatically retried. Software should avoid situations in which IPIs 
are sent to disabled or nonexistent local APICs, causing the messages to be resent 
repeatedly.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message 
from an I/O APIC, or and IPI, the manner in which it handles the message depends 
on processor implementation, as described in the following sections.

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon 
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows: 

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the 
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is 
sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC sets the appropriate bit in the IRR. 

4. When interrupts are pending in the IRR and ISR register, the local APIC 
dispatches them to the processor one at a time, based on their priority and the 

Figure 10-16.  Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and 
Intel Xeon Processors)
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current task and processor priorities in the TPR and PPR (see Section 10.8.3.1, 
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its ISR queue and (for level-triggered interrupts) send a message on the 
bus indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium 
Processors

With the P6 family and Pentium processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows (see Figure 10-17).
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1. (IPIs only) It examines the IPI message to determines if it is the specified 
destination for the IPI as described in Section 10.6.2, “Determining IPI Desti-
nation.” If it is the specified destination, it continues its acceptance procedure; if 
it is not the destination, it discards the IPI message. When the message specifies 
lowest-priority delivery mode, the local APIC will arbitrate with the other 
processors that were designated on recipients of the IPI message (see Section 
10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt 
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert 

Figure 10-17.  Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and 
Pentium Processors)
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interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the 
interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt 
but the interrupt request is not one of the interrupts given in step 2, the local 
APIC looks for an open slot in one of its two pending interrupt queues contained 
in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section 
10.8.4, “Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the 
slot. If a slot is not available, it rejects the interrupt request and sends it back to 
the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC 
dispatches them to the processor one at a time, based on their priority and the 
current task and processor priorities in the TPR and PPR (see Section 10.8.3.1, 
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling, 
the completion of the handler routine is indicated with an instruction in the 
instruction handler code that writes to the end-of-interrupt (EOI) register in the 
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The 
act of writing to the EOI register causes the local APIC to delete the interrupt 
from its queue and (for level-triggered interrupts) send a message on the bus 
indicating that the interrupt handling has been completed. (A write to the EOI 
register must not be included in the handler routine for an NMI, SMI, INIT, 
ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the 
local APIC and processor in greater detail. 

10.8.3 Interrupt, Task, and Processor Priority
For interrupts that are delivered to the processor through the local APIC, each inter-
rupt has an implied priority based on its vector number. The local APIC uses this 
priority to determine when to service the interrupt relative to the other activities of 
the processor, including the servicing of other interrupts. 

For interrupt vectors in the range of 16 to 255, the interrupt priority is determined 
using the following relationship:

priority = vector / 16

Here the quotient is rounded down to the nearest integer value to determine the 
priority, with 1 being the lowest priority and 15 is the highest. Because vectors 0 
through 31 are reserved for dedicated uses by the Intel 64 and IA-32 architectures, 
the priorities of user defined interrupts range from 2 to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt 
priority class) encompasses 16 vectors. Prioritizing interrupts within a priority level is 
determined by the vector number. The higher the vector number, the higher the 
priority within that priority level. In determining the priority of a vector and ranking 
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of vectors within a priority group, the vector number is often divided into two parts, 
with the high 4 bits of the vector indicating its priority and the low 4 bit indicating its 
ranking within the priority group.

10.8.3.1  Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that it uses in 
determining the order in which interrupts should be handled. The task priority is a 
software selected value between 0 and 15 (see Figure 10-18) that is written into the 
task priority register (TPR). The TPR is a read/write register. 

NOTE
In this discussion, the term “task” refers to a software defined task, 
process, thread, program, or routine that is dispatched to run on the 
processor by the operating system. It does not refer to an IA-32 
architecture defined task as described in Chapter 7, “Task 
Management.”

The task priority allows software to set a priority threshold for interrupting the 
processor. The processor will service only those interrupts that have a priority higher 
than that specified in the TPR. If software sets the task priority in the TPR to 0, the 
processor will handle all interrupts; it is it set to 15, all interrupts are inhibited from 
being handled, except those delivered with the NMI, SMI, INIT, ExtINT, INIT-deas-
sert, and start-up delivery mode. This mechanism enables the operating system to 
temporarily block specific interrupts (generally low priority interrupts) from 
disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the 
local processor (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

The processor priority is set by the processor, also to value between 0 and 15 (see 
Figure 10-19) that is written into the processor priority register (PPR). The PPR is a 
read only register. The processor priority represents the current priority at which the 
processor is executing. It is used to determine whether a pending interrupt can be 
dispensed to the processor.

 

Figure 10-18.  Task Priority Register (TPR)
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Its value in the PPR is computed as follows: 

IF TPR[7:4] ≥ ISRV[7:4]
THEN 

PPR[7:0] ← TPR[7:0]
ELSE 

PPR[7:4] ← ISRV[7:4]
PPR[3:0] ← 0

Here, the ISRV value is the vector number of the highest priority ISR bit that is set, 
or 00H if no ISR bit is set. Essentially, the processor priority is set to either to the 
highest priority pending interrupt in the ISR or to the current task priority, whichever 
is higher.

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt 
pending registers: the interrupt request register (IRR) or in-service register (ISR). 
These two 256-bit read-only registers are shown in Figure 10-20. The 256 bits in 
these registers represent the 256 possible vectors; vectors 0 through 15 are 
reserved by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-
deassert delivery mode bypass the IRR and ISR registers and are 
sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet 
dispatched to the processor for servicing. When the local APIC accepts an interrupt, 
it sets the bit in the IRR that corresponds the vector of the accepted interrupt. When 
the processor core is ready to handle the next interrupt, the local APIC clears the 
highest priority IRR bit that is set and sets the corresponding ISR bit. The vector for 
the highest priority bit set in the ISR is then dispatched to the processor core for 
servicing. 

 

Figure 10-19.  Processor Priority Register (PPR)
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While the processor is servicing the highest priority interrupt, the local APIC can send 
additional fixed interrupts by setting bits in the IRR. When the interrupt service 
routine issues a write to the EOI register (see Section 10.8.5, “Signaling Interrupt 
Servicing Completion”), the local APIC responds by clearing the highest priority ISR 
bit that is set. It then repeats the process of clearing the highest priority bit in the IRR 
and setting the corresponding bit in the ISR. The processor core then begins 
executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC 
can set the bit for the vector both in the IRR and the ISR. This means that for the 
Pentium 4 and Intel Xeon processors, the IRR and ISR can queue two interrupts for 
each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts 
issued for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no 
more than two interrupts per priority level, and will reject other interrupts that are 
received within the same priority level. 

If the local APIC receives an interrupt with a priority higher than that of the interrupt 
currently in serviced, and interrupts are enabled in the processor core, the local APIC 
dispatches the higher priority interrupt to the processor immediately (without 
waiting for a write to the EOI register). The currently executing interrupt handler is 
then interrupted so the higher-priority interrupt can be handled. When the handling 
of the higher-priority interrupt has been completed, the servicing of the interrupted 
interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see 
Figure 10-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR 
bit is cleared for edge-triggered interrupts and set for level-triggered interrupts. If a 
TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated, 
an EOI message is sent to all I/O APICs.

 

Figure 10-20.  IRR, ISR and TMR Registers
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10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-
up, or INIT-Deassert delivery mode, the interrupt handler must include a write to the 
end-of-interrupt (EOI) register (see Figure 10-21). This write must occur at the end 
of the handler routine, sometime before the IRET instruction. This action indicates 
that the servicing of the current interrupt is complete and the local APIC can issue the 
next interrupt from the ISR. 

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and 
dispatches the next highest priority interrupt to the processor. If the terminated 
interrupt was a level-triggered interrupt, the local APIC also sends an end-of-inter-
rupt message to all I/O APICs. 
System software may prefer to direct EOIs to specific I/O APICs rather than having 
the local APIC send end-of-interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious 
Interrupt Vector Register (see Section 10.9). If this bit is set, a broadcast EOI is not 
generated on an EOI cycle even if the associated TMR bit indicates that the current 
interrupt was level-triggered. The default value for the bit is 0, indicating that EOI 
broadcasts are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does 
not support suppression of EOI broadcasts. Support for EOI-broadcast suppression is 
reported in bit 24 in the Local APIC Version Register (see Section 10.4.8); the feature 
is supported if that bit is set to 1. When supported, the feature is available in both 
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts 
should set bit 12 of the Spurious Interrupt Vector Register and follow each the EOI to 
the local xAPIC for a level triggered interrupt with a directed EOI to the I/O APIC 
generating the interrupt (this is done by writing to the I/O APIC’s EOI register). 
System software performing directed EOIs must retain a mapping associating level-
triggered interrupts with the I/O APICs in the system.

Figure 10-21.  EOI Register
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10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 priority classes of external 
interrupts (see Section 10.8.3, “Interrupt, Task, and Processor Priority”) explicitly 
using the task priority register (TPR). Operating systems can use the TPR to tempo-
rarily block specific (low-priority) interrupts from interrupting a high-priority task. 
This is done by loading TPR with a value corresponding to the highest-priority inter-
rupt that is to be blocked. For example: 
• Loading the TPR with a value of 8 (01000B) blocks all interrupts with a priority of 

8 or less while allowing all interrupts with a priority of nine or more to be 
recognized.

• Loading the TPR with zero enables all external interrupts. 
• Loading the TPR with 0F (01111B) disables all external interrupts. 

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software 
can read and write the TPR using an alternate interface, MOV CR8 instruction. The 
new priority level is established when the MOV CR8 instruction completes execution. 
Software does not need to force serialization after loading the TPR using MOV CR8. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at 
privilege level greater than 0 cannot read or write the TPR. An attempt to do so 
causes a general-protection exception. The TPR is abstracted from the interrupt 
controller (IC), which prioritizes and manages external interrupt delivery to the 
processor. The IC can be an external device, such as an APIC or 8259. Typically, the 
IC provides a priority mechanism similar or identical to the TPR. The IC, however, is 
considered implementation-dependent with the under-lying priority mechanisms 
subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can 
depend on this definition remaining unchanged. 

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining 
60 bits are reserved and must be written with zeros. Failure to do this causes a 
general-protection exception.

10.8.6.1  Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced program-
mable interrupt controller (APIC) that is similar to the APIC used with previous IA-32 
processors. Some aspects of the local APIC affect the operation of the architecturally 
defined task priority register and the programming interface using CR8.

Figure 10-22.  CR8 Register
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Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are 

reflected into the APIC Task Priority Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8 

returns a 64-bit value which is the value of TPR[bits 7:4], zero extended to 64 
bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. 
Operating software should implement either direct APIC TPR updates or CR8 style 
TPR updates but not mix them. Software can use a serializing instruction (for 
example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater 
than or equal to the level of the interrupt for which the processor INTR signal is 
currently being asserted. If at the time the INTA cycle is issued, the interrupt that 
was to be dispensed has become masked (programmed by software), the local APIC 
will deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does 
not affect the ISR, so the handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-inter-
rupt vector register (see Figure 10-23). The functions of the fields in this register are 
as follows:
Spurious Vector Determines the vector number to be delivered to the processor 

when the local APIC generates a spurious vector. 
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the 
this field are programmable by software. 
(P6 family and Pentium processors). Bits 4 through 7 of the this 
field are programmable by software, and bits 0 through 3 are 
hardwired to logical ones. Software writes to bits 0 through 3 
have no effect.

APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local 
APIC (see Section 10.4.3, “Enabling or Disabling the Local 
APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or 
disabled (1) when using the lowest-priority delivery mode. In 
Pentium 4 and Intel Xeon processors, this bit is reserved and 
should be cleared to 0.

Suppress EOI Broadcasts
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Determines whether an EOI for a level-triggered interrupt 
causes EOI messages to be broadcast to the I/O APICs (0) or not 
(1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to 
0 if the processor does not support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if 
you set the mask bit. A spurious vector ISR does not do an EOI. If for 
some reason an interrupt is generated by an LVT or RTE entry, the bit 
in the in-service register will be left set for the spurious vector. This 
will mask all interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O 
APICs on the system bus, using the system bus message passing mechanism and 
protocol.

Figure 10-23.  Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled

Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Enabled
1: Disabled
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The P6 family and Pentium processors, pass messages among the local and I/O 
APICs on the serial APIC bus, as follows. Because only one message can be sent at a 
time on the APIC bus, the I/O APIC and local APICs employ a “rotating priority” arbi-
tration protocol to gain permission to send a message on the APIC bus. One or more 
APICs may start sending their messages simultaneously. At the beginning of every 
message, each APIC presents the type of the message it is sending and its current 
arbitration priority on the APIC bus. This information is used for arbitration. After 
each arbitration cycle (within an arbitration round), only the potential winners keep 
driving the bus. By the time all arbitration cycles are completed, there will be only 
one APIC left driving the bus. Once a winner is selected, it is granted exclusive use of 
the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration 
priority by 1. The previous winner (that is, the one that has just successfully trans-
mitted its message) assumes a priority of 0 (lowest). An agent whose arbitration 
priority was 15 (highest) during arbitration, but did not send a message, adopts the 
previous winner’s arbitration priority, increments by 1. 

Note that the arbitration protocol described above is slightly different if one of the 
APICs issues a special End-Of-Interrupt (EOI). This high-priority message is granted 
the bus regardless of its sender’s arbitration priority, unless more than one APIC 
issues an EOI message simultaneously. In the latter case, the APICs sending the EOI 
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4, 
“Lowest Priority Delivery Mode”) and multiple APICs are currently executing at the 
lowest priority (the value in the APR register), the arbitration priorities (unique 
values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for 
the lowest priority arbitration.

10.10.1 Bus Message Formats
See Appendix F, “APIC Bus Message Formats,” for a description of bus message 
formats used to transmit messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of 
message signalled interrupts. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that 
enables PCI devices to request service by writing a system-specified 
message to a system-specified address (PCI DWORD memory write 
transaction). The transaction address specifies the message 
destination while the transaction data specifies the message. System 
software is expected to initialize the message destination and 
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message during device configuration, allocating one or more non-
shared messages to each MSI capable function.” 

The capabilities mechanism provided by the PCI Local Bus Specification is used to 
identify and configure MSI capable PCI devices. Among other fields, this structure 
contains a Message Data Register and a Message Address Register. To request 
service, the PCI device function writes the contents of the Message Data Register to 
the address contained in the Message Address Register (and the Message Upper 
Address register for 64-bit message addresses). 

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address 
Register and the Message Data Register. The operation issued by the device is a PCI 
write command to the Message Address Register with the Message Data Register 
contents. The operation follows semantic rules as defined for PCI write operations 
and is a DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in 
Figure 10-24.

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH). 
This value locates interrupts at the 1-MByte area with a base address of 4G – 
18M. All accesses to this region are directed as interrupt messages. Care must to 
be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the 
message’s target processor(s). The destination ID corresponds to bits 63:56 of 
the I/O APIC Redirection Table Entry if the IOAPIC is used to dispatch the 
interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message 
should be directed to the processor with the lowest interrupt priority among 
processors that can receive the interrupt. 

• When RH is 0, the interrupt is directed to the processor listed in the 
Destination ID field. 

Figure 10-24.  Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
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• When RH is 1 and the physical destination mode is used, the Destination 
ID field must not be set to 0xFF; it must point to a processor that is 
present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using 
a flat addressing model, the Destination ID field must be set so that bits 
set to 1 identify processors that are present and enabled to receive the 
interrupt.

• If RH is set to 1 and the logical destination mode is active in a system 
using cluster addressing model, then Destination ID field must not be set 
to 0xFF; the processors identified with this field must be present and 
enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field 
should be interpreted as logical or physical APIC ID for delivery of the lowest 
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical 
destination mode and only the processor in the system that has the matching 
APIC ID is considered for delivery of that interrupt (this means no re-direction). 
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical 
destination mode and the redirection is limited to only those processors that are 
part of the logical group of processors based on the processor’s logical APIC ID 
and the Destination ID field in the message. The logical group of processors 
consists of those identified by matching the 8-bit Destination ID with the logical 
destination identified by the Destination Format Register and the Logical 
Destination Register in each local APIC. The details are similar to those described 
in Section 10.6.2, “Determining IPI Destination.” If RH is 0, then the DM bit is 
ignored and the message is sent ahead independent of whether the physical or 
logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their 
contents on writes. Other fields in the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the 
message. Values range from 010H to 0FEH. Software must guarantee that the 
field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled. 
Delivery Modes operate only in conjunction with specified Trigger Modes. Correct 
Trigger Modes must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the
destination. The Trigger Mode for fixed delivery mode can be edge or level.
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b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing 
at the lowest priority of all agents listed in the destination field. The trigger 
mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is 
edge only. For systems that rely on SMI semantics, the vector field is ignored 
but must be programmed to all zeroes for future compatibility. 

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination 
field. The vector information is ignored. NMI is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination 
field. The vector information is ignored. INIT is an edge triggered interrupt 
regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the 
destination field (as an interrupt that originated from an 8259A compatible 
interrupt controller). The vector is supplied by the INTA cycle issued by the 
activation of the ExtINT. ExtINT is an edge triggered interrupt.

Figure 10-25.  Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16  15 14 13 11 10 8 7 0

63 32
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3. Level — Edge triggered interrupt messages are always interpreted as assert 
messages. For edge triggered interrupts this field is not used. For level triggered 
interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message. 

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in 
a backward compatible manner and provides forward extendability for future Intel 
platform innovations. Specifically, the x2APIC architecture does the following:
• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;
• Provides extensions to scale processor addressability for both the logical and 

physical destination modes;
• Adds new features to enhance performance of interrupt delivery;
• Reduces complexity of logical destination mode interrupt delivery on link based 

platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode 

instead of memory-mapped interfaces. Memory-mapped interface is supported 
when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1 
and then checking ECX, bit 21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor 
supports the x2APIC capability and can be placed into the x2APIC mode. 

System software can place the local APIC in the x2APIC mode by setting the x2APIC 
mode enable bit (bit 10) in the IA32_APIC_BASE MSR at MSR address 01BH. The 
layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.
Table 10-5, “x2APIC operating mode configurations” describe the possible combina-
tions of the enable bit (EN - bit 11) and the extended mode bit (EXTD - bit 10) in the 
IA32_APIC_BASE MSR.
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Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1), 
switching back to xAPIC mode would require system software to disable the local 
APIC unit. Specifically, attempting to write a value to the IA32_APIC_BASE MSR that 
has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a 
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only 
way to leave x2APIC mode using IA32_APIC_BASE would require a WRMSR to set 
both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State Transitions” provides a 
detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1  Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC regis-
ters. The MSR addresses for accessing the x2APIC registers are architecturally 
defined and specified in Section 10.12.1.2, “x2APIC Register Address Space”. 
Executing the RDMSR instruction with APIC register address specified in ECX returns 
the content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are 
returned in register EDX - these bits are reserved if the APIC register being read is a 
32-bit register. Similarly executing the WRMSR instruction with the APIC register 
address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC 
register. If the register is a 64-bit register then bits 0 to 31 of register EDX are written 
to bits 32 to 63 of the APIC register. The Interrupt Command Register is the only APIC 

Figure 10-26.  IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations 

xAPIC global enable 
(IA32_APIC_BASE[11])

x2APIC enable 
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
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register that is implemented as a 64-bit MSR. The semantics of handling reserved 
bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2  x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated 
for accessing APIC registers in x2APIC mode. Table 10-6 lists the APIC registers that 
are available in x2APIC mode. When appropriate, the table also gives the offset at 
which each register is available on the page referenced by IA32_APIC_BASE[35:12] 
in xAPIC mode. 
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC 
register offsets with the following exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in 

xAPIC mode, is not supported in x2APIC mode. There is no MSR with address 
80EH.

• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode 
(at offsets 300H and 310H) are merged into a single 64-bit MSR in x2APIC mode 
(with MSR address 830H). There is no MSR with address 831H.

• The SELF IPI register. This register is available only in x2APIC mode at address 
83FH. In xAPIC mode, there is no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH 
and 831H) are reserved. Executions of RDMSR and WRMSR that attempt to access 
such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit 
register on a 128-bit boundary in the legacy MMIO space is mapped to a single MSR 
in the local x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except 
for the ICR) are reserved. 

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for 
initial values.

803H 030H Local APIC Version 
register

Read-only Same version used in 
xAPIC mode and x2APIC 
mode.

808H 080H Task Priority Register 
(TPR)

Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority 
Register (PPR)

Read-only
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80BH 0B0H EOI register Write-
only3

WRMSR of a non-zero 
value causes #GP(0).

80DH 0D0H Logical Destination 
Register (LDR)

Read-only Read/write in xAPIC 
mode.

80FH 0F0H Spurious Interrupt 
Vector Register (SVR)

Read/write See Section 10.9 for 
reserved bits.

810H 100H In-Service Register 
(ISR); bits 31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register 
(TMR); bits 31:0 

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request 
Register (IRR); bits 
31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register 
(ESR)

Read/write WRMSR of a non-zero 
value causes #GP(0). See 
Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for 
reserved bits.

830H4 300H and 
310H

Interrupt Command 
Register (ICR)

Read/write See Figure 10-28 for 
reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for 
reserved bits.

833H 330H LVT Thermal Sensor 
register

Read/write See Figure 10-8 for 
reserved bits.

834H 340H LVT Performance 
Monitoring register

Read/write See Figure 10-8 for 
reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for 
reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for 
reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for 
reserved bits.

838H 380H Initial Count register 
(for Timer)

Read/write

839H 390H Current Count 
register (for Timer)

Read-only

83EH 3E0H Divide Configuration 
Register (DCR; for 
Timer)

Read/write See Figure 10-10 for 
reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC 
mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.
2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including 

bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address 
(x2APIC mode)

MMIO Offset 
(xAPIC mode)

Register Name
MSR R/W 
Semantics

Comments
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10.12.1.3  Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC 
registers in x2APIC mode. Non-zero writes (by WRMSR instruction) to reserved bits 
to these registers will raise a general protection fault exception while reads return 
zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables 
232–1 processors to be addressable in physical destination mode. This 32-bit value is 
referred to as “x2APIC ID”. A processor implementation may choose to support less 
than 32 bits in its hardware. System software should be agnostic to the actual 
number of bits that are implemented. All non-implemented bits will return zeros on 
reads by software. 
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the imple-
mented bit-width of the local APIC ID register in the system are reserved and cannot 
be assigned to any logical processor. 

In x2APIC mode, the local APIC ID register is a read-only register to system software 
and will be initialized by hardware. It is accessed via the RDMSR instruction reading 
the MSR at address 0802H. 
Each logical processor in the system (including clusters with a communication fabric) 
must be configured with an unique x2APIC ID to avoid collisions of x2APIC IDs. On 
DP and high-end MP processors targeted to specific market segments and depending 
on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these 
configurations, a model-specific means may be provided in those product segments 
to enable BIOS and/or platform firmware to re-configure the x2APIC IDs in some 
clusters to provide for unique and non-overlapping system wide IDs before config-
uring the disconnected components into a single system. 

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local 
APIC has been switched to the x2APIC mode as described in Section 10.12.1. 
Accessing any APIC register in the MSR address range 0800H through 0BFFH via 
RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-
protection exception. In x2APIC mode, the memory mapped interface is not available 
and any access to the MMIO interface will behave similar to that of a legacy xAPIC in 
globally disabled state. Table 10-7 provides the interactions between the legacy & 
extended modes and the legacy and register interfaces.

4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents 
of the APIC register at MMIO offset 310H are accessible in x2APIC mode through the MSR at 
address 830H.

5. SELF IPI register is supported only in x2APIC mode.
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10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing 
semantics of WRMSR are relaxed when writing to the APIC registers. Thus, system 
software should not use “WRMSR to APIC registers in x2APIC mode” as a serializing 
instruction. Read and write accesses to the APIC registers will occur in program 
order. A WRMSR to an APIC register may complete before all preceding stores are 
globally visible; software can prevent this by inserting a serializing instruction, an 
SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when 
reading APIC registers in x2APIC mode. System software accessing the APIC regis-
ters using the RDMSR instruction should not expect a serializing behavior. (Note: The 
MMIO-based xAPIC interface is mapped by system software as an un-cached region. 
Consequently, read/writes to the xAPIC-MMIO interface have serializing semantics in 
the xAPIC mode.)

10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on 
VMX transitions using the VMX-transition MSR areas (see VM-exit MSR-store address 
field, VM-exit MSR-load address filed, and VM-entry MSR-load address field in Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transi-
tion fails if the VMM has specified that the transition should access any MSRs in the 
address range from 0000_0800H to 0000_08FFH (the range used for accessing the 
X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-
transition MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW) 
satisfies the expression: “ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a 
failure causes an associated VM entry to fail (by reloading host state) and causes an 
associated VM exit to lead to VMX abort.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection 
exception

x2APIC mode Behavior identical to xAPIC in globally 
disabled state

Available
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10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC 
unit, transitions between these states as well as interactions of these states with INIT 
and reset. 

10.12.5.1  x2APIC States
The valid states for a local x2APIC unit is listed in Table 10-5:
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get 
into this state. An execution of WRMSR to the IA32_APIC_BASE_MSR that attempts 
a transition from a valid state to this invalid state causes a general-protection excep-
tion. Figure 10-27 shows the comprehensive state transition diagram for a local 
x2APIC unit. 
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode: 
IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0. The APIC registers are 
initialized as:
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The 

lowest 8 bits of the x2APIC ID is the legacy local xAPIC ID, and is stored in the 
upper 8 bits of the APIC register for access in xAPIC mode.

• The following APIC registers are reset to all zeros for those fields that are defined 
in the xAPIC mode:

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8 
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol. 3B 
for details of individual APIC registers),

— Timer initial count and timer current count registers,
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH. 
• The DFR (available only in xAPIC mode) is reset to all 1s. 
• SELF IPI register is reset to zero.
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x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical 

x2APIC ID (see Figure 10-6) is preserved across this transition and the logical 
x2APIC ID (see Figure 10-29) is initialized by hardware during this transition as 
documented in Section 10.12.10.2. The state of the extended fields in other APIC 
registers, which was not initialized at reset, is not architecturally defined across 
this transition and system software should explicitly initialize those program-
mable APIC registers. 

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1, 
EXTD= 0. The state of the local APIC ID register is preserved (the 8-bit xAPIC ID is in 
the upper 8 bits of the APIC ID register). All the other APIC registers are initialized as 
a result of INIT. 
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of 
the local APIC ID register is initialized as described in Section 10.12.5.1. All the other 
APIC registers are initialized described in Section 10.12.5.1. 

Figure 10-27.  Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset
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x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to 
the state where the x2APIC is disabled by setting EN to 0 and EXTD to 0. The x2APIC 
ID (32 bits) and the legacy local xAPIC ID (8 bits) are preserved across this transi-
tion. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection 
exception. 
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including 
the local APIC ID register) are initialized as described in Section 10.12.5.1. 
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local 
APIC ID register is preserved (all 32 bits). However, all the other APIC registers are 
initialized as a result of the INIT transition.

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to 
the xAPIC mode (EN= 1, EXTD = 0). Thus the only means to transition from x2APIC 
mode to xAPIC mode is a two-step process: 
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD = 

0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1, 

EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID 
(32 bits), are not preserved across mode transitions. 
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers 
(including the local APIC ID register) are initialized as described in Section 10.12.5.1. 
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transi-
tion from xAPIC mode to x2APIC mode does not affect most of the APIC register 
states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not 

preserved.
• The high half of the Interrupt Command Register is not preserved. 
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10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as 
all PCI and PCI Express (PCIe) devices that support the capability for message-
signaled interrupts (MSI). Support for x2APIC modifies only the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC 

units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no 
modifications are required to IOxAPIC units. This made possible through use of the 
interrupt-remapping architecture specified in the Intel® Virtualization Technology for 
Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to 
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires 
use of the interrupt-remapping architecture specified in the Intel® Virtualization 
Technology for Directed I/O, Revision 1.3. Because of this, BIOS must enumerate 
support for and software must enable this interrupt remapping with Extended Inter-
rupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System 
Description Tables,” of the Advanced Configuration and Power Interface Specifica-
tion, Revision 4.0a (http://www.acpi.info/spec.htm). The default behavior for BIOS 
is to pass the control to the operating system with the local x2APICs in xAPIC mode 
if all APIC IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if 
there are any logical processor reporting an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by 
CPUID.01H:ECX[21] indicates that the processor supports x2APIC and the extended 
topology enumeration leaf (CPUID.0BH). 
The extended topology enumeration leaf can be accessed by executing CPUID with 
EAX = 0BH. Processors that do not support x2APIC may support CPUID leaf 0BH. 
Software can detect the availability of the extended topology enumeration leaf (0BH) 
by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID 

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed 
to next step

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero. 
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If both of the above conditions are true, extended topology enumeration leaf is avail-
able. If available, the extended topology enumeration leaf is the preferred mecha-
nism for enumerating topology. The presence of CPUID leaf 0BH in a processor does 
not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero 
and maximum input value for basic CPUID information is greater than 0BH, then 
CPUID.0BH leaf is not supported on that processor.
The extended topology enumeration leaf is intended to assist software with enumer-
ating processor topology on systems that requires 32-bit x2APIC IDs to address indi-
vidual logical processors. Details of CPUID leaf 0BH can be found in the reference 
pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended 
topology enumeration leaf of CPUID and processors that do not support CPUID leaf 
0BH are treated in Section 8.9.4, “Algorithm for Three-Level Mappings of APIC_ID”.

10.12.8.1  Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit 
value returned in CPUID.0BH:EDX is facilitated by processor hardware. 
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows 
BIOS to determine if a system has processors with IDs exceeding the 8-bit initial 
APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID (CPUID.01H:EBX[31:24]) is 
always equal to CPUID.0BH:EDX[7:0]. 
If the values of CPUID.0BH:EDX reported by all logical processors in a system are 
less than 255, BIOS can transfer control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are 
greater or equal than 255, BIOS must support two options to hand off to OS:
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it 

should enable X2APIC in Boot Strap Processor (BSP) and all Application 
Processors (AP) before passing control to the OS. Application requiring processor 
topology information must use OS provided services based on x2APIC IDs or 
CPUID.0BH leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that 
only logical processors with CPUID.0BH.EDX value less than 255 are enabled. 
BIOS initialization on all logical processors with CPUID.0B.EDX values greater 
than or equal to 255 must (a) disable APIC and execute CLI in each logical 
processor, and (b) leave these logical processor in the lowest power state so that 
these processors do not respond to INIT IPI during OS boot. The BSP and all the 
enabled logical processor operate in xAPIC mode after BIOS passed control to 
OS. Application requiring processor topology information can use OS provided 
legacy services based on 8-bit initial APIC IDs or legacy topology information 
from CPUID.01H and CPUID 04H leaves. Even if the BIOS passes control in xAPIC 
mode, an OS can switch the processors to x2APIC mode later. BIOS SMM handler 
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should always read the APIC_BASE_MSR, determine the APIC mode and use the 
corresponding access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure 
10-12. The lower 32 bits of ICR in x2APIC mode is identical to the lower half of the 
ICR in xAPIC mode, except the Delivery Status bit is removed since it is not needed 
in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode. 

To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI 
message to be sent and the destination processor or processors. Self IPIs can also be 
sent using the SELF IPI register (see Section 10.12.11). 

Figure 10-28.  Interrupt Command Register (ICR) in x2APIC Mode
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A single MSR write to the Interrupt Command Register is required for dispatching an 
interrupt in x2APIC mode. With the removal of the Delivery Status bit, system soft-
ware no longer has a reason to read the ICR. It remains readable only to aid in 
debugging; however, software should not assume the value returned by reading the 
ICR is the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both 
logical destination and physical destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1  Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide. 
It is a read-only register to system software. This 32-bit value is referred to as 
“logical x2APIC ID”. System software accesses this register via the RDMSR instruc-
tion reading the MSR at address 80DH. Figure 10-29 provides the layout of the 
Logical Destination Register in x2APIC mode. 

In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface 
determines the choice of a flat logical mode or a clustered logical mode. Flat logical 
mode is not supported in the x2APIC mode. Hence the Destination Format Register 
(DFR) is eliminated in x2APIC mode. 
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within 

the cluster specified by LDR[31:16]. 
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effec-
tively providing an addressability of ((2^20) - 16) processors in logical destination 
mode. 
It is likely that processor implementations may choose to support less than 16 bits of 
the cluster ID or less than 16-bits of the Logical ID in the Logical Destination Register. 

Figure 10-29.  Logical Destination Register in x2APIC Mode
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However system software should be agnostic to the number of bits implemented in 
the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will ensure 
that the appropriately initialized logical x2APIC IDs are available to system software 
and reads of non-implemented bits return zero. This is a read-only register that soft-
ware must read to determine the logical x2APIC ID of the processor. Specifically, 
software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to 
identify the logical address of a processor within a cluster without needing to know 
the number of implemented bits in cluster ID and Logical ID sub-fields. Similarly, 
software can create a message destination address for cluster model, by bit-Oring 
the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology char-
acteristics and to enable efficient routing of logical mode lowest priority device inter-
rupts in link based platform interconnects, the LDR are initialized by hardware based 
on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization 
are provided in Section 10.12.10.2. 

10.12.10.2  Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived 
from the 32-bit local x2APIC ID. Specifically, the 16-bit logical ID sub-field is derived 
by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. Logical ID = 1 « 
x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion 
of the logical x2APIC ID: 

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are 
reserved for logical processors within a socket in multi-socket configurations. If more 
than 16 APIC IDS are reserved for logical processors in a socket/package then 
multiple cluster IDs can exist within the package. 
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section 
10.12.5).

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture 
introduces a new register interface. This new register is dedicated to the purpose of 
sending self-IPIs with the intent of enabling a highly optimized path for sending self-
IPIs. 

Figure 10-30 provides the layout of the SELF IPI register. System software only spec-
ifies the vector associated with the interrupt to be sent. The semantics of sending a 
self-IPI via the SELF IPI register are identical to sending a self targeted edge trig-
gered fixed interrupt with the specified vector. Specifically the semantics are identical 
to the following settings for an inter-processor interrupt sent via the ICR - Destina-
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tion Shorthand (ICR[19:18] = 01 (Self)), Trigger Mode (ICR[15] = 0 (Edge)), 
Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the 
SELF IPI register causes a general-protection exception. 
The handling and prioritization of a self-IPI sent via the SELF IPI register is architec-
turally identical to that for an IPI sent via the ICR from a legacy xAPIC unit. Specifi-
cally the state of the interrupt would be tracked via the Interrupt Request Register 
(IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were 
received from the system bus. Also sending the IPI via the Self Interrupt Register 
ensures that interrupt is delivered to the processor core. Specifically completion of 
the WRMSR instruction to the SELF IPI register implies that the interrupt has been 
logged into the IRR. As expected for edge triggered interrupts, depending on the 
processor priority and readiness to accept interrupts, it is possible that interrupts 
sent via the SELF IPI register or via the ICR with identical vectors can be combined.

Figure 10-30.  SELF IPI register
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CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs, 
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory 
type range registers (MTRRs) introduced in the P6 family processors and how they 
are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers 
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 11-1 shows the arrangement of caches, TLBs, and the store 
buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. The sizes and characteristics of these units are machine 
specific and may change in future versions of the processor. The CPUID 
instruction returns the sizes and characteristics of the caches and buffers for the 
processor on which the instruction is executed. See “CPUID—CPU Identification” in 
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Figure 11-1.  Cache Structure of the Pentium 4 and Intel Xeon Processors
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Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2.  Cache Structure of the Intel Core i7 Processors

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors
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Solo, Pentium M processor: not implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): not implemented.

• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M 

processor: 32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative, 
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L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line 
size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line 
size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache 
line size.

• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M 
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte 
cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache 
line size; 8-KBytes, 2-way set associative for earlier P6 family 
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line 
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in 
quadcore processors), 16-way set associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in 
quadcore processors), 24-way set associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative, 
64-byte cache line size.

• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache 
line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set 
associative, 64-byte cache line size 

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte 
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or 
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way 
set associative, 64-byte cache line size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-
way set associative, 64-byte cache line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 128 entries, 4-way set associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per 

core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M 

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set 

associative for Pentium processors with MMX technology.

Data TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4 

ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative; 

64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully 
associative.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst 
microarchitecture): 64 entry, fully set associative, shared with large page 
DTLB.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128 
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative; 
fully set, associative for Pentium processors with MMX technology.

Instruction TLB 
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully 

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large 
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4 

ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative; 

shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully 

associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as 

used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified 
TLB (4-KByte 
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
11-4 Vol. 3A



MEMORY CACHE CONTROL
Intel 64 and IA-32 processors may implement four types of caches: the trace cache, 
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See 
Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family 

based on Intel® microarchitecture code name Nehalem and Intel® 
microarchitecture code name Westmere — The L1 cache is divided into two 
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction 
cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive, 
unified data and instruction cache, shared by all processor cores inside a physical 
package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family 
based on Intel® Core™ microarchitecture — The L1 cache is divided into two 
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction 
cache located on the processor chip; it is shared between two processor cores in 
a dual-core processor implementation. Quad-core processors have two L2, each 
shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one 
section is dedicated to caching instructions (pre-decoded instructions) and the 
other caches data. The L2 cache is a unified data and instruction cache is located 
on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is 
divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data 
and instruction cache located on the processor chip. It is shared between two 

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with 

MMX technology have 4 buffers for 4 entries).

Write Combining 
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1.  Characteristics of the Caches, TLBs, Store Buffer, and 
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
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processor cores in a dual-core processor implementation. No trace cache is 
implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst® 
microarchitecture — The trace cache caches decoded instructions (μops) from 
the instruction decoder and the L1 cache contains data. The L2 and L3 caches are 
unified data and instruction caches located on the processor chip. Dualcore 
processors have two L2, one in each processor core. Note that the L3 cache is 
only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one 
dedicated to caching instructions (pre-decoded instructions) and the other to 
caching data. The L2 cache is a unified data and instruction cache located on the 
processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family 
processors. There is no trace cache. The L2 cache is a unified data and instruction 
cache external to the processor chip on earlier Pentium processors and 
implemented on the processor chip in later Pentium processors. For Pentium 
processors where the L2 cache is external to the processor, access to the cache is 
through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel 
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M proces-
sors, the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64 
bytes wide. The processor always reads a cache line from system memory beginning 
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6 
least-significant bits clear.) A cache line can be filled from memory with a 8-transfer 
burst transaction. The caches do not support partially-filled cache lines, so caching 
even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide, 
with cache line reads from system memory beginning on a 32-byte boundary (5 
least-significant bits of a memory address clear.) A cache line can be filled from 
memory with a 4-transfer burst transaction. Partially-filled cache lines are not 
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available 
in all execution modes: protected mode, system management mode (SMM), and 
real-address mode. The L1,L2, and L3 caches are also available in all execution 
modes; however, use of them must be handled carefully in SMM (see Section 26.4.2, 
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They 
speed up memory accesses when paging is enabled by reducing the number of 
memory accesses that are required to read the page tables stored in system 
memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages, 
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or 
1-GByte pages), and data TLBs for large pages. The TLBs are normally active only in 
protected mode with paging enabled. When paging is disabled or the processor is in 
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real-address mode, the TLBs maintain their contents until explicitly or implicitly 
flushed (see Section 11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction 
TLB and two levels of data TLB. Intel Core i7 processor provides a second-level 
unified TLB. 

The store buffer is associated with the processors instruction execution units. It 
allows writes to system memory and/or the internal caches to be saved and in some 
cases combined to optimize the processor’s bus accesses. The store buffer is always 
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled, 
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in 
optimizing software performance. For example, knowledge of cache dimensions and 
replacement algorithms gives an indication of how large of a data structure can be 
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor 
provides privileged cache control instructions for use in flushing caches and forcing 
memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions 
that software can use to improve the performance of the L1, L2, and L3 caches, 
including the PREFETCHh and CLFLUSH instructions and the non-temporal move 
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of 
these instructions are discussed in Section 11.5.5, “Cache Management Instruc-
tions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use 
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 11.4, “Cache 
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3, 
or all). This operation is called a cache line fill. If the memory location containing 
that operand is still cached the next time the processor attempts to access the 
operand, the processor can read the operand from the cache instead of going back to 
memory. This operation is called a cache hit. 

When the processor attempts to write an operand to a cacheable area of memory, it 
first checks if a cache line for that memory location exists in the cache. If a valid 
cache line does exist, the processor (depending on the write policy currently in force) 
can write the operand into the cache instead of writing it out to system memory. This 
operation is called a write hit. If a write misses the cache (that is, a valid cache line 
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is not present for area of memory being written to), the processor performs a cache 
line fill, write allocation. Then it writes the operand into the cache line and 
(depending on the write policy currently in force) can also write it out to memory. If 
the operand is to be written out to memory, it is written first into the store buffer, and 
then written from the store buffer to memory when the system bus is available. 
(Note that for the Pentium processor, write misses do not result in a cache line fill; 
they always result in a write to memory. For this processor, only read misses result in 
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486 
processor) and Intel 64 processors have the ability to snoop other processor’s 
accesses to system memory and to their internal caches. They use this snooping 
ability to keep their internal caches consistent both with system memory and with 
the caches in other processors on the bus. For example, in the Pentium and P6 family 
processors, if through snooping one processor detects that another processor 
intends to write to a memory location that it currently has cached in shared state, 
the snooping processor will invalidate its cache line forcing it to perform a cache line 
fill the next time it accesses the same memory location. 

Beginning with the P6 family processors, if a processor detects (through snooping) 
that another processor is trying to access a memory location that it has modified in 
its cache, but has not yet written back to system memory, the snooping processor 
will signal the other processor (by means of the HITM# signal) that the cache line is 
held in modified state and will preform an implicit write-back of the modified data. 
The implicit write-back is transferred directly to the initial requesting processor and 
snooped by the memory controller to assure that system memory has been updated. 
Here, the processor with the valid data may pass the data to the other processors 
without actually writing it to system memory; however, it is the responsibility of the 
memory controller to snoop this operation and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3 
caches. In individual pages or regions of system memory, it allows the type of 
caching (also called memory type) to be specified (see Section 11.5). Memory types 
currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All 

reads and writes appear on the system bus and are executed in program order 
without reordering. No speculative memory accesses, page-table walks, or 
prefetches of speculated branch targets are made. This type of cache-control is 
useful for memory-mapped I/O devices. When used with normal RAM, it greatly 
reduces processor performance.

NOTE
The behavior of FP and SSE/SSE2 operations on operands in UC 
memory is implementation dependent. In some implementations, 
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accesses to UC memory may occur more than once. To ensure 
predictable behavior, use loads and stores of general purpose 
registers to access UC memory that may have read or write side 
effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC) 
memory type, except that this memory type can be overridden by programming 
the MTRRs for the WC memory type. This memory type is available in processor 
families starting from the Pentium III processors and can only be selected through 
the PAT.

• Write Combining (WC) — System memory locations are not cached (as with 
uncacheable memory) and coherency is not enforced by the processor’s bus 
coherency protocol. Speculative reads are allowed. Writes may be delayed and 
combined in the write combining buffer (WC buffer) to reduce memory accesses. 
If the WC buffer is partially filled, the writes may be delayed until the next 
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction, 
CPUID execution, a read or write to uncached memory, an interrupt occurrence, 
or a LOCK instruction execution. This type of cache-control is appropriate for 
video frame buffers, where the order of writes is unimportant as long as the 
writes update memory so they can be seen on the graphics display. See Section 
11.3.1, “Buffering of Write Combining Memory Locations,” for more information 
about caching the WC memory type. This memory type is available in the 
Pentium Pro and Pentium II processors by programming the MTRRs; or in 
processor families starting from the Pentium III processors by programming the 
MTRRs or by selecting it through the PAT.

Table 11-2.  Memory Types and Their Properties

Memory Type and 
Mnemonic

Cacheable Writeback 
Cacheable

Allows
Speculative 
Reads

Memory Ordering Model

Strong Uncacheable 
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be 
selected through the PAT. Can 
be overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by 
programming MTRRs or by 
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for 
reads; no for 
writes

No Yes Speculative Processor Ordering. 
Available by programming 
MTRRs.
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• Write-through (WT) — Writes and reads to and from system memory are 
cached. Reads come from cache lines on cache hits; read misses cause cache 
fills. Speculative reads are allowed. All writes are written to a cache line (when 
possible) and through to system memory. When writing through to memory, 
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for 
frame buffers or when there are devices on the system bus that access system 
memory, but do not perform snooping of memory accesses. It enforces 
coherency between caches in the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached. 
Reads come from cache lines on cache hits; read misses cause cache fills. 
Speculative reads are allowed. Write misses cause cache line fills (in processor 
families starting with the P6 family processors), and writes are performed 
entirely in the cache, when possible. Write combining is allowed. The write-back 
memory type reduces bus traffic by eliminating many unnecessary writes to 
system memory. Writes to a cache line are not immediately forwarded to system 
memory; instead, they are accumulated in the cache. The modified cache lines 
are written to system memory later, when a write-back operation is performed. 
Write-back operations are triggered when cache lines need to be deallocated, 
such as when new cache lines are being allocated in a cache that is already full. 
They also are triggered by the mechanisms used to maintain cache consistency. 
This type of cache-control provides the best performance, but it requires that all 
devices that access system memory on the system bus be able to snoop memory 
accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read 
misses cause cache fills. Writes are propagated to the system bus and cause 
corresponding cache lines on all processors on the bus to be invalidated. 
Speculative reads are allowed. This memory type is available in processor 
families starting from the P6 family processors by programming the MTRRs (see 
Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6 
Family, Pentium 4, and Intel Xeon processors.

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 
and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes
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11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word 
cached. They are retained in an internal write combining buffer (WC buffer) that is 
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer 
is not snooped and thus does not provide data coherency. Buffering of writes to WC 
memory is done to allow software a small window of time to supply more modified 
data to the WC buffer while remaining as non-intrusive to software as possible. The 
buffering of writes to WC memory also causes data to be collapsed; that is, multiple 
writes to the same memory location will leave the last data written in the location and 
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel 
Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon proces-
sors; the WC buffer is made up of several 64-byte WC buffers. For the P6 family 
processors, the WC buffer is made up of several 32-byte WC buffers. 

When software begins writing to WC memory, the processor begins filling the WC 
buffers one at a time. When one or more WC buffers has been filled, the processor 
has the option of evicting the buffers to system memory. The protocol for evicting the 
WC buffers is implementation dependent and should not be relied on by software for 
system memory coherency. When using the WC memory type, software must be 
sensitive to the fact that the writing of data to system memory is being delayed and 
must deliberately empty the WC buffers when system memory coherency is 
required.

Once the processor has started to evict data from the WC buffer into system 
memory, it will make a bus-transaction style decision based on how much of the 
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the 
processor will execute a burst-write transaction on the bus. This results in all 32 
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor) 
being transmitted on the data bus in a single burst transaction. If one or more of the 
WC buffer’s bytes are invalid (for example, have not been written by software), the 
processor will transmit the data to memory using “partial write” transactions (one 
chunk at a time, where a “chunk” is 8 bytes). 

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

Table 11-3.  Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core 
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Atom, Intel 
Core Duo, Pentium M, Pentium 4 
and Intel Xeon Processors

P6 Family 
Processors

Pentium 
Processor
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This will result in a maximum of 4 partial write transactions (for P6 family processors) 
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one 
WC buffer of data sent to memory. 

The WC memory type is weakly ordered by definition. Once the eviction of a WC 
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of 
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may 
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is 
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus 
before the partial write for chunk 1 or vice versa). 

The only elements of WC propagation to the system bus that are guaranteed are 
those provided by transaction atomicity. For example, with a P6 family processor, a 
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as 
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated 
simultaneously. Likewise, for more recent processors starting with those based on 
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a 
single burst transactions, using any chunk order within a transaction. For partial 
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or 
write side effects, does not include a frame buffer, and uses the write-back memory 
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and 
should always use strong uncacheable memory for memory-mapped I/O with read 
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt 
writes desirable, because those writes cannot be observed at the other port until they 
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that 
contains pixel values displayed on a screen. Frame buffer memory is typically large (a 
few megabytes) and is usually written more than it is read by the processor. Using 
strong uncacheable memory for a frame buffer generates very large amounts of bus 
traffic, because operations on the entire buffer are implemented using partial writes 
rather than line writes. Using write-through memory for a frame buffer can displace 
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data 
cache. Therefore, systems should use write-combining memory for frame buffers 
whenever possible.
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Software can use page-level cache control, to assign appropriate effective memory 
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not 
access the structure again until the structure is rewritten by another agent. Such a 
large data structure should be marked as uncacheable, or reading it will evict cached 
lines that the processor will be referencing again. 

A similar example would be a write-only data structure that is written to (to export 
the data to another agent), but never read by software. Such a structure can be 
marked as uncacheable, because software never reads the values that it writes 
(though as uncacheable memory, it will be written using partial writes, while as 
write-back memory, it will be written using line writes, which may not occur until the 
other agent reads the structure and triggers implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are 
provided that give software greater control over the caching, prefetching, and the 
write-back characteristics of data. These instructions allow software to use weakly 
ordered or processor ordered memory types to improve processor performance, but 
when necessary to force strong ordering on memory reads and/or writes. They also 
allow software greater control over the caching of data. For a description of these 
instructions and there intended use, see Section 11.5.5, “Cache Management 
Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications 
are different from accessing data in UC memory. When doing code fetches, the 
processor never transitions from cacheable code to UC code speculatively. It also 
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an 
instruction once. It may decode consecutive UC instructions in a cacheline without 
fetching between each instruction. It may also fetch additional cachelines from the 
same or a consecutive 4-KByte page in order to decode one non-speculative UC 
instruction (this can be true even when the instruction is contained fully in one line).  

Because of the above and because cacheline sizes may change in future processors, 
software should avoid placing memory-mapped I/O with read side effects in the 
same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the 
Intel 64 and IA-32 architectures. 

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive, 
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per 
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cache line. Each line can be marked as being in one of the states defined in Table 
11-4. In general, the operation of the MESI protocol is transparent to programs.

The L1 instruction cache in P6 family processors implements only the “SI” part of the 
MESI protocol, because the instruction cache is not writable. The instruction cache 
monitors changes in the data cache to maintain consistency between the caches 
when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more 
information on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling 
the caching of data and instructions and for controlling the ordering of reads and 
writes between the processor, the caches, and memory. These mechanisms can be 
divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures 

define several dedicated registers and various bits within control registers and 
page- and directory-table entries that control the caching system memory 
locations in the L1, L2, and L3 caches. These mechanisms control the caching of 
virtual memory pages and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32 
architectures provide several instructions that control the caching of data, the 
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control 
memory coherency for specific locations in memory, and to force strong memory 
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

Table 11-4.  MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches 
of other processors?

No No Maybe Maybe

A write to this line … Does not go to 
the system bus.

Does not go to 
the system bus.

Causes the 
processor to gain 
exclusive 
ownership of the 
line.

Goes directly to 
the system bus.
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11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for 
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers 
and bits for use in enabling or restricting caching to various pages or regions in 
memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory 

locations (see Section 2.5, “Control Registers”). If the CD flag is clear, caching is 
enabled for the whole of system memory, but may be restricted for individual 
pages or regions of memory by other cache-control mechanisms. When the CD 
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for 
the P6 and more recent processor families and prevented for the Pentium 
processor (see note below). With the CD flag set, however, the caches will still 
respond to snoop traffic. Caches should be explicitly flushed to insure memory 
coherency. For highest processor performance, both the CD and the NW flags in 
control register CR0 should be cleared. Table 11-5 shows the interaction of the 
CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families 
starting with P6 family than the Pentium processor (see Table 11-5). To insure 
memory coherency after the CD flag is set, the caches should be explicitly 
flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the 
P6 and more recent processor families modify cache line fill and update 
behaviour. Also, setting the CD flag on these processors do not force strict 
ordering of memory accesses unless the MTRRs are disabled and/or all memory 
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the 
Memory-Ordering Model”).
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Figure 11-3.  Cache-Control Registers and Bits Available in Intel 64 and IA-32 
Processors
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Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system 

memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line 

fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to 
exclusive under control of WB/WT#.

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code 
of 0.

NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement (see Pentium 4 and Intel Xeon processors reference 
below).

• Write hits update the cache. 
• Only writes to shared lines and write misses update system 

memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of 

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to 

exclusive under control of the WB/WT#.

Yes
Yes

Yes

Yes
Yes

1 0 • (P6 and later processor families only.) Strict memory ordering is 
not enforced unless the MTRRs are disabled and/or all memory is 
referenced as uncached (see Section 7.2.4., “Strengthening or 
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes
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• NW flag, bit 29 of control register CR0 — Controls the write policy for system 
memory locations (see Section 2.5, “Control Registers”). If the NW and CD flags 
are clear, write-back is enabled for the whole of system memory, but may be 
restricted for individual pages or regions of memory by other cache-control 
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags 
affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t 
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is, 
when the CD flag is set, the processor disables caching, regardless of 
the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and 
NW flags in control register CR0 are set), external snoops are 
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems. 
When snoops are inhibited, address parity is not checked and 
APCHK# is not asserted for a corrupt address; however, when snoops 
are accepted, address parity is checked and APCHK# is asserted for 

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after 
a power up or reset.

• Read hits access the cache; read misses do not cause 
replacement.

• Write hits update the cache and change exclusive lines to 
modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD 

and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-

sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and 
NW bits to 1 selects the no-fill cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

Table 11-5.  Cache Operating Modes 

CD NW Caching and Read/Write Policy L1 L2/L31
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corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type 
used to access paging structures and pages (see Section 4.9, “Paging and 
Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used 
to access the first paging structure of the current paging-structure hierarchy (see 
Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced 
to the IA-32 architecture in the P6 family processors) — Controls the 
flushing of TLB entries for individual pages. See Section 4.10, “Caching 
Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 4.10, “Caching Translation 
Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family 
processors) — Control the type of caching used in specific regions of physical 
memory. Any of the caching types described in Section 11.3, “Methods of Caching 
Available,” can be selected. See Section 11.11, “Memory Type Range Registers 
(MTRRs),” for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor) 
— Extends the memory typing capabilities of the processor to permit memory 
types to be assigned on a page-by-page basis (see Section 11.12, “Page Attribute 
Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR 
(Available only in processors based on Intel NetBurst microarchitecture) 
— Allows the L3 cache to be disabled and enabled, independently of the L1 and 
L2 caches. 

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to 
control the caching method used for specific areas of memory. They perform 
similar (but not identical) functions to the MTRRs in the P6 family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated 
with the PCD and PWT flags in control register CR3 and in the page-directory and 
page-table entries) permit caching in an external L2 cache to be controlled on a 
page-by-page basis, consistent with the control exercised on the L1 cache of 
these processors. The P6 and more recent processor families do not provide 
these pins because the L2 cache in internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That 
is, if the CD flag is set, caching is prevented globally (see Table 11-5). If the CD flag 
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict 
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caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region 
of system memory uncacheable, a page-level caching control cannot be used to 
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncacheable, an MTRR cannot be used to 
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy 
takes precedence. The write-combining policy (which can only be assigned through 
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is 
being used to select memory types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can 
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. Using IA32_MISC_ENALBES[bit 
6] takes precedence over the CD flag, MTRRs, and PAT for the L3 cache in those 
processors. That is, when the third-level cache disable flag is set (cache disabled), 
the other cache controls have no affect on the L3 cache; when the flag is clear 
(enabled), the cache controls have the same affect on the L3 cache as they have on 
the L1 and L2 caches.

IA32_MISC_ENALBES[bit 6] is not supported in Intel Core i7 processors, nor proces-
sors based on Intel Core, and Intel Atom microarchitectures.

11.5.2.1  Selecting Memory Types for Pentium Pro and Pentium II 
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in 
the page-table or page-directory entry for the page. Table 11-6 describes the 
mapping of MTRR memory types and page-level caching attributes to effective 
memory types, when normal caching is in effect (the CD and NW flags in control 
register CR0 are clear). Combinations that appear in gray are implementation-
defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and 
Pentium II Processors 

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC
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When normal caching is in effect, the effective memory type shown in Table 11-6 is 
determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective
memory type is identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT 
for the WB memory type and the MTRR-defined memory type for all other 
memory types. 

4. Setting the PCD and PWT flags to opposite values is considered model-specific for 
the WP and WC memory types and architecturally-defined for the WB, WT, and 
UC memory types.

11.5.2.2  Selecting Memory Types for Pentium III and More Recent 
Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M, 
Pentium 4, Intel Xeon, and Pentium III processors use the PAT to select effective 
page-level memory types. Here, a memory type for a page is selected by the MTRRs 
and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a 
page-table or page-directory entry (see Section 11.12.3, “Selecting a Memory Type 
from the PAT”). Table 11-7 describes the mapping of MTRR memory types and PAT 
entry types to effective memory types, when normal caching is in effect (the CD and 

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.

Table 11-6.  Effective Page-Level Memory Type for Pentium Pro and 
Pentium II Processors  (Contd.)
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NW flags in control register CR0 are clear).

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families 

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3
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11.5.2.3  Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer 
operand is written to a memory location that crosses the page boundary between 
those two pages, the operand might be written to memory twice. This action does not 
present a problem for writes to actual memory; however, if a device is mapped the 
memory space assigned to the pages, the device might malfunction.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES: 
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their 

caches since the data could never have been cached. This attribute is preferred for performance 
reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required 
to check their caches because the data may be cached due to page aliasing, which is not recom-
mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual. However, all processors that support both the PAT 
and the MTRRs determine the effective page-level memory types for these combinations as 
given.

Table 11-7.  Effective Page-Level Memory Types for Pentium III and More Recent 
Processor Families  (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type
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11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received 
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and
the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs 
for the uncached memory type (see the discussion of the discussion of the TYPE 
field and the E flag in Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory 
coherency. If the caches are not flushed, cache hits on reads will still occur and data 
will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct require-
ments: (i) discontinue new data replacing existing data in the cache (ii) ensure data 
already in the cache are evicted to memory, (iii) ensure subsequent memory refer-
ences observe UC memory type semantics. Different processor implementation of 
caching control hardware may allow some variation of software implementation of 
these three requirements. See note below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s 
caching behaviour as indicated in Table 11-5, but setting the CD flag 
alone may not be sufficient across all processor families to force the 
effective memory type for all physical memory to be UC nor does it 
force strict memory ordering, due to hardware implementation 
variations across different processor families. To force the UC 
memory type and strict memory ordering on all of physical memory, 
it is sufficient to either program the MTRRs for all physical memory to 
be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of 
steps given above has been executed, the cache lines containing the 
code between the end of the WBINVD instruction and before the 
MTRRS have actually been disabled may be retained in the cache 
hierarchy. Here, to remove code from the cache completely, a second 
WBINVD instruction must be executed after the MTRRs have been 
disabled.
For Intel Atom processors, setting the CD flag forces all physical 
memory to observe UC semantics (without requiring memory type of 
physical memory to be set explicitly). Consequently, software does 
not need to issue a second WBINVD as some other processor 
generations might require. 
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11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can 
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache disable 
flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache to be disabled and 
enabled, independently of the L1 and L2 caches. Prior to using this control to disable 
or enable the L3 cache, software should disable and flush all the processor caches, as 
described earlier in Section 11.5.3, “Preventing Caching,” to prevent of loss of infor-
mation stored in the L3 cache. After the L3 cache has been disabled or enabled, 
caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the 
procedure described in Section 11.5.3, “Preventing Caching,” apply to the entire 
cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the 
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system 
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh 
and CLFLUSH instructions and the non-temporal move instructions (MOVNTI, 
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in 
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2, 
and L3 caches. The INVD instruction invalidates all internal cache entries, then 
generates a special-function bus cycle that indicates that external caches also should 
be invalidated. The INVD instruction should be used with care. It does not force a 
write-back of modified cache lines; therefore, data stored in the caches and not 
written back to system memory will be lost. Unless there is a specific requirement or 
benefit to invalidating the caches without writing back the modified lines (such as, 
during testing or fault recovery where cache coherency with main memory is not a 
concern), software should use the WBINVD instruction. 

The WBINVD instruction first writes back any modified lines in all the internal caches, 
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache 
coherency with main memory is maintained regardless of the write policy in effect 
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors) 
special-function bus cycles to indicate to external cache controllers that write-back of 
modified data followed by invalidation of external caches should occur. The amount of 
time or cycles for WBINVD to complete will vary due to the size of different cache 
hierarchies and other factors. As a consequence, the use of the WBINVD instruction 
can have an impact on interrupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a 
cache line from a specified location in system memory be prefetched into the cache 
hierarchy (see Section 11.8, “Explicit Caching”).
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The CLFLUSH instruction allow selected cache lines to be flushed from memory. This 
instruction give a program the ability to explicitly free up cache space, when it is 
known that cached section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and 
MOVNTPD) allow data to be moved from the processor’s registers directly into 
system memory without being also written into the L1, L2, and/or L3 caches. These 
instructions can be used to prevent cache pollution when operating on data that is 
going to be modified only once before being stored back into system memory. These 
instructions operate on data in the general-purpose, MMX, and XMM registers.

11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst 
microarchitecture that support Intel Hyper-Threading Technology. When 
CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context 
mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ). 
Selectable modes are adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1  Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When 
running in adaptive mode, the L1 data cache is shared across logical processors in 
the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor 
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the 
logical processors use different paging modes, processors compete for cache 
resources. This reduces the effective size of the cache for each logical processor. 
Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2  Shared Mode
In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging 
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that 
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason, 
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based 
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on the Intel NetBurst microarchitecture that support Intel Hyper-Threading Tech-
nology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the 
processor causes the associated cache line (or lines) to be invalidated. This check is 
based on the physical address of the instruction. In addition, the P6 family and 
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear 
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a 
snoop of an instruction in a code segment, where the target instruction is already 
decoded and resident in the trace cache, invalidates the entire trace cache. The latter 
behavior means that programs that self-modify code can cause severe degradation 
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems 
among IA-32 processors. Applications that include self-modifying code use the same 
linear address for modifying and fetching the instruction. Systems software, such as 
a debugger, that might possibly modify an instruction using a different linear address 
than that used to fetch the instruction, will execute a serializing operation, such as a 
CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 8.1.3, 
“Handling Self- and Cross-Modifying Code,” for more information about the use of 
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both 
the cache and memory, but if the instruction was prefetched before the write, the old 
version of the instruction could be the one executed. To prevent the old instruction 
from being executed, flush the instruction prefetch unit by coding a jump instruction 
immediately after any write that modifies an instruction.

11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, 
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable, 
although the element may never have been accessed in the normal von Neumann 
sequence. Implicit caching occurs on the P6 and more recent processor families due 
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching 
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor 
systems, since software running on these processor families also has not been able 
to deterministically predict the behavior of instruction prefetch.
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To avoid problems related to implicit caching, the operating system must explicitly 
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported 
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries. 
The linear address F000H points to physical location B000H (the page-table entry for 
F000H contains the value B000H), and the page-table entry for linear address F000 
is PTE_F000.

Example 11-1.  Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the 
last MOV instruction performed would place the value at physical location B000H into 
EBX, rather than the value at the new physical address A000H. This situation is 
remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instruc-
tions, that provide software with explicit control over the caching of data. These 
instructions provide “hints” to the processor that the data requested by a PREFETCHh 
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow 
selection of the cache level into which data will be read.

The PREFETCHh instructions can help reduce the long latency typically associated 
with reading data from memory and thus help prevent processor “stalls.” However, 
these instructions should be used judiciously. Overuse can lead to resource conflicts 
and hence reduce the performance of an application. Also, these instructions should 
only be used to prefetch data from memory; they should not be used to prefetch 
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 and IA-32 Archi-
tectures Optimization Reference Manual.
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11.9 INVALIDATING THE TRANSLATION LOOKASIDE 
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware 
to invalidate the TLBs either explicitly or as a side effect of another operation. Most 
details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure 
Caches.” In addition, the following operations invalidate all TLB entries, irrespective 
of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a 

WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4 

to modify the PSE, PGE, or PAE flag.
• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about 
the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a 
store buffer. The store buffer improves processor performance by allowing the 
processor to continue executing instructions without having to wait until a write to 
memory and/or to a cache is complete. It also allows writes to be delayed for more 
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in 
systems that use multiple processors. The processor ensures that write operations 
are always carried out in program order. It also insures that the contents of the store 
buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is 

executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is 

performed.
• (Pentium III, and more recent processor families only) When using an SFENCE 

instruction to order stores.
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• (Pentium 4 and more recent processor families only) When using an MFENCE 
instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed 
description of the operation of the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the 
memory types (see Section 11.3, “Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations 
for different types of memory such as RAM, ROM, frame-buffer memory, and 
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and 
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical 
memory, and it defines a set of model-specific registers (MSRs) for specifying the 
type of memory that is contained in each range. Table 11-8 shows the memory types 
that can be specified and their properties; Figure 11-4 shows the mapping of physical 
memory with MTRRs. See Section 11.3, “Methods of Caching Available,” for a more 
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the 
fixed and variable MTRRs, which in effect makes all of physical memory uncacheable. 
Initialization software should then set the MTRRs to a specific, system-defined 
memory map. Typically, the BIOS (basic input/output system) software configures 
the MTRRs. The operating system or executive is then free to modify the memory 
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent 
family, each processor MUST use the identical MTRR memory map so that software 
will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain 
MTRR consistency between all the processors in the system (that is, 
all processors must use the same MTRR values). The P6 and more 
recent processor families provide no hardware support for 
maintaining this consistency.

Table 11-8.  Memory Types That Can Be Encoded in MTRRs 

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H
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Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4.  Mapping Physical Memory With MTRRs

Table 11-8.  Memory Types That Can Be Encoded in MTRRs  (Contd.)

0

FFFFFFFFH

80000H

BFFFFH
C0000H

FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

Variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)
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11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if 
MTRRs are supported on a processor by executing the CPUID instruction and reading 
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional 
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR 
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a 
read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the 
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this 
register are as follows:
• VCNT (variable range registers count) field, bits 0 through 7 — Indicates 

the number of variable ranges implemented on the processor.
• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs 

(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are 
supported when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type 
is supported when set; the WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-
management range register (SMRR) interface is supported when bit 11 is set; the 
SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software 
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP) 
is generated. 

Software must read IA32_MTRRCAP VCNT field to determine the number of variable 
MTRRs and query other feature bits in IA32_MTRRCAP to determine additional capa-
bilities that are supported in a processor. For example, some processors may report 
a value of ‘8’ in the VCNT field, other processors may report VCNT with different 
values. 

Figure 11-5.  IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported

63 0

Reserved W
C

71011

VCNT
F
I
X

89

Reserved

SMRR — SMRR interface supported
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11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three 
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and 
the variable range MTRRs. These registers can be read and written to using the 
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates 
the availability of these registers on the processor (see Section 11.11.1, “MTRR 
Feature Identification”).

11.11.2.1  IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family 
processors) sets the default properties of the regions of physical memory that are not 
encompassed by MTRRs. The functions of the flags and field in this register are as 
follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for 

those physical memory address ranges that do not have a memory type specified 
for them by an MTRR (see Table 11-8 for the encoding of this field). The legal 
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated. 
Intel recommends the use of the UC (uncached) memory type for all physical 
memory addresses where memory does not exist. To assign the UC type to 
nonexistent memory locations, it can either be specified as the default type in the 
Type field or be explicitly assigned with the fixed and variable MTRRs.

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled 
when set; fixed-range MTRRs are disabled when clear. When the fixed-range 
MTRRs are enabled, they take priority over the variable-range MTRRs when 
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the 
fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are 
disabled when clear, and the UC memory type is applied to all of physical 

Figure 11-6.  IA32_MTRR_DEF_TYPE MSR

Type — Default memory type

FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved
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memory. When this flag is set, the FE flag can disable the fixed-range MTRRs; 
when the flag is clear, the FE flag has no affect. When the E flag is set, the type 
specified in the default memory type field is used for areas of memory not 
already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are 
reserved; the processor generates a general-protection exception (#GP) if software 
attempts to write nonzero values to them.

11.11.2.2  Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each. 
Each of these registers is divided into 8-bit fields that are used to specify the memory 
type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range 

from 0H to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000 

— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range 
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

• Registers IA32_MTRR_FIX4K_C0000 through 
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from 
C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8 
ranges per register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the 
corresponding fields of the fixed-range MTRRs; Table 11-8 shows memory type 
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3  Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the 
memory type for m variable-size address ranges, using a pair of MTRRs for each 
range. The number m of ranges supported is given in bits 7:0 of the IA32_MTRRCAP 
MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and 
memory type for the range; the second entry (IA32_MTRR_PHYSMASKn) contains a 
mask used to determine the address range. The “n” suffix is in the range 0 through 
m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.
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Figure 11-7 shows flags and fields in these registers. The functions of these flags and 
fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see 

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base 

address of the address range. This 24-bit value, in the case where MAXPHYADDR 
is 36 bits, is extended by 12 bits at the low end to form the base address (this 
automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24 
bits if the maximum physical address size is 36 bits, 28 bits if the maximum 
physical address size is 40 bits). The mask determines the range of the region 
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For 
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

Table 11-9.  Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63   56 55    48 47    40 39    32 31     24 23     16 15     8 7      0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
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— The width of the PhysMask field depends on the maximum physical address 
size supported by the processor. 

CPUID.80000008H reports the maximum physical address size supported by 
the processor. If CPUID.80000008H is not available, software may assume 
that the processor supports a 36-bit physical address size (then PhysMask is 
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are reserved). 
See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register 
pair when clear.

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers 
are reserved; the processor generates a general-protection exception (#GP) if soft-
ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the 
area not mapped by the mask value is set to the default memory type. Intel does not 
encourage the use of “discontinuous” ranges because they could require physical 
memory to be present throughout the entire 4-GByte physical memory map. If 
memory is not provided, the behaviour is undefined.

Figure 11-7.  IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range 
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register

63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register

63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
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NOTE
It is possible for software to parse the memory descriptions that 
BIOS provides by using the ACPI/INT15 e820 interface mechanism. 
This information then can be used to determine how MTRRs are 
initialized (for example: allowing the BIOS to define valid memory 
ranges and the maximum memory range supported by the platform, 
including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable 
MTRR ranges.

11.11.2.4  System-Management Range Register Interface 
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to 
restrict access to a specified memory address range used by system-management 
mode (SMM) software (see Section 26.4.2.1). If the SMRR interface is supported, 
SMM software is strongly encouraged to use it to protect the SMI code and data 
stored by SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8). 
The IA32_SMRR_PHYSBASE MSR defines the base address for the SMRAM memory 
range and the memory type used to access it in SMM. The IA32_SMRR_PHYSMASK 
MSR contains a valid bit and a mask that determines the SMRAM address range 
protected by the SMRR interface. These MSRs may be written only in SMM; an 
attempt to write them outside of SMM causes a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and 
fields are the following:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see 

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through 31 — Specifies the base address of the 

address range. The address must be less than 4 GBytes and is automatically 
aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the 
range of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For 
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register 
pair when clear.

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the 
SMRR interface has been enabled in the IA32_FEATURE_CONTROL MSR. See Appendix B.
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Before attempting to access these SMRR registers, software must test bit 11 in the 
IA32_MTRRCAP register. If SMRR is not supported, reads from or writes to registers 
cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified 
address range are treated as follows:
• If the logical processor is in SMM, accesses uses the memory type in the 

IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read 

accesses return a fixed value for each byte. The uncacheable memory type (UC) 
is used in this case.

The above items apply even if the address range specified overlaps with a range 
specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical 
address size of 36 bits. The base and mask values entered in variable-range MTRR 
pairs are 24-bit values that the processor extends to 36-bits. 

For example, to enter a base address of 2 MBytes (200000H) in the 
IA32_MTRR_PHYSBASE3 register, the 12 least-significant bits are truncated and the 
value 000200H is entered in the PhysBase field. The same operation must be 
performed on mask values. For example, to map the address range from 200000H to 

Figure 11-8.  IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register

63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register

63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
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3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required. Again, the 
12 least-significant bits of this mask value are truncated, so that the value entered in 
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so 
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask 
value, it will return the same value as when the base address is AND’d with the mask 
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base 
value of 000400H is entered in the PhysBase field and a mask value of FFFC00H is 
entered in the PhysMask field.

Example 11-2.  Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system 
has the following characteristics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest 

system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base 

address of 64 MBytes. This restriction forces the 96 MBytes of system memory to 
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a 
4-MByte hole for the I/O card. 

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning 
at address A0000000H. 

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical 
address space for this system configuration.

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 000F FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 000F FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 000F FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 000F FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 000F FFF0 0800H  
Caches 15-16 MByte as UC cache type.
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IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 000F FF80 0800H  
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the 
ranges are mapped to WB and UC memory types) to minimize the number of MTRR 
registers that are required to configure the memory environment. This setup also 
fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1  Base and Mask Calculations for Greater-Than 36-bit Physical 
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical 
address size, software should query CPUID.80000008H to determine the maximum 
physical address. See the example.

Example 11-3.  Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in 
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation, 
Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 =  0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 =  0000 00FF FC00 0800H  
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 =  0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 =  0000 00FF FE00 0800H  
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 =  0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 =  0000 00FF FFC0 0800H  
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 =  0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 =  0000 00FF FFC0 0800H  
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 =  0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 =  0000 00FF FFF0 0800H  
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 =  0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 =  0000 00FF FF80 0800H  
Caches A0000000-A0800000 as WC type.
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11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following 
“power of 2” size and alignment rules:

1. The minimum range size is 4 KBytes and the base address of the range must be
on at least a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base 
address must be aligned on a 2n boundary, where n is a value equal to or greater 
than 12. The base-address alignment value cannot be less than its length. For 
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be 
aligned on at least an 8-KByte boundary.

11.11.4.1  MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE 
MSR), then all memory accesses are of the UC memory type. If the MTRRs are 
enabled, then the memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and
fixed MTRRs are enabled, the processor uses the memory type stored for the
appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory 
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type 
stored in the IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are 
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types 
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT 
and WB, the WT memory type is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default 
memory type.

11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable 
all MTRRs. All other bits in the MTRRs are undefined. 

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all 
fixed-range and variable-range MTRR register fields to 0. Software can then initialize 
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the MTRRs according to known types of memory, including memory on devices that it 
auto-configures. Initialization is expected to occur prior to booting the operating 
system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on 
initializing MTRRs in MP (multiple-processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a 
future processor may not implement all memory types supported by the Pentium 4, 
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a
weaker memory ordering model. For example, the uncacheable type cannot be
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining
type.

2. A memory type that does not delay writes should not be mapped into a memory 
type that does delay writes, because applications of such a memory type may 
rely on its write-through behavior. Accordingly, the write-back type cannot be 
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by 
a subsequent read, such as the write-protected type, can only be mapped to 
another type with the same behaviour (and there are no others for the 
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how 
a memory type is used, allowing additional mappings. For example, write-through 
memory with no associated write side effects can be mapped into write-back 
memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the 
memory types for memory-mapped devices. The operating system should provide a 
driver and application programming interface (API) to access and set the MTRRs. The 
function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1  MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range 
specified by the parameters base and size. The base address is the starting physical 
address and the size is the number of bytes for the memory range. The function 
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automatically aligns the base address and size to 4-KByte boundaries. Pseudocode 
for the MemTypeGet() function is given in Example 11-4.

Example 11-4.  MemTypeGet() Pseudocode

#define MIXED_TYPES -1     /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space 

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ¨ Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);
IF NextType ¼ FirstType

THEN return MixedTypes;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the 
MTRRs are not enabled, then the UC memory type is returned. If more than one 
memory type corresponds to the specified range, a status of MIXED_TYPES is 
returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or 
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the 
memory type for a single 4-KByte range at a given physical address. The sample 
code determines whether an PHY_ADDRESS falls within a fixed range by comparing 
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to 
BFFFFH (16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address 
falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.
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Example 11-5.  Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base 
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

11.11.7.2  MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory 
range specified by the parameters base and size to the type specified by type. The 
base address and size are multiples of 4 KBytes and the size is not 0.

Example 11-6.  MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID; 

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID; 

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED; 

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED; 

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR
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THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED; 

FI;

IF conflicts with current variable ranges 

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE; 

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST; 

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;

flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;
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END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them 
and determining whether the physical address in question matches any of the current 
ranges. During this scan, the algorithm can detect whether any current variable 
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to 
avoid executing code with a partially valid MTRR setup. The algorithm disables 
caching by setting the CD flag and clearing the NW flag in control register CR0. The 
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB 
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if 
PGE was already set) or by updating control register CR3 (if PGE was already clear). 
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the 
MTRRs and again invalidates the caches and TLBs. This second invalidation is 
required because of the processor's aggressive prefetch of both instructions and 
data. The algorithm restores interrupts and re-enables caching by setting the CD 
flag.

An operating system can batch multiple MTRR updates so that only a single pair of 
cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR 
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and 
P6 family processors provide no hardware support to maintain this consistency. In 
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it 
must load the MTRRs of the boot processor while the E flag in register MTRRdefType 
is 0. The operating system then directs other processors to load their MTRRs with the 
same memory map. After all the processors have loaded their MTRRs, the operating 
system signals them to enable their MTRRs. Barrier synchronization is used to 
prevent further memory accesses until all processors indicate that the MTRRs are 
enabled. This synchronization is likely to be a shoot-down style algorithm, with 
shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system 
to repeat the loading and enabling process to maintain consistency, using the 
following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.
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4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the 
NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that 
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV 
from control register CR3 to another register and then a MOV from that register 
back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If 
only variable ranges are being modified, software may clear the valid bits for the 
affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only 
variable-range registers were modified and their individual valid bits were 
cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for 
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD 
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family 
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in 
control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a 
4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a 
given page is cached in the processor’s TLBs. When using large pages (2 MBytes, 
4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules, 
each with a single memory type. Because the memory type for a large page is cached 
in the TLB, the processor can behave in an undefined manner if a large page is 
mapped to a region of memory that MTRRs have mapped with multiple memory 
types. 

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges 
within a large page are of the same type. If a large page maps to a region of memory 
containing different MTRR-defined memory types, the PCD and PWT flags in the 
page-table entry should be set for the most conservative memory type for that 
range. For example, a large page used for memory mapped I/O and regular memory 
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is mapped as UC memory. Alternatively, the operating system can map the region 
using multiple 4-KByte pages each with its own memory type. 

The requirement that all 4-KByte ranges in a large page are of the same memory 
type implies that large pages with different memory types may suffer a performance 
penalty, since they must be marked with the lowest common denominator memory 
type. The same consideration apply to 1 GByte pages, each of which may consist of 
multiple 2-Mbyte ranges. 

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the 
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the 
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or 
P6 family processor detects a large page overlapping the first 1 MByte of this 
memory range with a memory type that conflicts with the fixed MTRRs. Here, the 
processor maps the memory range as multiple 4-KByte pages within the TLB. This 
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for 
regions of memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to 
allow memory types to be assigned to regions of physical memory based on linear 
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs 
allow mapping of memory types to regions of the physical address space, where the 
PAT allows mapping of memory types to pages within the linear address space. The 
MTRRs are useful for statically describing memory types for physical ranges, and are 
typically set up by the system BIOS. The PAT extends the functions of the PCD and 
PWT bits in page tables to allow all five of the memory types that can be assigned 
with the MTRRs (plus one additional memory type) to also be assigned dynamically 
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also 
available in the Pentium 4 and Intel Xeon processors.

11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing 
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is 
supported, the operating system or executive can use the IA32_PAT MSR to program 
the PAT. When memory types have been assigned to entries in the PAT, software can 
then use of the PAT-index bit (PAT) in the page-table and page-directory entries 
along with the PCD and PWT bits to assign memory types from the PAT to individual 
pages.
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Note that there is no separate flag or control bit in any of the control registers that 
enables the PAT. The PAT is always enabled on all processors that support it, and the 
table lookup always occurs whenever paging is enabled, in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see to Appendix B, “Model-
Specific Registers (MSRs),” and this address will remain at the same address on 
future IA-32 processors that support the PAT feature. Figure 11-9. shows the format 
of the 64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three 
low-order bits of each field are used to specify a memory type. The five high-order 
bits of each field are reserved, and must be set to all 0s. Each of the eight page 
attribute fields can contain any of the memory type encodings specified in Table 
11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9.  IA32_PAT MSR

Table 11-10.  Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*
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11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT, 
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the 
page. Table 11-11 shows the possible encodings of the PAT, PCD, and PWT bits and 
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries 
that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger 
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure 
entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the 
region of physical memory in which the page is mapped to determine the effective 
memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or 
reset of the processor. The setting remain unchanged following a soft reset (INIT 
reset). 

NOTE:
* Using these encodings will result in a general-protection exception (#GP).

Table 11-11.  Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

Table 11-10.  Memory Types That Can Be Encoded With PAT
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The values in all the entries of the PAT can be changed by writing to the IA32_PAT 
MSR using the WRMSR instruction. The IA32_PAT MSR is read and write accessible 
(use of the RDMSR and WRMSR instructions, respectively) to software operating at a 
CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT. 
Attempting to write an undefined memory type encoding into the PAT causes a 
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in 
a manner that maintains the consistency of the processor caches and translation 
lookaside buffers (TLB). This is accomplished by following the procedure as specified 
in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of 
an MTRR in a multiple processor system. It requires a specific sequence of operations 
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it 
is possible to have a single physical page mapped to two or more different linear 
addresses, each with different memory types. Intel does not support this practice 
because it may lead to undefined operations that can result in a system failure. In 
particular, a WC page must never be aliased to a cacheable page because WC writes 
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to 
a WC page, an operating system can avoid this type of aliasing by doing the 
following:

1. Remove the previous mapping to a cacheable memory type in the page tables;
that is, make them not present.

2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for 
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously. 
Note on processors that support self-snooping, CPUID feature flag bit 27, this 
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages) 
and enable page size extensions must carefully scrutinize the use of the PAT index bit 
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7) 
corresponds to the page size bit in a page-directory entry. Therefore, the operating 
system can only use PAT entries PA0 through PA3 when setting the caching type for 

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC

Table 11-12.  Memory Type Setting of PAT Entries Following a Power-up or Reset 
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a page table that is also used as a page directory. If the operating system attempts 
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care 
should be taken in selecting the encodings for entries in the PAT (see Section 
11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That 
is, the PCD and PWT bits in page-table entries and in page-directory entries (that 
point to pages) are always select a memory type for a page indirectly by selecting an 
entry in the PAT. They never select the memory type for a page directly as they do in 
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not 
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the 
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first 
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or 
reset (see Table 11-12), these first four entries are encoded to select the same 
memory types as the PCD and PWT bits would normally select directly in an IA-32 
processor that does not implement the PAT. So, if encodings of the first four entries 
in the PAT are left unchanged following a power-up or reset, code written to run on 
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32 
processors that do implement the PAT.
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CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM

PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be 
considered when designing or enhancing an operating system to support MMX tech-
nology. It covers MMX instruction set emulation, the MMX state, aliasing of MMX 
registers, saving MMX state, task and context switching considerations, exception 
handling, and debugging.

12.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instruc-
tions, as it does for x87 FPU instructions. The EM flag in control register CR0 
(provided to invoke emulation of x87 FPU instructions) cannot be used for MMX 
instruction emulation. If an MMX instruction is executed when the EM flag is set, an 
invalid opcode exception (UD#) is generated. Table 12-1 shows the interaction of the 
EM, MP, and TS flags in control register CR0 when executing MMX instructions.

12.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers 
are aliased to the low 64-bits (bits 0 through 63) of floating-point registers R0 
through R7 (see Figure 12-1). Note that the MMX registers are mapped to the phys-
ical locations of the floating-point registers (R0 through R7), not to the relative loca-
tions of the registers in the floating-point register stack (ST0 through ST7). As a 

Table 12-1.  Action Taken By MMX Instructions 
for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
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result, the MMX register mapping is fixed and is not affected by value in the Top Of 
Stack (TOS) field in the floating-point status word (bits 11 through 13).

When a value is written into an MMX register using an MMX instruction, the value also 
appears in the corresponding floating-point register in bits 0 through 63. Likewise, 
when a floating-point value written into a floating-point register by a x87 FPU, the 
low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state 
contained in the floating-point registers, the x87 FPU tag word, and the x87 FPU 
status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time, 

bits 64 through 79 of the corresponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of 

the tag fields in the x87 FPU tag word is set to 00B (valid). (See also Section 
12.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 
FPU Tag Word.”)

Figure 12-1.  Mapping of MMX Registers to Floating-Point Registers
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• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is 
set to 11B (empty).

• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status 
word (bits 0 through 10 and bits 14 and 15) or the contents of the other x87 FPU 
registers that comprise the x87 FPU state (the x87 FPU control word, instruction 
pointer, data pointer, or opcode registers). 

Table 12-2 summarizes the effects of the MMX instructions on the x87 FPU state.

12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU Tag Word

Table 12-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE 
and FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding 
tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX 
registers or the execution of MMX instructions. However, the MMX instructions do 
modify the contents of the x87 FPU tag word, as is described in Section 12.2, “The 
MMX State and MMX Register Aliasing.” These modifications may affect the operation 
of the x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not 
initialized or restored prior to beginning x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state 
information) read the x87 FPU tag register and contents of each of the floating-point 
registers, determine the actual tag values for each register (empty, nonzero, zero, or 
special), and store the updated tag word in memory. After executing these instruc-
tions, all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the 
EMMS instruction clears MMX state from the MMX/floating-point registers by setting 
all the tags in the x87 FPU tag word to 11B.

Table 12-2.  Effects of MMX Instructions on x87 FPU State

MMX 
Instruction 
Type

x87 FPU Tag 
Word

TOS Field of 
x87 FPU 
Status 
Word

Other x87 
FPU Registers

Bits 64 
Through 79 of 
x87 FPU Data 
Registers

Bits 0 
Through 63 of 
x87 FPU Data 
Registers

Read from 
MMX register

All tags set 
to 00B (Valid)

000B Unchanged Unchanged Unchanged

Write to MMX 
register

All tags set 
to 00B (Valid)

000B Unchanged Set to all 1s Overwritten 
with MMX data

EMMS All fields set 
to 11B 
(Empty)

000B Unchanged Unchanged Unchanged
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12.3 SAVING AND RESTORING THE MMX STATE AND 
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state 
can be saved to memory and restored from memory as follows:
• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to 

memory. (The FXSAVE instruction also saves the state of the XMM and MXCSR 
registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from 
memory. (The FXRSTOR instruction also restores the state of the XMM and 
MXCSR registers.)

The save and restore methods described above are required for operating systems 
(see Section 12.4, “Saving MMX State on Task or Context Switches”). Applications 
can in some cases save and restore only the MMX registers in the following way:

Table 12-3.  Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word 
Stored in Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B 
(empty).

Not affected.

x87 FPU All (except FSAVE, 
FSTENV, FRSTOR, 
FLDENV)

Tag for modified floating-
point register is set to 00B or 
11B.

Not affected.

x87 FPU and 
FXSAVE

FSAVE, FSTENV, 
FXSAVE

Tags and register values are 
read and interpreted; then all 
tags are set to 11B.

Tags are set according to the 
actual values in the floating-
point registers; that is, empty 
registers are marked 11B and 
valid registers are marked 
00B (nonzero), 01B (zero), or 
10B (special).

x87 FPU and 
FXRSTOR

FRSTOR, FLDENV, 
FXRSTOR

All tags marked 11B in 
memory are set to 11B; all 
other tags are set according 
to the value in the 
corresponding floating-point 
register: 00B (nonzero), 01B 
(zero), or 10B (special).

Tags are read and 
interpreted, but not modified.
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• Execute eight MOVQ instructions to save the contents of the MMX0 through 
MMX7 registers to memory. An EMMS instruction may then (optionally) be 
executed to clear the MMX state in the x87 FPU.

• Execute eight MOVQ instructions to read the saved contents of MMX registers 
from memory into the MMX0 through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag 
word and then only saving valid entries.

12.4 SAVING MMX STATE ON TASK OR CONTEXT 
SWITCHES

When switching from one task or context to another, it is often necessary to save the 
MMX state. As a general rule, if the existing task switching code for an operating 
system includes facilities for saving the state of the x87 FPU, these facilities can also 
be relied upon to save the MMX state, without rewriting the task switch code. This 
reliance is possible because the MMX state is aliased to the x87 FPU state (see 
Section 12.2, “The MMX State and MMX Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of 
SSE/SSE2/SSE3/SSSE3 extensions, it is possible (and more efficient) to create state 
saving facilities in the operating system or executive that save the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 13.5, “Designing 
OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches,” describes how to 
design such facilities. The techniques describes in this section can be adapted to 
saving only the MMX and x87 FPU state if needed.

12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING 
MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they 
affect the processor’s status flags in the EFLAGS register or the x87 FPU status word. 
The following exceptions can be generated during the execution of an MMX instruc-
tion:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
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• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an 
MMX instruction is executed (see Section 12.1, “Emulation of the MMX 
Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS 
flag in control register CR0 is set. (See Section 13.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State.”)

• Floating-point error (#MF). (See Section 12.5.1, “Effect of MMX Instructions on 
Pending x87 Floating-Point Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception 
handlers for the above exceptions.

12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point 
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an 
MMX instruction, the processor generates a x87 FPU floating-point error (#MF) prior 
to executing the MMX instruction, to allow the pending exception to be handled by 
the x87 FPU floating-point error exception handler. While this exception handler is 
executing, the x87 FPU state is maintained and is visible to the handler. Upon 
returning from the exception handler, the MMX instruction is executed, which will 
alter the x87 FPU state, as described in Section 12.2, “The MMX State and MMX 
Register Aliasing.” 

12.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as 
when executing other IA-32 or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the 
FSAVE/FNSAVE or FXSAVE image in memory, a debugger needs to take account of 
the relationship between the x87 FPU register’s logical locations relative to TOS and 
the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the 
TOS. However, the tags in the x87 FPU tag word are associated with the physical 
locations of the x87 FPU registers (R0 through R7). The MMX registers always refer 
to the physical locations of the registers (with MM0 through MM7 being mapped to R0 
through R7). Figure 12-2 shows this relationship. Here, the inner circle refers to the 
physical location of the x87 FPU and MMX registers. The outer circle refers to the x87 
FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 12-2), ST0 points to the physical location 
R0 on the floating-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.
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When the TOS equals 2 (case B in Figure 12-2), ST0 points to the physical location 
R2. MM0 maps to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 12-2.  Mapping of MMX Registers to x87 FPU Data Register Stack
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CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET

EXTENSIONS AND PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions 
operating on the processor state extension known as the SSE state (XMM registers, 
MXCSR) and for processor extended states. Instruction set extensions operating on 
the SSE state include the streaming SIMD extensions (SSE), streaming SIMD exten-
sions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3), 
and SSE4. 

Sections 13.1 through 13.5 cover system programming requirements to enable 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, providing operating system or executive 
support for the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, SIMD floating-point 
exceptions, exception handling, and task (context) switching.

Operating system support for SSE state, once implemented using FXSAVE/FXRSTOR, 
provides a limited degree of forward support for subsequent instruction set exten-
sions operating on the same known set of processor state. Processor extended states 
refer to an extension in Intel 64 architecture that will allow system executives to 
implement support for multiple processor state extensions that may be introduced 
over time without requiring the system executive to be modified each time a new 
processor state extension is introduced. 

Managing processor extended states requires the following aspects:
• using instructions like XSAVE, XRSTOR, to save/restore state information to a 

memory region consistent with the processor state extensions supported in 
hardware, 

• using CPUID enumeration features to query the set of extended processor states 
supported by the processor, 

• using XSETBV instruction to enable individual processor state extensions, 
• maintaining various system programming resources.

System programming for managing processor extended states is described in the 
sections starting 13.6.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS

To use SSE/SSE2/SSE3/SSSE3/SSE4 extensions, the operating system or executive 
must provide support for initializing the processor to use these extensions, for 
handling the FXSAVE and FXRSTOR state saving instructions, and for handling SIMD 
floating-point exceptions. The following sections provide system programming 
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guidelines for this support. Because SSE/SSE2/SSE3/SSSE3/SSE4 extensions share 
the same state, experience the same sets of non-numerical and numerical exception 
behavior, these guidelines that apply to SSE also apply to other sets of SIMD exten-
sions that operate on the same processor state and subject to the same sets of of 
non-numerical and numerical exception behavior. 

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter 
12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, discuss support for 
SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for 
SSE/SSE2/SSE3/SSSE3/SSE4 Extensions

The following guidelines describe functions that an operating system or executive 
must perform to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions.

3. Provide an initialization for the SSE, SSE2 SSE3, SSSE3 and SSE4 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions 
generated by the SSE, SSE2, SSE3 and SSE4 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension 
Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3/SSSE3/SSE4 
instruction, the processor generates an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, it should check that support is present. 
Make sure:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1
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To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1

13.1.3 Checking for Support for the FXSAVE and FXRSTOR 
Instructions

A separate check must be made to insure that the processor supports FXSAVE and 
FXRSTOR. Make sure:
• CPUID.1:EDX.FXSR[bit 24] = 1 

13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
The operating system or executive should carry out the following steps to set up 
SSE/SSE2/SSE3/SSSE3/SSE4 extensions for use by application programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag assumes that the operating system 
provides facilities for saving and restoring SSE/SSE2/SSE3/SSSE3/SSE4 states 
using FXSAVE and FXRSTOR instructions. These instructions are commonly used 
to save the SSE/SSE2/SSE3/SSSE3/SSE4 state during task switches and when 
invoking the SIMD floating-point exception (#XM) handler (see Section 13.4, 
“Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches,” 
and Section 13.1.6, “Providing an Handler for the SIMD Floating-Point Exception 
(#XM),” respectively). 

If the processor does not support the FXSAVE and FXRSTOR instructions, 
attempting to set the OSFXSR flag will cause an exception (#GP) to be 
generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag assumes that the operating 
system provides an SIMD floating-point exception (#XM) handler (see Section 
13.1.6, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”). 

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be 
set by the operating system. The processor has no other way of 
detecting operating-system support for the FXSAVE and FXRSTOR 
instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is 
required when executing SSE/SSE2/SSE3/SSSE3/SSE4 instructions (see Section 
2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32 
processors that support the SSE/SSE2/SSE3/SSSE3/SSE4 extensions (see 
Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed, depending on the: 
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• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1.  Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, 
SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE, 
SSE2, 
SSE32

SSE4_13

EM MP 4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception 
if unmasked SIMD floating-point 
exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception 
if unmasked SIMD floating-point 
exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHh, SFENCE, 

LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X — Don’t care.
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The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero 
flag (bit 15), the denormals-are-zero flag (bit 6), and the rounding control field (bits 
13 and 14) in the MXCSR register should be left in their default values of 0. This 
permits the application to determine how these features are to be used.

13.1.5 Providing Non-Numeric Exception Handlers for Exceptions 
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

SSE/SSE2/SSE3/SSSE3/SSE4 instructions can generate the same type of memory 
access exceptions (such as, page fault, segment not present, and limit violations) 
and other non-numeric exceptions as other Intel 64 and IA-32 architecture instruc-
tions generate. 

Ordinarily, existing exception handlers can handle these and other non-numeric 
exceptions without code modification. However, depending on the mechanisms used 
in existing exception handlers, some modifications might need to be made.

The SSE/SSE2/SSE3/SSSE3/SSE4 extensions can generate the non-numeric excep-
tions listed below:
• Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with 
an unaligned 128-bit memory reference generates a general-protection 
exception. (The MOVUPS and MOVUPD instructions allow unaligned a loads or 
stores of 128-bit memory locations, without generating a general-protection 
exception.) A 128-bit reference within the stack segment that is not aligned 

Table 13-2.  Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS 

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_1*
SSE4_2**

EM TS Action

0 X*** X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
* Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
** Applies to SSE4_2 instructions except CRC32 and POPCNT.
***X — Don’t care.
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to a 16-byte boundary will also generate a general-protection exception, 
instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check 
operates on operands that are less than 128-bits in size: 16-bit, 32-bit, and 
64-bit. To enable the generation of alignment check exceptions, do the 
following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit 
misalignment will be detected for the MOVUPD and MOVUPS instructions; 
detection of 128-bit misalignment is not guaranteed and may vary with 
implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing 
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by 
CPUID are set to 0. This condition does not affect the CLFLUSH 
instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This 
exception condition only pertains to the execution of the CLFLUSH 
instruction. 

• The POPCNT feature flag returned by the CPUID instruction is set to 0. 
This exception condition only pertains to the execution of the POPCNT 
instruction. 

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the 
value of TS flag (bit 3) of CR0. This condition does not affect the PAUSE, 
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and 
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition 
does not affect the PSHUFW, MOVNTQ, MOVNTI, PAUSE, PREFETCHh, 
SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when 
the OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See 
Section 13.5.1, “Using the TS Flag to Control the Saving of the x87 FPU, 
MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.”

— Device not available (#NM). This exception is generated by executing a 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is 
set to 1.
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Other exceptions can occur indirectly due to faulty execution of the above 
exceptions.

13.1.6 Providing an Handler for the SIMD Floating-Point Exception 
(#XM)

SSE/SSE2/SSE3/SSSE3/SSE4 instructions do not generate numeric exceptions on 
packed integer operations. They can generate the following numeric (SIMD floating-
point) exceptions on packed and scalar single-precision and double-precision 
floating-point operations. 
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand 
exception) are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic 
and represent the same conditions that cause x87 FPU floating-point error excep-
tions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a 
reasonable result to the destination operand without invoking an exception handler. 
However, if any of these exceptions are left unmasked, detection of the exception 
condition results in a SIMD floating-point exception (#XM) being generated. See 
Chapter 6, “Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or execu-
tive must provide an exception handler. The section titled “SSE and SSE2 SIMD 
Floating-Point Exceptions” in Chapter 11, “Programming with Streaming SIMD 
Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, describes the SIMD floating-point exception classes and gives 
suggestions for writing an exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point 
exceptions (#XM), the OSXMMEXCPT flag (bit 10) must be set in control register 
CR0.

13.1.6.1  Numeric Error flag and IGNNE#
SSE/SSE2/SSE3/SSE4 extensions ignore the NE flag in control register CR0 (that is, 
treats it as if it were always set) and the IGNNE# pin. When an unmasked SIMD 
floating-point exception is detected, it is always reported by generating a SIMD 
floating-point exception (#XM).
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13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 
EXTENSIONS 

The Intel 64 and IA-32 architecture does not support emulation of the 
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, as they do for x87 FPU instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instruc-
tions) cannot be used to invoke emulation of SSE/SSE2/SSE3/SSSE3/SSE4 instruc-
tions. If an SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed when CR0.EM = 1, 
an invalid opcode exception (#UD) is generated. See Table 13-1.

13.3 SAVING AND RESTORING THE 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE

The SSE/SSE2/SSE3/SSSE3/SSE4 state consists of the state of the XMM and MXCSR 
registers. The recommended method for saving and restoring this state follows:
• Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers 

to memory.
• Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR 

registers from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for all operating systems. See Section 13.5, 
“Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and 
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches.”

In some cases, applications can only save the XMM and MXCSR registers in the 
following way:
• Execute MOVDQ instructions to save the contents of each XMM registers to 

memory. 
• Execute a STMXCSR instruction to save the state of the MXCSR register to 

memory.

In some cases, applications can only restore the XMM and MXCSR registers in the 
following way:
• Execute MOVDQ instructions to read the saved contents of each XMM registers 

from memory to XMM registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from 

memory.
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13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON 
TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the 
SSE/SSE2/SSE3/SSSE3/SSE4 state. FXSAVE and FXRSTOR instructions provide a 
simple method for saving and restoring this state. See Section 13.3, “Saving and 
Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State.” These instructions offer the 
added benefit of saving x87 FPU and MMX state as well. 

Guidelines for writing such procedures are in Section 13.5, “Designing OS Facilities 
for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state 
on Task or Context Switches.”

13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY 
SAVING X87 FPU, MMX, AND 
SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR 
CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state consist of the state of the x87 
FPU, MMX, XMM, and MXCSR registers. The FXSAVE and FXRSTOR instructions 
provide a fast method for saving ad restoring this state. If task or context switching 
facilities are already implemented in an operating system or executive and they use 
FSAVE/FNSAVE and FRSTOR to save the x87 FPU and MMX state, these facilities can 
be extended to save and restore SSE/SSE2/SSE3/SSSE3/SSE4 state by substituting 
FXSAVE/FXRSTOR for FSAVE/FNSAVE and FRSTOR. 

Where task or content switching facilities must be written from scratch, several 
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and 
restore x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state:
• The operating system can require applications that are intended be run as tasks 

take responsibility for saving the state of the x87 FPU, MMX, XMM, and MXCSR 
registers prior to a task suspension during a task switch and for restoring the 
registers when the task is resumed. This approach is appropriate for cooperative 
multitasking operating systems, where the application has control over (or is able 
to determine) when a task switch is about to occur and can save state prior to the 
task switch.

• The operating system can take the responsibility for automatically saving the x87 
FPU, MMX, XMM, and MXCSR registers as part of the task switch process (using 
an FXSAVE instruction) and automatically restoring the state of the registers 
when a suspended task is resumed (using an FXRSTOR instruction). Here, the 
x87 FPU/MMX/SSE/SSE2/SSE3/SSE4 state must be saved as part of the task 
state. This approach is appropriate for preemptive multitasking operating 
systems, where the application cannot know when it is going to be preempted 
and cannot prepare in advance for task switching. Here, the operating system is 
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responsible for saving and restoring the task and the x87 
FPU/MMX/SSE/SSE2/SSE3 state when necessary.

• The operating system can take the responsibility for saving the x87 FPU, MMX, 
XMM, and MXCSR registers as part of the task switch process, but delay the 
saving of the MMX and x87 FPU state until an x87 FPU, MMX, or 
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed by the new task. 
Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state is 
saved only if an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction needs 
to be executed in the new task. (See Section 13.5.1, “Using the TS Flag to 
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 
State,” for more information.)

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state using FXSAVE requires 
processor overhead. If the new task does not access x87 FPU, MMX, XMM, and 
MXCSR registers, avoid overhead by not automatically saving the state on a task 
switch.

The TS flag in control register CR0 is provided to allow the operating system to delay 
saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state until an instruction 
that actually accesses this state is encountered in a new task. When the TS flag is 
set, the processor monitors the instruction stream for an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction. When the processor detects 
one of these instructions, it raises a device-not-available exception (#NM) prior to 
executing the instruction. The device-not-available exception handler can then be 
used to save the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the previous 
task (using an FXSAVE instruction) and load the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the current task (using an 
FXRSTOR instruction). If the task never encounters an x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the device-not-available excep-
tion will not be raised and a task state will not be saved unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. They operate on the 
general-purpose registers and are not involved in the OS’s lazy 
FXSAVE/FXRSTOR technique. 

The TS flag can be set either explicitly (by executing a MOV instruction to control 
register CR0) or implicitly (using the IA-32 architecture’s native task switching mech-
anism). When the native task switching mechanism is used, the processor automati-
cally sets the TS flag on a task switch. After the device-not-available handler has 
saved the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state, it should execute the 
CLTS instruction to clear the TS flag.
13-10 Vol. 3A



SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
Figure 13-1 gives an example of an operating system that implements x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state saving using the TS flag. In this 
example, task A is the currently running task and task B is the new task. The oper-
ating system maintains a save area for the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for each task and defines a variable 
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the 
state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the 
following pseudo-code to set the TS flag according to the current owner of the x87 
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. If the new task (task B in this 
example) is not the current owner of this state, the TS flag is set to 1; otherwise, it is 
set to 0.

IF Task_Being_Switched_To ≠ x87FPU_MMX_XMM_MXCSR_StateOwner
    THEN 
        CR0.TS ← 1;
    ELSE
        CR0.TS ← 0;
FI;

If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the 
TS flag is set to 1, a device-not-available exception (#NM) is generated. The device-
not-available exception handler executes the following pseudo-code.

FXSAVE “To x87FPU/MMX/XMM/MXCSR State Save Area for Current
x87FPU_MMX_XMM_MXCSR_StateOwner”;

Figure 13-1.  Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 
State During an Operating-System Controlled Task Switch

Task A Task B
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FXRSTOR “x87FPU/MMX/XMM/MXCSR State From Current Task’s
x87FPU/MMX/XMM/MXCSR State Save Area”;

x87FPU_MMX_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:
• Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the 

current owner of the x87 FPU/MMX/XMM/MXCSR state.
• Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save 

area for the x87 FPU/MMX/XMM/MXCSR state.
• Updates the current x87 FPU/MMX/XMM/MXCSR state owner to be the current 

task.
• Clears the TS flag. 

13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE 
MANAGEMENT 

The features associated with managing processor extended states include 
• An extensible data layout for existing and future processor state extensions. The 

layout of the XSAVE/XRSTOR area extends from the 512-byte FXSAVE/FXRSTOR 
layout to provide compatibility and migration path from managing the legacy 
FXSAVE/FXRSTOR area. Specifically, the XSAVE/XRSTOR area layout consists of:

— The FXSAVE/FXRSTOR area (512 bytes, the layout is identical to the 
FXSAVE/FXRSTOR area),

— The XSAVE header area (64 bytes),

— A finite set of save areas, each corresponding to a processor extended state 
(see Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B, XSAVE instruction). The number of save areas, the offset and the 
size of each save area is enumerated by CPUID leaf function 0DH.

• CPUID Enhancement: CPUID instruction provides information on 

— CPUID.01H.ECX.XSAVE[bit 26]. A feature flag indicating the processor’s 
support of XSAVE/XRSTOR architecture extensions

— CPUID.01H.ECX.OSXSAVE[bit 27]. A feature flag indicating whether OS has 
enabled extensible state management and communicating that the OS 
supports processor extended state management.

— CPUID leaf function 0DH enumerates the list of processor states (including 
legacy x87 FPU, SSE states and processor extended states), the offset and 
size of individual save area for each processor extended state.

• Control register enhancement and dedicated register for enabling each processor 
extended state: CR4. OSXSAVE[bit 18] and XCR0 are described in Chapter 2, 
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“System Architecture Overview”. XCR0 can be read at all privilege levels but 
written only at ring 0. 

• Instructions to manage XCR0 and the XSAVE/XRSTOR area (see Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2B):

— XGETBV: reads XCR0.

— XSETBV: writes to XCR0, ring 0 only.

— XRSTOR: restores from memory the processor states specified by a bit vector 
mask specified in EDX:EAX.

— XSAVE: saves the current processor states to memory according to a bit 
vector mask in EDX:EAX.

13.6.1 XSAVE Header 
The header section includes a “XSTATE_BV“ bit vector field. If the value of a bit in 
HEADER.XSTATE_BV is 1, it indicates that the corresponding processor extended 
state was written to the respective save area in memory by the XSAVE instruction.

If software modifies the save area image of a particular processor state component 
directly, it is responsible to update the corresponding bit in HEADER.XSTATE_BV to 1. 
Otherwise, directly modified state information in a save area image may be ignored 
by XRSTOR. 

The order of bit vectors in XSTATE_BV matches those of XCR0. Although XCR0 has 
only two bits initially defined for state management, the general relationship 
between the value of XSTATE_BV and the corresponding processor state in the 
XSAVE/XRSTOR layout is depicted in Figure 13-2. 
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The XSAVE header is 64 bytes in length and must be aligned on 64 byte boundary. 
Therefore, the XSAVE/XRSTOR region must be aligned on 64-byte boundary. The 
format of the header is as follows (see Table 13-3):

The value of each bit in HEADER.XSTATE_BV may affect the action performed by 
XRSTOR, depending on the logical value of the respective bits in XCR0, the restore bit 
mask (EDX:EAX input to XRSTOR), and HEADER.XSTATE_BV. When an XRSTOR 
instruction is executed with a restore bit mask selecting the i’th bit vector (and the 
corresponding XCR0 bit is enabled), a value of "1" in the corresponding bit of 

Figure 13-2.  Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets 
of Processor State Extensions

Table 13-3.  XSAVE Header Format

15:8 7:0 Byte Offset

Reserved (Must be zero) XSTATE_BV 0

Reserved Reserved (Must be zero) 16

Reserved Reserved 32

Reserved Reserved 48

..................................
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E
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X87 FPU State

Save Area

0124 3

FXSAVE

63

SSE State
FXRSTOR

XState_BV, .. Header

Ext_SaveArea2

.........................

E
xten
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Ext_SaveArea3

1111 0
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E
xtensions 3

Updated
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HEADER.XSTATE_BV causes the processor state to be updated with contents of the 
save area read from the memory image. A value of "0" in HEADER.XSTATE_BV 
causes the processor state to be initialized by hardware supplied values instead of 
from memory (See the operation detail of XRSTOR in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B). 

The save area image corresponding to a bit with "0" value in HEADER.XSTATE_BV 
may or may not contain the correct state information. XRSTOR will ensure the 
register state for a component is properly initialized  regardless of the value of the 
save area when the component header bit is zero.

13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND 
FXSAVE/FXRSTOR

FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE, 
FXRSTOR save area. FXRSTOR restores the processor’s x87 FPU and SSE states from 
FXSAVE/FXRSTOR save area image. XSAVE/XRSTOR instructions support x87 FPU 
and SSE states using the same layout as the FXSAVE/FXRSTOR area to provide 
interoperability of FXSAVE versus XSAVE, and FXRSTOR versus XRSTOR. 
XSAVE/XRSTOR provides the additional flexibility for system software to manage SSE 
state independent of x87 FPU states. Thus system software that had been using 
FXSAVE/FXRSTOR to manage x87 FPU and SSE states can transition to 
XSAVE/XRSTOR to manage x87 FPU, SSE and other processor extended states in a 
systematic and forward-looking manner. 

It is also possible for system software to adopt an alternate approach of using 
FXSAVE/FXRSTOR for x87 and SSE state management, and implementing forward 
processor extended state management using XSAVE/XRSTOR. In this case, system 
software must specify the bit vector mask in EDX:EAX appropriately when executing 
XSAVE/XRSTOR instructions. 

For instance, when using the XSAVE instruction, the OS can supply a bit vector in 
EDX:EAX with the two least significant bits corresponding to x87 FPU and SSE state 
equal to 0.  Then, the XSAVE instruction will not write the processor’s x87 FPU and 
SSE state into memory.  Similarly for the XRSTOR instruction a bit vector mask in 
EDX:EAX with the least two significant bit equal to 0 will cause the XRSTOR instruc-
tion to not restore nor initialize the processor’s x87 FPU and SSE state.

The processor’s action as a result of executing XRSTOR, on the x87 FPU state, 
MXCSR, and XMM registers, are listed in Table 13-4 (Both bit 1 and bit 0 of XCR0 are 
presumed to be 1). The x87 FPU or XMM registers may be initialized by the processor 
(See XRSTOR operation in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B). When the MXCSR register is updated from memory, reserved 
bit checking is enforced. The saving/restoring of MXCSR is bound to the SSE state, 
independent of the x87 FPU state. The action of XSAVE is listed in Table 13-5.
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XSAVE, XRSTOR instructions operating on FP or SSE state will cause a #NM Device 
Not Available) exception, if CR0.TS is set.  Using this feature, system software can 
implement the “lazy restore” technique of managing x87 FPU/SSE state using either 
FXSAVE/FXRSTOR or XSAVE/XRSTOR. It can be accomplished even with the inter-
mixing of FXSAVE and XSAVE instructions.

Table 13-4.  XRSTOR Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XSTATE_BV MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X X None None None

0 1 X 0 None None Init by processor

0 1 X 1 None None Load 

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load

Table 13-5.  XSAVE Action on MXCSR, x87 FPU, XMM Register 

EDX:EAX XCR01

NOTES:
1.  Attempts to set XCR0[0] to 0 cause #GP.

MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X 1 None None None

0 1 X 1 None None Store 

1 0 0 1 None None None

1 0 1 1 Store Store None

1 1 0 1 None None Store

1 1 1 1 Store Store Store
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13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR 
EXTENDED STATE SUPPORT

An OS can determine if the XSAVE/XRSTOR/XGETBV/XSETBV instructions and XCR0 
are available in the processor by checking the value of CPUID.1.ECX.XSAVE to be 1. 
The OS must set CR4.OSXSAVE to 1 to enable the new instructions. The OS uses 
XSETBV to enable the processor state component (setting the corresponding bit in 
XCR0 to 1) that it will manage using XSAVE/XRSTOR. Bit 0 of XCR0 must be set to 1. 
The value of CR4.OSXSAVE is reflected in CPUID.01H:ECX.OSXSAVE (bit 27) to 
communicate the setting to non-privileged software.

The bits that must be enabled in XCR0 and the size of the memory region needed to 
save processor extended state information must be enumerated by CPUID leaf 0DH 
with ECX = 0 as input. However, the recommended usage by system software to use 
XSAVE/XSAVEOPT/XRSTOR is to:
• Use mask (EDX:EAX) with all bits set to 1.
• Alternately use the master bit vector mask EDX:EAX reported by 

CPUID.(EAX=0D, ECX=0H). This provides a more constrained list of features 
than using all 1's in the mask.

In either case, system software is required to allocate a memory buffer according to 
the size reported by CPUID.(EAX=0DH, ECX=0H):ECX. The value reported by 
CPUID.(EAX=0DH, ECX=0H):ECX always includes the size of the header. Clear the 
entire buffer prior to being used by XSAVE.

Figure 13-3.  OS Enabling of Processor Extended State Support

Check

HW support XSAVE, XRSTOR, XSETBV, XFEM

CPUID.1H:ECX.XSAVE? 

Enumerate
Extended state features 
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XCR0 via XSETBVSet CR4.OSXSAVE
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Clear buffer to 0
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The advantage of using a mask value of all-bits-set-to-1 for XSAVE/XRSTOR is that it 
can simplify system software’s support for processor extended state management, 
when multiple generations of hardware may support different number of processor 
extended states as reported by CPUID. However, there may be additional implemen-
tation requirement of software modification that may arise due to a particular system 
software or specific details introduced by a new processor extended state. 

13.8.1 Application Programming Model and Processor Extended 
States

New instruction set extensions may be introduced over time and operating on a 
processor extended state that must be enabled in XCR0. The general application 
programming model for using such instruction set extensions are:
• Check if OS has enabled processor extended state management. If 

CPUID.01H:ECX.OSXSAVE is 1, the OS has enabled the 
XSAVE/XRSTOR/XSETBV/XGETBV instructions and XCR0, and it has indicated 
support for the processor extended state management.
Applications do not need to check the value of CPUID.01H:ECX.XSAVE because 
“CPUID.01H:ECX.OSXSAVE = 1” implies OS has successfully verified 
CPUID.01H:ECX.XSAVE = 1. CPUID.01H:ECX.OSXSAVE reflects the value of 
CR4.OSXSAVE, and this bit cannot be set to 1 unless CPUID.01H:ECX.XSAVE = 1.

• Check whether the processor extended state component associated with a given 
instruction set extension is enabled by the OS. The bits of EDX:EAX returned by 
XGETBV as 1 indicate which processor extended state components have been 
enabled by OS. Note, the CR4.OSFXSR is not used by OS to enable instruction 
extensions requiring processor extended state support.

• Check the target instruction set extension is supported in the processor. Each 
new instruction set extension is expected to provide a feature flag in CPUID when 
it is introduced. 
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If all three requirements are met, applications can use the target new instruction set 
extensions. If any of the above requirements are not met, an attempt to execute an 
instruction operating on a processor extended state corresponding to bit offset 
higher than 1 in XCR0 will cause a #UD exception. 

Newer instruction extensions operating on SSE state, but not on any processor 
extended states corresponding bits in XCR0 with an offset higher than 1, follow the 
programming model described by Section 13.1 through Section 13.5. XCR0 is not 
required to enable OS support for SSE state management, but CR4.OSFXSR is 
required. 

13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) 
AND YMM STATE

Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on 
YMM states. The following sections describes system software support requirements 
for 256-bit YMM states.

For processors that support YMM states, the YMM state exists in all operating modes. 
However, the available instruction interfaces to access YMM states may vary in 
different modes. XSAVE/XRSTOR and XSAVEOPT instructions can operate in all oper-
ating modes. 

Figure 13-4.  Application Detection of New Instruction Extensions and Processor 
Extended State
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Check enabled state in
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13.10 YMM STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR (and optionally XSAVEOPT) instruc-
tions for YMM state management. The XSAVE/XRSTOR/XSAVEOPT instructions also 
provide flexible and efficient interface to manage XMM/MXCSR states and x87 FPU 
states in conjunction with newer processor extended states like YMM states. 
An OS must enable its YMM state management to support AVX and any 256-bit 
extensions that operate on YMM registers. Otherwise, an attempt to execute an 
instruction in AVX extensions (including an enhanced 128-bit SIMD instructions using 
VEX encoding) will cause a #UD exception.

13.10.1 Detection of YMM State Support
Detection of hardware support for new processor extended state is provided by the 
main CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in 
EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware 
support of processor state components, beginning with bit 0 of EAX corresponding to 
x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE state (XMM 
registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM 
states.

13.10.2 Enabling of YMM State 
An OS can enable YMM state support with the following steps:

• Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and 
XCR0 by checking CPUID.1.ECX.XSAVE[bit 26]=1. 

• Verify the processor supports YMM state (i.e. bit 2 of XCR0 is valid) by checking 
CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should also verify 
CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower 128-bits of an 
YMM register are aliased to an XMM register. 

The OS must determine the buffer size requirement for the XSAVE area that will 
be used by XSAVE/XRSTOR (see CPUID instruction in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

• Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions 
to write/read XCR0.

• Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the 
processor state components that the OS wishes to manage using XSAVE/XRSTOR 
instruction. To enable x87 FPU, SSE and YMM state management using 
XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of 
XCR0 is listed in Table 13-6).
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To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing
XSETBV. An attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a
#GP(0) exception. 

13.10.3 Enabling of SIMD Floating-Exception Support
AVX instructions may generate SIMD floating-point exceptions. An OS must enable 
SIMD floating-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
The effect of CR4 setting that affects AVX enabling is listed in Table 13-7

13.10.4 The Layout of XSAVE Area
The OS must determine the buffer size requirement by querying CPUID with 
EAX=0DH, ECX=0. If the OS wishes to enable all processor extended state compo-

Table 13-6.   XCR0 and Processor State Components

Bit Meaning

0 - x87
If set, the processor supports x87 FPU state management 
via XSAVE/XRSTOR. This bit must be 1 if 
CPUID.01H:ECX.XSAVE[26] = 1. 

1 - SSE
If set, the processor supports SSE state (XMM and MXCSR) 
management via XSAVE/XRSTOR. This bit must be set to 
‘1’ to enable AVX.

2 - YMM
If set, the processor supports YMM state (upper 128 bits 
of YMM registers) management via XSAVE. This bit must 
be set to ‘1’ to enable AVX.

63:3 Reserved; must be 0.

Table 13-7.   CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruc-
tion to access XCR0, XSAVE/XRSTOR to manage proces-
sor extended state. Must be set to ‘1’ to enable AVX.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions. 
This applies to AVX operating on YMM states, and legacy 
128-bit SIMD floating-point instructions operating on 
XMM states. 

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states. 
Must be set to 1 to enable SIMD instructions operating on 
XMM state. 
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nents in XCR0, it can allocate the buffer size according to CPUID.(EAX=0DH, 
ECX=0):ECX. 
After the memory buffer for XSAVE is allocated, the entire buffer must to cleared to 
zero prior to use by XSAVE. 
For processors that support SSE and YMM states, the XSAVE area layout is listed in 
Table 13-8. The register fields of the first 512 byte of the XSAVE area are identical to 
those of the FXSAVE/FXRSTOR area. 

The format of the header is as follows (see Table 13-9):

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM 
registers, it is shown in Table 13-10. 

Table 13-8.   Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64

Ext_Save_Area_2 
(YMM)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX 

Table 13-9.  XSAVE Header Format

15:8 7:0 Byte Offset 
from Header

Byte Offset 
from XSAVE 

Area

Reserved (Must be zero) XSTATE_BV 0 512

Reserved Reserved (Must be zero) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560
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13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and 
YMM registers, are listed in Table 13-4 (Both bit 1 and bit 2 of XCR0 are presumed to 
be 1). The XMM registers may be initialized by the processor (See XRSTOR operation 
in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B). 
When the MXCSR register is updated from memory, reserved bit checking is 
enforced. The saving/restoring of MXCSR is bound to both the SSE state and YMM 
state. MXCSR save/restore will not be bound to any future states.

Table 13-10.  XSAVE Save Area Layout  for YMM State (Ext_Save_Area_2)

31 16 15 0

Byte Offset 
from 

YMM_Save_Are
a

Byte Offset from 
XSAVE Area

YMM1[255:128] YMM0[255:128] 0 576

YMM3[255:128] YMM2[255:128] 32 608

YMM5[255:128] YMM4[255:128] 64 640

YMM7[255:128] YMM6[255:128] 96 672

YMM9[255:128] YMM8[255:128] 128 704

YMM11[255:128] YMM10[255:128] 160 736

YMM13[255:128] YMM12[255:128] 192 768

YMM15[255:128] YMM14[255:128] 224 800

Table 13-11.  XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV
MXCSR

YMM_H 
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 0 Load/Check None Init by processor

0 1 X 1 Load/Check None Load 

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load
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The processor supplied init values for each processor state component used by 
XRSTOR is listed in Table 13-12.

The action of XSAVE is listed in Table 13-13.

13.10.6 Processor Extended State Save Optimization and XSAVEOPT
The XSAVEOPT instruction paired with XRSTOR is designed to provide a high perfor-
mance method for system software to perform state save and restore.
A processor may indicate its support for the XSAVEOPT instruction if 
CPUID.(EAX=0DH, ECX=1):EAX.XSAVEOPT[Bit 0] = 1. The functionality of 

Table 13-12.   Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State
FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H; 
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only

be updated by XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;
Else XMM0-XMM7 ← 0H

YMM State1 If 64-bit Mode: YMM0_H-YMM15_H ← 0H;
Else YMM0_H-YMM7_H ← 0H

Table 13-13.  XSAVE Action on MXCSR, XMM, YMM Register 

EDX:EAX XCR0
MXCSR

YMM_H 
Registers XMM Registers

Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 1 Store None Store 

0 1 X 0 None None None

1 0 0 X None None None

1 0 1 1 Store Store None

1 1 0 0 None None None

1 1 0 1 Store None Store

1 1 1 1 Store Store Store
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XSAVEOPT is similar to XSAVE. Software can use XSAVEOPT/XRSTOR in a pair-wise 
manner similar to XSAVE/XRSTOR to save and restore processor extended states.
The syntax and operands for XSAVEOPT instructions are identical to XSAVE, i.e. the 
mask operand in EDX:EAX specifies the subset of enabled features to be saved. 
Note that software using XSAVEOPT must observe the same restrictions as XSAVE 
while allocating  a new save area. i.e., the header area must be initialized to zeroes. 
The first 64-bits in the save image header starting at offset 512 are referred to as 
XHEADER.BV. However, the instruction differs from XSAVE in several important 
aspects:

1. If a component state in the processor specified by the save mask corresponds to 
an INIT state, the instruction may clear the corresponding bit in XHEADER.BV, 
but may not write out the state (unlike the XSAVE instruction, which always 
writes out the state). 

2. If the processor determines that the component state specified by the save mask 
hasn't been modified since the last XRSTOR, the instruction may not write out the 
state to the save area.

3. A implication of this optimization is that software which needs to examine the 
saved image must first check the XHEADER.BV to see if any bits are clear. If the 
header bit is clear, it means that the state is INIT and the saved memory image 
may not correspond to the actual processor state.

4. The performance of XSAVEOPT will always be better than or at least equal to that 
of XSAVE.

13.10.6.1  XSAVEOPT Usage Guidelines
When using the XSAVEOPT facility, software must be aware of the guidelines outlined 
in Chapter 4, “XSAVEOPT—Save Processor Extended States Optimized” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power 
management and thermal monitoring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor; 
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Atom™ and Intel® Core™2 Duo processors. The technology manages processor 
power consumption using performance state transitions. These states are defined as 
discrete operating points associated with different frequencies. 

Enhanced Intel SpeedStep Technology differs from previous generations of Intel 
SpeedStep Technology in two ways:
• Centralization of the control mechanism and software interface in the processor 

by using model-specific registers.
• Reduced hardware overhead; this permits more frequent performance state 

transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a 
deep sleep state, holding off bus master transfers for the duration of a performance 
state transition. Performance state transitions under the Enhanced Intel SpeedStep 
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep 
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of 
IA32_MISC_ENABLE MSR is cleared. 

14.1.1 Software Interface For Initiating Performance State 
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL 
register, see Figure 14-2. If a transition is already in progress, transition to a new 
value will subsequently take effect. 

Reads of IA32_PERF_CTL determine the last targeted operating point. The current 
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is 
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications 
and performance tools are not expected to use either IA32_PERF_CTL or 
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring 
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tools can access model-specific events and report the occurrences of state 
transitions.

14.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states 
(P-state) that are used facilitate system software’s ability to manage processor 
power consumption. Different P-state correspond to different performance levels 
that are applied while the processor is actively executing instructions. Enhanced Intel 
SpeedStep Technology supports P-state by providing software interfaces that control 
the operating frequency and voltage of a processor. 

With multiple processor cores residing in the same physical package, hardware 
dependencies may exist for a subset of logical processors on a platform. These 
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical 
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent 
and hardware-coordinated to OS power management (OSPM) policy. To support 
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical 
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See 
Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a 
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit. 
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are 
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is 
configured when the processor is booted.

Figure 14-1.  IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination
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IA32_MPERF (Addr: E7H)
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• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while 
accounting for hardware coordination of P-state and TM1/TM2; or software 
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the 
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software 
should not attach meaning to the content of the individual of IA32_APERF or 
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to 
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently. 
However, software should follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected 
to confirm processor support for P-state hardware coordination feedback and use the 
feedback mechanism to make P-state decisions. The OSPM is expected to either save 
away the current MSR values (for determination of the delta of the counter ratio at a 
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at 
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new 
values read are less than the previously saved values. 

Example 14-1 demonstrates steps for using the hardware feedback mechanism 
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 14-1.  Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
// 
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between 
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy, 
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same 
// time window. 

PercentPerformance = PercentBusy * (ACNT/MCNT);
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// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

} 
// WRMSR of MCNT and ACNT should be performed without delay.

  // Software needs to exercise care to avoid delays between 
  // the two WRMSRs (for example, interrupts).
  WRMSR(IA32_MPERF, 0);
  WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND 
OPPORTUNISTIC PROCESSOR PERFORMANCE 
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. In Intel Core i7 
processors, Intel Turbo Boost Technology can convert thermal headroom into higher 
performance across multi-threaded and single-threaded workloads. In Intel Core 2 
processors, Intel Dynamic Acceleration can convert thermal headroom into higher 
performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA 
takes advantage of thermal design headroom and opportunistically allows a single 
core to operate at a higher performance level when the operating system requests 
increased performance. 

14.3.2 System Software Interfaces for Opportunistic Processor 
Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel 
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged) 

to a target state is not guaranteed, but may occur opportunistically after the 
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corresponding enable mechanism is activated, the headroom is available and 
certain criteria are met.

• The opportunistic processor performance operation is generally transparent to 
most application software.

• System software (BIOS and Operating system) must be aware of hardware 
support for opportunistic processor performance operation and may need to 
temporarily disengage opportunistic processor performance operation when it 
requires more predictable processor operation. 

• When opportunistic processor performance operation is engaged, the OS should 
use hardware coordination feedback mechanisms to prevent un-intended policy 
effects if it is activated during inappropriate situations.

14.3.2.1  Discover Hardware Support and Enabling of Opportunistic 
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLE[38] indicates 
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance 
operation, the default value is 0. The power-on default value of 
IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of 
opportunistic processor performance operation. 

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical 
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see 
Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of 
IA32_MISC_ENABLE[38] to 0 to enable opportunistic processor performance opera-
tion. OS and applications must use CPUID leaf 06H if it needs to detect processors 
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e. 
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such 
as IDA, has been enabled by BIOS. 

Opportunistic processor performance operation can be disabled by setting bit 38 of 
IA32_MISC_ENABLE. This mechanism is intended for BIOS only. If 
IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0. 

14.3.2.2  OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate 
the non-deterministic aspects of opportunistic processor performance operation. For 
example, when calibrating a real-time workload to make a CPU reservation request 
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to the OS, it may be undesirable to allow the possibility of the processor delivering 
increased performance that cannot be sustained after the calibration phase. 

System software can temporarily disengage opportunistic processor performance 
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit 
32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical 
processors in a physical package. In order for OS to engage IDA/Turbo mode, the 
BIOS must 
• enable opportunistic processor performance operation, as described in Section 

14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3  Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide 
opportunistic performance greater than the performance level corresponding to the 
maximum qualified frequency of the processor (see CPUID’s brand string informa-
tion). System software can use a pair of MSRs to observe performance feedback. 
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section 
14.2). The ratio between IA32_APERF and IA32_MPERF is architecturally defined and 
a value greater than unity indicates performance increase occurred during the obser-
vation period due to IDA. Without incorporating such performance feedback, the 
target P-state evaluation algorithm can result in a non-optimal P-state target. 

There are other scenarios under which OS power management may want to disable 
IDA, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more 

effective to disable IDA for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over perfor-

mance, OS power management may want to disable IDA while that policy is in 
effect.

Figure 14-2.  IA32_PERF_CTL Register
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14.3.2.4  Application Awareness of Opportunistic Processor Operation 
(Optional)

There may be situations that an end user or application software wishes to be aware 
of turbo mode activity. It is possible for an application-level utility to periodically 
check the occurrences of opportunistic processor operation. The basic elements of an 
algorithm is described below, using the characteristics of Intel Turbo Boost Tech-
nology as example.

Using an OS-provided timer service, application software can periodically calculate 
the ratio between unhalted-core-clockticks (UCC) relative to the unhalted-reference-
clockticks (URC) on each logical processor to determine if that logical processor had 
been requested by OS to run at some frequency higher than the invariant TSC 
frequency, or the OS has determined system-level demand has reduced sufficiently 
to put that logical processor into a lower-performance p-state or even lower-activity 
state. 

If an application software have access to information of the base operating ratio 
between the invariant TSC frequency and the base clock (133.33 MHz), it can convert 
the sampled ratio into a dynamic frequency estimate for each prior sampling period. 
The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service) 
should be sufficiently large to avoid excessive polling overhead to other applica-
tions or tasks managed by the OS. 

Figure 14-3.  Periodic Query of Activity Ratio of Opportunistic Processor Operation
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• When the OS timer service transfers control, the application can use RDPMC 
(with ECX = 4000_0001H) to read IA32_PERF_FIXED_CTR1 (MSR address 30AH) 
to record the unhalted core clocktick (UCC) value; followed by RDPMC 
(ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to 
record the unhalted reference clocktick (URC) value. This pair of values is needed 
for each logical processor for each sampling period. 

• The application can calculate the Turbo activity ratio based on the difference of 
UCC between each sample period, over the difference of URC difference. The 
effective frequency of each sample period of the logical processor, i, can be 
estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a 
sampling period. Thus the ratio (UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect 
the average of Turbo activity (driving the ratio above unity) and some lower P-state 
transitions (causing the ratio to be < 1). 

It is also possible that the OS might requested C-state transitions when the demand 
is low. The above ratio generally does not account for cycles any logical processor 
was idle. On Intel Core i7 processors, an application can make use of the time stamp 
counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio* 
133.33MHz) during C-states. Thus software can calculate ratios that can indicate 
fractions of sample period spent in the C0 state, using the unhalted reference clock-
ticks and the invariant TSC. Note the estimate of fraction spent in C0 may be affected 
by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN“ 
capability to freeze performance counter values while the SMM handler is servicing 
an SMI (see Chapter 20, “Introduction to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon 
processors based on Intel® microarchitecture code name Nehalem. It uses the same 
principle of leveraging thermal headroom to dynamically increase processor perfor-
mance for single-threaded and multi-threaded/multi-tasking environment. The 
programming interface described in Section 14.3.2 also applies to Intel Turbo Boost 
Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware 
heuristic of power management features to favor increasing dynamic performance or 
conserve energy consumption. 

Software can detect processor's capability to support performance-energy bias pref-
erence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this 
14-8 Vol. 3A



POWER AND THERMAL MANAGEMENT
capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a 
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a 
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the 
default reset value) corresponds to a hint preference for highest performance and a 
value of 15 corresponds to the maximum energy savings. A value of 7 roughly trans-
lates into a hint to balance performance with energy consumption

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of 
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the 
logical processors in the package can be programmed with a different value. This 
may be especially important in virtualization scenarios, where the performance / 
energy requirements of one logical processor may differ from the other. Conflicting 
"hints" from various logical processors at higher hierarchy level will be resolved in 
favor of performance over energy savings. 

Software can use whatever criteria it sees fit to program the MSR with the appro-
priate value. However, the value only serves as a hint to the hardware and the actual 
impact on performance and energy savings is model specific.

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER 
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption 
for inactive states. Intel Core Solo and Intel Core Duo processors support both 
deeper C-state and MWAIT extensions that can be used by OS to implement power 
management policy.

Figure 14-4.  IA32_ENERGY_PERF_BIAS Register

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state 
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.
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Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor 
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set 
Reference, A-M,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as 
break-events for MWAIT, even when interrupts are disabled. Use this feature to 
measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing 

an MWAIT to enter into a processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can 

read a timestamp before an interrupt service routine (ISR) is potentially 
executed. 

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub 
C-states available for use with MWAIT extensions. IA-32 processors may support 
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and 
exiting) than lower-numbered C-state. 

At CPL = 0, system software can specify desired C-state and sub C-state by using the 
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper 
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is 
supported at CPL > 0, the processor will only enter C1-state (regardless of the 
C-state request in the hints register). 

Executing MWAIT generates an exception on processors operating at a privilege level 
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is 
numerically higher than C1, a store to the address range armed by 
MONITOR instruction will cause the processor to exit MWAIT if the 
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT. 

14.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the 
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the 
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.
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3. The software controlled clock modulation mechanism permits operating 
systems to implement power management policies that reduce power 
consumption; this is in addition to the reduction offered by automatic thermal 
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to 
manage thermal conditions natively without relying on BIOS or other system 
board components.

The first mechanism is not visible to software. The other three mechanisms are 
visible to software using processor feature information returned by executing CPUID 
with EAX = 1.

The second mechanism includes: 
• Automatic thermal monitoring provides two modes of operation. One mode 

modulates the clock duty cycle; the second mode changes the processor’s 
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on 
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in 
Figure 14-5, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the 
clock signal. Instead it refers to the time period during which the clock signal is 
allowed to drive the processor chip. By using the stop clock mechanism to control 
how often the processor is clocked, processor power consumption can be modulated. 

For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal 
conditions. Software did not have native access to the native thermal condition of the 
processor; nor could software alter the trigger condition that initiated software 
program control. 

The fourth mechanism (listed above) provides access to an on-die digital thermal 
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring. 

Figure 14-5.  Processor Modulation Through Stop-Clock Mechanism
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14.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in 
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When 
processor core temperature reaches a factory preset level, the sensor trips and 
processor execution is halted until after the next reset cycle.

14.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature 
sensor that is factory-calibrated to trip when the processor’s core temperature 
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to 
the catastrophic shutdown detector. 

14.5.2.1  Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a 
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the 
processor. TM1 controls the processor’s temperature by modulating the duty cycle of 
the processor clock. Modulation of duty cycles is processor model specific. Note that 
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled 
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in 
IA32_MISC_ENABLE [see Appendix B, “Model-Specific Registers (MSRs)”]. Following 
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable 
only one automatic thermal monitoring modes. Operating systems and applications 
must not disable the operation of these mechanisms.

14.5.2.2  Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2 
(TM2), was introduced in the Intel Pentium M processor and also incorporated in 
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors, 
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the 
core temperature of the processor by reducing the operating frequency and voltage 
of the processor and offers a higher performance level for a given level of power 
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable 
TM2 may be implemented differently across various IA-32 processor families with 
different CPUID signatures in the family encoding value, but will be uniform within an 
IA-32 processor family. 
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Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3  Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or 
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16) 
of the MSR_THERM2_CTL register is set to 1 (Figure 14-6) and bit 3 of the 
IA32_MISC_ENABLE register is set to 1. 

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required 
to enable either TM1 or TM2. Operating systems and applications must not disable 
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is 
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is 
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium 
M processors), the method used to enable TM2 is different. TM2 is enable by setting 
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo, 
and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7). 
Following a power-up or reset, BIOS is required to enable at least one of these two 
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may 
choose to enable TM2 instead of TM1. Operating systems and applications must not 
disable the mechanisms that enable TM1or TM2; and they must not alter the value in 
bits 15:0 of the MSR_THERM2_CTL register.

Figure 14-6.  MSR_THERM2_CTL Register On Processors with CPUID 
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn
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14.5.2.4  Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes 
to the IA32_PERF_CTL will effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can 

commence before the TCC is disengaged. 
• If TM2 is enabled and the TCC is engaged, the performance state transition 

specified by a write to the IA32_PERF_CTL will commence after the TCC has 
disengaged. 

14.5.2.5  Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is 
indicated through the thermal status flag and thermal status log flag in the 
IA32_THERM_STATUS MSR (see Figure 14-8). 

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core 

temperature is currently at the trip temperature of the thermal monitor and that 
the processor power consumption is being reduced via either TM1 or TM2, 
depending on which is enabled. When clear, the flag indicates that the core 
temperature is below the thermal monitor trip temperature. This flag is read only. 

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor 
has tripped since the last power-up or reset or since the last time that software 
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by 
software or until a power-up or reset of the processor. The default state is clear.

Figure 14-7.  MSR_THERM2_CTL Register for Supporting TM2
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After the second temperature sensor has been tripped, the thermal monitor 
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms). 
The thermal monitor will remain engaged until the processor core temperature drops 
below the preset trip temperature of the temperature sensor, taking hysteresis into 
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency, 
but does not cause interrupts to be lost. Outstanding interrupts remain pending until 
clock modulation is complete. 

The thermal monitor can be programmed to generate an interrupt to the processor 
when the thermal sensor is tripped. The delivery mode, mask and vector for this 
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see 
Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and 
high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see 
Figure 14-9) control when the interrupt is generated; that is, on a transition from a 
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be 
generated on the transition from a low-temperature to a high-temperature when 
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be 
generated on the transition from a high-temperature to a low-temperature when 
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a 
power-up or reset, the low-temperature interrupt enable and high-temperature 

Figure 14-8.  IA32_THERM_STATUS MSR

Figure 14-9.  IA32_THERM_INTERRUPT MSR
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interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts 
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt 
should be handled either by the operating system or system management mode 
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the 
clock rate of the processor's internal high-resolution timer (time stamp counter). 

14.5.2.6  Adaptive Thermal Monitor 
The Intel Core 2 Duo processor family supports enhanced thermal management 
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM). 

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal 
trip event, Adaptive TM (if enabled) selects an optimal target operating point based 
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1 
and TM2 feature flags and enable all available thermal control mechanisms (including 
Adaptive TM) at platform initiation. 

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal 
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2 
transitions in the same manner as described in Section 14.5.2.1 and Section 
14.5.2.2. The trip point of the thermal sensor is not programmable by software since 
it is set during the fabrication of the processor. 

Each thermal sensor in a processor core may be triggered independently to engage 
thermal management features. In Adaptive TM, both cores will transition to a lower 
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in 
the local APIC of a given core. 

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled 
clock modulation. This provides a means for operating systems to implement a power 
management policy to reduce the power consumption of the processor. Here, the 
stop-clock duty cycle is controlled by software through the 
IA32_CLOCK_MODULATION MSR (see Figure 14-10). 
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The IA32_CLOCK_MODULATION MSR contains the following flag and field used to 
enable software-controlled clock modulation and to select the clock modulation duty 
cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software 

controlled clock modulation when set; disables software-controlled clock 
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the 
on-demand clock modulation duty cycle (see Table 14-1). This field is only active 
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor) 
controls the processor’s stop-clock circuitry internally to modulate the clock signal. 
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power 
consumption. Power management software can write to the 
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the 
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set), 

Figure 14-10.  IA32_CLOCK_MODULATION MSR

Table 14-1.  On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%
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111B 87.5%
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clock modulation at the duty cycle specified by TM1 takes precedence, regardless of 
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the 
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order 
for the On-demand clock modulation feature to work properly, the feature must be 
enabled on all the logical processors within a physical processor. If the programmed 
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed. 

For the P6 family processors, on-demand clock modulation was implemented 
through the chipset, which controlled clock modulation through the processor’s 
STPCLK# pin.

14.5.3.1  Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand 
clock modulation duty cycle with 4-bit dynamic range (increased from 3-bit range). 
Granularity of clock modulation duty cycle is increased to 6.25% (compared to 
12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1 
of the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if 
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of 
IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the 
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION 
MSRs, and the xAPIC thermal LVT entry. 

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

Figure 14-11.  IA32_CLOCK_MODULATION MSR with Clock Modulation Extension
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14.5.4.1  Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by 
CPUID.06H:EAX[Bit 5] = 1. 

14.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel 
Core Duo processors, each core has a unique digital sensor whose temperature is 
accessible using an MSR. The digital thermal sensor is the preferred method for 
reading the die temperature because (a) it is located closer to the hottest portions of 
the die, (b) it enables software to accurately track the die temperature and the 
potential activation of thermal throttling.

14.5.5.1  Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the 
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of 
thermal thresholds that are available for use. 

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS 
MSR.

14.5.5.2  Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is 
a temperature relative to the maximum supported operating temperature of the 
processor.

Temperature measurements returned by digital thermal sensors are always at or 
below TCC activation temperature. Critical temperature conditions are detected 
using the “Critical Temperature Status” bit. When this bit is set, the processor is 
operating at a critical temperature and immediate shutdown of the system should 
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed. 

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal 

sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1 
indicates the feature is active. This bit may not be written by software; it reflects 
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the 
history of the thermal sensor high temperature output signal (PROCHOT#). 
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time 
software cleared the bit. Software may clear this bit by writing a zero.
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• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT# 
or FORCEPR# is being asserted by another agent on the platform. 

• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates 
whether PROCHOT# or FORCEPR# has been asserted by another agent on the 
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or 
FORCEPR# has been externally asserted. Software may clear this bit by writing a 
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional 
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical 
temperature detector output signal is currently active. If bit 4 = 1, the critical 
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether 
the critical temperature detector output signal has been asserted since the last 
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted. 
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the 
actual temperature is greater than or equal to TT#1. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #1 has been reached since the last clearing of 

Figure 14-12.  IA32_THERM_STATUS Register 
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this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may 
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual 
temperature is currently higher than or equal to the value set in Thermal 
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the 
actual temperature is greater than or equal to TT#2. Quantitative information of 
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates 
whether the Thermal Threshold #2 has been reached since the last clearing of 
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached. 
Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is 
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or 
OS-requested clock modulation duty cycle (specified in 
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit 
4] = 1. Package level power limit notification can be delivered independently to 
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the 
processor went below OS-requested P-state or OS-requested clock modulation 
duty cycle since the last clearing of this or RESET. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated 
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree 
Celsius relative to the TCC activation temperature. 
0: TCC Activation temperature, 
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual 
temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution 
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is 
recommended that new threshold values be offset from the current temperature 
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is 
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13); 
one is set above and the other below the current temperature. These thresholds have 
the capability of generating interrupts using the core's local APIC which software 
must then service. Note that the local APIC entries used by these thresholds are also 
used by the Intel® Thermal Monitor; it is up to software to determine the source of a 
specific interrupt.
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See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS 

to enable the generation of an interrupt on the transition from low-temperature 
to a high-temperature threshold.  Bit 0 = 0 (default) disables interrupts; 
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS 
to enable the generation of an interrupt on the transition from high-temperature 
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts; 
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS 
to enable the generation of an interrupt when PROCHOT# has been asserted by 
another agent on the platform and the Bidirectional Prochot feature is enabled. 
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to 
enable the generation of an interrupt when FORCEPR# has been asserted by 
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables 
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Critical Temperature Detector has detected a 
critical thermal condition. The recommended response to this condition is a 
system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the 
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 

Figure 14-13.  IA32_THERM_INTERRUPT Register 
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generate the Thermal Threshold #1 Status and Log bits as well as the Threshold 
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #1 setting in any 
direction.  Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded 
relative to the TCC Activation temperature (using the same format as the Digital 
Readout). This threshold is compared against the Digital Readout and is used to 
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold 
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of 
an interrupt when the actual temperature crosses the Threshold #2 setting in any 
direction.  Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of 
power notification events when the processor went below OS-requested P-state 
or OS-requested clock modulation duty cycle. This field is supported only if 
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled 
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power deliv-
ered to a platform component, such as a physical processor package. This constraint 
imposed by platform firmware may occasionally cause the processor to operate 
below OS-requested P or T-state. A power limit notification event can be delivered 
using the existing thermal LVT entry in the local APIC. 

Software can enumerate the presence of the processor’s support for power limit noti-
fication by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS provides the following facility to manage power limit notifica-
tion:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of 

processor operating below OS-requested P-state or clock modulation duty cycle 
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal 
event when the processor went below OS-requested P-state or clock modulation 
duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and 
IA32_THERM_STATUS are often implemented with a processor core granularity. To 
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facilitate software manage thermal events from a package level granularity, two 
architectural MSR is provided for package level thermal management. The 
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs 
use similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but 
are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level 
thermal management facility (IA32_PACKAGE_THERM_STATUS and 
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital 
thermal sensor high-temperature output signal (PROCHOT#) for the package is 
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be 
written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that 
indicates the history of the thermal sensor high temperature output signal 
(PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been asserted 
since a previous RESET or the last time software cleared the bit. Software may 
clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package 
PROCHOT# is being asserted by another agent on the platform. 

Figure 14-14.  IA32_PACKAGE_THERM_STATUS Register 
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• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether 
package PROCHOT# has been asserted by another agent on the platform since 
the last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been 
externally asserted. Software may clear this bit by writing a zero. 

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the 
package critical temperature detector output signal is currently active. If 
bit 4 = 1, the package critical temperature detector output signal is currently 
active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates 
whether the package critical temperature detector output signal has been 
asserted since the last clearing of this bit or reset. If bit 5 = 1, the output signal 
has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If 
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative 
information of actual package temperature can be inferred from Package Digital 
Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #1 has been reached since the 
last clearing of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been 
reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether 
actual package temperature is currently higher than or equal to the value set in 
Package Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If 
bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative 
information of actual temperature can be inferred from Package Digital Readout, 
bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that 
indicates whether the Package Thermal Threshold #2 has been reached since the 
last clearing of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2 
has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power 
limit is forcing one ore more processors to operate below OS-requested P-state. 
Note that package power limit violation may be caused by processor cores or by 
devices residing in the uncore. Software can examine IA32_THERM_STATUS to 
determine if the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates 
any processor in the package went below OS-requested P-state or OS-requested 
clock modulation duty cycle since the last clearing of this or RESET. 

• Package Digital Readout (bits 22:16, RO) — Package digital temperature 
reading in 1 degree Celsius relative to the package TCC activation temperature. 
0: Package TCC Activation temperature, 
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1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding 
PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a 
higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit 
allows the BIOS to enable the generation of an interrupt on the transition from 
low-temperature to a package high-temperature threshold.  Bit 0 = 0 (default) 
disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows 
the BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default) 
disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the 
BIOS or OS to enable the generation of an interrupt when Package PROCHOT# 
has been asserted by another agent on the platform and the Bidirectional Prochot 
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the 
interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the 
generation of an interrupt when the Package Critical Temperature Detector has 
detected a critical thermal condition. The recommended response to this 
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 
enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, 
encoded relative to the Package TCC Activation temperature (using the same 
format as the Digital Readout). This threshold is compared against the Package 

Figure 14-15.  IA32_PACKAGE_THERM_INTERRUPT Register 
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Digital Readout and is used to generate the Package Thermal Threshold #1 
Status and Log bits as well as the Package Threshold #1 thermal interrupt 
delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #1 setting in any direction.  Bit 15 = 0 enables the interrupt; bit 15 = 
1 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, 
encoded relative to the PTCC Activation temperature (using the same format as 
the Package Digital Readout). This threshold is compared against the Package 
Digital Readout and is used to generate the Package Thermal Threshold #2 
Status and Log bits as well as the Package Threshold #2 thermal interrupt 
delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the 
generation of an interrupt when the actual temperature crosses the Package 
Threshold #2 setting in any direction.  Bit 23 = 0 enables the interrupt; bit 23 = 
1 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the 
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent 
through ACPI control methods. On platforms providing package level thermal 
management facility described in the previous section, it is recommended that active 
cooling (FAN control) should be driven by measuring the package temperature using 
the IA32_PACKAGE_THERM_INTERRUPT MSR. 

Passive cooling (frequency throttling) should be driven by measuring (a) the core 
and package temperatures, or (b) only the package temperature. If measured 
package temperature led the power management agent to choose which core to 
execute passive cooling, then all cores need to execute passive cooling. Core temper-
ature is measured using the IA32_THERMAL_STATUS and 
IA32_THERMAL_INTERRUPT MSRs. The exact implementation details depend on the 
platform firmware and possible solutions include defining two different thermal zones 
(one for core temperature and passive cooling and the other for package tempera-
ture and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT 
SUPPORT

This section covers power management interfaces that are not architectural but 
addresses the power management needs of several platform specific components. 
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Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to 
enforce power consumption limit. Power limiting usages have specific usages in client 
and server platforms. 

For client platform power limit control and for server platforms used in a data center, 
the following power and thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component, 

platform, and group-level thermals, either proactively or reactively (e.g., in 
response to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power 
consumption, for example to meet battery life targets on rack- or container-level 
power consumption goals within a datacenter. 

• Power/Performance Budgeting: Efficient means to control the power consumed 
(and therefore the sustained performance delivered) within and across 
platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes 
multiple domains of power rationing within each processor socket. Generally, these 
RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die. 
• Memory domain include the directly-attached DRAM; additional power plane may 

constitutes a separate domain. 

In order to manage the power consumed across multiple sockets via RAPL, individual 
limits must be programmed for each processor complex. Programming specific RAPL 
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the 
following set of capabilities, some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp 

bit etc.
• Energy Status - Power metering interface providing energy consumption infor-

mation.
• Perf Status (Optional) - Interface providing information on the performance 

effects (regression) due to power limits. It is defined as a duration metric that 
measures the power limit effect in the respective domain. The meaning of 
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of 
parameters for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for 
dividing budget between sub-domains in a parent domain.
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Each of the above capabilities requires specific units in order to describe them. Power 
is expressed in Watts, Time is expressed in Seconds and Energy is expressed in 
Joules. Scaling factors are supplied to each unit to make the information presented 
meaningful in a finite number of bits. Units for power, energy and time are exposed 
in the read-only MSR_RAPL_POWER_UNIT MSR. 

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across 
all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the 

multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0. 
Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bit 12:8): Energy related information (in Joules) is based 
on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by 
bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-
Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the 
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16. 
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments. 
Platforms targeting client segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Figure 14-16.  MSR_RAPL_POWER_UNIT Register 
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Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs. 
Table 14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power 
limit MSR of each RAPL domain is located at offset 0 relative to an MSR base address 
which is non-architectural (see Appendix B). The energy status MSR of each domain 
is located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table 
14-2) may be model-specific. See Appendix B for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and 

measurement attributes associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL 

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power 
limiting, but its availability may be model-specific.

Table 14-2.  RAPL MSR Interfaces and RAPL Domains

 Domain  Power Limit
(Offset 0)

 Energy Status 
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED
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MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the 
package domain. Power limitation is defined in terms of average power usage 
(Watts) over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits 
can be specified, corresponding to time windows of different sizes. Each power limit 
provides independent clamping control that would permit the processor cores to go 
below OS-requested state to meet the power limits. A lock mechanism allow the soft-
ware agent to enforce power limit settings. Once the lock bit is set, the power limit 
settings are static and un-modifiable until next RESET. 

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the 

package domain corresponding to time window # 1. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bits 16): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of 
the package domain corresponding to time window # 2. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bits 48): Allow going below OS-requested 

P/T state setting during time window specified by bits 23:17.

Figure 14-17.  MSR_PKG_POWER_LIMIT Register
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• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time 
window over which the power limit #2 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field 
may have a hard-coded value in hardware and ignores values written by 
software.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for 
the package domain. This MSR is updated every ~1msec. It has a wraparound time 
of around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the package domain. It 
also provides the largest possible time window for software to program the RAPL 
interface.

Figure 14-18.  MSR_PKG_ENERGY_STATUS MSR

Figure 14-19.  MSR_PKG_POWER_INFO Register
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• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the package domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the package domain. The unit of 
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the package domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 46:32): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 
that the package has throttled. The unit of this field is specified by the “Time 
Units” field of MSR_RAPL_POWER_UNIT. 

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout. 
Generally, PP0 refers to the processor cores. The availability of PP1 RAPL domain 
interface is platform-specific. For a client platform, PP1 domain refers to the power 
plane of a specific device in the uncore. For server platforms, PP1 domain is not 
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power 

limits for the respective power plane domain.

Figure 14-20.  MSR_PKG_PERF_STATUS MSR
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• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy 
usage on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for 
respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it 
is not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define 
power limitation for the respective power plane domain. A lock mechanism in each 
power plane domain allow the software agent to enforce power limit settings inde-
pendently. Once a lock bit is set, the power limit settings in that power plane are 
static and un-modifiable until next RESET. 

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21) 
are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective 

power plane domain. The unit of this field is specified by the “Power Units” field of 
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bits 16): Allow going below OS-requested P/T state 

setting during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit #1 The numeric value encoded by bits 23:17 
is represented by the product of 2^Y *F; where F is a single-digit decimal 
floating-point value between 1.0 and 1.3 with the fraction digit represented by 
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this 
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to the MSR and corresponding policy 
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21.  MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register
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MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It 
reports the actual energy use for the respective power plane domain. This MSR is 
updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each 
power plane by providing inputs to the power budgeting management algorithm. On 
the platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the 
default value give priority to the non-IA power plane. These MSRs enable the PCU to 
balance power consumption between the IA cores and uncore graphic device. 

• Priority Level (bits 4:0): Priority level input to the PCU for respective power 
plane. PP0 covers the IA processor cores, PP1 covers the uncore graphic device. 
The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the 
PP0 domain was throttled due to the power limits. This MSR is supported only in 
server platform. Throttling in this context is defined as going below the OS-requested 
P-state or T-state. 

Figure 14-22.  MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23.  MSR_PP0_POLICY/MSR_PP1_POLICY Register
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• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value 
represents the cumulative time (since the last time this register is cleared) that 
the PP0 domain has throttled. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM 

domain and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information 

for RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power 

limiting.

Figure 14-24.  MSR_PP0_PERF_STATUS MSR

Figure 14-25.  MSR_DRAM_POWER_LIMIT Register
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MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the 
DRAM domain. Power limitation is defined in terms of average power usage (Watts) 
over a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be 
specified along with a time window. A lock mechanism allow the software agent to 
enforce power limit settings. Once the lock bit is set, the power limit settings are 
static and un-modifiable until next RESET. 

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-17) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the 

DRAM domain corresponding to time window # 1. The unit of this field is specified 
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time 

window over which the power limit The numeric value encoded by bits 23:17 is 
represented by the product of 2^Y *F; where F is a single-digit decimal floating-
point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22, 
Y is an unsigned integer represented by bits 21:17. The unit of this field is 
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use 
for the DRAM domain. This MSR is updated every ~1msec. 

• Total Energy Consumed (bits 31:0): The unsigned integer value represents 
the total amount of energy consumed since that last time this register is cleared. 
The unit of this field is specified by the “Energy Status Units” field of 
MSR_RAPL_POWER_UNIT. 

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range 
information for RAPL usage. This MSR provides maximum/minimum values (derived 
from electrical specification), thermal specification power of the DRAM domain. It 

Figure 14-26.  MSR_DRAM_ENERGY_STATUS MSR
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also provides the largest possible time window for software to program the RAPL 
interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent 
of thermal specification power of the DRAM domain. The unit of this field is 
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of 
minimum power derived from electrical spec of the DRAM domain. The unit of this 
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of 
maximum power derived from the electrical spec of the DRAM domain. The unit 
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT. 

• Maximum Time Window (bits 46:32): The unsigned integer value is the 
equivalent of largest acceptable value to program the time window of 
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units” 
field of MSR_RAPL_POWER_UNIT. 

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the 
package was throttled due to the RAPL power limits. Throttling in this context is 
defined as going below the OS-requested P-state or T-state. It has a wrap-around 
time of many hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer 
value represents the cumulative time (since the last time this register is cleared) 

Figure 14-27.  MSR_DRAM_POWER_INFO Register
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that the DRAM domain has throttled. The unit of this field is specified by the 
“Time Units” field of MSR_RAPL_POWER_UNIT. 
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CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception 
mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. See 
Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),” for more information on 
machine-check exceptions. A brief description of the Pentium processor’s machine 
check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected 
machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check 
architecture that provides a mechanism for detecting and reporting hardware 
(machine) errors, such as: system bus errors, ECC errors, parity errors, cache 
errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are 
used to set up machine checking and additional banks of MSRs used for recording 
errors that are detected. 
The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The 
implementation of the machine-check architecture does not ordinarily permit the 
processor to be restarted reliably after generating a machine-check exception. 
However, the machine-check-exception handler can collect information about the 
machine-check error from the machine-check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3, 
“Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A), the processor can report information on corrected 
machine-check errors and deliver a programmable interrupt for software to respond 
to MC errors, referred to as corrected machine-check error interrupt (CMCI). See 
Section 15.5 for detail. 
Intel 64 processors supporting machine-check architecture and CMCI may also 
support an additional enhancement, namely, support for software recovery from 
certain uncorrected recoverable machine check errors. See Section 15.6 for detail. 

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the 
machine-check exception mechanism introduced in the Pentium processor. The 
Pentium processor reports the following machine-check errors:
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• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs 
(implementation specific for the Pentium processor). Use the RDMSR instruction to 
read these MSRs. See Appendix B, “Model-Specific Registers (MSRs),” for the 
addresses.
The machine-check error reporting mechanism that Pentium processors use is 
similar to that used in Pentium 4, Intel Xeon, and P6 family processors. When an 
error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; the processor 
then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the 
Machine-Check Architecture,” and Section 15.10.2, “Pentium Processor Machine-
Check Exception Handling,” for information on compatibility between machine-check 
code written to run on the Pentium processors and code written to run on P6 family 
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist 
of a set of global control and status registers and several error-reporting register 
banks. See Figure 15-1.

Figure 15-1.  Machine-Check MSRs
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Each error-reporting bank is associated with a specific hardware unit (or group of 
hardware units) in the processor. Use RDMSR and WRMSR to read and to write these 
registers. 

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP, 
IA32_MCG_STATUS, and IA32_MCG_CTL. See Appendix B, “Model-Specific Registers 
(MSRs),” for the addresses of these registers. 

15.3.1.1  IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the 
machine-check architecture of the processor. Figure 15-2 shows the structure of the 
register in Pentium 4, Intel Xeon, and P6 family processors.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting 

banks available in a particular processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor 

implements the IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the 

processor implements the extended machine-check state registers found starting 
at MSR address 180H; these registers are absent when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension 
present) flag, bit 10 — Indicates (when set) that extended state and 
associated MSRs necessary to support the reporting of an interrupt on a 

Figure 15-2.  IA32_MCG_CAP Register
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corrected MC error event and/or count threshold of corrected MC errors, is 
present. When this bit is set, it does not imply this feature is supported across all 
banks. Software should check the availability of the necessary logic on a bank by 
bank basis when using this signaling capability (i.e. bit 30 settable in individual 
IA32_MCi_CTL2 register). 

• MCG_TES_P (threshold-based error status present) flag, bit 11 — 
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of 
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to 
report threshold-based error status. Note that when MCG_TES_P is not set, bits 
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P 
flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24— 
Indicates (when set) that the processor supports software error recovery (see 
Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are used to report the 
signaling of uncorrected recoverable errors and whether software must take 
recovery actions for uncorrected errors. Note that when MCG_TES_P is not set, 
bits 56:53 of the IA32_MCi_STATUS MSR are model-specific. If MCG_TES_P is set 
but MCG_SER_P is not set, bits 56:55 are reserved.

The effect of writing to the IA32_MCG_CAP MSR is undefined. 

15.3.1.2  IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a 
machine-check exception has occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program 

execution can be restarted reliably at the instruction pointed to by the instruction 
pointer pushed on the stack when the machine-check exception is generated. 

Figure 15-3.  IA32_MCG_STATUS Register
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MACHINE-CHECK ARCHITECTURE
When clear, the program cannot be reliably restarted at the pushed instruction 
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction 
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag 
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a 
machine-check exception was generated. Software can set or clear this flag. The 
occurrence of a second Machine-Check Event while MCIP is set will cause the 
processor to enter a shutdown state. For information on processor behavior in 
the shutdown state, please refer to the description in Chapter 6, “Interrupt and 
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved. 

15.3.1.3  IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the 
IA32_MCG_CAP MSR. 
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present, 
writing 1s to this register enables machine-check features and writing all 0s disables 
machine-check features. All other values are undefined and/or implementation 
specific.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL, 
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The number of 
reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 0179H). 
The first error-reporting register (IA32_MC0_CTL) always starts at address 400H. 
See Appendix B, “Model-Specific Registers (MSRs),” for addresses of the error-
reporting registers in the Pentium 4 and Intel Xeon processors; and for addresses of 
the error-reporting registers P6 family processors. 

15.3.2.1  IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular 
hardware unit (or group of hardware units). Each of the 64 flags (EEj) represents a 
potential error. Setting an EEj flag enables reporting of the associated error and 
clearing it disables reporting of the error. The processor does not write changes to 
bits that are not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.
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NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating 
system or executive software must not modify the contents of the 
IA32_MC0_CTL MSR. This MSR is internally aliased to the 
EBL_CR_POWERON MSR and controls platform-specific error 
handling features. System specific firmware (the BIOS) is responsible 
for the appropriate initialization of the IA32_MC0_CTL MSR. P6 family 
processors only allow the writing of all 1s or all 0s to the 
IA32_MCi_CTL MSR.

15.3.2.2  IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error 
if its VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing 
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes 
a general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when 
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and 
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and 
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for 
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits 
56:53 are part of the “Other Information” field. The use of bits 54:53 
for threshold-based error reporting began with Intel Core Duo 
processors, and is currently used for cache memory. See Section 
15.4, “Enhanced Cache Error reporting,” for more information. When 
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Infor-
mation” field. The use of bits 52:38 for corrected MC error count is 
introduced with Intel 64 processor on which CPUID reports 
DisplayFamily_DisplayModel as 06H_1AH. 

Where:

Figure 15-4.  IA32_MCi_CTL Register
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• MCA (machine-check architecture) error code field, bits 15:0 — Specifies 
the machine-check architecture-defined error code for the machine-check error 
condition detected. The machine-check architecture-defined error codes are 
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and 
Appendix E, “Interpreting Machine-Check Error Codes”, for information on 
machine-check error codes. 

• Model-specific error code field, bits 31:16 — Specifies the model-specific 
error code that uniquely identifies the machine-check error condition detected. 
The model-specific error codes may differ among IA-32 processors for the same 
machine-check error condition. See Appendix E, “Interpreting Machine-Check 
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 — 

• Bits 37:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that 
is intended to be portable among IA-32 processors should not rely on 
these values. 

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information” 
(in the same sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-
specific). In this case, bits 52:38 reports the value of a 15 bit counter that 
increments each time a corrected error is observed by the MCA recording 

Figure 15-5.  IA32_MCi_STATUS Register
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** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).
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bank. This count value will continue to increment until cleared by 
software. The most significant bit, 52, is a sticky count overflow bit. 

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information” 
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows: 

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this 
MC bank. See Section 15.6.2 for additional detail. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA 
error code specific recovery action must be performed by system 
software at the time this error was signaled. See Section 15.6.2 for 
additional detail.

• If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined. 

• If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the 
hardware structure that reported the threshold-based error. See 
Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the 
state of the processor might have been corrupted by the error condition detected 
and that reliable restarting of the processor may not be possible. When clear, this 
flag indicates that the error did not affect the processor’s state. Software 
restarting might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set) 
that the IA32_MCi_ADDR register contains the address where the error occurred 
(see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates 
that the IA32_MCi_ADDR register is either not implemented or does not contain 

Table 15-1.  Bits 54:53 in IA32_MCi_STATUS MSRs 
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this 
event. 

01 Green - Status tracking is provided for the structure posting the event; the current 
status is green (below threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

10 Yellow - Status tracking is provided for the structure posting the event; the current 
status is yellow (above threshold). For more information, see Section 15.4, “Enhanced 
Cache Error reporting”. 

11 Reserved
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the address where the error occurred. Do not read these registers if they are not 
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set) 
that the IA32_MCi_MISC register contains additional information regarding the 
error. When clear, this flag indicates that the IA32_MCi_MISC register is either 
not implemented or does not contain additional information regarding the error. 
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was 
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor 
did not or was not able to correct the error condition. When clear, this flag 
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a 
machine-check error occurred while the results of a previous error were still in 
the error-reporting register bank (that is, the VAL bit was already set in the 
IA32_MCi_STATUS register). The processor sets the OVER flag and software is 
responsible for clearing it. In general, enabled errors are written over disabled 
errors, and uncorrected errors are written over corrected errors. Uncorrected 
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set) 
that the information within the IA32_MCi_STATUS register is valid. When this flag 
is set, the processor follows the rules given for the OVER flag in the 
IA32_MCi_STATUS register when overwriting previously valid entries. The 
processor sets the VAL flag and software is responsible for clearing it.

15.3.2.2.1  Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has 
already posted an event to the MC bank – that is, what to do if the valid bit for an MC 
bank already is set to 1. When more than one structure posts events in a given bank, 
these rules specify whether a new event will overwrite a previous posting or not. 
These rules define a priority for uncorrected (highest priority), yellow, and 
green/unmonitored (lowest priority) status.
In Table 15-2, the values in the two left-most columns are 
IA32_MCi_STATUS[54:53]. 

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error 

yellow yellow 0 yellow either
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If a second event overwrites a previously posted event, the information (as guarded 
by individual valid bits) in the MCi bank is entirely from the second event. Similarly, 
if a first event is retained, all of the information previously posted for that event is 
retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an 
overflow. 
After software polls a posting and clears the register, the valid bit is no longer set and 
therefore the meaning of the rest of the bits, including the yellow/green/00 status 
field in bits 54:53, is undefined. The yellow/green indication will only be posted for 
events associated with monitored structures – otherwise the unmonitored (00) code 
will be posted in MCi_Status[54:53].

15.3.2.3  IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location 
that produced the machine-check error if the ADDRV flag in the IA32_MCi_STATUS 
register is set (see Section 15-6, “IA32_MCi_ADDR MSR”). The IA32_MCi_ADDR 
register is either not implemented or contains no address if the ADDRV flag in the 
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads 
and writes to this MSR will cause a general protection exception. 
The address returned is an offset into a segment, linear address, or physical address. 
This depends on the error encountered. When these registers are implemented, 
these registers can be cleared by explicitly writing 0s to these registers. Writing 1s to 
these registers will cause a general-protection exception. See Figure 15-6.

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first 

Figure 15-6.  IA32_MCi_ADDR MSR

Table 15-2.  Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the 

the register state is saved.
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15.3.2.4  IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-
check error if the MISCV flag in the IA32_MCi_STATUS register is set. The 
IA32_MCi_MISC_MSR is either not implemented or does not contain additional infor-
mation if the MISCV flag in the IA32_MCi_STATUS register is clear. 
When not implemented in the processor, all reads and writes to this MSR will cause a 
general protection exception. When implemented in a processor, these registers can 
be cleared by explicitly writing all 0s to them; writing 1s to them causes a general-
protection exception to be generated. This register is not implemented in any of the 
error-reporting register banks for the P6 family processors. 
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined 
according to Figure 15-7 to support software recovery of uncorrected errors (see 
Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit. 
Indicates the position of the least significant bit (LSB) of the recoverable error 
address. For example, if the processor logs bits [43:9] of the address, the LSB 
sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0] 
of the recoverable error address in IA32_MCi_ADDR should be ignored. 

• Address Mode (bits 8:6): Address mode for the address logged in 
IA32_MCi_ADDR. The supported address modes are given in Table 15-3.

Figure 15-7.  UCR Support in IA32_MCi_MISC Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
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• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5  IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC 
error signaling capability that is indicated by IA32_MCG_CAP[10] = 1. Software must 
check for the presence of IA32_MCi_CTL2 on a per-bank basis. 
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e. 
reads and writes to these MSR are supported. However, signaling interface for 
corrected MC errors may not be supported in all banks. 
The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

• Corrected error count threshold, bits 14:0 — Software must initialize this 
field. The value is compared with the corrected error count field in 
IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the CMCI 
LVT entry (see Table 10-1) in the APIC when the count value equals the threshold 
value. The new LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If 
CMCI interface is not supported for a particular bank (but IA32_MCG_CAP[10] = 
1), this field will always read 0.

• CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 — 
Software sets this bit to enable the generation of corrected machine-check error 
interrupt (CMCI). If CMCI interface is not supported for a particular bank (but 
IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that 
bank. This bit also indicates CMCI is supported or not supported in the corre-
sponding bank. See Section 15.5 for details of software detection of CMCI facility.

100 to 110 Reserved

111 Generic

Figure 15-8.  IA32_MCi_CTL2 Register

Table 15-3.  Address Mode in IA32_MCi_MISC[8:6] 
IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
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Some microarchitectural sub-systems that are the source of corrected MC errors may 
be shared by more than one logical processors. Consequently, the facilities for 
reporting MC errors and controlling mechanisms may be shared by more than one 
logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical 
processors sharing a processor core. Software is responsible to program 
IA32_MCi_CTL2 MSR in a consistent manner with CMCI delivery and usage. 
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6  IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended 
machine-check state MSRs. The MCG_EXT_P flag in the IA32_MCG_CAP MSR indi-
cates the presence of these extended registers, and the MCG_EXT_CNT field indi-
cates the number of these registers actually implemented. See Section 15.3.1.1, 
“IA32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4.  Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the 
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.
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In processors with support for Intel 64 architecture, 64-bit machine check state 
MSRs are aliased to the legacy MSRs. In addition, there may be registers beyond 
IA32_MCG_MISC. These may include up to five reserved MSRs 
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit 
mode. See Table 15-5. 

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the 
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred 
during DS normal operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.
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When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the 
processor saves the state of the general-purpose registers, the R/EFLAGS register, 
and the R/EIP in these extended machine-check state MSRs. This information can be 
used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them; 
but if software writes to them, only all zeros is allowed. If software attempts to write 
a non-zero value into one of these registers, a general-protection (#GP) exception is 
generated. These registers are cleared on a hardware reset (power-up or RESET), 
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers: 
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family proces-
sors map these registers to the IA32_MCi_STATUS and IA32_MCi_ADDR in the error-
reporting register bank. This bank reports on the same type of external bus errors 
reported in P5_MC_TYPE and P5_MC_ADDR. 
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a 

general machine-check exception handler written for Pentium 4 and P6 family 
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR 
instruction.

The second capability permits a machine-check exception handler written to run on a 
Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There 
is a limitation in that information returned by the Pentium 4, Intel Xeon, and P6 
family processors is encoded differently than information returned by the Pentium 

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 15-5.  Extended Machine Check State MSRs 
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
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processor. To run a Pentium processor machine-check exception handler on a 
Pentium 4, Intel Xeon, or P6 family processor; the handler must be written to inter-
pret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In 
earlier Intel processors, cache status was based on the number of correction events 
that occurred in a cache. In the new paradigm, called “threshold-based error status”, 
cache status is based on the number of lines (ECC blocks) in a cache that incur 
repeated corrections. The threshold is chosen by Intel, based on various factors. If a 
processor supports threshold-based error status, it sets IA32_MCG_CAP[11] 
(MCG_TES_P) to 1; if not, to 0. 
A processor that supports enhanced cache error reporting contains hardware that 
tracks the operating status of certain caches and provides an indicator of their 
“health”. The hardware reports a “green” status when the number of lines that incur 
repeated corrections is at or below a pre-defined threshold, and a “yellow” status 
when the number of affected lines exceeds the threshold. Yellow status means that 
the cache reporting the event is operating correctly, but you should schedule the 
system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by 
threshold-base error reporting. 
The CPU/system/platform response to a yellow event should be less severe than its 
response to an uncorrected error. An uncorrected error means that a serious error 
has actually occurred, whereas the yellow condition is a warning that the number of 
affected lines has exceeded the threshold but is not, in itself, a serious event: the 
error was corrected and system state was not compromised. 
The green/yellow status indicator is not a foolproof early warning for an uncorrected 
error resulting from the failure of two bits in the same ECC block. Such a failure can 
occur and cause an uncorrected error before the yellow threshold is reached. 
However, the chance of an uncorrected error increases as the number of affected 
lines increases. 

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to 
the machine-check architecture. It provides capabilities beyond those of threshold-
based error reporting (Section 15.4). With threshold-based error reporting, software 
is limited to use periodic polling to query the status of hardware corrected MC errors. 
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold 
values that software can program using the IA32_MCi_CTL2 MSRs. 
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CMCI is disabled by default. System software is required to enable CMCI for each 
IA32_MCi bank that support the reporting of hardware corrected errors if 
IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for 
each bank and program threshold values into IA32_MCi_CTL2 MSR. CMCI is not 
affected by the CR4.MCE bit, and it is not affected by the IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits 
14:0 with the threshold value. If the bits persist, then thresholding is available (and 
CMCI is available). If the bits are all 0's, then no thresholding exists. To detect that 
CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon 
subsequent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then 
CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9. 

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the 
local APIC register space at default address of APIC_BASE + 2F0H. A CMCI interrupt 
can be delivered to more than one logical processors if multiple logical processors are 
affected by the associated MC errors. For example, if a corrected bit error in a cache 
shared by two logical processors caused a CMCI, the interrupt will be delivered to 
both logical processors sharing that microarchitectural sub-system. Similarly, 
package level errors may cause CMCI to be delivered to all logical processors within 
the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

Figure 15-9.  CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
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15.5.2 System Software Recommendation for Managing CMCI and 
Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service 
CMCI interrupts delivered to affected logical processors, program CMCI LVT entry, 
and query machine check banks that are shared by more than one logical processors. 
This section describes techniques system software can implement to manage CMCI 
initialization, service CMCI interrupts in a efficient manner to minimize contentions to 
access shared MSR resources.

15.5.2.1  CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors 
depending on the nature of the corrected MC error, only one instance of the interrupt 
service routine needs to perform the necessary service and make queries to the 
machine-check banks. The following steps describes a technique that limits the 
amount of work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data 

structure for each logical processor to allow equal-opportunity and efficient 
response to interrupt delivery. Specifically, the per-thread data structure should 
include a set of per-bank fields to track which machine check bank it needs to 
access in response to a delivered CMCI interrupt. The number of banks that 
needs to be tracked is determined by IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data 
structure must be done serially on each logical processor in the system. The 
sequencing order to start the per-thread initialization between different logical 
processor is arbitrary. But it must observe the following specific detail to satisfy 
the shared nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any 
MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to 
determine if another thread has already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can 
not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted. 

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a 
subsequent read to determine this bank can support CMCI. 

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread 
can not own bank i and should proceed to step b. and examine the next 
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to 
indicate this thread claims ownership to the MC bank; proceed to initialize 
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the error threshold count (bits 15:0) of that bank as described in Chapter 
15, “CMCI Threshold Management”. Then proceed to step b. and examine 
the next machine check bank until all of the machine check banks are 
exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns 
any MC banks to service CMCI. If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in 
Chapter 15, “CMCI Interrupt Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local 
APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread 
owns. This will allow new errors to be logged.

15.5.2.2  CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally 
defined. Specifically, all these bits are writable by software, but different processor 
implementations may choose to implement less than 15 bits as threshold for the 
overflow comparison with IA32_MCi_STATUS[52:38]. The following describes tech-
niques that software can manage CMCI threshold to be compatible with changes in 
implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to 

IA32_MCi_CTL2[15:0]. This will cause overflow condition on every corrected MC 
error and generates a CMCI interrupt.

• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation 
supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the 
maximum threshold supported by the processor.

b. Increase the threshold to a value below the maximum value discovered using 
step a.

15.5.2.3  CMCI Interrupt Handler
The following describes techniques system software may consider to implement a 
CMCI service routine:
• The service routine examines its private per-thread data structure to check which 

set of MC banks it has ownership. If the thread does not have ownership of a 
given MC bank, proceed to the next MC bank. Ownership is determined at initial-
ization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,
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— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank. 

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to 

original program execution.
This technique will allow each logical processors to handle corrected MC errors inde-
pendently and requires no synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) 
ERRORS 

Recovery of uncorrected recoverable machine check errors is an enhancement in 
machine-check architecture. The first processor that supports this feature is 45nm 
Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow 
system software to perform recovery action on certain class of uncorrected errors 
and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of 
software error recovery support (see Figure 15-2). When IA32_MCG_CAP[24] is set, 
this indicates that the processor supports software error recovery. When this bit is 
clear, this indicates that there is no support for error recovery from the processor and 
the primary responsibility of the machine check handler is logging the machine check 
error information and shutting down the system. 
The new class of architectural MCA errors from which system software can attempt 
recovery is called Uncorrected Recoverable (UCR) Errors. UCR errors are uncorrected 
errors that have been detected and signaled but have not corrupted the processor 
context. For certain UCR errors, this means that once system software has 
performed a certain recovery action, it is possible to continue execution on this 
processor. UCR error reporting provides an error containment mechanism for data 
poisoning. The machine check handler will use the error log information from the 
error reporting registers to analyze and implement specific error recovery actions for 
UCR errors. 
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15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or 
uncorrected errors. The definitions of IA32_MCi_STATUS, including bit fields to iden-
tify UCR errors, is shown in Figure 15-5. UCR errors can be signaled through either 
the corrected machine check interrupt (CMCI) or machine check exception (MCE) 
path depending on the type of the UCR error. 
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings 
in the IA32_MCi_STATUS register: 
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers 
for the UCR error are available when the ADDRV and the MISCV flags in the 
IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA error code field 
of the IA32_MCi_STATUS register indicates the type of UCR error. System software 
can interpret the MCA error code field to analyze and identify the necessary recovery 
action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see 
Figure 15-5) to provide additional information to help system software to properly 
identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception 

was generated for the UCR error reported in this MC bank and system software 
needs to check the AR flag and the MCA error code fields in the 
IA32_MCi_STATUS register to identify the necessary recovery action for this 
error. When the S flag in the IA32_MCi_STATUS register is clear, this UCR error 
was not signaled via a machine check exception and instead was reported as a 
corrected machine check (CMC). System software is not required to take any 
recovery action when the S flag in the IA32_MCi_STATUS register is clear. 

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code 
specific recovery action must be performed by system software at the time this 
error was signaled. This recovery action must be completed successfully before 
any additional work is scheduled for this processor When the RIPV flag in the 
IA32_MCG_STATUS is clear, an alternative execution stream needs to be 
provided; when the MCA error code specific recovery specific recovery action 
cannot be successfully completed, system software must shut down the system. 
When the AR flag in the IA32_MCi_STATUS register is clear, system software may 
still take MCA error code specific recovery action but this is optional; system 
software can safely resume program execution at the instruction pointer saved 
on the stack from the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky 
bits, which mean that once set, the processor does not clear them. Only software and 
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good power-on reset can clear the S and the AR-flags. Both the S and the AR flags 
are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be 
classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a 

machine check exception and, instead, is reported to system software as a 
corrected machine check error. UCNA errors indicate that some data in the 
system is corrupted, but the data has not been consumed and the processor 
state is valid and you may continue execution on this processor. UCNA errors 
require no action from system software to continue execution. A UNCA error is 
indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a 
machine check exception and a system software recovery action is optional and 
not required to continue execution from this machine check exception. SRAO 
errors indicate that some data in the system is corrupt, but the data has not been 
consumed and the processor state is valid. SRAO errors provide the additional 
error information for system software to perform a recovery action. An SRAO 
error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the 
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code 
specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are 
set when the additional error information is available from the IA32_MCi_MISC 
and the IA32_MCi_ADDR registers. System software needs to inspect the MCA 
error code fields in the IA32_MCi_STATUS register to identify the specific 
recovery action for a given SRAO error. If MISCV and ADDRV are not set, it is 
recommended that no system software error recovery be performed however, 
you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system 
software to take a recovery action on this processor before scheduling another 
stream of execution on this processor. SRAR errors indicate that the error was 
detected and raised at the point of the consumption in the execution flow. An 
SRAR error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the 
IA32_MCi_STATUS register. Recovery actions are MCA error code specific. The 
MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the 
additional error information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers. System software needs to inspect the MCA error code 
fields in the IA32_MCi_STATUS register to identify the specific recovery action for 
a given SRAR error. If MISCV and ADDRV are not set, it is recommended that 
system software shutdown the system.
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Table 15-6 summarizes UCR, corrected, and uncorrected errors. 

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors. 
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.   
• UCR errors are not written over previous UCR errors. 
• Corrected errors do not write over previous UCR errors. 
Regardless of whether the 1st error is retained or the 2nd error is overwritten over 
the 1st error, the OVER flag in the IA32_MCi_STATUS register will be set to indicate 
an overflow condition. As the S flag and AR flag in the IA32_MCi_STATUS register are 
defined to be sticky flags, a second event cannot clear these 2 flags once set, 
however the MC bank information may be filled in for the 2nd error. The table below 
shows the overwrite rules and how to treat a second error if the first event is already 
logged in a MC bank along with the resulting bit setting of the UC, PCC, and AR flags 
in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery 
action from system software to continue program execution, a system reset by 

Table 15-6.  MC Error Classifications
Type of Error1

NOTES:
1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors 

are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set. 

UC PCC S AR Signaling Software Action Example

Uncorrected Error 
(UC)

1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
must bugcheck

Cache to 
processor load 
error

SRAO 1 0 1 0 MCE For known MCACOD, 
take specific recovery 
action;

For unknown MCACOD, 
OK to keep the system 
running

Patrol scrub and 
explicit writeback 
poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to 
keep the system running

Poison detection 
error

Corrected Error (CE) 0 0 x x CMC Log the error and no 
corrective action 
required

ECC in caches and 
memory
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system software is not required unless the AR flag or PCC flag is set for the UCR over-
flow case (OVER=1, VAL=1, UC=1, PCC=0). 
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncor-
rected recoverable errors. 

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-
specific features. Software can execute the CPUID instruction to determine whether 
a processor implements these features. Following the execution of the CPUID 
instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate 
whether the processor implements the machine-check architecture and machine-
check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the 
processor to activate the machine-check exception and the error-reporting mecha-
nism. 
Example 15-1 gives pseudocode for performing this initialization. This pseudocode 
checks for the existence of the machine-check architecture and exception; it then 

Table 15-7.  Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

second yes, if AR=1

UCR CE 1 0 0 if UCNA, 
else 1

1 if SRAR, 
else 0

first  yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes 
15-24 Vol. 3A



MACHINE-CHECK ARCHITECTURE
enables machine-check exception and the error-reporting register banks. The 
pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and 
Pentium processors. 
Following power up or power cycling, IA32_MCi_STATUS registers are not guaran-
teed to have valid data until after they are initially cleared to zero by software (as 
shown in the initialization pseudocode in Example 15-1). In addition, when using P6 
family processors, software must set MCi_STATUS registers to zero when doing a 
soft-reset.

Example 15-1.  Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN 

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
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FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error 
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets 
the VAL (valid) flag in that register. The processor may also write a 16-bit model-
specific error code in the IA32_MCi_STATUS register depending on the implementa-
tion of the machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To 
determine the cause of a machine-check exception, the machine-check exception 
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set, 
the machine check-exception handler must then read the MCA error code field of the 
register. It is the encoding of the MCA error code field [15:0] that determines the 
type of error being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error 
codes. 

15.9.1 Simple Error Codes
Table 15-8 shows the simple error codes. These unique codes indicate global error 
information.

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding 
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of 
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the 
MCA error classes.

Microcode ROM Parity 
Error

0000 0000 0000 0010 Parity error in internal microcode ROM
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15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and 
interconnect logic, and internal timer. A set of sub-fields is common to all of 
compound errors. These sub-fields describe the type of access, level in the cache 
hierarchy, and type of request. Table 15-9 shows the general form of the compound 
error codes. 

The “Interpretation” column in the table indicates the name of a compound error. The 
name is constructed by substituting mnemonics for the sub-field names given within 
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the 
form: 

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections 
Section 15.9.2.1, “Correction Report Filtering (F) Bit” through Section 15.9.2.5, “Bus 
and Interconnect Errors”.

External Error 0000 0000 0000 0011 The BINIT# from another processor caused 
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check) 
master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the 

same external bus) has BINIT# observation enabled during power-on configuration (hardware 
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified. 

Table 15-9.  IA32_MCi_Status [15:0] Compound Error Code Encoding 
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8.  IA32_MCi_Status [15:0] Simple Error Code Encoding  (Contd.)
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15.9.2.1  Correction Report Filtering (F) Bit 
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is 
used to indicate that a particular posting to a log may be the last posting for correc-
tions in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor 

meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in 

the posting). Filtering means that some or all of the subsequent corrections to 
this entry (in this structure) will not be posted. The enhanced error reporting 
introduced with the Intel Core Duo processors is based on tracking the lines 
affected by repeated corrections (see Section 15.4, “Enhanced Cache Error 
reporting”). This capability is indicated by IA32_MCG_CAP[11]. Only the first few 
correction events for a line are posted; subsequent redundant correction events 
to the same line are not posted. Uncorrected events are always posted. 

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2  Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruc-
tion, or generic). The sub-field applies to the TLB, cache, and interconnect error 
conditions. Note that interconnect error conditions are primarily associated with P6 
family and Pentium processors, which utilize an external APIC bus separate from the 
system bus. The generic type is reported when the processor cannot determine the 
transaction type.

15.9.2.3  Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy 
where the error occurred (level 0, level 1, level 2, or generic). The LL sub-field also 
applies to the TLB, cache, and interconnect error conditions. The Pentium 4, Intel 
Xeon, and P6 family processors support two levels in the cache hierarchy and one 
level in the TLBs. Again, the generic type is reported when the processor cannot 
determine the hierarchy level.

Table 15-10.  Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field 
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00
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15.9.2.4  Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated 
with the error. Actions include read and write operations, prefetches, cache evictions, 
and snoops. Generic error is returned when the type of error cannot be determined. 
Generic read and generic write are returned when the processor cannot determine 
the type of instruction or data request that caused the error. Eviction and snoop 
requests apply only to the caches. All of the other requests apply to TLBs, caches and 
interconnects.

15.9.2.5  Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T 
(time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the LL and RRRR 
sub-fields (see Table 15-13). The bus error conditions are implementation dependent 
and related to the type of bus implemented by the processor. Likewise, the intercon-
nect error conditions are predicated on a specific implementation-dependent inter-
connect model that describes the connections between the different levels of the 
storage hierarchy. The type of bus is implementation dependent, and as such is not 
specified in this document. A bus or interconnect transaction consists of a request 
involving an address and a response.

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12.  Encoding of Request (RRRR) Sub-Field 
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-13.  Encodings of PP, T, and II Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

Table 15-11.  Level Encoding for LL (Memory Hierarchy Level) Sub-Field  (Contd.)
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15.9.2.6  Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction 
type), and 4-bit CCCC (channel) sub-fields. The encodings for MMM and CCCC are 
defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors 
Software recoverable compound error code are defined in this section.

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as 
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system compo-

nents (including the APIC, other processors, etc.).

Table 15-14.  Encodings of MMM and CCCC Sub-Fields 
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-13.  Encodings of PP, T, and II Sub-Fields  (Contd.)
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15.9.3.1  Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined. 
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-15. 

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAO errors. 

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and 
MISCV flags in the IA32_MCi_STATUS register are set to indicate that the offending 
physical address information is available from the IA32_MCi_MISC and the 
IA32_MCi_ADDR registers.  For the memory scrubbing and L3 explicit writeback 
errors, the address mode in the IA32_MCi_MISC register should be set as physical 
address mode (010b) and the address LSB information in the IA32_MCi_MISC 
register should indicate the lowest valid address bit in the address information 
provided from the IA32_MCi_ADDR register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. MCi_STATUS banks can be shared by logical processors within 

Table 15-15.  MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B 

Table 15-16.  IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A
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a core or within the same package. So several logical processors may find an SRAO 
error in the shared IA32_MCi_STATUS bank but other processors do not find it in any 
of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication 
in the IA32_MCG_STATUS register for the memory scrubbing and L3 explicit write-
back errors on both the reporting and non-reporting logical processors. 

15.9.3.2  Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined. 
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors 
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their 
values and compound encoding format are given in Table 15-18. 

Table 15-17.  IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18.  MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is 

0, indicating "normal" filtering. 

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
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Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally 
defined SRAR errors. 

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the 
IA32_MCi_STATUS register are set to indicate that the offending physical address 
information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers.  
For the memory scrubbing and L3 explicit writeback errors, the address mode in the 
IA32_MCi_MISC register should be set as physical address mode (010b) and the 
address LSB information in the IA32_MCi_MISC register should indicate the lowest 
valid address bit in the address information provided from the IA32_MCi_ADDR 
register. 
An MCE signal is broadcast to all logical processors on the system on which the UCR 
errors are supported. The IA32_MCG_STATUS MSR allows system software to distin-
guish the affected logical processor of an SRAR error amongst logical processors that 
observed SRAR via a shared MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS 
register for the data load and instruction fetch errors on both the reporting and non-
reporting logical processors. 

The affected logical processor is the one that has detected and raised an SRAR error 
at the point of the consumption in the execution flow. The affected logical processor 
should find the Data Load or the Instruction Fetch error information in the 
IA32_MCi_STATUS register that is reporting the SRAR error.  
For Data Load recoverable errors, the affected logical processor should find that the 
IA32_MCG_STATUS.RIPV flag is cleared and the IA32_MCG_STATUS.EIPV flag is set 
indicating that the error is detected at the instruction pointer saved on the stack for 
this machine check exception and restarting execution with the interrupted context is 
not possible.  
For Instruction Fetch recoverable error, the affected logical processor should find that 
the RIPV flag and the EIPV Flag in the IA32_MCG_STATUS register are cleared, indi-
cating that the error is detected at the instruction pointer saved on the stack may not 
be associated with this error and restarting the execution with the interrupted 
context is not possible. 

Table 15-19.  IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20.  IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processors Non-Affected Logical Processors

RIPV EIPV RIPV EIPV

Data Load 0 1 1 0

instruction Fetch 0 0 1 0
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The logical processors that observed but not affected by an SRAR error should find 
that the RIPV flag in the IA32_MCG_STATUS register is set and the EIPV flag in the 
IA32_MCG_STATUS register is cleared, indicating that it is safe to restart the execu-
tion at the instruction saved on the stack for the machine check exception on these 
processors after the recovery action is successfully taken by system software. 
For the Data-Load and the Instruction-Fetch recoverable errors, system software 
may take the following recovery actions for the affected logical processor: 
• The current executing thread cannot be continued.  You must terminate the 

interrupted stream of execution and provide a new stream of execution on return 
from the machine check handler for the affected logical processor

In addition to taking the recovery action described above, system software may also 
need to disable the use of the affected page from the program. This recovery action 
by system software may prevent the occurrence of future consumption errors from 
that affected page.  

15.9.4 Multiple MCA Errors 
When multiple MCA errors are detected within a certain detection window, the 
processor may aggregate the reporting of these errors together as a single event, i.e. 
a single machine exception condition.  If this occurs, system software may find 
multiple MCA errors logged in different MC banks on one logical processor or find 
multiple MCA errors logged across different processors for a single machine check 
broadcast event.  In order to handle multiple UCR errors reported from a single 
machine check event and possibly recover from multiple errors, system software 
may consider the following: 
• Whether it can recover from multiple errors is determined by the most severe 

error reported on the system.  If the most severe error is found to be an unrecov-
erable error (VAL=1, UC=1, PCC=1 and EN=1) after system software examines 
the MC banks of all processors to which the MCA signal is broadcast, recovery 
from the multiple errors is not possible and system software needs to reset the 
system. 

• When multiple recoverable errors are reported and no other fatal condition (e.g.. 
overflowed condition for SRAR error) is found for the reported recoverable errors, 
it is possible for system software to recover from the multiple recoverable errors 
by taking necessary recovery action for each individual recoverable error.  
However, system software can no longer expect one to one relationship with the 
error information recorded in the IA32_MCi_STATUS register and the states of 
the RIPV and EIPV flags in the IA32_MCG_STATUS register as the states of the 
RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the 
information for the most severe error recorded on the processor.  System 
software is required to use the RIPV flag indication in the IA32_MCG_STATUS 
register to make a final decision of recoverability of the errors and find the 
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restart-ability requirement after examining each IA32_MCi_STATUS register 
error information in the MC banks.  

15.9.5 Machine-Check Error Codes Interpretation
Appendix E, “Interpreting Machine-Check Error Codes,” provides information on 
interpreting the MCA error code, model-specific error code, and other information 
error code fields. For P6 family processors, information has been included on 
decoding external bus errors. For Pentium 4 and Intel Xeon processors; information 
is included on external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK 
SOFTWARE

The machine-check architecture and error logging can be used in three different 
ways:
• To detect machine errors during normal instruction execution, using the 

machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and 

perform recovery actions via a machine-check exception handler or a corrected 
machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software 
must provide a machine-check exception handler. This handler may need to be 
designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging 
utility are given in the following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-
check exceptions, a trap gate must be added to the IDT. The pointer in the trap gate 
must point to a machine-check exception handler. Two approaches can be taken to 
designing the exception handler:

1. The handler can merely log all the machine status and error information, then call 
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, 
attempt to correct the error and restart the processor.
Vol. 3A 15-35



MACHINE-CHECK ARCHITECTURE
For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-
check conditions cannot be corrected (they result in abort-type exceptions). The 
logging of status and error information is therefore a baseline implementation 
requirement.
When recovery from a machine-check error may be possible, consider the following 
when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-

reporting register banks. The count field in the IA32_MCG_CAP register gives 
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the 
IA32_MCi_STATUS register should be checked. See Section 15.9, “Interpreting 
the MCA Error Codes,” for information that can be used to write an algorithm to 
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate 
whether recovery from the error is possible. If PCC or OVER are set, recovery is 
not possible. If RIPV is not set, program execution can not be restarted reliably. 
When recovery is not possible, the handler typically records the error information 
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in 
each IA32_MCi_STATUS register indicates whether the processor automatically 
corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program 
can be restarted at the instruction indicated by the instruction pointer (the 
address of the instruction pushed on the stack when the exception was 
generated). If this flag is clear, the processor may still be able to be restarted (for 
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates whether the instruction indicated by the instruction pointer pushed on 
the stack (when the exception was generated) is related to the error. If the flag is 
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check 
exception handler, software should clear this flag so that it can be used reliably by 
an error logging utility. The MCIP flag also detects recursion. The machine-check 
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2.  Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
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THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families, should 
follow the guidelines described in Section 15.10.1 and Example 15-2 that check the 
processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the 
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is 
set in control register CR4), the machine-check exception handler uses the RDMSR 
instruction to read the error type from the P5_MC_TYPE register and the machine 
check address from the P5_MC_ADDR register. The handler then normally reports 
these register values to the system console before aborting execution (see Example 
15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible 
for logging uncorrected errors.
If a machine-check error is correctable, the processor does not generate a machine-
check exception for it. To detect correctable machine-check errors, a utility program 
must be written that reads each of the machine-check error-reporting register banks 
and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as 

hourly or daily.
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• A user-initiated application that polls the register banks and records the 
exceptions. Here, the actual polling service is provided by an operating-system 
driver or through the system call interface.

• An interrupt service routine servicing CMCI can read the MC banks and log the 
error. 

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3.  Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR; 
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *) 
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN 
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through 
the banks of error-reporting registers looking for valid register entries. It then saves 
the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and 
IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes 
processing time by recording the raw data into a system data structure or file, 
reducing the overhead associated with polling. User utilities analyze the collected 
data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check 
exception is in progress and the machine-check exception handler has called the 
exception logging routine. 
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Once the logging process has been completed the exception-handling routine must 
determine whether execution can be restarted, which is usually possible when 
damage has not occurred (The PCC flag is clear, in the IA32_MCi_STATUS register) 
and when the processor can guarantee that execution is restartable (the RIPV flag is 
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system 
is not recoverable and the exception-handling routine should signal the console 
appropriately before returning the error status to the Operating System kernel for 
subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-
reporting bank although the Pentium 4, Intel Xeon, and P6 family processors do not 
implement this feature. The error logging routine should provide compatibility with 
future processors by reading each hardware error-reporting bank's 
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in 
this register. The error logging utility should re-read the IA32_MCi_STATUS register 
for the bank ensuring that the valid bit is clear. The processor will write the next error 
into the register bank and set the VAL flags. 
Additional information that should be stored by the exception-logging routine 
includes the processor’s time-stamp counter value, which provides a mechanism to 
indicate the frequency of exceptions. A multiprocessing operating system stores the 
identity of the processor node incurring the exception using a unique identifier, such 
as the processor’s APIC ID (see Section 10.8, “Handling Interrupts”). 
The basic algorithm given in Example 15-3 can be modified to provide more robust 
recovery techniques. For example, software has the flexibility to attempt recovery 
using information unavailable to the hardware. Specifically, the machine-check 
exception handler can, after logging carefully analyze the error-reporting registers 
when the error-logging routine reports an error that does not allow execution to be 
restarted. These recovery techniques can use external bus related model-specific 
information provided with the error report to localize the source of the error within 
the system and determine the appropriate recovery strategy. 

15.10.4 Machine-Check Software Handler Guidelines for Error 
Recovery

15.10.4.1  Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software 
recovery from Uncorrected Recoverable (UCR) errors, consider the following: 
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported 

and all machine-check are fatal exceptions. The logging of status and error 
information is therefore a baseline implementation requirement. 

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected 
recoverable (UCR) errors may be software recoverable. The handler can analyze 
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the reported error information, and in some cases attempt to recover from the 
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH 
and onward, an MCA signal is broadcast to all logical processors in the system 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).  
Due to the potentially shared machine check MSR resources among the logical 
processors on the same package/core, the MCE handler may be required to 
synchronize with the other processors that received a machine check error and 
serialize access to the machine check registers when analyzing, logging and 
clearing the information in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank do not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The 
UC flag in each IA32_MCi_Status register indicates whether the reported error 
was corrected (UC=0) or uncorrected (UC=1).  The MCE handler can optionally 
log and clear the corrected errors in the MC banks if it can implement software 
algorithm to avoid the undesired race conditions with the CMCI or CMC polling 
handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register 
indicates (when set) that the instruction pointed to by the instruction pointer 
pushed onto the stack when the machine-check exception is generated is directly 
associated with the error. When this flag is cleared, the instruction pointed to 
may not be associated with the error. 

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. When a machine check exception is generated, 
it is expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If 
it is not set, this machine check was generated by either an INT 18 instruction or 
some piece of hardware signaling an interrupt with vector 18. 

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine 
check exception (MCE) handler to support software recovery: 
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from 

the error is possible for uncorrected errors (UC=1).  If the PCC flag is set for 
uncorrected errors (UC=1), recovery is not possible.  When recovery is not 
possible, the MCE handler typically records the error information and signals the 
operating system to reset the system. 

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the 
program execution from the instruction pointer saved on the stack for the 
machine check exception is possible.  When the RIPV is set, program execution 
can be restarted reliably when recovery is possible.  If the RIPV flag is not set, 
program execution cannot be restarted reliably. In this case the recovery 
algorithm may involve terminating the current program execution and resuming 
an alternate thread of execution upon return from the machine check handler 
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when recovery is possible.  When recovery is not possible, the MCE handler 
signals the operating system to reset the system. 

• When the EN flag is zero but the VAL and UC flags are one in the 
IA32_MCi_STATUS register, the reported uncorrected error in this bank is not 
enabled.  As uncorrected errors with the EN flag = 0 are not the source of 
machine check exceptions, the MCE handler should log and clear non-enabled 
errors when the S bit is set and should continue searching for enabled errors from 
the other IA32_MCi_STATUS registers.  Note that when IA32_MCG_CAP [24] is 0, 
any uncorrected error condition (VAL =1 and UC=1) including the one with the 
EN flag cleared are fatal and the handler must signal the operating system to 
reset the system.  For the errors that do not generate machine check exceptions, 
the EN flag has no meaning.  See Appendix A: Table A-4 to find the errors that do 
not generate machine check exceptions. 

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag 
is zero in the IA32_MCi_STATUS register, the error in this bank is an uncorrected 
recoverable (UCR) error. The MCE handler needs to examine the S flag and the 
AR flag to find the type of the UCR error for software recovery and determine if 
software error recovery is possible. 

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for 
the UCR error (VAL=1, UC=1, EN=x and PCC=0), the error in this bank is an 
uncorrected no-action required error (UCNA). UCNA errors are uncorrected but 
do not require any OS recovery action to continue execution.  These errors 
indicate that some data in the system is corrupt, but that data has not been 
consumed and may not be consumed.   If that data is consumed a non-UNCA 
machine check exception will be generated. UCNA errors are signaled in the same 
way as corrected machine check errors and the CMCI and CMC polling handler is 
primarily responsible for handling UCNA errors.  Like corrected errors, the MCA 
handler can optionally log and clear UCNA errors as long as it can avoid the 
undesired race condition with the CMCI or CMC polling handler.  As UCNA errors 
are not the source of machine check exceptions, the MCA handler should 
continue searching for uncorrected or software recoverable errors in all other MC 
banks. 

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error 
((VAL=1, UC=1, EN=1 and PCC=0), the error in this bank is software recoverable 
and it was signaled through a machine-check exception.  The AR flag in the 
IA32_MCi_STATUS register further clarifies the type of the software recoverable 
errors. 

• When the AR flag in the IA32_MCi_STATUS register is clear for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action optional (SRAO) error. The MCE handler and the 
operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA 
error code specific optional recovery action, but this recovery action is optional. 
System software can resume the program execution from the instruction pointer 
saved on the stack for the machine check exception when the RIPV flag in the 
IA32_MCG_STATUS register is set. 
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• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=0), the MCE handler cannot take 
recovery action as the information of the SRAO error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition.  Since the recovery 
action for SRAO errors is optional, restarting the program execution from the 
instruction pointer saved on the stack for the machine check exception is still 
possible for the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS 
is set. 

• When the AR flag in the IA32_MCi_STATUS register is set for the software 
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank 
is a software recoverable action required (SRAR) error. The MCE handler and the 
operating system must take recovery action in order to continue execution after 
the machine-check exception. The MCA handler and the operating system need 
to analyze the IA32_MCi_STATUS [15:0] to determine the MCA error code 
specific recovery action.  If no recovery action can be performed, the operating 
system must reset the system. 

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error 
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=1), the MCE handler cannot take 
recovery action as the information of the SRAR error in the IA32_MCi_STATUS 
register was potentially lost due to the overflow condition. Since the recovery 
action for SRAR errors must be taken, the MCE handler must signal the operating 
system to reset the system. 

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or 
any software recoverable errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any 
of the IA32_MCi banks of the processors, this is an unexpected condition for the 
MCE handler and the handler should signal the operating system to reset the 
system. 

• Before returning from the machine-check exception handler, software must clear 
the MCIP flag in the IA32_MCG_STATUS register. The MCIP flag is used to detect 
recursion. The machine-check architecture does not support recursion. When the 
processor receives a machine check when MCIP is set, it automatically enters the 
shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery 
of UCR.

Example 15-4.  Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER:  (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6) 

THEN
MCA_BROADCAST = TRUE;
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Acquire SpinLock; 
ProcessorCount++;  (* Allowing one logical processor at a time to examine machine check 

registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE 
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
    THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0) 
THEN 

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN 

Report RESTARTABILITY to console;
Reset system; 

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
    AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock; 
Wait till ProcessorCount = MAX_PROCESSRS on system; 
(* implement a timeout and abort function if necessary *)

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING:    (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers 
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DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN 
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE; 

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN 
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI; 
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *) 
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
    AND Current Processor is an Affected Processor 

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;  

ELSE 
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RESTARTABILITY = FALSE;
FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR 
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE  (* It is a corrected error; continue to the next IA32_MCi_STATUS *) 
GOTO CONTINUE;

FI; UC
FI; VAL 

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS 

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
( *END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2  Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI 
or called from an OS CMC Polling dispatcher, consider the following: 
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• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the 
error information in the register is valid. If this flag is clear, the registers in that 
bank does not contain valid error information and does not need to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected 
errors. The UC flag in each IA32_MCi_Status register indicates whether the 
reported error was corrected (UC=0) or not (UC=1). 

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for 
logging and clearing uncorrected no-action required (UCNA) errors.  When the 
UC flag is one but the PCC, S, and AR flags are zero in the IA32_MCi_STATUS 
register, the reported error in this bank is an uncorrected no-action required 
(UCNA) error. 

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs 
uncorrected (UC=1 and PCC=1), software recoverable machine check errors 
(UC=1, PCC=0 and S=1), but should avoid clearing those errors from the MC 
banks. Clearing these errors may result in accidentally removing these errors 
before these errors are actually handled and processed by the MCE handler for 
attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5.  Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER:  (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers 

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN 
GOTO LOG CMC ERROR;

ELSE 
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;
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LOG CMC ERROR: 
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS 

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
( *END FOR *)

FI;
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CHAPTER 16
DEBUGGING, PROFILING BRANCHES AND TIME-

STAMP COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code 
and monitoring performance. These facilities are valuable for debugging application 
software, system software, and multitasking operating systems. Debug support is 
accessed using debug registers (DR0 through DR7) and model-specific registers 
(MSRs): 
• Debug registers hold the addresses of memory and I/O locations called break-

points. Breakpoints are user-selected locations in a program, a data-storage area 
in memory, or specific I/O ports. They are set where a programmer or system 
designer wishes to halt execution of a program and examine the state of the 
processor by invoking debugger software. A debug exception (#DB) is generated 
when a memory or I/O access is made to a breakpoint address. 

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the 
last branch, interrupt or exception taken and the last branch taken before an 
interrupt or exception.

16.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or 

task when a debug event occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the 

addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect 

when a debug or breakpoint exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access 

that cause breakpoints to be generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is 

made to switch to a task with the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the 

same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after 

every execution of an instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP) 

that transfers program control to the debugger procedure or task. This 
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instruction is an alternative way to set code breakpoints. It is especially useful 
when more than four breakpoints are desired, or when breakpoints are being 
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch 
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or 
exceptions in MSRs. A branch record consist of a branch-from and a branch-to 
instruction address. Send branch records out on the system bus as branch trace 
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in 
the context of the current program or task. The following conditions can be used to 
invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

16.2 DEBUG REGISTERS
Eight debug registers (see Figure 16-1) control the debug operation of the processor. 
These registers can be written to and read using the move to/from debug register 
form of the MOV instruction. A debug register may be the source or destination 
operand for one of these instructions. 

Debug registers are privileged resources; a MOV instruction that accesses these 
registers can only be executed in real-address mode, in SMM or in protected mode at 
a CPL of 0. An attempt to read or write the debug registers from any other privilege 
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 
breakpoints, numbered 0 though 3. For each breakpoint, the following information 
can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location (1, 2, or 4 bytes).
• The operation that must be performed at the address for a debug exception to be 

generated.
• Whether the breakpoint is enabled.
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• Whether the breakpoint condition was present when the debug exception was 
generated.

The following paragraphs describe the functions of flags and fields in the debug 
registers.

Figure 16-1.  Debug Registers
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16.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear 
address of a breakpoint (see Figure 16-1). Breakpoint comparisons are made before 
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions. 

16.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled 
(when the DE flag in control register CR4 is set) and attempts to reference the DR4 
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions 
are not enabled (when the DE flag is clear), these registers are aliased to debug 
registers DR6 and DR7.

16.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the 
time the last debug exception was generated (see Figure 16-1). Updates to this 
register only occur when an exception is generated. The flags in this register show 
the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3) 

— Indicates (when set) that its associated breakpoint condition was met when a 
debug exception was generated. These flags are set if the condition described for 
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is 
true. They may or may not be set if the breakpoint is not enabled by the Ln or the 
Gn flags in register DR7. Therefore on a #DB, a debug handler should check only 
those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next 
instruction in the instruction stream accesses one of the debug registers (DR0 
through DR7). This flag is enabled when the GD (general detect) flag in debug 
control register DR7 is set. See Section 16.2.4, “Debug Control Register (DR7),” 
for further explanation of the purpose of this flag. 

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception 
was triggered by the single-step execution mode (enabled with the TF flag in the 
EFLAGS register). The single-step mode is the highest-priority debug exception. 
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug 
exception resulted from a task switch where the T flag (debug trap flag) in the 
TSS of the target task was set. See Section 7.2.1, “Task-State Segment (TSS),” 
for the format of a TSS. There is no flag in debug control register DR7 to enable 
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 
register are never cleared by the processor. To avoid confusion in identifying debug 
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exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

16.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 16-1). The flags and fields in this register control the 
following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) — 

Enables (when set) the breakpoint condition for the associated breakpoint for the 
current task. When a breakpoint condition is detected and its associated Ln flag 
is set, a debug exception is generated. The processor automatically clears these 
flags on every task switch to avoid unwanted breakpoint conditions in the new 
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — 
Enables (when set) the breakpoint condition for the associated breakpoint for all 
tasks. When a breakpoint condition is detected and its associated Gn flag is set, 
a debug exception is generated. The processor does not clear these flags on a 
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — 
This feature is not supported in the P6 family processors, later IA-32 processors, 
and Intel 64 processors. When set, these flags cause the processor to detect the 
exact instruction that caused a data breakpoint condition. For backward and 
forward compatibility with other Intel processors, we recommend that the LE and 
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any 
MOV instruction that accesses a debug register. When such a condition is 
detected, the BD flag in debug status register DR6 is set prior to generating the 
exception. This condition is provided to support in-circuit emulators. 
When the emulator needs to access the debug registers, emulator software can 
set the GD flag to prevent interference from the program currently executing on 
the processor.
The processor clears the GD flag upon entering to the debug exception handler, 
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, 
and 29) — Specifies the breakpoint condition for the corresponding breakpoint. 
The DE (debug extensions) flag in control register CR4 determines how the bits in 
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets 
bits as follows:

00 — Break on instruction execution only. 
01 — Break on data writes only.
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10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for 
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 
31) — Specify the size of the memory location at the address specified in the 
corresponding breakpoint address register (DR0 through DR3). These fields are 
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the 
LENn field should also be 00. The effect of using other lengths is undefined. See 
Section 16.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature 
corresponding to family 15 (model 3, 4, and 6), break point 
conditions permit specifying 8-byte length on data read/write with an 
of encoding 10B in the LENn field. 
Encoding 10B is also supported in processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture, the 
respective CPUID signatures corresponding to family 6, model 15, 
and family 6, DisplayModel value 23 (see CPUID instruction in 
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 2A). The 
Encoding 10B is supported in processors based on Intel® Atom™ 
microarchitecture, with CPUID signature of family 6, DisplayModel 
value 28. The encoding 10B is undefined for other processors.

16.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields 
for each breakpoint define a range of sequential byte addresses for a data or I/O 
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range, 
beginning at the linear address specified in the corresponding debug register (DRn). 
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be 
aligned on doubleword boundaries. I/O addresses are zero-extended (from 16 to 32 
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bits, for comparison with the breakpoint address in the selected debug register). 
These requirements are enforced by the processor; it uses LENn field bits to mask 
the lower address bits in the debug registers. Unaligned data or I/O breakpoint 
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and 
its LENn field. Table 16-1 provides an example setup of debug registers and data 
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together 
cover the operand. The breakpoints generate exceptions only for the operand, not for 
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the 
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The 
processor recognizes an instruction breakpoint address only when it points to the 
first byte of an instruction. If the instruction has prefixes, the breakpoint address 
must point to the first prefix.

Table 16-1.  Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length 
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1
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16.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit 
or 32-bit modes (protected mode and compatibility mode), writes to a debug register 
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits. 
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes 
are ignored. 

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written 
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see 
Figure 16-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn 
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only 
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 16-1.  Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
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16.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling 
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and 
typical exception handler operations.

16.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which 
condition caused the exception and which other conditions might apply. Table 16-2 
shows the states of these flags following the generation of each kind of breakpoint 
condition.

Instruction-breakpoint and general-detect condition (see Section 16.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result 
in traps. The debug exception may report one or both at one time. The following 
sections describe each class of debug exception. 

Figure 16-2.  DR6/DR7 Layout on Processors Supporting Intel 64 Technology
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See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

16.3.1.1  Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an 
instruction at an address specified in a breakpoint-address register (DR0 through 
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon 
reporting the instruction breakpoint, the processor generates a fault-class, debug 
exception (#DB) before it executes the target instruction for the breakpoint. 

Instruction breakpoints are the highest priority debug exceptions. They are serviced 
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located 
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see 
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapters 3 and 4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 
2A & 2B).

Because the debug exception for an instruction breakpoint is generated before the 
instruction is executed, if the instruction breakpoint is not removed by the exception 
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an 
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag 

Table 16-2.  Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags 
Tested

DR7 Flags 
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses 
defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at 
addresses defined by DRn and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction 
fetches), at addresses defined by DRn 
and LENn

Bn = 1 and 
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an 
attempt to modify debug registers 
(usually in conjunction with in-circuit 
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
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(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in 
the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction 
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is 
cleared at the start of the instruction after the check for code breakpoint, CS limit 
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer 
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of 
the RF flag in the EFLAGS image pushed on the stack:
• For any fault-class exception except a debug exception generated in response to 

an instruction breakpoint, the value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but 

the last iteration, the value pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string 

instruction but the last iteration, the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the 

time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including 
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including 
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the 
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug 
exception handler for debug exceptions resulting from instruction breakpoints. The 
debug exception handler can prevent recurrence of the instruction breakpoint by 
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS 
image is set when the processor returns from the exception handler, it is copied into 
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the 
return. The processor then ignores instruction breakpoints for the duration of the 
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer 
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other 
types of debug-exception conditions (such as, I/O or data breakpoints) from being 
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another 
fault-type exception (such as a page fault), the processor may generate one spurious 
debug exception after the second exception has been handled, even though the 
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious 
exception with Pentium processors, all fault-class exception handlers should set the 
RF flag in the EFLAGS image.
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16.3.1.2  Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to 
access a memory or I/O address specified in a breakpoint-address register (DR0 
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to 
1, 2, or 3). The processor generates the exception after it executes the instruction 
that made the access, so these breakpoint condition causes a trap-class exception to 
be generated. 

Because data breakpoints are traps, the original data is overwritten before the trap 
exception is generated. If a debugger needs to save the contents of a write break-
point location, it should save the original contents before setting the breakpoint. The 
handler can report the saved value after the breakpoint is triggered. The address in 
the debug registers can be used to locate the new value stored by the instruction that 
triggered the breakpoint.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting 
the LE and/or the GE flags. 

P6 family processors are unable to report data breakpoints exactly for the REP MOVS 
and REP STOS instructions until the completion of the iteration after the iteration in 
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug 
exception, the processor generates the exception after the completion of the first 
iteration. Repeated INS and OUTS instructions generate a memory-breakpoint debug 
exception after the iteration in which the memory address breakpoint location is 
accessed.

16.3.1.3  General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a 
program attempts to access any of the debug registers (DR0 through DR7) at the 
same time they are being used by another application, such as an emulator or 
debugger. This protection feature guarantees full control over the debug registers 
when required. The debug exception handler can detect this condition by checking 
the state of the BD flag in the DR6 register. The processor generates the exception 
before it executes the MOV instruction that accesses a debug register, which causes 
a fault-class exception to be generated. 

16.3.1.4  Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is 
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction 
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a 
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single-step trap does not occur until after the instruction that follows the POPF 
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag 
was set in a TSS at the time of a task switch, the exception occurs after the first 
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and 
INTO instructions, however, do clear this flag. Therefore, software debuggers that 
single-step code must recognize and emulate INT n or INTO instructions rather than 
executing them directly. To maintain protection, the operating system should check 
the CPL after any single-step trap to see if single stepping should continue at the 
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur 
together, the single-step interrupt is processed first. This operation clears the TF flag. 
After saving the return address or switching tasks, the external interrupt input is 
examined before the first instruction of the single-step handler executes. If the 
external interrupt is still pending, then it is serviced. The external interrupt handler 
does not run in single-step mode. To single step an interrupt handler, single step an 
INT n instruction that calls the interrupt handler.

16.3.1.5  Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new 
task's TSS is set. This exception is generated after program control has passed to the 
new task, and prior to the execution of the first instruction of that task. The exception 
handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should 
not be set. Failure to observe this rule will put the processor in a loop.

16.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction. 
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break 
exceptions in the same way that they use the breakpoint registers; that is, as a 
mechanism for suspending program execution to examine registers and memory 
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively 
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the 
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is 
also useful when it is necessary to set more breakpoints than there are debug regis-
ters or when breakpoints are being placed in the source code of a program under 
development.
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16.4 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches, 
interrupts, and exceptions, and to single-step from one branch to the next. This 
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M, 
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and 
Intel® Atom™ processors to allow logging of branch trace messages in a branch trace 
store (BTS) buffer in memory. 

See the following sections for processor specific implementation of last branch, inter-
rupt and exception recording:

— Section 16.5, “Last Branch, Interrupt, and Exception Recording (Intel® 
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 16.6, “Last Branch, Interrupt, and Exception Recording for 
Processors based on Intel® Microarchitecture code name Nehalem”

— Section 16.8, “Last Branch, Interrupt, and Exception Recording (Processors 
based on Intel NetBurst® Microarchitecture)”

— Section 16.9, “Last Branch, Interrupt, and Exception Recording (Intel® Core™ 
Solo and Intel® Core™ Duo Processors)”

— Section 16.10, “Last Branch, Interrupt, and Exception Recording (Pentium M 
Processors)”

— Section 16.11, “Last Branch, Interrupt, and Exception Recording (P6 Family 
Processors)”

The following subsections of Section 16.4 describe common features of profiling 
branches. These features are generally enabled using the IA32_DEBUGCTL MSR 
(older processor may have implemented a subset or model-specific features, see 
definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

16.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last 
branch record recording, and to control freezing of LBR stack or performance 
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address 
01D9H. 

See Figure 16-3 for the MSR layout and the bullets below for a description of the 
flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
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in the last branch record (LBR) stack. For more information, see the Section 
16.5.1, “LBR Stack”.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 16.4.3, “Single-Stepping on 
Branches,” for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages 
are enabled. When the processor detects a taken branch, interrupt, or exception; 
it sends the branch record out on the system bus as a branch trace message 
(BTM). See Section 16.4.4, “Branch Trace Messages,” for more information about 
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save 
area. See Section 16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS),” 
for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set, 
BTS or BTM is skipped if CPL is 0. See Section 16.8.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set, 
BTS or BTM is skipped if CPL is greater than 0. See Section 16.8.2.

Figure 16-3.  IA32_DEBUGCTL MSR for Processors based 
on Intel Core microarchitecture
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TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception
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111214

FREEZE_WHILE_SMM_EN
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• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a 
hardware PMI request (e.g. when a counter overflows and is configured to trigger 
PMI). 

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears 
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 30-3) to 
disable all the counters. 

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an 
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL, 
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS 
fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved 
copy of IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI 
handler issues RSM to complete its service. Note that system software must 
check IA32_DEBUGCTL. to determine if the processor supports the 
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 30.12 for details of detecting the presence of IA32_PERF_CAPABILITIES 
MSR.

16.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automat-
ically begins recording branch records for taken branches, interrupts, and exceptions 
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler. This action does not clear previously 
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts 
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the 
breakpoint address registers (DR0 through DR3). This allows a backward trace from 
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the 
processor will continue to update LBR stack MSRs. This is because BTM information 
must be generated from entries in the LBR stack. A #DB does not automatically clear 
the TR flag.

16.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF 
flag in the EFLAGS register, the processor generates a single-step debug exception 
only after instructions that cause a branch.1 This mechanism allows a debugger to 
single-step on control transfers caused by branches. This “branch single stepping” 
helps isolate a bug to a particular block of code before instruction single-stepping 
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further narrows the search. The processor clears the BTF flag when it generates a 
debug exception. The debugger must set the BTF flag before resuming program 
execution to continue single-stepping on branches.

16.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace 
messages (BTMs). Thereafter, when the processor detects a branch, exception, or 
interrupt, it sends a branch record out on the system bus as a BTM. A debugging 
device that is monitoring the system bus can read these messages and synchronize 
operations with taken branch, interrupt, and exception events. 

When interrupts or exceptions occur in conjunction with a taken branch, additional 
BTMs are sent out on the bus, as described in Section 16.4.2, “Monitoring Branches, 
Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core 
microarchitecture, TR and LBR bits can not be set at the same time due to hardware 
limitation. The content of LBR stack is undefined when TR is set. 

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchi-
tecture code name Nehalem and Intel Atom processor family, the processor can 
collect branch records in the LBR stack and at the same time send/store BTMs when 
both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent 
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do 

not provide an externally visible system bus.

16.4.4.1  Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to  
systems with a front side bus (FSB). BTMs may not be visible to newer system link 
interfaces or a system bus that deviates from a traditional FSB.

16.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by 
providing a method of determining the decision path taken to reach a particular code 
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing 
records of taken branches, interrupts, and exceptions and saving them in the last 

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug 
exceptions (regardless of the value of the BTF flag). A debugger desiring debug exceptions on 
switches to a task should set the T flag (debug trap flag) in the TSS of that task. See Section 
7.2.1, “Task-State Segment (TSS).”
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branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the 
system bus as BTMs. The branch trace store (BTS) mechanism provides the addi-
tional capability of saving the branch records in a memory-resident BTS buffer, which 
is part of the DS save area. The BTS buffer can be configured to be circular so that 
the most recent branch records are always available or it can be configured to 
generate an interrupt when the buffer is nearly full so that all the branch records can 
be saved. The BTINT flag (bit 8) can be used to enable the generation of interrupt 
when the BTS buffer is full. See Section 16.4.9.2, “Setting Up the DS Save Area.” for 
additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor. 
CPL-qualified branch trace storing mechanism can help mitigate the performance 
impact of sending/logging branch trace messages.

16.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32 
processors that support the branch trace storing mechanism. The processor supports 
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 16.4.9.4. System 
software can selectively specify CPL qualification to not send/store Branch Trace 
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR 
(bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to 
specify the CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

16.4.7 Freezing LBR and Performance Counters on PMI 
Many issues may generate a performance monitoring interrupt (PMI); a PMI service 
handler will need to determine cause to handle the situation. Two capabilities that 
allow a PMI service routine to improve branch tracing and performance monitoring 
are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request 

by clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable 
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature, 
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling 
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance 
counters on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see 
Figure 30-3). The PMCs affected include both general-purpose counters and 
fixed-function counters (see Section 30.4.1, “Fixed-function Performance 
Counters”). Software must re-enable counts by writing 1s to the corresponding 
enable bits in MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to 
continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
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• A performance counter had an overflow and was programmed to signal a PMI in 
case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the 
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the 
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register 
(see Figure 30-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 30-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

16.4.8 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel 64 and IA-32 processor families. However, the number of MSRs in the 
LBR stack and the valid range of TOS pointer value can vary between different 
processor families. Table 16-3 lists the LBR stack size and TOS pointer range for 
several processor families according to the CPUID signatures of 
DisplayFamily_DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). 

The last branch recording mechanism tracks not only branch instructions (like JMP, 
Jcc, LOOP and CALL instructions), but also other operations that cause a change in 
the instruction pointer (like external interrupts, traps and faults). The branch 
recording mechanisms generally employs a set of MSRs, referred to as last branch 
record (LBR) stack. The size and exact locations of the LBR stack are generally 
model-specific (see Appendix B, “Model-Specific Registers (MSRs)” of Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3B for model-specific MSR 
addresses). 

Table 16-3.   LBR Stack Size and TOS Pointer Range 
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_2AH 16 0 to 15

06_1AH, 06_1EH, 06_1FH, 
06_2EH, 06_25H, 06_2CH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
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• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is 
listed in the LBR stack size column of Table 16-3) that store source and 
destination address of recent branches (see Figure 16-3): 

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next 
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific ) through the next 
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific) 
contains an M-bit pointer to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded. The valid range of the M-bit POS 
pointer is given in Table 16-3.

16.4.8.1  LBR Stack and Intel® 64 Processors 
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the 
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values 
into the MSR. 

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode, 
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0] 
about the format of the address that is stored in the LBR stack. Four formats are 
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of 
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of 
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective 
address) of respective source/destination.

Figure 16-4.  64-bit Address Layout of LBR MSR 

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
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— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset 
(effective address) of respective source/destination. LBR flags are supported 
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details 
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is 
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

16.4.8.2  LBR Stack and IA-32 Processors 
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the 
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of 
each 64-bit MSR. 

16.4.8.3  Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the 
last branch taken prior to an exception or an interrupt. The location of the last excep-
tion record (LER) MSRs are model specific. The MSRs that store last exception 
records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address 
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the 
MSR. In 64-bit mode, last exception records store 64-bit addresses; in compatibility 
mode, the upper 32-bits of last exception records are cleared.

16.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates 
that the processor provides the debug store (DS) mechanism. This mechanism 
allows BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5, 
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section 
30.4.4, “Precise Event Based Sampling (PEBS),”) also uses the DS save area 
provided by debug store mechanism. When CPUID.1:EDX[21] is set, the following 
BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the BTS facilities, including the ability to set the BTS and 
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

The debug store (DS) save area is a software-designated area of memory that is 
used to collect the following two types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a 

branch record is stored in the BTS buffer in the DS save area whenever a taken 
branch, interrupt, or exception is detected. 

• PEBS records — When a performance counter is configured for PEBS, a PEBS 
record is stored in the PEBS buffer in the DS save area after the counter overflow 
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occurs. This record contains the architectural state of the processor (state of the 
8 general purpose registers, EIP register, and EFLAGS register) at the next 
occurrence of the PEBS event that caused the counter to overflow. When the 
state information has been logged, the counter is automatically reset to a 
preselected value, and event counting begins again. 

NOTE
On processors based on Intel Core microarchitecture, PEBS is 
supported only for a subset of the performance events. In Intel Atom 
processor family, all performance monitoring events can be 
programmed to use PEBS.

NOTES
DS save area and recording mechanism is not available in the SMM. 
The feature is disabled on transition to the SMM mode. Similarly DS 
recording is disabled on the generation of a machine check exception 
and is cleared on processor RESET and INIT. DS recording is available 
in real address mode.
The BTS and PEBS facilities may not be available on all processors. 
The availability of these facilities is indicated by the 
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in 
the IA32_MISC_ENABLE MSR (see Appendix B).

The DS save area is divided into three parts (see Figure 16-5): buffer management 
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area 
is used to define the location and size of the BTS and PEBS buffers. The processor 
then uses the buffer management area to keep track of the branch and/or PEBS 
records in their respective buffers and to record the performance counter reset value. 
The linear address of the first byte of the DS buffer management area is specified 
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows: 
• BTS buffer base — Linear address of the first byte of the BTS buffer. This 

address should point to a natural doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written 

to. Initially, this address should be the same as the address in the BTS buffer 
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the 
BTS buffer. This address should be a multiple of the BTS record size (12 bytes) 
plus 1.

• BTS interrupt threshold — Linear address of the BTS record on which an 
interrupt is to be generated. This address must point to an offset from the BTS 
buffer base that is a multiple of the BTS record size. Also, it must be several 
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records short of the BTS absolute maximum address to allow a pending interrupt 
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This 
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be 
written to. Initially, this address should be the same as the address in the PEBS 
buffer base field.

Figure 16-5.  DS Save Area
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• PEBS absolute maximum — Linear address of the next byte past the end of the 
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes) 
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an 
interrupt is to be generated. This address must point to an offset from the PEBS 
buffer base that is a multiple of the PEBS record size. Also, it must be several 
records short of the PEBS absolute maximum address to allow a pending 
interrupt to be handled prior to processor writing the PEBS absolute maximum 
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to 
after state information has collected following counter overflow. This value allows 
state information to be collected after a preset number of events have been 
counted. 

Figures 16-6 shows the structure of a 12-byte branch record in the BTS buffer. The 
fields in each record are as follows:
• Last branch from — Linear address of the instruction from which the branch, 

interrupt, or exception was taken.
• Last branch to — Linear address of the branch target or the first instruction in 

the interrupt or exception service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken 

was predicted (set) or not predicted (clear).

Figures 16-7 shows the structure of the 40-byte PEBS records. Nominally the register 
values are those at the beginning of the instruction that caused the event. However, 
there are cases where the registers may be logged in a partially modified state. The 
linear IP field shows the value in the EIP register translated from an offset into the 
current code segment to a linear address.

Figure 16-6.  32-bit Branch Trace Record Format
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16.4.9.1  DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area 
is shown in Figure 16-8. The organization of each field in IA-32e mode operation is 
similar to that of non-IA-32e mode operation. However, each field now stores a 
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first 
byte of the DS buffer management area. 

Figure 16-7.  PEBS Record Format
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When IA-32e mode is active, the structure of a branch trace record is similar to that 
shown in Figure 16-6, but each field is 8 bytes in length. This makes each BTS record 
24 bytes (see Figure 16-9). The structure of a PEBS record is similar to that shown in 
Figure 16-7, but each field is 8 bytes in length and architectural states include 
register R8 through R15. This makes the size of a PEBS record in 64-bit mode 144 
bytes (see Figure 16-10).

Figure 16-8.  IA-32e Mode DS Save Area
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Fields in the buffer management area of a DS save area are described in Section 
16.4.9. 

The format of a branch trace record and a PEBS record are the same as the 64-bit 
record formats shown in Figures 16-9 and Figures 16-10, with the exception that the 
branch predicted bit is not supported by Intel Core microarchitecture or Intel Atom 
microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area 
for all operating modes. 

Figure 16-9.  64-bit Branch Trace Record Format

Figure 16-10.  64-bit PEBS Record Format
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The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a 
CPL-qualified BTS are described in Section 16.4.9.3 and Section 16.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on 
processors that support using DS Save area for BTS or PEBS records. However, on 
processors based on Intel NetBurst® microarchitecture, re-enabling counting 
requires writing to CCCRs. But a DS interrupt service routine on processors based on 
Intel Core or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an 

overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a 

counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the 
overflow indication of counters used in either PEBS or general-purpose counting 
(specifically: bits 0 or 1; see Figures 30-3).

16.4.9.2  Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in 
memory as described in the following procedure (See Section 30.4.4.1, “Setting up 
the PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS 
save area):

1. Create the DS buffer management information area in memory (see Section 
16.4.9, “BTS and DS Save Area,” and Section 16.4.9.1, “DS Save Area and IA-
32e Mode Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the 
IA32_DS_AREA MSR. 

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and 
edge sensitive. See Section 10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the 
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 16.4.9.5, 
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and 

marked accessed and dirty. It is the responsibility of the operating system to 
keep the pages that contain the buffer present and to mark them accessed and 
dirty. The implication is that the operating system cannot do “lazy” page-table 
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to 
contiguous linear addresses. The buffer may share a page, so it need not be 
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer 
must be aligned on a doubleword boundary and should be aligned on a cache line 
boundary. 
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• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be 
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of 
precise event records that can occur while waiting for the interrupt to be 
serviced.

• The DS save area should be in kernel space. It must not be on the same page as 
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is 
recommended that the buffers be designated as WB memory type for 
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save 
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all 
processes, such that any change to control register CR3 will not change the DS 
addresses. 

• The DS save area is expected to used only on systems with an enabled APIC. The 
LVT Performance Counter entry in the APCI must be initialized to use an interrupt 
gate instead of the trap gate.

16.4.9.3  Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 16-4), IA32_DEBUGCTL (see 
Figure 16-3), or MSR_DEBUGCTLB (see Figure 16-16) control the generation of 
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT. 
The TR flag enables the generation of BTMs. The BTS flag determines whether the 
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs 
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The 
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When 
this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch 
records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS 
interrupt threshold fields of the DS buffer management area to set up the BTS 
buffer in memory.

Table 16-4.   IA32_DEBUGCTL Flag Encodings 
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when 
the buffer is nearly full
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2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel 
Core Duo processors or later processors (or MSR_DEBUGCTLA MSR for 
processors based on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for 
Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA 
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e. 
BTS absolute maximum < 1 + size of BTS record), the results of BTS 
is undefined.
In order to prevent generating an interrupt, when working with 
circular BTS buffer, SW need to set BTS interrupt threshold to a value 
greater than BTS absolute maximum (fields of the DS buffer 
management area). It's not enough to clear the BTINT flag itself only. 

16.4.9.4  Setting Up CPL-Qualified BTS 
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR, 
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are 
shown in Table 16-5.

Table 16-5.  CPL-Qualified Branch Trace Store Encodings 
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs) 
off

1 0 X X X Generates BTMs but do not 
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer, 
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the 
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the 
BTS buffer

1 1 1 1 X Generate BTMs but do not store 
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer; 
generate an interrupt when the 
buffer is nearly full
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16.4.9.5  Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same 
interrupt vector and interrupt service routine (called the debug store interrupt 
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and 
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the 
following guidelines when writing a DS ISR to handle BTS, non-precise event-based 
sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate 

at a current privilege level of 0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share 

the same interrupt vector, the DS ISR must check for all the possible causes of 
interrupts from these facilities and pass control on to the appropriate handler. 

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer 
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by 
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an 
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to 
prevent race conditions during access to the DS save area. This is done by 
clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by 
clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These 
settings should be restored to their original values when exiting the ISR. 

• The processor will not disable the DS save area when the buffer is full and the 
circular mode has not been selected. The current DS setting must be retained 
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the 
current index into the buffer, the ISR must reset the buffer index to the beginning 
of the buffer. Otherwise, everything up to the index will look like new entries upon 
the next invocation of the ISR.

1 1 1 0 1 Store BTMs with CPL > 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the 
BTS buffer; generate an 
interrupt when the buffer is 
nearly full

Table 16-5.  CPL-Qualified Branch Trace Store Encodings  (Contd.)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
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• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via 

IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an 
overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel 
NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an 
interrupt. Clear this condition before leaving the interrupt handler.

16.5 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™2 DUO AND INTEL® 
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core 
microarchitecture or enhanced Intel Core microarchitecture provide last branch 
interrupt and exception recording. The facilities described in this section also apply to 
Intel Atom processor family. These capabilities are similar to those found in Pentium 
4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provide bit fields for software to configure mechanisms related to debug trace, 
branch recording, branch trace store, and performance counter operations. See 
Section 16.4.1 for a description of the flags. See Figure 16-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that 
store the source and destination addresses related to recently executed 
branches. See Section 16.5.1. 

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the 
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 16.4.4. 
• Last exception records — See Section 16.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 16.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7. 
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 16.4.1.
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16.5.1 LBR Stack 
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported 
across Intel Core 2, Intel Xeon and Intel Atom processor families. 

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon 
processor families:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack 

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through 
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through 
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3 
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a 
pointer to the MSR in the LBR stack that contains the most recent branch, 
interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 
family processors.

16.6 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel® 
microarchitecture code name Westmere support last branch interrupt and exception 
recording. These capabilities are similar to those found in Intel Core 2 processors and 
adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR 

provides bit fields for software to configure mechanisms related to debug trace, 
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branch recording, branch trace store, and performance counter operations. See 
Section 16.4.1 for a description of the flags. See Figure 16-11 for the MSR layout. 

• Last branch record (LBR) stack — There are 16 MSR pairs that store the 
source and destination addresses related to recently executed branches. See 
Section 16.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts 
— See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the 
LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for 
software to enable each logical processor to generate branch trace messages. 
See Section 16.4.4. However, not all BTM messages are observable using the 
Intel® QPI link.

• Last exception records — See Section 16.8.3. 
• Branch trace store and CPL-qualified BTS — See Section 16.4.6 and Section 

16.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7. 
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7. 
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to 

receive an counter overflow interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported 

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See 
Section 16.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional 
capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a 

bit field (see Figure 16-11) for software to enable each logical processor to 
receive an uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture code name 
Nehalem support filtering of LBR based on combination of CPL and branch type 
conditions. When LBR filtering is enabled, the LBR stack only captures the subset 
of branches that are specified by MSR_LBR_SELECT.
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16.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of 
MSR to record last branch record information. The layout of each MSR pair is shown 
in Table 16-6 and Table 16-7.

Figure 16-11.  IA32_DEBUGCTL MSR for Processors based 
on Intel microarchitecture code name Nehalem

Table 16-6.   IA32_LASTBRANCH_x_FROM_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself, 
This is the “branch from“ address

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register

MISPRED 63 R/O When set, indicates the branch was predicted; 
otherwise, the branch was mispredicted.

Table 16-7.   IA32_LASTBRANCH_x_TO_IP 
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch 
instruction itself, This is the “branch to“ address

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1  0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN
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Processors based on Intel microarchitecture code name Nehalem have an LBR MSR 
Stack as shown in Table 16-8.

Table 16-8.  LBR Stack Size and TOS Pointer Range

16.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all 
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the condi-
tions of subsets of branches that will not be captured in the LBR. The layout of 
MSR_LBR_SELECT is shown in Table 16-9.

16.7 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING FOR PROCESSORS BASED ON INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility 
described in Section 16.6, “Last Branch, Interrupt, and Exception Recording for 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 16-9.   MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps 

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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Processors based on Intel® Microarchitecture code name Nehalem”, apply to proces-
sors based on Intel® microarchitecture code name Sandy Bridge.

One difference of note is that MSR_LBR_SELECT is shared between two logical 
processors in the same core. In Intel microarchitecture code name Sandy Bridge, 
each logical processor has its own MSR_LBR_SELECT. The filtering semantics for 
“Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 16-10.

16.8 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (PROCESSORS BASED ON INTEL 
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture 
provide the following methods for recording taken branches, interrupts and excep-
tions:
• Store branch records in the last branch record (LBR) stack MSRs for the most 

recent taken branches, interrupts, and/or exceptions in MSRs. A branch record 
consist of a branch-from and a branch-to instruction address. 

• Send the branch records out on the system bus as branch trace messages 
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

Table 16-10.   MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring 
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except 
near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except 
near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
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To support these functions, the processor provides the following MSRs and related 
facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception 

recording; single-stepping on taken branches; branch trace messages (BTMs); 
and branch trace store (BTS). This register is named DebugCtlMSR in the P6 
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that 
the processor provides the debug store (DS) mechanism, which allows BTMs to 
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit 
4]) — Indicates that the processor provides a CPL-qualified debug store (DS) 
mechanism, which allows software to selectively skip sending and storing BTMs, 
according to specified current privilege level settings, into a memory-resident 
BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS 
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that 
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for 
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP 
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP 
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR 
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most 
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon 
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a 
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID 
family 0FH, model 03H]. See also: Table 16-11, Figure 16-12, and Section 
16.8.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture.”

• Last exception record — See Section 16.8.3, “Last Exception Records.”

16.8.1 MSR_DEBUGCTLA MSR 
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording 
mechanisms described in the previous section. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 16-12 shows the flags in the MSR_DEBUGCTLA MSR. 
The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records a running trace of the most recent branches, interrupts, and/or 
exceptions taken by the processor (prior to a debug exception being generated) 
in the last branch record (LBR) stack. Each branch, interrupt, or exception is 
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recorded as a 64-bit branch record. The processor clears this flag whenever a 
debug exception is generated (for example, when an instruction or data 
breakpoint or a single-step trap occurs). See Section 16.8.2, “LBR Stack for 
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than 
a “single-step on instructions” flag. This mechanism allows single-stepping the 
processor on taken branches. See Section 16.4.3, “Single-Stepping on 
Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages 
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or 
exception, it sends the branch record out on the system bus as a branch trace 
message (BTM). See Section 16.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to 
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See 
Section 16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities 
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to 
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set, 
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-
resident BTS buffer. See Section 16.8.2, “LBR Stack for Processors Based on Intel 
NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set, 
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the 
memory-resident BTS buffer. See Section 16.8.2, “LBR Stack for Processors 
Based on Intel NetBurst® Microarchitecture.”

Figure 16-12.  MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
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The initial implementation of BTS_OFF_USR and BTS_OFF_OS in 
MSR_DEBUGCTLA is shown in Figure 16-12. The BTS_OFF_USR and 
BTS_OFF_OS fields may be implemented on other model-specific 
debug control register at different locations.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

16.8.2 LBR Stack for Processors Based on Intel NetBurst® 
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular 
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or 
LBR MSR pair) that contains the most recent (last) branch record placed on the stack. 
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When 
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 16-11 
and Figure 16-12.

Table 16-11.  LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the 
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

Figure 16-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each 
branch record consists of two linear addresses, which represent the “from” and “to” 
instruction pointers for a branch, interrupt, or exception. The contents of the from 
and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the 

address of the branch instruction and the “to” address is the target instruction of 
the branch. 

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H; 
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at 
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H; 
MSRs at locations 6C0H-
6CFH.

16 0 to 15
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• Interrupt — If the record is for an interrupt, the “from” address the return 
instruction pointer (RIP) saved for the interrupt and the “to” address is the 
address of the first instruction in the interrupt handler routine. The RIP is the 
linear address of the next instruction to be executed upon returning from the 
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear 
address of the instruction that caused the exception to be generated and the “to” 
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with 
a branch instruction. If a branch instruction generates a trap type exception, two 
branch records are stored in the LBR stack: a branch record for the branch instruction 
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is 
stored in the LBR stack for the branch instruction followed by a record for the 
interrupt. 

16.8.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel® 
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the 
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions 
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family 
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch 

Figure 16-13.  LBR MSR Branch Record Layout for the Pentium 4 
and Intel Xeon Processor Family
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32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3 
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
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record for the last branch that the processor took prior to an exception or interrupt 
being generated.

16.9 LAST BRANCH, INTERRUPT, AND EXCEPTION 
RECORDING (INTEL® CORE™ SOLO AND INTEL® 
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and 
exception recording. This capability is almost identical to that found in Pentium 4 and 
Intel Xeon processors. There are differences in the stack and in some MSR names 
and locations. 

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at 
register address 01D9H. 
See Figure 16-14 for the layout and the entries below for a description of the 
flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 16.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception; it sends the branch record out on the system bus as 
a branch trace message (BTM). See Section 16.4.4, “Branch Trace Messages,” 
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.
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• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 16.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See 
Figure 16-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Intel Core Solo and 
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate 
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family 
processors.

For details, see Section 16.8, “Last Branch, Interrupt, and Exception Recording 
(Processors based on Intel NetBurst® Microarchitecture),” and Appendix B.9, “MSRs 
In Intel® Core™ Solo and Intel® Core™ Duo Processors.”

Figure 16-14.  IA32_DEBUGCTL MSR for Intel Core Solo 
and Intel Core Duo Processors
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LBR — Last branch/interrupt/exception
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16.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide 
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in 
the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store, 

trace messages enable, performance monitoring breakpoint flags, single 
stepping on branches, and last branch. For Pentium M processors, this MSR is 
located at register address 01D9H. See Figure 16-16 and the entries below for a 
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 
processor records a running trace of the most recent branches, interrupts, 
and/or exceptions taken by the processor (prior to a debug exception being 
generated) in the last branch record (LBR) stack. For more information, see 
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor 
treats the TF flag in the EFLAGS register as a “single-step on branches” flag 
rather than a “single-step on instructions” flag. This mechanism allows 
single-stepping the processor on taken branches. See Section 16.4.3, 
“Single-Stepping on Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) — 
When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The 
processor asserts then deasserts the corresponding BPi# pin when a 
breakpoint match occurs. When a PBi flag is clear, the performance 
monitoring/breakpoint pins report performance events. Processor execution 
is not affected by reporting performance events.

Figure 16-15.  LBR Branch Record Layout for the Intel Core Solo 
and Intel Core Duo Processor
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— TR (trace message enable) flag (bit 6) — When set, branch trace 
messages are enabled. When the processor detects a taken branch, 
interrupt, or exception, it sends the branch record out on the system bus as a 
branch trace message (BTM). See Section 16.4.4, “Branch Trace Messages,” 
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS 
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS 
save area. See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS 
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are 
logged to the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace 
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID 
instruction — Indicates that the processor provides the debug store (DS) 
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer. 
See Section 16.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs 
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’ 
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs 
are located at register addresses 040H-047H. See Figure 16-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR 
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the 
most recent branch, interrupt, or exception recorded. For Pentium M Processors, 
this MSR is located at register address 01C9H.

Figure 16-16.  MSR_DEBUGCTLB MSR for Pentium M Processors
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For more detail on these capabilities, see Section 16.8.3, “Last Exception Records,” 
and Appendix B.10, “MSRs In the Pentium M Processor.”

16.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt, 
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to 
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each 
of the last branch recording MSRs.

16.11.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables 
last branch, interrupt, and exception recording; taken branch breakpoints; the 
breakpoint reporting pins; and trace messages. This register can be written to using 
the WRMSR instruction, when operating at privilege level 0 or when in real-address 
mode. A protected-mode operating system procedure is required to provide user 
access to this register. Figure 16-18 shows the flags in the DEBUGCTLMSR register 
for the P6 family processors. The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the 

processor records the source and target addresses (in the LastBranchToIP, 
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the 
last branch and the last exception or interrupt taken by the processor prior to a 
debug exception being generated. The processor clears this flag whenever a 
debug exception, such as an instruction or data breakpoint or single-step trap 
occurs.

Figure 16-17.  LBR Branch Record Layout for the Pentium M Processor
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• BTF (single-step on branches) flag (bit 1) — When set, the processor treats 
the TF flag in the EFLAGS register as a “single-step on branches” flag. See 
Section 16.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5) 
— When these flags are set, the performance monitoring/breakpoint pins on the 
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the 
corresponding breakpoint-address registers (DR0 through DR3). The processor 
asserts then deasserts the corresponding BPi# pin when a breakpoint match 
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins 
report performance events. Processor execution is not affected by reporting 
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are 
enabled as described in Section 16.4.4, “Branch Trace Messages.” Setting this 
flag greatly reduces the performance of the processor. When trace messages are 
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

16.11.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording 
the instruction pointers for the last branch, interrupt, or exception that the processor 
took prior to a debug exception being generated. When a branch occurs, the 
processor loads the address of the branch instruction into the LastBranchFromIP MSR 
and loads the target address for the branch into the LastBranchToIP MSR. 

When an interrupt or exception occurs (other than a debug exception), the address 
of the instruction that was interrupted by the exception or interrupt is loaded into the 
LastBranchFromIP MSR and the address of the exception or interrupt handler that is 
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record 
the instruction pointers for the last branch that the processor took prior to an excep-

Figure 16-18.  DEBUGCTLMSR Register (P6 Family Processors)
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tion or interrupt being generated. When an exception or interrupt occurs, the 
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these 
registers before the to and from addresses of the exception or interrupt are recorded 
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as 
opposed to linear addresses, which are saved in last branch records for the Pentium 
4 and Intel Xeon processors.

16.11.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically 
begins recording branches that it takes, exceptions that are generated (except for 
debug exceptions), and interrupts that are serviced. Each time a branch, exception, 
or interrupt occurs, the processor records the to and from instruction pointers in the 
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to 
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the 
LBR flag before executing the exception handler, but does not touch the last branch 
and last exception MSRs. The addresses for the last branch, interrupt, or exception 
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the 
addresses of the last branch prior to an interrupt or exception are retained in the 
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in 
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward 
trace from the manifestation of a particular bug toward its source. Because the 
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software 
must determine the segment base address of the code segment associated with the 
control transfer to calculate the linear address to be placed in the breakpoint-address 
registers. The segment base address can be determined by reading the segment 
selector for the code segment from the stack and using it to locate the segment 
descriptor for the segment in the GDT or LDT. The segment base address can then be 
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler 
must set the LBR flag again to re-enable last branch and last exception/interrupt 
recording.
16-48 Vol. 3A



DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a 
time-stamp counter mechanism that can be used to monitor and identify the relative 
time occurrence of processor events. The counter’s architecture includes the 
following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter. 

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and 

Pentium processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp 

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M, 
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later 
processors) is a 64-bit counter that is set to 0 following a RESET of the processor. 
Following a RESET, the counter increments even when the processor is halted by the 
HLT instruction or the external STPCLK# pin. Note that the assertion of the external 
DPSLP# pin may cause the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4 

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]); 
and for P6 family processors: the time-stamp counter increments with every 
internal processor clock cycle. 
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the 
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and 
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model 
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors 
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family 
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H], 
DisplayModel [1CH]): the time-stamp counter increments at a constant rate. 
That rate may be set by the maximum core-clock to bus-clock ratio of the 
processor or may be set by the maximum resolved frequency at which the 
processor is booted. The maximum resolved frequency may differ from the 
maximum qualified frequency of the processor, see Section 30.11.5 for more 
detail.
The specific processor configuration determines the behavior. Constant TSC 
behavior ensures that the duration of each clock tick is uniform and supports the 
use of the TSC as a wall clock timer even if the processor core changes frequency. 
This is the architectural behavior moving forward.
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NOTE
To determine average processor clock frequency, Intel recommends 
the use of EMON logic to count processor core clocks over the period 
of time for which the average is required. See Section 30.11, 
“Counting Clocks,” and Appendix A, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a 
monotonically increasing unique value whenever executed, except for a 64-bit 
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for 
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures 
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of 
this instruction to be restricted to programs and procedures running at privilege level 
0. A secure operating system would set the TSD flag during system initialization to 
disable user access to the time-stamp counter. An operating system that disables 
user access to the time-stamp counter should emulate the instruction through a 
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not 
necessarily wait until all previous instructions have been executed before reading the 
counter. Similarly, subsequent instructions may begin execution before the RDTSC 
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating 
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel 
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using 
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter 
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of 
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For 
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for 
family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

16.12.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred 
to as invariant TSC. Processor’s support for invariant TSC is indicated by 
CPUID.80000007H:EDX[8]. 

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is 
the architectural behavior moving forward. On processors with invariant TSC 
support, the OS may use the TSC for wall clock timer services (instead of ACPI or 
HPET timers). TSC reads are much more efficient and do not incur the overhead 
associated with a ring transition or access to a platform resource.
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16.12.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary 
TSC register, IA32_TSC_AUX that is designed to be used in conjunction with 
IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged soft-
ware with a signature value (for example, a logical processor ID). 

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow soft-
ware to read the 64-bit time stamp in IA32_TSC and signature value in 
IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. RDTSCP returns 
the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX. 
The atomicity of RDTSCP ensures that no context switch can occur between the reads 
of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC 
instruction, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred 
between successive reads of the TSC. It can also be used to adjust for per-CPU differ-
ences in TSC values in a NUMA system.
Vol. 3A 16-51



DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16-52 Vol. 3A



CHAPTER 17
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to 
execute new or legacy programs that are assembled and/or compiled to run on an 
Intel 8086 processor: 
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and 
system management mode (SMM). 

When the processor is powered up or reset, it is placed in the real-address mode. 
This operating mode almost exactly duplicates the execution environment of the 
Intel 8086 processor, with some extensions. Virtually any program assembled and/or 
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this 
mode.

When running in protected mode, the processor can be switched to virtual-8086 
mode to run 8086 programs. This mode also duplicates the execution environment of 
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program 
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run 
under an operating system (such as Microsoft Windows*) that takes advantage of 
protected mode and to use protected-mode facilities, such as the protected-mode 
interrupt- and exception-handling facilities. Protected-mode multitasking permits 
multiple virtual-8086 mode tasks (with each task running a separate 8086 program) 
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and 
the virtual-8086-mode execution environment, available on the IA-32 processors 
beginning with the Intel386 processor. 

17.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086, 
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of 
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon 
processors.

The execution environment of the processor in real-address mode is designed to 
duplicate the execution environment of the Intel 8086 processor. To an 8086 
program, a processor operating in real-address mode behaves like a high-speed 
8086 processor. The principal features of this architecture are defined in Chapter 3, 
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1.
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The following is a summary of the core features of the real-address mode execution 
environment as would be seen by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section 

17.1.1, “Address Translation in Real-Address Mode”, for specific details). This 
address space is divided into segments, each of which can be up to 64 KBytes in 
length. The base of a segment is specified with a 16-bit segment selector, which 
is zero extended to form a 20-bit offset from address 0 in the address space. An 
operand within a segment is addressed with a 16-bit offset from the base of the 
segment. A physical address is thus formed by adding the offset to the 20-bit 
segment base (see Section 17.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size 
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI, 
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and 
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS 
registers are accessible to programs that explicitly access them.) The CS register 
contains the segment selector for the code segment; the DS and ES registers 
contain segment selectors for data segments; and the SS register contains the 
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP 
register. Note this register is a 32-bit register and unintentional address wrapping 
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is 
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 17.1.3, “Instructions 
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and 
invocations of interrupt and exception handlers. This stack is contained in the 
stack segment identified with the SS register. The SP (stack pointer) register 
contains an offset into the stack segment. The stack grows down (toward lower 
segment offsets) from the stack pointer. The BP (base pointer) register also 
contains an offset into the stack segment that can be used as a pointer to a 
parameter list. When a CALL instruction is executed, the processor pushes the 
current instruction pointer (the 16 least-significant bits of the EIP register and, 
on far calls, the current value of the CS register) onto the stack. On a return, 
initiated with a RET instruction, the processor pops the saved instruction pointer 
from the stack into the EIP register (and CS register on far returns). When an 
implicit call to an interrupt or exception handler is executed, the processor 
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the 
stack. On a return from an interrupt or exception handler, initiated with an IRET 
instruction, the processor pops the saved instruction pointer and EFLAGS image 
from the stack into the EIP, CS, and EFLAGS registers.
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• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is 
provided for handling interrupts and exceptions (see Figure 17-2). The interrupt 
table (which has 4-byte entries) takes the place of the interrupt descriptor table 
(IDT, with 8-byte entries) used when handling protected-mode interrupts and 
exceptions. Interrupt and exception vector numbers provide an index to entries 
in the interrupt table. Each entry provides a pointer (called a “vector”) to an 
interrupt- or exception-handling procedure. See Section 17.1.4, “Interrupt and 
Exception Handling”, for more details. It is possible for software to relocate the 
IDT by means of the LIDT instruction on IA-32 processors beginning with the 
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math 
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the 
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and 
Intel 8086 processors is required, these features should not be used in new programs 
written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32 

processors can be executed in real-address mode (see Section 17.1.3, “Instruc-
tions Supported in Real-Address Mode”). 

• The 32-bit operand prefix can be used in real-address mode programs to execute 
the 32-bit forms of instructions. This prefix also allows real-address mode 
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing 
32-bit offsets.

The following sections describe address formation, registers, available instructions, 
and interrupt and exception handling in real-address mode. For information on I/O in 
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1. 

17.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes 
into a descriptor table; instead, it uses them directly to form linear addresses as the 
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit 
base address (see Figure 17-1). The offset into a segment is added to the base 
address to create a linear address that maps directly to the physical address space. 

When using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of 
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64 
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating 
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in real-address mode, however, the processor does not truncate such an address and 
uses it as a physical address. (Note, however, that for IA-32 processors beginning 
with the Intel486 processor, the A20M# signal can be used in real-address mode to 
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the 
8086 processor.) Care should be take to ensure that A20M# based address wrapping 
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit 
offsets using an address override prefix; however, in real-address mode, the value of 
a 32-bit offset may not exceed FFFFH without causing an exception. 

For full compatibility with Intel 286 real-address mode, pseudo-protection faults 
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through 
FFFFH.

17.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for 
the 8086 processor plus the new registers introduced in later IA-32 processors, such 
as the FS and GS segment registers, the debug registers, the control registers, and 
the floating-point unit registers. The 32-bit operand prefix allows a real-address 
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX, 
ESP, EBP, ESI, and EDI).

17.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If 
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only 
these instructions should be used in a new program written to run in real-address 
mode.

Figure 17-1.  Real-Address Mode Address Translation
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• Move (MOV) instructions that move operands between general-purpose 
registers, segment registers, and between memory and general-purpose 
registers.

• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC, 

CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment 

registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and 

POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286 
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate 

data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD. 
• String instructions MOVS, CMPS, SCAS, LODS, and STOS. 
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• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT, 

LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the 
previous two lists) in real-address mode result in an invalid-opcode exception (#UD) 
being generated.

17.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode. 
Even during the early stages of processor initialization when the processor is still in 
real-address mode, elementary real-address mode interrupt and exception-handling 
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar 
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is 
called the interrupt descriptor table (IDT), but in real-address mode, the table is 
usually called the interrupt vector table, or simply the interrupt table.) The entry 
in the interrupt vector table provides a pointer to an interrupt- or exception-handler 
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an 
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16 
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted program. Exceptions do not return error 
codes in real-address mode.
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The interrupt vector table is an array of 4-byte entries (see Figure 17-2). Each entry 
consists of a far pointer to a handler procedure, made up of a segment selector and 
an offset. The processor scales the interrupt or exception vector by 4 to obtain an 
offset into the interrupt table. Following reset, the base of the interrupt vector table 
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086 
processor, the base address and limit of the interrupt vector table cannot be 
changed. In the later IA-32 processors, the base address and limit of the interrupt 
vector table are contained in the IDTR register and can be changed using the LIDT 
instruction. 

(For backward compatibility to Intel 8086 processors, the default base address and 
limit of the interrupt vector table should not be changed.)

Table 17-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter 
6, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 17-2.  Interrupt Vector Table in Real-Address Mode
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17.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode. 
When the operating-system or executive switches to a virtual-8086-mode task, the 
processor emulates an Intel 8086 processor. The execution environment of the 
processor while in the 8086-emulation state is the same as is described in Section 
17.1, “Real-Address Mode” for real-address mode, including the extensions. The 
major difference between the two modes is that in virtual-8086 mode the 8086 
emulator uses some protected-mode services (such as the protected-mode interrupt 
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled 
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode 
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking 
facilities.

Table 17-1.  Real-Address Mode Exceptions and Interrupts

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
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17.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the 
EFLAGS register is set. This flag can only be set when the processor switches to a 
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS 
register (for example, by using the POPFD instruction). Instead it changes the flag in 
the image of the EFLAGS register stored in the TSS or on the stack following a call to 
an interrupt- or exception-handler procedure. For example, software sets the VM flag 
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style 

address translation.
• When decoding instructions, to determine which instructions are not supported in 

virtual-8086 mode and which instructions are sensitive to IOPL.
• When checking privileged instructions, on page accesses, or when performing 

other permission checks. (Virtual-8086 mode always executes at CPL 3.)

17.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit 
TSS does not load the most-significant word of the EFLAGS register, which contains 
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in 
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps 
to the virtual-8086 monitor from virtual-8086 mode.

Table 17-1.  Real-Address Mode Exceptions and Interrupts (Contd.)

Vector 
No.

Description Real-Address 
Mode

Virtual-8086 
Mode

Intel 8086 
Processor
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The processor enters virtual-8086 mode to run the 8086 program and returns to 
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL 
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O 
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As 
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor 
also may need data-segment descriptors so it can examine the IDT or other parts of 
the 8086 program in the first 1 MByte of the address space. The linear addresses 
above 10FFEFH are available for the monitor, the operating system, and other system 
software.

The 8086 operating-system services consists of a kernel and/or operating-system 
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either 

of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach 
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated 
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure 
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the 
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may 
result in different virtual-8086-mode tasks using different 8086 operating-system 
services.

17.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear 
addresses, the processor converts these addresses into 32-bit linear addresses 
before mapping them to the physical address space. If paging is being used, the 
8086 address space for a program running in virtual-8086 mode can be paged and 
located in a set of pages in physical address space. If paging is used, it is transparent 
to the program running in virtual-8086 mode just as it is for any task running on the 
processor.
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Paging is not necessary for a single virtual-8086-mode task, but paging is useful or 
necessary in the following situations:
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1 

MByte of the linear address space for each virtual-8086-mode task to be mapped 
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When 
using 8086-style address translation, it is possible to specify addresses larger 
than 1 MByte. These addresses automatically wraparound in the Intel 8086 
processor (see Section 17.1.1, “Address Translation in Real-Address Mode”). If 
any 8086 programs depend on address wraparound, the same effect can be 
achieved in a virtual-8086-mode task by mapping the linear addresses between 
100000H and 110000H and linear addresses between 0 and 10000H to the same 
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common 
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

17.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the 
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for 

the 8086 program. An 8086 processor task cannot generate addresses outside 
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and 
other system software in the virtual-8086 mode task space. When the processor 
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has 
only user privileges. If the pages of the virtual-8086 monitor have supervisor 
privilege, they cannot be accessed by the 8086 program.

17.2.5 Entering Virtual-8086 Mode
Figure 17-3 summarizes the methods of entering and leaving virtual-8086 mode. 
The processor switches to virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in 

the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is 

set to 1 in the EFLAGS register image on the stack.
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When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of 
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag 
when it loads the EFLAGS register.) The processor updates the VM flag prior to 
loading the segment registers from their images in the new TSS. The new setting of 
the VM flag determines whether the processor interprets the contents of the segment 
registers as 8086-style segment selectors or protected-mode segment selectors. 
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses. 

See Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception 
handler.
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Figure 17-3.  Entering and Leaving Virtual-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

Task Switch1

VM = 1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

IRET4

Interrupt or
Exception2

VM = 0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:
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17.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the 
processor leaving virtual-8086 mode (see Figure 17-3):
• The processor services a hardware interrupt generated to signal the suspension 

of execution of the virtual-8086 application. This hardware interrupt may be 
generated by a timer or other external mechanism. Upon receiving the hardware 
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the 
protected-mode IDT or through a trap or interrupt gate that points to a handler 
that initiates a task switch. A task switch from a virtual-8086 task to another task 
loads the EFLAGS register from the TSS of the new task. The value of the VM flag 
in the new EFLAGS determines if the new task executes in virtual-8086 mode or 
not.

• The processor services an exception caused by code executing the virtual-8086 
task or services a hardware interrupt that “belongs to” the virtual-8086 task. 
Here, the processor enters protected mode and services the exception or 
hardware interrupt through the protected-mode IDT (normally through an 
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context 
of the virtual 8086 task and return to virtual-8086 mode on a return from the 
handler procedure. The processor may also execute a task switch and handle the 
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the 
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating 
system routine). The processor provides several methods of handling these 
software interrupts, which are discussed in detail in Section 17.3.3, “Class 
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the 
processor entering protected mode, often by means of a general-protection 
(#GP) exception. In protected mode, the processor can send the interrupt to the 
virtual-8086 monitor for handling and/or redirect the interrupt back to the 
application program running in virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the 
VME flag in control register CR4) are capable of redirecting software-generated 
interrupts back to the program’s interrupt handlers without leaving virtual-8086 
mode. See Section 17.3.3.4, “Method 5: Software Interrupt Handling”, for more 
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of 
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086 
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the 
virtual-8086 monitor. The virtual-8086 monitor then determines the correct 
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execution sequence after verifying that it was entered as a result of a HLT 
execution.

See Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated 
in virtual-8086 mode.

17.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF, 
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS 
instructions, which are sensitive to IOPL in protected mode, are not sensitive in 
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an 
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

17.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports. 
This practice may cause problems in a multitasking environment. If more than one 
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the 
environment and transparent to 8086 programs. Designers may take any of several 
possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to 

perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are 
I/O-port mapped or memory mapped.

17.2.8.1  I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on 
attempts to access specific I/O port addresses. The I/O permission bit map of each 
virtual-8086-mode task determines which I/O addresses generate exceptions for 
that task. Because each task may have a different I/O permission bit map, the 
addresses that generate exceptions for one task may be different from the addresses 
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for another task. This differs from protected mode in which, if the CPL is less than or 
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map. 
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 1, for more information about the I/O permission bit 
map.

17.2.8.2  Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can 
be used to generate exceptions for attempts to access I/O ports. The virtual-8086 
monitor may use paging to control memory-mapped I/O in these ways:
• Map part of the linear address space of each task that needs to perform I/O to the 

physical address space where I/O ports are placed. By putting the I/O ports at 
different addresses (in different pages), the paging mechanism can enforce 
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This 
generates an exception whenever a task attempts to perform I/O to those pages. 
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an 
exception for only the first attempt to access I/O. The system software then may 
determine whether a program can be given exclusive control of I/O temporarily, the 
protection of the I/O space may be lifted, and the program allowed to run at full 
speed.

17.2.8.3  Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be 
emulated using page mapping. The linear space for the buffer can be mapped to a 
different physical space for each virtual-8086-mode task. The virtual-8086 monitor 
then can control which virtual buffer to copy onto the real buffer in the physical 
address space.

17.3 INTERRUPT AND EXCEPTION HANDLING 
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in 
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in 
protected or real-address mode. The interrupt or exception handler that is invoked 
and the mechanism used to invoke it depends on the class of interrupt or exception 
that has been detected or generated and the state of various system flags and fields.
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In virtual-8086 mode, the interrupts and exceptions are divided into three classes for 
the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts, 

including the NMI interrupt and the hardware interrupts sent to the processor’s 
external interrupt delivery pins. All class 1 exceptions and interrupts are handled 
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2, 
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with 
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the 
setting of the following flags and fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3 

software interrupts are handled when the processor is in virtual-8086 mode (see 
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also 
controls the enabling of the VIF and VIP flags in the EFLAGS register when the 
VME flag is set. The VIF and VIP flags are provided to assist in the handling of 
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension 
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see 
Figure 17-5) — Contains 256 flags that indicates how class 3 software 
interrupts should be handled when they occur in virtual-8086 mode. A software 
interrupt can be directed either to the interrupt and exception handlers in the 
currently running 8086 program or to the protected-mode interrupt and 
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP) 
in the EFLAGS register — Provides virtual interrupt support for the handling 
of class 2 maskable hardware interrupts (see Section 17.3.2, “Class 2—Maskable 
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”). 

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP 
flags are only available in IA-32 processors that support the virtual 
mode extensions. These extensions were introduced in the IA-32 
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible 
actions of interrupt and exception handlers for the two classes of interrupts described 

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3, 
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2A).
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in the previous paragraphs. These sections describe three possible types of interrupt 
and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the 

standard handlers that the processor calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers 

are resident in the virtual-8086 monitor, and they are commonly accessed 
through a general-protection exception (#GP, interrupt 13) that is directed to the 
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part 
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the 
selected class and method of interrupt and exception handling.

17.3.1 Class 1—Hardware Interrupt and Exception Handling in 
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors 
handle hardware interrupts and exceptions in the same manner as they are handled 
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt 
or exception handler that the interrupt or exception vector points to in the IDT. Here, 
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The 
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 17.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt 
mechanism that is available for handling maskable hardware interrupts while in 
virtual-8086 mode. When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled in the same manner as exceptions, as 
described in the following sections.

17.3.1.1  Handling an Interrupt or Exception Through a Protected-Mode 
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the 
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment. 
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the 
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 17-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the 
stack and then clearing the registers lets the interrupt or exception handler safely 
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save and restore these registers regardless of the type segment selectors they 
contain (protected-mode or 8086-style). The interrupt and exception handlers, 
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the 
registers for any task. Clearing these registers before execution of the IRET 
instruction does not cause a trap in the interrupt handler. Interrupt procedures 
that expect values in the segment registers or that return values in the segment 
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt 
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a 
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code 
segment to which a call was attempted.

Figure 17-4.  Privilege Level 0 Stack After Interrupt or 
Exception in Virtual-8086 Mode
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Interrupt and exception handlers can examine the VM flag on the stack to determine 
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or 
exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle 

the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086 

monitor to handle the interrupt or exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086 

program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler 
can return to the interrupted program in virtual-8086 mode by executing an IRET 
instruction. This instruction loads the EFLAGS and segment registers from the 
images saved in the privilege level 0 stack (see Figure 17-4). A set VM flag in the 
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at 
the time the IRET instruction is executed must be 0, otherwise the processor does 
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt 
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or 
exception handler calls the virtual-8086 monitor to handle the interrupt or exception, 
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode 
program requires two return instructions: a RET instruction to return to the 
protected-mode handler and an IRET instruction to return to the interrupted 
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back 
to an interrupt or exception handler that is part of the interrupted 8086 program, as 
described in Section 17.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

17.3.1.2  Handling an Interrupt or Exception With an 8086 Program 
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a 
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at 
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the 
8086 program can handle the interrupt or exception. The virtual-8086 monitor must 
carry out the following steps to send an interrupt or exception back to the 8086 
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the 
8086 program interrupt table.
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2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086 
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level 
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086 
monitor, restore the return link on the privilege-level 0 stack to point to the 
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack 
to the privilege-level 0 stack (because some 8086 handlers modify these flags to 
return information to the code that caused the interrupt). 

7. Execute an IRET instruction to pass control back to the interrupted 8086 
program.

Note that if an operating system intends to support all 8086 MS-DOS-based 
programs, it is necessary to use the actual 8086 interrupt and exception handlers 
supplied with the program. The reason for this is that some programs modify their 
own interrupt vector table to substitute (or hook in series) their own specialized 
interrupt and exception handlers.

17.3.1.3  Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor 
performs a task switch to the selected interrupt- or exception-handling task. The 
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of 
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the 
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler 
task.

When an IRET instruction is executed in the handler task and the NT flag in the 
EFLAGS register is set, the processors switches from a protected-mode interrupt- or 
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and 
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to 
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is 
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executed must be 0, otherwise the processor does not change the state of the VM 
flag. 

17.3.2 Class 2—Maskable Hardware Interrupt Handling in 
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the 
INTR# pin or through an interrupt request to the local APIC (see Section 6.3.2, 
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from 
interrupting an executing program or task by clearing the IF flag in the EFLAGS 
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS 
register is less than 3, two additional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over 
handling maskable hardware interrupts that occur during virtual-8086 mode tasks. 
They also reduce interrupt-handling overhead, by eliminating the need for all IF 
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the 
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that 
support the virtual mode extensions. These extensions were 
introduced in the IA-32 architecture with the Pentium processor. 
When this mechanism is either not available or not enabled, 
maskable hardware interrupts are handled as class 1 interrupts. 
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can 
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to 
enable and disable maskable hardware interrupts, respectively; for example, to 
disable interrupts while handling another interrupt or an exception. This practice 
works well in single task environments, but can cause problems in multitasking and 
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts. 
When using earlier IA-32 processors, this problem was often solved by creating a 
virtual IF flag in software. The IA-32 processors (beginning with the Pentium 
processor) provide hardware support for this virtual IF flag through the VIF and VIP 
flags.

The VIF flag is a virtualized version of the IF flag, which an application program 
running from within a virtual-8086 task can used to control the handling of maskable 
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions 
operate on the VIF flag instead of the IF flag. When an 8086 program executes the 
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CLI instruction, the processor clears the VIF flag to request that the virtual-8086 
monitor inhibit maskable hardware interrupts from interrupting program execution; 
when it executes the STI instruction, the processor sets the VIF flag requesting that 
the virtual-8086 monitor enable maskable hardware interrupts for the 8086 
program. But actually the IF flag, managed by the operating system, always controls 
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF 
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or 
pending) maskable hardware interrupt. This flag is read by the processor but never 
explicitly written by the processor; it can only be written by software. 

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives 
a maskable hardware interrupt (interrupt vector 0 through 255), the processor 
performs and the interrupt handler software should perform the following 
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt 
received, as described in the following steps. These steps are almost identical to 
those described for method 1 interrupt and exception handling in Section 
17.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or 
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of 
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see 
Figure 17-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the 
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes 
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register. 

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the 
EFLAGS image on the stack to indicate that there is a deferred interrupt 
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it 
“belongs” to the 8086 program running in the interrupted virtual-8086 task; 
otherwise, it can call the protected-mode interrupt handler to handle the 
interrupt.

4. The protected-mode handler executes a return to the program executing in 
virtual-8086 mode.
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5. Upon returning to virtual-8086 mode, the processor continues execution of the 
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it 
executes the STI instruction to set the VIF flag (enabling maskable hardware 
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP 
flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the 

VIF flag. 
• If the VIP flag is set (indicating a pending interrupt), the processor generates a 

general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception 
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086 
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack, 
and then execute a return to the virtual-8086 mode. The next time the processor 
receives a maskable hardware interrupt, it will then handle it as described in steps 1 
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an 
instruction, it generates a general-protection exception. This action allows the 
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task 
for which the VIF flag is enabled. Note that this situation can only occur immediately 
following execution of a POPF or IRET instruction or upon entering a virtual-8086 
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or 
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also 
available for use in protected mode, see Section 17.4, “Protected-
Mode Virtual Interrupts”.

17.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the 
INT n instruction) while in virtual-8086 mode, it can use any of six different methods 
to handle the interrupt. The method selected depends on the settings of the VME flag 
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 17-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag, 
IOPL field, and the bits in the interrupt redirection bit map for each method. The table 
also summarizes the various actions the processor takes for each method. 

The VME flag enables the virtual mode extensions for the Pentium and later IA-32 
processors. When this flag is clear, the processor responds to interrupts and excep-
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tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor 
does. When this flag is set, the virtual mode extension provides the following 
enhancements to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by 

allowing the processor to bypass the virtual-8086 monitor and redirect software 
interrupts back to the interrupt handlers that are part of the currently running 
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit 
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 17-5) is a 32-byte field in the 
TSS. This map is located directly below the I/O permission bit map in the TSS. Each 
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the 
interrupt redirection bit map (which maps to vector zero in the interrupt table) is 
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit 
map is set, it indicates that the associated software interrupt (interrupt generated 
with an INT n instruction) should be handled through the protected-mode IDT and 
interrupt and exception handlers. When a bit in this bit map is clear, the processor 
redirects the associated software interrupt back to the interrupt table in the 8086 
program (located at linear address 0 in the program’s address space). 

NOTE
The software interrupt redirection bit map does not affect hardware 
generated interrupts and exceptions. Hardware generated interrupts 
and exceptions are always handled by the protected-mode interrupt 
and exception handlers.
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Table 17-2.  Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in 
Redir. 

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto 

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0  < 3 X Interrupt directed to protected-mode general-protection 
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection 
exception (#GP) handler; VIF and VIP flag support for handling 
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see 
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS 
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and 
VIP flag support for handling class 2 maskable hardware 
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in 

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler; 

when set to 1, interrupt is directed to protected-mode handler.
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Redirecting software interrupts back to the 8086 program potentially speeds up 
interrupt handling because a switch back and forth between virtual-8086 mode and 
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3, 
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 17.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt 
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS 
register for handling maskable hardware interrupts.

17.3.3.1  Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium 
or later IA-32 processor handles software interrupts in the same manner as they are 
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 17-5.  Software Interrupt Redirection Bit Map in TSS
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rupt handler in the protected-mode IDT pointed to by the interrupt vector. See 
Section 17.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 
Mode”, for a complete description of this mechanism and its possible uses.

17.3.3.2  Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP). 
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3. 
Here the IOPL value is used to bypass the protected-mode interrupt handlers and 
cause any software interrupt that occurs in virtual-8086 mode to be treated as a 
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as 
described in Section 17.3.1.2, “Handling an Interrupt or Exception With an 8086 
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and 
the corresponding bit for the software interrupt in the software interrupt redirection 
bit map is set to 1. Here, the processor performs the same operation as it does for 
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled 
using method 6 (see Section 17.3.3.5, “Method 6: Software Interrupt Handling”).

17.3.3.3  Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see 
Section 17.3.3.1, “Method 1: Software Interrupt Handling”).

17.3.3.4  Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting 
software interrupts (invoked with the INT n instruction) that occur in virtual 8086 
mode back to the 8086 program’s interrupt vector table and its interrupt handlers. 
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and 
the bit for the interrupt vector in the redirection bit map is set to 0. The processor 
performs the following actions to make an implicit call to the selected 8086 program 
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack. 
(Only the 16 least-significant bits of the EIP register are pushed and no stack 
switch occurs.)
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3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry 
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP 
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is 
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to 
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to 
protected mode does not occur. The processor remains in virtual-8086 mode 
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor 
takes when handling software interrupts in real-address mode. The benefit of using 
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086 
monitor, then to the 8086 program handler, then back again to the virtual-8086 
monitor, before returning to the interrupted 8086 program (see Section 17.3.1.2, 
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception 
Handler”). 

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach 
requires all virtual-8086 tasks to use the same software interrupt 
handlers, which generally does not give sufficient latitude to the 
programs running in the virtual-8086 tasks, particularly MS-DOS 
programs.

17.3.3.5  Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less 
than 3, and the bit for the interrupt or exception vector in the redirection bit map is 
set to 0. With method 6 interrupt handling, software interrupts are handled in the 
same manner as was described for method 5 handling (see Section 17.3.3.4, 
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF 
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support 
for handling class 2 maskable hardware interrupts (see Section 17.3.2, “Class 
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual 
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
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cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is 
enabled, the information pushed on the stack by the processor when invoking the 
interrupt handler is slightly different between methods 5 and 6 (see Table 17-2).

17.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF 
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without 
causing a general-protection exception (#GP) or affecting hardware interrupts. 

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and 
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a 
CPL of 3 can inhibit interrupts in the same manner as is described in Section 17.3.2, 
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the 
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application 
executes the CLI instruction, the processor clears the VIF flag. If the processor 
receives a maskable hardware interrupt, the processor invokes the protected-mode 
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register. 
If the VIF flag is clear (indicating that the active task does not want to have interrupts 
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and 
returns to the privilege-level 3 application, which continues program execution. 
When the application executes a STI instruction to set the VIF flag, the processor 
automatically invokes the general-protection exception handler, which can then 
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and 
executes a return to the application program. The next time the processor receives a 
maskable hardware interrupt, the processor will handle it in the normal manner for 
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register), 
the protected-mode virtual interrupt extension only affects maskable hardware 
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are 
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in 
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then 
the CLI and STI instructions execute in a manner compatible with the Intel486 
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level 
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI 
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of 
whether protected-mode virtual interrupts are enabled.
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It is only possible to enter virtual-8086 mode through a task switch or the execution 
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting 
to a protected-mode interrupt handler (typically the general-protection exception 
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the 
EFLAGS register is saved and restored. This is not true, however, in protected mode 
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is 
possible to call a procedure at a different privilege level, in which case the EFLAGS 
register is not saved or modified. However, the states of VIF and VIP flags are never 
examined by the processor when the CPL is not 3.
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CHAPTER 18
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or 
32-bit modules. Table 18-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program 
modules. They can, however, also execute 16-bit program modules, in any of the 
following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task 

are all configured as a 16-bit segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy 
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor 
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling 
system initialization or to run in SMM for handling system management functions. 
See Chapter 17, “8086 Emulation,” for detailed information on real-address mode 
and virtual-8086 mode; see Chapter 26, “System Management Mode,” for informa-
tion on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program 
modules when operating in protected mode and how to mix 16-bit and 32-bit code 
within 32-bit code segments.

Table 18-1.  Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address 
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to 
Code Segments of This Size

16 Bits 32 Bits
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18.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and 
support 16-bit and 32-bit segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and 
address-size for the instructions of a code segment. (In real-address mode and 
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A 
code segment with its D flag set is a 32-bit segment; a code segment with its D flag 
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the 
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack 
references. The B flag for all data descriptors also controls upper address range for 
expand down segments.

When transferring program control to another code segment through a call gate, 
interrupt gate, or trap gate, the operand size used during the transfer is determined 
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer 
instruction). The gate type determines how return information is saved on the stack 
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or 
tasks should have the D flag in the code-segment descriptor and the B flag in the 
stack-segment descriptor set, and 16-bit programs or tasks should have these flags 
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice 
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size 
of a code segment. These prefixes can be used in real-address mode as well as in 
protected mode and virtual-8086 mode. An operand-size or address-size prefix only 
changes the size for the duration of the instruction.

18.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A 
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations 
within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)
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These prefixes reverse the default size selected by the D flag in the code-segment 
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction 
in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective 
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective 
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to 
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to 
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves 
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of 
operand size and address size regardless of whether the instruction is in a 16- or 
32-bit segment. The choice of the 16- or 32-bit default for a code segment is 
normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run 

much faster than 16-bit code segments on P6 family processors, and somewhat 
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the 
operating system is a 16-bit operating system, it may not support 32-bit program 
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment 
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit 
code segment.
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18.3 SHARING DATA AMONG MIXED-SIZE CODE 
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a 
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit 
code segments, the data that is to be accessed from the 16-bit code segments must 
be located within the first 64 KBytes of the data segment. The reason for this is that 
16-bit pointers by definition can only point to the first 64 KBytes of a segment. 

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code 
segments. This class of stacks includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the 

stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where 

the stack is contained completely within the lower 64 KBytes. (Offsets greater 
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and 
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit 
code segment. This flag controls the size of the stack pointer only for implicit stack 
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL, 
and RET instructions. It does not control explicit stack references, such as accesses 
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if 
the code is modified so that all explicit references to the stack are preceded by the 
32-bit address-size prefix, causing those references to use 32-bit addressing and 
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is 
modified to use 32-bit addressing.

18.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE 
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call 
to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then 

makes a 32-bit call to the intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to 

change it to a 32-bit call.
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Likewise, there are three ways for procedure in a 32-bit code segment to safely make 
a call to a 16-bit code segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL 

instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then 

makes a 16-bit call to the intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call, 

changing it to a 16-bit call. Be certain that the return offset does not exceed 
FFFFH.

These methods of transferring program control overcome the following architectural 
limitations imposed on calls between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot 

be used to address data or code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction 

must be the same to maintain stack coherency. This is also true for implicit calls 
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH 
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit 
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

18.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction 
(that is, those that do not use gates), the operand-size attribute determines the size 
of the offset portion of the pointer. The implications of this rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is 

always possible using a 32-bit operand size, providing the 32-bit pointer does not 
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment 
cannot address a destination greater than FFFFH, unless the instruction is given 
an operand-size prefix.

See Section 18.4.5, “Writing Interface Procedures,” for an interface procedure that 
can transfer program control from 16-bit segments to destinations in 32-bit 
segments beyond FFFFH.

18.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit 
calls, the operand-size attribute of the RET instruction must match that of the CALL 
Vol. 3A 18-5



MIXING 16-BIT AND 32-BIT CODE
instruction (see Figure 18-1). On a 16-bit call, the processor pushes the contents of 
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register. 
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit 
values from the stack into the 16-bit registers. 

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for 
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction 
must use a 32-bit operand size to pop these 32-bit values from the stack into the 
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching 
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values. 

Figure 18-1.  Stack after Far 16- and 32-Bit Calls
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While executing 32-bit code, if a call is made to a 16-bit code segment which is at the 
same or a more privileged level (that is, the DPL of the called code segment is less 
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then 
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit 
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments 
that have D flags with the same values (that is, both are 32-bit code segments or 
both are 16-bit code segments), the default settings may be used. When the CALL 
instruction and its matching RET instruction are in segments which have different 
D-flag settings, an operand-size prefix must be used.

18.4.2.1  Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling 
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL 
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the 
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code 
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size 
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the 
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call 
gate is used, a procedure in a 16-bit code segment can call a procedure located more 
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate 
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size 
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B 
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor 
or in real-mode on a later IA-32 architecture processor will have its D flag clear and 
will not use operand-size override prefixes. As a result, all CALL instructions in this 
code segment will use the 16-bit operand-size attribute. Procedures in these code 
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segments can be modified to safely call procedures to 32-bit code segments in either 
of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 18.4.2.2, 

“Passing Parameters With a Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

18.4.2.2  Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the 
number of parameters passed in each procedure call. The count field of the gate 
descriptor specifies the size of the parameter string to copy from the current stack to 
the stack of a more privileged (numerically lower privilege level) procedure. The 
count field of a 16-bit gate specifies the number of 16-bit words to be copied, 
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords 
to be copied. The count field for a 32-bit gate must thus be half the size of the 
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit 
procedure must use an even number of words as parameters.

18.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out 
through an interrupt or trap gate (located in the IDT). Here, the type of the gate 
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to 
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code 
segment. It is sometimes impractical, however, to place exception or interrupt 
handlers in 16-bit code segments, because only 16-bit return addresses are saved on 
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP 
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct 
return address.

18.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as 
parameters between 16-bit and 32-bit procedures, some translation is required. If a 
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit 
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface 
code can perform any format conversion between 32-bit and 16-bit pointers that 
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
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18.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to 
the following interface problems:
• Allowing procedures in 16-bit code segments to call procedures with offsets 

greater than FFFFH in 32-bit code segments.
• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a 

variable count or an odd number of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the 
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not 
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater 
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For 
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond 
FFFFH, the interface procedure will need to provide the offset to the entry point. The 
mapping between 16- and 32-bit addresses is only performed automatically when a 
call gate is used, because the gate descriptor for a call gate contains a 32-bit 
address. When a call gate is not used, the interface code must provide the 32-bit 
address.

The structure of the interface procedure depends on the types of calls it is going to 
support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface 

procedure from a 16-bit code segment are made with 16-bit CALL instructions 
(by default, because the D flag for the calling code-segment descriptor is clear), 
and 16-bit operand-size prefixes are used with RET instructions to return from 
the interface procedure to the calling procedure. Calls from the interface 
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by 
default, because the D flag for the interface procedure’s code segment is set), 
and returns from the called procedures to the interface procedure are performed 
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface 
procedure from a 32-bit code segment are made with 32-bit CALL instructions 
(by default), and returns to the calling procedure from the interface procedure 
are made with 32-bit RET instructions (also by default). Calls from the interface 
procedure to 16-bit procedures require the CALL instructions to have the 
operand-size prefixes, and returns from the called procedures to the interface 
procedure are performed with 16-bit RET instructions (by default).
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CHAPTER 19
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that, 
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32 
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found 
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined 
with consideration for compatibility with previous and future processors. This chapter 
also summarizes the compatibility considerations for those extensions.

19.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending 
on the type of compatibility information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-

tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium, 
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture, 
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II, 
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture, 
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6 
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III 
processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst® microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based 
on the Intel Pentium M processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that 
are based on an improved Intel Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel NetBurst microarchitecture. This family includes the Intel Xeon 
processor and the Intel Xeon processor MP based on the Intel NetBurst microar-
chitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200, 
5300, 5400, 7200, 7300 series are based on Intel Core microarchitectures and 
support Intel 64 architecture.
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• Pentium® D Processors — A family of dual-core Intel 64 processors that 
provides two processor cores in a physical package. Each core is based on the 
Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64 
processors that provides two processor cores in a physical package. Each core is 
based on the Intel NetBurst microarchitecture and supports Intel Hyper-
Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are 
based on the Intel Core microarchitecture. Intel Pentium Dual-Core processors 
are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are 
based on the Intel Atom microarchitecture. 

19.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and 
memory layout descriptions. When bits are marked as undefined or reserved, it is 
essential for compatibility with future processors that software treat these bits as 
having a future, though unknown effect. Software should follow these guidelines in 
dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of 

registers or memory locations that contain such bits. Mask out the reserved bits 
before testing.

• Do not depend on the states of any reserved bits when storing them to memory 
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated 

in the documentation, if any, or reload them with values previously read from the 
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will 
port to future IA-32 processors without generating protection exceptions.

19.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors 
are enabled by new mode flags in the control registers (primarily register CR4). This 
register is undefined for IA-32 processors earlier than the Pentium processor. 
Attempting to access this register with an Intel486 or earlier IA-32 processor results 
in an invalid-opcode exception (#UD). Consequently, programs that execute 
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these 
functions. Attempting to set a reserved bit in register CR4 to a value other than its 
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original value results in a general-protection exception (#GP). So, programs that 
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors. 

The P6 family and Pentium processors do not check for attempts to set reserved bits 
in model-specific registers; however these bits may be checked on more recent 
processors. It is the obligation of the software writer to enforce this discipline. These 
reserved bits may be used in future Intel processors.

19.4 DETECTING THE PRESENCE OF NEW FEATURES 
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in 
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the 
presence of new flags in the EFLAGS register and control registers. If these flags 
are reserved (meaning not present in the processor executing the test), an 
exception is generated. Likewise, software can attempt to execute a new 
instruction, which results in an invalid-opcode exception (#UD) being generated 
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the 
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed 
information on detecting new processor features and extensions.

19.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a 
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter 
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volumes 2A & 2B. The MMX technology 
and MMX instructions are also included in the Pentium II, Pentium III, Pentium 4, and 
Intel Xeon processors.

19.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor. 
The SSE extensions consist of a new set of instructions and a new set of registers. 
The new registers include the eight 128-bit XMM registers and the 32-bit MXCSR 
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control and status register. These instructions and registers are designed to allow 
SIMD computations to be made on single-precision floating-point numbers. Several 
of these new instructions also operate in the MMX registers. SSE instructions and 
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volumes 2A & 2B. 

19.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel 
Xeon processors. They consist of a new set of instructions that operate on the XMM 
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in 
the MMX registers. SSE2 instructions and registers are described in Chapter 11, 
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

19.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors 
supporting Intel Hyper-Threading Technology and Intel Xeon processors. SSE3 
extensions include 13 instructions. Ten of these 13 instructions support the single 
instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions. 
One SSE3 instruction accelerates x87 style programming for conversion to integer. 
The remaining two instructions (MONITOR and MWAIT) accelerate synchronization 
of threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3, 
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A & 2B.

19.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the 
Intel Core 2 processor and Intel Xeon processor 5100 series. Streaming SIMD Exten-
sions 4 provided 54 new instructions introduced in 45nm Intel Xeon processors and 
Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in 
Chapter 12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.
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19.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute 
two separate code streams (called threads) concurrently by using shared resources 
in a single processor core or in a physical package. 

This feature was introduced in the Intel Xeon processor MP and later steppings of the 
Intel Xeon processor, and Pentium 4 processors supporting Intel Hyper-Threading 
Technology. The feature is also found in the Pentium processor Extreme Edition. See 
also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.

19.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two 
processor cores in each physical processor package. See also: Section 8.5, “Intel® 
Hyper-Threading Technology and Intel® Multi-Core Technology,” and Section 8.8, 
“Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors, 
Intel Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in 
each physical processor package. Intel Core 2 Extreme, Intel Core 2 Quad proces-
sors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide two 
processor cores in each physical processor package.

19.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR 
Dual-core processors may have some processor-specific features. Use CPUID feature 
flags to detect the availability features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will 

report the correct brand string only after the correct microcode updates are 
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in 
Pentium D processor but not in Pentium processor Extreme Edition. 

19.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER 
IA-32 PROCESSORS

Table 19-1 identifies the instructions introduced into the IA-32 in the Pentium 
processor and later IA-32 processors.
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19.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.

Table 19-1.  New Instruction in the Pentium Processor and 
Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional 
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set 
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring 
counters)

EAX, Bits 8-11, set to 6H; 
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8 
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model 

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of 

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register 
indicates the availability of the CPUID instruction.
19-6 Vol. 3A



ARCHITECTURE COMPATIBILITY
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and 

Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

19.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium 
processor and future IA-32 processors. Execution of these instructions generates an 
invalid-opcode exception (#UD).

19.15 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were 
reserved on earlier-generation processors. Attempting to execute a reserved opcode 
always results in an invalid-opcode (#UD) exception being generated. Consequently, 
programs that execute correctly on earlier-generation processors cannot erroneously 
execute these instructions and thereby produce unexpected results when executed 
on later IA-32 processors.

19.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, 
shows the configuration of flags in the EFLAGS register for the P6 family processors. 
No new flags have been added to this register in the P6 family processors. The flags 
added to this register in the Pentium and Intel486 processors are described in the 
following sections.
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The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20. 
• ID (identification flag), bit 21. 

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

19.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 
Processors

The following bits in the EFLAGS register that can be used to differentiate between 
the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6 

family, Pentium, and Intel486 processors. Since it is not implemented on the 
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID 
instruction. The ability to set and clear this bit indicates that the processor is a P6 
family or Pentium processor. The CPUID instruction can then be used to 
determine which processor. 

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that 
do not support virtual mode extensions, which includes all 32-bit processors prior 
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

19.17 STACK OPERATIONS
This section identifies the differences in stack implementation between the various 
IA-32 processors.

19.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different 
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit 
processors push the value of the SP register before it is decremented as part of the 
push operation; the 8086 processor pushes the value of the SP register after it is 
decremented. If the value pushed is important, replace PUSH SP instructions with the 
following three instructions:

PUSH BP
MOV  BP, SP
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XCHG BP, [BP] 

This code functions as the 8086 processor PUSH SP instruction on the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors.

19.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field 
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and 
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and 
Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode. 
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and 

bits 12 through 14 have the last value loaded into them.

19.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point 
software designed to run on earlier IA-32 processors and math coprocessors to a 
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To 
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a 
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX 
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or 
an Intel386 processor/Intel 387 math coprocessor system, will run with at most 
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code 
directly from an Intel 286 processor/Intel 287 math coprocessor system or an 
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6 
family, or Pentium processor, certain additional issues must be addressed. 

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium, 
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087 
math coprocessors.

19.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the 
integer unit of an IA-32 processor and either its internal x87 FPU or an external math 
coprocessor. The effect of these flags in the various IA-32 processors are described in 
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386 
processor to indicate whether the math coprocessor in the system is an Intel 287 
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math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set). 
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family, 
Pentium, and Intel486 processors to determine whether unmasked floating-point 
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is 
initialized to 0, so software using the automatic internal error-reporting mechanism 
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1 
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type 
floating-point instructions trap when the context of the x87 FPU is different from that 
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT 
instruction and waiting instructions will cause a device-not-available exception 
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to 
support the use of a WAIT/FWAIT instruction to wait on a device other than a math 
coprocessor. The device reports its status through the BUSY# pin. Since the P6 
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no 
relevant use and should be set to 1 for normal operation.

19.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32 
processors and math coprocessors, the reason for the differences, and their impact 
on software.

19.18.2.1  Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code 
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the 
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in 
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium 
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved 
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0 
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact. 
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On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN 
instruction. This difference has no impact on software, because Intel 287 or 8087 
programs do not check C2 after an FPTAN instruction. The use of this flag on later 
processors allows fast checking of operand range.

19.18.2.2  Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag 
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack 
fault and condition code flag C1 is set or cleared to indicate overflow or underflow, 
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32 
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The 
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

19.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity 
control flag (bit 12 of the x87 FPU control word) remains programmable on these 
processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor, 
both affine and projective closures are supported, as determined by the setting of bit 
12. After a hardware reset, the default value of bit 12 is projective. Software that 
requires projective infinity arithmetic may give different results.

19.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or 
FXRSTOR (Pentium III processor only) instruction, the processor examines the 
incoming tag and classifies the location only as empty or non-empty. Thus, tag 
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty 
location. The tag value of 11 is interpreted by the processor to indicate an empty 
location. Subsequent operations on a non-empty register always examine the value 
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III 
processor only) instructions examine the non-empty registers and put the correct 
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each 
register access to determine the class of operand in the register; the tag is updated 
after every change to a register so that the tag always reflects the most recent status 
of the register. Software can load a tag with a value that disagrees with the contents 
of a register (for example, the register contains a valid value, but the tag says 
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine 
the register. 
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Software written to run on a 16-bit IA-32 math coprocessor may not operate 
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual 
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats 
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard 
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and 
unnormal is valid (00B) and the encoding for other unsupported data formats is 
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid 
must therefore be changed if it is ported to a 32-bit x87 FPU.

19.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and 
math coprocessors.

19.18.5.1  NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs 
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an 
exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This 
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of 
a QNaN), but the raise an invalid-operation exception upon encountering any kind of 
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit 
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to 
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory 
locations are referenced.

19.18.5.2  Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal 
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN, 
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math 
coprocessors define and support special handling for these formats. Support for 
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors 
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
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ters. The only affect may be in how software handles the tags in the tag word (see 
also: Section 19.18.4, “x87 FPU Tag Word”).

19.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for 
floating-point instructions in the various x87 FPUs and math coprocessors.

19.18.6.1  Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically 
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math 
coprocessors return a denormal result. A program written to run on a 16-bit IA-32 
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run 
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of 
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the 
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised 
for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these 
latter processors need to be changed only if the handlers gives special treatment to 
different opcodes.

19.18.6.2  Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the 
rounding mode is set to chop (toward 0), the result is the largest positive or smallest 
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow 
exception when the masked response is not ∞; that is, they signal overflow only 
when the rounding control is not set to round to 0. If rounding is set to chop (toward 
0), the result is positive or negative ∞. Under the most common rounding modes, this 
difference has no impact on existing software. 

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand, 
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the 
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded 
according to the precision control (PC) field of the FPU control word or according to 
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not 
flagged and the significand is not rounded. The impact on existing software is that if 
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a 
different result under overflow conditions than on a 16-bit IA-32 math coprocessor. 
Vol. 3A 19-13



ARCHITECTURE COMPATIBILITY
The difference is apparent only to the exception handler. This difference is for IEEE 
Standard 754 compatibility.

19.18.6.3  Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow 
exception is signaled when both the result is tiny and denormalization results in a 
loss of accuracy. When the underflow exception is unmasked and the instruction is 
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the 
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and 
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is. 

When the underflow exception is masked, this difference has no impact on existing 
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU 
produces a different result during underflow conditions than on a 16-bit IA-32 math 
coprocessor if the result is stored on the stack. The difference is only in the least 
significant bit of the significand and is apparent only to the exception handler.

19.18.6.4  Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the 
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over 
all other exceptions. This difference causes no impact on existing software, but some 
unneeded normalization of denormalized operands is prevented on the Intel486 
processor and Intel 387 math coprocessor.

19.18.6.5  CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for 
floating-point exceptions point to any prefixes that come before the floating-point 
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to 
the floating-point instruction.

19.18.6.6  FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do 
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287 
or 8087 math coprocessors does. If an 8086 processor uses another exception for 
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the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need 
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486 
processors have signals that, with the addition of external logic, support reporting for 
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point 
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined 
floating-point opcodes, like legal floating-point opcodes, cause a device not available 
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register 
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

19.18.6.7  Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions, 
the FERR# pin must be connected to an input to an external interrupt controller. An 
external interrupt is then generated when the FERR# output drives the input to the 
interrupt controller and the interrupt controller in turn drives the INTR pin on the 
processor. 

For the P6 family and Intel386 processors, an unmasked floating-point exception 
always causes the FERR# pin to be asserted upon completion of the instruction that 
caused the exception. For the Pentium and Intel486 processors, an unmasked 
floating-point exception may cause the FERR# pin to be asserted either at the end of 
the instruction causing the exception or immediately before execution of the next 
floating-point instruction. (Note that the next floating-point instruction would not be 
executed until the pending unmasked exception has been handled.) See Appendix D, 
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1, for a complete description of 
the required mechanism for handling floating-point exceptions using the MS-DOS 
compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by 
modern operating systems; this approach also limits newer processors to operate 
with one logical processor active.

19.18.6.8  Invalid Operation Exception On Denormals 
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon 
conversion to BCD or to integer. The operation proceeds by first normalizing the 
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the 
invalid-operation exception is generated. This difference has no impact on existing 
software. Software running on the 32-bit x87 FPUs continues to execute in cases 
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to 
eliminate an exception from being raised.
Vol. 3A 19-15



ARCHITECTURE COMPATIBILITY
19.18.6.9  Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family, 
Pentium, and Intel486 processors causes an alignment check exception (#AC) when 
a program or procedure is running at privilege-level 3, except for the stack portion of 
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

19.18.6.10  Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in 
the middle of an FLDENV instruction, it can happen that part of the environment is 
loaded and part not. In such cases, the FPU control word is left with a value of 007FH. 
The P6 family and Pentium processors ensure the internal state is correct at all times 
by attempting to read the first and last bytes of the environment before updating the 
internal state.

19.18.6.11  Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family, 
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,” 
Table 2-1, and Chapter 6, “Interrupt 7—Device Not Available Exception (#NM).”

19.18.6.12  Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6 
family, Pentium, and Intel486 processors. In situations where the Intel 387 math 
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This 
placement will prevent the FPU environment from being lost if a page fault occurs 
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

19.18.6.13  General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a 
floating-point operand falls outside a segment’s size. An exception handler should be 
included to report these programming errors.

19.18.6.14  Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector 
16 must point to the floating-point exception handler. In virtual 8086 mode, the 
virtual-8086 monitor can be programmed to accommodate a different location of the 
interrupt vector for floating-point exceptions.
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19.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various 
Intel FPU and math coprocessor architectures, the reason for the differences, and 
their impact on software.

19.18.7.1  FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when 
detected, an underflow exception can occur, for compatibility with the IEEE Standard 
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands 
or return underflow results. Instead, they generate an invalid-operation exception 
when they detect an underflow condition. An existing underflow exception handler 
will require change only if it gives different treatment to different opcodes. Also, it is 
possible that fewer invalid-operation exceptions will occur.

19.18.7.2  FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < | 
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the 
rounded result is not exact or if there was a loss of accuracy (masked underflow), the 
precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range 
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and 
no exception is signaled. The impact of this difference on exiting software is that 
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors 
when (0 < | ST(1) | < 1).

19.18.7.3  FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754. 
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

19.18.7.4  FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word 
correctly reflect the three low-order bits of the quotient following execution of the 
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are 
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This 
difference does not affect existing software; software that works around the bug 
should not be affected.

19.18.7.5  FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87 
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
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tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these 
new instructions has no impact on existing software.

19.18.7.6  FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much 
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction 
reduces the operand internally using an internal π/4 constant that is more accurate. 
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math 
coprocessors; the operand must be reduced to this range using FPREM. This change 
has no impact on existing software.

19.18.7.7  Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation 
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite 
value to the destination operand, depending on the instruction being executed. On 
the 16-bit IA-32 math coprocessors, the original operand remains unchanged 
following a stack overflow, but it is loaded into register ST(1). This difference has no 
impact on existing software.

19.18.7.8  FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric 
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The 
availability of these instructions has no impact on existing software, but using them 
provides a performance upgrade.

19.18.7.9  FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in 
register ST(0) must be smaller than the absolute value of the operand in register 
ST(1). This difference has impact on existing software.

19.18.7.10  F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the 
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

19.18.7.11  FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real 
value, a denormal-operand exception is not generated because the instruction is not 
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arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand 
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real 
format causes the value to be converted to extended-real format. Loading a 
denormal value on the 16-bit IA-32 math coprocessors causes the value to be 
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87 
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change 
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format 
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math 
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be 
updated to handle this condition when porting software to 32-bit FPUs. This change 
was made for IEEE Standard 754 compatibility.

19.18.7.12  FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is 
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is 
+∞, the invalid-operation exception is reported. These differences have no impact on 
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE 
Standard 754 recommendation to fully support the “logb” function.

19.18.7.13  Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions. 
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for 
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit 
IA-32 math coprocessors when rounding control is set to round to nearest or round 
to +∞. They are the same for the FLDL2T instruction when rounding control is set to 
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit 
IA-32 math coprocessors in the least significant bit of the mantissa if rounding 
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and 
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is 
specified. These changes were implemented for compatibility with IEEE Standard 
754 for Floating-Point Arithmetic recommendations.

19.18.7.14  FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation). 
This instruction informs the Intel 287 math coprocessor that the processor is in 
protected mode. This change has no impact on existing software. The 32-bit x87 
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FPUs handle all addressing and exception-pointer information, whether in protected 
mode or not.

19.18.7.15  FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing 
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or 
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among 
others. This difference has no impact on existing software; it provides a performance 
upgrade to provide repeatable results.

19.18.7.16  FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE 
or FSTENV is undefined if the previous floating-point instruction did not refer to 
memory

19.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental 
instructions in the core range may differ from the Intel486 processors by about 2 or 
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with 
the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact 
threshold for underflow and overflow will vary by a few ulps. The P6 family and 
Pentium processors’ results will have a worst case error of less than 1 ulp when 
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes. 
The transcendental instructions are guaranteed to be monotonic, with respect to the 
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1) 
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the 
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

19.18.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math 
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit 
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.
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19.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point 
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending 
floating-point exceptions from a previous floating-point instruction are processed not 
on the WAIT/FWAIT instruction but on the floating-point instruction following the 
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may 
appear one instruction later on the Intel486 processor than on a P6 family or Pentium 
FPU, or on Intel 387 math coprocessor.

19.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an 
operand to be written is inside a page or segment and the second half is outside, a 
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

19.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point 
instruction has completed before completing the next floating-point instruction. No 
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the 
8087 math coprocessors, explicit waits are required before each floating-point 
instruction to ensure synchronization. Although 8087 programs having explicit WAIT 
instructions execute perfectly on the 32-bit IA-32 processors without reassembly, 
these WAIT instructions are unnecessary.

19.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure 
that modifications to flags, registers and memory are completed before the next 
instruction is executed (or in P6 family processor terminology “committed to machine 
state”). Because the P6 family processors use branch-prediction and out-of-order 
execution techniques to improve performance, instruction execution is not generally 
serialized until the results of an executed instruction are committed to machine state 
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 1). 

As a result, at places in a program or task where it is critical to have execution 
completed for all previous instructions before executing the next instruction (for 
example, at a branch, at the end of a procedure, or in multiprocessor dependent 
code), it is useful to add a serializing instruction. See Section 8.3, “Serializing 
Instructions,” for more information on serializing instructions.
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19.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors 
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The 
following is some additional compatibility information concerning the initialization of 
x87 FPUs and math coprocessors.

19.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type 
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some 
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive 
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in 
active state after hardware reset. 

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387 
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486 
processors, like the Intel 287 coprocessor, do not.

19.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor 
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor, 
the initialization routine should check the presence of the math coprocessor and 
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly 
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table 
19-2 gives the recommended settings for these flags when the math coprocessor is 
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 19-3. 

Table 19-2.  Recommended Values of the EM, MP, and NE Flags for Intel486 SX 
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler
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Following is an example code sequence to initialize the system and check for the 
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to 
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not 
available exception (#NH), interrupt 7. The software emulation will then take control 
to execute these instructions. This code is not required if an Intel 487 SX math 
coprocessor is present in the system. In that case, the typical initialization routine for 
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX 
math coprocessor, timing loops should be independent of clock speed and clocks per 
instruction. One way to attain this is to implement these loops in hardware and not in 
software (for example, BIOS).

Table 19-3.  EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT 
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and 
other waiting-type instructions test TS.
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19.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags 
and fields that were introduced to the 32-bit IA-32 in various processor families. See 
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD 

floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor 

state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to 

reference extended physical addresses when set; restricts physical addresses to 
32 bits when clear (see also: Section 19.22.1.1, “Physical Memory Addressing 
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared 
pages on CR3 writes (see also: Section 19.22.1.2, “Global Pages”). 

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the 
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains 
flags that enable certain new extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag 

in virtual-8086 mode (see Section 17.3, “Interrupt and Exception Handling in 
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt 
flag in protected mode (see Section 17.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to 
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be 
generated when debug registers DR4 and DR5 are references for improved 
performance (see Section 19.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set 
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing 
exception handling for certain hardware error conditions (see Chapter 15, 
“Machine-Check Architecture”). 

The Intel486 processor introduced five new flags in control register CR0:
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• NE — Numeric error. Enables the normal mechanism for reporting floating-point 
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode 
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed. 
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles 
when clear and disables invalidation cycles and write-throughs that hit in the 
cache when set. 

• CD — Cache disable. Enables the internal cache when clear and disables the 
cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin 

during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled.   The PCD# pin is used to control caching in an external cache 
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin 
during bus cycles that are not paged, such as interrupt acknowledge cycles, when 
paging is enabled. The PWT# pin is used to control write through in an external 
cache on a cycle-by-cycle basis. 

19.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in 
the various IA-32 processors and some compatibility differences.

19.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features: 
physical memory addressing extension, the global bit in page-table entries, and 
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

19.22.1.1  Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may 
enable additional address lines on the processor, allowing extended physical 
addresses. This option can only be used when paging is enabled, using a new page-
table mechanism provided to support the larger physical address range (see Section 
4.1, “Paging Modes and Control Bits”).
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19.22.1.2  Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a 
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as 
pages containing kernel procedures or common data tables) can be marked global by 
setting the global flag in a page-directory or page-table entry. 

On a task switch or a write to control register CR3 (which normally causes the TLBs 
to be flushed), the entries in the TLB marked global are not flushed. Marking pages 
global in this manner prevents unnecessary reloading of the TLB due to TLB misses 
on frequently used pages. See Section 4.10, “Caching Translation Information” for a 
detailed description of this mechanism.

19.22.1.3  Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is 
enabled with the PSE (page size extension) flag in control register CR4, bit 4. When 
this flag is set, the processor supports either 4-KByte or 4-MByte page sizes. PAE 
paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE 
(see Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4, 
“Paging,” for more information about large page sizes.

19.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486 
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 11-5 for a comparison of these bits on the 
P6 family, Pentium, and Intel486 processors. For complete information on caching, 
see Chapter 11, “Memory Cache Control.”

19.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an 
invalid value in the access-rights field of descriptor-table entries to identify unused 
entries. Access rights values of 80H and 00H remain invalid for the P6 family, 
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid 
on the Intel 286 processor may be valid on the 32-bit processors because uses for 
these bits have been defined.
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19.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read 
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and 
Intel486 processors, the locked read and write occur only if the bit is not already set.

19.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor 
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

19.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the 
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the 
Intel486 processor. See Table 9-1 for the different setting of this register following a 
power-up or hardware reset.

19.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by 
the R/W0 through R/W3 fields in debug control register DR7 as follows: 

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads 
or writes but not instruction fetches if the DE flag in control register CR4 is 
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 9-1 for 
the different settings of this register following a power-up or hardware reset.

19.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and 
DR7, respectively. When debug extensions are not enabled (the DE flag in control 
register CR4 is cleared), the P6 family and Pentium processors remain compatible 
with existing software by allowing these aliased references. When debug extensions 
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are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will 
result in an invalid-opcode exception (#UD).

19.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT 
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family, 
Intel486, or Intel386 processors. 

The implementation of test registers on the Intel486 processor used for testing the 
cache and TLB has been redesigned using MSRs on the P6 family and Pentium 
processors. (Note that MSRs used for this function are different on the P6 family and 
Pentium processors.) The MOV to and from test register instructions generate 
invalid-opcode exceptions (#UD) on the P6 family processors.

19.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling. 
See Chapter 6, “Interrupt and Exception Handling,” for a detailed description of the 
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations 
involving data in these registers can produce exceptions. A new MXCSR 
control/status register is used to determine which exception or exceptions have 
occurred. When an exception associated with the XMM registers occurs, an interrupt 
is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated 

with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The 
set of available exceptions is the same as for the Pentium processor. However, the 
following exception condition was added to the IA-32 with the Pentium Pro 
processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many 

exception conditions have been added to the machine-check exception and a new 
architecture has been added for handling and reporting on hardware errors. See 
Chapter 15, “Machine-Check Architecture,” for a detailed description of the new 
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with 
the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception 

reports parity and other hardware errors. It is a model-specific exception and 
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may not be implemented or implemented differently in future processors. The 
MCE flag in control register CR4 enables the machine-check exception. When this 
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. An attempt to write a 1 to a reserved bit position of a special register 
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When 
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault 
exception is generated. 

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports 

unaligned memory references when alignment checking is being performed. 

The following exceptions and/or exception conditions were added to the Intel386 
processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386 
processors always leave the saved CS:IP value pointing to the instruction that 
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the 
largest negative number as a quotient for the IDIV instruction (80H and 
8000H). The 8086 processor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added. 
Improper use of the LOCK instruction prefix can generate an invalid-opcode 
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If 
paging is enabled in a 16-bit program, a page-fault exception can be generated 
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the 
same page directory. Because there is no place in a 16-bit TSS to store the PDBR 
register, switching to a 16-bit task does not change the value of the PDBR 
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs 
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition 
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The 
only way to violate this limit is by putting redundant prefixes before an 
instruction. A general-protection exception is generated if the limit on instruction 
length is violated. The 8086 processor has no instruction length limit.
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19.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling 
and reporting on machine-check exceptions. This machine-check architecture 
(described in detail in Chapter 15, “Machine-Check Architecture”) greatly expands 
the ability of the processor to report on internal hardware errors.

19.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different 
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

19.25.3 Exception Conditions of Legacy SIMD Instructions Operating 
on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX 
registers. The exception conditions of these instructions are described in the 
following tables.
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Table 19-4.  Exception Conditions for Legacy SIMD/MMX Instructions with FP 
Exception and 16-Byte Alignment
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Cause of Exception

Invalid Opcode, 
#UD

X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is 
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X
For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective 
address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X
If an unmasked SIMD floating-point exception and 
CR4.OSXMMEXCPT[bit 10] = 1

Applicable 
Instructions

CVTPD2PI, CVTTPD2PI
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Table 19-5.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP 
Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 0. 

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

SIMD Floating-point 
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception 
and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
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Table 19-6.  Exception Conditions for Legacy SIMD/MMX Instructions with XMM and 
without FP Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective 
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the 
effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
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Table 19-7.  Exception Conditions for SIMD/MMX Instructions with Memory Reference
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection, 
#GP(0)

X
For an illegal memory operand effective address 
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical 
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check 
#AC(0)

X X X
If alignment checking is enabled and an 
unaligned memory reference is made while the 
current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB, 
PADDB, PADDD, PADDQ, PADDW, PADDSB, PADDSW, 
PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB, 
PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, 
PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW, 
PHSUBSW, PINSRW, PMADDUBSW, PMADDWD, PMAXSW, 
PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW, 
PMULLW, PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB 
PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW, 
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW, 
PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PUNPCKHBW, 
PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD, 
PUNPCKLDQ, PXOR
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Table 19-8.  Exception Conditions for Legacy SIMD/MMX Instructions without FP 
Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod != 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment 
is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in 
the CS, DS, ES, FS or GS segments.
If the destination operand is in a non-writable seg-
ment.2

If the DS, ES, FS, or GS register contains a NULL 
segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned 
memory reference is made while the current privi-
lege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
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19.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32 
processors.

19.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries 
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler 
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the 
stack when servicing an interrupt may be different for the P6 family, Pentium, 
Intel486, and Intel386 processors.   

19.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386, 
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction 
is executed, unlike the 8086 processor.

3. Applies to MASKMOVQ only.

Table 19-9.  Exception Conditions for Legacy SIMD/MMX Instructions without 
Memory Reference

Exception
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Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
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19.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault 
exception (#DF) is generated if an interrupt or exception attempts to read a vector 
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

19.27 ADVANCED PROGRAMMABLE INTERRUPT 
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as 
the local APIC, was introduced into the IA-32 processors with the Pentium 
processor (beginning with the 735/90 and 815/100 models) and is included in the 
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the 
local APIC are derived from the Intel 82489DX external APIC, which was used with 
the Intel486 and early Pentium processors. Additional refinements of the local APIC 
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

19.27.1 Software Visible Differences Between the Local APIC and 
the 82489DX

The following features in the local APIC features differ from those found in the 
82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag 

in the spurious-interrupt vector MSR, the state of its internal registers are 
unaffected, except that the mask bits in the LVT are all set to block local 
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for 
INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is 
disabled, all the internal registers including the IRR, ISR and TMR are cleared and 
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept 
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as 
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these 
interrupts are always level triggered. 

• In the local APIC, IPIs generated through the ICR are always treated as edge 
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to 
generate either edge or level triggered IPIs. 

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX, 
it supports 32 bits. 

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits 
wide.
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• The remote read delivery mode provided in the 82489DX and local APIC for 
Pentium processors is not supported in the local APIC in the Pentium 4, Intel 
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs 
specified by the destination field participate in the lowest priority arbitration. For 
the local APIC, only those local APICs which have free interrupt slots will 
participate in the lowest priority arbitration.

19.27.2 New Features Incorporated in the Local APIC for the P6 
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new 
features not found in the 82489DX external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to 
handle performance monitoring counter interrupts.

19.27.3 New Features Incorporated in the Local APIC of the Pentium 
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new 
features not found in the P6 family and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor 

interrupts. 
• The the ability to deliver lowest-priority interrupts to a focus processor is no 

longer supported.
• The flat cluster logical destination mode is not supported.

19.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to 
the TSS and the handling of TSSs and TSS segment selectors.
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19.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control 
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt 
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to 
an 8086 program.

19.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into 
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6 
family and Pentium processors write 4-byte segment selectors into the TSS, with the 
upper 2 bytes being 0. For compatibility reasons, code should not depend on the 
value of the upper 16 bits of the selector in the TSS.

19.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and 
Pentium processors may generate different page-fault addresses in control register 
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS 
crosses a page boundary (which is not recommended).

19.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new 
code written using 32-bit constructs (operands, addressing, or the upper word of the 
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit 
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch 
back to a 16-bit task that was executing in virtual mode will never re-enable the 
virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the 
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs 
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

19.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps 
around the 64K boundary. Any I/O accesses check for permission to access this I/O 
address at the I/O base address plus the I/O offset. If the I/O map base address 
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the 
permission for the I/O address at an incorrect location within the TSS. A TSS limit 
violation does not occur in this situation on the Intel486 processor. However, the P6 
family and Pentium processors consider the TSS to be a 32-bit segment and a limit 
violation occurs when the I/O base address plus the I/O offset is greater than the TSS 
limit. By following the recommended specification for the I/O base address to be less 
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than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors 
will not experience general-protection exceptions (#GP). Figure 19-1 demonstrates 
the different areas accessed by the Intel486 and the P6 family and Pentium 
processors. 

19.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2 
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2 
cache is a general-purpose cache. See Section 11.1, “Internal Caches, TLBs, and 
Buffers,” for a description of these caches. (Note that although the Pentium II 
processor L2 cache is physically located on a separate chip in the cassette, it is 
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The 
data cache supports a writeback (or alternatively write-through, on a line by line 
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data. 

The meaning of the CD and NW flags in control register CR0 have been redefined for 
the P6 family and Pentium processors. For these processors, the recommended value 
(00B) enables writeback for the data cache of the Pentium processor and for the L1 

Figure 19-1.  I/O Map Base Address Differences
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data cache and L2 cache of the P6 family processors. In the Intel486 processor, 
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to 
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the 
same manner as the Intel486 processor by using the PCD and PWT flags in control 
register CR3, the page-directory entries, and the page-table entries. The Intel486 
processor, however, is not affected by the state of the PWT flag since the internal 
cache of the Intel486 processor is a write-through cache.

19.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both 
the cache and memory. If the instruction was prefetched before the write, however, 
the old version of the instruction could be the one executed. To prevent this problem, 
it is necessary to flush the instruction prefetch unit of the Intel486 processor by 
coding a jump instruction immediately after any write that modifies an instruction. 
The P6 family and Pentium processors, however, check whether a write may modify 
an instruction that has been prefetched for execution. This check is based on the 
linear address of the instruction. If the linear address of an instruction is found to be 
present in the prefetch queue, the P6 family and Pentium processors flush the 
prefetch queue, eliminating the need to code a jump instruction after any writes that 
modify an instruction. 

Because the linear address of the write is checked against the linear address of the 
instructions that have been prefetched, special care must be taken for self-modifying 
code to work correctly when the physical addresses of the instruction and the written 
data are the same, but the linear addresses differ. In such cases, it is necessary to 
execute a serializing operation to flush the prefetch queue after the write and before 
executing the modified instruction. See Section 8.3, “Serializing Instructions,” for 
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a 
concern for compatibility. Applications that include self-modifying 
code use the same linear address for modifying and fetching the 
instruction. System software, such as a debugger, that might 
possibly modify an instruction using a different linear address than 
that used to fetch the instruction must execute a serializing 
operation, such as IRET, before the modified instruction is executed.
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19.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitec-
ture (see Section 11.1, “Internal Caches, TLBs, and Buffers”) provides the third-level 
cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache 
disable flag allows the L3 cache to be disabled and enabled, independently of the L1 
and L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The 
third-level cache disable flag applies only to processors based on Intel NetBurst 
microarchitecture. Processors with L3 and based on other microarchitectures do not 
support the third-level cache disable flag. 

19.30 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

19.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the 
IA-32 to allow large (4 MBytes) pages sizes (see Section 4.3, “32-Bit Paging”). The 
first P6 family processor (the Pentium Pro processor) added a 2 MByte page size to 
the IA-32 in conjunction with the physical address extension (PAE) feature (see 
Section 4.4, “PAE Paging”). 

The availability of large pages with 32-bit paging on any IA-32 processor can be 
determined via feature bit 3 (PSE) of register EDX after the CPUID instruction has 
been execution with an argument of 1. (Large pages are always available with PAE 
paging and IA-32e paging.) Intel processors that do not support the CPUID instruc-
tion support only 32-bit paging and do not support page size enhancements. (See 
“CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-M,” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and AP-
485, Intel Processor Identification and the CPUID Instruction, for more information 
on the CPUID instruction.)

19.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to 
control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback 

caching policy on a page-by-page basis. Since the internal cache of the Intel486 
processor is a write-through cache, it is not affected by the state of the PWT flag.   
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19.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors, 
Intel recommends that the following operations be performed when enabling or 
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear 
(disable paging) the PG flag. 

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped 
(that is, the instructions should reside on a page whose linear and physical addresses 
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the 
jump operation is not required. However, for backwards compatibility, the JMP 
instruction should still be included.

19.31 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32 
processors.

19.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors decrement the ESP register by the operand size and 
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are 
not modified. The Pentium processor decrements the ESP register by the operand 
size and determines the size of the write by the operand size. If the operand size is 
32-bits, the upper two bytes are written as 0s. 

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6 
family, and Intel486 processors read 2 bytes and increment the ESP register by the 
operand size of the instruction. The Pentium processor determines the size of the 
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates 
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family, 
or Intel486 processor. This could occur if the third and/or fourth byte of the operation 
lies beyond the limit of the segment or if the third and/or fourth byte of the operation 
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
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• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and 
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family 
processors, the result of the memory write is SS:0H plus any scaled index and 
displacement. In Pentium processors, the result of the memory write may be either a 
stack fault (real mode or protected mode with stack segment size of 64 KByte), or 
write to SS:10000H plus any scaled index and displacement (protected mode and 
stack segment size exceeds 64 KByte).

19.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit 
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes 
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32 
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper 
16 bits may produce inconsistent results.

19.31.3 Fault Handling Effects on the Stack 
During the handling of certain instructions, such as CALL and PUSHA, faults may 
occur in different sequences for the different processors. For example, during far 
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault 
is resolved. A branch fault is a fault from a branch instruction occurring from a 
segment limit or access rights violation. If a branch fault is taken, the Intel486 and 
P6 family processors will have corrupted memory below the stack pointer. However, 
the ESP register is backed up to make the instruction restartable. The P6 family 
processors issue the branch before the pushes. Therefore, if a branch fault does 
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only 
values at or above the stack pointer are considered to be valid. Other operations that 
encounter faults may also corrupt memory below the stack pointer and this behavior 
may vary on different implementations.

19.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate, 
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent 
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is 
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS 
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write 
zeros into the upper 16 bits.     
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19.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset 
of those of the 32-bit IA-32 processors. The D (default operation size) flag in 
segment descriptors indicates whether the processor treats a code or data segment 
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors 
indicates whether the processor treats a stack segment as a 16-bit or 32-bit 
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit 
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear. 
On the 32-bit IA-32 processors, this word includes the upper bits of the base address 
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables 
(there are no descriptors for global descriptor tables), and task gates are the same 
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate, 
interrupt gate, and trap gate) are supported by the 32-bit processors. 

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt 
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors 
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits 
in the reserved word cause the 32-bit processors to interpret these descriptors 
exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits 

base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the 

limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the 

16-bit limit is interpreted in units of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment 

descriptor used by the 32-bit processors, indicating the segment is no larger than 
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit 
addressing and operands are the default. In a stack-segment descriptor, the D 
flag is clear, indicating use of the SP register (instead of the ESP register) and a 
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 18, 
“Mixing 16-Bit and 32-Bit Code.”

19.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the 
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.
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19.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset 
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or 
pushing a word when the stack pointer is set to 1) causes the offset to wrap around 
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address 
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address 
mode generate an exception in these cases: 
• A general-protection exception (#GP) if the segment is a data segment (that is, 

if the CS, DS, ES, FS, or GS register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS 

register is being used). 

An exception to this behavior occurs when a stack access is data aligned, and the 
stack pointer is pointing to the last aligned piece of data that size at the top of the 
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation 
occurs and the stack pointer will wrap around to 0. 

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound 
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than 
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor, 
which can form addresses up to 20 bits long, truncates the uppermost bit, which 
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486 
processors do not truncate this bit if A20M# is not enabled. 

If a stack operation wraps around the address limit, shutdown occurs. (The 8086 
processor does not have a shutdown mode or a limit.) 

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF) 
is different between the Pentium Pro and the Pentium 4 family of processors. On the 
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction 
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for 
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
tion). Using the Pentium 4 microprocessor family, neither of these situations causes 
a fault.

Segment wraparound and the functionality of A20M# is used primarily by older oper-
ating systems and not used by modern operating systems. On newer Intel 64 proces-
sors, A20M# may be absent. 

19.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for 
temporary storage of writes (stores) to memory (see Section 11.10, “Store Buffer”). 
Writes stored in the store buffer(s) are always written to memory in program order, 
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with the exception of “fast string” store operations (see Section 8.2.4, “Out-of-Order 
Stores and Fast-String Operation”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were 
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The 
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a 
write. An I/O, locked, or serializing instruction needs to be executed to synchronize 
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a 
program and the order the processor actually carries out the reads and writes. With 
this type of ordering, reads can be carried out speculatively and in any order, reads 
can pass buffered writes, and writes to memory are always carried out in program 
order. (See Section 8.2, “Memory Ordering,” for more information about processor 
ordering.) The Pentium III processor introduced a new instruction to serialize writes 
and make them globally visible. Memory ordering issues can arise between a 
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered 
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition 
noted in Section 8.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™ 
Processors,” and in the following paragraph describing the Intel486 processor. 

Specifically, the store buffers are flushed before the IN instruction is executed. No 
reads (as a result of cache miss) are reordered around previously generated writes 
sitting in the store buffers. The implication of this is that the store buffers will be 
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory 
read will go onto the external bus before the pending memory writes in the buffer 
even though the writes occurred earlier in the program execution. A memory read 
will only be reordered in front of all writes pending in the buffers if all writes pending 
in the buffers are cache hits and the read is a cache miss. Under these conditions, the 
Intel486 and Pentium processors will not read from an external memory location that 
needs to be updated by one of the pending writes. 

During a locked bus cycle, the Intel486 processor will always access external 
memory, it will never look for the location in the on-chip cache. All data pending in 
the Intel486 processor's store buffers will be written to memory before a locked cycle 
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for 
eliminating the possibility of reordering read cycles on the Intel486 processor. The 
Pentium processor does check its cache on a read-modify-write access and, if the 
cache line has been modified, writes the contents back to memory before locking the 
bus. The P6 family processors write to their cache on a read-modify-write operation 
(if the access does not split across a cache line) and does not write back to system 
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memory. If the access does split across a cache line, it locks the bus and accesses 
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32 
processor. This ensures an update of all memory locations before reading the status 
from an I/O device.

19.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family, 
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory 
locking specific to the Intel 286 processor may not run properly when run on later 
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the 
destination operand, but may lock a larger memory area. For example, typical 8086 
and Intel 286 configurations lock the entire physical memory space. Programmers 
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater 
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386 
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is 
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging 
external interrupts. After signaling an interrupt request, an external interrupt 
controller may use the data bus to send the interrupt vector to the processor. After 
receiving the interrupt request signal, the processor asserts LOCK# to insure that no 
other data appears on the data bus until the interrupt vector is received. This bus 
locking does not occur on the P6 family processors.

19.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus 
from other potential bus masters, such as DMA controllers, between transfers of 
parts of an unaligned operand, such as two words which form a doubleword. Unlike 
the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to 
bus hold during reset initialization.

19.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
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sors. The following sections describe these model-specific extensions. The CPUID 
instruction indicates the availability of some of the model-specific features.

19.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in 
controlling hardware functions and performance monitoring. To access these MSRs, 
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and 
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be 
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Appendix B, “Model-Specific Registers (MSRs),” for a complete list of the 
available MSRs. The new registers control the debug extensions, the performance 
counters, the machine-check exception capability, the machine-check architecture, 
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following 
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not 
guaranteed to be duplicated or provided in the next generation IA-32 processors.

19.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific 
register) instructions recognize a much larger number of model-specific registers in 
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and 
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volumes 2A & 2B for more information.)

19.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in 
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and 
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are 
mapped to various types of memory. The processor uses this internal memory map 
to determine the cacheability of various physical memory locations and the optimal 
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this 
location as follows. It reads data from that location in lines and caches the read data 
or maps all writes to that location to the bus and updates the cache to maintain cache 
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).
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Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the 
KEN# (cache enable) pin and external logic to maintain an external memory map and 
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Appendix B, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

19.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors, 
such as a parity error on a read cycle. 

The P6 family processors extend the types of errors that can be detected and that 
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended 
recovery capability.

The machine-check architecture provides several banks of reporting registers for 
recording machine-check errors. Each bank of registers is associated with a specific 
hardware unit in the processor. The primary focus of the machine checks is on bus 
and interconnect operations; however, checks are also made of translation lookaside 
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for 
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the 
machine-check exception and the machine-check architecture.

19.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters 
for use in monitoring internal hardware operations. The number of performance 
monitoring counters and associated programming interfaces may be implementation 
specific for Pentium 4 processors, Pentium M processors. Later processors may have 
implemented these as part of an architectural performance monitoring feature. The 
architectural and non-architectural performance monitoring interfaces for different 
processor families are described in Chapter 30, “Performance Monitoring,”. Appendix 
A, “Performance-Monitoring Events,” lists all the events that can be counted for 
architectural performance monitoring events and non-architectural events. The 
counters are set up, started, and stopped using two MSRs and the RDMSR and 
WRMSR instructions. For the P6 family processors, the current count for a particular 
counter can be read using the new RDPMC instruction.
19-50 Vol. 3A



ARCHITECTURE COMPATIBILITY
The performance-monitoring counters are useful for debugging programs, optimizing 
code, diagnosing system failures, or refining hardware designs. See Chapter 30, 
“Performance Monitoring,” for more information on these counters.

19.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two 
approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the 

old operating system, loader, and system builder. Here, all tasks will have 16-bit 
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit 
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with 
a 32-bit operating system, loader, and system builder. Here, the TSSs used to 
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16 
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks 
in a 32-bit software system should have 32-bit TSSs. It is not necessary to 
change the 16-bit object modules themselves; TSSs are usually constructed by 
the operating system, by the loader, or by the system builder. See Chapter 18, 
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing 
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit 
segment descriptors, 16-bit programs that place values in this word may not run 
correctly on the 32-bit processors.
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CHAPTER 20
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

20.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of 
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system 
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

20.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on 
IA-32 processors. Two principal classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control 

of the processor(s) and other platform hardware. A VMM presents guest software 
(see next paragraph) with an abstraction of a virtual processor and allows it to 
execute directly on a logical processor. A VMM is able to retain selective control of 
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment 
that supports a stack consisting of operating system (OS) and application 
software. Each operates independently of other virtual machines and uses on the 
same interface to processor(s), memory, storage, graphics, and I/O provided by 
a physical platform. The software stack acts as if it were running on a platform 
with no VMM. Software executing in a virtual machine must operate with reduced 
privilege so that the VMM can retain control of platform resources.

20.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation 
called VMX operation. There are two kinds of VMX operation: VMX root operation and 
VMX non-root operation. In general, a VMM will run in VMX root operation and guest 
software will run in VMX non-root operation. Transitions between VMX root operation 
and VMX non-root operation are called VMX transitions. There are two kinds of VMX 
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
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Processor behavior in VMX root operation is very much as it is outside VMX operation. 
The principal differences are that a set of new instructions (the VMX instructions) is 
available and that the values that can be loaded into certain control registers are 
limited (see Section 20.8). 

Processor behavior in VMX non-root operation is restricted and modified to facilitate 
virtualization. Instead of their ordinary operation, certain instructions (including the 
new VMCALL instruction) and events cause VM exits to the VMM. Because these 
VM exits replace ordinary behavior, the functionality of software in VMX non-root 
operation is limited. It is this limitation that allows the VMM to retain control of 
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is 
in VMX non-root operation. This fact may allow a VMM to prevent guest software from 
determining that it is running in a virtual machine. 

Because VMX operation places restrictions even on software running with current 
privilege level (CPL) 0, guest software can run at the privilege level for which it was 
originally designed. This capability may simplify the development of a VMM.

20.4 LIFE CYCLE OF VMM SOFTWARE
Figure 20-1 illustrates the life cycle of a VMM and its guest software as well as the 
interactions between them. The following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a 

time). The VMM effects a VM entry using instructions VMLAUNCH and 
VMRESUME; it regains control using VM exits. 

• VM exits transfer control to an entry point specified by the VMM. The VMM can 
take action appropriate to the cause of the VM exit and can then return to the 
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It 
does so by executing the VMXOFF instruction.
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20.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called 
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the 
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit 
address of the VMCS. The VMCS pointer is read and written using the instructions 
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, 
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a 
virtual machine with multiple logical processors (virtual processors), the VMM could 
use a different VMCS for each virtual processor.

20.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of 
VMX support in the processor. System software can determine whether a processor 
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX 
operation is supported. See Chapter 3, “Instruction Set Reference, A-M” of Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX 
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is 
reported to software using a set of VMX capability MSRs (see Appendix G, “VMX 
Capability Reporting Facility”).

Figure 20-1.  Interaction of a Virtual-Machine Monitor and Guests
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VM Exit VM ExitVM Entry
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20.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting 
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON 
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with 
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see 
Section 20.8). System software leaves VMX operation by executing the VMXOFF 
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of 
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH). 
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the 
MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection 

exception. If the lock bit is set, WRMSR to this MSR causes a general-protection 
exception; the MSR cannot be modified until a power-up reset condition. System 
BIOS can use this bit to provide a setup option for BIOS to disable support for 
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both 
(see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of 
VMXON in SMX operation causes a general-protection exception. Attempts to set 
this bit on logical processors that do not support both VMX operation (see Section 
20.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B) 
cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of 
VMXON outside SMX operation causes a general-protection exception. Attempts 
to set this bit on logical processors that do not support VMX operation (see 
Section 20.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not 
been executed since the last execution of GETSEC[SENTER]. A logical 
processor is outside SMX operation if GETSEC[SENTER] has not been 
executed or if GETSEC[SEXIT] was executed after the last execution 
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions 
Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region 
of memory that a logical processor may use to support VMX operation.1 This region 
is called the VMXON region. The address of the VMXON region (the VMXON pointer) 

1. Future processors may require that a different amount of memory be reserved. If so, this fact is 
reported to software using the VMX capability-reporting mechanism.
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is provided in an operand to VMXON. Section 21.10.5, “VMXON Region,” details how 
software should initialize and access the VMXON region.

20.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific 

values and not support other values. VMXON fails if any of these bits contains an 
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 5 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B). 
Any attempt to set one of these bits to an unsupported value while in VMX 
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV 
CR instructions causes a general-protection exception. VM entry or VM exit 
cannot set any of these bits to an unsupported value.2

NOTES
The first processors to support VMX operation require that the 
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and 
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX 
operation is supported only in paged protected mode (including 
IA-32e mode). Therefore, guest software cannot be run in unpaged 
protected mode or in real-address mode. See Section 27.2, 
“Supporting Processor Operating Modes in Guest Environments,” for 
a discussion of how a VMM might support guest software that expects 
to run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted 
guest” (see Section 21.6.2). If this control is 1, CR0.PE and CR0.PG 
may be 0 in VMX non-root operation (even if the capability MSR 
IA32_VMX_CR0_FIXED0 reports otherwise).3 Such processors allow 
guest software to run in unpaged protected mode or in real-address 
mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX 
Operation” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B). Once the processor is in VMX operation, A20M 

2. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and 
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix G.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and 
IA32_VMX_CR4_FIXED1 (see Appendix G.8).

3. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.
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interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX 
operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation. 
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see 
Section 22.3, “Other Causes of VM Exits”).
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CHAPTER 21
VIRTUAL-MACHINE CONTROL STRUCTURES

21.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while 
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, 
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a 
virtual machine with multiple logical processors (virtual processors), the VMM can 
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is 
called the VMCS region.1 Software references a specific VMCS using the 64-bit 
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on 
a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits 
beyond the processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor 
may optimize VMX operation by maintaining the state of an active VMCS in memory, 
on the processor, or both. At any given time, at most one of the active VMCSs is the 
current VMCS. (This document frequently uses the term “the VMCS” to refer to the 
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions 
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are 
active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After 

execution of the instruction, that VMCS is both active and current on the logical 
processor. Any other VMCS that had been active remains so, but no other VMCS 
is current.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS. 
After execution of the instruction, that VMCS is neither active nor current on the 

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR 
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see 
Appendix G.1.
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logical processor. If the VMCS had been current on the logical processor, the 
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS 
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is 
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used 
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is 
“clear”; the VMRESUME instruction requires a VMCS whose launch state is 
“launched”. A logical processor maintains a VMCS’s launch state in the corresponding 
VMCS region. The following items describe how a logical processor manages the 
launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the 

VMLAUNCH instruction changes the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After 

execution of the instruction, the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be 

modified using VMWRITE) and there is no direct way to discover it (it cannot be 
read using VMREAD).

Figure 21-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS 
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and 
active; “VMPTRLD Y” always makes X not current (because it makes Y current); 
VMLAUNCH makes the launch state of X “launched” if X was current and its launch 
state was “clear”; and VMCLEAR X always makes X inactive and not current and 
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative 
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note 
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state 
is not defined (e.g., even if X has not yet been initialized). See Section 21.10.3.
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21.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in 
Table 21-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS 

Figure 21-1.  States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

Table 21-1.  Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)
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revision identifiers. These identifiers enable software to avoid using a VMCS region 
formatted for one processor on a processor that uses a different format.1

Software should write the VMCS revision identifier to the VMCS region before using 
that region for a VMCS. The VMCS revision identifier is never written by the 
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS 
revision identifier differs from that used by the processor. Software can discover the 
VMCS revision identifier that a processor uses by reading the VMX capability MSR 
IA32_VMX_BASIC (see Appendix G, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The 
contents of these bits do not control processor operation in any way. A logical 
processor writes a non-zero value into these bits if a VMX abort occurs (see Section 
24.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS 
that control VMX non-root operation and the VMX transitions). The format of these 
data is implementation-specific. VMCS data are discussed in Section 21.3 through 
Section 21.9. To ensure proper behavior in VMX operation, software should maintain 
the VMCS region and related structures (enumerated in Section 21.10.4) in 
writeback cacheable memory. Future implementations may allow or require a 
different memory type2. Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix G.1).

21.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on 

VM exits and loaded from there on VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX 

non-root operation. They determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and 

describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS 
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. 
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions 
using those structures to suffer significantly. In addition, the processor will continue to use the 
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in 
Appendix G.1.
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The VM-execution control fields, the VM-exit control fields, and the VM-entry control 
fields are sometimes referred to collectively as VMX controls.

21.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted 
earlier, processor state is loaded from these fields on every VM entry (see Section 
23.3.2) and stored into these fields on every VM exit (see Section 24.3).

21.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do 

not support Intel 64 architecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 

architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support 

Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and 
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 
architecture). The base-address fields for CS, SS, DS, and ES have only 32 
architecturally-defined bits; nevertheless, the corresponding VMCS fields 
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 21-2 and 
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit 
segment descriptor. While bits 19:16 of code-segment and data-segment 
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.
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• Bit 16 indicates an unusable segment. Attempts to use such a segment 
fault except in 64-bit mode. In general, a segment register is unusable if 
it has been loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part 
(or “descriptor cache”) of each segment register. These data are included in the 
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT) 
referenced by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current 
privilege level (CPL).2

• The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector 
may be unusable following a task switch that fails after its commit point; see “Interrupt 
10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt Handling in 64-bit 
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In 
contrast, the TR register is usable after processor reset despite having a null selector; see Table 
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 21-2.  Format of Access Rights 

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved
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— Base address (64 bits; 32 bits on processors that do not support Intel 64 
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are 
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on 
processors that do not support Intel 64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical 
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” 
VM-entry control.

— IA32_PAT (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_PAT” VM-entry control or that 
of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_EFER” VM-entry control or that 
of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the 
logical processor’s SMRAM image.

21.4.2 Guest Non-Register State
In addition to the register state described in Section 21.4.1, the guest-state area 
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state. 

When a logical processor is executing instructions normally, it is in the active 
state. Execution of certain instructions and the occurrence of certain events may 
cause a logical processor to transition to an inactive state in which it ceases to 
execute instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT 
instruction.

2. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL 
fields are not meaningful in real-address mode or in virtual-8086 mode.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, 
this VMCS field never reflects this state. See Section 24.1.
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— 2: Shutdown. The logical processor is inactive because it incurred a triple 
fault1 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a 
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should 
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to determine 
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that 
permit certain events to be blocked for a period of time. This field contains 
information about such blocking. Details and the format of this field are given in 
Table 21-3.

1. A triple fault occurs when a logical processor encounters an exception while attempting to 
deliver a double fault.

Table 21-3.  Format of Interruptibility State

Bit 
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the 
Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and, 
optionally, other events) for one instruction after its 
execution. Setting this bit indicates that this blocking is in 
effect.

1 Blocking by 
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop 
a Value from the Stack” sections in Chapter 3 and Chapter 4 
of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volumes 2A & 2B, and Section 6.8.3 in 
the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for 
one instruction after its execution. In addition, certain debug 
exceptions are inhibited between a MOV to SS or a POP to SS 
and a subsequent instruction. Setting this bit indicates that 
the blocking of all these events is in effect. This document 
uses the term “blocking by MOV SS,” but it applies equally to 
POP SS.

2 Blocking by SMI See Section 26.2. System-management interrupts (SMIs) are 
disabled while the processor is in system-management mode 
(SMM). Setting this bit indicates that blocking of SMIs is in 
effect.
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• Pending debug exceptions (64 bits; 32 bits on processors that do not support 
Intel 64 architecture). IA-32 processors may recognize one or more debug 
exceptions without immediately delivering them.1 This field contains information 
about such exceptions. This field is described in Table 21-4.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A and Section 26.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until 
the next execution of IRET. See Section 22.4 for how this 
behavior of IRET may change in VMX non-root operation. 
Setting this bit indicates that blocking of NMIs is in effect. 
Clearing this bit does not imply that NMIs are not 
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section 
21.6.1) is 1, this bit does not control the blocking of NMIs. 
Instead, it refers to “virtual-NMI blocking” (the fact that guest 
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 23.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one 
instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may 
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 21-4.  Format of Pending-Debug-Exceptions

Bit 
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding 
breakpoint condition was met. Any of these bits may be set 
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5.

12 Enabled 
breakpoint

When set, this bit indicates that at least one data or I/O 
breakpoint was met and was enabled in DR7.

Table 21-3.  Format of Interruptibility State (Contd.)

Bit 
Position(s)

Bit Name Notes
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• VMCS link pointer (64 bits). This field is included for future expansion. Software 
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see 
Section 23.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on logical 
processors that support the 1-setting of the “activate VMX-preemption timer” 
VM-execution control. This field contains the value that the VMX-preemption 
timer will use following the next VM entry with that setting. See Section 22.7.1 
and Section 23.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) 
fields (PDPTE0, PDPTE1, PDPTE2, and PDPTE3) are supported only on logical 
processors that support the 1-setting of the “enable EPT” VM-execution control. 
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control 
is 1.

21.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted 
earlier, processor state is loaded from these fields on every VM exit (see Section 
24.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 

64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 

architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, 

and TR. There is no field in the host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on 

processors that do not support Intel 64 architecture).

13 Reserved VM entry fails if this bit is not 0. See Section 23.3.1.5.

14 BS When set, this bit indicates that a debug exception would 
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5. 
Bits 63:32 exist only on processors that support Intel 64 
architecture.

Table 21-4.  Format of Pending-Debug-Exceptions (Contd.)

Bit 
Position(s)

Bit Name Notes
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• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on 
processors that do not support Intel 64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical 
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL” 
VM-exit control.

— IA32_PAT (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that 
support either the 1-setting of the “load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded 
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 24.5 for details of how state is loaded on 
VM exits.

21.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described 
in Section 21.6.1 through Section 21.6.8.

21.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the 
handling of asynchronous events (for example: interrupts).1 Table 21-5 lists the 
controls supported. See Chapter 22 for how these controls affect processor behavior 
in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 22.3).
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_PINBASED_CTLS and 
IA32_VMX_TRUE_PINBASED_CTLS (see Appendix G.3.1) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR IA32_VMX_PINBASED_CTLS will 
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to 
discover support for the 0-settings of these bits. Software that is not aware of the 
functionality of any one of these bits should set that bit to 1.

21.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that 
govern the handling of synchronous events, mainly those caused by the execution of 
specific instructions.1 These are the primary processor-based VM-execution 
controls and the secondary processor-based VM-execution controls.

Table 21-5.  Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt 
exiting

If this control is 1, external interrupts cause VM exits. 
Otherwise, they are delivered normally through the guest 
interrupt-descriptor table (IDT). If this control is 1, the value 
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause 
VM exits. Otherwise, they are delivered normally using 
descriptor 2 of the IDT. This control also determines 
interactions between IRET and blocking by NMI (see Section 
22.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking 
by NMI” bit (bit 3) in the interruptibility-state field indicates 
“virtual-NMI blocking” (see Table 21-3). This control also 
interacts with the “NMI-window exiting” VM-execution 
control (see Section 21.6.2).

This control can be set only if the “NMI exiting” VM-execution 
control (above) is 1.

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in 
VMX non-root operation; see Section 22.7.1. A VM exit occurs 
when the timer counts down to zero; see Section 22.3.
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Table 21-6 lists the primary processor-based VM-execution controls. See Chapter 22 
for more details of how these controls affect processor behavior in VMX non-root 
operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 22.1.2), as do task switches (see Section 22.3).

Table 21-6.  Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any 
instruction if RFLAGS.IF = 1 and there are no other blocking 
of interrupts (see Section 21.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC, 
executions of RDTSCP, and executions of RDMSR that read 
from the IA32_TIME_STAMP_COUNTER MSR return a value 
modified by the TSC offset field (see Section 21.6.5 and 
Section 22.4).

7 HLT exiting This control determines whether executions of HLT cause 
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause 
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause 
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause 
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and 
RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section 
21.6.7), this control determines whether executions of MOV 
to CR3 cause VM exits. See Section 22.1.3.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

16 CR3-store exiting This control determines whether executions of MOV from 
CR3 cause VM exits.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8 
cause VM exits.

This control must be 0 on processors that do not support 
Intel 64 architecture.
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20 CR8-store exiting This control determines whether executions of MOV from 
CR8 cause VM exits.

This control must be 0 on processors that do not support 
Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is 
maintained in a page of memory addressed by the virtual-
APIC address. See Section 22.4.

This control must be 0 on processors that do not support 
Intel 64 architecture.

22 NMI-window 
exiting

If this control is 1, a VM exit occurs at the beginning of any 
instruction if there is no virtual-NMI blocking (see Section 
21.4.2).

This control can be set only if the “virtual NMIs” VM-
execution control (see Section 21.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR 
cause VM exits.

24 Unconditional I/O 
exiting

This control determines whether executions of I/O 
instructions (IN, INS/INSB/INSW/INSD, OUT, and 
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits. 

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to 
restrict executions of I/O instructions (see Section 21.6.4 and 
Section 22.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1” 
means “use I/O bitmaps.” If the I/O bitmaps are used, the 
setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is 
enabled. See Section 22.7.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to 
control execution of the RDMSR and WRMSR instructions 
(see Section 21.6.9 and Section 22.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1” 
means “use MSR bitmaps.” If the MSR bitmaps are not used, 
all executions of the RDMSR and WRMSR instructions cause 
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR 
cause VM exits.

Table 21-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and 
IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix G.3.2) to determine how to set 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4–6, 8, 13–16, and 26. The VMX capability MSR 
IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical 
processors that support the 0-settings of any of these bits will support the VMX capa-
bility MSR IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult 
this MSR to discover support for the 0-settings of these bits. Software that is not 
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether 
the secondary processor-based VM-execution controls are used. If that bit is 0, 
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the 0-setting of 
bit 31 of the primary processor-based VM-execution controls do not support the 
secondary processor-based VM-execution controls.

Table 21-7 lists the secondary processor-based VM-execution controls. See Chapter 
22 for more details of how these controls affect processor behavior in VMX non-root 
operation.

30 PAUSE exiting This control determines whether executions of PAUSE cause 
VM exits.

31 Activate secondary 
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the 
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 21-7.  Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC 
accesses

If this control is 1, a VM exit occurs on any attempt to access 
data on the page with the APIC-access address. See Section 
22.2.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. 
See Section 25.2.

2 Descriptor-table 
exiting

This control determines whether executions of LGDT, LIDT, 
LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes and 
invalid-opcode exception (#UD).

Table 21-6.  Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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All other bits in these fields are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix G.3.3) to determine how to 
set reserved bits. Failure to clear reserved bits causes subsequent VM entries to fail 
(see Section 23.2).

If a logical processor supports the 1-setting of bit 31 of the primary processor-based 
VM-execution controls but software has set that bit is 0, VM entry and VMX non-root 
operation function as if all the secondary processor-based VM-execution controls 
were 0. However, the logical processor will maintain the secondary processor-based 
VM-execution controls as written by VMWRITE.

21.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception. 
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1, 
the exception causes a VM exit. If the bit is 0, the exception is delivered normally 
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by 
bit 14 in the exception bitmap as well as the error code produced by the page fault 
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 22.3 for details.

21.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O 
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit 

4 Virtualize x2APIC 
mode

Setting this control to 1 causes RDMSR and WRMSR to MSR 
808H to use the TPR shadow, which is maintained on the 
virtual-APIC page. See Section 22.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are 
associated with a virtual-processor identifier (VPID). See 
Section 25.1.

6 WBINVD exiting This control determines whether executions of WBINVD 
cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in 
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting This control determines whether a series of executions of 
PAUSE can cause a VM exit (see Section 21.6.13 and Section 
22.1.3).

Table 21-7.  Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
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for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for 
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is 
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit 
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 22.1.3 for 
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

21.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” 
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of 
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR 
instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these, 
the signed value of the TSC offset is combined with the contents of the time-stamp 
counter (using signed addition) and the sum is reported to guest software in 
EDX:EAX. See Chapter 22 for a detailed treatment of the behavior of RDTSC, 
RDTSCP, and RDMSR in VMX non-root operation.

21.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the 
CR0 and CR4 registers. These fields control executions of instructions that access 
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on 
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing 

from the corresponding bits in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the 

corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify 
them succeed and guest reads return values for these bits from the control register 
itself.

See Chapter 22 for details regarding how these fields affect VMX non-root operation.

21.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support 
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has 
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its 
source operand matches one of these values. If the CR3-target count is n, only the 
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first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3 
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. 
VM entry fails (see Section 23.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software 
should read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to deter-
mine the number of values supported.

21.6.8 Controls for APIC Accesses
There are three mechanisms by which software accesses registers of the logical 
processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to 

addresses in the 4-KByte page referenced by the physical address in the 
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A 
and Intel® 64 Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers 
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor 
Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using 
the MOV CR8 instruction.

There are three processor-based VM-execution controls (see Section 21.6.2) that 
control such accesses. There are “use TPR shadow”, “virtualize APIC accesses”, and 
“virtualize x2APIC mode”. These controls interact with the following fields:
• APIC-access address (64 bits). This field is the physical address of the 4-KByte 

APIC-access page. If the “virtualize APIC accesses” VM-execution control is 1, 
operations that access this page may cause VM exits. See Section 22.2 and 
Section 22.5.
The APIC-access address exists only on processors that support the 1-setting of 
the “virtualize APIC accesses” VM-execution control.

• Virtual-APIC address (64 bits). This field is the physical address of the 4-KByte 
virtual-APIC page.
If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must 
be 4-KByte aligned. The virtual-APIC page is accessed by the following 
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 22.1.3 and Section 22.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize 
APIC accesses” VM-execution control is 1 (see Section 22.5.3).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
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— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H 
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution 
control is 1 (see Section 22.4).

The virtual-APIC address exists only on processors that support the 1-setting of 
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below 
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall. 
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that 
reduces the TPR shadow below this value. See Section 22.4 and Section 22.5.3.
The TPR threshold exists only on processors that support the 1-setting of the 
“use TPR shadow” VM-execution control.

21.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution 
control, the VM-execution control fields include the 64-bit physical address of four 
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist 
on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains 

one bit for each MSR address in the range 00000000H to 00001FFFH. The bit 
determines whether an execution of RDMSR applied to that MSR causes a 
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). 
This contains one bit for each MSR address in the range C0000000H 
toC0001FFFH. The bit determines whether an execution of RDMSR applied to that 
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). 
This contains one bit for each MSR address in the range 00000000H to 
00001FFFH. The bit determines whether an execution of WRMSR applied to that 
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). 
This contains one bit for each MSR address in the range C0000000H 
toC0001FFFH. The bit determines whether an execution of WRMSR applied to 
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control 
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if 
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 
1. See Section 22.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.
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21.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of 
system-management interrupts (SMIs) and system-management mode (SMM). SMM 
VM exits save this field as described in Section 26.15.2. VM entries that return from 
SMM use this field as described in Section 26.15.4.

21.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT 
PML4 table (see Section 25.2.2), as well as other EPT configuration information. The 
format of this field is shown in Table 21-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” 
VM-execution control.

21.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See 
Section 25.1 for details regarding the use of this field.

Table 21-8.  Format of Extended-Page-Table Pointer 

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 25.2.4):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to 

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 25.2.2)

11:6 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table2

2. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved
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21.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution 
control, the VM-execution control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of 

time between two successive executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the 

amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the 
timestamp counter (TSC). See Section 22.1.3 for more details regarding PAUSE-loop 
exiting.

21.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in 
Section 21.7.1 and Section 21.7.2.

21.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of 
VM exits. Table 21-9 lists the controls supported. See Chapter 24 for complete details 
of how these controls affect VM exits. 

Table 21-9.  Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug 
controls

This control determines whether DR7 and the 
IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this 
control determines whether a logical processor is in 64-bit 
mode after the next VM exit. Its value is loaded into CS.L, 
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support 
Intel 64 architecture.

12 Load 
IA32_PERF_GLOB
AL_CTRL

This control determines whether the 
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_EXIT_CTLS and 
IA32_VMX_TRUE_EXIT_CTLS (see Appendix G.4) to determine how it should set the 
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to 
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR 
IA32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors 
that support the 0-settings of any of these bits will support the VMX capability MSR 
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover 
support for the 0-settings of these bits. Software that is not aware of the functionality 
of any one of these bits should set that bit to 1.

15 Acknowledge 
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical 
processor acknowledges the interrupt controller, 
acquiring the interrupt’s vector. The vector is stored in 
the VM-exit interruption-information field, which is 
marked valid.

• If such a VM exit occurs and this control is 0, the 
interrupt is not acknowledged and the VM-exit 
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is 
saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is 
loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is 
saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is 
loaded on VM exit.

22 Save VMX-
preemption timer 
value

This control determines whether the value of the VMX-
preemption timer is saved on VM exit.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of 

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is 
always identical to IA32_EFER.LME in VMX operation.

Table 21-9.  Definitions of VM-Exit Controls (Contd.)

Bit Position(s) Name Description
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21.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following 
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to 
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address 
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-exit MSR-store count. The format 
of each entry is given in Table 21-10. If the VM-exit MSR-store count is not zero, 
the address must be 16-byte aligned.

See Section 24.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to 

be loaded on VM exit. It is recommended that this count not exceed 512 bytes. 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of 
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-exit MSR-load count (see 
Table 21-10). If the VM-exit MSR-load count is not zero, the address must be 
16-byte aligned.

See Section 24.6 for how this area is used on VM exits.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).

Table 21-10.  Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).
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21.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in 
Sections 21.8.1 through 21.8.3.

21.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of 
VM entries. Table 21-11 lists the controls supported. See Chapter 23 for how these 
controls affect VM entries.

Table 21-11.  Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug 
controls

This control determines whether DR7 and the 
IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine 
extensions supported only the 1-setting of this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control 
determines whether the logical processor is in IA-32e mode 
after VM entry. Its value is loaded into IA32_EFER.LMA as 
part of VM entry.1

This control must be 0 on processors that do not support 
Intel 64 architecture.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting 

of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value of 
IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 24.2).

10 Entry to SMM This control determines whether the logical processor is in 
system-management mode (SMM) after VM entry. This 
control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect 
after the VM entry (see Section 26.15.7). This control must 
be 0 for any VM entry from outside SMM.

13 Load 
IA32_PERF_GLOBA
L_CTRL

This control determines whether the 
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is 
loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is 
loaded on VM entry.
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All other bits in this field are reserved, some to 0 and some to 1. Software should 
consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and 
IA32_VMX_TRUE_ENTRY_CTLS (see Appendix G.5) to determine how it should set 
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries 
to fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always 
reports that these bits must be 1. Logical processors that support the 0-settings of 
any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS 
MSR, and software should consult this MSR to discover support for the 0-settings of 
these bits. Software that is not aware of the functionality of any one of these bits 
should set that bit to 1.

21.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry 
control fields manage this functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to 

be loaded on VM entry. It is recommended that this count not exceed 512 bytes. 
Otherwise, unpredictable processor behavior (including a machine check) may 
result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address 
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry, 
where the number of entries is given by the VM-entry MSR-load count. The 
format of entries is described in Table 21-10. If the VM-entry MSR-load count is 
not zero, the address must be 16-byte aligned.

See Section 23.4 for details of how this area is used on VM entries.

21.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after 
all guest state and MSRs have been loaded). This process is called event injection 
and is controlled by the following three VM-entry control fields:
• VM-entry interruption-information field (32 bits). This field provides details 

about the event to be injected. Table 21-12 describes the field.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the 
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).

Table 21-12.  Format of the VM-Entry Interruption-Information Field
Bit 
Position(s)

Content

7:0 Vector of interrupt or exception
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— The vector (bits 7:0) determines which entry in the IDT is used or which 
other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is 
performed. In general, a VMM should use the type hardware exception for 
all exceptions other than breakpoint exceptions (#BP; generated by INT3) 
and overflow exceptions (#OF; generated by INTO); it should use the type 
software exception for #BP and #OF. The type other event is used for 
injection of events that are not delivered through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether 
delivery pushes an error code on the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit 
in this field is cleared on every VM exit (see Section 24.2).

• VM-entry exception error code (32 bits). This field is used if and only if the 
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the 
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is 
software interrupt, software exception, or privileged software exception, this 
field is used to determine the value of RIP that is pushed on the stack.

See Section 23.5 for details regarding the mechanics of event injection, including the 
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

Table 21-12.  Format of the VM-Entry Interruption-Information Field (Contd.)
Bit 
Position(s)

Content
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21.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the 
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see 
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 6 of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

21.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the 

structure given in Table 21-13.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is 
clear) or of the VM-entry failure (if bit 31 is set). Appendix I enumerates the 
basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 26.15.2) that took priority 
over an MTF VM exit (see Section 22.7.2) that would have occurred had the 
SMM VM exit not occurred. See Section 26.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time 
the VM exit occurred. This can happen only for SMM VM exits. See Section 
26.15.2.

— Because some VM-entry failures load processor state from the host-state 
area (see Section 23.7), software must be able to distinguish such cases from 
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 
architecture). This field contains additional information about the cause of 
VM exits due to the following: debug exceptions; page-fault exceptions; start-up 
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; 

Table 21-13.  Format of Exit Reason

Bit 
Position(s)

Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
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SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; 
VMXON; control-register accesses; MOV DR; I/O instructions; and MWAIT. The 
format of the field depends on the cause of the VM exit. See Section 24.2.1 for 
details.

• Guest-linear address (64 bits; 32 bits on processors that do not support 
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive 
immediately after retirement of I/O instructions.

— Certain VM exits due to EPT violations
See Section 24.2.1 and Section 26.15.2.3 for details of when and how this field is 
used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT 
violations and EPT misconfigurations. See Section 24.2.1 for details of when and 
how this field is used.

21.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored 
events: exceptions (including those generated by the instructions INT3, INTO, 
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt 
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information 
is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic 

information associated with the event causing the VM exit. Table 21-14 describes 
this field.

Table 21-14.  Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET
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• VM-exit interruption error code (32 bits). For VM exits caused by hardware 
exceptions that would have delivered an error code on the stack, this field 
receives that error code.

Section 24.2.2 provides details of how these fields are saved on VM exits.

21.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in 
VMX non-root operation.1 This information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information 

associated with the event that was being delivered when the VM exit occurred. 
Table 21-15 describes this field.

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of 
VM entry; see Section 23.5.1.2.

Table 21-15.  Format of the IDT-Vectoring Information Field
Bit 
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

Table 21-14.  Format of the VM-Exit Interruption-Information Field (Contd.)
Bit Position(s) Content
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• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of 
hardware exceptions that would have delivered an error code on the stack, this 
field receives that error code.

See Section 24.2.3 provides details of how these fields are saved on VM exits.

21.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain 
instructions in VMX non-root operation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction 

execution, this field receives the length in bytes of the instruction whose 
execution led to the VM exit.1 See Section 24.2.4 for details of when and how this 
field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due 
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, 
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or 
VMXON.2 The format of the field depends on the cause of the VM exit. See 
Section 24.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 
architecture) are used only for VM exits due to SMIs that arrive immediately after 
retirement of I/O instructions. They provide information about that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that 

addressed the I/O instruction).

21.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most 
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information 
about errors encountered by a non-faulting execution of one of the VMX instructions.

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or 
OUTS can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix 
G.1).
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21.10 SOFTWARE USE OF THE VMCS AND RELATED 
STRUCTURES

This section details guidelines that software should observe when using a VMCS and 
related structures. It also provides descriptions of consequences for failing to follow 
guidelines.

21.10.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines 
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be 
“migrated” from one logical processor to another, the first logical processor should 
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to 
ensure that all VMCS data are in memory) before the other logical processor 
executes VMPTRLD for the VMCS (to make it active on the second logical processor). 
A VMCS that is made active on more than one logical processor may become 
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different 
fields in the current VMCS (see Section 21.10.2). Software should never access or 
modify the VMCS data of an active VMCS using ordinary memory operations, in part 
because the format used to store the VMCS data is implementation-specific and not 
architecturally defined, and also because a logical processor may maintain some 
VMCS data of an active VMCS on the processor and not in the VMCS region. The 
following items detail some of the hazards of accessing VMCS data using ordinary 
memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably 

reflect the state of the VMCS. Results may vary from time to time or from logical 
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a 
deterministic effect on the VMCS. Doing so may cause the VMCS to become 
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a 
VMCS region before executing a VMPTRLD for that region and by not remapping it 
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical 
processor may be corrupted (see below). To prevent such corruption of a VMCS that 
may be used either after a return to VMX operation or on another logical processor, 
software should VMCLEAR that VMCS before executing the VMXOFF instruction or 
removing power from the processor (e.g., as part of a transition to the S3 and S4 
power states).

This section has identified operations that may cause a VMCS to become corrupted. 
These operations may cause the VMCS’s data to become undefined. Behavior may be 
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unpredictable if that VMCS used subsequently on any logical processor. The following 
items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor 

state.
• The processor may not correctly support VMX non-root operation as documented 

in Chapter 22 and may generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS, 

or cause the logical processor to transition to a shutdown state.

21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The 
encoding is provided in an operand to VMREAD and VMWRITE when software wishes 
to read or write that field. These instructions fail if given, in 64-bit mode, an operand 
that sets an encoding bit beyond bit 32. See Chapter 5 of the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 2B, for a description of these 
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 21-16.

The following items detail the meaning of the bits in each encoding:

Table 21-16.  Structure of VMCS Component Encoding

Bit Position(s) Contents

31:15 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

12 Reserved (must be 0)

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

9:1 Index

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields
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• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on 
processors that support Intel 64 architecture and 32 bits on processors that 
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software 
access to all 64 bits of the field. Such access is allowed by defining, for each such 
field, an encoding that allows direct access to the high 32 bits of the field. See 
below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields 
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with 

field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit 
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a 
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the 
high 32 bits of the field.

Appendix H gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor 
mode, VMCS-field width, and access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination 
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS 
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination 
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to 
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS 
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e 
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination 
operand; bits 63:32 of the field are ignored.
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— A VMWRITE writes the value of its source operand to bits 31:0 of the field and 
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode 
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination 
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS 
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the 
destination operand; in 64-bit mode, bits 63:32 of the destination operand 
are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with 
the full access type (reading bits 31:0 of the field) and VMREAD with the high access 
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not 
important. Software seeking to modify a 64-bit field outside IA-32e mode should first 
use VMWRITE with the full access type (establishing bits 31:0 of the field while 
clearing bits 63:32) and then use VMWRITE with the high access type (establishing 
bits 63:32 of the field).

21.10.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS 
for VM entry. Failure to do so may result in unpredictable behavior; for example, a 
VM entry may fail for unexplained reasons, or a successful transition (VM entry or 
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For 
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR 
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the 
VMWRITE instruction; this includes a VMCS’s launch state (see Section 21.1). Such 
information may be stored in the VMCS data portion of a VMCS region. Because the 
format of this information is implementation-specific, there is no way for software to 
know, when it first allocates a region of memory for use as a VMCS region, how the 
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid 
the uncertainties of implementation-specific behavior, software should execute 
VMCLEAR on a VMCS region before making the corresponding VMCS active with 
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VMPTRLD for the first time. (Figure 21-1 illustrates how execution of VMCLEAR puts 
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the 

first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR 

has been executed for that VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the 

next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. 
Since “migrating” a VMCS from one logical processor to another requires use of 
VMCLEAR (see Section 21.10.1), which sets the launch state of the VMCS to “clear”, 
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by 
avoiding unnecessary migration of a VMCS from one logical processor to another.

21.10.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be 
controlled by data structures that are referenced by pointers in a VMCS (for example, 
the I/O bitmaps). While the pointers to these data structures are parts of the VMCS, 
the data structures themselves are not. They are not accessible using VMREAD and 
VMWRITE but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no 
logical processor with a current VMCS that references it is in VMX non-root operation. 
Doing otherwise may lead to unpredictable behavior (including behaviors identified 
in Section 21.10.1).

21.10.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON 
region)1 that the logical processor uses to support VMX operation. The physical 
address of this region (the VMXON pointer) is provided in an operand to VMXON. The 
VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-

address width.2,3

1. The amount of memory required for the VMXON region is the same as that required for a VMCS 
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix G.1).
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Before executing VMXON, software should write the VMCS revision identifier (see 
Section 21.2) to the VMXON region. It need not initialize the VMXON region in any 
other way. Software should use a separate region for each logical processor and 
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to 
unpredictable behavior (including behaviors identified in Section 21.10.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 
63:32; see Appendix G.1.
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CHAPTER 22
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a 
logical processor in VMX non-root operation. This mode of operation is similar to that 
of ordinary processor operation outside of the virtualized environment. This chapter 
describes the differences between VMX non-root operation and ordinary processor 
operation with special attention to causes of VM exits (which bring a logical processor 
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following 
sections:
• Section 22.1, “Instructions That Cause VM Exits”
• Section 22.2, “APIC-Access VM Exits”
• Section 22.3, “Other Causes of VM Exits”
• Section 22.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 22.5, “APIC Accesses That Do Not Cause VM Exits”
• Section 22.6, “Other Changes in VMX Non-Root Operation” 
• Section 22.7, “Features Specific to VMX Non-Root Operation”

Chapter 21, “Virtual-Machine Control Structures,” describes the data control struc-
ture that governs VMX operation (root and non-root). Chapter 22, “VMX Non-Root 
Operation,” describes the operation of VM entries which allow the processor to tran-
sition from VMX root operation to non-root operation.

22.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation. 
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the 
instruction. Section 24.1 details architectural state in the context of a VM exit.

Section 22.1.1 defines the prioritization between faults and VM exits for instructions 
subject to both. Section 22.1.2 identifies instructions that cause VM exits whenever 
they are executed in VMX non-root operation (and thus can never be executed in 
VMX non-root operation). Section 22.1.3 identifies instructions that cause VM exits 
depending on the settings of certain VM-execution control fields (see Section 21.6).

22.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
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• Certain exceptions have priority over VM exits. These include invalid-opcode 
exceptions, faults based on privilege level,1 and general-protection exceptions 
that are based on checking I/O permission bits in the task-state segment (TSS). 
For example, execution of RDMSR with CPL = 3 generates a general-protection 
exception and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits 
that are conditioned based on the contents of those operands (see LMSW in 
Section 22.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either 
because the “unconditional I/O exiting” VM-execution control is 1 or because the 
“use I/O bitmaps control is 1) have priority over the following faults: 

— A general-protection fault due to the relevant segment (ES for INS; DS for 
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant 
segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned 

above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a 
VM exit and not a general-protection exception.

When Section 22.1.2 or Section 22.1.3 (below) identify an instruction execution that 
may lead to a VM exit, it is assumed that the instruction does not incur a fault that 
takes priority over a VM exit.

22.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root 
operation: CPUID, GETSEC,3 INVD, and XSETBV.4 This is also true of instructions 
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,5 VMCLEAR, 
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and 
VMXON.

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 22.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4. An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.OSXSAVE[Bit 18] = 
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.OSXSAVE[Bit 18] = 0.

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits 
in VMX root operation outside SMM. See Section 26.15.2.
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22.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the 
setting of the VM-execution controls. The following instructions can cause “fault-like” 
VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-

sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read 
shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution 
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The 
behavior of each of these instructions is determined by the settings of the 
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O 
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a 
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in 
the appropriate I/O bitmap (see Section 21.6.4). If an I/O operation “wraps 
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O 
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution 
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 22.1.1 for information regarding the priority of VM exits relative to 
faults that may be caused by the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” 
VM-execution control is 1.

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause 
VM exits if the “descriptor-table exiting” VM-execution control is 1.1

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for 
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the 
corresponding bit in the CR0 read shadow. LMSW never clears bit 0 of CR0 
(CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0 
guest/mask and the source operand, and the bit in position 0 is clear in the 
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0 
guest/mask and the values of the corresponding bits in the source operand 
and the CR0 read shadow differ.

1. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“descriptor-table exiting” VM-execution control were 0. See Section 21.6.2.
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• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” 
VM-execution control is 1.

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the 
virtual-machine extensions supported only the 1-setting of this control.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in 
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is 
1. If this control is 0, the behavior of the MOV from CR8 instruction is modified if 
the “use TPR shadow” VM-execution control is 1 (see Section 22.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its 
source operand matches, for the position of each bit set in the CR0 guest/host 
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the 
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load 
exiting” VM-execution control is 0 or the value of its source operand is equal to 
one of the CR3-target values specified in the VMCS. If the CR3-target count in n, 
only the first n CR3-target values are considered; if the CR3-target count is 0, 
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its 
source operand matches, for the position of each bit set in the CR4 guest/host 
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit 
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this 
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR 
shadow” VM-execution control is 1 (see Section 22.4) and it may cause a trap-
like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” 
VM-execution control is 1. Such VM exits represent an exception to the principles 
identified in Section 22.1.1 in that they take priority over the following: general-
protection exceptions based on privilege level; and invalid-opcode exceptions 
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” 
VM-execution control is 1. If this control is 0, the behavior of the MWAIT 
instruction may be modified (see Section 22.4).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings 
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls 
are both 0, the PAUSE instruction executes normally.
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• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction 
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is 
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop 
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this 
execution of PAUSE and the previous execution of PAUSE at CPL 0. If this 
amount of time exceeds the value of the VM-execution control field 
PLE_Gap, the processor considers this execution to be the first execution 
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL 
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the 
most recent execution of PAUSE that was considered to be the first in a 
loop. If this amount of time exceeds the value of the VM-execution control 
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter 
that runs at the same rate as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction 
executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction 
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or 
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read 
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read 
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” 

VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” 

VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and 

“enable RDTSCP” VM-execution controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management 

mode (SMM).1
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• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” 
VM-execution control is 1.1

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are 
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or 
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write 
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write 
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.
If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 22.4) and it
may cause a trap-like VM exit (see below).2

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a 
case, the instruction completes before the VM exit occurs and that processor state is 
updated by the instruction (for example, the value of CS:RIP saved in the guest-state 
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution 
reduces the value of the TPR shadow below that of the TPR threshold VM-execution 
control field (see Section 21.6.8 and Section 22.4) and the following hold:
• For MOV to CR8:

— The “CR8-load exiting” VM-execution control is 0.

— The “use TPR shadow” VM-execution control is 1.
• For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H, 
and bit 808H in write bitmap for low MSRs is 0 (see above).

— The “virtualize x2APIC mode” VM-execution control is 1.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of 
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see 
Section 26.15.3.

1. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“WBINVD exiting” VM-execution control were 0. See Section 21.6.2.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.
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22.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access 
memory using a physical address on the APIC-access page (see Section 21.6.8) 
causes a VM exit.1,2 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the 
APIC-access page causes an APIC-access VM exit may be qualified based on the type 
of access. Section 22.2.1 describes the treatment of linear accesses, while Section 
22.2.3 describes that of physical accesses. Section 22.2.4 discusses accesses to the 
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use 
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

22.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a 
memory access using a linear address; and (2) the access’s physical address is the 
translation of that linear address. Section 22.2.1.1 specifies which linear accesses to 
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is 
similar to that of page faults and EPT violations. Based upon this treatment, Section 
22.2.1.2 specifies the priority of such VM exits with respect to other events, while 
Section 22.2.1.3 discusses instructions that may cause page faults without accessing 
memory and the treatment when they access the APIC-access page.

22.2.1.1  Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit 
depends in part of the nature of the translation used by the linear address:
• If the linear access uses a translation with a 4-KByte page, it causes an APIC-

access VM exit.
• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or 

1-GByte), the access may or may not cause an APIC-access VM exit. Section 
22.5.1 describes the treatment of such accesses that do not cause an APIC-
access VM exits.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.

2. Even when addresses are translated using EPT (see Section 25.2), the determination of whether 
an APIC-access VM exit occurs depends on an access’s physical address, not its guest-physical 
address.
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If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.1

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if 
the “enable EPT” VM-execution control is 1 and software has not properly invalidate 
information cached from the EPT paging structures:
• At time t1, EPT was in use, the EPTP value was X, and some guest-physical 

address Y translated to an address that was not on the APIC-access page at that 
time. (This might be because the “virtualize APIC accesses” VM-execution control 
was 0.)

• At later time t2, EPT is in use, the EPTP value is X, and a memory access uses a 
linear address that translates to Y, which now translates to an address on the 
APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution 
control is 1 at this time.)

• Software did not execute the INVEPT instruction between times t1 and t2, either 
with the all-context INVEPT type or with the single-context INVEPT type and X as 
the INVEPT descriptor.

In this case, the linear access at time t2 might or might not cause an APIC-access 
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction; 
see Section 25.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if 
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:
• At time t1, the processor was in VMX non-root operation with non-zero VPID X, 

and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses” 
VM-execution control was 0.)

• At later time t2, the processor was again in VMX non-root operation with VPID X, 
and a memory access uses linear address, which now translates to an address on 
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

• Software did not execute the INVVPID instruction in any of the following ways 
between times t1 and t2:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary 
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based 
VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX 
non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section 
21.6.2.
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— With the individual-address INVVPID type and an INVVPID descriptor 
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying 
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID 
descriptor specifying VPID X (assuming that, at time t1, the translation for Y 
was global; see Section 4.10, “Caching Translation Information” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A for details 
regarding global translations).

In this case, the linear access at time t2 might or might not cause an APIC-access 
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction; 
see Section 25.3.3.3.

22.2.1.2  Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access 
VM exits caused by linear accesses.
• The priority of an APIC-access VM exit on a linear access to memory is below that 

of any page fault or EPT violation that that access may incur. That is, a linear 
access does not cause an APIC-access VM exit if it would cause a page fault or an 
EPT violation.

• A linear access does not cause an APIC-access VM exit until after the accessed 
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit 
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access 
has the same priority as any page fault or EPT violation that the linear access 
could cause. (This item applies to other events that the linear access may 
generate as well as events that may be generated by other accesses by the same 
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur 
during the execution of a repeated string instruction (including INS and OUTS). 
Suppose, for example, that the first n iterations (n may be 0) of such an instruction 
do not access the APIC-access page and that the next iteration does access that 
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated 
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.
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22.2.1.3  Instructions That May Cause Page Faults or EPT Violations 
Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can 
cause a page fault or an EPT violation even if that instruction would not access the 
APIC-access page. The following are some examples:
• The CLFLUSH instruction is considered to read from the linear address in its 

source operand. If that address translates to one on the APIC-access page, the 
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final 
value of the stack pointer is not writable (even though ENTER does not write to 
that byte if its size operand is non-zero). If that byte is writable but is on the 
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask 
may or may not cause a page fault or an EPT violation if the destination page is 
unwritable (the behavior is implementation-specific). An execution with a zero 
mask causes an APIC-access VM exit only on processors for which it could cause 
a page fault or an EPT violation.

• The MONITOR instruction is considered to read from the effective address in RAX. 
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.2

• An execution of the PREFETCH instruction that would result in an access to the 
APIC-access page does not cause an APIC-access VM exit.

22.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if 
(1) CR0.PG = 1;3 (2) the “enable EPT” VM-execution control is 1;4 (3) the access’s 
physical address is the result of an EPT translation; and (4) either (a) the access was 

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually 
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any 
other instruction.

2. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors, 
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few 
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary 
processor-based VM-execution controls are both 1.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
EPT” VM-execution control were 0. See Section 21.6.2.
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not generated by a linear address; or (b) the access’s guest-physical address is not 
the translation of the access’s linear address. Guest-physical accesses include the 
following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such 

an access uses a guest-physical address that is not the translation of that linear 
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical 
processor is using (or that causes the logical processor to use) PAE paging.1

• Updates to the accessed and dirty bits in the guest paging structures when using 
a linear address (such an access uses a guest-physical address that is not the 
translation of that linear address).

Section 22.2.2.1 specifies when guest-physical accesses to the APIC-access page 
might not cause APIC-access VM exits. In general, the treatment of APIC-access 
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based 
upon this treatment, Section 22.2.2.2 specifies the priority of such VM exits with 
respect to other events.

22.2.2.1  Guest-Physical Accesses That Might Not Cause APIC-Access 
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access 
VM exit depends on the nature of the EPT translation used by the guest-physical 
address and on how software is managing information cached from the EPT paging 
structures. The following items detail cases in which a guest-physical access to the 
APIC-access page might not cause an APIC-access VM exit:
• If the access uses a guest-physical address whose translation to the APIC-access 

page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT 
PDPTE is 1).

• If the access uses a guest-physical address whose translation to the APIC-access 
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE 
is 1).

• Software has not properly invalidated information cached from the EPT paging 
structures:

— At time t1, EPT was in use, the EPTP value was X, and some guest-physical 
address Y translated to an address that was not on the APIC-access page at 
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t2, the EPTP value is X and a memory access uses guest-physical 
address Y, which now translates to an address on the APIC-access page. (This 

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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implies that the “virtualize APIC accesses” VM-execution control is 1 at this 
time.)

— Software did not execute the INVEPT instruction, either with the all-context 
INVEPT type or with the single-context INVEPT type and X as the INVEPT 
descriptor, between times t1 and t2.

In any of the above cases, the guest-physical access at time t2 might or might not an 
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction; 
see Section 25.3.3.4.

22.2.2.2  Priority of APIC-Access VM Exits Caused by Guest-Physical 
Accesses

The following items specify the priority relative to other events of APIC-access 
VM exits caused by guest-physical accesses.
• The priority of an APIC-access VM exit caused by a guest-physical access to 

memory is below that of any EPT violation that that access may incur. That is, a 
guest-physical access does not cause an APIC-access VM exit if it would cause an 
EPT violation.

• With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical 
access could cause.

22.2.3 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) either (a) the 
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not 
the result of a translation through the EPT paging structures; and (2) either (a) the 
access is not generated by a linear address; or (b) the access’s physical address is 
not the translation of its linear address.

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the 
logical processor is using (or that causes the logical processor to use) PAE 
paging.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
EPT” VM-execution control were 0. See Section 21.6.2.
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— Updates to the accessed and dirty bits in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging 

structures.
• Any of the following accesses made by the processor to support VMX non-root 

operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical 
addresses in VM-execution control fields in the VMCS. These include the I/O 
bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.1 These include the 
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during 
VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access 
VM exit. (A physical write to the APIC-access page may write to memory as specified 
in Section 22.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that 
the access may cause. Section 22.5.2 describes the treatment of physical accesses to 
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those 
used by physical memory accesses (identified above). For example, it should not set 
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is 0.

22.2.4 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR 
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch; 
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the 
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range 
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR 
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the 
access is more than 32 bits in width; or (4) the access is to some offset is on the 
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the 

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for 
clarity.
Vol. 3B 22-13



VMX NON-ROOT OPERATION
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution 
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are 
treated as described in Section 22.5.3. Physical VTPR accesses (see Section 22.2.3) 
may or may not cause APIC-access VM exits; see Section 22.5.2.

22.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can 
cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the 

exception bitmap (see Section 21.6.3). If an exception occurs, its vector (in the 
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a 
VM exit occurs; if the bit is 0, the exception is delivered normally through the 
guest IDT. This use of the exception bitmap applies also to exceptions generated 
by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault 
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the 
error code produced with the page fault [PFEC]; (3) the page-fault error-code 
mask field [PFEC_MASK]; and (4) the page-fault error-code match field 
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is 
equality, the specification of bit 14 in the exception bitmap is followed (for 
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of 
that bit is reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the 
exception bitmap to 1 and set the page-fault error-code mask and match fields 
each to 00000000H. If software desires VM exits on no page faults, it can set bit 
14 in the exception bitmap to 1, the page-fault error-code mask field to 
00000000H, and the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception 
while attempting to call the double-fault handler and that exception itself does 
not cause a VM exit due to the exception bitmap. This applies to the case in which 
the double-fault exception was generated within VMX non-root operation, the 
case in which the double-fault exception was generated during event injection by 
VM entry, and to the case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered 
normally through the IDT. (If a logical processor is in the shutdown state or the 
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered 
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI 
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of 
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the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The 
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of 
the operations normally associated with these events. Such exits do not modify 
register state or clear pending events as they would outside of VMX operation. (If 
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do 
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in 
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the 
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal 
operations associated with those events: they do not modify register state as 
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any 
attempt to effect a task switch in VMX non-root operation causes a VM exit. See 
Section 22.6.2.

• System-management interrupts (SMIs). If the logical processor is using the 
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs 
cause SMM VM exits. See Section 26.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero. 
See Section 22.7.1 for details of operation of the VMX-preemption timer. As noted 
in that section, the timer does not cause VM exits if the logical processor is 
outside the C-states C0, C1, and C2.
Debug-trap exceptions and higher priority events take priority over VM exits 
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption 
timer take priority over VM exits caused by the “NMI-window exiting” 
VM-execution control and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
a non-maskable interrupt. Specifically, they wake a logical processor from the 
shutdown state and from the states entered using the HLT and MWAIT instruc-
tions. These VM exits do not occur if the logical processor is in the wait-for-SIPI 
state.

In addition, there are controls that cause VM exits based on the readiness of guest 
software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs 

before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of 
events by STI or by MOV SS (see Table 21-3). Such a VM exit occurs immediately 
after VM entry if the above conditions are true (see Section 23.6.5).

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur 
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and 
SMM, SMIs are delivered as described in Section 26.14.1.
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Non-maskable interrupts (NMIs) and higher priority events take priority over 
VM exits caused by this control. VM exits caused by this control take priority over 
external interrupts and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
an external interrupt. Specifically, they wake a logical processor from the states 
entered using the HLT and MWAIT instructions. These VM exits do not occur if the 
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before 
execution of any instruction if there is no virtual-NMI blocking and there is no 
blocking of events by MOV SS (see Table 21-3). (A logical processor may also 
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit 
occurs immediately after VM entry if the above conditions are true (see Section 
23.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take 
priority over VM exits caused by this control. VM exits caused by this control take 
priority over non-maskable interrupts (NMIs) and lower priority events. 
These VM exits wake a logical processor from the same inactive states as would 
an NMI. Specifically, they wake a logical processor from the shutdown state and 
from the states entered using the HLT and MWAIT instructions. These VM exits do 
not occur if the logical processor is in the wait-for-SIPI state.

22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of 
these changes are determined by the settings of certain VM-execution control fields. 
The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 

(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read 
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the 
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS 
is fixed to 1 in VMX operation (see Section 20.8), in which case CLTS causes 
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0, 
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow 
are both 1, CLTS causes a VM exit (see Section 22.1.3).

• IRET. Behavior of IRET with regard to NMI blocking (see Table 21-3) is 
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution 
controls:
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— If the “NMI exiting” VM-execution control is 0, IRET operates normally and 
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual 
NMIs” control must be 0; see Section 23.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking 
of NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the 
logical processor tracks virtual-NMI blocking. In this case, IRET removes any 
virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET 
causes a fault.

• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into 
CR0[3:0], but it does not clear CR0.PE if that bit is set. In VMX non-root 
operation, an execution of LMSW that does not cause a VM exit (see Section 
22.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the 
CR0 guest/host mask. An attempt to set any other bit in CR0[3:0] to a value not 
supported in VMX operation (see Section 20.8) causes a general-protection 
exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0 
guest/host mask and the CR0 read shadow. For each position corresponding to a 
bit clear in the CR0 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR0. For each position corresponding to a bit set 
in the CR0 guest/host mask, the destination operand is loaded with the value of 
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the 
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set 
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read 
shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution 
of MOV from CR3 does not cause a VM exit (see Section 22.1.3), the value loaded 
from CR3 is a guest-physical address; see Section 25.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 
guest/host mask and the CR4 read shadow. For each position corresponding to a 
bit clear in the CR4 guest/host mask, the destination operand is loaded with the 
value of the corresponding bit in CR4. For each position corresponding to a bit set 
in the CR4 guest/host mask, the destination operand is loaded with the value of 
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the 
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set 
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read 
shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR4.
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• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be 
executed only in 64-bit mode) is determined by the settings of the “CR8-store 
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR 
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR 
shadow. Specifically, it loads bits 3:0 of its destination operand with the value 
of bits 7:4 of byte 80H of the virtual-APIC page (see Section 21.6.8). Bits 
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a 
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is 
ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see 
Section 22.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the 
CR0 guest/host mask. Treatment of attempts to modify other bits in CR0 depends 
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it 
attempts to set any bit in CR0 to a value not supported in VMX operation (see 
Section 20.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it 
attempts to set any bit in CR0 other than bit 0 (PE) or bit 31 (PG) to a value 
not supported in VMX operation. It remains the case, however, that MOV to 
CR0 causes a general-protection exception if it would result in CR0.PE = 0 
and CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and 
IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of 
MOV to CR3 does not cause a VM exit (see Section 22.1.3), the value loaded into 
CR3 is treated as a guest-physical address; see Section 25.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated 
through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical 
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTEs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them 
to be translated through EPT.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see 
Section 22.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the 
CR4 guest/host mask. Such an execution causes a general-protection exception 
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4 
guest/host mask) to a value not supported in VMX operation (see Section 20.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed 
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and 
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow” 
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically, 
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 21.6.8); bits 3:0 of that byte and bytes 129-131 of 
that page are cleared. Such a store may cause a VM exit to occur after it 
completes (see Section 22.1.3). 

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a 
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is 
ignored in this case.

• MWAIT.  Behavior of the MWAIT instruction (which always causes an invalid-
opcode exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT 
exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit 
(see Section 22.1.3).

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if 
any of the following is true: (1) the “interrupt-window exiting” VM-execution 
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window 
exiting” VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT 
does not cause the processor to enter an implementation-dependent 
optimized state; instead, control passes to the instruction following the 
MWAIT instruction.

• RDMSR. Section 22.1.3 identifies when executions of the RDMSR instruction 
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a 
VM exit, the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the 
value returned by the instruction is determined by the setting of the “use TSC 
offsetting” VM-execution control as well as the TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX 
with the value of the IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using 
signed addition) of the value of the IA32_TIME_STAMP_COUNTER MSR 
and the value of the TSC offset (interpreted as a signed value).
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The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of RDMSR if ECX contains 6E0H (indicating the 
IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline 
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 808H (indicating the TPR MSR), instruction behavior is 
determined by the setting of the “virtualize x2APIC mode” VM-execution 
control:1

• If the control is 0, the instruction operates normally. If the local APIC is in 
x2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is 
not in x2APIC mode, a general-protection fault occurs.

• If the control is 1, the instruction loads EAX:EDX with the value of 
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC 
is not in x2APIC mode (no general-protection fault occurs because the 
local APIC is not x2APIC mode).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the 
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the 
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” 
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed 
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the 
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit 
(see Section 22.1.3).

• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of 
the “enable RDTSCP” VM-execution control:2

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the 
settings the “RDTSC exiting” and “use TSC offsetting” VM-execution controls 
as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary 
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable 
RDTSCP” VM-execution control were 0. See Section 21.6.2.
22-20 Vol. 3B



VMX NON-ROOT OPERATION
• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC 
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the 
sum (using signed addition) of the value of the 
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of 
the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a 
VM exit (see Section 22.1.3).

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and 
the CR0 read shadow. For each position corresponding to a bit clear in the CR0 
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0 
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0 
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in 
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read 
shadow.
Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow 
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit 
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0 
read shadow are used (bits 63:32 of the destination are cleared); and 
(3) depending on the contents of the CR0 guest/host mask and the CR0 read 
shadow, bits may be set in the destination that would never be set when reading 
directly from CR0.

• WRMSR. Section 22.1.3 identifies when executions of the WRMSR instruction 
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit, 
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode 
update is loaded, and control passes to the next instruction. This implies that 
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8] 
is non-zero, a general-protection fault occurs (this is true even if the logical 
processor is not in VMX non-root operation). Otherwise, instruction behavior 
is determined by the setting of the “virtualize x2APIC mode” VM-execution 
control and the value of the TPR-threshold VM-execution control field:

• If the control is 0, the instruction operates normally. If the local APIC is in 
x2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority 
register. If the local APIC is not in x2APIC mode, a general-protection 
fault occurs.

• If the control is 1, the instruction stores the value of EAX:EDX to 
bytes 87H:80H of the virtual-APIC page. This store occurs even if the 
local APIC is not in x2APIC mode (no general-protection fault occurs 
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because the local APIC is not x2APIC mode). The store may cause a 
VM exit to occur after the instruction completes (see Section 22.1.3).

• The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of WRMSR if ECX contains 10H (indicating the 
IA32_TIME_STAMP_COUNTER MSR). Such executions modify the actual 
timestamp counter without regard to the TSC offset.

• The 1-setting of the “use TSC-offsetting” VM-execution control does not 
effect executions of WRMSR if ECX contains 6E0H (indicating the 
IA32_TSC_DEADLINE MSR). Such executions modify the APIC-timer 
deadline relative to the actual timestamp counter without regard to the 
TSC offset.

22.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 22.2, if the “virtualize APIC accesses” VM-execution control is 1, 
most memory accesses to the APIC-access page (see Section 21.6.2) cause APIC-
access VM exits.1 Section 22.2 identifies potential exceptions. These are covered in 
Section 22.5.1 through Section 22.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted 
to an access to the virtual-APIC page (see Section 21.6.8). In these cases, the access 
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see 
Appendix G.1).

22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page 
Translations

As noted in Section 22.2.1, a linear access to the APIC-access page using translation 
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-
access VM exit. If it does not and the access is not a VTPR access (see Section 
22.2.4), the access operates on memory on the APIC-access page. Section 22.5.3 
describes the treatment if there is no APIC-access VM exit and the access is a VTPR 
access.

22.5.2 Physical Accesses to the APIC-Access Page
A physical access to the APIC-access page may or may not cause an APIC-access 
VM exit. If it does not and the access is not a VTPR access (see Section 22.2.4), the 
access operates on memory on the APIC-access page (this may happen if the access 

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.
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causes an APIC-access VM exit). Section 22.5.3 describes the treatment if there is no 
APIC-access VM exit and the access is a VTPR access.

22.5.3 VTPR Accesses
As noted in Section 22.2.4, a memory access is a VTPR access if all of the following 
hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for 
an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is 
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:
• A linear VTPR access using a translation with a 4-KByte page does not cause an 

APIC-access VM exit. Instead, it is converted so that, instead of accessing offset 
80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page. 
Further details are provided in Section 22.5.3.1 to Section 22.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or 
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section 
22.5.3.1 to Section 22.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details 
are provided in Section 22.5.3.1 to Section 22.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 22.5.3.1 to 
Section 22.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause 
an APIC-access VM exit). The details in Section 22.5.3.1 to Section 22.5.3.3 
do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details 
are provided in Section 22.5.3.1 to Section 22.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a 
VTPR access only if the “use TPR shadow” VM-execution control is 1).

22.5.3.1  Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:
• VTPR read accesses. Such an access completes normally (reading data from the 

field at offset 80H on the virtual-APIC page).
The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:
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— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on 
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the 
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to 
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is 
from offset 80H on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the 
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update 
(see Section 22.5.3.3).
The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by 
the final value of the stack pointer is at offset 80H on the APIC-access page 
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the 
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow. 
The instruction is followed by a TPR-shadow update.

22.5.3.2  Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the 
execution of some instructions and the delivery of events through the IDT (including 
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the 
ordering of these memory accesses. The following items describe the treatment of 
VTPR accesses that are part of such multi-access operations:
• Read-modify-write instructions may first perform a VTPR read access and then a 

VTPR write access. Both accesses complete normally (as described in Section 
22.5.3.1). The instruction is followed by a TPR-shadow update (see Section 
22.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a 
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault 
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the 
APIC-access page, the latter access causes an APIC-access VM exit as described 
in Section 22.2.
If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.
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• Suppose that the first iteration of a repeated string instruction (including OUTS) 
that accesses the APIC-access page performs a VTPR read access and that the 
next iteration would read from the APIC-access page using an offset other than 
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully, 
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access 
VM exit. The instruction pointer saved in the VMCS references the repeated 
string instruction and the values of the general-purpose registers are such 
that iteration would be repeated if the instruction were restarted.

• Suppose that the first iteration of a repeated string instruction (including INS) 
that accesses the APIC-access page performs a VTPR write access and that the 
next iteration would write to the APIC-access page using an offset other than 
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on 
the virtual-APIC page. The write is followed by a TPR-shadow update, which 
may cause a VM exit (see Section 22.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved 
in the VMCS references the repeated string instruction and the values of the 
general-purpose registers are such that the next iteration would be 
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would 
write to the other offset causes an APIC-access VM exit. The instruction 
pointer saved in the VMCS references the repeated string instruction and the 
values of the general-purpose registers are such that that iteration would be 
repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS) 
performs a VTPR write access. The iteration writes data to offset 80H on the 
virtual-APIC page. The write is followed by a TPR-shadow update, which may 
cause a VM exit (see Section 22.5.3.3). If it does, the instruction pointer saved in 
the VMCS references the instruction after the string instruction and the values of 
the general-purpose registers reflect completion of the string instruction.

22.5.3.3  TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are 
both 1, a logical processor performs certain actions after any operation (or iteration 
of a repeated string instruction) with a VTPR write access. These actions are called a 
TPR-shadow update. (As noted in Section 22.5.3.2, a TPR-shadow update does not 
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.
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2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater 
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will 
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT 
signals, and lower priority events. A TPR-shadow update thus has priority over any 
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked 
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

22.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as 
described in the following sections.

22.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not 

control the blocking of external interrupts. In this case, an external interrupt that 
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts 
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) 
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

22.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a 
task switch in VMX non-root operation causes a VM exit. However, the following 
checks are performed (in the order indicated), possibly resulting in a fault, before 
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the 
proper values of the relevant privilege fields. The following cases detail the 
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode, 
privilege-levels checks are performed on the task gate but, if they pass, 
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privilege levels are not checked on the referenced task-state segment (TSS) 
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode, 
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt 
accesses a task gate in the IDT in IA-32e mode, a general-protection 
exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint 
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt 
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are 
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS 
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT 
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not 
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task 
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However, 
the ordering between a VM exit due to a task switch and a page fault resulting from 
accessing the old TSS or the new TSS is implementation-specific. Some logical 
processors may generate a page fault (instead of a VM exit due to a task switch) if 
accessing either TSS would cause a page fault. Other logical processors may 
generate a VM exit due to a task switch even if accessing either TSS would cause a 
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception 
(before generating a VM exit due to the task switch) and that exception causes a 
VM exit, information about the event whose delivery that accessed the task gate is 
recorded in the IDT-vectoring information fields and information about the exception 
that caused the VM exit is recorded in the VM-exit interruption-information fields. 
See Section 24.2. The fact that a task gate was being accessed is not recorded in the 
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to 
the task switch, information about the event whose delivery accessed the task gate 
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit 
is a task switch and not an interruption, the valid bit for the VM-exit interruption 
information field is 0. See Section 24.2.
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22.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls cause VM exits using features that are specific to VMX 
non-root operation. These are the VMX-preemption timer (Section 22.7.1) and the 
monitor trap flag (Section 22.7.2).

22.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption 
timer” VM-execution control, the VMX-preemption timer counts down (from the 
value loaded by VM entry; see Section 23.6.4) in VMX non-root operation. When the 
timer counts down to zero, it stops counting down and a VM exit occurs (see Section 
22.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp 
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC 
changes due to a TSC increment. The value of X is in the range 0–31 and can be 
determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix 
G.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates 
in the shutdown and wait-for-SIPI states. If the timer counts down to zero in C1, C2, 
or shutdown, the logical processor transitions to the C0 C-state and causes a VM exit. 
(The timer does not cause a VM exit if it counts down to zero in the wait-for-SIPI 
state.) The timer is not decremented and does not cause VM exits in C-states deeper 
than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and 
system-management mode (SMM) depends on whether the treatment of SMIs and 
SMM:
• If the default treatment of SMIs and SMM (see Section 26.14) is active, the VMX-

preemption timer counts across an SMI to VMX non-root operation, subsequent 
execution in SMM, and the return from SMM via the RSM instruction. However, 
the timer can cause a VM exit only from VMX non-root operation. If the timer 
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs 
immediately after RSM with its normal priority unless it is blocked based on 
activity state (Section 22.3).

• If the dual-monitor treatment of SMIs and SMM (see Section 26.15) is active, 
transitions into and out of SMM are VM exits and VM entries, respectively. The 
treatment of the VMX-preemption timer by those transitions is mostly the same 
as for ordinary VM exits and VM entries; Section 26.15.2 and Section 26.15.4 
detail some differences.
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22.7.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on 
certain instruction boundaries in VMX non-root operation. Such VM exits are called 
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a 

vectored event (see Section 23.5.1), an MTF VM exit is pending on the instruction 
boundary before the first instruction following the VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 23.5.2), an MTF 
VM exit is pending on the instruction boundary before the first instruction 
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an 
event, and a pending event (e.g., debug exception or interrupt) is delivered 
before an instruction can execute, an MTF VM exit is pending on the instruction 
boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not 
injecting an event, and the first instruction following VM entry is a REP-prefixed 
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is 
pending on the instruction boundary following delivery of the fault (or any 
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit 
is pending on the instruction boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not 
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction 
boundary following delivery of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the 
instruction boundary following execution of that instruction. If the instruction 
is INT3 or INTO, this boundary follows delivery of any software exception. If 
the instruction is INT n, this boundary follows delivery of a software interrupt. 
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction 
boundary on which an MTF VM exit would be pending (e.g., due to an exception or 
triple fault).

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2 
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.
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An MTF VM exit occurs on the instruction boundary on which it is pending unless a 
higher priority event takes precedence or the MTF VM exit is blocked due to the 
activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events 

take priority over MTF VM exits. MTF VM exits take priority over debug-trap 
exceptions and lower priority events.

• No MTF VM exit occurs if the processor is in either the shutdown activity state or 
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the 
logical processor out of the shutdown activity state without causing a VM exit, an 
MTF VM exit is pending after delivery of that interrupt.

22.7.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support 
the virtualization of physical memory. When EPT is in use, certain physical addresses 
are treated as guest-physical addresses and are not used to access memory directly. 
Instead, guest-physical addresses are translated by traversing a set of EPT paging 
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 25.2.

22.8 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in 
VMX operation (see Section 20.8). This restriction implies that guest software cannot 
be run in unpaged protected mode or in real-address mode. Later processors support 
a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and 
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software 
to run in unpaged protected mode or in real-address mode. The following items 
describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply 

because it would set either CR0.PE and CR0.PG to 0. See Section 22.4 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root 

operation just as it does outside VMX operation. Thus, if CR0.PE = 0, the 
processor operates as it does normally in real-address mode (for example, it uses 
the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0, 
the processor operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root 
operation and by the settings of the VM-execution controls just as it is in 

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the 
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.
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protected mode or when paging is enabled. Instructions, interrupts, and 
exceptions that cause VM exits in protected mode or when paging is enabled also 
do so in real-address mode or when paging is disabled. The following examples 
should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause 
VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and 
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, 
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, 
and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for 
translation to a physical address.1 The guest memory type passed on to the EPT 
mechanism is WB (writeback).

1. As noted in Section 23.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.
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CHAPTER 23
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions 
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch 
state is clear and VMRESUME can be used only with a VMCS whose the launch state 
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence 
(Section 23.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are 
proper for supporting VMX non-root operation and that the VMCS is correctly 
configured to support the next VM exit (Section 23.2).

3. The following may be performed in parallel or in any order (Section 23.3):

• The guest-state area of the VMCS is checked to ensure that, after the 
VM entry completes, the state of the logical processor is consistent with 
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in 
the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 23.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to 
“launched.”

6. An event may be injected in the guest context (Section 23.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur 
in one of the following three ways:
• Some of the checks in Section 23.1 may generate ordinary faults (for example, 

an invalid-opcode exception). Such faults are delivered normally.
• Some of the checks in Section 23.1 and all the checks in Section 23.2 cause 

control to pass to the instruction following the VM-entry instruction. The failure is 
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if 
there is no current VMCS). If there is a current VMCS, an error number indicating 
the cause of the failure is stored in the VM-instruction error field. See Chapter 5 

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors, 
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few 
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 
2B for the error numbers.

• The checks in Section 23.3 and Section 23.4 cause processor state to be loaded 
from the host-state area of the VMCS (as would be done on a VM exit). 
Information about the failure is stored in the VM-exit information fields. See 
Section 23.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 23.1 and Section 23.2 causes 
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a 
fault; (2) failure of one of the checks in Section 23.3 or in loading MSRs causes 
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 23.1, Section 23.2, and Section 23.3 and there is no 
failure in loading MSRs.

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code 
running in SMM returns using VM entries instead of the RSM instruction. A VM entry 
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control 
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that 
are detailed in Section 26.15.4.

23.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked 
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is 
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next 
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of 
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 21-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not 
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not 
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next 
instruction. An error number indicating the cause of the failure is stored in the 
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VM-instruction error field. See Chapter 5 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B for the error numbers.

23.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 23.1 do not cause VM entry to fail, the control and host-state 
areas of the VMCS are checked to ensure that they are proper for supporting VMX 
non-root operation, that the VMCS is correctly configured to support the next 
VM exit, and that, after the next VM exit, the processor’s state is consistent with the 
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed 
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the 
VM-instruction error field is loaded with an error number that indicates whether the 
failure was due to the controls or the host-state area (see Chapter 5 of the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B).

These checks may be performed in any order. Thus, an indication by error number of 
one cause (for example, host state) does not imply that there are not also other 
errors. Different processors may thus give different error numbers for the same 
VMCS. Some checks prevent establishment of settings (or combinations of settings) 
that are currently reserved. Future processors may allow such settings (or combina-
tions) and may not perform the corresponding checks. The correctness of software 
should not rely on VM-entry failures resulting from the checks documented in this 
section.

The checks on the controls and the host-state area are presented in Section 23.2.1 
through Section 23.2.4. These sections reference VMCS fields that correspond to 
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

23.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

23.2.1.1  VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly. 
Software may consult the VMX capability MSRs to determine the proper settings 
(see Appendix G.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry 
operates as if each secondary processor-based VM-execution control were 0.
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• Reserved bits in the primary processor-based VM-execution controls must be set 
properly. Software may consult the VMX capability MSRs to determine the proper 
settings (see Appendix G.3.2).

• If the “activate secondary controls” primary processor-based VM-execution 
control is 1, reserved bits in the secondary processor-based VM-execution 
controls must be set properly. Software may consult the VMX capability MSRs to 
determine the proper settings (see Appendix G.3.3).
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support 
a different number of CR3-target values. Software should read the VMX 
capability MSR IA32_VMX_MISC to determine the number of values supported 
(see Appendix G.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap 
address must be 0. Neither address should set any bits beyond the processor’s 
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap 
address must be 0. The address should not set any bits beyond the processor’s 
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must 
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address 
width.4

The following items describe the treatment of bytes 81H-83H on the virtual-
APIC page (see Section 21.6.8) if all of the above checks are satisfied and the
“use TPR shadow” VM-execution control is 1, treatment depends upon the
setting of the “virtualize APIC accesses” VM-execution control:5

— If the “virtualize APIC accesses” VM-execution control is 0, the bytes may be 
cleared. (If the bytes are not cleared, they are left unmodified.)

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; 
see Appendix G.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix G.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix G.1.
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— If the “virtualize APIC accesses” VM-execution control is 1, the bytes are 
cleared.

— If the VM entry fails, the any clearing of the bytes may or may not occur. This 
is true either if the failure causes control to pass to the instruction following 
the VM-entry instruction or if it cause processor state to be loaded from the 
host-state area of the VMCS. Behavior may be implementation-specific.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold 
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is 
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of 
bits 3:0 of the TPR threshold VM-execution control field should not be greater 
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section 
21.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution 
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access 
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address 
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow” 
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution 
control must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be 0000H.

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field 
(see Table 21-8 in Section 21.6.11) must satisfy the following checks:3

5. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC 
accesses” VM-execution control were 0. See Section 21.6.2.

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see 
Appendix G.1.

2. “Virtualize APIC accesses” and “virtualize x2APIC mode” are both secondary processor-based VM-
execution controls. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry 
functions as if both these controls were 0. See Section 21.6.2.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 21.6.2.
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— The EPT memory type (bits 2:0) must be a value supported by the logical 
processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix 
G.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT 
page-walk length of 4; see Section 25.2.2.

— Reserved bits 11:6 and 63:N (where N is the processor’s physical-address 
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

23.2.1.2  VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult 

the VMX capability MSRs to determine the proper settings (see Appendix G.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-

preemption timer value” VM-exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the 

VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.2

— The address of the last byte in the VM-exit MSR-store area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The arithmetic 
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

• The following checks are performed for the VM-exit MSR-load address if the 
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-exit MSR-load address + (MSR count * 16) – 1. (The arithmetic 

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as 
if both these controls were 0. See Section 21.6.2.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

23.2.1.3  VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may 

consult the VMX capability MSRs to determine the proper settings (see Appendix 
G.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are 
the VM-entry interruption-information field (see Table 21-12 in Section 21.8.3), 
the VM-entry exception error code, and the VM-entry instruction length. If the 
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following 
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 
is reserved on all logical processors; value 7 (other event) is reserved on 
logical processors that do not support the 1-setting of the “monitor trap flag” 
VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF 
VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the 
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to 
CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption 
type is hardware exception; and (3) the vector indicates an exception that 
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = 
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry 
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or 
privileged software exception, the VM-entry instruction-length field is in the 
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the 
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.1
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— The address of the last byte in the VM-entry MSR-load area should not set any 
bits beyond the processor’s physical-address width. The address of this last 
byte is VM-entry MSR-load address + (MSR count * 16) – 1. (The arithmetic 
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor 
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls 
cannot both be 1.

23.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond 
to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see 

Section 20.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see 
Section 20.8).

• On processors that support Intel 64 architecture, the CR3 field must be such that 
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address 
width must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field 
and the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the 
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see 
Figure 30-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT 
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC), 
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the 
values of these bits are not changed by VM exit; see Section 24.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 
1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation 
information is invalidated.
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• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR 
must be 0 in the field for that register. In addition, the values of the LMA and LME 
bits in the field must each be that of the “host address-space size” VM-exit 
control.

23.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond 
to segment and descriptor-table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) 

and the TI flag (bit 2) must be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit 

control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS, 

GS, GDTR, IDTR, and TR must contain canonical addresses.

23.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to 
address-space size are performed on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the 

time of VM entry, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of 

VM entry, the “host address-space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to 
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space 
size” VM-exit control are both 0.
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23.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 23.2), the 
following operations take place concurrently: (1) the guest-state area of the VMCS is 
checked to ensure that, after the VM entry completes, the state of the logical 
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is 
loaded from the guest-state area or as specified by the VM-entry control fields; and 
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor 
responds to such failures by loading state from the host-state area, as it would for a 
VM exit. See Section 23.7.

23.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These 
checks may be performed in any order. Some checks prevent establishment of 
settings (or combinations of settings) that are currently reserved. Future processors 
may allow such settings (or combinations) and may not perform the corresponding 
checks. The correctness of software should not rely on VM-entry failures resulting 
from the checks documented in this section. 

The following subsections reference fields that correspond to processor state. Unless 
otherwise stated, these references are to fields in the guest-state area.

23.3.1.1  Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to 
control registers, debug registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation 

(see Section 20.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the 
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked 
because the values of these bits are not changed by VM entry; see Section 
23.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must 
also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation 
(see Section 20.8).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 21.6.2.
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• If the “load debug controls” VM-entry control is 1, bits reserved in the 
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors 
to support the virtual-machine extensions supported only the 1-setting of this 
control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field 
(corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to 
CR4.PAE) must each be 1.1

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field 
(corresponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 
beyond the processor’s physical-address width are 0.2,3

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field 
must be 0. The first processors to support the virtual-machine extensions 
supported only the 1-setting of this control and thus performed this check 
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each 
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the 
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see 
Figure 30-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the 
IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL 
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC), 
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed 
on the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If 
CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached 
translation information is invalidated.
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— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the 
“IA-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME) 
if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1 

23.3.1.2  Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and 
LDTR. The following terms are used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in 

the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1. 

(This is possible only on processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in 

the access-rights field for that register.

The following are the checks on these fields: 
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector 
field for CS.2

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be 
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be 
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field 
must be 0000FFFFH.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 21.6.2.
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• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This 
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are 
considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15
(accessed code segment).

— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.
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— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 – 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is 0:  (1) bit 0 in the CR0 field must be 1 if the capa-
bility MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the 
Type in the access-rights field for CS cannot be 3.
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• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is 
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

23.3.1.3  Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must 

contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

23.3.1.4  Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to 
RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64 

architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if 
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be 
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the 
access-rights field for CS is 1.1 (No check applies if the processor supports 64 
linear-address bits.)

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
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• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1 
must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry 
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry 
interruption-information field is 1 and the interruption type (bits 10:8) is 
external interrupt.

23.3.1.5  Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to 
non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an 
activity state supported by the implementation (see Section 21.4.2). Future 
processors may include support for other activity states. Software should 
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to 
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in 
the access-rights field for SS is not 0.2

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or 
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the 
interruption to be delivered (as defined by interruption type and vector) must 
not be one that would normally be blocked while a logical processor is in the 
activity state corresponding to the contents of the activity-state field. The 
following items enumerate the interruptions (as specified in the VM-entry 
interruption-information field) whose injection is allowed for the different 
activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31 
of the primary processor-based VM-execution controls are both 1.

2. As noted in Section 21.4.1, SS.DPL corresponds to the logical processor’s current privilege level 
(CPL).
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— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF
VM exit).

See Table 21-12 in Section 21.8.3 for details regarding the format of the 
VM-entry interruption-information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry 
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1 
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the 
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the 
interruption type (bits 10:8) in that field has value 0, indicating external 
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry 
interruption-information field is 1 and the interruption type (bits 10:8) in that 
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31) 
in the VM-entry interruption-information field is 1 and the interruption type 
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not 
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control 
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1, 
and the interruption type (bits 10:8) in that field has value 2 (indicating 
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no 
requirement that bit 3 be 0 if the valid bit in the VM-entry 
interruption-information field is 1 and the interruption type in that 
field has value 2.
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• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not 
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the 
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1); 
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that 
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the 
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the 
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other 
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 32 bits located in memory referenced by the value of the field (as a 
physical address) must contain the processor’s VMCS revision identifier (see 
Section 21.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the 
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the 
field must not contain the VMXON pointer.

23.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses 
PAE paging (see Section 4.4 in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A).3 When PAE paging is in use, the physical address in 
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV 
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG) 
is set in the CR0 field in the guest-state area; (2) bit 5 (corresponding to CR4.PAE) is 

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see 
Appendix G.1.

3. On processors that support Intel 64 architecture, the physical-address extension may support 
more than 36 physical-address bits. Software can determine the number physical-address bits 
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned 
in bits 7:0 of EAX.
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set in the CR4 field; and (3) the “IA-32e mode guest” VM-entry control is 0. Such a 
VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the 

PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE 
paging was not in use before the VM entry; or (2) the value of CR3 is changing as 
a result of the VM entry. VM entry may check their validity even if neither (1) nor 
(2) hold.1

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the 
PDPTE fields in the guest-state area (see Section 21.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any 
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used 
when CR3 is loaded with MOV to CR3 when PAE paging is in use.2 If MOV to CR3 
would cause a general-protection exception due to the PDPTEs that would be loaded 
(e.g., because a reserved bit is set), the VM entry fails.

23.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control 

registers.

This loading may be performed in any order and in parallel with the checking of VMCS 
contents (see Section 23.3.1).

The loading of guest state is detailed in Section 23.3.2.1 to Section 23.3.2.4. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise 
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs 
from the VM-entry MSR-load area (see Section 23.4). This loading occurs only after 
the state loading described in this section and the checking of VMCS contents 
described in Section 23.3.1.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 21.6.2.

2. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one 
of the PDPTEs, bits 63:1 of that PDPTE are ignored.
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23.3.2.1  Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs 
are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which 

are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19; 
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are 
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the 

DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is 
always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DR7 field.

• The following describes how some MSRs are loaded using fields in the guest-state 
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL 
MSR is loaded from the IA32_DEBUGCTL field. The first processors to support 
the virtual-machine extensions supported only the 1-setting of this control 
and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL 
field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. 
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from 
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields 
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields 
for FS and GS, respectively (see Section 23.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR 
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode
guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry
control.2 Otherwise, IA32_EFER.LME is unmodified.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. 
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
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See below for the case in which the “load IA32_EFER” VM-entry control is 
1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the 
IA32_PERF_GLOBAL_CTRL MSR is loaded from the 
IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded 
from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded 
from the IA32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 23.4.

• The SMBASE register is unmodified by all VM entries except those that return 
from SMM.

23.3.2.2  Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set 
for TR (see Section 23.3.1.2). If it is set for one of the other registers, the 
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults 
(general-protection exception or stack-fault exception) outside 64-bit mode, 
just as they would had the segment been loaded using a null selector. This bit 
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in 
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and 
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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• If the unusable bit is 1, the remainder of CS access rights are undefined 
after VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field 

is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields 
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the 
remainder of the access rights are undefined after VM entry with the 
following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corre-
sponding fields in the VMCS. On processors that support Intel 64
architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address
for LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the
base addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

23.3.2.3  Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS 
field, respectively. The following items regard the upper 32 bits of these fields on 
VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor 

may ignore the contents of bits 63:32 of the RSP field on VM entries that are not 
to 64-bit mode.

• As noted in Section 23.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 
on VM entries that are not to 64-bit mode.

23.3.2.4  Loading Page-Directory-Pointer-Table Entries
As noted in Section 23.3.1.6, the logical processor uses PAE paging if bit 5 in CR4 
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging 
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loads the PDPTEs into internal, non-architectural registers based on the setting of the 
“enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table 

referenced by the physical address in the value of CR3 being loaded by the 
VM entry (see Section 23.3.2.1). The values loaded are treated as physical 
addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 21.4.2). The values loaded are treated as guest-physical 
addresses in VMX non-root operation.

23.3.2.5  Updating Non-Register State
Section 25.3 describe how the VMX architecture controls how a logical processor 
manages information in the TLBs and paging-structure caches. The following items 
detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates 

linear mappings and combined mappings associated with VPID 0000H (for all 
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are 
they required to invalidate any linear mappings or combined mappings if the 
“enable VPID” VM-execution control is 1. 

23.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address 
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries 
clear any address-range monitoring that may be in effect.

23.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 21.8.2). 
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the 
contents of bits 127:64 as they would be written by WRMSR.1 

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or 

C0000101 (the IA32_GS_BASE MSR).

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to 
modify it using the VM-entry MSR-load area are also ignored.
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• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 
allows access to an APIC register when the local APIC is in x2APIC mode. 

• The value of bits 31:0 indicates an MSR that can be written only in system-
management mode (SMM) and the VM entry did not commence in SMM. 
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for 
model-specific reasons. A processor may prevent loading of certain MSRs even if 
they can normally be written by WRMSR. Such model-specific behavior is 
documented in Appendix B.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry 

would cause a general-protection exception if executed via WRMSR with 
CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to 
such failures by loading state from the host-state area, as it would for a VM exit. See 
Section 23.7.

If any MSR is being loaded in such a way that would architecturally require a TLB 
flush, the TLBs are updated so that, after VM entry, the logical processor will not use 
any translations that were cached before the transition.

23.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 21.8.3) is 
1, VM entry causes an event to be delivered (or made pending) after all components 
of guest state have been loaded (including MSRs) and after the VM-execution control 
fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable 

interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software 
exception), or 6 (software exception), the event is delivered as described in 
Section 23.5.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an 
MTF VM exit is pending after VM entry. See Section 23.5.2.

23.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by 
VM entry. This means that delivery occurs after all components of guest state have 

1. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would 
modify the LME bit. If VM entry has established CR0.PG = 1, the IA32_EFER MSR should not be 
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.
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been loaded (including MSRs) and after the VM-execution control fields have been 
established.1 The event is delivered using the vector in that field to select a 
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 23.5.1.1 provides details of vectored-event injection. In general, the event is 
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection 
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 23.5.1.2 
details cases in which event injection causes a VM exit.

23.5.1.1  Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption 
information field (format given in Table 21-12), the VM-entry exception error-code 
field, and the VM-entry instruction-length field. The following items provide details of 
the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded 

from the guest-state area. The value pushed for the RF flag is not modified based 
on the type of event being delivered. However, the pushed value of RFLAGS may 
be modified if a software interrupt is being injected into a guest that will be in 
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value 
in the RFLAGS register is modified as is done normally when delivering an event 
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event 
and whether nested exceptions occur during its delivery. The term current 
guest RIP refers to the value to be loaded from the guest-state area. The value 
pushed is determined as follows:2

— If VM entry successfully injects (with no nested exception) an event with 
interruption type external interrupt, NMI, or hardware exception, the current 
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with 
interruption type software interrupt, privileged software exception, or 
software exception, the current guest RIP is incremented by the VM-entry 
instruction length before being pushed on the stack.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if 
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered 
during event delivery may cause a VM exit; see Section 23.5.1.1.

2. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is 
determined normally.
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— If VM entry encounters an exception while injecting an event and that 
exception does not cause a VM exit, the current guest RIP is pushed on the 
stack regardless of event type or VM-entry instruction length. If the 
encountered exception does cause a VM exit that saves RIP, the saved RIP is 
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is 
pushed on the stack as an error code would be pushed during delivery of an 
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, 
even if the event has vector 1 (normal deliveries of debug exceptions, which have 
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 
mode (RFLAGS.VM = 1), no general-protection exception can occur due to 
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting 
such an event and, if desired, inject a general-protection exception instead of a 
software interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086 
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event 
delivery is subject to VME-based interrupt redirection based on the software 
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software 
interrupt), the interrupt is directed to an 8086 program interrupt handler: the 
processor uses a 16-bit interrupt-vector table (IVT) located at linear address 
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications 
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to 
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), 
the interrupt is directed to a protected-mode interrupt handler. (In other 
words, the injection is treated as described in the next item.) In this case, the 
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a 
general-protection exception occurs instead). However, as noted above, 
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a 
exception. Thus, in this case, the injection invokes a protected-mode 
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above) 

or software exception, privilege checking is performed on the IDT descriptor 
being accessed as would be the case for executions of INT n, INT3, or INTO (the 
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, 
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a 
nested exception. Injection of an event with interruption type external interrupt, 
NMI, hardware exception, and privileged software exception, or with interruption 
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type software interrupt and being redirected as described above, do not perform 
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” 
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the 
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions, 
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of 
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which 
normally clear the LBR bit before they are delivered, and therefore do not 
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a 
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is 
determined as follows:

— If event being injected has interruption type external interrupt, NMI, 
hardware exception, or privileged software exception and encounters a 
nested exception (but does not produce a double fault), the error code for the 
first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and 
encounters a nested exception (but does not produce a double fault), the 
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that 
exception encounters another exception (but does not produce a double 
fault), the error code for that exception sets the EXT bit. If a double fault is 
produced, the error code for the double fault is 0000H (the EXT bit is clear).

23.5.1.2  VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of 
the VM-execution controls. For example, setting the “NMI exiting” VM-execution 
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate 

in the IDT, the attempted task switch may cause a VM exit just as it would had 
the injected event occurred during normal execution in VMX non-root operation 
(see Section 22.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending 
on the contents of the exception bitmap (see Section 22.3).

• If event delivery generates a double-fault exception (due to a nested exception); 
the logical processor encounters another nested exception while attempting to 
call the double-fault handler; and that exception does not cause a VM exit due to 
the exception bitmap; then a VM exit occurs due to triple fault (see Section 
22.3).
Vol. 3B 23-27



VM ENTRIES
• If event delivery injects a double-fault exception and encounters a nested 
exception that does not cause a VM exit due to the exception bitmap, then a 
VM exit occurs due to triple fault (see Section 22.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery 
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 22.2) or, if the access is a VTPR access, be treated as 
specified in Section 22.5.3.1

If the event-delivery process does cause a VM exit, the processor state before the 
VM exit is determined just as it would be had the injected event occurred during 
normal execution in VMX non-root operation. If the injected event directly accesses a 
task gate that cause a VM exit or if the first nested exception encountered causes a 
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 24.2.3).

23.5.1.3  Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as 
would normally be done in real-address mode.2 Specifically, VM entry uses the vector 
provided in the VM-entry interruption-information field to select a 4-byte entry from 
an interrupt-vector table at the linear address in IDTR.base. Further details are 
provided in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software 
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field 
must be 0 if CR0.PE will be 0 after VM entry (see Section 23.2.1.3), vectored events 
injected with CR0.PE = 0 do not push an error code on the stack. This is consistent 
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), 
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 23.5.1.2.

23.5.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other 
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the 
instruction boundary following VM entry. This is the case even if the “monitor trap 
flag” VM-execution control is 0. See Section 22.7.2 for the treatment of pending MTF 
VM exits.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC 
accesses” VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, 
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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23.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption 
information field is 1 and the interruption type in the field is 0 (external interrupt), 2 
(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

23.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 21-3) contains bits 
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field 
impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following 

the VM entry, regardless of the contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field 
is 1. This blocking is cleared after the guest executes one instruction or incurs 
an exception (including a debug exception made pending by VM entry; see 
Section 23.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state 
field is 1. This may affect the treatment of pending debug exceptions; see 
Section 23.6.3. This blocking is cleared after the guest executes one 
instruction or incurs an exception (including a debug exception made pending 
by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if 
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI 
exiting” VM-execution control is 0, execution of the IRET instruction removes 
this blocking (even if the instruction generates a fault). If the “NMI exiting” 
control is 1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs 
are not blocked in VMX non-root operation (except for ordinary blocking 
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI 
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after 
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If 
the bit is 0, there is no virtual-NMI blocking after VM entry unless the 
VM entry is injecting an NMI (see Section 23.5.1.1). Execution of IRET 
removes virtual-NMI blocking (even if the instruction generates a fault).
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If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must
be 0; see Section 23.2.1.1.

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI 
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and 
only if the bit 2 in the interruptibility-state field is 1.

23.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the 
logical processor is active or in one of the inactive states identified in Section 21.4.2. 
The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after 

VM entry. While the consistency checks described in Section 23.3.1.5 on the 
activity-state field do apply in this case, the contents of the activity-state field do 
not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the 
activity state specified in the guest-state area. If VM entry ends with the logical 
processor in an inactive activity state, the VM entry generates any special bus 
cycle that is normally generated when that activity state is entered from the 
active state. If VM entry would end with the logical processor in the shutdown 
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown 
condition occurs. The error code used is 0000H, indicating “legacy shutdown.” 
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking 
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical 
processor is in the active state and in VMX non-root operation are discarded 
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical 
processor is in the HLT state and in VMX non-root operation are discarded and 
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts 
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting” 
VM-execution control is 1. SIPIs that arrive while a logical processor is in the 

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
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shutdown state and in VMX non-root operation are discarded and do not 
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts 
(NMIs), INIT signals, and system-management interrupts (SMIs). Such 
events do not cause VM exits if they arrive while a logical processor is in the 
wait-for-SIPI state and in VMX non-root operation do not cause VM exits 
regardless of the settings of the pin-based VM-execution controls.

23.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there 
are debug exceptions that have not yet been delivered (see Section 21.4.2). This 
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are 
true:
• The VM entry is vectoring with one of the following interruption types: external 

interrupt, non-maskable interrupt (NMI), hardware exception, or privileged 
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the 
VM entry is vectoring with either of the following interruption type: software 
interrupt or software exception.

• The VM entry is not vectoring and the activity-state field indicates either 
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug 
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there 
are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as 

they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered 
after VM entry (see below). 

— If the logical processor is blocking such exceptions (due to blocking by 
MOV SS), the pending debug exceptions are held pending or lost as would 
normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software 
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they 
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that 
encountered a debug trap.
Vol. 3B 23-31



VM ENTRIES
— For injection of a software exception with a vector other than 3 and 4, the 
pending debug exceptions may be lost or they may be delivered after 
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug 
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps 
on the previous instruction” (see Section 6.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits 
induced by the TPR shadow (see Section 23.6.7) and pending MTF VM exits (see 
Section 23.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the 
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6 
normally.

23.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts 
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the 
value in the VMX-preemption timer-value field is zero). If this happens (and if the VM 
entry was not to the wait-for-SIPI state), a VM exit occurs with its normal priority 
after any event injection and before execution of any instruction following VM entry. 
For example, any pending debug exceptions established by VM entry (see Section 
23.6.3) take priority over a timer-induced VM exit. (The timer-induced VM exit will 
occur after delivery of the debug exception, unless that exception or its delivery 
causes a different VM exit.)

See Section 22.7.1 for details of the operation of the VMX-preemption timer in VMX 
non-root operation, including the blocking and priority of the VM exits that it causes.

23.6.5 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur 
immediately after VM entry (see Section 22.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over 

VM exits caused by this control. VM exits caused by this control take priority over 
external interrupts and lower priority events. 
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• VM exits caused by this control wake the logical processor if it just entered the 
HLT state because of a VM entry (see Section 23.6.2). They do not occur if the 
logical processor just entered the shutdown state or the wait-for-SIPI state.

23.6.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 22.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 23.6.3) and higher priority events take 

priority over VM exits caused by this control. VM exits caused by this control take 
priority over non-maskable interrupts (NMIs) and lower priority events. 

• VM exits caused by this control wake the logical processor if it just entered either 
the HLT state or the shutdown state because of a VM entry (see Section 23.6.2). 
They do not occur if the logical processor just entered the wait-for-SIPI state.

23.6.7 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are 
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR 
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H 
on the virtual-APIC page (see Section 21.6.8).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the 

interruptibility-state field in guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts 

(SMIs), INIT signals, and lower priority events. They thus have priority over the 
VM exits described in Section 23.6.5, Section 23.6.6, and Section 23.6.8, as well 
as any interrupts or debug exceptions that may be pending at the time of 
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part 
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just 
entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the 
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC 
accesses” VM-execution control were 0. See Section 21.6.2.
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processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

23.6.8 Pending MTF VM Exits
As noted in Section 23.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events 

take priority over these VM exits. These VM exits take priority over debug-trap 
exceptions and lower priority events. 

• These VM exits wake the logical processor if it just entered the HLT state because 
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just 
entered the shutdown state or the wait-for-SIPI state.

23.6.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace 
messages, and do not update the branch-trace store.

23.7 VM-ENTRY FAILURES DURING OR AFTER LOADING 
GUEST STATE

VM-entry failures due to the checks identified in Section 23.3.1 and failures during 
the MSR loading identified in Section 23.4 are treated differently from those that 
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a 
number indicating the general cause of the VM-entry failure. The 
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of 
the checks identified in Section 23.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt 
to load MSRs (see Section 23.4).

41. VM-entry failure due to machine check. A machine check occurred 
during VM entry (see Section 23.8).
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• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the 
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section 
23.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt 
(NMI) into a guest that is blocking events through the STI blocking bit 
in the interruptibility-state field. Such failures are implementation-
specific (see Section 23.3.1.5). 

4. Failure was due to an invalid VMCS link pointer (see Section 
23.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to 
indicate which entry in the VM-entry MSR-load area caused the problem 
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 24.5). If 
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 24.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 24.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit 
do not occur for these VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

23.8 MACHINE CHECKS DURING VM ENTRY
If a machine check occurs during a VM entry, one of the following occurs:
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• The machine check is handled normally:

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the 
IDT.

— If CR4.MCE = 0, operation of the logical processor depends on whether the 
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs. The error code used is 000CH, indicating “unrecoverable 
machine check condition.” See Intel® Trusted Execution Technology 
Preliminary Architecture Specification.

• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

• A VM-entry failure occurs as described in Section 23.7. The basic exit reason is 
41, for “VM-entry failure due to machine check.”

The first option is not used if the machine check occurs after any guest state has 
been loaded.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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CHAPTER 24
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion. Section 22.1 through Section 22.3 detail the causes of VM exits. VM exits 
perform the following operation:

1. Information about the cause of the VM exit is recorded in the VM-exit information 
fields and VM-entry control fields are modified as described in Section 24.2.

2. Processor state is saved in the guest-state area (Section 24.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 24.4).

4. The following may be performed in parallel and in any order (Section 24.5):

— Processor state is loaded based in part on the host-state area and some 
VM-exit controls. This step is not performed for SMM VM exits that activate 
the dual-monitor treatment of SMIs and SMM. See Section 26.15.6 for 
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 24.6). This step is 
not performed for SMM VM exits that activate the dual-monitor treatment of 
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace 
messages, and do not update the branch-trace store.

Section 24.1 clarifies the nature of the architectural state before a VM exit begins. 
The steps described above are detailed in Section 24.2 through Section 24.6. 

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary 
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM 
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in 
VMX root operation. SMM VM exits differ from other VM exits in ways that are 
detailed in Section 26.15.2.

24.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially 
for VM exits caused by events that would normally be delivered through the IDT. 
Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception 

is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit 
directly if the “NMI exiting” VM-execution control is 1. An external interrupt 
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causes a VM exit directly if the “external-interrupt exiting” VM-execution control 
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the 
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit 
indirectly if it does not do so directly but delivery of the event causes a nested 
exception, double fault, task switch, APIC access (see Section 22.2), EPT 
violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response 
to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it 

would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. 
(Information about the nature of the debug exception is saved in the exit 
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault 
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit 
completes.

— An external interrupt does not acknowledge the interrupt controller and the 
interrupt remains pending, unless the “acknowledge interrupt on exit” 
VM-exit control is 1. In such a case, the interrupt controller is acknowledged 
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a 
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the 
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new 
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes 
a VM exit. 

— If a machine-check exception causes a VM exit directly, this does not prevent 
machine-check MSRs from being updated. These are updated by the machine 
check itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to 
lower 32 bits of the indicated register.
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— If the logical processor is in an inactive state (see Section 21.4.2) and not 
executing instructions, some events may be blocked but others may return 
the logical processor to the active state. Unblocked events may cause 
VM exits.1 If an unblocked event causes a VM exit directly, a return to the 
active state occurs only after the VM exit completes.2 The VM exit generates 
any special bus cycle that is normally generated when the active state is 
entered from that activity state.

MTF VM exits (see Section 22.7.2 and Section 23.6.8) are not blocked in the 
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the 
logical processor returns to the active state only after the VM exit completes. 
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No 
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit 
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt 
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state 
and, before the VM exit commences, generates any special bus cycle that is 
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT 
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery 
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the 
delivery of an event through the IDT (before it can encounter a nested 
exception). Such processors perform this update even if the event 
encounters a nested exception that causes a VM exit (including the case 
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event 
delivery has reached some event handler successfully (perhaps after one 
or more nested exceptions). Such processors do not update the last-

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific 
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following 
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in 
this case, it is considered to have become active before the VM exit.
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exception record if a VM exit or triple fault occurs before an event handler 
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and 
delivery of the NMI causes a nested exception, double fault, task switch, or APIC 
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit 
commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration 
encountered during execution of IRET and the “NMI exiting” VM-execution 
control is 0, any blocking by NMI is cleared before the VM exit commences. 
However, the previous state of blocking by NMI may be recorded in the VM-exit 
interruption-information field; see Section 24.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration 
encountered during execution of IRET and the “virtual NMIs” VM-execution 
control is 1, virtual-NMI blocking is cleared before the VM exit commences. 
However, the previous state of virtual-NMI blocking may be recorded in the 
VM-exit interruption-information field; see Section 24.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error 
(#MF) or by any of the following events if the event was unblocked due to (and 
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external 
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there 
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through 
the IDT. However, if such an event results in a VM exit before delivery is 
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and 
may result in suspect state being saved to the guest-state area. A VM monitor 
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before 
resuming a guest that caused a VM exit resulting from a machine-check 
exception.

• If a VM exit results from a fault, APIC access (see Section 22.2), EPT violation, or 
EPT misconfiguration encountered while executing an instruction, data 
breakpoints due to that instruction may have been recognized and information 
about them may be saved in the pending debug exceptions field (see Section 
24.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data 
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by 
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load 
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution 
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control is 1. (Such VM exits can occur only from 64-bit mode and thus only on 
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” 
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap 
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is 
1. See Section 22.1.3.

— VM exits caused by TPR-shadow updates (see Section 22.5.3.3) that result 
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete 
before the VM exit occurs. Such modifications include those to the logical 
processor’s interruptibility state (see Table 21-3). If there had been blocking by 
MOV SS, POP SS, or STI before the instruction executed, such blocking is no 
longer in effect.

24.2 RECORDING VM-EXIT INFORMATION AND UPDATING 
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the 
VM exit in the VM-exit information fields. Section 24.2.1 to Section 24.2.4 detail the 
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared 
in the VM-entry interruption-information field. If bit 5 of the IA32_VMX_MISC MSR 
(index 485H) is read as 1 (see Appendix G.6), the value of IA32_EFER.LMA is stored 
into the “IA-32e mode guest” VM-entry control.1

24.2.1 Basic VM-Exit Information
Section 21.9.1 defines the basic VM-exit information fields. The following items detail 
their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number 
indicating the general cause of the VM exit. Appendix I lists the numbers used 
and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits 
may set some of these bits; see Section 26.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 23.7.
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• Exit qualification. This field is saved for VM exits due to the following causes: 
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of 
I/O instructions; task switches; INVEPT; INVLPG; INVVPID; LGDT; LIDT; LLDT; 
LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; 
VMWRITE; VMXON; control-register accesses; MOV DR; I/O instructions; 
MWAIT; accesses to the APIC-access page (see Section 22.2); and EPT violations. 
For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the 
debug exception. The information has the format given in Table 24-1.

— For a page-fault exception, the exit qualification contains the linear address 
that caused the page fault. On processors that support Intel 64 architecture, 
bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector 
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch, 
encoded as shown in Table 24-2.

Table 24-1.  Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding 
breakpoint condition was met. Any of these bits may be set even if its 
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is 
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is 
either the execution of a single instruction (if RFLAGS.TF = 1 and 
IA32_DEBUGCTL.BTF = 0) or a taken branch (if 
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that 
support Intel 64 architecture.

Table 24-2.  Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch
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— For INVLPG, the exit qualification contains the linear-address operand of the 
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if 
the logical processor was not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear 
address specified in the exit qualification will match the linear address 
that the INVLPG would have used if no VM exit occurred. This address is 
not architecturally defined and may be implementation-specific.

— For INVEPT, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, 
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the exit 
qualification receives the value of the instruction’s displacement field, which 
is sign-extended to 64 bits if necessary (32 bits on processors that do not 
support Intel 64 architecture). If the instruction has no displacement (for 
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for 
RIP-relative addressing (used only in 64-bit mode). Such addressing causes 
an instruction to use an address that is the sum of the displacement field 
and the value of RIP that references the following instruction. In this case, 
the exit qualification is loaded with the sum of the displacement field and 
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are 
undefined. For example, suppose that the address-size field in the VM-exit 
instruction-information field (see Section 21.9.4 and Section 24.2.4) reports 
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not 
support Intel 64 architecture) of the instruction displacement are undefined.

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.

Table 24-2.  Exit Qualification for Task Switch (Contd.)

Bit Position(s) Contents
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— For a control-register access, the exit qualification contains information about 
the access and has the format given in Table 24-3.

Table 24-3.  Exit Qualification for Control-Register Accesses 

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on 
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.
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— For MOV DR, the exit qualification contains information about the instruction 
and has the format given in Table 24-4.

— For an I/O instruction, the exit qualification contains information about the 
instruction and has the format given in Table 24-5.

Table 24-4.  Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 24-5.  Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)
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— For MWAIT, the exit qualification contains a value that indicates whether 
address-range monitoring hardware was armed. The exit qualification is set 
either to 0 (if address-range monitoring hardware is not armed) or to 1 (if 
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical 
access to the APIC-access page (see Section 22.2.1 and Section 22.2.2), the 
exit qualification contains information about the access and has the format 
given in Table 24-6.1

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 
64 architecture.

Table 24-6.  Exit Qualification for APIC-Access VM Exits from Linear Accesses and 
Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access 
within the APIC page.

• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction 
execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support 
Intel 64 architecture.

Table 24-5.  Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents
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Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data 
read during instruction execution) or 0001b (data write during instruction 
execution) set bit 12—which distinguishes data read from data write—to that 
which would have been stored in bit 1—W/R—of the page-fault error code had 
the access caused a page fault instead of an APIC-access VM exit. This 
implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the 
access type is “data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access 
type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the 
MASKMOVDQU instruction, the access type is “data write during 
instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the 
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see 
Section 24.2.3) if and only if it sets bits 15:12 of the exit qualification to 
0011b (linear access during event delivery) or 1010b (guest-physical access 
during event delivery).

See Section 22.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access 
page (see Section 22.2.3), the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the 
access causing the EPT violation and has the format given in Table 24-5.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a 
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an 
address on the APIC-access page.

Table 24-7.  Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.

1 Set if the access causing the EPT violation was a data write.

2 Set if the access causing the EPT violation was an instruction fetch.
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An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write).  Whether it also sets bit 0 (data read) 
is implementation-specific and, for a given implementation, may differ for 
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” 
VM-execution control is 0.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was readable).1

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate 
the guest-physical address of the access causing the EPT violation (indicates 
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those 
resulting from an attempt to load the guest PDPTEs as part of the execution of 
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address 
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry 
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-

cal address of the access causing the EPT violation is not present (see Section 25.2.2).

Table 24-7.  Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
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• If the VM exit sets the valid bit in the IDT-vectoring information field (see 
Section 24.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was 
caused by a memory access as part of execution of the IRET instruction, 
and blocking by NMI (see Table 21-3) was in effect before execution of 
IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was 
caused by a memory access as part of execution of the IRET instruction, 
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is 
set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.
• Guest-linear address. For some VM exits, this field receives a linear address 

that pertains to the VM exit. The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these 
cases, this field receives the linear address of that operand. Bits 63:32 are 
cleared if the logical processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant 
segment is usable (if the relevant segment is not usable, the value is 
undefined). (ES is always the relevant segment for INS; for OUTS, the 
relevant segment is DS unless overridden by an instruction prefix.) The linear 
address is the base address of relevant segment plus (E)DI (for INS) or (E)SI 
(for OUTS). Bits 63:32 are cleared if the logical processor was not in 64-bit 
mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see 
Table 24-7; these are all EPT violations except those resulting from an 
attempt to load the PDPTEs as of execution of the MOV CR instruction). The 
linear address may translate to the guest-physical address whose access 
caused the EPT violation. Alternatively, translation of the linear address may 
reference a paging-structure entry whose access caused the EPT violation. 
Bits 63:32 are cleared if the logical processor was not in 64-bit mode before 
the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT 

misconfiguration, this field receives the guest-physical address that caused the 
EPT violation or EPT misconfiguration. For all other VM exits, the field is 
undefined.

24.2.2 Information for VM Exits Due to Vectored Events
Section 21.9.2 defines fields containing information for VM exits due to the following 
events: exceptions (including those generated by the instructions INT3, INTO, 
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BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt 
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits 
include those that occur on an attempt at a task switch that causes an exception 
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 21-14). The following 

items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an 
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the 
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 
(hardware exception), or 6 (software exception). Hardware exceptions 
comprise all exceptions except breakpoint exceptions (#BP; generated by 
INT3) and overflow exceptions (#OF; generated by INTO); these are 
software exceptions. BOUND-range exceeded exceptions (#BR; generated by 
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are 
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would 
have delivered an error code on the stack. This bit is always 0 if the VM exit 
occurred while the logical processor was in real-address mode (CR0.PE=0).1 
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error 
code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” 
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see 
Section 24.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware 
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a 
fault on the IRET instruction (other than a debug exception for an 
instruction breakpoint), and blocking by NMI (see Table 21-3) was in 
effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a 
fault on the IRET instruction (other than a debug exception for an 

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a 
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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instruction breakpoint), and virtual-NMI blocking was in effect before 
execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the 
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid 
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the 
VM-exit interruption-information field, this field receives the error code that 
would have been pushed on the stack had the event causing the VM exit been 
delivered normally through the IDT. The EXT bit is set in this field exactly 
when it would be set normally. For exceptions that occur during the delivery 
of double fault (if the IDT-vectoring information field indicates a double fault), 
the EXT bit is set to 1, assuming that (1) that the exception would produce an 
error code normally (if not incident to double-fault delivery) and (2) that the 
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

24.2.3 Information for VM Exits During Event Delivery
Section 21.9.3 defined fields containing information for VM exits that occur while 
delivering an event through the IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit 
associated with the fault is set to 1 in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to 
the task switch only after the initial checks of the task switch pass (see Section 
22.6.2).

• Event delivery causes an APIC-access VM exit (see Section 22.2).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as 
part of VM entry (see Section 23.5.1.2).

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) 
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
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A VM exit is not considered to occur during event delivery in any of the following 
circumstances:
• The original event causes the VM exit directly (for example, because the original 

event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution 
control is 1).

• The original event results in a double-fault exception that causes the VM exit 
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler 
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 21-15). The following items 

detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the 
exception vector (at most 31). If the VM exit occurred during delivery of an 
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an 
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when 
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3 
(hardware exception), 4 (software interrupt), 5 (privileged software 
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions 
(#BP; generated by INT3) and overflow exceptions (#OF; generated by 
INTO); these are software exceptions. BOUND-range exceeded exceptions 
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated 
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was 
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware 
exception that would have delivered an error code on the stack. This bit is 
always 0 if the VM exit occurred while the logical processor was in real-
address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in 
the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a 
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution 
control and bit 31 of the primary processor-based VM-execution controls are both 1.
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For other VM exits, the field is marked invalid (by clearing bit 31) and the 
remainder of the field is undefined.

• IDT-vectoring error code. 

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the 
IDT-vectoring information field, this field receives the error code that would 
have been pushed on the stack by the event that was being delivered through 
the IDT at the time of the VM exit. The EXT bit is set in this field when it would 
be set normally.

— For other VM exits, the value of this field is undefined.

24.2.4 Information for VM Exits Due to Instruction Execution
Section 21.9.4 defined fields containing information for VM exits that occur due to 
instruction execution. (The VM-exit instruction length is also used for VM exits that 
occur during the delivery of a software interrupt or software exception.) The 
following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following 
instructions that cause VM exits unconditionally (see Section 22.1.2) or 
based on the settings of VM-execution controls (see Section 22.1.3): CLTS, 
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT, 
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, 
RDMSR, RDPMC, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, 
VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, 
VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

— For VM exits due to software exceptions (those generated by executions of 
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software 
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. 
These are VM exits that produce an exit reason indicating task switch and 
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP 
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring 
information field indicating that the task gate was encountered during 

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or 
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.
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delivery of a software interrupt, privileged software exception, or 
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 22.2.1) 
and encountered during delivery of a software interrupt, privileged software 
exception, or software exception.1

In all the above cases, this field receives the length in bytes (1–15) of the 
instruction (including any instruction prefixes) whose execution led to the 
VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt, 
privileged software exception, or software exception include those encountered 
during delivery of events injected as part of VM entry (see Section 23.5.1.2). If 
the original event was injected as part of VM entry, this field receives the value of 
the VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute 
INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, 
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or VMXON, this field 
receives information about the instruction that caused the VM exit. The format of 
the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format 
is given in Table 24-8.2

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from 
physical accesses (see Section 22.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

Table 24-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and 
OUTS

Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

2. The format of the field was undefined for these VM exits on the first processors to support the 
virtual-machine extensions. Software can determine whether the format specified in Table 24-8 
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1).
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— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field 
has the format is given in Table 24-9.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 24-9.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, 
LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

Table 24-8.  Format of the VM-Exit Instruction-Information Field as Used for INS and 
OUTS (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has 
the format is given in Table 24-10.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or 
VMXON, the field has the format is given in Table 24-11.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has 
the format is given in Table 24-12.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 24-9.  Format of the VM-Exit Instruction-Information Field as Used for LIDT, 
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
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Table 24-10.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, 
LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).
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21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 24-11.  Format of the VM-Exit Instruction-Information Field as Used for 
VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

Table 24-10.  Format of the VM-Exit Instruction-Information Field as Used for LLDT, 
LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
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17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 24-12.  Format of the VM-Exit Instruction-Information Field as Used for 
VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

Table 24-11.  Format of the VM-Exit Instruction-Information Field as Used for 
VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s) Content
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2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

Table 24-12.  Format of the VM-Exit Instruction-Information Field as Used for 
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
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— For VM exits due to attempts to execute INVEPT or INVVPID, the field has the 
format is given in Table 24-13.

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with 
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 24-13.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT 
and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

Table 24-12.  Format of the VM-Exit Instruction-Information Field as Used for 
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
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For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for 

SMM VM exits due to system-management interrupts (SMIs) that arrive 
immediately after retirement of I/O instructions. See Section 26.15.2.3.

24.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 21.4) is written with the 
corresponding component of processor state. On processors that support Intel 64 
architecture, the full values of each natural-width field (see Section 21.10.2) is saved 
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the 
VM exit commences. See Section 24.1 for a discussion of which architectural updates 
occur at that time.

Section 24.3.1 through Section 24.3.4 provide details for how certain components of 
processor state are saved. These sections reference VMCS fields that correspond to 
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support 
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 24-13.  Format of the VM-Exit Instruction-Information Field as Used for INVEPT 
and INVVPID (Contd.)

Bit Position(s) Content
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24.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS, 

IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On 
processors that do not support Intel 64 architecture, bits 63:32 of the 
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the 
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first 
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR 
are saved into the corresponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR 
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM 
VM exits. See Section 26.15.2.

24.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved 
for the base-address, segment-limit, and access rights are based on whether the 
register was unusable (see Section 21.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are 

undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value 
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of 
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
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• If the register was not unusable, the values saved into the following fields are 
those which were in the register before the VM exit: (1) base address; 
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.

24.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the 

VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that 
causes VM exits unconditionally or that has been configured to cause a 
VM exit via the VM-execution controls, the value saved references that 
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI 
(SIPI), or system-management interrupt (SMI), the value saved is that which 
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window 
exiting” VM-execution control or the “NMI-window exiting” VM-execution 
control, the value saved is that which would be in the register had the VM exit 
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), 
or hardware exception (as defined in Section 24.2.2), the value saved is the 
return pointer that would have been saved (either on the stack had the event 
been delivered through a trap or interrupt gate,1 or into the old task-state 
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that 
would have been saved (either on the stack had the event been delivered 
through a trap or interrupt gate, or into the old task-state segment had the 
event been delivered through a task gate) had delivery of the double fault not 
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or 
INTO), the value saved references the INT3 or INTO instruction that caused 
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution 
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or 

1. The reference here is to the full value of RIP before any truncation that would occur had the 
stack width been only 32 bits or 16 bits.
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software exception (due to execution of INT3 or INTO) that encountered a 
task gate in the IDT. The value saved references the instruction that caused 
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task 
gate in the IDT that was encountered for any reason except the direct access 
by a software interrupt or software exception. The value saved is that which 
would have been saved in the old task-state segment had the task switch 
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced 
the value of the TPR shadow1 below that of TPR threshold VM-execution 
control field, the value saved references the instruction following the MOV to 
CR8 or WRMSR.

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3) 
that results from an APIC access as part of instruction execution, the value 
saved references the instruction following the one whose execution caused 
the VTPR access.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS 

register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered 
through the IDT, the value saved is that which would appear in the saved 
RFLAGS image (either that which would be saved on the stack had the event 
been delivered through a trap or interrupt gate2 or into the old task-state 
segment had the event been delivered through a task gate) had the event 
been delivered through the IDT. See below for VM exits due to task switches 
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the 
logical processor would have in RF in the RFLAGS register had the triple fault 
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate 
in the IDT), the value saved is that which would have been saved in the 
RFLAGS image in the old task-state segment (TSS) had the task switch 
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution 
control, the value saved is 0.3

1. The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section 
21.6.8).

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the 
stack width been only 32 bits or 16 bits.
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— For APIC-access VM exits and for VM exits caused by EPT violations and EPT 
misconfigurations, the value saved depends on whether the VM exit occurred 
during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field 
(because the VM exit did not occur during delivery of an event through 
the IDT; see Section 24.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field 
(because the VM exit did occur during delivery of an event through the 
IDT), the value saved is the value that would have appeared in the saved 
RFLAGS image had the event been delivered through the IDT (see 
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the 
VM exit occurred.

24.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before 

the VM exit.1 See Section 24.1 for details of how events leading to a VM exit may 
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 24.1 for details of how events leading to a 
VM exit may affect this state. VM exits that end outside system-management 
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such 
blocking before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution 
control is 1. In this case, the value saved for this field does not indicate the 
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the 
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such 
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the 
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the 
instruction may encounter a code breakpoint that has already been processed. A VM monitor can 
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT 
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.
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— VM exits that are not caused by debug exceptions and that occur while there 
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This 
may be true even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, 
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or 
“monitor trap flag.” In this case, the value saved sets bits corresponding to 
the causes of any debug exceptions that were pending at the time of the 
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match 
that which was loaded on VM entry (see Section 23.6.3). Otherwise, the 
following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched 
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had 
been set on VM entry, causing there to be valid pending debug exceptions 
(see Section 23.6.3) and the VM exit occurred before those exceptions 
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug 
exception was the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug 
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception) 
and occurs while there is MOV-SS blocking of debug exceptions. In this case, 
the value saved sets bits corresponding to the causes of any debug 
exceptions that were pending at the time of the VM exit. If the VM exit occurs 
immediately after VM entry (no instructions were executed in VMX non-root 
operation), the value saved may match that which was loaded on VM entry 
(see Section 23.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched 
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had 
been set on VM entry, causing there to be valid pending debug exceptions 
(see Section 23.6.3) and the VM exit occurred before those exceptions 
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not 
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section 
22.1.3), TPR-shadow updates (Section 22.5.3.3), and certain VM entries (Section 23.6.7).
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• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer 
is saved into the VMX-preemption timer-value field. This is the value loaded from 
this field on VM entry as subsequently decremented (see Section 22.7.1). VM 
exits due to timer expiration save the value 0. Other VM exits may also save the 
value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer 
value” VM-exit control is 0, VM exit does not modify the value of the VMX-
preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution 
control, values are saved into the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was 
using PAE paging at the time of the VM exit, the PDPTE values currently in use 
are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value 
saved into bits 63:1 of that field is undefined. That value need not 
correspond to the value that was loaded by VM entry or to any value that 
might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value 
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not 
using PAE paging at the time of the VM exit, the values saved are undefined.

24.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored 
into the VM-exit MSR-store area (see Section 21.7.2). Specifically each entry in that 
area (up to the number specified in the VM-exit MSR-store count) is processed in 
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by 
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 

allows access to an APIC register when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be read only in system-

management mode (SMM) and the VM exit will not end in SMM.
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for 

model-specific reasons. A processor may prevent certain MSRs (based on the 

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 
“Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution 
control were 0. See Section 21.6.2.
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value of bits 31:0) from being stored on VM exits, even if they can normally be 
read by RDMSR. Such model-specific behavior is documented in Appendix B.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-

protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 24.7.

24.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-

state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control 

registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field 
loaded (for example, the base address for GDTR) is loaded regardless of the mode of 
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 24.5.1 to Section 24.5.5. These 
sections reference VMCS fields that correspond to processor state. Unless otherwise 
stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space 
size” VM-exit control is 1. If the logical processor was in IA-32e mode before the 
VM exit and this control is 0, a VMX abort occurs. See Section 24.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 
24.5.6).

After the state loading described in this section, VM exits may load MSRs from the 
VM-exit MSR-load area (see Section 24.6). This loading occurs only after the state 
loading described in this section.

24.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4 

field, respectively, with the following exceptions:

— The following bits are not modified:
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• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64 
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX 
operation (see Section 20.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s 
physical-address width (they are cleared to 0).2 (This item applies only to 
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 20.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field. 
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0. 

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from 
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively.

If the processor does not support the Intel 64 architecture, these fields have 
only 32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of 
bit N–1.3

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields 
for FS and GS, respectively (see Section 24.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the 
setting of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the 
IA32_PERF_GLOBAL_CTRL MSR is loaded from the 
IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are 
maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET 
is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
24-34 Vol. 3B



VM EXITS
— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from 
the IA32_PAT field. Bits that are reserved in that MSR are maintained with 
their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded 
from the IA32_EFER field. Bits that are reserved in that MSR are maintained 
with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently 
overwritten if it appears in the VM-exit MSR-load area. See Section 24.6.

24.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below 
for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its 

selector is loaded with zero. The checks specified Section 23.3.1.2 limit the 
selector values that may be loaded. In particular, CS and TR are never loaded 
with zero and are thus never unusable. SS can be loaded with zero only on 
processors that support Intel 64 architecture and only if the VM exit is to 64-bit 
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to 
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture, 
canonical) if the segment is unusable and the VM exit is not to 64-bit mode; 
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor 
supports N < 64 linear-address bits, each of bits 63:N is set to the value of 
bit N–1.1 The values loaded for base addresses for FS and GS are also 
manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64 
architecture and the processor supports N < 64 linear-address bits, each of 
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to FFFFFFFFH.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
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— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming 
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, 
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the 
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting 
of the “host address-space size” VM-exit control. Because the value of this 
control is also loaded into IA32_EFER.LMA (see Section 24.5.1), no VM exit is 
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size” 
VM-exit control. For example, if that control is 0, indicating a 32-bit guest, 
CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 
1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set 
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as 
follows on all VM exits: the selector is cleared to 0000H, the segment is marked 
unusable and is otherwise undefined (although the base address is always canon-
ical).
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The base addresses for GDTR and IDTR are loaded from the GDTR base-address field 
and the IDTR base-address field, respectively. If the processor supports the Intel 64 
architecture and the processor supports N < 64 linear-address bits, each of bits 63:N 
of each base address is set to the value of bit N–1 of that base address. The GDTR 
and IDTR limits are each set to FFFFH.

24.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is 
cleared, except bit 1, which is always set.

24.5.4 Checking and Loading Host Page-Directory-Pointer-Table 
Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses 
PAE paging. See Section 4.4 of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address 
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A 
MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they 
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is 
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs 
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must 
check their validity if either (1) PAE paging was not in use before the VM exit; or 
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that 
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used 
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would 
cause a general-protection exception due to the PDPTEs that would be loaded (e.g., 
because a reserved bit is set), a VMX abort occurs (see Section 24.7). If a VM exit to 
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the 
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

24.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support 
more than 36 physical-address bits. Software can determine a processor’s physical-address 
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in 
bits 7:0 of EAX.
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• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking 
by NMI (see Table 21-3). Other VM exits do not affect blocking by NMI. (See 
Section 24.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 25.3 describes how the VMX architecture controls how a logical processor 
manages information in the TLBs and paging-structure caches. The following items 
detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates 

linear mappings and combined mappings associated with VPID 0000H (for all 
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they 
required to invalidate any linear mappings or combined mappings if the “enable 
VPID” VM-execution control is 1. 

24.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address 
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear 
any address-range monitoring that may be in effect.

24.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 21.7.2). 
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the 
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or 

C0000101H (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that 

allows access to an APIC register when the local APIC is in x2APIC mode. 
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM exit will not end in SMM. 
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for 
model-specific reasons. A processor may prevent loading of certain MSRs even if 
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they can normally be written by WRMSR. Such model-specific behavior is 
documented in Appendix B.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry 

would cause a general-protection exception if executed via WRMSR with 
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 24.7.

If any MSR is being loaded in such a way that would architecturally require a TLB 
flush, the TLBs are updated so that, after VM exit, the logical processor does not use 
any translations that were cached before the transition.

24.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a 
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. 
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field 
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the 
failure (see Section 21.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 24.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see 
Section 24.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding 
VMCS region) in such a way that the logical processor cannot complete the 
VM exit properly.

4. There was a failure on loading host MSRs (see Section 24.6).

5. There was a machine check during VM exit (see Section 24.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host 
address-space size” VM-entry control was 0 (see Section 24.5).

Some of these causes correspond to failures during the loading of state from the 
host-state area. Because the loading of such state may be done in any order (see 
Section 24.5) a VM exit that might lead to a VMX abort for multiple reasons (for 
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to 
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since 
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit 
MSR-load area for the purpose of modifying the LME bit.
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erly configured). In such cases, the VMX-abort indicator could correspond to any one 
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes 
it only with one of the non-zero values mentioned above. The VMX-abort indicator 
allows software on one logical processor to diagnose the VMX-abort on another. For 
this reason, it is recommended that software running in VMX root operation zero the 
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a 
VMX abort depends on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition 
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted 
Execution Technology Measured Launched Environment Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to 
notify the chipset) and enters the VMX-abort shutdown state. RESET is the 
only event that wakes a logical processor from the VMX-abort shutdown state. 
The following events do not affect a logical processor in this state: machine 
checks; INIT signals; external interrupts; non-maskable interrupts (NMIs); start-
up IPIs (SIPIs); and system-management interrupts (SMIs).

24.8 MACHINE CHECK DURING VM EXIT
If a machine check occurs during VM exit, one of the following occurs:
• The machine check is handled normally:

— If CR4.MCE = 1, a machine-check exception (#MC) delivered through the 
guest IDT.

— If CR4.MCE = 0, operation of the logical processor depends on whether the 
logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown 
condition occurs. The error code used is 000CH, indicating “unrecoverable 
machine check condition.” See Intel® Trusted Execution Technology 
Measured Launched Environment Programming Guide.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
24-40 Vol. 3B



VM EXITS
• If the logical processor is outside SMX operation, it goes to the shutdown 
state.

• A VMX abort is generated (see Section 24.7). The logical processor blocks events 
as done normally in VMX abort. The VMX abort indicator is 5, for “machine check 
during VM exit.”

The first option is not used if the machine check occurs after any host state has been 
loaded.
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CHAPTER 25
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism 
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT 
defines a layer of address translation that augments the translation of linear 
addresses.

Section 25.1 details the architecture of VPIDs. Section 25.2 provides the details of 
EPT. Section 25.3 explains how a logical processor may cache information from the 
paging structures, how it may use that cached information, and how software can 
managed the cached information.

25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs 
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which 
a logical processor may cache information for multiple linear-address spaces. When 
VPIDs are used, VMX transitions may retain cached information and the logical 
processor switches to a different linear-address space.

Section 25.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached 
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management 
mode under the default treatment of SMIs and SMM with VMX operation; see 
Section 26.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-

execution control is 1, the current VPID is the value of the VPID VM-execution 
control field in the VMCS. (VM entry ensures that this value is never 0000H; see 
Section 23.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, 
the processor associates cached information with both a VPID and a PCID. Such 
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information is used only if the current VPID and PCID both match those associated 
with the cached information.

25.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support 
the virtualization of physical memory. When EPT is in use, certain addresses that 
would normally be treated as physical addresses (and used to access memory) are 
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses 
that are used to access memory.
• Section 25.2.1 gives an overview of EPT.
• Section 25.2.2 describes operation of EPT-based address translation.
• Section 25.2.3 discusses VM exits that may be caused by EPT.
• Section 25.2.4 describes interactions between EPT and memory typing.

25.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the 
guest-physical addresses used in VMX non-root operation and those used by 
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined 
by a set of EPT paging structures. The EPT paging structures are similar to those 
used to translate linear addresses while the processor is in IA-32e mode. Section 
25.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced 
through control register CR3 . While the “enable EPT” VM-execution control is 1, 
these are called guest paging structures. There are no guest paging structures if 
CR0.PG = 0.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT” 
VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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When the “enable EPT” VM-execution control is 1, the identity of guest-physical 
addresses depends on the value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of 

control register CR3 and the guest paging structures. (This includes the values of 
the PDPTEs, which logical processors store in internal, non-architectural 
registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear 
addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires 
multiple translations of guest-physical addresses using EPT. Assume, for example, 
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory 

located at the guest-physical address in CR3. The guest-physical address of the 
guest page-directory entry (PDE) is translated through EPT to determine the 
guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at 
the guest-physical address in the guest PDE. The guest-physical address of the 
guest page-table entry (PTE) is translated through EPT to determine the guest 
PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the 
guest-physical address in the guest PTE. The guest-physical address determined 
by this offset is translated through EPT to determine the physical address to 
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at 
disallowed accesses are called EPT violations and cause VM exits. See Section 
25.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those 
addresses are used to access memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether 

that address is translated through EPT depends on whether PAE paging is being 
used.1

— If PAE paging is not being used, the instruction does not use that address to 
access memory and does not cause it to be translated through EPT. (If 
CR0.PG = 1, the address will be translated through EPT on the next memory 
accessing using a linear address.)

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See 
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
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— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTEs) from that address and it does cause the 
address to be translated through EPT.

• The MOV to CR0 instruction establishes PAE paging if it results in CR0.PG = 1 and 
the following were held before the instruction executed: (1) CR0.PG = 0; 
(2) CR4.PAE = 1; and (3) IA32_EFER.LME = 0. Such an execution loads the 
PDPTEs from the guest-physical address in CR3. The address is translated 
through EPT.

• The MOV to CR4 instruction establishes PAE paging if it results in CR4.PAE = 1 
and the following were held before the instruction executed: (1) CR0.PG = 1; 
(2) CR4.PAE = 0; and (3) IA32_EFER.LMA = 0. Such an execution loads the 
PDPTEs from the guest-physical address in CR3. The address is translated 
through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the 
PDPTEs (see above) do not use those addresses to access memory and do not 
cause them to be translated through EPT. (The address in a PDPTE will be 
translated through EPT on the next memory accessing using a linear address that 
uses that PDPTE.)

25.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1 
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries 
are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging 
structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address 

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 21-8 in Section 21.6.11). An EPT PML4 table 
comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the 
physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits. 
Thus, no such processor can produce a guest-physical address with more than 48 bits. An 
attempt to use such an address causes a page fault. An attempt to load CR3 with such an 
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 
that would load a PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read 
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine what EPT 
page-walk lengths are supported.
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— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical 
address, it controls access to a 512-GByte region of the guest-physical-address 
space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the 
physical address specified in bits 51:12 of the EPT PML4E (see Table 25-1). An 
EPT page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT 
PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it 
controls access to a 1-GByte region of the guest-physical-address space. Use of the 
PDPTE depends on the value of bit 7 in that entry:1

Table 25-1.  Format of an EPT PML4 Entry (PML4E)

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced 
by this entry1

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s 

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width 
is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored
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• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see 
Table 25-2). The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is 

located at the physical address specified in bits 51:12 of the EPT PDPTE (see 
Table 25-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT 
PDE is selected using the physical address defined as follows:

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX 
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine whether this is 
allowed.

Table 25-2.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps 
a 1-GByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 1-GByte page (see Section 25.2.4)

7 Must be 1 (otherwise, this entry references an EPT page directory)

11:8 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored
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— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it 
controls access to a 2-MByte region of the guest-physical-address space. Use of the 
EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 25-4). 

The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located 

at the physical address specified in bits 51:12 of the EPT PDE (see Table 25-5). 
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected 
using a physical address defined as follows:

— Bits 63:52 are all 0.

Table 25-3.  Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that 
References an EPT Page Directory

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address, 

every EPT PTE maps a 4-KByte page (see Table 25-6). The final physical address 
is computed as follows:

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The 
processor ignores bits 63:3 and does uses the entry neither to reference another EPT 
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not 
present causes an EPT violation (see Section 25.2.3.2).

Table 25-4.  Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 2-MByte page (see Section 25.2.4)

7 Must be 1 (otherwise, this entry references an EPT page table)

11:8 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
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The discussion above describes how the EPT paging structures reference each other 
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional 
details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes 

before the process completes) are described in Section 25.2.3.
• Interactions between the EPT translation mechanism and memory typing are 

described in Section 25.2.4.

Figure 25-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format 
of entries that map pages, those that reference other EPT paging structures, and 
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

Table 25-5.  Format of an EPT Page-Directory Entry (PDE) that References an EPT 
Page Table

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region 
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region 
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3B 25-9



VMX SUPPORT FOR ADDRESS TRANSLATION
25.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the 
course of translation a guest-physical address, the logical processor encounters an 
EPT paging-structure entry that contains an unsupported value. An EPT violation 
occurs when there is no EPT misconfiguration but the EPT paging-structure entries 
disallow an access using the guest-physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access 
memory with a guest-physical address. Loading CR3 with a guest-physical address 
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT 
violation until that address is used to access a paging structure.1

Table 25-6.  Format of an EPT Page-Table Entry

Bit 
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page 
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page 
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 4-KByte page (see Section 25.2.4)

11:7 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and 
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the 
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction 
may cause an EPT misconfiguration or an EPT violation.
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Figure 25-1.  Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. See Section 21.6.11 for details of the EPTP.
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25.2.3.1  EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a 
guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only) 

or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and 

this value is not supported by the logical processor. Software should read the 
VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether this value 
is supported (see Appendix G.10).

• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is 
present) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that 
is beyond the logical processor’s physical-address width.1 See Section 25.2.2 
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an 
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT 
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with 
settings reserved for future functionality. Software developers should be aware that 
such settings may be used in the future and that an EPT paging-structure entry that 
causes an EPT misconfiguration on one processor might not do so in the future.

25.2.3.2  EPT Violations
An EPT violation may occur during an access using a guest-physical address whose 
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of 
the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure 

entry that is not present (see Section 25.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure 

entries used to translate the guest-physical address. Reads by the logical 
processor of guest paging structures to translate a linear address are considered 
to be data reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure 
entries used to translate the guest-physical address. Writes by the logical 
processor to guest paging structures to update accessed and dirty flags are 
considered to be data writes.

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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25.2.3.3  Prioritization of EPT-Induced VM Exits
The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 25.2.1). This section 
specifies the relative priority of EPT-induced VM exits with respect to each other and 
to other events that may be encountered when accessing memory using a linear 
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:1

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see 
Section 25.2.3.1), an EPT misconfiguration occurs.

c. If the entry is present and its contents are configured properly, operation 
depends on whether the entry references another EPT paging structure 
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from 
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address 
(the translation of the original guest-physical address); step 2 is 
executed.

2. Once the ultimate physical address is determined, the privileges determined by 
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges 
(see Section 25.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, 
memory is accessed using the ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the 
processor first accessing an entry in the guest paging structure referenced by the 
guest-physical address in CR3 (or, if PAE paging is in use, the guest-physical address 
in the appropriate PDPTE register), then accessing an entry in another guest paging 
structure referenced by the guest-physical address in the first guest paging-structure 
entry, etc. Each guest-physical address is itself translated using EPT and may cause 
an EPT-induced VM exit. The following items detail how page faults and EPT-induced 
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see 
above), an EPT-induced VM exit occurs.

1. This is a simplification of the more detailed description given in Section 25.2.2.
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b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag) 
of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on 
whether the entry references another guest paging structure (whether it 
is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry 
from that structure is accessed; step 1 is executed for that other 
entry.

• Otherwise, the entry is used to produce the ultimate guest-physical 
address (the translation of the original linear address); step 2 is 
executed.

2. Once the ultimate guest-physical address is determined, the privileges 
determined by the guest paging-structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it 
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt 
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation 
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed 
using the ultimate physical address (the translation, using EPT, of the 
ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or 
EPT misconfiguration, produces a physical address and determines the privileges 
allowed by the EPT paging-structure entries. If these privileges do not allow the 
access to the physical address (see Section 25.2.3.2), an EPT violation occurs. 
Otherwise, memory is accessed using the physical address.

25.2.4 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a 
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for 
details of memory typing in the Intel 64 architecture.) Section 25.2.4.1 explains how 
the memory type is determined for accesses to the EPT paging structures. Section 
25.2.4.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.
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25.2.4.1  Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT 
paging structures. The determination is based first on the value of bit 30 (cache 
disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-

structure memory type, which is specified in bits 2:0 of the extended-page-table 
pointer (EPTP), a VM-execution control field (see Section 21.6.11). A value of 0 
indicates the uncacheable type (UC), while a value of 6 indicates the write-back 
type (WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable 
(UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging 
structure.

25.2.4.2  Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an 
access that is translated using EPT) is the memory type that is used to access 
memory. The effective memory type is based on the value of bit 30 (cache 
disable—CD) in control register CR0; the last EPT paging-structure entry used to 
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT 
PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the 
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type 
from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure 
entry: 0 = UC; 1 = WC; 4 = WT; 5 = WP; and 6 = WB. Other values are reserved 
and cause EPT misconfigurations (see Section 25.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the 
last EPT paging-structure entry:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT 
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry 
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT 
memory type is selected from the table by using a value of 0 for the PAT bit with the values of 
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root 
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.
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— If the value is 0, the effective memory type is the combination of the EPT 
memory type and the PAT memory type specified in Table 11-7 in Section 
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory 
type. The PAT memory type is ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical 
address.

25.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the 
address-translation process by caching on the processor data from the structures in 
memory that control that process. Such caching is discussed in Section 4.10, 
“Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. The current section describes how this caching 
interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this 
caching architecture. EPT defines the guest-physical address space and defines 
translations to that address space (from the linear-address space) and from that 
address space (to the physical-address space). Both features control the ways in 
which a logical processor may create and use information cached from the paging 
structures.

Section 25.3.1 describes the different kinds of information that may be cached. 
Section 25.3.2 specifies when such information may be cached and how it may be 
used. Section 25.3.3 details how software can invalidate cached information.

25.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related 
information that may be cached by a logical processor: translations, which are 
mappings from linear page numbers to physical page frames, and paging-structure 
caches, which map the upper bits of a linear page number to information from the 
paging-structure entries used to translate linear addresses matching those upper 
bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A 
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.
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— Linear translations. Each of these is a mapping from a linear page number to 
the physical page frame to which it translates, along with information about 
access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the 
upper portion of a linear address to the physical address of the paging 
structure used to translate the corresponding region of the linear-address 
space, along with information about access privileges. For example, 
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.1 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical 
page number to the physical page frame to which it translates, along with 
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping 
from the upper portion of a guest-physical address to the physical address of 
the EPT paging structure used to translate the corresponding region of the 
guest-physical address space, along with information about access 
privileges.

The information in guest-physical mappings about access privileges and memory 
typing is derived from EPT paging structures.

• Combined mappings.2 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number 
to the physical page frame to which it translates, along with information 
about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from 
the upper portion of a linear address to the physical address of the paging 
structure used to translate the corresponding region of the linear-address 
space, along with information about access privileges.

The information in combined mappings about access privileges and memory 
typing is derived from both guest paging structures and EPT paging structures.

25.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous 
section:3

• The following items describe the creation of mappings while EPT is not in use 
(including execution outside VMX non-root operation):

1. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

2. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.
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— Linear mappings may be created. They are derived from the paging 
structures referenced (directly or indirectly) by the current value of CR3 and 
are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-
structure entries that are not present (bit 0 is 0) or that set reserved bits. For 
example, if a PTE is not present, no linear mapping are created for any linear 
page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT 
paging structures referenced (directly or indirectly) by bits 51:12 of the 
current EPTP. These 40 bits contain the address of the EPT-PML4-table. (the 
notation EP4TA refers to those 40 bits). Newly created guest-physical 
mappings are associated with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging 
structures referenced (directly or indirectly) by the current EP4TA. If 
CR0.PG = 1, they are also derived from the paging structures referenced 
(directly or indirectly) by the current value of CR3. They are associated with 
the current VPID, the current PCID, and the current EP4TA.1 No combined 
paging-structure-cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with 
information derived from EPT paging-structure entries that are not present 
(bits 2:0 are all 0) or that are misconfigured (see Section 25.2.3.1).

— No combined mappings are created with information derived from guest 
paging-structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical 

processor may use cached mappings as follows:

3. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associ-
ated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A.

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID 
that are associated with different EP4TAs. Similarly, it may be caching combined mappings for an 
EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation, 
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls are both 1.
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— For accesses using linear addresses, it may use linear mappings associated 
with the current VPID and the current PCID. It may also use global TLB 
entries (linear mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings 
associated with the current VPID, the current PCID, and the current EP4TA. It 
may also use global TLB entries (combined mappings) associated with the 
current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical 
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

25.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may 
result in inconsistencies between those structures and the mappings cached by a 
logical processor. Certain operations invalidate information cached by a logical 
processor and can be used to eliminate such inconsistencies.

25.3.3.1  Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure 

caches independent of VMX operation (e.g., the INVLPG instruction) invalidate 
linear mappings and combined mappings.1 They are required to do so only for the 
current VPID (but, for combined mappings, all EP4TAs). Linear mappings for the 
current VPID are invalidated even if EPT is in use.2 Combined mappings for the 
current VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the 
current EP4TA) that would be used to translate the guest-physical address that 

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that 
architecturally invalidate entries in the TLBs and paging-structure caches independent of VMX 
operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while 
EPT is in use, linear mappings (for the same VPID as the current one) there were created earlier, 
when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain, 
while EPT is in not use, combined mappings (for the same VPID as the current one) there were 
created earlier, when EPT was in use.
Vol. 3B 25-19



VMX SUPPORT FOR ADDRESS TRANSLATION
caused the EPT violation. If that guest-physical address was the translation of a 
linear address, the EPT violation also invalidates any combined mappings for that 
linear address associated with the current PCID, the current VPID and the current 
EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits 
invalidate linear mappings and combined mappings associated with VPID 0000H 
(for all PCIDs). Combined mappings for VPID 0000H are invalidated for all 
EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined 
mappings. Invalidation is based on instruction operands, called the INVVPID type 
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor 
invalidates linear mappings and combined mappings associated with the 
VPID specified in the INVVPID descriptor and that would be used to translate 
the linear address specified in of the INVVPID descriptor. Linear mappings 
and combined mappings for that VPID and linear address are invalidated for 
all PCIDs and, for combined mappings, all EP4TAs. (The instruction may also 
invalidate mappings associated with other VPIDs and for other linear 
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all 
linear mappings and combined mappings associated with the VPID specified 
in the INVVPID descriptor. Linear mappings and combined mappings for that 
VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs. 
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear 
mappings and combined mappings associated with all VPIDs except VPID 
0000H and with all PCIDs. (In some cases, it may invalidate linear mappings 
with VPID 0000H as well.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical 
processor invalidates linear mappings and combined mappings associated 
with the VPID specified in the INVVPID descriptor. Linear mappings and 
combined mappings for that VPID are invalidated for all PCIDs and, for 
combined mappings, all EP4TAs. The logical processor is not required to 
invalidate information that was used for global translations (although it may 
do so). See Section 4.10, “Caching Translation Information” for details 
regarding global translations. (The instruction may invalidate mappings 
associated with other VPIDs.)

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B for details of the INVVPID instruction. See Section 25.3.3.3 
for guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and 
combined mappings. Invalidation is based on instruction operands, called the 
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:
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— Single-context. If the INVEPT type is 1, the logical processor invalidates all 
guest-physical mappings and combined mappings associated with the EP4TA 
specified in the INVEPT descriptor. Combined mappings for that EP4TA are 
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate 
mappings associated with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and, 
for combined mappings, for all VPIDs and PCIDs).

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 2B for details of the INVEPT instruction. See Section 25.3.3.4 for 
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings, 
and combined mappings.

25.3.3.2  Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate 
certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure 

caches independent of VMX operation are not required to invalidate any guest-
physical mappings.

• The INVVPID instruction is not required to invalidate any guest-physical 
mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If 

the “enable VPID” VM-execution control is 1, VMX transitions are not required to 
invalidate any linear mappings or combined mappings. 

• The VMXOFF and VMXON instructions are not required to invalidate any linear 
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, 
the operations identified above may invalidate the indicated mappings despite the 
fact that doing so is not required.

25.3.3.3  Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 28.3, “Memory Virtualization”). 

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. 
Such a VMM may configure the VMCS so that all or some of the operations that inval-
idate entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction) 
cause VM exits. If VMM software is emulating these operations, it may be necessary 
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the 
paging-structure caches are appropriately invalidated.
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Requirements of when software should use the INVVPID instruction depend on the 
specific algorithm being used for page-table virtualization. The following items 
provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID 

instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the 
INVLPG instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure 
caches—except for global translations. An example is the MOV to CR3 instruction. 
(See Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A for details regarding 
global translations.) Emulation of such an instruction may require execution of 
the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure 
caches—including for global translations. An example is the MOV to CR4 
instruction if the value of value of bit 4 (page global enable—PGE) is changing. 
Emulation of such an instruction may require execution of the INVVPID 
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual 
processor whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the 
current VPID, and it will use such mappings to translate linear addresses. For that 
reason, a VMM should not use the same VPID for different non-EPT guests that use 
different page tables. Doing so may result in one guest using translations that pertain 
to the other.

If EPT is in use, the instructions enumerated above might not be configured to cause 
VM exits and the VMM might not be emulating them. In that case, executions of the 
instructions by guest software properly invalidate the required entries in the TLBs 
and paging-structure caches (see Section 25.3.3.1); execution of the INVVPID 
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value 
of bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests, 
it may use the same VPID for those guests. Doing so cannot result in one guest using 
translations that pertain to the other.
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The following guidelines apply more generally and are appropriate even if EPT is in 
use:
• As detailed in Section 22.2.1.1, an access to the APIC-access page might not 

cause an APIC-access VM exit if software does not properly invalidate information 
that may be cached from the paging structures. If, at one time, the current VPID 
on a logical processor was a non-zero value X, it is recommended that software 
use the INVVPID instruction with the “single-context” INVVPID type and with 
VPID X in the INVVPID descriptor before a VM entry on the same logical 
processor that establishes VPID X and either (a) the “virtualize APIC accesses” 
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-
access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type 
immediately after execution of the VMXON instruction or immediately prior to 
execution of the VMXOFF instruction. Either prevents potentially undesired 
retention of information cached from paging structures between separate uses of 
VMX operation.

25.3.3.4  Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate 
information cached from the EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT 

type after making any of the following changes to an EPT paging-structure entry 
(the INVEPT descriptor should contain an EPTP value that references — directly 
or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether 
the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical 
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either 
bits 5:3 or bit 6. (These bits determine the effective memory type of 
accesses using that EPT paging-structure entry; see Section 25.2.4.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do 
so may cause an EPT violation that would not otherwise occur. Because an EPT 
violation invalidates any mappings that would be used by the access that caused 
the EPT violation (see Section 25.3.3.1), an EPT violation will not recur if the 
original access is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT 
paging-structure entries that are not present or misconfigured (see Section 
25.2.3.1), it is not necessary to execute INVEPT following modification of an EPT 
paging-structure entry that had been not present or misconfigured.
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• As detailed in Section 22.2.1.1 and Section 22.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not 
properly invalidate information that may be cached from the EPT paging 
structures. If EPT was in use on a logical processor at one time with EPTP X, it is 
recommended that software use the INVEPT instruction with the “single-context” 
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the 
same logical processor that enables EPT with EPTP X and either (a) the “virtualize 
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value 
of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type 
immediately after execution of the VMXON instruction or immediately prior to 
execution of the VMXOFF instruction. Either prevents potentially undesired 
retention of information cached from EPT paging structures between separate 
uses of VMX operation.

In a system containing more than one logical processor, software must account for 
the fact that information from an EPT paging-structure entry may be cached on 
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB 
shootdown.” A discussion of TLB shootdown appears in Section 4.10.5, “Propagation 
of Paging-Structure Changes to Multiple Processors,” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3A.
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CHAPTER 26
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system 
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and 
manage various system resources for more efficient energy usage, to control system 
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386 
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and 
Pentium and Intel486 processors (beginning with the enhanced versions of the 
Intel486 SL and Intel486 processors). 

26.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications 
software or general-purpose systems software. The main benefit of SMM is that it 
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications. 

When SMM is invoked through a system management interrupt (SMI), the processor 
saves the current state of the processor (the processor’s context), then switches to a 
separate operating environment contained in system management RAM (SMRAM). 
While in SMM, the processor executes SMI handler code to perform operations such 
as powering down unused disk drives or monitors, executing proprietary code, or 
placing the whole system in a suspended state. When the SMI handler has completed 
its operations, it executes a resume (RSM) instruction. This instruction causes the 
processor to reload the saved context of the processor, switch back to protected or 
real mode, and resume executing the interrupted application or operating-system 
program or task.

The following SMM mechanisms make it transparent to applications programs and 
operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space (SMRAM) that can 

be made inaccessible from the other operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program 

or task.
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• All interrupts normally handled by the operating system are disabled upon entry 
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address 
mapping. An SMM program can address up to 4 GBytes of memory and can execute 
all I/O and applicable system instructions. See Section 26.5 for more information 
about the SMM execution environment.

NOTES
Software developers should be aware that, even if a logical processor 
was using the physical-address extension (PAE) mechanism 
(introduced in the P6 family processors) or was in IA-32e mode 
before an SMI, this will not be the case after the SMI is delivered. This 
is because delivery of an SMI disables paging (see Table 26-4). (This 
does not apply if the dual-monitor treatment of SMIs and SMM is 
active; see Section 26.15.)

26.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes 
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 26.2 through Section 26.13). 

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual 
machines and each virtual machine can support its own software stack of executive 
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management 
mode (SMM) in one of two ways:
• Default treatment. System firmware handles SMIs. The processor saves archi-

tectural states and critical states relevant to VMX operation upon entering SMM. 
When the firmware completes servicing SMIs, it uses RSM to resume VMX 
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing 
of SMIs: one VMM operates outside of SMM to provide basic virtualization in 
support for guests; the other VMM operates inside SMM (while in VMX operation) 
to support system-management functions. The former is referred to as 
executive monitor, the latter SMM monitor.1

The default treatment is described in Section 26.14, “Default Treatment of SMIs and 
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is 
described in Section 26.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the 
VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine whether it is supported.
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26.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the 
processor or through an SMI message received through the APIC bus. The SMI is a 
nonmaskable external interrupt that operates independently from the processor’s 
interrupt- and exception-handling mechanism and the local APIC. The SMI takes 
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the 
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a 
processor that is designated as an application processor during an MP 
initialization sequence is waiting for a startup IPI (SIPI), it is in a 
mode where SMIs are masked. However if a SMI is received while an 
application processor is in the wait for SIPI mode, the SMI will be 
pended. The processor then responds on receipt of a SIPI by 
immediately servicing the pended SMI and going into SMM before 
handling the SIPI.
An SMI may be blocked for one instruction following execution of STI, 
MOV to SS, or POP into SS.

26.3 SWITCHING BETWEEN SMM AND THE OTHER 
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor 
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while 
the processor is in real-address, protected, or virtual-8086 modes always causes the 
processor to switch to SMM. Upon execution of the RSM instruction, the processor 
always returns to the mode it was in when the SMI occurred. 

26.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible” 
point in program execution (which is commonly at an IA-32 architecture instruction 
boundary). When the processor receives an SMI, it waits for all instructions to retire 
and for all stores to complete. The processor then saves its current context in SMRAM 
(see Section 26.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has 
begun. The signaling mechanism used is implementation dependent. For the P6 
family processors, an SMI acknowledge transaction is generated on the system bus 
and the multiplexed status signal EXF4 is asserted each time a bus transaction is 
generated while the processor is in SMM. For the Pentium and Intel486 processors, 
the SMIACT# pin is asserted.
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An SMI has a greater priority than debug exceptions and external interrupts. Thus, if 
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction 
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are 
not acknowledged while the processor is in SMM. The first SMI interrupt request that 
occurs while the processor is in SMM (that is, after SMM has been acknowledged to 
external hardware) is latched and serviced when the processor exits SMM with the 
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 26.5 for a detailed description of the execution environment when in 
SMM.

26.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is 
only available to the SMI handler; if the processor is not in SMM, attempts to execute 
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image 
from SMRAM back into the processor’s registers. The processor then returns an 
SMIACK transaction on the system bus and returns program control back to the 
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external 
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal 
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, 
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the 
shutdown state and generates a special bus cycle to indicate it has entered shutdown 
state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error 

should not happen unless SMI handler code modifies reserved areas of the 
SMRAM saved state map (see Section 26.4.1). CR4 is saved in the state map in a 
reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG 
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the 

SMBASE register when an RSM instruction is executed is not aligned on a 
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, 
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI# 
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not 
support using SMI# to recover from shutdown states for any processor family; the 
response of processors in this circumstance is not well defined. On Pentium 4 and 
later processors, shutdown will inhibit INTR and A20M but will not change any of the 
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other inhibits. On these processors, NMIs will be inhibited if no action is taken in the 
SMM handler to uninhibit them (see Section 26.8).

If the processor is in the HALT state when the SMI is received, the processor handles 
the return from SMM slightly differently (see Section 26.10). Also, the SMBASE 
address can be changed on a return from SMM (see Section 26.11).

26.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The 
SMRAM space is mapped to the physical address space of the processor and can be 
up to 4 GBytes in size. The processor uses this space to save the context of the 
processor and to store the SMI handler code, data and stack. It can also be used to 
store system management information (such as the system configuration and 
specific information about powered-down devices) and OEM-specific information. 

The default SMRAM size is 64 KBytes beginning at a base physical address in physical 
memory called the SMBASE (see Figure 26-1). The SMBASE default value following a 
hardware reset is 30000H. The processor looks for the first instruction of the SMI 
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area 
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 26.4.1 for a description 
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the 
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be 
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see 
Section 26.11). It should be noted that all processors in a multiple-processor system 
are initialized with the same SMBASE value (30000H). Initialization software must 
sequentially place each processor in SMM and change its SMBASE so that it does not 
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate 
RAM memory. The processor generates an SMI acknowledge transaction (P6 family 
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the 
processor receives an SMI (see Section 26.3.1). 

System logic can use the SMI acknowledge transaction or the assertion of the 
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to 
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic 
should provide a programmable method of mapping the SMRAM into system memory 
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing 
the SMI handler during SMM.
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26.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters 
SMM, it writes its state to the state save area of the SMRAM.   The state save area 
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H + 
7E00H]. Table 26-1 shows the state save map. The offset in column 1 is relative to 
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may 
be read and changed by the SMI handler, with the changed values restored to the 
processor registers by the RSM instruction. Some register images are read-only, and 
must not be modified (modifying these registers will result in unpredictable 
behavior). An SMI handler should not rely on any values stored in an area that is 
marked as reserved.

 

Figure 26-1.  SMRAM Usage

Table 26-1.  SMRAM State Save Map

Offset 
(Added to SMBASE + 

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
26-6 Vol. 3B



SYSTEM MANAGEMENT MODE
The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS, 

ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 26.7 No

7FA0H I/O Memory Address Field, see Section 26.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 26-1.  SMRAM State Save Map (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
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If an SMI request is issued for the purpose of powering down the processor, the 
values of all reserved locations in the SMM state save must be saved to nonvolatile 
memory.

The following state is not automatically saved and restored following an SMI and the 
RSM instruction, respectively:
• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test 

registers TR3 through TR7 (for the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required 
before returning to SMM, which will reset much of this state back to its default 
values. So an SMI handler that is going to trigger power down should first read these 
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should 
restore these values, along with the rest of the system's state. Anytime the SMI 
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and 
performance-monitoring counters) are not arbitrarily writable and 
therefore cannot be saved and restored. SMM-based power-down 
and restoration should only be performed with operating systems 
that do not use or rely on the values of these registers. 
Operating system developers should be aware of this fact and insure 
that their operating-system assisted power-down and restoration 
software is immune to unexpected changes in these register values.

26.4.1.1  SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of 
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H + 
7FFFH] and extends to [SMBASE + 8000H + 7C00H]. 

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The 
layout of the SMRAM state save map is shown in Table 26-3. 
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Additionally, the SMRAM state save map shown in Table 26-3 also applies to proces-
sors with the following CPUID signatures listed in Table 26-2, irrespective of the value 
in CPUID.80000001:EDX[29].

Table 26-2.   Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad 
processor Q9xxx, Intel Core 2 Duo processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors, 
Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors

Table 26-3.  SMRAM State Save Map for Intel 64 Architecture

Offset 
(Added to SMBASE + 

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No
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7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

Table 26-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
26-10 Vol. 3B



SYSTEM MANAGEMENT MODE
26.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before 
entering SMM or before exiting SMM. Because of this behavior, care must be taken in 
the placement of the SMRAM in system memory and in the caching of the SMRAM to 
prevent cache incoherence when switching back and forth between SMM and 
protected mode operation. Either of the following three methods of locating the 
SMRAM in system memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating 

system and applications are prevented from accessing. Here, the SRAM can be 
designated as cacheable (WB, WT, or WC) for optimum processor performance, 
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the 
operating system (such as the video memory), but designate the SMRAM as 
uncacheable (UC). This method prevents cache access when in SMM to maintain 
cache coherency, but the use of uncacheable memory reduces the performance 
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the 
operating system and/or application code, but explicitly flush (write back and 
invalidate) the caches upon entering and exiting SMM mode. This method 
maintains cache coherency, but the incurs the overhead of two complete cache 
flushes.

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 26-3.  SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset 
(Added to SMBASE + 

8000H)

Register Writable?
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For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two 
methods of locating the SMRAM is recommended. Here the SMRAM is split between 
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM 
space that is accessed overlaps video memory (typically located in low memory). 
This SMRAM section is designated as UC memory. The initial SMM code then jumps to 
a second SMRAM section that is located in a dedicated region of system memory 
(typically in high memory). This SMRAM section can be cached for optimum 
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method 
described above), the cache flush can be accomplished by asserting the FLUSH# pin 
at the same time as the request to enter SMM (generally initiated by asserting the 
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is 
serviced first. To guarantee this behavior, the processor requires that the following 
constraints on the interaction of FLUSH# and SMI# be met. In a system where the 
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then 
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous 
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to 
guarantee that the FLUSH# pin is serviced first. 

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin 
to write back and invalidate cache contents before entering SMM, the 
processor will prefetch at least one cache line in between when the 
Flush Acknowledge cycle is run and the subsequent recognition of 
SMI# and the assertion of SMIACT#. 
It is the obligation of the system to ensure that these lines are not 
cached by returning KEN# inactive to the Pentium processor.

26.4.2.1  System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of 
addresses in SMRAM to code running in SMM. The SMRR interface can be configured 
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

26.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core 
registers to the values shown in Table 26-4. Upon entering SMM, the PE and PG flags 
in control register CR0 are cleared, which places the processor is in an environment 
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
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• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes). 
(The physical address extension — enabled with the PAE flag in control register 
CR4 — is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to 
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the 
addressable SMRAM address space to the 1-MByte real-address mode limit for 
native real-address-mode code. However, operand-size and address-size 
override prefixes can be used to access the address space beyond the 1-MByte.

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a 
32-bit operand-size override prefix is used. Due to the real-address-mode style 
of base-address formation, a far call or jump cannot transfer control to a 
segment with a base address of more than 20 bits (1 MByte). However, since the 
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the 
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any 
program control transfer that does not have a 32-bit operand-size override prefix 
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but 
can be accessed only with a 32-bit address-size override if they are located above 
1 MByte. As with the code segment, the base address for a data or stack segment 
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the 
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H. 
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear 
address points to the first instruction of the SMI handler.

Table 26-4.  Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
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The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their 
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be 
treated as a single flat 4-GByte linear address space. If a segment register is loaded 
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the 
segment base (hidden part of the segment register). The limits and attributes are not 
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M 
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited 
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and 
exception handlers (see Section 26.6).

26.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following 
manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware 

interrupts from being generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action 

prevents a debugger from accidentally breaking into an SMM handler if a debug 
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 
26.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware 
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be 
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3, 
or BOUND instructions) or generate exceptions. 

If the SMM handler requires interrupt and exception handling, an SMM interrupt table 
and the necessary exception and interrupt handlers must be created and initialized 
from within SMM. Until the interrupt table is correctly initialized (using the LIDT 
instruction), exceptions and software interrupts will result in unpredictable processor 
behavior. 

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-

address mode style interrupt vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or 

exception cannot transfer control to a segment with a base address of more that 
20 bits.
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• An interrupt or exception cannot transfer control to a segment offset of more 
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the 
return address (EIP) are pushed onto the stack. If the offset of the interrupted 
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception 
handler to return control to that procedure. (One solution to this problem is for a 
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an 
interrupt or exception generated while the SMI handler is executing. For 
example, if the SMBASE is relocated to above 1 MByte, but the exception 
handlers are below 1 MByte, a normal return to the SMI handler is not possible. 
One solution is to provide the exception handler with a mechanism for calculating 
a return address above 1 MByte from the 16-bit return address on the stack, then 
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an 
SMM accessible debug handler is available and save the current contents of 
debug registers DR0 through DR3 (for later restoration). Debug registers DR0 
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that 
an SMM accessible single-step handler is available, and then set the TF flag in the 
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware 
interrupts or software-generated interrupts while in SMM, it must ensure that 
SMM accessible interrupt handlers are available and then set the IF flag in the 
EFLAGS register (using the STI instruction). Software interrupts are not blocked 
upon entry to SMM, so they do not need to be enabled.

26.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it 
was not always possible for an SMI handler to distinguish between a synchronous 
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the 
discrimination of these two events, incremental state information has been added to 
the SMM state save map. 

Processors that have an SMM revision ID of 30004H or higher have the incremental 
state information described below.

26.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only 
when an SMI is either taken immediately after a successful I/O instruction or is taken 
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after a successful iteration of a REP I/O instruction (the successful notion pertains to 
the processor point of view; not necessarily to the corresponding platform function). 
When set, the IO_SMI bit provides a strong indication that the corresponding SMI 
was synchronous. In this case, the SMM State Save Map also supplies the port 
address of the I/O operation. The IO_SMI bit and the I/O Port Address may be used 
in conjunction with the information logged by the platform to confirm that the SMI 
was indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is 
synchronous. This is because an asynchronous SMI might coincidentally be taken 
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM 
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM 
State Save Map (Table 26-5). The IO_SMI bit also serves as a valid bit for the rest of 
the I/O information fields. The contents of these I/O information fields are not 
defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 26-6)

Table 26-5.  I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or 
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 26-6.  I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
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26.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs 
during the SMI handler, it is latched and serviced after the processor exits SMM. Only 
one NMI request will be latched during the SMI handler. If an NMI request is pending 
when the processor executes the RSM instruction, the NMI is serviced before the next 
instruction of the interrupted code sequence. This assumes that NMIs were not 
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they 
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be 
enabled through software by executing an IRET instruction. If the SMM handler 
requires the use of NMI interrupts, it should invoke a dummy interrupt service 
routine for the purpose of executing an IRET instruction. Once an IRET instruction is 
executed, NMI interrupt requests are serviced in the same “real mode” manner in 
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then 
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so 
normally NMI interrupts are serviced and completed with an IRET instruction one at 
a time. When the processor enters SMM while executing an NMI handler, the 
processor saves the SMRAM state save map but does not save the attribute to keep 
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon 
exit) and serviced upon exit of SMM even though the previous NMI handler has still 
not completed. One or more NMIs could thus be nested inside the first NMI handler. 
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will 
enable NMI interrupts from inside of SMM. This behavior is implementation specific 
for the Pentium processor and is not part of the IA-32 architecture.

26.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM 
extensions that are supported by the processor (see Figure 26-2). The SMM revision 
identifier is written during SMM entry and can be examined in SMRAM space at offset 

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Table 26-6.  I/O Instruction Type Encodings (Contd.)
Instruction Encoding
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7EFCH. The lower word of the SMM revision identifier refers to the version of the base 
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If 
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 26.12); if the SMBASE relocation flag (bit 17) is set, SMRAM 
base address relocation is supported (see Section 26.11).

26.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction) 
when it receives an SMI, the processor records the fact in the auto HALT restart flag 
in the saved processor state (see Figure 26-3). (This flag is located at offset 7F02H 
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that 
the SMI occurred when the processor was in the HALT state), the SMI handler has 
two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to 

return program control to the HLT instruction. This option in effect causes the 
processor to re-enter the HALT state after handling the SMI. (This is the default 
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to 
return program control to the instruction following the HLT instruction. 

Figure 26-2.  SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH

31 0

Reserved

18 17 16 15
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These options are summarized in Table 26-7. If the processor was not in a HALT state 
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to 
1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to 
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus 
transaction. This behavior results in multiple HLT bus transactions for the same HLT 
instruction.

26.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been 
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in 
SMM, the only event that can remove the processor from this state is a maskable 
hardware interrupt or a hardware reset.

26.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an 
internal processor register called the SMBASE register. The operating system or 
executive can relocate the SMRAM by setting the SMBASE field in the saved state 
map (at offset 7EF8H) to a new value (see Figure 26-4). The RSM instruction reloads 
the internal SMBASE register with the value in the SMBASE field each time it exits 
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting 

 

Figure 26-3.  Auto HALT Restart Field

Table 26-7.  Auto HALT Restart Flag Values

Value of Flag 
After Entry to 
SMM

Value of Flag 
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015

Reserved
Register Offset
7F02H

1
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address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area 
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its 
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.) 

In multiple-processor systems, initialization software must adjust the SMBASE value 
for each processor so that the SMRAM state save areas for each processor do not 
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned 
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the 
ability to relocate the SMBASE (see Section 26.9).

26.11.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the 
segment registers. The segment registers contain only 16 bits, which allows only 20 
bits to be used for a segment base address (the segment register is shifted left 4 bits 
to determine the segment base address). If SMRAM is relocated to an address above 
1 MByte, software operating in real-address mode can no longer initialize the 
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to 
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS, 
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using 
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

26.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section 
26.9), the I/O instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted I/O instruction to be re-executed upon returning from 

 

Figure 26-4.  SMBASE Relocation Field

031

SMM Base
Register Offset
7EF8H
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SMM mode. For example, if an I/O instruction is used to access a powered-down I/O 
device, a chip set supporting this device can intercept the access and respond by 
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon 
returning from the SMI handler, the I/O instruction restart mechanism can be used to 
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see 
Figure 26-5) controls I/O instruction restart. When an RSM instruction is executed, if 
this field contains the value FFH, then the EIP register is modified to point to the I/O 
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary 
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is 
executed, then the processor begins program execution with the instruction following 
the I/O instruction. (When a repeat prefix is being used, the next instruction may be 
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O 
instruction is the default behavior; the processor automatically initializes the I/O 
instruction restart field to 00H upon entering SMM. Table 26-8 summarizes the states 
of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is 
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an I/O instruction was interrupted and 
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O 
instruction boundary, setting the I/O instruction restart field to FFH prior to executing 
the RSM instruction will likely result in a program error.

 

Figure 26-5.  I/O Instruction Restart Field

Table 26-8.  I/O Instruction Restart Field Values

Value of Flag After 
Entry to SMM

Value of Flag When 
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
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26.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is 
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that 
occurred on an I/O instruction boundary, the processor will service the new SMI 
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP 
will point to an address different from the originally interrupted I/O instruction, which 
will likely lead to a program error. To avoid this situation, the SMI handler must be 
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction 
restart is being used and insure that the handler sets the I/O instruction restart field 
to 00H prior to returning from the second invocation of the SMI handler.

26.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system 

memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory 

space. The only stipulation is that each processor needs its own state save area 
and its own dynamic data storage area. (Also, for the Pentium and Intel486 
processors, the SMBASE address must be located on a 32-KByte boundary.) Code 
and static data can be shared among processors. Overlapping SMRAM spaces can 
be done more efficiently with the P6 family processors because they do not 
require that the SMBASE address be on a 32-KByte boundary. 

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received 

through the APIC interface. The APIC interface can distribute SMIs to different 
processors.

• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT# 

pin is driven only by the MRM processor and should be sampled with ADS#. For 
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual, 
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the 
SMBASE. If there is a need to support two or more processors in SMM mode at the 
same time then each processor should have dedicated SMRAM spaces. This can be 
done by using the SMBASE Relocation feature (see Section 26.11).
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26.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX 
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation 
are few. This section details those interactions. It also explains how this treatment 
affects SMX operation.

26.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based 
on architectural definitions. Under the default treatment, processors that support 
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space 

is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); 
combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits 
51:12 of EPTP; see Section 25.3);

The pseudocode above makes reference to the saving of VMX-critical state. This 
state consists of the following: (1) SS.DPL (the current privilege level); 
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 21-3 in 

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.
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Section 21.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX 
non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an 
indication of whether an MTF VM exit is pending (see Section 22.7.2). These data 
may be saved internal to the processor or in the VMCS region of the current VMCS. 
Processors that do not support SMI recognition while there is blocking by STI or by 
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution 
control and the logical processor was in VMX non-root operation at the time of an 
SMI, it saves the value of that control into bit 0 of the 32-bit field at offset SMBASE + 
8000H + 7EE0H (SMBASE + FEE0H; see Table 26-3).1 If the logical processor was 
not in VMX non-root operation at the time of the SMI, it saves 0 into that bit. If the 
logical processor saves 1 into that bit (it was in VMX non-root operation and the 
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer 
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the 
controls associated with VMX non-root operation are disabled in SMM and thus 
cannot cause VM exits while the logical processor in SMM.

26.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default 
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; 

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; 
see Section 25.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was 
unlocked at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE ← value stored internally;

2. Section 26.14 and Section 26.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture. 
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms 
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to 
refer specifically to the lower 32 bits of the register.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control 
were 0. See Section 21.6.2.
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IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 26.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in 

VMX operation (see Section 20.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 21-3 in 
Section 21.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution 

control will be 0, the state of NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution 

control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI 
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX 
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the 
controls associated with the current VMCS. If the “interrupt-window exiting” 
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling 
conditions apply. The same is true for the “NMI-window exiting” VM-execution 
control. Such VM exits occur with their normal priority. See Section 22.3.

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control 
and bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG 
retain the values that were loaded from SMRAM regardless of what is reported in the capability 
MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted 
guest” VM-execution control were 0. See Section 21.6.2.
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If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is 
pending on the instruction boundary following execution of RSM. The following items 
detail the treatment of MTF VM exits that may be pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events 

take priority over these MTF VM exits. These MTF VM exits take priority over 
debug-trap exceptions and lower priority events. 

• These MTF VM exits wake the logical processor if RSM caused the logical 
processor to enter the HLT state (see Section 26.10). They do not occur if the 
logical processor just entered the shutdown state.

26.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical 
processor is in SMM. Any attempt by software running in SMM to set this bit causes a 
general-protection exception. In addition, software cannot use VMX instructions or 
enter VMX operation while in SMM.

26.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section 
26.15.1) and only outside SMM. If SMIs are blocked when VMXOFF is executed, 
VMXOFF unblocks them unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 
26.15.5 for details regarding this MSR).1 Section 26.15.7 identifies a case in which 
SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capa-
bility MSR IA32_VMX_MISC (see Appendix G.6) to determine whether this is allowed.

26.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive 
monitor (the VMM that operates outside of SMM to provide basic virtualization) and 
the SMM monitor (the VMM that operates inside SMM—while in VMX operation—to 
support system-management functions). Control is transferred to the SMM monitor 
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should 
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine 
whether it is supported.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless 
of the value of the register’s valid bit (bit 0).
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26.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM monitor. Transi-
tions from the executive monitor or its guests to the SMM monitor are called SMM 
VM exits and are discussed in Section 26.15.2. SMM VM exits are caused by SMIs as 
well as executions of VMCALL in VMX root operation. The latter allow the executive 
monitor to call the SMM monitor for service.

The SMM monitor runs in VMX root operation and uses VMX instructions to establish 
a VMCS and perform VM entries to its own guests. This is done all inside SMM (see 
Section 26.15.3). The SMM monitor returns from SMM, not by using the RSM instruc-
tion, but by using a VM entry that returns from SMM. Such VM entries are described 
in Section 26.15.4.

Initially, there is no SMM monitor and the default treatment (Section 26.14) is used. 
The dual-monitor treatment is not used until it is enabled and activated. The steps to 
do this are described in Section 26.15.5 and Section 26.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF 
will fail if executed. The dual-monitor treatment must be deactivated first. The SMM 
monitor deactivates dual-monitor treatment using a VM entry that returns from SMM 
with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 
26.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive 
monitor. SMM VM exits, which transfer control to the SMM monitor, use a different 
VMCS. Under the dual-monitor treatment, each logical processor uses a separate 
VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, 
the logical processor maintains another VMCS pointer called the SMM-transfer 
VMCS pointer. The SMM-transfer VMCS pointer is established when the dual-
monitor treatment is activated.

26.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits 
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX 
root operation outside SMM. Execution of VMCALL in VMX root operation causes an 
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see 
Section 26.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the 
default treatment. This SMM VM exit activates the dual-monitor treatment (see 
Section 26.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 
26.15.2.1 through 26.15.2.5. Differences between SMM VM exits that activate the 
dual-monitor treatment and other SMM VM exits are described in Section 26.15.6.
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26.15.2.1  Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so 
directly. They do not save state to SMRAM as they do under the default treatment.

26.15.2.2  Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the 
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON 
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS 
pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit 
information is recorded in that VMCS, and VM-entry control fields in that VMCS are 
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls 
and host-state area of that VMCS determine how the VM exit operates.

26.15.2.3  Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit 
information. The differences follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with 
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after 
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix I, 
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. 
Because the SMM monitor may need to know whether it was invoked from 
VMX root or VMX non-root operation, this information is stored in bit 29 of the 
exit-reason field (see Table 21-13 in Section 21.9.1). The bit is set by SMM 
VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit 
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately 

after the retirement of an I/O instruction, the exit qualification contains 
information about the I/O instruction that retired immediately before the SMI.It 
has the format given in Table 26-9.
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• Guest linear address. This field is used for VM exits due to SMIs that arrive 
immediately after the retirement of an INS or OUTS instruction for which the 
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction 
prefix) is usable. The field receives the value of the linear address generated by 
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but 
can be overridden by a segment override prefix) at the time the instruction 
started. If the relevant segment is not usable, the value is undefined. On 
processors that support Intel 64 architecture, bits 63:32 are clear if the logical 
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI 
that arrives immediately after the retirement of an I/O instruction, these fields 
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the 
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O 
instruction.

26.15.2.4  Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field 
in the guest-state area.

Table 26-9.  Exit Qualification for SMIs That Arrive Immediately 
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors 
that support Intel 64 architecture.
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The value of the VMX-preemption timer is saved into the corresponding field in the 
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That 
field becomes undefined if, in addition, either the SMM VM exit is from VMX root 
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

26.15.2.5  Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be 

unblocked through execution of IRET or through a VM entry (depending on the 
value loaded for the interruptibility state and the setting of the “virtual NMIs” 
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry 
that returns from SMM (see Section 26.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with 
VPID 0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all 
EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary 
VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 24.5.5.)

26.15.3 Operation of an SMM Monitor
Once invoked, an SMM monitor is in VMX root operation and can use VMX instructions 
to configure VMCSs and to cause VM entries to virtual machines supported by those 
structures. As noted in Section 26.15.1, the VMXOFF instruction cannot be used 
under the dual-monitor treatment and thus cannot be used by an SMM monitor.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted 
in Section 22.1.3, it causes a VM exit if executed in SMM in VMX non-root operation. 
If executed in VMX root operation, it causes an invalid-opcode exception. SMM 
monitor uses VM entries to return from SMM (see Section 26.15.4).

26.15.4 VM Entries that Return from SMM
The SMM monitor returns from SMM using a VM entry with the “entry to SMM” 
VM-entry control clear. VM entries that return from SMM reverse the effects of an 
SMM VM exit (see Section 26.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not 
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the 
current VMCS contains the VMXON pointer, the logical processor remains in VMX root 
operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see 
Sections 26.15.4.1 through 26.15.4.10.
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26.15.4.1  Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address 

width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer 
must contain the processor’s VMCS revision identifier (see Section 21.2).

The checks above are performed before the checks described in Section 26.15.4.2 
and before any of the following checks:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, the launch state 

of the executive VMCS (the VMCS referenced by the executive-VMCS pointer 
field) must be launched (see Section 21.10.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 26.15.7).3

26.15.4.2  Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the 
checks performed on the VM-execution control fields specified in Section 23.2.1.1. 
They do not apply the checks to the current VMCS. Instead, VM-entry behavior 
depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 

remains in VMX root operation), the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the 

VM entry enters VMX non-root operation), the checks are performed on the 
VM-execution control fields in the executive VMCS (the VMCS referenced by the 
executive-VMCS pointer field in the current VMCS). These checks are performed 
after checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution 
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This 
check is not performed by VM entries that return from SMM.

1. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see 
Appendix G.1.

3. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field 
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
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26.15.4.3  Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the 
checks performed on the VM-entry control fields specified in Section 23.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the 
VM entry remains in VMX root operation), the following must not all hold for the 
VM-entry interruption-information field:
• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

26.15.4.4  Checks on the Guest State Area
Section 23.3.1 specifies checks performed on fields in the guest-state area of the 
VMCS. Some of these checks are conditioned on the settings of certain VM-execution 
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from 
SMM modify these checks based on whether the executive-VMCS pointer field 
contains the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at 
all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the 
VM entry enters VMX non-root operation), this check is performed based on the 
settings of the VM-execution controls in the executive VMCS (the VMCS 
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the 
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer 
(the VM entry is to VMX root operation).

26.15.4.5  Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings 
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values 
(EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary VM entries 
are required to perform such invalidation only for VPID 0000H and are not required 
to do even that if the “enable VPID” VM-execution control is 1; see Section 23.3.2.5.)

1. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field 
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
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26.15.4.6  VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the 
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry 
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-entry 
control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS 
pointer field). In this case, VM entry starts the VMX-preemption timer with the value 
in the VMX-preemption timer-value field in the current VMCS.

26.15.4.7  Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer 
with the current-VMCS pointer. Following this, they load the current-VMCS pointer 
from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry 

remains in VMX root operation), the current-VMCS pointer is loaded from the 
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the 
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded 
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution 
controls in effect after the VM entry are those from the new current VMCS. This 
includes any structures external to the VMCS referenced by VM-execution control 
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is 
determined, however, by the VM-entry control fields in the VMCS that was current 
when the VM entry commenced.

26.15.4.8  VM Exits Induced by VM Entry
Section 23.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 23.6.3 to Section 23.6.7 describe other situations 
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the 
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters 
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS 
that is current after the VM entry. This is the VMCS referenced by the value of the 
executive-VMCS pointer field at the time of the VM entry (see Section 26.15.4.7). 
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a 
VM entry returning from SMM are to the executive monitor and not to the SMM 
monitor.
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26.15.4.9  SMI Blocking
VM entries that return from SMM determine the blocking of system-management 
interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are 

blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of 

SMIs depends on whether the logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after 
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow an SMM monitor to invoke 
functionality outside of SMM without unblocking SMIs.

26.15.4.10  Failures of VM Entries That Return from SMM
Section 23.7 describes the treatment of VM entries that fail during or after loading 
guest state. Such failures record information in the VM-exit information fields and 
load processor state as would be done on a VM exit. The VMCS used is the one that 
was current before the VM entry commenced. Control is thus transferred to the SMM 
monitor and the logical processor remains in SMM.

26.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM monitor reside in a region of SMRAM called the monitor 
segment (MSEG). Code running in SMM determines the location of MSEG and estab-
lishes its content. This code is also responsible for enabling the dual-monitor treat-
ment. 

SMM code enables the dual-monitor treatment and determines the location of MSEG 
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following 
format:
• Bit 0 is the register’s valid bit. The SMM monitor may be invoked using VMCALL 

only if this bit is 1. Because VMCALL is used to activate the dual-monitor 
treatment (see Section 26.15.6), the dual-monitor treatment cannot be 
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default 
treatment of SMIs and SMM. Executions of VMXOFF unblock SMIs unless bit 2 is 
1 (the value of bit 0 is irrelevant). See Section 26.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6, 
“Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2B)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address 

of MSEG (the MSEG base address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support 

the dual-monitor treatment.1 On other processors, accesses to the MSR using 
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a 
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is 
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL 
MSR fails if made as part of a VM exit that does not end in SMM or part of a 
VM entry that does not begin in SMM.

• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time 
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set 
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The 
format of the MSEG header is given in Table 26-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

Table 26-10.  Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset
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To ensure proper behavior in VMX operation, software should maintain the MSEG 
header in writeback cacheable memory. Future implementations may allow or 
require a different memory type.1 Software should consult the VMX capability MSR 
IA32_VMX_BASIC (see Appendix G.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in 
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG 
header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use 

different MSEG revision identifiers. These identifiers enable software to avoid 
using an MSEG header formatted for one processor on a processor that uses a 
different format. Software can discover the MSEG revision identifier that a 
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see 
Appendix G.6).

• Bytes 7:4 contain the SMM-monitor features field. Bits 31:1 of this field are 
reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM feature 
bit. It indicates whether the logical processor will be in IA-32e mode after the 
SMM monitor is activated (see Section 26.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the 
SMM monitor is activated (see Section 26.15.6.4). SMM code should establish 
these fields so that activating of the SMM monitor invokes the SMM monitor’s 
initialization code. 

26.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section 
26.15.5. The dual-monitor treatment is activated only if it is enabled and only by the 
executive monitor. The executive monitor activates the dual-monitor treatment by 
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. 
Differences between this SMM VM exit and other SMM VM exits are discussed in 

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary 
as it will cause the performance of transitions using those structures to suffer significantly. In 
addition, the processor will continue to use the memory type reported in the VMX capability MSR 
IA32_VMX_BASIC with exceptions noted in Appendix G.1.

Table 26-10.  Format of MSEG Header (Contd.)

Byte Offset Field
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Sections 26.15.6.1 through 26.15.6.5. See also “VMCALL—Call to VM Monitor” in 
Chapter 6 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 2B.

26.15.6.1  Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the 
processor supports the dual-monitor treatment;1 (2) the logical processor is in VMX 
root operation; (3) the logical processor is outside SMM and the valid bit is set in the 
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS 
established by the executive monitor. The VMCALL performs the following checks on 
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may 
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the 
proper settings (see Appendix G.4).

— The following checks are performed for the VM-exit MSR-store address if the 
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. The address 
should not set any bits beyond the processor’s physical-address width.2

• The address of the last byte in the VM-exit MSR-store area should not set 
any bits beyond the processor’s physical-address width. The address of 
this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The 
arithmetic used for the computation uses more bits than the processor’s 
physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in 
the range 63:32; see Appendix G.1.

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all 
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR 
to determine the base address of MSEG. The following checks are performed in the 
order indicated:

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

2. Software can determine a processor’s physical-address width by executing CPUID with 
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
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1. The logical processor reads the 32 bits at the base of MSEG and compares them 
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether 
the logical processor will be in IA-32e mode after the SMM monitor is 
activated.

• If the VMCALL is executed on a processor that does not support Intel 64 
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature 
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

26.15.6.2  MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before 
updating the current-VMCS pointer and the executive-VMCS pointer field (see 
Section 26.15.2.2):
• The 32 bits at the MSEG base address (used as a physical address) must contain 

the processor’s MSEG revision identifier.
• Bits 31:1 of the SMM-monitor features field in the MSEG header (see 

Table 26-10) must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit) 
must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

26.15.6.3  Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 26.15.2.2, SMM VM exits that activate the 
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the 
value of the current-VMCS pointer.

26.15.6.4  Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor 
treatment was established by the executive monitor. It does not contain the VM-exit 
controls and host state required to initialize the SMM monitor. For this reason, such 
SMM VM exits do not load processor state as described in Section 24.5. Instead, 
state is set to fixed values or loaded based on the content of the MSEG header (see 
Table 26-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.
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— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the 
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset 
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the 
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding fields in the MSEG header (the 
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H, 
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the 
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead 
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code 
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed, 
expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.
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• On processors that support Intel 64 architecture, CS.L is loaded with the 
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM 
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is 

otherwise undefined (although the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset 

field in the MSEG header (bits 63:32 are always cleared on processors that 
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG 
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset 

field in the MSEG header (bits 63:32 are always cleared on logical processors 
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset 
field in the MSEG header (bits 63:32 are always cleared on logical processor that 
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that 

LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are 
updated so that, after VM exit, the logical processor does not use translations that 
were cached before the transition. This is not necessary for changes that would not 
affect paging due to the settings of other bits (for example, changes to CR4.PSE if 
IA32_EFER.LMA was 1 before and after the transition).

26.15.6.5  Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.
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26.15.7 Deactivating the Dual-Monitor Treatment
An SMM monitor may deactivate the dual monitor treatment and return the 
processor to default treatment of SMIs and SMM (see Section 26.14). It does this by 
executing a VM entry with the “deactivate dual-monitor treatment” VM-entry control 
set to 1.

As noted in Section 23.2.1.3 and Section 26.15.4.1, an attempt to deactivate the 
dual-monitor treatment fails in the following situations: (1) the processor is not in 
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS 
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 26.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area. 
Instead, the blocking of SMIs following such a VM entry depends on whether the 
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry. 
SMIs may later be unblocked by the VMXOFF instruction (see Section 26.14.4) or 
by certain leaf functions of the GETSEC instruction (see Chapter 6, “Safer Mode 
Extensions Reference,” in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 2B).

• If the logical processor is outside SMX operation, SMIs are unblocked after 
VM entry.

26.16 SMI AND PROCESSOR EXTENDED STATE 
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see 
Chapter 13, “System Programming for Instruction Set Extensions and Processor 
Extended States”), the processor does not save any XSAVE/XRSTOR related state on 
an SMI. It is the responsibility of the SMM handler code to properly preserve the state 
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states 
using XSAVE/XRSTOR). Therefore, the SMM handler must follow the rules described 
in Chapter 13.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last 
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER] 
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
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CHAPTER 27
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

27.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual 
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system 
(OS) and applications. The VMM software layer runs at the most privileged level and 
has complete ownership of the underlying system hardware. The VMM controls 
creation of a VM, transfers control to a VM, and manages situations that can cause 
transitions between the guest VMs and host VMM. The VMM allows the VMs to share 
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred 
between the VM and its host. 

27.2 SUPPORTING PROCESSOR OPERATING MODES IN 
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM 
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS). 

As noted in Section 20.8, processors may fix certain bits in CR0 and CR4 to specific 
values and not support other values. The first processors to support VMX operation 
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed 
only to guests with paging enabled that are in protected mode or in virtual-8086 
mode. Guest execution in other processor operating modes need to be specially 
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could 
support guest real-mode execution using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support 

real-mode guest execution in a virtual-8086 container. The virtual-8086 
container may be implemented as a virtual-8086 container task within a monitor 
that emulates real-mode guest state and instructions, or by running the guest VM 
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set). 
Attempts by real-mode code to access privileged state outside the virtual-8086 
container would trap to the VMM and would also need to be emulated.
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Another example of such a condition is guest execution in protected mode with 
paging disabled. A VMM could support such guest execution by using “identity” page 
tables to emulate unpaged protected mode.

27.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM 
software to run in real-address mode and unpaged protected mode. Since these 
modes do not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest” 
VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load 

IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM 
entry is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load 
IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME 
unmodified (i.e., the host value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-
32e mode for the purpose of maintaining the correct setting of the "IA-32e mode 
guest" VM entry control.  This is because VM exits on processors supporting the 
1-setting of the "unrestricted guest" VM-execution control save the (guest) value 
of IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

27.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache. 

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can 
host several virtual machines and have many VMCSs active under its management. 
A unique VMCS region is required for each virtual machine; a VMXON region is 
required for the VMM itself. 

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it 
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory. 
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte 
offset 0) identical to the revision reported by the processor in the VMX capability 
MSR.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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NOTE
Software must not read or write directly to the VMCS data region as 
the format is not architecturally defined. Consequently, Intel 
recommends that the VMM remove any linear-address mappings to 
VMCS regions before loading. 

System software does not need to do special preparation to the VMXON region before 
entering into VMX operation. The address of the VMXON region for the VMM is 
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM 
needs to prepare data fields in the VMCS that control the execution of a VM upon a 
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD 
instruction. VMCS data fields must be read or written only through VMREAD and 
VMWRITE commands respectively. 

Every component of the VMCS is identified by a 32-bit encoding that is provided as 
an operand to VMREAD and VMWRITE. Appendix H provides the encodings. A VMM 
must properly initialize all fields in a VMCS before using the current VMCS for VM 
entry. 

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical 
processor in VMX non-root operation. A current VMCS for controlling a logical 
processor in VMX non-root operation may be referred to as a working VMCS if the 
logical processor is not in VMX non-root operation. The relationship of active, current 
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 27-1.

NOTE
As noted in Section 21.1, the processor may optimize VMX operation 
by maintaining the state of an active VMCS (one for which VMPTRLD 
has been executed) on the processor. Before relinquishing control to 
other system software that may, without informing the VMM, remove 
power from the processor (e.g., for transitions to S3 or S4) or leave 
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures 
that all VMCS data cached by the processor are flushed to memory 
and that no other software can corrupt the current VMM’s VMCS data. 
It is also recommended that the VMM execute VMXOFF after such 
executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the 
processor for accessing a VMCS or any data structures referenced through pointers in 
the VMCS. Software must maintain the VMCS structures in cache-coherent memory. 
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the 
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory 
type is supported, but strongly discouraged due to negative impact on performance.
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27.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a 
VMX instruction in VMX non-root operation causes a VM exit.

Figure 27-1.  VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation
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Processors perform various checks while executing any VMX instruction. They follow 
well-defined error handling on failures. VMX instruction execution failures detected 
before loading of a guest state are handled by the processor as follows: 
• If the working-VMCS pointer is not valid, the instruction fails by setting 

RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-

code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or 
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions 
(VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause 

the VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following 
values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.1
If this error occurs, software can avoid the error by executing the following 
sequence of instructions:

VMPTRST working-VMCS pointer
VMCLEAR working-VMCS pointer
VMPTRLD working-VMCS pointer
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-
VMCS pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and 
host-state area. If any of these checks fail, the VM-entry instruction fails. 
RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control field(s)) or 8 
(VM entry with invalid host-state field(s)) is saved in the VM-instruction error 
field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes 
the general checks and checks on VMX controls and the host-state area (see 
Section 23.2), any errors encountered while loading of guest-state (due to bad 
guest-state or bad MSR loading) causes the processor to load state from the 
host-state area of the working VMCS as if a VM exit had occurred (see Section 
27.7). 

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
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This failure behavior differs from that of VM exits in that no guest-state is saved 
to the guest-state area. A VMM can detect its VM-exit handler was invoked by 
such a failure by checking bit 31 (for 1) in the exit reason field of the working 
VMCS and further identify the failure by using the exit qualification field.

See Chapter 23 for more details about the VM-entry instructions.

27.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging 
before entering VMX operation. The following list describes the minimal steps 
required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID. 
• Determine the VMX capabilities supported by the processor through the VMX 

capability MSRs. See Section 27.5.1 and Appendix G. 
• Create a VMXON region in non-pageable memory of a size specified by 

IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read 
the capability MSRs to determine width of the physical addresses that may be 
used for the VMXON region and ensure the entire VMXON region can be 
addressed by addresses with that width. Also, software must ensure that the 
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the 
VMCS revision identifier reported by capability MSRs. 

• Ensure the current processor operating mode meets the required CR0 fixed bits 
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected 
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value 
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and 
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been 
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally 
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand. 
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation. 

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by 
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0 
and RFLAGS.ZF = 0. 

If an SMM monitor has been configured to service SMIs while in VMX operation (see 
Section 26.15), the SMM monitor needs to be torn down before the executive 
monitor can leave VMX operation (see Section 26.15.7). VMXOFF fails for the execu-
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tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM 
monitor is configured.

27.5.1 Algorithms for Determining VMX Capabilities
As noted earlier, a VMM should determine the VMX capabilities supported by the 
processor by reading the VMX capability MSRs. The architecture for these MSRs is 
detailed in Appendix G.

As noted in Chapter 21, “Virtual-Machine Control Structures”, certain VMX controls 
are reserved and must be set to a specific value (0 or 1) determined by the processor. 
The specific value to which a reserved control must be set is its default setting. 
Most controls have a default setting of 0; Appendix G.2 identifies those controls that 
have a default setting of 1. The term default1 describes the class of controls whose 
default setting is 1. The are controls in this class from the pin-based VM-execution 
controls, the primary processor-based VM-execution controls, the VM-exit controls, 
and the VM-entry controls. There are no secondary processor-based VM-execution 
controls in the default1 class.

Future processors may define new functionality for one or more reserved controls. 
Such processors would allow each newly defined control to be set either to 0 or to 1. 
Software that does not desire a control’s new functionality should set the control to 
its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the 
allowed settings of most of the pin-based VM-execution controls, the primary 
processor-based VM-execution controls, the VM-exit controls, and the VM-entry 
controls. However, they will always report that any control in the default1 class must 
be 1. If a logical processor allows any control in the default1 class to be 0, it indicates 
this fact by returning 1 for the value of bit 55 of the IA32_VMX_BASIC MSR. If this bit 
is 1, the logical processor supports the capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, 
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability 
MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit 
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct 
default control settings:1

1. The following algorithm does not use the details given in Appendix G.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are 
no secondary processor-based VM-execution controls in the default1 class, a VMM can always 
set to 0 any such control whose meaning is unknown to it.
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b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS, 
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and 
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is not known to the VMM; then set 
the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the default1 class to be 0. However, such a VMM will not be able to
use the new features enabled by the 0-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix G.2. This algorithm 
requires software to know the identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs 
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the 
control is not in the default1 class; then set the control to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the 
control is in the default1 class; then set the control to 1.
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A VMM using this algorithm will set to 1 all controls in default1 class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the default1 class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix G.2. This algorithm 
does not require software to know the identity of the controls in the default1 
class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC, 
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS, 
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single 
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is known to the VMM; then set the 
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 
0 or 1; and (2) the control’s meaning is not known to the VMM; then set 
the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX 
capability MSRs IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a 
single setting, use that setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; and (2) the control’s meaning is known to the VMM; then 
set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and 
(3) the relevant VMX capability MSR as read in step (a) reports that a 
control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can 
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and 
(3) the relevant VMX capability MSR as read in step (a) reports that a 
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the default1
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the 0-setting of such controls. Unlike a
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VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the default1 class.

27.6 PREPARATION AND LAUNCHING A VIRTUAL 
MACHINE

The following list describes the minimal steps required by the VMM to set up and 
launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX 

capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read 
the capability MSRs to determine width of the physical addresses that may be 
used for a VMCS region and ensure the entire VMCS region can be addressed by 
addresses with that width. The term “guest-VMCS address” refers to the physical 
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision 
identifier reported by the VMX capability MSR IA32_VMX_BASIC. 

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will 
initialize the new VMCS region in memory and set the launch state of the VMCS 
to “clear”. This action also invalidates the working-VMCS pointer register to 
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR 
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This 
initializes the working-VMCS pointer with the new VMCS region’s physical 
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the 
working VMCS. The initialization sets up the context and entry-points to the VMM 
upon subsequent VM exits from the guest. Host-state fields include control 
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS, 
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR; 
RSP, RIP and the MSRs that control fast system calls). 
Chapter 22 describes the host-state consistency checking done by the processor 
for VM entries. The VMM is required to set up host-state that comply with these 
consistency checks. For example, VMX requires the host-area to have a task 
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control 
fields, and VM-execution control fields in the VMCS. Care should be taken to 
make sure the settings of individual fields match the allowed 0 and 1 settings for 
the respective controls as reported by the VMX capability MSRs (see Appendix G). 
Any settings inconsistent with the settings reported by the capability MSRs will 
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS. 
This sets up the context and entry-point for guest execution upon VM entry. 
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Chapter 22 describes the guest-state loading and checking done by the processor 
for VM entries to protected and virtual-8086 guest execution. 

• The VMM is required to set up guest-state that complies with these consistency 
checks:

— If the VMM design requires the initial VM launch to cause guest software 
(typically the guest virtual BIOS) execution from the guest’s reset vector, it 
may need to initialize the guest execution state to reflect the state of a 
physical processor at power-on reset (described in Chapter 9, Intel® 64 and 
IA-32 Architectures Software Developer’s Manual, Volume 3A). 

— The VMM may need to initialize additional guest execution state that is not 
captured in the VMCS guest-state area by loading them directly on the 
respective processor registers. Examples include general purpose registers, 
the CR2 control register, debug registers, floating point registers and so forth. 
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with 
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software 
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any 
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be 
set and the VM-instruction error field (see Section 21.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the 
processor loads state from the host-state area as if a VM exit had occurred (see 
Section 27.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer 
and saves the old value of controlling-VMCS as the parent pointer. In addition, the 
launch state of the guest VMCS is changed to “launched” from “clear”. Any 
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM 
should execute VMRESUME instruction for subsequent VM entries to guests in a 
“launched” state.

27.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the 

working-VMCS. Appendix I describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a 

valid qualification. The exit-qualification field provides additional details on the 
VM-exit condition. For example, in case of page faults, the exit-qualification field 
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS. 
Appendix I lists the various exit reasons.
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• Handle the VM-exit condition appropriately in the VMM. This may involve the 
VMM emulating one or more guest instructions, programming the underlying 
host hardware resources, and then re-entering the VM to continue execution. 

27.7.1 Handling VM Exits Due to Exceptions
As noted in Section 22.3, an exception causes a VM exit if the bit corresponding to 
the exception’s vector is set in the exception bitmap. (For page faults, the error code 
also determines whether a VM exit occurs.) This section provide some guidelines of 
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may 
be the case that the condition was caused by the guest software. For example, a 
guest application may attempt to access a page that is restricted to supervisor 
access. Alternatively, the condition causing the exception may have been established 
by the VMM. For example, a guest OS may attempt to access a page that the VMM 
has chosen to make not present.

When the condition causing an exception was established by guest software, the 
VMM may choose to reflect the exception to guest software. When the condition was 
established by the VMM itself, the VMM may choose to resume guest software after 
removing the condition.

27.7.1.1  Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition 
established by guest software, it may reflect that exception to guest software. The 
VMM would cause the exception to be delivered to guest software, where it can be 
handled as it would be if the guest were running on a physical machine. This section 
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry 
event injection as described in Section 23.5. The VMM can copy (using VMREAD and 
VMWRITE) the contents of the VM-exit interruption-information field (which is valid, 
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next 
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11 
(error code valid) is clear in the VM-exit interruption-information field. After this, the 
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-

ruption-information field are 0. In particular, some VM exits may set bit 12 in the 
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If 
this bit is copied as 1 into the VM-entry interruption-information field, the next 
VM entry will fail because that bit should be 0.
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• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the 
exception causing the VM exit occurred while another event was being delivered 
to guest software. If this is the case, it may not be appropriate simply to reflect 
that exception to guest software. To provide proper virtualization of the exception 
architecture, a VMM should handle nested events as a physical processor would. 
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault 
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software 
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring 
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field 
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field 
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a 
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of 
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware 
exception), the VMM should reflect a double-fault exception to guest software 
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value 
of bits 7:0 of the VM-exit interruption-information field each indicates a 
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a 
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8 
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information 
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information 
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.
Vol. 3B 27-13



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware 
exception) and the value of bits 7:0 is 8 (#DF), guest software would have 
encountered a triple fault. Event injection should not be used in this case. The 
VMM may choose to terminate the guest, or it might choose to enter the 
guest in the shutdown activity state.

27.7.1.2  Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition 
established by the VMM itself, it may choose to resume guest software after 
removing the condition. The approach for removing the condition may be specific to 
the VMM’s software architecture. and algorithms This section describes how guest 
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The 
following items provide details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-

information field indicates that the VM exit was due to a fault encountered during 
an execution of the IRET instruction that unblocked non-maskable interrupts 
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is 
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs 
were blocked before guest software executed the IRET instruction that caused 
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in 
the interruptibility-state field (using VMREAD and VMWRITE) before resuming 
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during 
an execution of the IRET instruction that removed virtual-NMI blocking. In 
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is 
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there 
was virtual-NMI blocking before guest software executed the IRET instruction 
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking 
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before 
resuming guest software. 

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the 
exception causing the VM exit occurred while another event was being delivered 
to guest software. The VMM should ensure that the other event is delivered when 
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guest software is resumed. It can do so using the VM-entry event injection 
described in Section 23.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be 
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is 
copied as 1 into the VM-entry interruption-information field, the next 
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8 
(interruption type) in the IDT-vectoring information field is 2 (indicating 
NMI), the VM exit occurred during delivery of an NMI that had been 
injected as part of the previous VM entry. In this case, bit 3 (blocking by 
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM 
should clear this bit; otherwise, the next VM entry will fail (see Section 
23.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to 
the VM-entry exception error-code field. This need not be done if bit 11 (error 
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to 
the VM-entry instruction-length field. This need be done only if bits 10:8 
(interruption type) in the IDT-vectoring information field indicate either 
software interrupt, privileged software exception, or software exception.

27.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the 
same VMM binary on all logical processors. Like a symmetric operating system, the 
symmetric VMM is written to ensure all critical data is updated by only one processor 
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM 
designs are possible. For example, an asymmetric VMM may run its scheduler on one 
processor and run just enough of the VMM on other processors to allow the correct 
execution of guest VMs. The remainder of this section focuses on the multi-processor 
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For 
example, a symmetric VMM can support asymmetric allocation of logical processor 
resources to guests. Multiple logical processors can be brought into a single guest 
environment to support an MP-aware guest OS. Because an active VMCS can not 
control more than one logical processor simultaneously, a symmetric VMM must 
make copies of its VMCS to control the VM allocated to support an MP-aware guest 
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OS. Care must be taken when accessing data structures shared between these 
VMCSs. See Section 27.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of 
hardware capabilities (with all processors supporting the same processor feature 
sets, including the same revision of VMX), there are advantages in developing a VMM 
that comprehends different levels of VMX capability (reported by VMX capability 
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without 
requiring software upgrades to the VMM, when the software installation is upgraded 
to run on hardware with enhancements in the processor’s VMX capabilities. Another 
advantage could be that a single software installation image, consisting of a VMM and 
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features 
supported by all VMX revisions, or choose to understand the asymmetry of the VMX 
capabilities and assign VMs accordingly. 

This section outlines some of the considerations to keep in mind when developing an 
MP-aware VMM.

27.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors 
in the system are compatible and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and 

that the overall feature set of each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability 

MSR’s on each processor.

27.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower 
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor. 

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME. 

VMRESUME is expected to be faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of 

VMCLEAR, VMPTRLD and VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 21.10.3.
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A VMM scheduler should make an effort to schedule a guest VMCS to run on the 
logical processor where it last ran. Such a scheduler might also benefit from doing 
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler 
knows the VMCS is being moved to a new logical processor). The remainder of this 
section describes the steps a VMM must take to move a VMCS from one processor to 
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR 
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical 
processors. If the VMCS regions are identical (same revision ID) the following 
sequence can be used to move or copy the VMCS from one logical processor to 
another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that 

all VMCS data that may be cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an 

optional step assuming the VMM wishes to relocate the VMCS or move the VMCS 
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination 
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate 
structure using individual reads (VMREAD) from the source fields and writes 
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to 
certain values on some processor implementations.

27.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8, 
CFC), require special treatment in cases where a VM performing writes to these pairs 
can be moved during execution. In this case, the index (e.g. CF8) should be part of 
the virtualized state. If the VM is moved during execution, writes to the index should 
be redone so subsequent data reads/writes go to the right location.

27.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR 
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of 
the external structures referenced by that logical processor's current VMCS should be 
modified by any logical processor or DMA. Before updating one of these structures, 
the VMM must ensure that no logical processor whose current VMCS references the 
structure is in VMX non-root operation. 

If a VMM uses multiple VMCS with each VMCS using separate external structures, 
and these structures must be kept synchronized, the VMM must apply the same care 
to updating these structures.
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27.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware 
features. It also provides multi-threading/multi-core configuration information. For 
example, MP-aware OSs rely on data reported by CPUID to discover the topology of 
logical processors in a platform (see Section 8.9, “Programming Considerations for 
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). 

If a VMM is to support asymmetric allocation of logical processor resources to guest 
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

27.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations 
that impact VMM designs. These are described in the following subsections.

27.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that 
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and 
guest environments on IA-32 processors. 

A VMM entering VMX operation while IA-32e mode is active is considered to be an 
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated 
or not available is referred to as a 32-bit VMM. The type of guest operations such 
VMMs support are summarized in Table 27-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined 
by the attributes of the code segment which experienced the VM exit. If CS.L = 1, 
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 27.9.5).

Table 27-1.  Operating Modes for Host and Guest Environments
Capability Guest Operation 

in IA-32e mode
Guest Operation 
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
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Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an 
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions 
preventing a VMM from executing in compatibility mode. The most notable restriction 
is that most VMX instructions cause exceptions when executed in compatibility mode. 

27.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The 
widths of VMCS control fields may vary depending on whether a processor supports 
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting 
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits 
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether 
the processor supports Intel 64 architecture or is in IA-32e mode.

27.9.2.1  Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set 
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in 
64-bit mode. For the most part, these fields return the naturally expected data 
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type 
of field.

27.9.2.2  64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors. 
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to 
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return 
the low 32-bits and writes to these fields write the low 32-bits and zero the upper 
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these 
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of 
a region of memory which specifies which MSR accesses should generate VM-exits) is 
an example of this type of field. Specifying encoding 00002004H to VMREAD returns 
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The 
separate encoding 00002005H returns only the upper 32-bits. 

27.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX 
entry requires paging to be enabled, IA-32e mode must be enabled before entering 
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VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode 
in a VMM.

Section 27.5 describes the steps required to launch a VMM. An IA-32e mode host is 
also required to set the “host address-space size” VMCS VM-exit control to 1. The 
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each 
VM exit. This establishes a 64-bit host environment as execution transfers to the 
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code 
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility 
mode on a code-segment basis (see Section 27.9.1). Note, however, that VMX 
instructions other than VMCALL are not supported in compatibility mode; they 
generate an invalid opcode exception if used. 

The following VMCS controls determine the value of IA32_EFER when a VM exit 
occurs: the “host address-space size” control (described above), the “load 
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 24.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the 
IA32_EFER field in the host-state area must be the value of the “host address-space 
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit 
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of 
the LME bit in the load image of IA32_EFER should match the setting of the “host 
address-space size” control. Otherwise the attempt to modify the LME bit (while 
paging is enabled) will lead to a VMX-abort. However, IA32_EFER.LMA is always set 
by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in 
the load image of the IA32_EFER MSR is ignored. For these and performance 
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas 
for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e 
mode if the latter is required.

27.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode 
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 27.6, VMM writers need to: 
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure 

VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit 
compatible) guest operating environment. 

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit 
guest will succeed. 
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• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1) 
and the setting of the VM-exit “host address-space size” control bit in the VMCS 
must also be set to 1. 

If each of the above conditions holds true, then VM-entry will copy the value of the 
VM-entry “IA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which 
will result in subsequent activation of IA-32e mode. If any of the above conditions is 
false, the VM-entry will fail and load state from the host-state area of the working 
VMCS as if a VM exit had occurred (see Section 23.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the 
“IA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address” 
(see Section 23.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in 
the IA32_EFER field in the guest-state area must be the value of the “IA-32e-mode 
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the 
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of 
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the 
load image should be match the setting of the “IA-32e-mode guest” VM-entry 
control. Otherwise, the attempt to modify the LME bit (while paging is enabled) 
results in a failed VM entry. However, IA32_EFER.LMA is always set by the processor 
to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of 
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers 
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring 
control to a VM. VMM writers may choose to launch guests in protected mode and 
subsequently allow the guest to activate IA-32e mode or they may allow guests to 
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on 
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify 
the VM-entry “IA-32e-mode guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit. 

27.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in 
Section 27.6, making sure that the “IA-32e-mode guest” VM-entry control bit is set 
to 0. Then the “IA-32e-mode guest” control bit is copied into the guest 
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0. 
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27.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect 
processor features, control the programming interfaces, or are used in conjunction 
with specific instructions. As part of processor virtualization, a VMM may wish to 
protect some or all MSR resources from direct guest access. 

VMX operation provides the following features to virtualize processor MSRs.

27.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling 
guest access to processor MSRs using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix 

G) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to 
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in 
the guest VMCS can be programmed by VMM to point to a bitmap region which 
specifies VM-exit behavior when reading and writing individual MSRs. 
MSR bitmaps form a 4-KByte region in physical memory and are required to be 
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of 
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers 
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps 
for write control of these MSRs are located in the 2-KByte region immediately 
following the read control bitmaps. While the MSR bitmap address is part of 
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not 
accessible through VMREAD and VMWRITE instructions but rather by using 
ordinary memory writes. Also, they are not specially cached by the processor and 
may be placed in normal cache-coherent memory by the VMM. 
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap 
control (see Section 21.6.2) is set, the processor consults the associated bit in 
the appropriate bitmap on guest MSR accesses to the corresponding MSR and 
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted 
to proceed. This level of protection may be utilized by VMMs to selectively allow 
guest access to some MSRs while virtualizing others. 

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt 
by a guest to access any MSR causes a VM exit. This also occurs for any attempt 
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit 
reason codes. The MSR-read exit reason implies guest software attempted to read an 
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason 
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the 
guest MSR access through emulation of RDMSR/WRMSR.
27-22 Vol. 3B



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest 
MSR values and load host MSR values for these MSRs on VM exits. This is especially 
true if the VMM uses the same MSRs while in VMX root operation. 

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit 
control fields (see Section 21.7.2) to manage how MSRs are stored on VM exits. The 
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of 
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table 
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit 
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to 
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs. 

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated 
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in 
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the 
contents of the MSR indexed by bits 31:0. 

27.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while 
launching or resuming guest execution. The VM-entry MSR-load-address and 
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on 
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure 
and function to the VM-exit MSR-load address and count fields, except the MSR 
loading is done on VM-entries.

27.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM 
may need to consider saving the states of those MSRs. Instructions that merit such 
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS. 

27.10.4.1  Handling IA32_EFER MSR
The IA32_EFER MSR includes bit fields that allow system software to enable 
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE 
bit enables the execute-disable bits in the paging-structure entries. 

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and 
to save it on VM exits. Because of this, VMM software need not use the RDMSR and 
WRMSR instruction to give the register different values during host and guest execu-
tion. 
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27.10.4.2  Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs 
(IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage 
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to 
manage system calls in VMX root operation and VMX non-root operation respectively. 

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits 
save the values of these MSRs into those fields and loads the MSRs from fields in the 
host-state area.

27.10.4.3  Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are 
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set. 
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers 
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system 
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need 
to save the guest state of the above registers on VM exit, load the host state, and 
restore the guest state on VM entry. One possible approach is to use the VM-exit 
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls 
in the VMCS. A disadvantage to this approach, however, is that the approach results 
in the unconditional saving, loading, and restoring of MSR registers on each VM exit 
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no 
fast system call support but the VMM will be burdened with the additional overhead 
of saving and restoring MSRs if the VMM chooses to support fast system call 
uniformly. Further, even if the host intends to support fast system calls during a 
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER) 
may not require modification as they may already be set to the appropriate value in 
the guest. 

For performance reasons, a VMM may perform lazy save, load, and restore of these 
MSR values on certain VM exits when it is determined that this is acceptable. The 
lazy-save-load-restore operation can be carried out “manually” using RDMSR and 
WRMSR.

27.10.4.4  Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of 
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE 
MSR shadows the base address portion of the GS descriptor register; the 
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the 
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast 
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system calls when in 64-bit mode to allow immediate access to kernel structures on 
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may 
need to save, load, and restore these MSR registers on VM exit and VM entry using 
the guidelines discussed in previous paragraphs.

27.10.4.5  Implementation Specific Behavior on Writing to Certain MSRs 
As noted in Section 23.4 and Section 24.4, a processor may prevent writing to 
certain MSRs when loading guest states on VM entries or storing guest states on VM 
exits. This is done to ensure consistent operation. The subset and number of MSRs 
subject to restrictions are implementation specific. For initial VMX implementations, 
there are two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see 
Appendix B).

27.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register 
by specifying addresses in MSR address space. VMMs, however, must prevent a guest 
from accessing reserved MSR addresses in MSR address space. 

Consult Appendix B for lists of supported MSRs and their usage. Use the MSR bitmap 
control to cause a VM exit when a guest attempts to access a reserved MSR address. 
The response to such a VM exit should be to reflect #GP(0) back to the guest.

27.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are 
reserved at the time the VMM is written. 

Guest/host masks should be used by the VMM to cause VM exits when a guest 
attempts to modify reserved bits. Read shadows should be used to ensure that the 
guest always reads the reserved value (usually 0) for such bits. The VMM response to 
VM exits due to attempts from a guest to modify reserved bits should be to emulate 
the response which the processor would have normally produced (usually a #GP(0)).

27.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic 
idea behind most of these performance optimizations of the VMM is to reduce the 
number of VM exits while executing a guest VM. 
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This section lists ways that VMMs can take advantage of the performance enhancing 
features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with 

common PC operating systems in a virtual machine shows a large number of 
VM-exits are caused by control register read accesses (particularly CR0). Reads 
of CR0 and CR4 does not cause VM exits. Instead, they return values from the 
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS 
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits 
of the control registers to be protected from direct guest access. Write access to 
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned 
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write 
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause 
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement 
access-rights-based page table protection, the VMCS provides a CR3 target value 
list that can be consulted by the processor to determine if a VM exit is required. 
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed 
to proceed without VM exits. The VMM can utilize the CR3 target-list to save 
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults 
induced by guest address remapping done through virtual memory virtualization. 
VMX provides page-fault error-code mask and match fields in the VMCS to filter 
VM exits due to page-faults based on their cause (reflected in the error-code).

27.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution 
after a specified amount of time. Typical VMX-preemption timer usage is to program 
the initial VM quantum into the timer, save the timer value on each successive VM-
exit (using the VM-exit control “save preemption timer value”) and run the VM until 
the timer expires. 

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track 
the amount of time the VM has run while still using the VMX-preemption timer for VM 
preemption. In this scenario the VMM would not save the VMX-preemption timer on 
each VM-exit but instead would reload the VMX-preemption timer with initial VM 
quantum less the time the VM has already run. This scenario includes all the VM-
entry and VM-exit latencies in the VM run time. 

In both scenarios, on each successive VM-entry the VMX-preemption timer contains 
a smaller value until the VM quantum ends. If the VMX-preemption timer is loaded 
with a value smaller than the VM-entry latency then the VM will not execute any 
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instructions before the timer expires. The VMM must ensure the initial VM quantum is 
greater than the VM-entry latency; otherwise the VM will make no forward progress.
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CHAPTER 28
VIRTUALIZATION OF SYSTEM RESOURCES

28.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential 
interactions between software components using the same system resources. These 
interactions can require the virtualization of resources. This chapter describes the 
virtualization of system resources. These include: debugging facilities, address 
translation, physical memory, and microcode update facilities.

28.2 VIRTUALIZATION SUPPORT FOR DEBUGGING 
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 16) provide breakpoint 
instructions, exception conditions, register flags, debug registers, control registers 
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging 
facilities. The following list describes features relevant to virtualizing these facilities. 
• The VMM can program the exception-bitmap (see Section 21.6.3) to ensure it 

gets control on debug functions (like breakpoint exceptions occurring while 
executing guest code such as INT3 instructions). Normally, debug exceptions 
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug 
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section 
23.5 to inject debug or breakpoint exceptions to the guest. See Section 28.2.1 
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field 
(see Section 21.6.2) can be enabled by the VMM to cause VM exits on explicit 
guest access of various processor debug registers (for example, MOV to/from 
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers 
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches 
cause VM exits, a VMM can control any indirect guest access or modification of 
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as 
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control 
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 27.10 for details on MSR virtualization.
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• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly 
modified by the guest (through MOV-DR or WRMSR instructions) or modified 
implicitly by the processor as part of generating debug exceptions. The current 
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of 
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are 
recognized by the processor but not yet delivered. See Section 23.6.3 for details 
on pending debug exceptions. 

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area 
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug 
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1 
register is loaded on every VM entry (or pushed to stack if injecting a virtual 
event) from guest-state area of the VMCS. Pending debug exceptions are also 
loaded from guest-state area of VMCS so that they may be delivered after VM 
entry is completed.

28.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step 
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should 
not inject the debug exception using VM-entry event injection, but should set the 
appropriate bits in the pending debug exceptions field. This method will give the trap 
the right priority with respect to other events. (If the exception bitmap was 
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM 
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 21-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do 
not impact the delivery of pending debug exceptions. 

VMMs should exercise care when emulating a guest write (attempted using WRMSR) 
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a 
MOV SS or POP SS instruction (for example: while debug exceptions are blocked). 
Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions 

blocked, a single-step trap will occur after WRMSR. A VMM emulating such an 
instruction should set the BS bit (see Table 21-4) in the pending debug 
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions 
blocked, neither a single-step trap nor a taken-branch trap can occur after 
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table 
21-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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28.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest 
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest 
OSs’ expectation to manage memory address translation.

28.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor 
operating modes. This includes: protected mode with paging, protected mode with 
no paging, real-mode and any other transient execution modes. VMX allows guest 
operation in protected-mode with paging enabled and in virtual-8086 mode (with 
paging enabled) to support guest real-mode execution. Guest execution in transient 
operating modes (such as in real mode with one or more segment limits greater than 
64-KByte) must be emulated by the VMM. 

Since VMX operation requires processor execution in protected mode with paging 
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support 
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping. 
Memory virtualization algorithms may also need to capture other guest operating 
conditions (such as guest performing A20M# address masking) to map the resulting 
20-bit effective guest physical addresses. 

28.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical 
address space starting zero and extending to the maximum address supported by 
the guest virtual processor’s physical address width. The VMM utilizes guest physical 
to host physical address mapping to locate all or portions of the guest physical 
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical 
memory map and the virtualized physical memory map exposed to a guest by the 
VMM. The memory virtualization algorithm needs to accommodate various guest 
memory uses (such as: accessing DRAM, accessing memory-mapped registers of 
virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest 

physical addresses to host-DRAM regions. The VMM also requires the guest to 
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may 
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to 
cause page-fault induced VM-exits by marking these regions as always not 
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present. The VMM may handle these VM exits by invoking appropriate virtual 
device emulation code.

28.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory 
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute 
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the 
VMM to virtualize the specific memory type of a guest memory. The VMM may control 
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping 
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and 
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control 
over the processor’s address-translation mechanisms. Specifically, this means that 
only the VMM can access CR3 (which contains the base of the page directory) and can 
execute INVLPG (the only other instruction that directly manipulates the TLB). 

At the same time that the VMM controls address translation, a guest operating 
system will also expect to perform normal memory management functions. It will 
access CR3, execute INVLPG, and modify (what it believes to be) page directories 
and page tables. Virtualization of address translation must tolerate and support 
guest attempts to control address translation. 

A simple-minded way to do this would be to ensure that all guest attempts to access 
address-translation hardware trap to the VMM where such operations can be properly 
emulated. It must ensure that accesses to page directories and page tables also get 
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page 
directory because its base address is in CR3 and the VMM receives control on any 
change to CR3; it can locate the page tables because their base addresses are in the 
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these 
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures 
and that the VMM must maintain, in auxiliary data structures, the values to return to 
these reads. There must also be traps on modifications to these structures even if the 
translations they effect are never used. All this implies considerable overhead that 
should be avoided.

28.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without 
causing traps to the VMM. Because of this, the active page-table hierarchy might not 
always be consistent with the guest hierarchy. Any potential problems arising from 
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inconsistencies can be solved using techniques analogous to those used by the 
processor and its TLB.

This section describes an alternative approach that allows guest software to freely 
access page directories and page tables. Traps occur on CR3 accesses and executions 
of INVLPG. They also occur when necessary to ensure that guest modifications to the 
translation structures actually take effect. The software mechanisms to support this 
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. 
While the page-table hierarchy defines the relationship between physical to linear 
address, it does not directly control the address translation of each memory access. 
Instead, translation is controlled by the TLB, which is occasionally filled by the 
processor with translations derived from the page-table hierarchy. With a virtual TLB, 
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead, 
translation is controlled by the processor (through its TLB) and by the VMM (through 
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively 
caches translations derived from the hierarchy maintained by guest software. The 
remainder of this document refers to the former as the active page-table hierarchy 
(because it is referenced by CR3 and may be used by the processor to load its TLB) 
and the latter as the guest page-table hierarchy (because it is maintained by guest 
software). The entries in the active hierarchy may resemble the corresponding 
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without 
causing VM exits to the VMM. Because of this, the active page-table hierarchy might 
not always be consistent with the guest hierarchy. Any potential problems arising 
from any inconsistencies can be solved using techniques analogous to those used by 
the processor and its TLB. Note the following:
• Suppose the guest page-table hierarchy allows more access than active hierarchy 

(for example: there is a translation for a linear address in the guest hierarchy but 
not in the active hierarchy); this is analogous to a situation in which the TLB 
allows less access than the page-table hierarchy. If an access occurs that would 
be allowed by the guest hierarchy but not the active one, a page fault occurs; this 
is analogous to a TLB miss. The VMM gains control (as it handles all page faults) 
and can update the active page-table hierarchy appropriately; this corresponds 
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active 
hierarchy; this is analogous to a situation in which the TLB allows more access 
than the page-table hierarchy. This situation can occur only if the guest operating 
system has modified a page-table entry to reduce access (for example: by 
marking it not-present). Because the older, more permissive translation may 
have been cached in the TLB, the processor is architecturally permitted to use the 
older translation and allow more access. Thus, the VMM may (through the active 
page-table hierarchy) also allow greater access. For the new, less permissive 
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translation to take effect, guest software should flush any older translations from 
the TLB either by executing INVLPG or by loading CR3. Because both these 
operations will cause a trap to the VMM, the VMM will gain control and can 
remove from the active page-table hierarchy the translations indicated by guest 
software (the translation of a specific linear address for INVLPG or all translations 
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D) 
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE 

(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the 
processor (the same is true for PDEs when active page tables are accessed by the 
processor). For guest software to operate properly, the VMM should update the A 
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE 
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or 
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the 
processor. For guest software to operate properly, the VMM should update the D 
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE 
(or PDE) marked read-only until it has set the D bit in the guest entry. This 
solution is valid for guest software running at privilege level 3; support for more 
privileged guest software is described in Section 28.3.5.

28.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It 
explains how an active page-table hierarchy is initialized and how it is maintained in 
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms 
described here are the minimum necessary. They may not result in the best perfor-
mance.
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As noted above, the VMM maintains an active page-table hierarchy for each virtual 
machine that it supports. It also maintains, for each machine, values that the 
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address 
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest 
software. The term guest address refers to an address installed by guest software in 
the guest CR3, in a guest PDE (as a page table base address or a page base address), 
or in a guest PTE (as a page base address). While guest software considers these to 
be specific physical addresses, the VMM may map them differently.

28.3.5.1  Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in 

CR0 and CR4 (using the CR0 and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

Figure 28-1.  Virtual TLB Scheme
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When guest software first enables paging, the VMM creates an aligned 4-KByte active 
page directory that is invalid (all entries marked not-present). This invalid directory 
is analogous to an empty TLB. 

28.3.5.2  Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the 
VMM to an inconsistency between the active and guest page-table hierarchy. In such 
cases, the VMM can update the former and re-execute the faulting instruction. In 
other cases, the hierarchies are already consistent and the fault should be handled 
by the guest operating system. The VMM can detect this and use an established 
mechanism for raising a page fault to guest software. 

The VMM can handle a page fault by following these steps (The steps below assume 
the guest is operating in a paging mode without PAE. Analogous steps to handle 
address translation using PAE or four-level paging mechanisms can be derived by 
VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the 
faulting address and the current value of CR3. The active PDE is the source of the 
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with 
the attempted guest access (the guest privilege level and the values of CR0.WP 
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE 
using the same 10 bits from the faulting address and the physical address that 
corresponds to the guest address in the guest CR3. If the guest PDE would cause 
a page fault (for example: it is marked not present), then raise a page fault to the 
guest operating system. 
The following steps assume that the guest PDE would not have caused a page 
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address 
that the VMM has chosen not to support; then raise a machine check (or some 
other abort) to the guest operating system. 
The following steps assume that the guest address in the guest PDE is supported 
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to 
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then 
allocate an aligned 4-KByte active page table marked completely invalid and 
set the page-table base address in the active PDE to be the physical address 
of the newly allocated page table.
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b. If the active PDE contains a page base address (if PS = 1), then set the page 
base address in the active PDE to be the physical page base address that 
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the 
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page 
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted 
access is a write; then set R/W in the active PDE as in the guest PDE and set 
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; 
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction. 
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte 
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the 
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the 
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the 
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply, 
then raise a page fault of the guest operating system. 
The remaining steps assume that the source of the original page fault is not the 
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even 
though the guest PDE would not. However, this can happen only if the 
guest operating system increased access in the guest PDE and did 
not take action to ensure that older translations were flushed from 
the TLB. Such translations might have caused a page fault if the 
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the 
fault, then the fault resulted from an inconsistency between the active page-table 
hierarchy and the processor’s TLB. Since the transition to the VMM caused an 
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction. 
The remaining steps assume that PS = 0 in the active and guest PDEs.
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8. Consult the active PTE, which can be located using the next 10 bits of the faulting 
address (bits 21–12) and the physical page-table base address in the active PDE. 
The active PTE is the source of the fault if it is marked not-present or if its R/W bit 
and U/S bits are inconsistent with the attempted guest access (the guest 
privilege level and the values of CR0.WP and CR4.SMEP should also be taken into 
account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an 
inconsistency between the active page-table hierarchy and the processor’s TLB. 
Since the transition to the VMM caused an address-space change and flushed the 
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting 
address and the physical address that correspond to the guest page-table base 
address in the guest PDE. If the guest PTE would cause a page fault (it is marked 
not-present), the raise a page fault to the guest operating system. 
The following steps assume that the guest PTE would not have caused a page 
fault.

11. If the guest PTE contains, as page base address, a physical address that is not 
valid for the virtual machine being supported; then raise a machine check (or 
some other abort) to the guest operating system. 
The following steps assume that the address in the guest PTE is valid for the 
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to 
guest PTE:

a. Set the page base address in the active PTE to be the physical address that 
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the 
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the 
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in 
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set 
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction. 
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the 
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set 
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R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating 
system.

28.3.5.3  Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction 
takes a linear address as an operand and software expects any cached translations 
for the address to be flushed. A VMM should set the processor-based VM-execution 
control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute 
INVLPG will trap to the VMM. The VMM can then modify the active page-table hier-
archy to emulate the desired effect of the INVLPG. 

The following steps are performed. Note that these steps are performed only if the 
guest invocation of INVLPG would not fault and only if the guest software is running 
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address 
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then 
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the 
relevant active PTE using the next 10 bits of the operand address (bits 21–12) 
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all 
PTEs in the page table; if they are now all marked not-present, de-allocate the 
page table and set P = 0 in the PDE (this step may be optional).

28.3.5.4  Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a 
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and 
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance 
reasons.

28.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during 
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a 
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microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility. 
The implications of the microcode update mechanism on the design of the VMM are 
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root 
operation. Updates performed in VMX non-root operation may result 
in unpredictable system behavior.

28.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot 
process. Loading the microcode update early provides the opportunity to correct 
errata affecting the boot process but the technique generally requires a reboot of the 
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such 
image loaders do not run on every logical processor, so this method effects only one 
logical processor. Later in the VMM or OS boot process, after bringing all application 
processors on-line, the VMM or OS needs to invoke the microcode update facility for 
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update 
facility may be invoked by the VMM or the guest OS. For example, if the guest OS 
boots first and then loads the VMM, the guest OS may invoke the microcode update 
facility on all the logical processors. If a VMM boots before its guests, then the VMM 
may invoke the microcode update facility during its boot process. In both cases, the 
VMM or OS should invoke the microcode update facilities soon after performing the 
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS 
image or, the VMM or OS may manage a separate database or file of microcode 
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode 
update releases.

28.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows 
system software to activate the microcode update at anytime without requiring a 
system reboot. This scenario does not allow the microcode update to correct errata 
which affect the processor’s boot process but does allow high-availability systems to 
activate microcode updates without interrupting the availability of the system. In this 
late load scenario, either the VMM or a designated guest may load the microcode 
update. If the guest is loading the microcode update, the VMM must make sure that 
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the entire guest memory buffer (which contains the microcode update image) will not 
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the 
current set of microcode updates. These updates could be part of the VMM image or 
could be contained in a separate microcode update image database (for example: a 
database file on disk or in memory). Again, maintaining a separate microcode update 
image database has the advantage of reducing the number of required VMM or OS 
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish 
to support the microcode update requested by a guest using emulation (without 
actually loading the microcode update). To prevent microcode update loading, the 
VMM may return a microcode update signature value greater than the value of 
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older 
microcode update. The VMM may also drop the guest attempts to write to 
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode 
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could 
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of 
features that may be enhanced by a microcode update.
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CHAPTER 29
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

29.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

29.2 INTERRUPT HANDLING IN VMX OPERATION 
The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest 

exceptions through the exception-bitmap in the guest controlling VMCS. The 
exception bitmap is a 32-bit field that allows the VMM to specify processor 
behavior on specific exceptions (including traps, faults, and aborts). Setting a 
specific bit in the exception bitmap implies VM exits will be generated when the 
corresponding exception occurs. Any exceptions that are programmed not to 
cause VM exits are delivered directly to the guest through the guest IDT. The 
exception bitmap also controls execution of relevant instructions such as BOUND, 
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault 
error code is qualified through the page-fault-error-code mask and match fields 
in the VMCS. 

• Control over triple faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the 
exception bitmap, the resulting triple fault causes a VM exit. 

• Control of external interrupts. VMX allows both host and guest control of 
external interrupts through the “external-interrupt exiting” VM execution control. 
If the control is 0, external-interrupts do not cause VM exits and the interrupt 
delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is 
1, external-interrupts causes VM exits and are not masked by RFLAGS.IF. The 
VMM can identify VM exits due to external interrupts by checking the exit reason 
for an “external interrupt” (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most 
processors that support VMX operation also support Intel 64 architecture. For processors that do 
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers 
(EAX, EIP, ESP, EFLAGS, etc.).
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• Control of other events. There is a pin-based VM-execution control that 
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will 
need handling of NMI external events in the VMM and hence will specify host 
control of these events.
Some processors also support a pin-based VM-execution control called “virtual 
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks 
guest readiness for virtual NMIs. This control interacts with the “NMI-window 
exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit 
control in the controlling VMCS controls processor behavior for external interrupt 
acknowledgement. If the control is 1, the processor acknowledges the interrupt 
controller to acquire the interrupt vector upon VM exit, and stores the vector in 
the VM-exit interruption-information field. If the control is 0, the external 
interrupt is not acknowledged during VM exit. Since RFLAGS.IF is automatically 
cleared on VM exits due to external interrupts, VMM re-enabling of interrupts 
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and 
vectoring of the external interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific 
events while in VMX non-root operation through the interruptibility-state field in 
the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such 
as: (a) blocking of external interrupts for the instruction following STI; (b) 
blocking of interrupts for the instruction following a MOV-SS or POP-SS 
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM; 
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.
INIT and SIPI events are treated specially. INIT assertions are always blocked in 
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are 
always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every 
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual 
machine through the use of VM-entry interrupt-information field in VMCS. 
Injectable interruptions include external interrupts, NMI, processor exceptions, 
software generated interrupts, and software traps. If the interrupt-information 
field indicates a valid interrupt, exception or trap event upon the next VM entry; 
the processor will use the information in the field to vector a virtual interruption 
through the guest IDT after all guest state and MSRs are loaded. Delivery 
through the guest IDT emulates vectoring in non-VMX operation by doing the 
normal privilege checks and pushing appropriate entries to the guest stack 
(entries may include RFLAGS, EIP and exception error code). A VMM with host 
control of NMI and external interrupts can use the event-injection facility to 
forward virtual interruptions to various guest virtual machines.
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• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 21.6.2) causes VM exits when guest RFLAGS.IF is 1 
and no other conditions block external interrupts. A VM exit occurs at the 
beginning of any instruction at which RFLAGS.IF = 1 and on which the interrupt-
ibility state of the guest would allow delivery of an interrupt. For example: when 
the guest executes an STI instruction, RFLAGS = 1, and if at the completion of 
next instruction the interruptibility state masking due to STI is removed; a 
VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This 
feature allows a VMM to queue a virtual interrupt to the guest when the guest is 
not in an interruptible state. The VMM can set the “interrupt-window exiting” VM-
execution control for the guest and depend on a VM exit to know when the guest 
becomes interruptible (and, therefore, when it can inject a virtual interrupt). The 
VMM can detect such VM exits by checking for the basic exit reason “interrupt-
window” (value = 7). If this feature is not used, the VMM will need to poll and 
check the interruptibility state of the guest to deliver virtual interrupts. 

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor 
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control 
(Section 21.6.2) causes VM exits when there is no virtual-NMI blocking. For 
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a 
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can 
set the “NMI-window exiting” VM-execution control for the guest and depend on 
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when 
it can inject a virtual NMI). The VMM can detect such VM exits by checking for the 
basic exit reason “NMI window” (value = 8). If this feature is not used, the VMM 
will need to poll and check the interruptibility state of the guest to deliver virtual 
NMIs. 

• VM-exit information. The VM-exit information fields provide details on VM exits 
due to exceptions and interrupts. This information is provided through the exit-
qualification, VM-exit-interruption-information, instruction-length and inter-
ruption-error-code fields. Also, for VM exits that occur in the course of vectoring 
through the guest IDT, information about the event that was being vectored 
through the guest IDT is provided in the IDT-vectoring-information and IDT-
vectoring-error-code fields. These information fields allow the VMM to identify 
the exception cause and to handle it properly.

29.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest 
control of external interrupts might be suitable for partitioned usages (different CPU 
cores/threads and I/O devices partitioned to independent virtual machines), most 
VMMs built upon VMX are expected to utilize host control of external interrupts. The 
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
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With host control of external interrupts, the VMM (or the host OS in a hosted VMM 
model) manages the physical interrupt controllers in the platform and the interrupts 
generated through them. The VMM exposes software-emulated virtual interrupt 
controller devices (such as PIC and APIC) to each guest virtual machine instance.

29.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 244 (20H – FFH) are 
available for external interrupts. Vectors are used to select the appropriate entry in 
the interrupt descriptor table (IDT). VMX operation allows each guest to control its 
own IDT. Host vectors refer to vectors delivered by the platform to the processor 
during the interrupt acknowledgement cycle. Guest vectors refer to vectors 
programmed by a guest to select an entry in its guest IDT. Depending on the I/O 
resource management models supported by the VMM design, the guest vector space 
may or may not overlap with the underlying host vector space. 
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts 

delivered to guests on behalf of emulated virtual devices have no direct relation 
to the host vector numbers of interrupts from physical devices on which they are 
emulated. A guest-vector assigned for a virtual device by the guest operating 
environment is saved by the VMM and utilized when injecting virtual interrupts on 
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device 
assignment allows physical I/O devices in the host platform to be assigned 
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped 
physical devices take up equivalent space from the host vector space, and 
require the VMM to perform host-vector to guest-vector mapping for interrupts. 

Figure 29-1 illustrates the functional relationship between host external interrupts 
and guest virtual external interrupts. Device A is owned by the host and generates 
external interrupts with host vector X. The host IDT is set up such that the interrupt 
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM 
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the 
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM 
handler injects virtual interrupt with guest vector Q to the VM. The guest operating 
system programs the guest to hook appropriate guest driver’s ISR to vectors P 
and Q.
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29.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership 
of the physical interrupts and the various interrupt controllers in the platform. VMM 
control of physical interrupts may be enabled through the host-control settings of the 
“external-interrupt exiting” VM-execution control. To take ownership of the platform 
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices 
to the virtual machines and restrict guest access to the platform interrupt controllers. 

Intel 64 and IA-32 platforms can support three types of external interrupt control 
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable 

Figure 29-1.  Host External Interrupts and Guest Virtual Interrupts

Device Driver B

Device Driver C

Virtual Device C
Emulation

Device Driver A

Monitor Handler

Host IDTR

Device A Device B

Hardware

Platform  Interrupt Platform  Interrupt

Virtual Machine Monitor (VMM)

Host IDT

H
os

t

H
o

st

V
ec

to
r 

X

V
e

ct
or

 Y

Guest IDTR

Guest IDT

Guest
Vector P

VM

Virtual  Interrupt Virtual  Interrupt

Guest
Vector Q

OM19041
Vol. 3B 29-5



HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following 
sections provide information on the virtualization of each of these mechanisms.

29.3.2.1  PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible 
interrupt inputs. The 8259 controllers are programmed through initialization 
command words (ICWx) and operation command words (OCWx) accessed through 
specific I/O ports. The various interrupt line states are captured in the PIC through 
interrupt requests, interrupt service routines and interrupt mask registers. 

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the 
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set 
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits 
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access 
to these ports. 

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the 
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O 
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits 
due to I/O access and can provide an exit-qualification to identify details about the 
guest I/O operation that caused the VM exit. 

The VMM PIC virtualization needs to emulate the platform PIC functionality including 
interrupt priority, mask, request and service states, and specific guest programmed 
modes of PIC operation.

29.3.2.2  xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the 
standard PIC is intended for use on uniprocessor systems, APIC can be used in either 
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt 
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt 
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization 
involves protecting the platform’s local and I/O APICs and emulating them for the 
guest. 

29.3.2.3  Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance, 
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base 
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are 
memory-mapped, the VMM can utilize memory virtualization techniques (such as 
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page-table virtualization) to trap guest accesses to the page frame hosting the 
virtual local APIC registers. 

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector 
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR, 
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and 
the APIC-timer register. Since local APICs are designed to operate with non-specific 
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s 
virtual I/O APICs for level triggered virtual interrupts. 

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector 
table entry for local interrupts and (2) raising processor priority through the TPR 
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition 
to the guest virtual processor interruptibility state (when injecting APIC routed 
external virtual interrupts to a guest VM). 

VMX provides several features which help the VMM to virtualize the local APIC. These 
features allow many of guest TPR accesses (using CR8 only) to occur without VM 
exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical 

address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC 
page contains a TPR shadow, which is accessed by the MOV CR8 instruction. The 
TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below 
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV 
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit 
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1 
and the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8 
reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1, 
then MOV from CR8 causes a VM exit; the “use TPR shadow” VM-execution 
control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting” 
bit. If the “use TPR shadow” VM-execution control is set and the “CR8-load 
exiting” VM-execution control is clear, then MOV to CR8 writes to the “TPR 
shadow”. A VM exit will occur after this write if the value written is below the TPR 
threshold. If the “CR8-load exiting” VM-execution control is set, then MOV to CR8 
causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this 
case.

29.3.2.4  I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC 
is allocated a 4K address window within this range. The VMM may utilize physical 
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
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mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC 
operations and registers such as identification/version registers, indirect-I/O-access 
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also 
need to emulate various redirection table entry settings such as delivery mode, 
destination mode, delivery status, polarity, masking, and trigger mode programmed 
by the guest and track remote-IRR state on guest EOI writes to various virtual local 
APICs.

29.3.2.5  Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message 
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a 
system-specified message to a system specified address. The transaction address 
specifies the message destination while the transaction data specifies the interrupt 
vector, trigger mode and delivery mode. System software is expected to configure 
the message data and address during MSI device configuration, allocating one or 
more no-shared messages to MSI capable devices. Chapter 10, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data 
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional 
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express 
devices. 

Since the MSI address and data are configured through PCI configuration space, to 
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message 
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two 
different methods: 

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism 
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as 
defined in the PCI-Express Base Specification (Rev. 1.0a.). 

The CFCH/CF8H configuration access from guests can be trapped by the VMM 
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express 
MEMCFG guest configuration accesses can be trapped by VMM through physical 
memory virtualization.

29.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support 
the external interrupt virtualization requirements). 
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29.3.3.1  Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This 
is done by setting the “external-interrupt exiting” VM-execution control in the guest 
controlling-VMCS. 

29.3.3.2  Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by 
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external 
interrupt as the exit reason. 

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge 
interrupt on exit” VM-exit control), the processor acknowledges the interrupt, 
retrieves the host vector, and saves the interrupt in the VM-exit-interruption-infor-
mation field (in the VM-exit information region of the VMCS) before transitioning 
control to the VMM. 

29.3.3.3  Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by 
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 21.7.1) is enabled, the VMM can use the saved host vector 
(in the exit-interruption-information field) to switch to the appropriate interrupt 
handler. If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-
enable interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts 
through the monitor/host IDT. 

The following steps may need to be performed by the VMM to process an external 
interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device 

is owned by the VMM (or hosting OS in a hosted VMM). In this model, the 
interrupt service routine in the VMM/host driver is invoked and, upon ISR 
completion, the appropriate write sequences (TPR updates, EOI etc.) to 
respective interrupt controllers are performed as normal. If the work completion 
indicated by the driver implies virtual device activity, the VMM runs the virtual 
device emulation. Depending on the device class, physical device activity could 
imply activity by multiple virtual devices mapped over the device. For each 
affected virtual device, the VMM injects a virtual external interrupt event to 
respective guest virtual machines. The guest driver interacts with the emulated 
virtual device to process the virtual interrupt. The interrupt controller emulation 
in the VMM supports various guest accesses to the VMM’s virtual interrupt 
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a 
software proxy or it can directly map the physical device to the assigned VM. In 
both cases, servicing of the interrupt condition on the physical device is initiated 
by the driver running inside the guest VM. With host control of external 
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interrupts, interrupts from assigned physical devices cause VM exits to the VMM 
and vectoring through the host IDT to the registered VMM interrupt handler. To 
unblock delivery of other low priority platform interrupts, the VMM interrupt 
handler must mask the interrupt source (for level triggered interrupts) and issue 
the appropriate EOI write sequences. 

Once the physical interrupt source is masked and the platform EOI generated, the 
VMM can map the host vector to its corresponding guest vector to inject the virtual 
interrupt into the assigned VM. The guest software does EOI write sequences to its 
virtual interrupt controller after completing interrupt processing. For level triggered 
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the 
VMM which may in turn unmask the previously masked interrupt source.

29.3.3.4  Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM 
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility 
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set 
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual 
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep 
state allows injection of external interrupt events. 

2. If the guest virtual processor state is currently not interruptible, a VMM may 
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a 
VM exit) when the virtual processor state changes to interruptible state. 

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local 
APIC, the current value of its processor priority register specifies if guest 
software allows dispensing an external virtual interrupt with a specific priority to 
the virtual processor. If the virtual interrupt is routed through the local vector 
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry 
specifies if the interrupt is currently masked. Similarly, the virtual interrupt 
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest 
state to accept specific external interrupts. The VMM needs to check both the 
virtual processor and interrupt controller states to verify its guest interruptibility 
state. If the guest is currently interruptible, the VMM can inject the virtual 
interrupt. If the current guest state does not allow injecting a virtual interrupt, 
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event 
injection to deliver various virtual events (such as external interrupts, 
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows 
injection of one event, depending on the VMM event priority policies, the VMM 
may need to queue the external virtual interrupt if a higher priority event is to be 
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delivered on the next VM entry. Since the VMM has masked this particular 
interrupt source (if it was level triggered) and done EOI to the platform interrupt 
controller, other platform interrupts can be serviced while this virtual interrupt 
event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have 
passed, before generating the virtual interrupt to the guest, the VMM updates the 
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect 
assertion of the virtual interrupt. This involves updating the various interrupt 
capture registers, and priority registers as done by the respective hardware 
interrupt controllers. Updating the virtual interrupt controller state is required for 
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a 
guest VM, the VMM sets up the VM-entry interruption-information field in the 
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry, 
the processor will use this vector to access the gate in guest’s IDT and the value 
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the 
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the 
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will 
load state from the host-state area of the working VMCS as if a VM exit had 
occurred (see Section 23.7).

29.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions, 
including triple faults and machine check exceptions.

29.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the 
controlling VMCS before the VM exit. This state is checked for consistency while being 
loaded. Because the host-state is checked on VM entry, these checks will generally 
succeed. Failure is possible only if host software is incorrect or if VMCS data in the 
VMCS region in memory has been written by guest software (or by I/O DMA) since 
the last VM entry. VM exits may fail for the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding 

VMCS region) in such a way that the implementation cannot complete the VM 
exit.

• There was a failure on loading host MSRs.
• A machine check occurred.
Vol. 3B 29-11



HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If one of these problems occurs on a VM exit, a VMX abort results. 

29.4.2 Machine Check Considerations
The following sequence determine how machine check exceptions are handled during 
VMXON, VMXOFF, VM entries, and VM exits:
• VMXOFF and VMXON: 

If a machine check occurs during VMXOFF or VMXON and CR4.MCE = 1, a 
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor 
goes to shutdown state.

• VM entry: 
If a machine check occurs during VM entry, one of the following two treatments 
must occur:

a. Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception 
(#MC) through the host IDT occurs. If CR4.MCE = 0, the processor goes to 
shutdown state.

b. Load state from the host-state area of the working VMCS as if a VM exit had 
occurred (see Section 23.7). The basic exit reason will be “VM-entry failure 
due to machine check.” 

If the machine check occurs after any guest state has been loaded, option b 
above must be used. If the machine check occurs while checking host state and 
VMX controls (or while reporting a failure due to such checks), option a should be 
preferred; however, an implementation may use b, since software will not be able 
to tell whether any guest state has been loaded.

• VM exit: 
If a machine check occurs during VM exit, one of the following two treatments 
must occur:

— Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception 
(#MC) through the guest IDT. If CR4.MCE = 0, the processor goes to 
shutdown state.

— Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will 
result; it will block events as done normally in VMX abort. The VMX abort 
indicator will show a machine check has induced the abort operation.

If a machine check is induced by an action in VMX non-root operation before any 
determination is made that the inducing action may cause a VM exit, that 
machine check should be considered as happening during guest execution in VMX 
non-root operation. This is the case even if the part of the action that caused the 
machine check was VMX-specific (for example: the processor’s consulting an I/O 
bitmap). A machine-check exception will occur. If bit 12H of the exception bitmap 
is cleared to 0, a machine-check exception could be delivered to the guest 
through gate 12H of its IDT; if the bit is set to 1, the machine-check exception will 
cause a VM exit.
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NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should 
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before 
resuming a guest that caused a VM exit due to a machine-check 
exception.

29.4.3 MCA Error Handling Guidelines for VMM
Section 29.4.2 covers general requirements for VMMs to handle machine-check 
exceptions, when normal operation of the guest machine and/or the VMM is no 
longer possible. enhancements of machine check architecture in newer processors 
may support software recovery of uncorrected MC errors (UCR) signaled through 
either machine-check exceptions or corrected machine-check interrupt (CMCI). 
Section 15.5 and Section 15.6 describes details of these more recent enhancements 
of machine check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recom-
mendations for OS error handling described in Section 15.3, Section 15.6, Section 
15.9, and Section 15.10. This section describes additional guidelines for hosted and 
native hypervisor-based VMM implementations to support corrected MC errors and 
recoverable uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing 
standard host OS, the host OS controls platform hardware through the host OS 
services such as the standard OS device drivers. In hosted VMMs. MCA errors will be 
handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only 
a limited set of platform services for guest VMs. Most platform services may instead 
be provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be 
delivered directly to the VMM MCA handler (when the error is signaled while in the 
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA inter-
cept handler. There are two general approaches the hypervisor can use to handle the 
MCA error: either within the hypervisor itself or by forwarding the error to the control 
OS. 

29.4.3.1  VMM Error Handling Strategies
Broadly speaking, there are two strategies that VMMs may take for error handling: 
• Basic error handling: in this approach the guest VM is treated as any other thread 

of execution. If the error recovery action does not support restarting the thread 
after handling the error, the guest VM should be terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and 
hardware. This enables the VMM to intercept MCA events and inject an MCA into 
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the guest VM. The guest VM then has the opportunity to attempt error recovery 
actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native 
VMMs are discussed below.

29.4.3.2  Basic VMM MCA error recovery handling
The simplest approach is for the VMM to treat the guest VM as any other thread of 
execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will 

cause an MCE abort and may be handled by the MCA error handler following the 
recovery actions and guidelines described in Section 15.9, and Section 15.10. 
This includes logging the error and taking appropriate recovery actions when 
necessary. The VMM must not resume the interrupted thread of execution or 
another VM until it has taken the appropriate recovery action or, in the case of 
fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be 
intercepted by the VMM. The MCA intercept handler may follow the error handling 
guidelines listed in Section 15.9 and Section 15.10 for SRAO and SRAR errors. 
For SRAR errors, terminating the thread of execution will involve terminating the 
affected guest VM. For fatal errors the MCA handler should log the error and reset 
the system -- the VMM should not resume execution of the interrupted VM.

29.4.3.3  Implementation Considerations for the Basic Model
For hosted VMMs, the host OS MCA error handling code will perform error analysis 
and initiate the appropriate recovery actions. For the basic model this flow does not 
change when terminating a guest VM although the specific actions needed to termi-
nate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the 
VMM MCA handler (when the error is signaled while in the VMM context) or cause a 
VM exit from a guest VM or be delivered to the MCA intercept handler. There are two 
general approaches the hypervisor can use to handle the MCA error: either by 
forwarding the error to the control OS or within the hypervisor itself. These 
approaches are described in the following paragraphs.

The hypervisor may forward the error to the control OS for handling errors. This 
approach simplifies the hypervisor error handling since it relies on the control OS to 
implement the basic error handling model.  The control OS error handling code will be 
similar to the error handling code in the hosted VMM. Errors can be forwarded to the 
control OS via an OS callback or by injecting an MCE event into the control OS. 
Injecting an MCE will cause the control OS MCA error handler to be invoked. The 
control OS is responsible for terminating the affected guest VM, if necessary, which 
may require cooperation from the hypervisor.
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Alternatively, the error may be handled completely in the hypervisor. The hypervisor 
error handler is enhanced to implement the basic error handling model and the 
hypervisor error handler has the capability to fully analyze the error information and 
take recovery actions based on the guidelines. In this case error handling steps in the 
hypervisor are similar to those for the hosted VMM described above (where the 
hypervisor replaces the host OS actions). The hypervisor is responsible for termi-
nating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and 
reset the system. The VMM error handler must ensure that guest VMs are not 
resumed after a fatal error is detected to ensure error containment is maintained.

29.4.3.4  MCA Virtualization
A more sophisticated approach for handling errors is to virtualize the MCA. This 
involves virtualizing the MCA hardware and intercepting the MCA event in the VMM 
when a guest VM is interrupted by an MCA. After analyzing the error, the VMM error 
handler may then decide to inject an MCE abort into the guest VM for attempted 
guest VM error recovery. This would enable the guest OS the opportunity to take 
recovery actions specific to that guest. 

For MCA virtualization, the VMM must provide the guest physical address for memory 
errors instead of the system physical address when reporting the errors to the guest 
VM. To compute the guest physical address, the VMM needs to maintain a reverse 
mapping of system physical page addresses to guest physical page addresses. 

When the MCE is injected into the guest VM, the guest OS MCA handler would be 
invoked. The guest OS implements the MCA handling guidelines and it could poten-
tially terminate the interrupted thread of execution within the guest instead of termi-
nating the VM. The guest OS may also disable use of the affected page by the guest. 
When disabling the page the VMM error handler may handle the case where a page is 
shared by the VMM and a guest or by two guests. In these cases the page use must 
be disabled in both contexts to ensure no subsequent consumption errors are gener-
ated.

29.4.3.5  Implementation Considerations for the MCA Virtualization Model
MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.  
The error handling flow is similar to the flow described in the basic handling case. The 
major difference is that the recovery action includes injecting the MCE abort into the 
guest VM to enable recovery by the guest OS when the MCA interrupts the execution 
of a guest VM.

29.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting 
certain guest operating system using the multi-processor (MP) start-up algorithm. A 
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guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In 
order to trap the SIPIs, the VMM must start the logic processor which is the target of 
the SIPIs in wait-for-SIPI mode.
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CHAPTER 30
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

30.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of 
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler 
performance. 

In Intel P6 family of processors, the performance monitoring mechanism was 
enhanced to permit a wider selection of events to be monitored and to allow greater 
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance 
events.

The performance monitoring mechanisms and performance events defined for the 
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They 
are all model specific (not compatible among processor families). Intel Core Solo and 
Intel Core Duo processors support a set of architectural performance events and a 
set of non-architectural performance events. Processors based on Intel Core 
microarchitecture and Intel® Atom™ microarchitecture support enhanced architec-
tural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of 
performance monitoring capabilities. The first class supports events for monitoring 
performance using counting or sampling usage. These events are non-architectural 
and vary from one processor model to another. They are similar to those available in 
Pentium M processors. These non-architectural performance monitoring events are 
specific to the microarchitecture and may change with enhancements. They are 
discussed in Section 30.3, “Performance Monitoring (Intel® Core™ Solo and Intel® 

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can 
not be enumerated using CPUID; and they are listed in Appendix A, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling 
usages, with a smaller set of available events. The visible behavior of architectural 
performance events is consistent across processor implementations. Availability of 
architectural performance monitoring capabilities is enumerated using the 
CPUID.0AH. These events are discussed in Section 30.2.

See also:
Vol. 3B 30-1



PERFORMANCE MONITORING
— Section 30.2, “Architectural Performance Monitoring”

— Section 30.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™ 

Duo Processors)”

— Section 30.4, “Performance Monitoring (Processors Based on Intel® Core™ 
Microarchitecture)”

— Section 30.5, “Performance Monitoring (Processors Based on Intel® Atom™ 
Microarchitecture)”

— Section 30.6, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Nehalem”

— Section 30.7, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Westmere”

— Section 30.8, “Performance Monitoring for Processors Based on Intel® 

Microarchitecture Code Name Sandy Bridge”

— Section 30.9, “Performance Monitoring (Processors Based on Intel NetBurst® 
Microarchitecture)”

— Section 30.10, “Performance Monitoring and Intel Hyper-Threading 
Technology in Processors Based on Intel NetBurst® Microarchitecture”

— Section 30.13, “Performance Monitoring and Dual-Core Technology”

— Section 30.14, “Performance Monitoring on 64-bit Intel Xeon Processor MP 
with Up to 8-MByte L3 Cache”

— Section 30.16, “Performance Monitoring (P6 Family Processor)”

— Section 30.17, “Performance Monitoring (Pentium Processors)”

30.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently 
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced 
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting 
facilities for events.

Architectural performance monitoring does allow for enhancement across processor 
implementations. The CPUID.0AH leaf provides version ID for each enhancement. 
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at 
a minimum, the base level functionality of architectural performance monitoring. 
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core 
microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.
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Intel Atom processor family supports the base level functionality, enhanced architec-
tural performance monitoring identified by version ID of 2 and version ID of 3 
(including two general-purpose performance counters, IA32_PMC0, IA32_PMC1). 
Intel Core i7 processor family supports the base level functionality, enhanced archi-
tectural performance monitoring identified by version ID of 2 and version ID of 3, 
(including four general-purpose performance counters, IA32_PMC0-IA32_PMC3). 

30.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming 
performance event select registers. There are a finite number of performance event 
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring 
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the 
following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-

tures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx 

MSRs. Configuration facilities and counters are not shared between logical 
processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating 
the following information:
• Number of performance monitoring counters available in a logical processor 

(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx 
• Number of architectural performance monitoring events supported in a logical 

processor

Software can use CPUID to discover architectural performance monitoring availability 
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier 
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see 
Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A). If the version identifier is greater than 
zero, architectural performance monitoring capability is supported. Software queries 
the CPUID.0AH for the version identifier first; it then analyzes the value returned in 
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can 
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per 
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core, the bit-width of PMC, and the number of architectural performance monitoring 
events available.

30.2.1.1  Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the 
following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR 

address space; the number of MSRs per logical processor is reported using 
CPUID.0AH:EAX[15:8].

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block 
of MSR address space. Each performance event select register is paired with a 
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the 
CPUID.0AH:EAX[23:16]. This the number of valid bits for read operation. On 
write operations, the lower-order 32 bits of the MSR may be written with any 
value, and the high-order bits are sign-extended from the value of bit 31. 

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 30-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields 
are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to 

detect microarchitectural conditions (see Table 30-1, for a list of architectural 
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using 
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.
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• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the 
condition that the selected event logic unit detects. Valid UMASK values for each 
event logic unit are specific to the unit. For each architectural performance event, 
its corresponding UMASK value defines a specific microarchitectural condition. 
A pre-defined microarchitectural condition associated with an architectural event 
may not be applicable to a given processor. The processor then reports only a 
subset of pre-defined architectural events. Pre-defined architectural events are 
listed in Table 30-1; support for pre-defined architectural events is enumerated 
using CPUID.0AH:EBX. Architectural performance events available in the initial 
implementation are listed in Table A-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural 
condition is counted only when the logical processor is operating at privilege 
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected 
microarchitectural condition is counted only when the logical processor is 
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the 
selected microarchitectural condition. The logical processor counts the number of 
deasserted to asserted transitions for any condition that can be expressed by the 
other fields. The mechanism does not permit back-to-back assertions to be 
distinguished. 
This mechanism allows software to measure not only the fraction of time spent in 
a particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

Figure 30-1.  Layout of IA32_PERFEVTSELx MSRs
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• PC (pin control) flag (bit 19) — When set, the logical processor toggles the 
PMi pins and increments the counter when performance-monitoring events 
occur; when clear, the processor toggles the PMi pins when the counter 
overflows. The toggling of a pin is defined as assertion of the pin for a single bus 
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is 
enabled in the corresponding performance-monitoring counter; when clear, the 
corresponding counter is disabled. The event logic unit for a UMASK must be 
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to 
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not 
zero, a logical processor compares this mask to the events count of the detected 
microarchitectural condition during a single cycle. If the event count is greater 
than or equal to this mask, the counter is incremented by one. Otherwise the 
counter is not incremented. 
This mask is intended for software to characterize microarchitectural conditions 
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0, 
then the counter is incremented each cycle by the event count associated with 
multiple occurrences.

30.2.2 Additional Architectural Performance Monitoring Extensions
The enhanced features provided by architectural performance monitoring version 2 
include the following:
• Fixed-function performance counter register and associated control 

register — Three of the architectural performance events are counted using 
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each 
of the fixed-function PMC can count only one architectural performance event. 
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR 
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring 
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in 
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for 
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming 
performance events are enabling/disabling event counting and checking the 
status of counter overflows. Architectural performance event version 2 provides 
three architectural MSRs:
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— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting 
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any 
general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs or general-purpose 
PMCs via a single WRMSR.

30.2.2.1  Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be 
queried from CPUID leaf 0AH by examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function 

performance counters available per core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function 

performance counters. Bits beyond the width of the fixed-function counter are 
reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture 
may report in CPUID.0AH:EDX of support for version 2 but indicating 
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit 
field controls the operation of a fixed-function performance counter. Figure 30-2 
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are 
currently defined within each control. The definitions of the bit fields are:

Figure 30-2.  Layout of IA32_FIXED_CTR_CTRL MSR
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• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring 0. When bit 1 is set, 
performance counting is enabled in the corresponding fixed-function 
performance counter to increment while the target condition associated with the 
architecture performance event occurred at ring greater than 0. Writing 0 to both 
bits stops the performance counter. Writing a value of 11B enables the counter to 
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical 
processor generates an exception through its local APIC on overflow condition of 
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of 
each performance counter. Figure 30-3 shows the layout of 
IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed 
with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.

The fixed-function performance counters supported by architectural performance 
version 2 is listed in Table 30-8, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query 
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for 
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also 
provides a sticky bit to indicate changes to the state of performance monitoring hard-

Figure 30-3.  Layout of IA32_PERF_GLOBAL_CTRL MSR
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ware. Figure 30-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in 
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the 
associated counter.

When a performance counter is configured for PEBS, overflow condition in the 
counter generates a performance-monitoring interrupt signaling a PEBS event. On a 
PEBS event, the processor stores data records into the buffer area (see Section 
18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in 
IA32_PERF_GLOBAL_STATUS. 

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of 
any general-purpose or fixed-function counters via a single WRMSR. Software should 
clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 30-5.

Figure 30-4.  Layout of IA32_PERF_GLOBAL_STATUS MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
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30.2.2.2  Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are 
also supported by architectural performance monitoring version 3. Additionally 
version 3 provides enhancements to support a processor core comprising of more 
than one logical processor, i.e. a processor core supporting Intel Hyper-Threading 
Technology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is 
reported in CPUID.0AH:EAX[15:8], the bit width of general-purpose 
performance counters (see also Section 30.2.1.1) is reported in 
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring 
events supported (see Section 30.2.3)

— The number of fixed-function performance counters, the bit width of fixed-
function performance counters (see also Section 30.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address 
0C1H) is associated with a corresponding IA32_PERFEVTSELx MSR (starting at 
MSR address 186H). The Bit field layout of IA32_PERFEVTSELx MSRs is defined 
architecturally in Figure 30-6.

Figure 30-5.  Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR
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IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
30-10 Vol. 3B



PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural 
performance monitoring version 3. When set to 1, it enables counting the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors 
sharing a processor core. When bit 21 is 0, the counter only increments the 
associated event conditions (including matching the thread’s CPL with the 
OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which 
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR 
address 309H) is configured by a 4-bit control block in the 
IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of 
IA32_PERF_FIXED_CTR_CTRL MSR is shown. 

Figure 30-6.  Layout of IA32_PERFEVTSELx MSRs Supporting Architectural 
Performance Monitoring Version 3
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Each control block for a fixed-function performance counter provides a 
AnyThread (bit position 2 + 4*N, N= 0, 1, etc.) bit. When set to 1, it enables 
counting the associated event conditions (including matching the thread’s CPL 
with the ENABLE setting of the corresponding control block of 
IA32_PERF_FIXED_CTR_CTRL) occurring across all logical processors sharing a 
processor core. When an AnyThread bit is 0 in IA32_PERF_FIXED_CTR_CTRL, 
the corresponding fixed counter only increments the associated event conditions 
occurring in the logical processor which programmed the 
IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, 
IA32_PERF_GLOBAL_OVF_CTRL MSRs provide single-bit controls/status for each 
general-purpose and fixed-function performance counter. Figure 30-8 shows the 
layout of these MSR for N general-purpose performance counters (where N is 
reported by CPUID.0AH:EAX[15:8] ) and three fixed-function counters.
Note: Intel Atom processor family supports two general-purpose performance 
monitoring counters (i.e. N =2 in Figure 30-8), other processor families in Intel 
64 architecture may support a different value of N in Figure 30-8. The number N 
is reported by CPUID.0AH:EAX[15:8]. Intel Core i7 processor family supports 
four general-purpose performance monitoring counters (i.e. N =4 in Figure 30-8)

Figure 30-7.  Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural 
Performance Monitoring Version 3

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
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30.2.2.3  Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via 
WRMSR instruction. However, the value written into IA32_PMCx by WRMSR is the 
signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance 
counters enumerated by CPUID.0AH:EAX[15:8] will set 

Figure 30-8.  Layout of Global Performance Monitoring Control MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Enable Controls IA32_PERF_GLOBAL_CTRL

Global Overflow Status IA32_PERF_GLOBAL_STATUS
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IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..
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IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See 
Figure 30-39. 

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompa-
nied by a corresponding alias address starting at 4C1H for IA32_A_PMC0. 

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to 
IA32_A_PMCi will cause IA32_PMCi to be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

30.2.3 Pre-defined Architectural Performance Events
Table 30-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all 
the predefined architectural performance events (Table 30-1). The non-zero bits in 
CPUID.0AH:EBX indicate the events that are not available. 

The behavior of each architectural performance event is expected to be consistent on 
all processors that support that event. Minor variations between microarchitectures 
are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H 

This event counts core clock cycles when the clock signal on a specific core is 
running (not halted). The counter does not advance in the following conditions: 

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted 

— being throttled by TM1

Table 30-1.  UMask and Event Select Encodings for Pre-Defined 
Architectural Performance Events

Bit Position 
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
30-14 Vol. 3B



PERFORMANCE MONITORING
— during the frequency switching phase of a performance state transition (see 
Chapter 14, “Power and Thermal Management”)

The performance counter for this event counts across performance state 
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H 
This event counts the number of instructions at retirement. For instructions that 
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction 
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.
This event does not increment under VM-exit conditions. Counters continue 
counting during hardware interrupts, traps, and inside interrupt handlers. 

• UnHalted Reference Cycles — Event select 3CH, Umask 01H 
This event counts reference clock cycles while the clock signal on the core is 
running. The reference clock operates at a fixed frequency, irrespective of core 
frequency changes due to performance state transitions. Processors may 
implement this behavior differently. See Table A-10 and Table A-12 in Appendix 
A, “Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH 
This event counts requests originating from the core that reference a cache line 
in the last level cache. The event count includes speculation and cache line fills 
due to the first-level cache hardware prefetcher, but may exclude cache line fills 
due to other hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache. 
The event count may include speculation and cache line fills due to the first-level 
cache hardware prefetcher, but may exclude cache line fills due to other 
hardware-prefetchers. 
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended. 

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of 
the last micro-op of a branch instruction. 

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the 
retirement of the last micro-op of a branch instruction in the architectural path of 
execution and experienced misprediction in the branch prediction hardware. 
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Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended. 

NOTE
Programming decisions or software precisians on functionality should 
not be based on the event values or dependent on the existence of 
performance monitoring events.

30.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO 
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance 
monitoring events are programmed using the same facilities (see Figure 30-1) used 
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some 
microarchitectural conditions detectable by a Umask value may have specificity 
related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading 
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example, 
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core. 
This data is shown in Table 30-2. The two-bit encoding for core-specificity is only 
supported for a subset of Umask values (see Appendix A, “Performance Monitoring 
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary 
of physical processors. Some bus events belong to this category, providing specificity 
between the originating physical processor (a bus agent) versus other agents on the 
bus. Sub-field encoding for agent specificity is shown in Table 30-3.

Table 30-2.  Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
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Some microarchitectural conditions are detectable only from the originating core. In 
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or 
excludes the action of hardware prefetches. A two-bit encoding may be supported to 
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus 
events. The sub-field encoding for hardware prefetch qualification is shown in 
Table 30-4.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously 
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent 
states. The sub-field definition for cache coherency state qualification is shown in 
Table 30-5. If no bits in the MESI qualification sub-field are set for an event that 
requires setting MESI qualification bits, the event count will not increment.

Table 30-3.  Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 30-4.  HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only 

00B Exclude hardware prefetch

Table 30-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state
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30.4 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel 
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using 
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs 
for detailed event configurations), or fixed-function performance counters (see 
Section 30.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in 
Figure 30-1. Starting with Intel Core 2 processor T 7700, fixed-function performance 
counters and associated counter control and status MSR becomes part of architec-
tural performance monitoring version 2 facilities (see also Section 30.2.2). 

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask) 
bits are listed in Appendix A. The UMASK field may contain sub-fields identical to 
those listed in Table 30-2, Table 30-3, Table 30-4, and Table 30-5. One or more of 
these sub-fields may apply to specific events on an event-by-event basis. Details are 
listed in Table A-10 in Appendix A, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field 
are defined in Table 30-6.

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 30-6.  Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved 

Bit 9 HIT response

Bit 8 CLEAN response

Table 30-5.  MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
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There are also non-architectural events that support qualification of different types of 
snoop operation. The corresponding bit field for snoop type qualification are listed in 
Table 30-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification 
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior 
to enabling the counters. The content of general-purpose counters 
and fixed-function counters are undefined after INIT or RESET.

30.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be 
written as zeros. Model-specific fixed-function performance counters on processors 
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance 
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 30-8. 

Programming the fixed-function performance counters does not involve any of the 

Table 30-7.  Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 30-8.  Association of Fixed-Function Performance Counters with 
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
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IA32_PERFEVTSELx MSRs, and does not require specifying any event masks. 
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields; 
each 4-bit field controls the operation of a fixed-function performance counter (PMC). 
See Figures 30-9. Two sub-fields are defined for each control. See Figure 30-9; bit 
fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set, 

performance counting is enabled in the corresponding fixed-function 
performance counter to increment when the target condition associated with the 
architecture performance event occurs at ring 0. 
When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated 
with the architecture performance event occurs at ring greater than 0. 
Writing 0 to both bits stops the performance counter. Writing 11B causes the 
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor 
generates an exception through its local APIC on overflow condition of the 
respective fixed-function counter.

30.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance 
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of 
counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any 

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Figure 30-9.  Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels
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• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow 
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) 
or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in 
each performance counter (see Figure 30-10). Each enable bit in 
MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the 
respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop 
the counting of respective counters. Counting is enabled if the AND’ed results is true; 
counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 30-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow 
condition has occurred in the associated counter. 

Figure 30-10.  Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
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When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
16.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 30-12). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or 

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 30-11.  Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 30-12.  Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR
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30.4.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature 
of out-of-order execution. A subset of non-architectural performance events on 
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst® microarchitecture) that exclude 
contributions that arise from speculative execution. The at-retirement events avail-
able in processors based on Intel Core microarchitecture does not require special 
MSR programming control (see Section 30.9.6, “At-Retirement Counting”), but is 
limited to IA32_PMC0. See Table 30-9 for a list of events available to processors 
based on Intel Core microarchitecture.

30.4.4 Precise Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based 
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst 
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to 
store a set of architectural state information for the processor. The information 
provides architectural state of the instruction executed after the instruction that 
caused the event (See Section 30.4.4.2). 

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is 
processed before BTS are processed. The PMI request is held until the processor 
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise 
sampling are listed in Table 30-10. The procedure for detecting availability of PEBS is 
the same as described in Section 30.9.7.1.

Table 30-9.  At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 30-10.  PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H
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30.4.4.1  Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using 
IA32_PMC0 only. Use the following procedure to set up the processor and 
IA32_PMC0 counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, precise event 
interrupt threshold, and precise event counter reset fields of the DS buffer 
management area. In processors based on Intel Core microarchitecture, PEBS 
records consist of 64-bit address entries. See Figure 16-8 to set up the precise 
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE 
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an 
event listed in Table 30-10.

30.4.4.2  PEBS Record Format
The PEBS record format may be extended across different processor implementa-
tions. The IA32_PERF_CAPABILITES MSR defines a mechanism for software to 
handle the evolution of PEBS record format in processors that support architectural 
performance monitoring with version id equals 2 or higher. The bit fields of 
IA32_PERF_CAPABILITES are defined in Table B-2 of Appendix B, “Model-Specific 
Registers (MSRs)”. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled 

counter has overflowed, PEBS record is recorded for the next PEBS-able event at 
the completion of the sampled instruction causing the PEBS event. When clear, 
PEBS recording is fault-like. The PEBS record is recorded before the sampled 
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and 
state information according to the encoded value of the PEBSRecordFormat field. 
On processors based on Intel Core microarchitecture, this bit is always 1

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 30-10.  PEBS Performance Events for Intel Core Microarchitecture (Contd.)
Event Name UMask Event Select
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• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS 
registers are saved in each PEBS record (seeSection 30.9.7). 

30.4.4.3  Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 16.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when 
writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which 
counter(s) caused of overflow condition. The service routine should clear overflow 
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL. 

A comparison of the sequence of requirements to program PEBS for processors based 
on Intel Core and Intel NetBurst microarchitectures is listed in Table 30-11.

Table 30-11.  Requirements to Program PEBS

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture

Verify PEBS support of 
processor/OS 

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in 
disabled

On initial set up or changing event 
configurations, write 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F) with 0. 

On subsequent entries:

• Clear all counters if “Counter 
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is 
enabled, counters are 
automatically disabled.

Counters MUST be stopped before 
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Optional

Check overflow 
conditions.

Check 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) handle any overflow 
conditions.

Check OVF flag of each CCCR for 
overflow condition
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30.4.4.4  Re-configuring PEBS Facilities
When software needs to reconfigure PEBS facilities, it should allow a quiescent period 
between stopping the prior event counting and setting up a new PEBS event. The 
quiescent period is to allow any latent residual PEBS records to complete its capture 
at their previously specified buffer address (provided by IA32_DS_AREA).

Clear overflow status. Clear 
MSR_PERF_GLOBAL_STATUS MSR 
(0x 38E) using 
IA32_PERF_GLOBAL_OVF_CTRL 
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“ 
values.

Configure the counter(s) with the sample after value.

Configure specific counter 
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter 

PMI/INT bit, bit 20 - 0.
• Event programmed must be 

PEBS capable. 

• Set appropriate OVF_PMI bits - 
1.

• Only CCCR for 
MSR_IQ_COUNTER4 support 
PEBS.

Allocate buffer for PEBS 
states.

Allocate a buffer in memory for the precise information.

Program the 
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer 
management records.

Configure the PEBS buffer management records in the DS buffer 
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in 
IA32_PEBS_ENABLE MSR 
(0x3F1).

Configure MSR_PEBS_ENABLE, 
MSR_PEBS_MATRIX_VERT and 
MSR_PEBS_MATRIX_HORZ as 
needed.

Enable counters. Set Enable bits in 
MSR_PERF_GLOBAL_CTRL MSR 
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 30-11.  Requirements to Program PEBS (Contd.)

For Processors based on Intel 
Core microarchitecture

For Processors based on Intel 
NetBurst microarchitecture
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30.5 PERFORMANCE MONITORING (PROCESSORS BASED 
ON INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capa-
bility with version ID 3 (see Section 30.2.2.2) and a host of non-architectural moni-
toring capabilities. The initial implementation of Intel Atom processor family provides 
two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2). 

Non-architectural performance monitoring in Intel Atom processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
A-11.

Architectural and non-architectural performance monitoring events in Intel Atom 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 30-6 and 
described in Section 30.2.1.1 and Section 30.2.2.2. 

Valid event mask (Umask) bits are listed in Appendix A. The UMASK field may contain 
sub-fields that provide the same qualifying actions like those listed in Table 30-2, 
Table 30-3, Table 30-4, and Table 30-5. One or more of these sub-fields may apply to 
specific events on an event-by-event basis. Details are listed in Table A-11 in 
Appendix A, “Performance-Monitoring Events.” Precise Event Based Monitoring is 
supported using IA32_PMC0 (see also Section 16.4.9, “BTS and DS Save Area”).

30.6 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capa-
bility with version ID 3 (see Section 30.2.2.2) and a host of non-architectural moni-
toring capabilities. The Intel Core i7 processor family is based on Intel® 
microarchitecture code name Nehalem, and provides four general-purpose perfor-
mance counters (IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three 
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1, 
IA32_FIXED_CTR2) in the processor core. 

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code 
name Nehalem, so the performance monitoring facilities described in this section generally also 
apply.
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Non-architectural performance monitoring in Intel Core i7 processor family uses the 
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance 
counter. The list of non-architectural performance monitoring events is listed in Table 
A-11. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many 

events that are similar to performance monitoring events available to processor 
based on Intel Core microarchitecture. Additionally, there are several enhance-
ments in the performance monitoring capability for detecting microarchitectural 
conditions in the processor core or in the interaction of the processor core to the 
off-core sub-systems in the physical processor package. The off-core sub-
systems in the physical processor package is loosely referred to as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared 
by more than one processor cores in the physical processor package. It provides 
additional performance monitoring facility outside of IA32_PMCx and 
performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7 
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx 
MSR. 

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 30-6 and 
described in Section 30.2.1.1 and Section 30.2.2.2. 

Figure 30-13.  IA32_PERF_GLOBAL_STATUS MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
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30.6.1 Enhancements of Performance Monitoring in the Processor 
Core

The notable enhancements in the monitoring of performance events in the processor 
core include:
• Four general purpose performance counters, IA32_PMCx, associated counter 

configuration MSRs, IA32_PERFEVTSELx, and global counter control MSR 
supporting simplified control of four counters. Each of the four performance 
counter can support precise event based sampling (PEBS) and thread-qualifi-
cation of architectural and non-architectural performance events. Width of 
IA32_PMCx supported by hardware has been increased. The width of counter 
reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel microar-
chitecture code name Nehalem has been enhanced to include new data format to 
capture additional information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be 
sampled using load-latency facility in processors based on Intel microarchi-
tecture code name Nehalem. The facility can measure average latency of load 
micro-operations from dispatch to when data is globally observable (GO). This 
facility is used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows 
software to count certain transaction responses between the processor core to 
sub-systems outside the processor core (uncore). Counting off-core response 
requires additional event qualification configuration facility in conjunction with 
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in 
conjunction with specific event codes that must be specified with 
IA32_PERFEVTSELx.

30.6.1.1  Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if 
the performance event supports PEBS. Software uses IA32_MISC_ENABLE[7] and 
IA32_MISC_ENABLE[12] to detect whether the performance monitoring facility and 
PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE 
provides 4 bits that software must use to enable which IA32_PMCx overflow condi-
tion will cause the PEBS record to be captured. 

Additionally, the PEBS record is expanded to allow latency information to be 
captured. The MSR IA32_PEBS_ENABLE provides 4 additional bits that software must 
use to enable latency data recording in the PEBS record upon the respective 
IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors 
based on Intel microarchitecture code name Nehalem is shown in Figure 30-14.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the 
processor will write machine state information to a memory buffer specified by soft-
ware as detailed below. When the counter IA32_PMCx overflows from maximum 
count to zero, the PEBS hardware is armed. 
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Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and 
causes a PEBS record to be written. The format of the PEBS record is indicated by the 
bit field IA32_PERF_CAPABILITIES[11:8] (see Figure 30-39).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see 
Figure 30-39). The return instruction pointer (RIP) reported in the PEBS record will 
point to the instruction after (+1) the instruction that causes the PEBS assist. The 
machine state reported in the PEBS record is the machine state after the instruction 
that causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of 
EAX in the PEBS record will show the value read from memory, not the target address 
of the read operation.

The PEBS record format is shown in Table 30-12, and each field in the PEBS record is 
64 bits long. The PEBS record format, along with debug/store area storage format, 
does not change regardless of IA-32e mode is active or not. 
CPUID.01H:ECX.DTES64[bit 2] reports the processor’s support for 64-bit 
debug/store area storage format is invariant to IA-32e mode.

Figure 30-14.  Layout of IA32_PEBS_ENABLE MSR 

Table 30-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
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In IA-32e mode, the full 64-bit value is written to the register. If the processor is not 
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.  
Registers not defined when the processor is not in IA-32e mode are written to zero. 

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this 
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8] 
encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the 
IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This value is 
written so software can determine which counters overflowed when this PEBS record 
was written. Note that this field indicates the overflow status for all counters, regard-
less of whether they were programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support 
PEBS. The subset of precise events are listed in Table 30-10. In addition to using 
IA32_PERFEVTSELx to specify event unit/mask settings and setting the EN_PMCx bit 
in the IA32_PEBS_ENABLE register for the respective counter, the software must also 
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support 
capturing PEBS records for precise events. 

NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure 
must be programmed into the IA32_DS_AREA register. The layout of the 
DS_BUFFER_MANAGEMENT_AREA is shown in Figure 30-15.

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 30-12.  PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
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• PEBS Buffer Base: This field is programmed with the linear address of the first 
byte of the PEBS buffer allocated by software. The processor reads this field to 
determine the base address of the PEBS buffer. Software should allocate this 
memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS 
Buffer Base field, or the beginning linear address of the PEBS buffer. The 
processor reads this field to determine the location of the next PEBS record to 
write to. After a PEBS record has been written, the processor also updates this 
field with the address of the next PEBS record to be written. The figure above 
illustrates the state of PEBS Index after the first PEBS record is written.

Figure 30-15.  PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute 

BTS Interrupt 

PEBS Absolute

PEBS Interrupt

PEBS 

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS 
Counter1 Reset

PEBS 
Counter2 Reset

PEBS 
Counter3 Reset
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• PEBS Absolute Maximum: This field represents the absolute address of the 
maximum length of the allocated PEBS buffer plus the starting address of the 
PEBS buffer. The processor will not write any PEBS record beyond the end of 
PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling 
is generated when PEBS buffer is full. Software must reset the PEBS Index field 
to the beginning of the PEBS buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a 
performance interrupt and notify software that the PEBS buffer is nearly full. This 
field is programmed with the linear address of the first byte of the PEBS record 
within the PEBS buffer that represents the threshold record. After the processor 
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the 
threshold value of this field, the processor will generate a performance interrupt. 
This is the same interrupt that is generated by a performance counter overflow, 
as programmed in the Performance Monitoring Counters vector in the Local 
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer 
full is generated, the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter 
overflow condition to occur at a rate useful for profiling workload, thereby 
generating multiple PEBS records to facilitate characterizing the profile the 
execution of test code. After each PEBS record is written, the processor checks 
each counter to see if it overflowed and was enabled for PEBS (the corresponding 
bit in IA32_PEBS_ENABLED was set). If these conditions are met, then the reset 
value for each overflowed counter is loaded from the DS Buffer Management 
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written, 
then the value of “PEBS Counter 0 Reset” would be written to counter 
IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by 
the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from 
maximum count to zero (assuming IA32_PerfEvtSelX.INT is set). This same transi-
tion will cause PEBS hardware to arm, but not trigger. PEBS hardware triggers upon 
detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1 
transition of the counter). At this point, a PEBS assist will be undertaken by the 
processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That 
is, counter IA32_PMC0 takes precedence over all other counters. Counter 
IA32_PMC1 takes precedence over counters IA32_PMC2 and IA32_PMC3, and so on. 
This means that if simultaneous overflows or PEBS assists occur, the appropriate 
action will be taken for the highest priority performance counter. For example, if 
IA32_PMC1 cause an overflow interrupt and IA32_PMC2 causes an PEBS assist 
simultaneously, then the overflow interrupt will be serviced first. 

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition 
prioritized lower than the PEBS assist. Hardware will not generate separate interrupts 
for each counter that simultaneously overflows. General-purpose performance 
counters are prioritized over fixed counters.
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If a counter is programmed with a precise (PEBS-enabled) event and programmed to 
generate a counter overflow interrupt, the PEBS assist is serviced before the counter 
overflow interrupt is serviced. If in addition the PEBS interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the 
counter overflow interrupt (two separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see 
Section 30.6.2). It is possible for interrupts posted from the uncore facility to occur 
coincident with counter overflow interrupts from the processor core. Software must 
check core and uncore status registers to determine the exact origin of counter over-
flow interrupts.

30.6.1.2  Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load 
latency to different levels of cache/memory hierarchy. This facility requires processor 
supporting enhanced PEBS record format in the PEBS buffer, see Table 30-12. The 
facility measures latency from micro-operation (uop) dispatch to when data is 
globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_INST_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must 
be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. 

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
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controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The load-latency information written into a PEBS record (see Table 30-12, bytes 
AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load 

operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between 

dispatch to GO, measured in processor core clock domain.
• Data Source : The encoded value indicates the origin of the data obtained by the 

load instruction. The encoding is shown in Table 30-13. In the descriptions local 
memory refers to system memory physically attached to a processor package, 
and remote memory referrals to system memory physically attached to another 
processor package. 

Table 30-13.  Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address 
was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no 
coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where no modified copies were 
found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by 
another processor core with a cross core snoop where modified copies were found. 
(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by 
forwarded data following a cross package snoop where no modified copies found. 
(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to shared state).
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The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 30-16.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance 
events with latencies greater than this value are counted in IA32_PMCx and their 
latency information is reported in the PEBS record. Otherwise, they are ignored. The 
minimum value that may be programmed in this field is 3.

30.6.1.3  Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four 
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value. 
Each event code for off-core response monitoring requires programming an associ-
ated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response 
configuration MSR. Table 30-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events 
using IA32_PMCx. 

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local 
DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by 
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Figure 30-16.  Layout of MSR_PEBS_LD_LAT MSR 

Table 30-13.  Data Source Encoding for Load Latency Record (Contd.)

Encoding Description

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000
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The layout of MSR_OFFCORE_RSP_0 is shown in Figure 30-17. Bits 7:0 specifies the 
request type of a transaction request to the uncore. Bits 15:8 specifies the response 
of the uncore subsystem.

Table 30-14.  Off-Core Response Event Encoding

Event code in 
IA32_PERFEVTSELx

Mask Value in 
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 30-17.  Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to 
Configure Off-core Response Events

Table 30-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads 
of full and partial cachelines as well as demand data page table 
entry cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
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DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3 
invalidate, I/O, full or partial writes, WC or non-temporal stores, 
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the 
uncore and was serviced by another core with a cross core snoop 
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and 
was serviced by forwarded data following a cross package snoop 
where no modified copies found. (Remote home requests are not 
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and 
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and 
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 30-15.  MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition 

Bit Name Offset Description
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30.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in 
the physical processor package that are shared by multiple processor cores. Some of 
the sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link 
logic, and integrated memory controller. The performance monitoring facilities inside 
the uncore operates in the same clock domain as the uncore (U-clock domain), which 
is usually different from the processor core clock domain. The uncore performance 
monitoring facilities described in this section apply to Intel Xeon processor 5500 
series and processors with the following CPUID signatures: 06_1AH, 06_1EH, 
06_1FH (see Appendix B). An overview of the uncore performance monitoring facili-
ties is described separately. 

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through 

MSR_UNCORE_PerfCntr7). The counters are 48 bits wide. Each counter is 
associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify 
event code, event mask and other event qualification fields. A set of global 
uncore performance counter enabling/overflow/status control MSRs are also 
provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR 
that provides event qualification control based on address value or QPI command 
opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function 
uncore counter increments at the rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore 
clock ratio which is available in the PCI configuration space register at offset C0H 
under device number 0 and Function 0. 

30.6.2.1  Uncore Performance Monitoring Management Facility
MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-
purpose and fixed-function counters in the uncore. Figure 30-18 shows the layout of 
MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is shared by four processor 
cores in a physical package. 
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose 

uncore counter MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore 

counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor 

core n is programmed to receive an interrupt signal from any interrupt enabled 
uncore counter. PMI delivery due to an uncore counter overflow is enabled by 
setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any 
one of them signals a performance interrupt. Software must explicitly re-enable 
Vol. 3B 30-39



PERFORMANCE MONITORING
the counter by setting the enable bits in MSR_UNCORE_PERF_GLOBAL_CTRL 
upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock 
performance counters in the uncore. This is a read-only register. If an overflow status 
bit is set the corresponding counter has overflowed. The register provides a condition 
change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was 
cleared. Figure 30-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter 

MSR_UNCORE_PerfCntr n has overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter 

MSR_UNCORE_FixedCntr0 has overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and 

generated an interrupt request. 
• CHG (bit 63): When set indicates that at least one status bit in 

MSR_UNCORE_PERF_GLOBAL_STATUS register has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in 
the UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and indi-
vidual status bits in the global status register are cleared by writing a binary one to 
the corresponding bit in this register. Writing zero to any bit position in this register 
has no effect on the uncore PMU hardware. 

Figure 30-18.  Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR 

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
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Figure 30-20 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

Figure 30-19.  Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR 

Figure 30-20.  Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR 

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)

OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)

CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
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• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for 
general-purpose uncore counter MSR_UNCORE_PerfCntr n. Writing a value other 
than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-
function uncore counter MSR_UNCORE_FixedCntr0. Writing a value other than 1 
is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS. Writing a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in 
MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing a value other than 1 is 
ignored.

30.6.2.2  Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select 
performance event and configure the counting behavior of the respective uncore 
performance counter. Each uncore PerfEvtSel MSR is paired with an uncore perfor-
mance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the 
respective EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 30-21 shows 
the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified 

in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter 

associated with this event to be cleared (zeroed). Writing a zero to this bit will be 
ignored. It will always read as a zero. 

Figure 30-21.  Layout of MSR_UNCORE_PERFEVTSELx MSRs 

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
30-42 Vol. 3B



PERFORMANCE MONITORING
• Edge Detect (bit 18): When set causes the counter to increment when a 
deasserted to asserted transition occurs for the conditions that can be expressed 
by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this 
counter overflowed. This request will be routed to the logical processors as 
enabled in the PMI enable bits (EN_PMI_COREx) in the register 
MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is 
locally enabled and counting starts when the corresponding EN_PCx bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or 
equal to. When set, the Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting. 
When set to a value other than zero, the logical processor compares this field to 
the event counts on each core clock cycle. If INV is clear and the event counts are 
greater than or equal to this field, the counter is incremented by one. If INV is set 
and the event counts are less than this field, the counter is incremented by one. 
Otherwise the counter is not incremented.

Figure 30-22 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled. 
When set, it is locally enabled and counting starts when the EN_FC0 bit in 
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the 
uncore fixed-function counter overflowed. This request will be routed to the 
logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the 
register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function 
counter (MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting 

Figure 30-22.  Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR 

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
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and sampling usages. The event logic unit can filter event counts to specific regions 
of code or transaction types incoming to the home node logic.

30.6.2.3  Uncore Address/Opcode Match MSR
The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select 
different uncore event logic unit. When the event “ADDR_OPCODE_MATCH“ is 
selected in the Event Select field, software can filter uncore performance events 
according to transaction address and certain transaction responses. The address 
filter and transaction response filtering requires the use of 
MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in 
Figure 30-23. 

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select 
address match. The uncore performance counter will increment if the lowest 40-
bit incoming physical address (excluding bits 2:0) for a transaction request 
matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions 
based on QPI link message class/packed header opcode. These bits are consists 
two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 30-16 lists the encodings supported in the opcode field.

Figure 30-23.  Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR 

Table 30-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH 

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
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• MatchSel (bits 63:61): Software specifies the match criteria according to the 
following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring 
Facility

The performance monitoring facility in the processor core of Intel Xeon processor 
7500 series are the same as those supported in Intel Xeon processor 5500 series. 
The uncore subsystem in Intel Xeon processor 7500 series are significantly different 
The uncore performance monitoring facility consist of many distributed units associ-
ated with individual logic control units (referred to as boxes) within the uncore 
subsystem. A high level block diagram of the various box units of the uncore is shown 
in Figure 30-24.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore 
PMU units have several general-purpose counters. Each counter requires an associ-
ated event select MSR, and may require additional MSRs to configure sub-event 
conditions. The uncore PMU MSRs associated with each box can be categorized based 
on its functional scope: per-counter, per-box, or global across the uncore. The 
number counters available in each box type are different. Each box generally 
provides a set of MSRs to enable/disable, check status/overflow of multiple counters 
within each box. 

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Table 30-16.  Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH  

Opcode [43:40] QPI Message Class
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Table 30-17 summarizes the number MSRs for uncore PMU for each box.

Figure 30-24.  Distributed Units of the Uncore of Intel Xeon Processor 7500 Series

Table 30-17.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
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The W-Box provides 4 general-purpose counters, each requiring an event select 
configuration MSR, similar to the general-purpose counters in other boxes. There is 
also a fixed-function counter that increments clockticks in the uncore clock domain. 

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting, 
configuring PMI of multiple counters within the same box, this is somewhat similar 
the “global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in 
the core PMU. Similarly status information and counter overflow control for multiple 
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU 
enable/disable and PMI configuration control. The scope of status information in the 
U-box is at per-box granularity, in contrast to the per-box status information MSR (in 
the C,S,B,M,R, and W boxes) providing status information of individual counter over-
flow. The difference in scope also apply to the overflow control MSR in the U-Box 
versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Appendix B. 
Table B-7 under the general naming style of 
MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of 
box and zero-based index if there are more the one box of the same type, 
%scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL, 

MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS, 

MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL, 

MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc
• Event select MSRs: the scope is implicitly per counter, e.g. 

MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0, 
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g. 
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document 
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.
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30.7 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-
architectural core PMU facilities, and uncore PMU) described in Section 30.6 also 
apply to processors based on Intel® microarchitecture code name Westmere. 

Table 30-14 describes a non-architectural performance monitoring event (event code 
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This 
event and a second functionally equivalent offcore response event using event code 
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors based 
on Intel microarchitecture code name Westmere. The event code and event mask 
definitions of Non-architectural performance monitoring events are listed in Table 
A-11. 

The load latency facility is the same as described in Section 30.6.1.2, but added 
enhancement to provide more information in the data source encoding field of each 
load latency record. The additional information relates to STLB_MISS and LOCK, see 
Table 30-22.

30.7.1 Intel Xeon Processor E7 Family Performance Monitoring 
Facility

The performance monitoring facility in the processor core of the Intel Xeon processor 
E7 family is the same as those supported in the Intel Xeon processor 5600 series2. 
The uncore subsystem in the Intel Xeon processor E7 family is similar to those of the 
Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 30-24, with the additional capability that up 
to 10 C-Box units are supported. 

Table 30-18 summarizes the number MSRs for uncore PMU for each box.

2. Exceptions are indicated for event code 0FH in .Table A-6; and valid bits of data source 
encoding field of each load latency record is limited to bits 5:4 of Table 30-22.

Table 30-18.  Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes
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30.8 PERFORMANCE MONITORING FOR PROCESSORS 
BASED ON INTEL® MICROARCHITECTURE CODE 
NAME SANDY BRIDGE

Intel Core i7, i5, i3 processors 2xxx series are based on Intel microarchitecture code 
name Sandy Bridge, this section describes the performance monitoring facilities 
provided in the processor core. The core PMU supports architectural performance 
monitoring capability with version ID 3 (see Section 30.2.2.2) and a host of non-
architectural monitoring capabilities. 

Architectural performance monitoring events and non-architectural monitoring 
events are programmed using fixed counters and programmable counters/event 
select MSRS described in Section 30.2.2.2. 

The core PMU’s capability is similar to those described in Section 30.6.1 and Section 
30.7, with some differences and enhancements relative to Intel microarchitecture 
code name Westmere summarized in Table 30-19.

R-Box 1 16 ( 2 port, 8 per 
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 30-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

# of Fixed counters 
per thread

3 3 Use CPUID to enumerate 
# of counters

# of general-purpose 
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 see Section 30.2.2.3

# of programmable 
counters per thread

4 or (8 if a core not shared 
by two threads)

4 Use CPUID to enumerate 
# of counters

PEBS Events See Table 30-21 See Table 30-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

Table 30-18.  Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Sub-control MSRs
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30.8.1 Global Counter Control Facilities In Intel® microarchitecture 
code name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor 
can vary across Processors based on Intel microarchitecture code name Sandy 
Bridge. Software must use CPUID to determine the number performance 
counters/event select registers (See Section 30.2.1.1). 

Figure 30-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits 
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-

PEBS-Load Latency Data source/ STLB/Lock 
encoding; See Section 
30.8.4.2

Data source 
encoding 

PEBS-Precise Store Section 30.8.4.3 No

PEBS-PDIR yes (using precise 
INST_RETIRED.ALL)

No PDIR, no 
INST_RETIRED.ALL

Off-core Response 
Event

MSR 1A6H and 1A7H; 
Extended request and 
response types

MSR 1A6H and 
1A7H, limited 
types

Nehalem supports 1A6H 
only.

Figure 30-25.  IA32_PERF_GLOBAL_CTRL MSR in Intel microarchitecture code name 
Sandy Bridge

Table 30-19.  Core PMU Comparison

Box Sandy Bridge Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
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IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If 
CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP. 

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all 
privilege levels in the respective IA32_PERFEVTSELx or 
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective 
counters. Counting is enabled if the AND’ed results is true; counting is disabled when 
the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to 
query the overflow condition of each performance counter. The MSR also provides 
additional status bit to indicate overflow conditions when counters are programmed 
for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR 
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring 
hardware (see Figure 30-26). A value of 1 in each bit of the PMCx_OVF field indicates 
an overflow condition has occurred in the associated counter. 

When a performance counter is configured for PEBS, an overflow condition in the 
counter generates a performance-monitoring interrupt this signals a PEBS event. On 
a PEBS event, the processor stores data records in the buffer area (see Section 
16.4.9), clears the counter overflow status, and sets the OvfBuffer bit in 
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators 
for general-purpose or fixed-function counters via a single WRMSR (see 
Figure 30-27). Clear overflow indications when:

Figure 30-26.  IA32_PERF_GLOBAL_STATUS MSR in Intel microarchitecture code 
name Sandy Bridge
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FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC7_OVF (If PMC7 present)

2 1 0

PMC6_OVF (If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (If PMC5 present)
PMC4_OVF (If PMC4 present)
PMC3_OVF
PMC2_OVF
PMC1_OVF
PMC0_OVF

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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• Setting up new values in the event select and/or UMASK field for counting or 
sampling

• Reloading counter values to continue sampling
• Disabling event counting or sampling

30.8.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each 
processor core implements eight general-purpose counters. CPUID.0AH:EAX[15:8] 
will report either 4 or 8 depending specific processor’s product features. 

If a processor core is shared by two logical processors, each logical processors can 
access 4 counters (IA32_PMC0-IA32_PMC3). This is the same as in the prior genera-
tion for processors based on Intel microarchitecture code name Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose 
counters are visible, and CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7 
occupy MSR addresses 0C5H through 0C8H. Each counter is accompanied by an 
event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-
IA32_PMC7 will cause #GP. Writing 1’s to bit position 7:4 of 
IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or 
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

Figure 30-27.  IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code 
name Sandy Bridge
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FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
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30.8.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-
width writes to the general-purpose counters, IA32_PMCx. Support of full-width 
writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section 
30.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results 
in a sign-extended 32-bit value of the input EAX written into IA32_PMCx. Full-width 
writes must issue WRMSR to a dedicated alias MSR address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of 
the alias address IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

30.8.4 PEBS Support in Intel® microarchitecture code name Sandy 
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS, 
similar to those offered in prior generation, with several enhanced features. The key 
components and differences of PEBS facility relative to Intel microarchitecture code 
name Westmere is summarized in Table 30-20.

Only IA32_PMC0 through IA32_PMC3 support PEBS. 

Table 30-20.  PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7 

PEBS Buffer 
Programming

 Section 30.6.1.1 Section 30.6.1.1 Unchanged

IA32_PEBS_ENABLE 
Layout

 Figure 30-28 Figure 30-14

PEBS record layout Physical Layout same 
as Table 30-12

Table 30-12 Enhanced fields at 
offsets 98H, A0H, A8H

PEBS Events See Table 30-21 See Table 30-10 IA32_PMC4-IA32_PMC7 
do not support PEBS.

PEBS-Load Latency See Table 30-22 Table 30-13

PEBS-Precise Store yes; see Section 
30.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only

SAMPLING 
Restriction

Small SAV(CountDown) value incur higher 
overhead than prior generation.
Vol. 3B 30-53



PERFORMANCE MONITORING
NOTE
PEBS events are only valid when the following fields of 
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables 
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the 
precise store facility.

30.8.4.1  PEBS Record Format
The layout of PEBS records physically identical to those shown in Table 30-12, but the 
fields at offset 98H, A0H and A8H have been enhanced to support additional PEBS 
capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear 

address of the source of the load, or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field 

will contain three piece of information (including an encoded value indicating the 
source which satisfied the load operation). The source field encodings are 
detailed in Table 30-13. When precise store is enabled, this field will contain 
information indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains 
the latency in cycles to service the load. This field is not meaningful when precise 
store is enabled and will be written to zero in that case. Upon writing the PEBS 
record, microcode clears the overflow status bits in the 
IA32_PERF_GLOBAL_STATUS corresponding to those counters that both 

Figure 30-28.  Layout of IA32_PEBS_ENABLE MSR 

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
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PS_EN (R/W)
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overflowed and were enabled in the IA32_PEBS_ENABLE register. The status bits 
of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel 
microarchitecture code name Sandy Bridge is shown in Table 30-21.

Table 30-21.  PEBS Performance Events for Intel microarchitecture code name Sandy 
Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Not_Taken 10H

Near_Taken 20H

Far_Branches 40H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_TRANS_RETIRED CDH Load_Latency 01H

Precise_Store 02H

MEM_UOP_RETIRED D0H Load 01H

Store 02H

STLB_Miss 10H

Lock 20H

SPLIT 40H

ALL 80H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H
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30.8.4.2  Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar 
to that in prior microarchitecture. It provides software a means to characterize the 
average load latency to different levels of cache/memory hierarchy. This facility 
requires processor supporting enhanced PEBS record format in the PEBS buffer, see 
Table 30-12 and Section 30.8.4.1. The facility measures latency from micro-opera-
tion (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit 

MEM_TRANS_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be 
specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corresponding counter 
IA32_PMCx will accumulate event counts for architecturally visible loads which 
exceed the programmed latency threshold specified separately in a MSR. Stores 
are ignored when this event is programmed. The CMASK or INV fields of the 
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing 
other values will result in undefined behavior. 

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired 
latency threshold in core clock cycles. Loads with latencies greater than this 
value are eligible for counting and latency data reporting. The minimum value 
that may be programmed in this register is 3 (the minimum detectable load 
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX 
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to 
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register 
must be programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with 
other counters.

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

MEM_LOAD_UOPS_MISC_RETIRED D4H LLC_Miss 02H

NOTES:
1. Only available on IA32_PMC1.

Table 30-21.  PEBS Performance Events for Intel microarchitecture (Contd.)code name 
Sandy Bridge

Event Name Event Select Sub-event UMask
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When the load-latency facility is enabled, load operations are randomly selected by 
hardware and tagged to carry information related to data source locality and latency. 
Latency and data source information of tagged loads are updated internally. The 
MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a 
load is cancelled it will not be counted and the internal state of the load latency 
facility will not be updated. In this case the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information 
are captured by the assist and written as part of the PEBS record. The PEBS sample 
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the 
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV 
controls the number of tagged loads with latency information that will be written into 
the PEBS record field by the PEBS assists. The load latency data written to the PEBS 
record will be for the last tagged load operation which retired just before the PEBS 
assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 30-12. The 
specificity of Data Source entry at offset A0H has been enhanced to report three 
piece of information. 

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in 
Figure 30-16.

30.8.4.3  Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise 
store capability that complements the load latency facility. It provides a means to 
profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about 
sampled stores. Having precise memory reference events with linear address infor-
mation for both loads and stores can help programmers improve data structure 
layout, eliminate remote node references, and identify cache-line conflicts in NUMA 
systems.

Table 30-22.  Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 30-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6
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Only IA32_PMC3 can be used to capture precise store information. After enabling this 
facility, counter overflows will initiate the generation of PEBS records as previously 
described in PEBS. Upon counter overflow hardware captures the linear address and 
other status information of the next store that retires. This information is then 
written to the PEBS record.

To enable the precise store facility, software must complete the following steps. 
Please note that the precise store facility relies on the PEBS facility, so the PEBS 
configuration requirements must be completed before attempting to capture precise 
store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in 

IA32_PERFEVTSEL3. Only counter 3 (IA32_PMC3) supports collection of precise 
store information. 

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables 
IA32_PMC3 as a PEBS counter and enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H, 
A0H and A8H of Table 30-12. The specificity of Data Source entry at offset A0H has 
been enhanced to report three piece of information. 

30.8.4.4  Precise Distribution of Instructions Retired (PDIR) 
Upon triggering a PEBS assist, there will be a finite delay between the time the 
counter overflows and when the microcode starts to carry out its data collection obli-
gations. INST_RETIRED is a very common event that is used to sample where perfor-
mance bottleneck happened and to help identify its location in instruction address 
space. Even if the delay is constant in core clock space, it invariably manifest as vari-
able “skids” in instruction address space. This creates a challenge for programmers 
to profile a workload and pinpoint the location of bottlenecks.

Table 30-23.  Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data 
Linear Address

98H The linear address of the destination of the store.

Store Status A0H DCU Hit (Bit 0): The store hit the data cache closest to the core (lowest 
latency cache) if this bit is set, otherwise the store missed the data 
cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store 
hit the STLB

Locked Access (bit 5): The store was part of a locked access if set, 
otherwise the store was not part of a locked access.

Reserved A8H Reserved
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The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge include a facility referred to as precise distribution of Instruction Retired 
(PDIR). 

The PDIR facility mitigates the “skid“ problem by providing an early indication of 
when the INST_RETIRED counter is about to overflow, allowing the machine to more 
precisely trap on the instruction that actually caused the counter overflow thus elim-
inating skid.

PDIR applies only to the INST_RETIRED.PREC_DIST precise event, and must use 
IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the 
IA32_PEBS_ENABLE set to 1. INST_RETIRED.PREC_DIST is a non-architectural 
performance event, it is not supported in prior generation microarchitectures. Addi-
tionally, current implementation of PDIR limits tool to quiesce the rest of the 
programmable counters in the core when PDIR is active. 

30.8.5 Off-core Response Performance Monitoring 
The core PMU in processors based on Intel microarchitecture code name Sandy 
Bridge provides off-core response facility similar to prior generation. Off-core 
response can be programed only with a specific pair of event select and counter MSR, 
and with specific event codes and predefine mask bit value in a dedicated MSR to 
specify attributes of the off-core transaction. Two event codes are dedicated for off-
core response event programming. Each event code for off-core response monitoring 
requires programming an associated configuration MSR, MSR_OFFCORE_RSP_x. 
Table 30-24 lists the event code, mask value and additional off-core configuration 
MSR that must be programmed to count off-core response events using IA32_PMCx. 

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in 
Figure 30-29 and Figure 30-30. Bits 15:0 specifies the request type of a transaction 
request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 specifies 
snoop response information.

Table 30-24.  Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)
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Figure 30-29.  Request_Type Fields for MSR_OFFCORE_RSP_x 

Table 30-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of 
full and partial cachelines as well as demand data page table entry 
cacheline reads. Does not count L2 data read prefetches or 
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for 
ownership (RFO) requests generated by a write to data cacheline. 
Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction 
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive) 
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2 
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2 
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

RESPONSE TYPE — Other (R/W)
RESERVED 

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 3-30
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To properly program this extra register, software must set at least one request type 
bit and a valid response type pattern.  Otherwise, the event count reported will be 
zero.  It is permissible and useful to set multiple request and response type bits in 
order to obtain various classes of off-core response events.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher 

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 30-30.  Response_Type Fields for MSR_OFFCORE_RSP_x 

Table 30-26.  MSR_OFFCORE_RSP_x Response Type Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Table 30-25.  MSR_OFFCORE_RSP_x Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

23 16

RSPNS_SNOOP — HIT_FWD

11 1912 17

Reserved

63 18209 212210131415

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED
RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000
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Supplier 
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

Reserved 30:22 Reserved

Snoop 
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped 
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data 
was returned from DRAM.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one 
snooped cache. Hit denotes a cache-line was valid before 
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO 
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded 
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss, 
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or 
remote cache. HitM denotes a cache-line was in modified 
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss, 
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This 
includes MMIO transactions.

Table 30-26.  MSR_OFFCORE_RSP_x Response Type Field Definition (Contd.)

Subtype Bit Name Offset Description
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To specify a complete offcore response filter, software must properly program bits in 
the request and response type fields. A valid request type must have at least one bit 
set in the non-reserved bits of 15:0. A valid response type must be a non-zero value 
of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

30.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5, 
i3 Processors 2xxx Series

The uncore sub-system in Intel Core i7, i5, i3 processors 2xxx Series provides a 
unified L3 that can support up to four processor cores. The L3 cache consists multiple 
slices, each slice interface with a processor via a coherence engine, referred to as a 
C-Box. Each C-Box provides dedicated facility of MSRs to select uncore performance 
monitoring events and each C-Box event select MSR is paired with a counter register, 
similar in style as those described in Section 30.6.2.2. The layout of the event select 
MSRs in the C-Boxes are shown in Figure 30-31.

At the uncore domain level, there is a master set of control MSRs that centrally 
manages all the performance monitoring facility of uncore units. Figure 30-32 shows 
the layout of the uncore domain global control 

MSR bit 31 of MSR_UNC_PERF_GLOBAL_CTRL provides the capability to freeze all 
uncore counters when an overflow condition in a unit counter. When set and upon a 
counter overflow, the uncore PMU logic will clear the global enable bit, bit 29.

Figure 30-31.  Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N

28

INV—Invert counter mask
EN—Enable counters

E—Edge detect

8 7 0

Event Select
Counter Mask 

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
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Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore 
domain. Table 30-27 summarizes the number MSRs for uncore PMU for each box.

30.8.6.1  Uncore Performance Monitoring Events
There are certain restrictions on the uncore performance counters in each C-Box. 
Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table A-3 can collect perfor-
mance characteristics of transactions initiated by processor core. In that respect, 
they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC 
HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qual-
ified on a per-thread basis. 

On the other hand, uncore performance event logic can not associate its counts with 
the same level of per-thread qualification attributes as the core PMU events can. 
Therefore, whenever similar event programming capabilities are available from both 

Figure 30-32.  Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 30-27.  Uncore PMU MSR Summary

Box
# of 
Boxes Counters per Box

Counter 
Width

General 
Purpose

Global 
Enable Comment

C-Box Up to 4 2 44 Yes Per-box

NCU 1 48 No Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

PMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

Core Select — core 3 select
Core Select — core 2 select
Core Select — core 1select
Core Select — core 0 select
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core PMU and uncore PMU, the recommendation is that utilizing the core PMU events 
may be less affected by artifacts, complex interactions and other factors.

30.9 PERFORMANCE MONITORING (PROCESSORS 
BASED ON INTEL NETBURST® 
MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon 
processors is different from that provided in the P6 family and Pentium processors. 
While the general concept of selecting, filtering, counting, and reading performance 
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the 
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium 
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the 
the additional performance counters provided in the Pentium 4 and Intel Xeon 
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon 
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or 

IA-32 processor of the performance monitoring and precise event-based 
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with 
specific performance counters. The number available differs by family and model 
(43 to 45).

• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with 

each performance counter. CCCRs sets up an associated performance counter for 
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction, 

which indicates the availability of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay 

tagging used in at-retirement event counting.
• A set of predefined events and event metrics that simplify the setting up of the 

performance counters to count specific events.

Table 30-28 lists the performance counters and their associated CCCRs, along with 
the ESCRs that select events to be counted for each performance counter. Predefined 
event metrics and events are listed in Appendix A, “Performance-Monitoring Events.”
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Table 30-28.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H
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MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6

 0
2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

Table 30-28.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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The types of events that can be counted with these performance monitoring facilities 
are divided into two classes: non-retirement events and at-retirement events.
• Non-retirement events (see Table A-13) are events that occur any time during 

instruction execution (such as bus transactions or cache transactions).
• At-retirement events (see Table A-14) are events that are counted at the 

retirement stage of instruction execution, which allows finer granularity in 
counting events and capturing machine state. 
The at-retirement counting mechanism includes facilities for tagging μops that 
have encountered a particular performance event during instruction execution. 
Tagging allows events to be sorted between those that occurred on an execution 
path that resulted in architectural state being committed at retirement as well as 
events that occurred on an execution path where the results were eventually 
cancelled and never committed to architectural state (such as, the execution of a 
mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support 
the three usage models described below. The first two models can be used to count 
both non-retirement and at-retirement events; the third model is used to count a 
subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more 

types of events. While the counter is counting, software reads the counter at 
selected intervals to determine the number of events that have been counted 
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to 
count one or more types of events and to generate an interrupt when it 

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 30-28.  Performance Counter MSRs and Associated CCCR and 
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
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overflows. To trigger an overflow, the counter is preset to a modulus value that 
will cause the counter to overflow after a specific number of events have been 
counted. 
When the counter overflows, the processor generates a performance monitoring 
interrupt (PMI). The interrupt service routine for the PMI then records the return 
instruction pointer (RIP), resets the modulus, and restarts the counter. Code 
performance can be analyzed by examining the distribution of RIPs with a tool 
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance 
monitoring is similar to non-precise event-based sampling, except that a 
memory buffer is used to save a record of the architectural state of the processor 
whenever the counter overflows. The records of architectural state provide 
additional information for use in performance tuning. Precise event-based 
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance 
monitoring in the Pentium 4 and Intel Xeon processors.

30.9.1 ESCR MSRs
The 45 ESCR MSRs (see Table 30-28) allow software to select specific events to be 
countered. Each ESCR is usually associated with a pair of performance counters (see 
Table 30-28) and each performance counter has several ESCRs associated with it 
(allowing the events counted to be selected from a variety of events).

Figure 30-33 shows the layout of an ESCR MSR. The functions of the flags and fields 
are:
• USR flag, bit 2 — When set, events are counted when the processor is operating 

at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally 
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating 
at CPL of 0. This privilege level is generally reserved for protected operating 
system code. (When both the OS and USR flags are set, events are counted at all 
privilege levels.)
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• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 30.9.6, “At-Retirement 
Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

When setting up an ESCR, the event select field is used to select a specific class of 
events to count, such as retired branches. The event mask field is then used to select 
one or more of the specific events within the class to be counted. For example, when 
counting retired branches, four different events can be counted: branch not taken 
predicted, branch not taken mispredicted, branch taken predicted, and branch taken 
mispredicted. The OS and USR flags allow counts to be enabled for events that occur 
when operating system code and/or application code are being executed. If neither 
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 30-28 gives the 
addresses of the ESCR MSRs. 

Writing to an ESCR MSR does not enable counting with its associated performance 
counter; it only selects the event or events to be counted. The CCCR for the selected 
performance counter must also be configured. Configuration of the CCCR includes 
selecting the ESCR and enabling the counter.

Figure 30-33.  Event Selection Control Register (ESCR) for Pentium 4 
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag 
Value

Reserved
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30.9.2 Performance Counters
The performance counters in conjunction with the counter configuration control 
registers (CCCRs) are used for filtering and counting the events selected by the 
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters 
organized into 9 pairs. A pair of performance counters is associated with a particular 
subset of events and ESCR’s (see Table 30-28). The counter pairs are partitioned into 
four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS. 

Alternate counters in each group can be cascaded: the first counter in one pair can 
start the first counter in the second pair and vice versa. A similar cascading is 
possible for the second counters in each pair. For example, within the BPU group of 
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and 
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section 
30.9.5.6, “Cascading Counters”). The cascade flag in the CCCR register for the 
performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 30-34). The RDPMC instruction 
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of 
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the 
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control 
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs 
and procedures running at privilege level 0.
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The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before 
counting begins (that is, before the counter is enabled). This can be accomplished by 
writing to the counter using the WRMSR instruction. To set a counter to a specified 
number of counts before overflow, enter a 2s complement negative integer in the 
counter. The counter will then count from the preset value up to -1 and overflow. 
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the 
WRMSR instruction causes all 40 bits of the counter to be written.

30.9.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one 
CCCR MSR associated with it (see Table 30-28). The CCCRs control the filtering and 
counting of events as well as interrupt generation. Figure 30-35 shows the layout of 
an CCCR MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 

disabled. This flag is cleared on reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 

select events to be counted with the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when 

clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 

Figure 30-34.  Performance Counter (Pentium 4 and Intel Xeon Processors)
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counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 30.9.5.2, “Filtering 
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 30.9.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be generated when the counter overflows occurs; when clear, disables 
PMI generation. Note that the PMI is generated on the next event count after the 
counter has overflowed.

Figure 30-35.  Counter Configuration Control Register (CCCR)
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• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 30.9.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset. 

The events that an enabled performance counter actually counts are selected and 
filtered by the following flags and fields in the ESCR and CCCR registers and in the 
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be 
counted and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events 
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has 
several ESCRs associated with it, one ESCR must be chosen to select the classes 
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an 
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage” 
forms the input for the next. For instance, events filtered using the privilege level 
flags can be further qualified by the compare and complement flags and the 
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section 
30.9.5, “Programming the Performance Counters for Non-Retirement Events.”

30.9.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon 
processors to allow various types of information to be collected in memory-resident 
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon 
processors, the DS mechanism is used to collect two types of information: branch 
records and precise event-based sampling (PEBS) records. The availability of the DS 
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by 
the CPUID instruction. 

See Section 16.4.5, “Branch Trace Store (BTS),” and Section 30.9.7, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with 
the DS mechanism are saved in the DS save area. See Section 16.4.9, “BTS and DS 
Save Area.”
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30.9.5 Programming the Performance Counters 
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the 
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the 
ESCR restrictions row in Table A-13, Appendix A.

3. Match the CCCR Select value and ESCR name in Table A-13 to a value listed in 
Table 30-28; select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege 
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the 
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the 
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI) 
when the counter overflows. If PMI generation is enabled, the local APIC must be 
set up to deliver the interrupt to the processor and a handler for the interrupt 
must be in place.

8. Enable the counter to begin counting.

30.9.5.1  Selecting Events to Count
Table A-14 in Appendix A lists a set of at-retirement events for the Pentium 4 and 
Intel Xeon processors. For each event listed in Table A-14, setup information is 
provided. Table 30-29 gives an example of one of the events.

Table 30-29.  Event Example 
Event Name Event Parameters  Parameter Value Description

branch_retired Counts the retirement of a branch. 
Specify one or more mask bits to 
select any combination of branch 
taken, not-taken, predicted and 
mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of 
the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be obtained 
from Table 15-3.
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For Table A-13 and Table A-14, Appendix A, the name of the event is listed in the 
Event Name column and parameters that define the event and other information are 
listed in the Event Parameters column. The Parameter Value and Description columns 
give specific parameters for the event and additional description information. Entries 
in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event. 

Typically only one ESCR is needed to count an event. 
• Counter numbers per ESCR — Lists which performance counters are 

associated with each ESCR. Table 30-28 gives the name of the counter and CCCR 
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the 
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the 
ESCR to select sub-events to be counted. The parameter value column defines 
the documented bits with relative bit position offset starting from 0, where the 
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented 
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR 
associated with the counter to select the ESCR to be used to define the event. 
This value is not the address of the ESCR; it is the number of the ESCR from the 
Number column in Table 30-28.

• Event specific notes — Gives additional information about the event, such as 
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied 
for at-retirement events listed in Table A-14.)

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

     1: MMNM

     2: MMTP

     3: MMTM

ESCR[24:9],

Branch Not-taken Predicted, 

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional 
MSRs for Tagging

No

Table 30-29.  Event Example  (Contd.)
Event Name Event Parameters  Parameter Value Description
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• Requires additional MSR for tagging — Indicates which if any additional 
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table A-14.)

NOTE
The performance-monitoring events listed in Appendix A, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for 
performance tuning. The counter values reported are not guaranteed 
to be absolutely accurate and should be used as a relative guide for 
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic 
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued 
through the following four sections.

Using information in Table A-13, Appendix A, an event to be counted can be selected 
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter 
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter, 
and determine the MSR addresses of the counter, CCCR, and ESCR from Table 
30-28.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask 
values into the appropriate fields in the ESCR. At the same time set or clear the 
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate 
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one 
WRMSR instruction; however, in this procedure, several WRMSR 
writes are used to more clearly demonstrate the uses of the various 
CCCR fields and flags.

This setup procedure is continued in the next section, Section 30.9.5.2, “Filtering 
Events.”

30.9.5.2  Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it 
is counting events. The counter treats these inputs as binary inputs (input 0 has a 
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value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value 
of 8). When a counter is enabled, it adds this binary input value to the counter value 
on each clock cycle. For each clock cycle, the value added to the counter can then 
range from 0 (no event) to 15. 

For many events, only the 0 input line is active, so the counter is merely counting the 
clock cycles during which the 0 input is asserted. However, for some events two or 
more input lines are used. Here, the counters threshold setting can be used to filter 
events. The compare, complement, threshold, and edge fields control the filtering of 
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag 
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold 
field selects a threshold value of from 0 to 15. For example, if the complement flag is 
cleared and the threshold field is set to 6, than any input value of 7 or greater on the 
4 inputs to the counter will cause the counter to be incremented by 1, and any value 
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely, 
if the complement flag is set, any value from 0 to 6 will increment the counter and 
any value from 7 to 15 will not increment the counter. Note that when a threshold 
condition has been satisfied, the input to the counter is always 1, not the input value 
that is presented to the threshold filter. 

The edge flag provides further filtering of the counter inputs when a threshold 
comparison is being made. The edge flag is only active when the compare flag is set. 
When the edge flag is set, the resulting output from the threshold filter (a value of 0 
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines 
the last and current input values and sends a count to the counter only when it 
detects a “rising edge” event; that is, a false-to-true transition. Figure 30-36 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the 
threshold filter and the edge filter. This procedure is a continuation of the setup 
procedure introduced in Section 30.9.5.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR 
instruction to write values in the CCCR compare and complement flags and the 
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than 
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 30.9.5.3, “Starting 
Event Counting.”
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30.9.5.3  Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The 
typical way is to set the enable flag in the counter’s CCCR. Following the instruction 
to set the enable flag, event counting begins and continues until it is stopped (see 
Section 30.9.5.5, “Halting Event Counting”). 

The following procedural step shows how to start event counting. This step is a 
continuation of the setup procedure introduced in Section 30.9.5.2, “Filtering 
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag 
for the performance counter.

This setup procedure is continued in the next section, Section 30.9.5.4, “Reading a 
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the 
overflow of one counter automatically starts its alternate counter (see Section 
30.9.5.6, “Cascading Counters”).

30.9.5.4  Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using 
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC 
instruction (including fast read) are described in Section 30.9.2, “Performance 
Counters.” These instructions can be used to read a performance counter while it is 
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a 
continuation of the setup procedure introduced in Section 30.9.5.3, “Starting Event 
Counting.”

10. To read a performance counters current event count, execute the RDPMC 
instruction with the counter number obtained from Table 30-28 used as an 
operand.

Figure 30-36.  Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
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This setup procedure is continued in the next section, Section 30.9.5.5, “Halting 
Event Counting.”

30.9.5.5  Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps 
around and continues counting. When the counter wraps around, it sets its OVF flag 
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last 
cleared. 

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a 
continuation of the setup procedure introduced in Section 30.9.5.4, “Reading a 
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable 
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter 
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or 
clear the OVF flag in the alternate counter’s CCCR MSR.

30.9.5.6  Cascading Counters
As described in Section 30.9.2, “Performance Counters,” eighteen performance 
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are 
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 30-28). The first 
three blocks contain two pairs each. The IQ block contains three pairs of counters (12 
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect 
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many 
different types of events to be counted. The cascade flag in the CCCR MSR allows 
nested monitoring of events to be performed by cascading one counter to a second 
counter located in another pair in the same block (see Figure 30-35 for the location 
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be 
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be 
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in 
the same block to cascade on two pairs of independent events. The pairing described 
also applies to subsequent blocks. Since the IQ PUB has two extra counters, 
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block, 
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot 
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
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Example 30-1.  Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A; 
then counter Y is set up to count 400 occurrences of event B. Each counter is set up 
to count a specific event and overflow to the next counter. In the above example, 
counter X is preset for a count of -200 and counter Y for a count of -400; this setup 
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on 
overflow. This is described in the basic performance counter setup procedure that 
begins in Section 30.9.5.1, “Selecting Events to Count.” Counter Y is set up with the 
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled, 
counter X counts until it overflows. At this point, counter Y is automatically enabled 
and begins counting. Thus counter X overflows after 200 occurrences of event A. 
Counter Y then starts, counting 400 occurrences of event B before overflowing. When 
performance counters are cascaded, the counter Y would typically be set up to 
generate an interrupt on overflow. This is described in Section 30.9.5.8, “Generating 
an Interrupt on Overflow.” 

The cascading counters mechanism can be used to count a single event. The 
counting begins on one counter then continues on the second counter after the first 
counter overflows. This technique doubles the number of event counts that can be 
recorded, since the contents of the two counters can be added together.

30.9.5.7  EXTENDED CASCADING 
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family 
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit 
11 in CCCRs associated with the IQ block. See Table 30-30. 

Table 30-30.  CCR Names and Bit Positions 

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into 
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into 
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into 
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into 
counter 5
Vol. 3B 30-81



PERFORMANCE MONITORING
The extended cascading feature can be adapted to the sampling usage model for 
performance monitoring. However, it is known that performance counters do not 
generate PMI in cascade mode or extended cascade mode due to an erratum. This 
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2. 
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum 
applies to processors with stepping encoding greater than 09H. 

Counters 16 and 17 in the IQ block are frequently used in precise event-based 
sampling or at-retirement counting of events indicating a stalled condition in the 
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using 
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17 
to initiate cascading of two counters in the IQ block. Extended cascading from 
counter 16 and 17 is conceptually similar to cascading other counters, but instead of 
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used. 

Example 30-2.  Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical 
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12. 

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0 
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not 
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the 
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical 
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not 
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the 
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit 
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data 
of the stalled thread.
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30.9.5.8  Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor 
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then 
collect information about the state of the processor or program when overflow 
occurred. This information can then be used with a tool like the Intel® VTune™ 
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the 
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set 
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed 
when multiple counters have been configured to generate PMIs. Also, note that these 
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving 
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should 
be preset to value that will cause an overflow after a specified number of events are 
counted plus 1. The simplest way to select the preset value is to write a negative 
number into the counter, as described in Section 30.9.5.6, “Cascading Counters.” 
Here, however, if an interrupt is to be generated after 100 event counts, the counter 
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event 
counted. The difference of 1 for this count enables the interrupt to be generated 
immediately after the selected event count has been reached, instead of waiting for 
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and 
the generation of interrupts on overflow, it is sometimes difficult to generate an 
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in 
the CCCR can be used to improve reporting. Setting this flag causes the counter to 
overflow on every counter increment, which in turn triggers an interrupt after every 
counter increment.

30.9.5.9  Counter Usage Guideline
There are some instances where the user must take care to configure counting logic 
properly, so that it is not powered down. To use any ESCR, even when it is being used 
just for tagging, (any) one of the counters that the particular ESCR (or its paired 
ESCR) can be connected to should be enabled. If this is not done, 0 counts may 
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0). 
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30.9.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work 
committed to architectural state and ignoring work that was performed speculatively 
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective 
processing speeds. One example of this speculative activity is branch prediction. The 
Pentium 4 and Intel Xeon processors typically predict the direction of branches and 
then decode and execute instructions down the predicted path in anticipation of the 
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a 
performance counter was set up to count all executed instructions, the count would 
include instructions whose results were canceled as well as those whose results 
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance 
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a 
mechanism for tagging events and then counting only those tagged events that 
represent committed results. This mechanism is called “at-retirement counting.” 

Tables A-14 through A-18 list predefined at-retirement events and event metrics that 
can be used to for tagging events when using at retirement counting. The following 
terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term 

“bogus” refers to instructions or μops that must be canceled because they are on 
a path taken from a mispredicted branch. The terms “retired” and “non-bogus” 
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions 
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4 
and Intel Xeon processors’ performance monitoring events (such as, 
Instruction_Retired and Uops_Retired in Table A-14) can count instructions or 
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a 
particular performance event so they can be counted at retirement. During the 
course of execution, the same event can happen more than once per μop and a 
direct count of the event would not provide an indication of how many μops 
encountered that event. 
The tagging mechanisms allow a μop to be tagged once during its lifetime and 
thus counted once at retirement. The retired suffix is used for performance 
metrics that increment a count once per μop, rather than once per event. For 
example, a μop may encounter a cache miss more than once during its life time, 
but a “Miss Retired” metric (that counts the number of retired μops that 
encountered a cache miss) will increment only once for that μop. A “Miss Retired” 
metric would be useful for characterizing the performance of the cache hierarchy 
for a particular instruction sequence. Details of various performance metrics and 
how these can be constructed using the Pentium 4 and Intel Xeon processors 
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performance events are provided in the Intel Pentium 4 Processor Optimization 
Reference Manual (see Section 1.4, “Related Literature”). 

• Replay — To maximize performance for the common case, the Intel NetBurst 
microarchitecture aggressively schedules μops for execution before all the 
conditions for correct execution are guaranteed to be satisfied. In the event that 
all of these conditions are not satisfied, μops must be reissued. The mechanism 
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is 
called replay. Some examples of replay causes are cache misses, dependence 
violations, and unforeseen resource constraints. In normal operation, some 
number of replays is common and unavoidable. An excessive number of replays 
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with 
some event, the machine takes an assist. One example of this is an underflow 
condition in the input operands of a floating-point operation. The hardware must 
internally modify the format of the operands in order to perform the computation. 
Assists clear the entire machine of μops before they begin and are costly.

30.9.6.1  Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that 
encountered a specified event. For a subset of the at-retirement events listed in Table 
A-14, a μop may be tagged when it encounters that event. The tagging mechanisms 
can be used in non-precise event-based sampling, and a subset of these mechanisms 
can be used in PEBS. There are four independent tagging mechanisms, and each 
mechanism uses a different event to count μops tagged with that mechanism: 
• Front-end tagging — This mechanism pertains to the tagging of μops that 

encountered front-end events (for example, trace cache and instruction counts) 
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that 
encountered execution events (for example, instruction types) and are counted 
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose 
retirement is replayed (for example, a cache miss) and are counted with the 
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the 
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been 
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also 
tagged using the replay tagging mechanism. However, execution tags allow up to 
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When 
using PEBS, only one tagging mechanism should be used at a time. 
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Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked 
accesses, returns, and far transfers.

Table A-14 lists the performance monitoring events that support at-retirement 
counting: specifically the Front_end_event, Execution_event, Replay_event, 
Inst_retired and Uops_retired events. The following sections describe the tagging 
mechanisms for using these events to tag μop and count tagged μops.

30.9.6.2  Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the 
following events:
• μop decode events — Tagging μops for μop decode events requires specifying 

bits in the ESCR associated with the performance-monitoring event, Uop_type. 
• Trace cache events — Tagging μops for trace cache events may require 

specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table A-16).

Table A-14 describes the Front_end_event and Table A-16 describes metrics that are 
used to set up a Front_end_event count.

The MSRs specified in the Table A-14 that are supported by the front-end tagging 
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the 
Front_end_event event mask must be set to count events. None of the events 
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR. 

30.9.6.3  Tagging Mechanism For Execution_event
Table A-14 describes the Execution_event and Table A-17 describes metrics that are 
used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it 
causes tagging. One upstream ESCR is used to specify an event to detect and to 
specify a tag value (bits 5 through 8) to identify that event. A second downstream 
ESCR is used to detect μops that have been tagged with that tag value identifier using 
Execution_event for the event selection. 

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set 
and must have an appropriate tag value mask entered in its tag value field. The 4-bit 
tag value mask specifies which of tag bits should be set for a particular μop. The 
value selected for the tag value should coincide with the event mask selected in the 
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of 
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits 
in the downstream ESCR specify which tag bits to count. If any one of the tag bits 
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table A-17 metrics that are supported by the execution 
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
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The four separate tag bits allow the user to simultaneously but distinctly count up to 
four execution events at retirement. (This applies for non-precise event-based 
sampling. There are additional restrictions for PEBS as noted in Section 30.9.7.3, 
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of 
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits 
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR 
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

30.9.6.4  Tagging Mechanism for Replay_event
Table A-14 describes the Replay_event and Table A-18 describes metrics that are 
used to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before 
retirement. Use of the replay mechanism requires selecting the type of μop that may 
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of 
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the 
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR. 

The Table A-18 lists the metrics that are support the replay tagging mechanism and 
the at-retirement events that use the replay tagging mechanism, and specifies how 
the appropriate MSRs need to be configured. The replay tags defined in Table A-5 
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these 
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in 
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event 
(see Table A-14) be used to count the tagged μops.

30.9.7 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning 
programs: PEBS records and BTS records. See Section 16.4.5, “Branch Trace Store 
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or 
more performance events in the precise event records buffer, which is part of the DS 
save area (see Section 16.4.9, “BTS and DS Save Area”). To use this mechanism, a 
counter is configured to overflow after it has counted a preset number of events. 
After the counter overflows, the processor copies the current state of the general-
purpose and EFLAGS registers and instruction pointer into a record in the precise 
event records buffer. The processor then resets the count in the performance counter 
and restarts the counter. When the precise event records buffer is nearly full, an 
interrupt is generated, allowing the precise event records to be saved. A circular 
buffer is not supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the 
one performance counter, the MSR_IQ_COUNTER4 MSR.
Vol. 3B 30-87



PERFORMANCE MONITORING
In processors based on Intel Core microarchitecture, a similar PEBS mechanism is 
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section 
30.4.4).

30.9.7.1  Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set) 
the availability of the DS mechanism in the processor, which supports the PEBS (and 
BTS) facilities. When this bit is set, the following PEBS facilities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when 

clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE 
MSR. 

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be 
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area. 

30.9.7.2  Setting Up the DS Save Area
Section 16.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable 
the DS save area. This procedure is common for PEBS and BTS.

30.9.7.3  Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the 
following procedure to set up the processor and this counter for PEBS: 

1. Set up the precise event buffering facilities. Place values in the precise event 
buffer base, precise event index, precise event absolute maximum, and precise 
event interrupt threshold, and precise event counter reset fields of the DS buffer 
management area (see Figure 16-5) to set up the precise event records buffer in 
memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR 
and one or more ESCRs for PEBS as described in Tables A-14 through A-18.

30.9.7.4  Writing a PEBS Interrupt Service Routine 
The PEBS facilities share the same interrupt vector and interrupt service routine 
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To 
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See 
Section 16.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for 
writing the DS ISR.
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30.9.7.5  Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM 
mode. Similarly the DS mechanism is disabled on the generation of a machine check 
exception and is cleared on processor RESET and INIT. 

The DS mechanism is available in real address mode.

30.9.8 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to 
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be 
expected due to the effects of the trace store occurring on every taken branch. 

Depending upon intended usage, the instruction pointers that are part of the branch 
records or the PEBS records need to have an association with the corresponding 
process. One solution requires the ability for the DS specific operating system 
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area 
saved and setup appropriately on each context switch. 

If the BTS facility has been enabled, then it must be disabled and state stored on 
transition of the system to a sleep state in which processor context is lost. The state 
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap 
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all 
processes/logical processors, such that any change to CR3 will not change DS 
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on 
a per thread/process basis), then the operating system must ensure that the feature 
is enabled/disabled appropriately in the context switch code.

30.10 PERFORMANCE MONITORING AND INTEL HYPER-
THREADING TECHNOLOGY IN PROCESSORS BASED 
ON INTEL NETBURST® MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst 
microarchitecture and supporting Intel Hyper-Threading Technology is similar to that 
described in Section 30.9. However, the capability is extended so that:
• Performance counters can be programmed to select events qualified by logical 

processor IDs. 
• Performance monitoring interrupts can be directed to a specific logical processor 

within the physical processor. 
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The sections below describe performance counters, event qualification by logical 
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe 
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT. 

30.10.1 ESCR MSRs 
Figure 30-37 shows the layout of an ESCR MSR in processors supporting Intel Hyper-
Threading Technology. 

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical 

processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These 
privilege levels are generally used by application code and unprotected operating 
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical 
processor 1) is executing at CPL of 0. This privilege level is generally reserved for 
protected operating system code. (When both the T1_OS and T1_USR flags are 
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical 
processor 0) is executing at a CPL of 1, 2, or 3. 

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical 
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags 
are set, thread 0 events are counted at all privilege levels.)

Figure 30-37.  Event Selection Control Register (ESCR) for the Pentium 4 Processor, 
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading 

Technology
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• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement 
event counting; when clear, disables tagging. See Section 30.9.6, “At-Retirement 
Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop 
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the 
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be 
counted. The events within this class that are counted are selected with the event 
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting 
and sampling to be specified for a specific logical processor (0 or 1) within an Intel 
Xeon processor MP (See also: Section 8.4.5, “Identifying Logical Processors in an MP 
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon 
processor MP on a per logical processor basis (see Section 30.10.4, “Performance 
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted 
or sampled without regard to which logical processor is associated with the detected 
event. 

30.10.2 CCCR MSRs
Figure 30-38 shows the layout of a CCCR MSR in processors supporting Intel Hyper-
Threading Technology. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is 

disabled. This flag is cleared on reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to 

select events to be counted with the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which 

logical processors are active (executing a thread). This field enables filtering of 
events based on the state (active or inactive) of the logical processors. The 
encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is 
considered inactive. 
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• Compare flag, bit 18 — When set, enables filtering of the event count; when 
clear, disables filtering. The filtering method is selected with the threshold, 
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared 
with the threshold value. When set, event counts that are less than or equal to 
the threshold value result in a single count being delivered to the performance 
counter; when clear, counts greater than the threshold value result in a count 
being delivered to the performance counter (see Section 30.9.5.2, “Filtering 
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used 
for comparisons. The processor examines this field only when the compare flag is 
set, and uses the complement flag setting to determine the type of threshold 
comparison to be made. The useful range of values that can be entered in this 
field depend on the type of event being counted (see Section 30.9.5.2, “Filtering 
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge 
detection of the threshold comparison output for filtering event counts; when 
clear, rising edge detection is disabled. This flag is active only when the compare 
flag is set.

Figure 30-38.  Counter Configuration Control Register (CCCR)
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• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every 
counter increment; when clear, overflow only occurs when the counter actually 
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 0. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt 
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when 
clear, disables PMI generation for logical processor 1. Note that the PMI is 
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter 
pair when its alternate counter in the other the counter pair in the same counter 
group overflows (see Section 30.9.2, “Performance Counters,” for further 
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag 
is a sticky flag that must be explicitly cleared by software.

30.10.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel 
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the 
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26 
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a 
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical 
processor on which the agent is running (“my thread”) or for the other logical 
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event, 
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two 
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0 
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel 
mode components that need to modify the ENABLE_PEBS_MY_THR and 
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical 
processor. This is to prevent these kernel mode components from migrating between 
different logical processors due to OS scheduling.   

30.10.4 Performance Monitoring Events
All of the events listed in Table A-13 and A-14 are available in an Intel Xeon processor 
MP. When Intel Hyper-Threading Technology is active, many performance monitoring 
events can be can be qualified by the logical processor ID, which corresponds to bit 0 
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of the initial APIC ID. This allows for counting an event in any or all of the logical 
processors. However, not all the events have this logic processor specificity, or thread 
specificity. 

Here, each event falls into one of two categories: 
• Thread specific (TS) — The event can be qualified as occurring on a specific 

logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated 

with a specific logical processor. 

Table A-19 gives logical processor specific information (TS or TI) for each of the 
events described in Tables A-13 and A-14. If for example, a TS event occurred in 
logical processor T0, the counting of the event (as shown in Table 30-31) depends 
only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up 
the event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Appendix 
A, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown 
in Table 30-32. 

Table 30-31.  Effect of Logical Processor and CPL Qualification 
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10

T0_OS/T0_USR 
= 00

Zero count Counts while T1 
in USR

Counts while T1 
in OS or USR

Counts while T1 
in OS

T0_OS/T0_USR 
= 01

Counts while T0 
in USR

Counts while T0 
in USR or T1 in 
USR

Counts while (a) 
T0 in USR or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS

T0_OS/T0_USR 
= 11

Counts while T0 
in OS or USR

Counts while (a) 
T0 in OS or (b) T0 
in USR or (c) T1 in 
USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) or 
T0 in USR or (c) 
T1 in OS

T0_OS/T0_USR 
= 10

Counts T0 in OS Counts T0 in OS 
or T1 in USR

Counts while 
(a)T0 in Os or (b) 
T1 in OS or (c) T1 
in USR

Counts while (a) 
T0 in OS or (b) T1 
in OS
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30.11 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how 
long a program takes to execute. Clockticks are also used as part of efficiency ratios 
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the 

processor may halt to save power while the computer is servicing an I/O request. 
When Intel Hyper-Threading Technology is enabled, both logical processors must 
be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep 
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative 
to the processor’s bus clock frequency. Some of the situations that can cause 
processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the 
processor core clocks may operate at a frequency that differs from the maximum 
qualified frequency (as indicated by brand string information reported by CPUID 
instruction). See Section 30.11.5 for more detail.

Table 30-32.  Effect of Logical Processor and CPL Qualification 
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR = 
00

T1_OS/T1_USR = 
01

T1_OS/T1_USR = 
11

T1_OS/T1_USR = 
10 

T0_OS/T0_USR = 
00

Zero count Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS 

T0_OS/T0_USR = 
01

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts while (a) 
T0 in USR or (b) 
T1 in USR

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
11

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1 

T0_OS/T0_USR = 
0

Counts while (a) 
T0 in OS or (b) T1 
in OS

Counts 
irrespective of 
CPL, T0, T1

Counts 
irrespective of 
CPL, T0, T1

Counts while (a) 
T0 in OS or (b) T1 
in OS
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There are several ways to count processor clock cycles to monitor performance. 
These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical 

processor is not halted and is not in any power-saving state. When Intel Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that 
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical 
processor is not in a sleep mode or in a power-saving state. These ticks cannot be 
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is 
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two 
examples of processor features that can cause processor core clockticks to 
represent non-uniform tick intervals due to change of bus ratios. Performance 
events that counts clockticks of a constant reference frequency was introduced 
Intel Core Duo and Intel Core Solo processors. The mechanism is further 
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical 
processor is not in deep sleep (by using the time-stamp counter and the RDTSC 
instruction). Note that such ticks cannot be measured on a per-logical-processor 
basis. See Section 16.12, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a 
tool to read a performance counter than to use a time stamp counter (the timestamp 
counter is accessed using the RDTSC instruction). 

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI 

for phases where the CPU was being used. This ratio can be measured on a 
logical-processor basis when Intel Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI 
over the duration of a program, including those periods when the machine halts 
while waiting for I/O.

30.11.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted 
clockticks on processors based on Intel NetBurst microarchitecture: 

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event 
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted 
processor.
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2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

30.11.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the 
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its 
event select to anything other than no_event. This may not seem necessary, but 
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can 
exceed this threshold, the threshold condition is met every cycle and the counter 
counts every cycle. Note that this overrides any qualification (e.g. by CPL) 
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are 
equivalent if the physical package supports one logical processor and is not placed in 
a power-saving state. Operating systems may execute an HLT instruction and place a 
physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology), 
each physical package can support two or more logical processors. Current imple-
mentation of Intel HT Technology provides two logical processors for each physical 
processor. While both logical processors can execute two threads simultaneously, 
one logical processor may halt to allow the other logical processor to execute without 
sharing execution resources between two logical processors. 

Non-halted Clockticks can be set up to count the number of processor clock cycles for 
each logical processor whenever the logical processor is not halted (the count may 
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support Intel HT Technology enter 
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The 
mechanism will continue to increment as long as one logical processor is not halted 
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The 
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
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30.11.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is 
active and when the sleep pin is not asserted. The counter value can be read with the 
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all 
cases and for all processors. See Section 16.12, “Time-Stamp Counter,” for more 
information on counter operation.

30.11.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for 
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core 
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not 
halted. The counter counts reference cycles associated with a fixed-frequency clock 
source irrespective of P-state, TM2, or frequency transitions that may occur to the 
processor.

30.11.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 14, “Power and Thermal Management”), a logical processor or a 
processor core can operate at frequency different from that indicated by the 
processor’s maximum qualified frequency. 

The following items are expected to hold true irrespective of when opportunistic 
processor operation causes state transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of 

any transitions caused by opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency 

irrespective of any transitions caused by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor 

operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-

resolved frequency of the platform, which is equal to the product of scalable bus 
frequency and maximum resolved bus ratio. 

For processors based on Intel Core microarchitecture, the scalable bus frequency is 
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Appendix B, “Model-
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Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the 
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in 

MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in 

MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation 
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be 
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The 
MSR_PERF_STAT[31] field is read-only.

30.12 PERFORMANCE MONITORING, BRANCH PROFILING 
AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section 
16.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and 
Intel® Atom™ Processor Family)”) are enabled, these facilities capture event counts, 
branch records and branch trace messages occurring in a logical processor. The 
occurrence of interrupts, instruction streams due to various interrupt handlers all 
contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the 
IA32_PERF_CAPABILITIES MSR. If 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports 
the ability for system software using performance monitoring and/or branch profiling 
facilities to filter out the effects of servicing system management interrupts. 

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an 
SMI is delivered, the processor will clear all the enable bits of 
IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and 
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to 
the SMI handler. 

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of 
IA32_DEBUGCTL prior to SMI delivery will be restored , after the SMI handler issues 
RSM to complete its servicing. 

It is the responsibility of the SMM code to ensure the state of the performance moni-
toring and branch profiling facilities are preserved upon entry or until prior to exiting 
the SMM. If any of this state is modified due to actions by the SMM code, the SMM 
code is required to restore such state to the values present at entry to the SMM 
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14] 
to 1 only supported as indicated by 
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.
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30.13 PERFORMANCE MONITORING AND DUAL-CORE 
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the 
microarchitectural resources of a single-core processor implementation. Each 
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor 
Extreme edition, each processor core has dedicated resources, but two logical 
processors in the same core share performance monitoring resources (see Section 
30.10, “Performance Monitoring and Intel Hyper-Threading Technology in Processors 
Based on Intel NetBurst® Microarchitecture”). 

30.14 PERFORMANCE MONITORING ON 64-BIT INTEL XEON 
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 30.1 
and Section 30.10) apply to the 64-bit Intel Xeon processor MP with an L3 cache. 

The level 3 cache is connected between the system bus and IOQ through additional 
control logic. See Figure 30-40.

Figure 30-39.  Layout of IA32_PERF_CAPABILITIES MSR 
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Additional performance monitoring capabilities and facilities unique to 64-bit Intel 
Xeon processor MP with an L3 cache are described in this section. The facility for 
monitoring events consists of a set of dedicated model-specific registers (MSRs), 
each dedicated to a specific event. Programming of these MSRs requires using 
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32 
bit performance counter registers. These performance counters can be accessed 
using RDPMC instruction with the index starting from 18 through 25. The EDX 
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural 

conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0 
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable 
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit 
event counter. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. See Figure 30-41.

Figure 30-40.  Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
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• ISNPQ event — This event detects the occurrence of microarchitectural 
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0 
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable 
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event 
counter. Counting starts after software writes a non-zero value to one or more of 
the upper 32-bits. See Figure 30-42.

Figure 30-41.  MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
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• EFSB event — This event can detect the occurrence of micro-architectural 
conditions related to the iFSB unit or system bus. It provides two MSRs: 
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications 
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low 
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR. 
See Figure 30-43.

Figure 30-42.  MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
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• IBUSQ Latency event — This event accumulates weighted cycle counts for 
latency measurement of transactions in the iBUSQ unit. The count is enabled by 
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets 
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event 
counter for this event. See Figure 30-44.

Figure 30-43.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Other

49 3850 37 36 3334

Saturate

Own

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
30-104 Vol. 3B



PERFORMANCE MONITORING
30.15 PERFORMANCE MONITORING ON L3 AND CACHING 
BUS CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 
series employ a distinct L3/caching bus controller sub-system. These sub-system 
have a unique set of performance monitoring capability and programming interfaces 
that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microar-
chitecture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of 
06_1DH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel 
Xeon processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchi-
tecture, have a CPUID signature of family [0FH], model [06H] and a unified L3 cache 
shared between two cores. Each core in an Intel Xeon processor 7100 series supports 
Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support 
multi-processor configurations using system bus interfaces. In Intel Xeon processor 
7400 series, the L3/caching bus controller sub-system provides three Simple Direct 
Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each 
processor core is replaced with a Simple Direct Interface (SDI) logic. The L3 cache is 

Figure 30-44.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H
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connected between the system bus and the SDI through additional control logic. See 
Figure 30-45 for the block configuration of six processor cores and the L3/Caching 
bus controller sub-system in Intel Xeon processor 7400 series. Figure 30-45 shows 
the block configuration of two processor cores (four logical processors) and the 
L3/Caching bus controller sub-system in Intel Xeon processor 7100 series.

Almost all of the performance monitoring capabilities available to processor cores 
with the same CPUID signatures (see Section 30.1 and Section 30.10) apply to Intel 
Xeon processor 7100 series. The MSRs used by performance monitoring interface are 
shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with 
DisplayFamily_DisplayModel signature 06_17H also apply to Intel Xeon processor 
7400 series. Each processor core provides its own set of MSRs for performance moni-
toring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon 
processor 7100 series and 7400 series. Additional performance monitoring capabili-
ties applicable to the L3/caching bus controller sub-system are described in this 
section. 

Figure 30-45.  Block Diagram of Intel Xeon Processor 7400 Series
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30.15.1 Overview of Performance Monitoring with L3/Caching Bus 
Controller 

The facility for monitoring events consists of a set of dedicated model-specific 
registers (MSRs). There are eight event select/counting MSRs that are dedicated to 
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values. 
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control 
freezing, resetting, re-enabling operation of any combination of these event 
select/counting MSRs. 

The eight MSRs dedicated to count occurrences of specific conditions are further 
divided to count three sub-classes of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are 

dedicated to counting GBSQ events. Up to two GBSQ events can be programmed 
and counted simultaneously. 

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are 
dedicated to counting GSNPQ events. Up to two GBSQ events can be 
programmed and counted simultaneously. 

Figure 30-46.  Block Diagram of Intel Xeon Processor 7100 Series
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• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5, 
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to 
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit 

fields that control counter operation. The event mask field specifies details of the 
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB. 

• Bits 31:0 is the event count field. If the specified condition is met during each 
relevant clock domain of the event logic, the matched condition signals the 
counter logic to increment the associated event count field. The lower 32-bits of 
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit 
performance counter registers. 

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can 
be accessed using RDPMC instruction with the index starting from 18 through 25. The 
EDX register returns zero when reading these 8 PMCs. 

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used 
to access the eight uncore performance counter/control registers. 

30.15.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in 
Figure 30-47. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the 
physical package. The lower two bits corresponds to two logical processors in the 
first processor core, the upper two bits corresponds to two logical processors in 
the second processor core. 0FH encoding matches transactions from any logical 
processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic 
of a dual-core module as the originator of the transaction. A value of 0111B in 
bits [35:32] specifies transaction from any processor core.
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• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies 
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L3_State (bits 53:47): Each bit specifies an L2 coherency state. 
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ 

slightly between Intel Xeon processor 7100 and 7400. 
For Intel Xeon processor 7100 series, 

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, 

— 00B: Match transactions from any dual-core module in the physical package

Figure 30-47.  MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH
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— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules 
in the physical package

— 11B: Match transaction from more than one dual-core modules in the 
physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions 

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions 

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to 
increment the event count field.

30.15.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in 
Figure 30-48. Counting starts after software writes a non-zero value to one or more 
of the upper 32 bits. 

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between 

Intel Xeon processor 7100 and 7400. 
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical 

processor in the physical package. The lowest two bits corresponds to two logical 
processors in the first processor core, the next two bits corresponds to two logical 
processors in the second processor core. Bit 36 specifies other symmetric agent 
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches 
transactions from any logical processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-
core module in the physical package. Bit 37 specifies central agent transactions. 

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event 
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position) 
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state. 
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching. 

If bit 56 is clear, Core_Module_Select encoding is ignored. The valid encodings for 
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the lower two bits (bit 55, 54) differ slightly between Intel Xeon processor 7100 
and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the 
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not 
this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the 
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which 
module) in the physical package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical 
package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to 
increment the event count field.
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30.15.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given 
in Figure 30-49. Counting starts after software writes a non-zero value to one or 
more of the upper 32 bits. 

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic 
signals to increment the associated event count field if one of the attribute matches. 
Some of the sub-event mask bit counts durations. A duration event increments at 
most once per cycle.

Figure 30-48.  MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH
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30.15.4.1  FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from 

this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction 

originated from this physical package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction 

originated from this physical package
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction 

originated from this physical package
• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a 

concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry 

in the IOQ

Figure 30-49.  MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
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• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs 

issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request 

pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request 

pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a 

concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another 

agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

30.15.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status 
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze, 
unfreeze, or reset those counters. The following bit fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the 

GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the 

GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified 

by the GL_event_select field. The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to 

specified command operations indicated by bits 2:0. Bit 16 corresponds to 
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event 
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds 
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see 
Figure 30-47 for example) is set, the event logic forces the value FFFF_FFFFH into 
the event count field instead of incrementing it. 

30.16 PERFORMANCE MONITORING (P6 FAMILY 
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two 
types of events to be monitored simultaneously. These can either count events or 
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measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring 
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any 
privilege level. 

Table A-22, Appendix A, lists the events that can be counted with the P6 family 
performance monitoring counters.

NOTE
The performance-monitoring events listed in Appendix A are 
intended to be used as guides for performance tuning. Counter 
values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are 
documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance 
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs 
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the 
RDMSR and WRMSR instructions, respectively. They can be accessed using these 
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs 
can be read from any privilege level using the RDPMC (read performance-monitoring 
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the 
events listed in Table A-22 are model-specific for P6 family 
processors. They are not guaranteed to be available in other IA-32 
processors.

30.16.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the 
events to be counted, how they should be counted, and the privilege levels at which 
counting should take place. Figure 30-50 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as 
follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect 

certain microarchitectural conditions (see Table A-22, for a list of events and their 
8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event 
logic unit selected in the event select field to detect a specific microarchitectural 
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table A-22).
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• USR (user mode) flag (bit 16) — Specifies that events are counted only when 
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in 
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are 
counted only when the processor is operating at privilege level 0. This flag can be 
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events. 
The processor counts the number of deasserted to asserted transitions of any 
condition that can be expressed by the other fields. The mechanism is limited in 
that it does not permit back-to-back assertions to be distinguished. This 
mechanism allows software to measure not only the fraction of time spent in a 
particular state, but also the average length of time spent in such a state (for 
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins 
and increments the counter when performance-monitoring events occur; when 
clear, the processor toggles the PMi pins when the counter overflows. The 
toggling of a pin is defined as assertion of the pin for a single bus clock followed 
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor 
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the 
PerfEvtSel0 MSR. When set, performance counting is enabled in both 
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison 
when set, so that both greater than and less than comparisons can be made.

Figure 30-50.  PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask 
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)
30-116 Vol. 3B



PERFORMANCE MONITORING
• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the 
processor compares this mask to the number of events counted during a single 
cycle. If the event count is greater than or equal to this mask, the counter is 
incremented by one. Otherwise the counter is not incremented. This mask can be 
used to count events only if multiple occurrences happen per clock (for example, 
two or more instructions retired per clock). If the counter-mask field is 0, then 
the counter is incremented each cycle by the number of events that occurred that 
cycle.

30.16.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration 
counts for the selected events being counted. The RDPMC instruction can be used by 
programs or procedures running at any privilege level and in virtual-8086 mode to 
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this 
instruction to be restricted to only programs and procedures running at privilege 
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it 
does not necessarily wait until all previous instructions have been executed before 
reading the counter. Similarly, subsequent instructions may begin execution before 
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the 
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct 
user access to the performance-monitoring counters, but provide a user-accessible 
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring 
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR 
may be written with any value, and the high-order 8 bits are sign-extended according 
to the value of bit 31. This operation allows writing both positive and negative values 
to the performance counters.

30.16.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information 
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in 
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the 
execution of a WRMSR instruction that sets the enable counter flag. The counters can 
be stopped by clearing the enable counters flag or by clearing all the bits in the 
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the 
PerfEvtSel1 MSR.
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30.16.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating 
system needs to provide an event-monitoring device driver. This driver should 
include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters
• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current 
processor supports the performance-monitoring counters and time-stamp counter. 
This procedure compares the family and model of the processor returned by the 
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The 
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID 
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1 
MSRs for the events to be counted and the method used to count them and initializes 
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters 
procedure stops the performance counters (see Section 30.16.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and 
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that 
allow application code to read the counters. 

30.16.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when 
a performance-monitoring counter overflows. This mechanism is enabled by setting 
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The 
primary use of this option is for statistical performance sampling. 

To use this option, the operating system should do the following things on the 
processor for which performance events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-

monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns 

without executing any instructions.
• Provide an event monitor driver that provides the actual interrupt handler and 

modifies the reserved IDT entry to point to its interrupt routine.
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When interrupted by a counter overflow, the interrupt handler needs to perform the 
following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment 

selector, counter values and other relevant information at the time of the 
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the 
information collected for analysis of the performance of the profiled application.

30.17 PERFORMANCE MONITORING (PENTIUM 
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used 
to count events or measure duration. The counters are supported by three MSRs: the 
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and 
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0. 

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be 
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table A-23 
are model-specific for the Pentium processor.
The performance-monitoring events listed in Appendix A are 
intended to be used as guides for performance tuning. Counter 
values reported are not guaranteed to be accurate and should be 
used as a relative guide for tuning. Known discrepancies are 
documented where applicable.

30.17.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see 
Figure 30-51). To control each counter, the CESR register contains a 6-bit event 
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter 
control field (CC0 and CC1). The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by 

entering an event code in the field) up to two events to be monitored. See Table 
A-23 for a list of available event codes.
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• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the 
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks 
(duration); the middle bit enables counting when the CPL is 3; and the low-order 
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the 
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting 
one of these flags to 1 causes the processor to assert its associated pin when the 
counter has overflowed; setting the flag to 0 causes the pin to be asserted when 
the counter has been incremented. These flags permit the pins to be individually 
programmed to indicate the overflow or incremented condition. The external 
signalling of the event on the pins will lag the internal event by a few clocks as the 
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and 
cleared or preset before switching to a new event. It is not possible to set one 
counter separately. If only one event needs to be changed, the CESR register must 

Figure 30-51.  CESR MSR (Pentium Processor Only)
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be read, the appropriate bits modified, and all bits must then be written back to 
CESR. At reset, all bits in the CESR register are cleared.

30.17.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate 
when the performance-monitor counter has incremented and an “occurrence event” 
is being counted, the associated pin is asserted (high) each time the event occurs. 
When a “duration event” is being counted, the associated PM pin is asserted for the 
entire duration of the event. When the performance-monitor pins are configured to 
indicate when the counter has overflowed, the associated PM pin is asserted when 
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has 
incremented, it should be noted that although the counters may increment by 1 or 2 
in a single clock, the pins can only indicate that the event occurred. Moreover, since 
the internal clock frequency may be higher than the external clock frequency, a 
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to 
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit 
39 indicates an overflow. A counter may be preset to a specific value less then 240 − 
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow. 

Approximately 5 clocks later, the overflow is indicated externally and appropriate 
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of 
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure 
these pins to indicate breakpoint matches.

30.17.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using 
CTR0 and CTR1) are divided in two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place. 

If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the 
pins are asserted each clock counters increment. But if an event happens twice in 
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the 
condition is true. When used to indicate when counters increment, PM0/BP0 
and/or PM1/BP1 pins are asserted for the duration.
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APPENDIX A
PERFORMANCE-MONITORING EVENTS

This appendix lists the performance-monitoring events that can be monitored with 
the Intel 64 or IA-32 processors. The ability to monitor performance events and the 
events that can be monitored in these processors are mostly model-specific, except 
for architectural performance events, described in Section A.1. 

Non-architectural performance events (i.e. model-specific events) are listed for each 
generation of microarchitecture:
• Section A.2 - Processors based on Intel® microarchitecture code name Sandy 

Bridge
• Section A.3 - Processors based on Intel® microarchitecture code name Nehalem
• Section A.4 - Processors based on Intel® microarchitecture code name Westmere
• Section A.5 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section A.6 - Processors based on Intel® Core™ microarchitecture
• Section A.7 - Processors based on Intel® Atom™ microarchitecture
• Section A.8 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section A.9 - Processors based on Intel NetBurst® microarchitecture
• Section A.10 - Pentium® M family processors
• Section A.11 - P6 family processors
• Section A.12 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as 
guides for performance tuning. The counter values reported by the 
performance-monitoring events are approximate and believed to be 
useful as relative guides for tuning software. Known discrepancies 
are documented where applicable.

A.1 ARCHITECTURAL PERFORMANCE-MONITORING 
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core 
Duo processors. They are also supported on processors based on Intel Core microar-
chitecture. Table A-1 lists pre-defined architectural performance events that can be 
configured using general-purpose performance counters and associated event-select 
registers.
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A.2 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™ PROCESSOR 2XXX SERIES

Second generation Intel® Core™ Processor 2xxx Series are based on the Intel 
microarchitecture code name Sandy Bridge. They support the architectural and non-
architectural performance-monitoring events listed in Table A-1 and Table A-2. The 
events in Table A-2 apply to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_2AH.

Table A-1.  Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference 
Cycles

01H Unhalted reference cycles Measures 
bus cycle1

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo pro-

cessors measures bus clocks.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Last level cache references

2EH LLC Misses 41H Last level cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at 
retirement

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer 
blocks with unknown data. 

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with 
store buffer that cannot be 
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to 
resource not available. 

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is 
blocked but has no DCU miss.
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05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load 
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to 
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load 
operations are temporarily blocked 
because of older stores, with 
addresses that are not yet known. A 
load operation may incur more than 
one block of this type. 

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a 
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused 
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No 
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after 
Machine Clears or JEClear. Set 
Cmask= 1.

Set Edge to 
count 
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to 
IDQ for this thread. 

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops 
issued by the RAT to RS. 

Set Cmask = 1, Inv = 1, Any= 1to 
count stalled cycles of this core.

Set Cmask = 1, 
Inv = 1to count 
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double 
precision FP packed uops executed.

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single 
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single 
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double 
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active, 
includes INT and FP. Set 'edge =1, 
cmask=1' to count the number of 
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions 
written into the IQ every cycle. 

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that 
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW 
prefetch data load requests to L2. 

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO 
requests that hit the L2 cache. 

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. 

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests. 

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that 
hit the L2 cache. 

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that 
missed the L2 cache. 

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware 
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware 
prefetcher that missed L2.

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware 
prefetchers 

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines 

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any 
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D 
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D 
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. 

see Table A-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss 
condition for references to the last 
level cache. 

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table A-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of 
XCLK (100 MHz) when not halted.

see Table A-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of 
outstanding L1D misses every cycle. 
Set Cmaks = 1 and Edge =1 to count 
occurrences.

Counter 2 only;

Set Cmask = 1 to 
count cycles. 

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page 
walk of any page size 
(4K/2M/4M/1G).

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page 
walk that completes of any page 
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first 
TLB level but hit the second and do 
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches 
that hit fill buffer allocated for S/W 
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load  dispatches 
that hit fill buffer allocated for H/W 
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that 
miss the L1D cache. A request is 
being counted each time it access 
the cache & miss it, including if a 
block is applicable or if hit the Fill 
Buffer for example.

This accounts for 
both L1 streamer 
and IP-based 
(IPP) HW 
prefetchers. 

51H 01H L1D.REPLACEMENT Counts the number of lines brought 
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of 
modified L1D cache lines. 

51H 04H L1D.EVICTION Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of 
L1D due to Snoop HitM or dirty line 
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA 
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar 
single precision uops allocated.

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control 
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due 
Branch Order Buffer. 

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order 
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the 
thread is in ring 0

Use Edge to 
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the 
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the 
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data 
Read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store 
transactions in SQ to uncore. Set 
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data 
read transactions in SQ to uncore. 
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2  are 
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops 
delivered to IDQ from MITE path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops 
delivered to IDQ from DSB path. 

Set Cmask = 1 to count cycles.

Can combine 
Umask 08H and 
10H 

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
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PERFORMANCE-MONITORING EVENTS
79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops 
delivered to IDQ when MS busy by 
DSB. Set Cmask = 1 to count cycles 
MS is busy. Set Cmask=1 and Edge 
=1 to count MS activations.

Can combine 
Umask 08H and 
10H 

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops 
delivered to IDQ when MS is busy by 
MITE. Set Cmask = 1 to count cycles.

Can combine 
Umask 04H and 
20H 

79H 30H IDQ.MS_UOPS Increment each cycle # of uops 
delivered to IDQ from MS by either 
DSB or MITE. Set Cmask = 1 to count 
cycles.

Can combine 
Umask 04H, 08H 
and 30H 

80H 02H ICACHE.MISSES Number of Instruction Cache, 
Streaming Buffer and Victim Cache 
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause 
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause 
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No 
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix 
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch 
instructions executed, but not 
necessarily retired.

Must combine 
with umask 40H, 
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch 
instructions excluding calls and 
indirect branches.

Must combine 
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that 
have a return mnemonic.

Must combine 
with umask 80H
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PERFORMANCE-MONITORING EVENTS
88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call 
branch instructions, excluding non 
call branch, executed. 

Must combine 
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including 
both register and memory indirect, 
executed.

Must combine 
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches 
executed. 

Applicable to 
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches 
executed. Must combine with 
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch 
instructions mispredicted.

Must combine 
with umask 40H, 
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near 
branch instructions that are not 
calls nor returns.

Must combine 
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near 
branches that have a return 
mnemonic.

Must combine 
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional 
near call branch instructions, 
excluding non call branch, executed. 

Must combine 
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near 
calls, including both register and 
memory indirect, executed.

Must combine 
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken 
near branches executed,. 

Applicable to 
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near 
branches executed. Must combine 
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches 
(not necessarily retired). 

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered 
uops to RAT per thread. 

Use Cmask to 
qualify uop b/w
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PERFORMANCE-MONITORING EVENTS
A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on 
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on 
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is 
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is 
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on 
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is 
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is 
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on 
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on 
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on 
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to 
Resource Related reason. 

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack 
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS 
entry available. 

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store 
buffers available. (not including 
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer 
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the 
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR 
register rename occurring to close 
to a previous MXCSR rename. 
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PERFORMANCE-MONITORING EVENTS
A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was 
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused 
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not 
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode 
Stream Buffer (DSB) fill not because 
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes, 
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to 
uncore. 

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to 
uncore., including regular RFOs, 
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore 
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be 
dispatched per-thread each cycle. 
Set Cmask = 1, INV =1 to count stall 
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be 
dispatched per-core each cycle.

Do not need to 
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take 
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations 
with all the following traits: 1. 
addressing of the format [base + 
offset], 2. the offset is between 1 
and 2047, 3. the address specified 
in the base register is in one page 
and the address [base+offset] is in 
another page.
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PERFORMANCE-MONITORING EVENTS
B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.8.5, “Off-core 
Response Performance Monitoring”; 
PMC0 only.

Requires 
programming 
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 30.8.5, “Off-core 
Response Performance Monitoring”. 
PMC3 only.

Requires 
programming 
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush 
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are 
cancelled due to L1D bank conflicts 
with other load ports

cmask=1 

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at 
retirement

See Table A-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event 
with HW to reduce effect of PEBS 
shadow in IP distribution

PMC1 only; Must 
quiesce other 
PMCs.

C0H 02H INST_RETIRED.X87 X87 instruction retired event 

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an 
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with 
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty 
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to 
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops 
retired, Use cmask=1 and invert to 
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine 
clears due to memory order 
conflicts.
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PERFORMANCE-MONITORING EVENTS
C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed 
AVX masked load operations that 
refer to an illegal address range 
with the mask bits set to 0. 

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table A-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call 
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return 
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken 
branch instructions retired. 

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches 
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table A-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch 
instructions retired. 

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted 
near call instructions retired. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch 
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch 
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch 
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to 
output value.
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PERFORMANCE-MONITORING EVENTS
CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input 
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to 
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to 
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE* 
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR 
records by hardware. 

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency 
threshold. PMC3 only.

Specify threshold 
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise 
store operation via PEBS record. 
PMC3 only.

See Section 
30.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that 
are loads. Combine with umask 10H, 
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that 
are stores. Combine with umask 
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with 
STLB miss. Must combine with 
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with 
lock. Must combine with umask 01H, 
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with 
line split. Must combine with umask 
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops. 
Must combine with umask 01H, 
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits 
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits 
as data sources.
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D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data 
sources were data hits in LLC 
without snoops required.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data 
sources were load uops missed L1 
but hit FB due to preceding miss to 
the same cache line with data not 
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data 
sources were LLC hit and cross-core 
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data 
sources were LLC and cross-core 
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data 
sources were HitM responses from 
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data 
sources were hits in LLC without 
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown 
information as data source in cache 
serviced the load. 

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that 
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching 
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that 
access L2 cache 

including rejects. 

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2 
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe
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Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of 
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table A-3.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does 
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does 
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does 
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does 
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by 
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by 
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2 
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2 
prefetch

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does 
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table A-2.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
A-16 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Table A-3.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIHITI

Snoop responses received from 
processor cores to requests initiated 
by this Cbox.

Must combine 
with one of the 
umask values 
of 20H, 40H, 
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.RSPIHITFSE

22H 04H UNC_CBO_XSNP_RE
SPONSE.RSPSHITFSE

22H 08H UNC_CBO_XSNP_RE
SPONSE.RSPSFWDM

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIFWDM

22H 20H UNC_CBO_XSNP_RE
SPONSE.AND_EXTER
NAL

Filter on cross-core snoops resulted in 
external snoop request. Must combine 
with at least one of 01H, 02H, 04H, 
08H, 10H

22H 40H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
core request. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

22H 80H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in 
LLC evictions. Must combine with at 
least one of 01H, 02H, 04H, 08H, 10H

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache 
and found line in M-state.

Must combine 
with one of the 
umask values 
of 10H, 20H, 
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache 
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache 
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache 
and found line in I-state.

34H 10H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable read requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H

34H 20H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated 
cacheable write requests. Must 
combine with at least one of 01H, 
02H, 04H, 08H
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A.3 PERFORMANCE MONITORING EVENTS FOR  
INTEL® CORE™I7 PROCESSOR FAMILY AND XEON 
PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the 
architectural and non-architectural performance-monitoring events listed in Table 
A-1 and Table A-4. The events in Table A-4 generally applies to processors with 

34H 40H UNC_CBO_CACHE_LO
OKUP.AND_EXTSNP

Filter on external snoop requests. 
Must combine with at least one of 
01H, 02H, 04H, 08H

34H 80H UNC_CBO_CACHE_LO
OKUP.AND_ANY

Filter on any IRQ or IPQ initiated 
requests including uncacheable, non-
coherent requests. Must combine with 
at least one of 01H, 02H, 04H, 08H

80H 01H UNC_IMPH_CBO_TRK
_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries. 
Valid entries are between allocation 
to the first of IDIO or DRSO messages. 
Accounts for coherent and in-
coherent traffic

Counter 0 only

81H 01H UNC_IMPH_CBO_TRK
_REQUEST.ALL

Counts the number of core-outgoing 
entries. Accounts for coherent and in-
coherent traffic

81H 20H UNC_IMPH_CBO_TRK
_REQUEST.WRITES

Counts the number of allocated write 
entries, include full, partial, and 
evictions. 

81H 80H UNC_IMPH_CBO_TRK
_REQUEST.EVICTION
S

Counts the number of evictions 
allocated. 

83H 01H UNC_IMPH_COH_TR
K_OCCUPANCY.ALL

Counts cycles weighted by the 
number of core-outgoing valid entries 
in the coherent tracker queue.

Counter 0 only

84H 01H UNC_IMPH_COH_TR
K_REQUEST.ALL

Counts the number of core-outgoing 
entries in the coherent tracker queue. 
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CPUID signature of DisplayFamily_DisplayModel encoding with the following values: 
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID 
signature of DisplayFamily_DisplayModel 06_2EH have a small number of events that 
are not supported in processors with CPUID signature 06_1AH, 06_1EH, and 
06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_1AH, 06_1EH, 06_1FH) also support the following non-architectural, product-
specific uncore performance-monitoring events listed in Table A-5. 

Fixed counters in the core PMU support the architecture events defined in Table A-9.

Table A-4.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer 
drains.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load 
accessing uncacheable (UC or 
USWC) memory, load lock, and load 
with page table in UC or USWC 
memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.
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08H 80H DTLB_LOAD_MISSES.
LARGE_WALK_COMP
LETED

Counts number of completed large 
page walks due to load miss in the 
STLB.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified 
with ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.L3_DATA_MISS_
UNKNOWN

Counts number of memory load 
instructions retired where the 
memory reference missed L3 and 
data source is unknown. 

Available only for 
CPUID signature 
06_2EH

Table A-4.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.
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Event Mask 
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0FH 02H MEM_UNCORE_RETI
RED.OTHER_CORE_L
2_HITM

Counts number of memory load 
instructions retired where the 
memory reference hit modified data 
in a sibling core residing on the 
same socket. 

0FH 08H MEM_UNCORE_RETI
RED.REMOTE_CACHE
_LOCAL_HOME_HIT

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and HIT in a 
remote socket's cache. Only counts 
locally homed lines.

0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and was remotely 
homed. This includes both DRAM 
access and HITM in a remote 
socket's cache for remotely homed 
lines.

0FH 20H MEM_UNCORE_RETI
RED.LOCAL_DRAM

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and required a 
local socket memory reference. This 
includes locally homed cachelines 
that were in a modified state in 
another socket.

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Counts number of memory load 
instructions retired where the 
memory reference missed the L1, 
L2 and L3 caches and to perform 
I/O. 

Available only for 
CPUID signature 
06_2EH

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.
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10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer 
uops executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.
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13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch 
from the one-cycle delayed staging 
latch before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.
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1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed.  In such 
case, 

20H 01H LSD_OVERFLOW Counts number of loops that can’t 
stream from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be 
rejected for various reasons.  Only 
non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.
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24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.
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26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.

26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.
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27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a 
RFO prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request

27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.
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27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. 
a cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests 
originating from the core that 
reference a cache line in the last 
level cache. The event count 
includes speculative traffic but 
excludes cache line fills due to a L2 
hardware-prefetch. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table A-1
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2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss 
condition for references to the last 
level cache. The event count may 
include speculative traffic but 
excludes cache line fills due to L2 
hardware-prefetches. Because 
cache hierarchy, cache sizes and 
other implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table A-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table A-1

40H 01H L1D_CACHE_LD.I_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the I (invalid) state, i.e. the read 
request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_ST
ATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_S
TATE

Counts L1 data cache read requests 
where the cache line to be loaded is 
in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

Counter 0, 1 only
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41H 04H L1D_CACHE_ST.E_ST
ATE

Counts L1 data cache store RFO 
requests where the cache line to be 
loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_S
TATE

Counts L1 data cache store RFO 
requests where cache line to be 
loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HI
T

Counts retired load locks that hit in 
the L1 data cache or hit in an 
already allocated fill buffer.   The 
lock portion of the load lock 
transaction must hit in the L1D. 

The initial load 
will pull the lock 
into the L1 data 
cache. Counter 0, 
1 only

42H 02H L1D_CACHE_LOCK.S_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the shared state. 

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_
STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the exclusive state. 

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M
_STATE

Counts L1 data cache retired load 
locks that hit the target cache line in 
the modified state. 

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached, 
speculated and retired) to the L1 
data cache, including all loads and 
stores with any memory types. The 
event counts memory accesses only 
when they are actually performed. 
For example, a load blocked by 
unknown store address and later 
performed is only counted once. 

The event does 
not include non-
memory 
accesses, such as 
I/O accesses. 
Counter 0, 1 only

43H 02H L1D_ALL_REF.CACHE
ABLE

Counts all data reads and writes 
(speculated and retired) from 
cacheable memory, including locked 
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.
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49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains 
multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 

49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the 
L1D.  There are two prefetchers in 
the L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on 
an L1D hit,  while the IP prefetcher 
does not.

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.

Table A-4.  Non-Architectural Performance Events In the Processor Core for Intel Core 
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B A-31



PERFORMANCE-MONITORING EVENTS
51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_F
B_HIT

Counts the number of cacheable 
load lock speculated or retired 
instructions accepted into the fill 
buffer.

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is 
asserted when there is a locked 
memory access, due to uncacheable 
memory, a locked operation that 
spans two cache lines, or a page 
walk from an uncacheable page 
table.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit 
is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.
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80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an 
instruction fetch stalls due to a L1I 
cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all 
levels of the ITLB which resulted in 
a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.
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88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.

89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.
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89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.
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A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there 
are long latency operations in the 
pipe (possibly load and store 
operations that miss the L2 cache, 
or instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.
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A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a 
static scheme and dynamic data 
provided by the L2 Branch 
Prediction Unit. If the conditional 
branch target is not found in the 
Target Array and the IQ predicts 
that the branch is taken, then the IQ 
will force the Branch Address 
Calculator to issue a BACLEAR. Each 
BACLEAR asserted by the BAC 
generates approximately an 8 cycle 
bubble in the instruction fetch 
pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks 
to the uncore. 

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD 
and FP add Uops.
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B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. 
This is a core count only and can not 
be collected per thread.

B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts cycles when the Uops 
executed were issued from any 
ports except port 5. Use Cmask=1 
for active cycles; Cmask=0 for 
weighted cycles; Use CMask=1, 
Invert=1 to count P0-4 stalled 
cycles Use Cmask=1, Edge=1, 
Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts cycles when the Uops are 
executing . Use Cmask=1 for active 
cycles; Cmask=0 for weighted 
cycles; Use CMask=1, Invert=1 to 
count P0-4 stalled cycles Use 
Cmask=1, Edge=1, Invert=1 to 
count P0-4 stalls.
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B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”.

Requires 
programming 
MSR 01A6H

B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

See Section 30.7, “Performance 
Monitoring for Processors Based on 
Intel® Microarchitecture Code 
Name Westmere”.

Requires 
programming 
MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table A-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of MMX 
instructions retired.
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C0H 04H INST_RETIRED.MMX Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle.

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

 Branch instructions at retirement See Table A-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 
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C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table A-1 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. 
This counts both clean or modified 
hits.
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CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to 
cache.  This is counting secondary 
L1D misses.

CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.
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D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 

D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.
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D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the out-of-order pipeline. 
Note that, at this stage in the 
pipeline, additional stalls may occur 
at the same cycle and prevent the 
stalled micro-ops from entering the 
pipe. In such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to 
enter the execution pipe.  Cycles 
when partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To 
count each of these conditions 
separately use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same 
segment occurs, a stall occurs in the 
front-end of the pipeline until the 
renamed segment retires.
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D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates 
approximately an 8 cycle bubble in 
the instruction fetch pipeline. The 
effect on total execution time 
depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU 
predicted a taken branch after 
incorrectly assuming that it was not 
taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.
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E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.
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F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is 
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands 
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.
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Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors 
based on Intel microarchitecture code name Nehalem. Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table A-5.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.
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00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.
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03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 

03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.
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03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.

04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.
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04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 

06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.
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06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.

07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.
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07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 

0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.

Table A-5.  Non-Architectural Performance Events In the Processor Uncore for Intel 
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B A-53



PERFORMANCE-MONITORING EVENTS
0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.

20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.
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21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.

24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.
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25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.

27H 01H UNC_QMC_NORMAL_
FULL.READ.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with read 
requests.

27H 02H UNC_QMC_NORMAL_
FULL.READ.CH1

Uncore cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with read 
requests.

27H 04H UNC_QMC_NORMAL_
FULL.READ.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with read 
requests.

27H 08H UNC_QMC_NORMAL_
FULL.WRITE.CH0

Uncore cycles all the entries in the 
DRAM channel 0 medium or low 
priority queue are occupied with write 
requests.
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27H 10H UNC_QMC_NORMAL_
FULL.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 medium or low 
priority queue are occupied with write 
requests.

27H 20H UNC_QMC_NORMAL_
FULL.WRITE.CH2

Uncore cycles all the entries in the 
DRAM channel 2 medium or low 
priority queue are occupied with write 
requests.

28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.
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29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.

29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.
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2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 

2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 
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2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 

2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.
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31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.
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40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.
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41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.
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60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.
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62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.

63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.
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64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.
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Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH 
have a distinct uncore sub-system that is significantly different from the uncore 
found in processors with CPUID signature 06_1AH, 06_1EH, and 06_1FH. Non-archi-
tectural Performance monitoring events for its uncore will be available in future docu-
mentation.

A.4 PERFORMANCE MONITORING EVENTS FOR 
PROCESSORS BASED ON 
INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support 
the architectural and non-architectural performance-monitoring events listed in 
Table A-1 and Table A-6. Table A-6 applies to processors with CPUID signature of 
DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH. 
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel 
06_25H, 06_2CH) also support the following non-architectural, product-specific 
uncore performance-monitoring events listed in Table A-7. Fixed counters support 
the architecture events defined in Table A-9.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.
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Table A-6.  Non-Architectural Performance Events In the Processor Core for Processors 
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an 
earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with misaligned 
address.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed 
with at-Retirement block code. The 
following loads need to be executed 
at retirement and wait for all senior 
stores on the same thread to be 
drained: load splitting across 4K 
boundary (page split), load accessing 
uncacheable (UC or USWC) memory, 
load lock, and load with page table in 
UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable  loads delayed with L1D 
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to 
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a 
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page 
walks due to load miss in the STLB.

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page walk 
due to a load miss in the STLB. 

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses 
where the low part of the linear to 
physical address translation was 
missed.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions 
with an architecturally-visible load 
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions 
with an architecturally-visible store 
retired on the architected path.
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0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions 
exceeding the latency specified with 
ld_lat facility.

In conjunction 
with ld_lat 
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of 
retired stores that missed the DTLB. 
The DTLB miss is not counted if the 
store operation causes a fault. Does 
not counter prefetches. Counts both 
primary and secondary misses to 
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued 
by the Register Allocation Table to 
the Reservation Station, i.e. the 
UOPs issued from the front end to 
the back end. 

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no 
Uops issued by the Register 
Allocation Table to the Reservation 
Station, i.e. the UOPs issued from 
the front end to the back end. 

set “invert=1, 
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops 
that were issued from the Register 
Allocation Table to the Reservation 
Station.

0FH 01H MEM_UNCORE_RETI
RED.UNKNOWN_SOU
RCE

Load instructions retired with 
unknown LLC miss (Precise Event).

Applicable to one 
and two sockets

0FH 02H MEM_UNCORE_RETI
RED.OHTER_CORE_L
2_HIT

Load instructions retired that HIT 
modified data in sibling core (Precise 
Event).

Applicable to one 
and two sockets

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT 
modified data in remote socket 
(Precise Event).

Applicable to two 
sockets only

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram 
and remote cache HIT data sources 
(Precise Event).

Applicable to one 
and two sockets
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0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote 
DRAM and remote home-remote 
cache HITM (Precise Event).

Applicable to two 
sockets only

0FH 20H MEM_UNCORE_RETI
RED.OTHER_LLC_MIS
S

Load instructions retired other LLC 
miss (Precise Event).

Applicable to two 
sockets only

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O (Precise 
Event).

Applicable to one 
and two sockets

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP 
Computational Uops Executed. The 
number of FADD, FSUB, FCOM, 
FMULs, integer MULsand IMULs, 
FDIVs, FPREMs, FSQRTS, integer 
DIVs, and IDIVs. This event does not 
distinguish an FADD used in the 
middle of a transcendental flow 
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops 
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP 
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer uops 
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed 
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar 
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single 
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double 
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD 
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD 
integer shift operations.
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12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD 
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD 
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD 
integer logical  operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD 
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD 
integer shuffle and move 
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched 
from the Reservation Station that 
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS 
dispatches at the stage latch. If an 
RS dispatch can not bypass to LB, it 
has another chance to dispatch from 
the one-cycle delayed staging latch 
before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads 
dispatched from the Reservation 
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the 
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the 
divider is busy executing divide or 
square root operations. The divide 
can be integer, X87 or Streaming 
SIMD Extensions (SSE). The square 
root operation can be either X87 or 
SSE. 

Set 'edge =1, invert=1, cmask=1' to 
count the number of divides.

Count may be 
incorrect When 
SMT is on
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14H 02H ARITH.MUL Counts the number of multiply 
operations executed. This includes 
integer as well as floating point 
multiply operations but excludes 
DPPS mul and MPSAD.

Count may be 
incorrect When 
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions 
written into the instruction queue 
every cycle. 

18H 01H INST_DECODED.DEC0 Counts number of instructions that 
require  decoder 0 to be decoded.  
Usually, this means that the 
instruction maps to more than 1 
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two 
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of 
cycles during which instructions are 
written to the instruction queue.  
Dividing this counter by the number 
of instructions written to the 
instruction queue 
(INST_QUEUE_WRITES) yields the 
average number of instructions 
decoded each cycle. If this number is  
less than four and the pipe stalls, 
this indicates that the decoder is 
failing to decode enough 
instructions per cycle to sustain the 
4-wide pipeline. 

If SSE* 
instructions that 
are 6 bytes or 
longer arrive one 
after another, 
then front end 
throughput may 
limit execution 
speed. 

20H 01H LSD_OVERFLOW Number of loops that can not stream 
from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the 
L2 cache. L2 loads include both L1D 
demand misses as well as L1D 
prefetches.  L2 loads can be rejected 
for various reasons.  Only non 
rejected loads are counted.
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24H 02H L2_RQSTS.LD_MISS Counts the number of loads that 
miss the L2 cache. L2 loads include 
both L1D demand misses as well as 
L1D prefetches. 

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads 
include both L1D demand misses as 
well as L1D prefetches. 

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO 
requests that hit the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches. Count includes WC 
memory requests, where the data is 
not fetched but the permission to 
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO 
requests that miss the L2 cache. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2 
RFO requests include both L1D 
demand RFO misses as well as L1D 
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction 
fetches that hit the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction 
fetches that miss the L2 cache. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2 
instruction fetches include both L1I 
demand misses as well as L1I 
instruction prefetches.
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24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both 
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both 
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both 
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code 
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code 
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss. L2 demand loads are 
both L1D demand misses and L1D 
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the S (shared) state. L2 
demand loads are both L1D demand 
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the E (exclusive) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand 
loads where the cache line to be 
loaded is in the M (modified) state. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests. 
L2 demand loads are both L1D 
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the I (invalid) state, i.e. a 
cache miss.
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26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the S (shared) state. A 
prefetch RFO will miss on an S state 
line, while a prefetch read will hit on 
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data 
loads where the cache line to be 
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e, a cache miss. The L1D prefetcher 
does not issue a RFO prefetch.

This is a demand 
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the S (shared) state. The 
L1D prefetcher does not issue a RFO 
prefetch,.

This is a demand 
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in the M (modified) state. 
The L1D prefetcher does not issue a 
RFO prefetch.

This is a demand 
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO 
requests where the cache line to be 
loaded is in either the S, E or M 
states. The L1D prefetcher does not 
issue a RFO prefetch.

This is a demand 
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO 
requests.The L1D prefetcher does 
not issue a RFO prefetch.

This is a demand 
RFO request
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27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the I (invalid) state, 
i.e. a cache miss. 

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO 
requests where the cache line to be 
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the E (exclusive) 
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in the M (modified) 
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock 
RFO requests where the cache line 
to be loaded is in either the S, E, or 
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO 
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the I (invalid) state, i.e. a 
cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to 
the L2 where the cache line to be 
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .
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2EH 02H L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache 
references. Because cache 
hierarchy, cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table A-1

2EH 01H L3_LAT_CACHE.MISS Counts uncore Last Level Cache 
misses. Because cache hierarchy, 
cache sizes and other 
implementation-specific 
characteristics; value comparison to 
estimate performance differences is 
not recommended. 

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles 
while the thread is not in a halt 
state. The thread enters the halt 
state when it is running the HLT 
instruction. The core frequency may 
change from time to time due to 
power or thermal throttling. 

see Table A-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC 
when not halted.

see Table A-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the 
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the 
STLB which resulted in a completed 
page walk.

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to 
misses in the STLB.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first 
level misses that hit in the second 
level TLB.  This event is only 
relevant if the core contains multiple 
DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by 
low part of address, includes 
references to 2M pages because 2M 
pages do not use the PDE. 
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49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the 
L1 data cache while a previous SSE 
prefetch instruction to the same 
cache line has started prefetching 
but has not yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware 
prefetch requests dispatched out of 
the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware 
prefetch requests that miss the L1D.  
There are two prefetchers in the 
L1D.  A streamer, which predicts 
lines sequentially after this one 
should be fetched, and the IP 
prefetcher that remembers access 
patterns for the current instruction.  
The streamer prefetcher stops on an 
L1D hit,  while the IP prefetcher 
does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests 
triggered by the Finite State 
Machine and pushed into the 
prefetch FIFO. Some of the prefetch 
requests are dropped due to 
overwrites or competition between 
the IP index prefetcher and 
streamer prefetcher.  The prefetch 
FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought 
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines 
brought into the L1 data cache. 

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines 
evicted from the L1 data cache  due 
to replacement. 

Counter 0, 1 only
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51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines 
evicted from the L1 data cache due 
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable 
load lock speculated instructions 
accepted into the fill buffer.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_DATA

Counts weighted cycles of offcore 
demand data read requests. Does 
not include L2 prefetch requests.

counter 0

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_CODE

Counts weighted cycles of offcore 
demand code read requests. Does 
not include L2 prefetch requests.

counter 0

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.RFO

Counts weighted cycles of offcore 
demand RFO requests. Does not 
include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AN
Y.READ

Counts weighted cycles of offcore 
read requests of any kind. Include L2 
prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D 
and L2 are locked.  A lock is asserted 
when there is a locked memory 
access, due to uncacheable memory, 
a locked operation that spans two 
cache lines, or a page walk from an 
uncacheable page table. This event 
does not cause locks, it merely 
detects them.

Counter 0, 1 only. 
L1D and L2 locks 
have a very high 
performance 
penalty and it is 
highly 
recommended to 
avoid such 
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that 
cacheline in the L1 data cache unit is 
locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O 
transactions.

80H 01H L1I.HITS Counts all instruction fetches that 
hit the L1 instruction cache.
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80H 02H L1I.MISSES Counts all instruction fetches that 
miss the L1I cache. This includes 
instruction cache misses,  streaming 
buffer misses, victim cache misses 
and uncacheable fetches.  An 
instruction fetch miss is counted 
only once and not once for every 
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches, 
including uncacheable fetches that 
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction 
fetch stalls due to a L1I cache miss, 
ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all 
levels of the ITLB which causes a 
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all levels 
of the ITLB which resulted in a 
completed page walk.

85H 04H ITLB_MISSES.WALK_
CYCLES

Counts ITLB miss page walk cycles.

85H 80H ITLB_MISSES.LARGE_
WALK_COMPLETED

Counts number of completed large 
page walks due to misses in the 
STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder 
stalls due to length changing 
prefixes: 66, 67 or REX.W (for 
EM64T) instructions which change 
the length of the decoded 
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall 
cycles due to Brand Prediction Unit 
(PBU) Most Recently Used (MRU) 
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction 
queue.
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87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction 
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional 
near branch instructions executed, 
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch 
instructions excluding calls and 
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
indirect near branch instructions 
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch 
instructions executed, but not 
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that 
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call 
branch instructions, excluding non 
call branch, executed. 

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including 
both register and memory indirect, 
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches 
executed,  but not necessarily 
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches 
executed, but not necessarily 
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches 
(not necessarily retired). This 
includes only instructions and not 
micro-op branches. Frequent 
branching is not necessarily a major 
performance issue. However 
frequent branch mispredictions may 
be a problem.
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89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted 
conditional near branch instructions 
executed, but not necessarily 
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro 
unconditional near branch 
instructions, excluding calls and 
indirect branches (should always be 
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed 
mispredicted indirect near branch 
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near 
branches executed,  but not 
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect 
branches that have a rear return 
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect 
near calls executed, (should always 
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near 
calls exeucted, including both 
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call 
branches executed, but not 
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near 
branches that are taken, but not 
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted 
near branch instructions that were 
executed, but not necessarily 
retired.
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A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator 
resource related stalls. Includes 
register renaming buffer entries, 
memory buffer entries. In addition 
to resource related stalls, this event 
counts some other events. Includes 
stalls arising during branch 
misprediction recovery, such as if 
retirement of the mispredicted 
branch is delayed and stalls arising 
while store buffer is draining from 
synchronizing operations.

Does not include 
stalls due to 
SuperQ (off core) 
queue full, too 
many cache 
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack 
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of 
cycles when the number of 
instructions in the pipeline waiting 
for execution reaches the limit the 
processor can handle. A high count 
of this event indicates that there are 
long latency operations in the pipe 
(possibly load and store operations 
that miss the L2 cache, or 
instructions dependent upon 
instructions further down the 
pipeline that have yet to retire. 

When RS is full, 
new instructions 
can not enter the 
reservation 
station and start 
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of 
cycles that a resource related stall 
will occur due to the number of 
store instructions reaching the limit 
of the pipeline, (i.e. all store buffers 
are used). The stall ends when a 
store instruction commits its data to 
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while 
execution was stalled due to writing 
the floating-point unit (FPU) control 
word.
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A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register 
rename occurring to close to a 
previous MXCSR rename.  The 
MXCSR provides control and status 
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while 
execution was stalled due to other 
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions 
decoded that are macro-fused but 
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR 
was forced by the Instruction 
Queue.  The IQ is also responsible 
for providing conditional branch 
prediciton direction based on a static 
scheme and dynamic data provided 
by the L2 Branch Prediction Unit. If 
the conditional branch target is not 
found in the Target Array and the IQ 
predicts that the branch is taken, 
then the IQ will force the Branch 
Address Calculator to issue a 
BACLEAR. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops 
delivered by loop stream detector.

Use cmask=1 and 
invert to count 
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUEST
S.DEMAND.READ_DA
TA

Counts number of offcore demand 
data read requests.  Does not count 
L2 prefetch requests.

B0H 02H OFFCORE_REQUEST
S.DEMAND.READ_CO
DE

Counts number of offcore demand 
code read requests.  Does not count 
L2 prefetch requests.
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B0H 04H OFFCORE_REQUEST
S.DEMAND.RFO

Counts number of offcore demand 
RFO requests. Does not count L2 
prefetch requests.

B0H 08H OFFCORE_REQUEST
S.ANY.READ

Counts number of offcore read 
requests. Includes L2 prefetch 
requests.

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO 
requests. Includes L2 prefetch 
requests.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks to 
the uncore. 

B0H 80H OFFCORE_REQUEST
S.ANY

Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed 
that were issued on port 0.  Port 0 
handles integer arithmetic, SIMD and 
FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed 
that were issued on port 1. Port 1 
handles integer arithmetic, SIMD, 
integer shift, FP multiply and FP 
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed 
that were issued on port 2.  Port 2 
handles the load Uops. This is a core 
count only and can not be collected 
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed 
that were issued on port 3. Port 3 
handles store Uops.  This is a core 
count only and can not be collected 
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed 
that where issued on port  4.  Port 4 
handles the value to be stored for 
the store Uops issued on port 3. This 
is a core count only and can not be 
collected per thread.
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B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts number of cycles there are 
one or more uops being executed 
and were issued on ports 0-4. This is 
a core count only and can not be 
collected per thread.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed 
that where issued on port 5. 

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts number of cycles there are 
one or more uops being executed on 
any ports. This is a core count only 
and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed 
that where issued on port  0, 1, or 5.

use cmask=1, 
invert=1 to count 
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed 
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is 
full to handle off-core requests. 

B3H 01H SNOOPQ_REQUESTS
_OUTSTANDING.DAT
A

Counts weighted cycles of snoopq 
requests for data. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 02H SNOOPQ_REQUESTS
_OUTSTANDING.INVA
LIDATE

Counts weighted cycles of snoopq 
invalidate requests. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B3H 04H SNOOPQ_REQUESTS
_OUTSTANDING.COD
E

Counts weighted cycles of snoopq 
requests for code. Counter 0 only.

Use cmask=1 to 
count cycles not 
empty. 

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code 
requests.

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data 
requests.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop 
invalidate requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Requires 
programming 
MSR 01A6H
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B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by 
this thread in response to a snoop 
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent 
by this thread in response to a 
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent 
by this thread in response to a 
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

see Section 30.6.1.3, “Off-core 
Response Performance Monitoring 
in the Processor Core”

Use MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table A-1
Notes: INST_RETIRED.ANY is 
counted by a designated fixed 
counter. INST_RETIRED.ANY_P is 
counted by a programmable counter 
and is an architectural performance 
event.  Event is supported if 
CPUID.A.EBX[1] = 0.

Counting: 
Faulting 
executions of 
GETSEC/VM 
entry/VM 
Exit/MWait will 
not count as 
retired 
instructions. 

C0H 02H INST_RETIRED.X87 Counts the number of floating point 
computational operations retired: 
floating point computational 
operations executed by the assist 
handler and sub-operations of 
complex floating point instructions 
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX 
instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops 
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count 
of 8 per cycle). Most instructions are 
composed of one or two micro-ops. 
Some instructions are decoded into 
longer sequences such as repeat 
instructions, floating point 
transcendental instructions, and 
assists.

Use cmask=1 and 
invert to count 
active cycles or 
stalled cycles
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C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement 
slots used each cycle

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops 
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is 
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine 
clears due to memory order 
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a 
program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.  The modified cache line 
is written back to the L2 and 
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table A-1 

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional 
branch instructions retired. 

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct & 
indirect near unconditional calls 
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch 
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at 
retirement

See Table A-1 

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional 
retired calls. 

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct & 
indirect near unconditional retired 
calls. 

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls. 

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision 
floating point Uops retired.
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C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision 
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision 
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer 
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired 
instructions that missed the ITLB 
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that 
hit the L1 data cache. 

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that 
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that 
hit their own, unshared lines in the 
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that 
hit in a sibling core's L2 (on die core).  
Since the L3 is inclusive of all cores 
on the package, this is an L3 hit. This 
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that 
miss the L3 cache.  The load was 
satisfied by a remote socket, local 
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that 
miss the L1D and the address is 
located in an allocated line fill buffer 
and will soon be committed to cache.  
This is counting secondary L1D 
misses.

Table A-6.  Non-Architectural Performance Events In the Processor Core for Processors 
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
Vol. 3B A-91



PERFORMANCE-MONITORING EVENTS
CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads 
that missed the DTLB. The DTLB 
miss is not counted if the load 
operation causes a fault.  This event 
counts loads from cacheable 
memory only. The event does not 
count loads by software prefetches. 
Counts both primary and secondary 
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point 
instruction following any MMX 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction 
following a floating-point 
instruction. You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating 
point to MMX instructions and from 
MMX instructions to floating point 
instructions.  You can use this event 
to estimate the penalties for the 
transitions between floating-point 
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions 
decoded, (but not necessarily 
executed or retired).

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls. 
INV=1, Cmask= 1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded 
by the Microcode Sequencer, MS.  
The MS delivers uops when the 
instruction is more than 4 uops long 
or a microcode assist is occurring. 
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D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer 
(ESP) instructions decoded: push , 
pop , call , ret, etc.  ESP instructions 
do not generate a Uop to increment 
or decrement ESP.  Instead, they 
update an ESP_Offset register that 
keeps track of the delta to the 
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer 
(ESP) sync operations where an ESP 
instruction is corrected  by adding 
the ESP offset register to the 
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during 
which execution stalled due to 
several reasons, one of which is a 
partial flag register stall. A partial 
register stall may occur when two 
conditions are met: 1) an instruction 
modifies some, but not all, of the 
flags in the flag register and 2) the 
next instruction, which depends on 
flags, depends on flags that were 
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of 
cycles instruction execution latency 
became longer than the defined 
latency because the instruction 
used a register that was partially 
written by previous instruction.
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D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when 
ROB read port stalls occurred, which 
did not allow new micro-ops to enter 
the out-of-order pipeline. Note that, 
at this stage in the pipeline, 
additional stalls may occur at the 
same cycle and prevent the stalled 
micro-ops from entering the pipe. In 
such a case, micro-ops retry 
entering the execution pipe in the 
next cycle and the ROB-read port 
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall 
due to microarchitecturally required 
serialization. Microcode 
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table 
stall cycles due to:  Cycles when ROB 
read port stalls occurred, which did 
not allow new micro-ops to enter 
the execution pipe.  Cycles when 
partial register stalls occurred  
Cycles when flag stalls occurred  
Cycles floating-point unit (FPU) 
status word stalls occurred. To count 
each of these conditions separately 
use the events: 
RAT_STALLS.ROB_READ_PORT, 
RAT_STALLS.PARTIAL, 
RAT_STALLS.FLAGS, and 
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles 
due to the lack of renaming 
resources for the ES, DS, FS, and GS 
segment registers. If a segment is 
renamed but not retired and a 
second update to the same segment 
occurs, a stall occurs in the front-
end of the pipeline until the 
renamed segment retires.
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D5H 01H ES_REG_RENAMES Counts the number of times the ES 
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to 
floating point exception to a fused 
uop.

E0H 01H BR_INST_DECODED Counts the number of branch 
instructions decoded. 

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch 
Prediciton Unit missed predicting a 
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the 
front end is resteered, mainly when 
the Branch Prediction Unit cannot 
provide a correct prediction and this 
is corrected by the Branch Address 
Calculator at the front end. This can 
occur if the code has many branches 
such that they cannot be consumed 
by the BPU. Each BACLEAR asserted 
by the BAC generates approximately 
an 8 cycle bubble in the instruction 
fetch pipeline. The effect on total 
execution time depends on the 
surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address 
Calculator clears (BACLEAR) 
asserted due to conditional branch 
instructions in which there was a 
target hit but the direction was 
wrong.  Each BACLEAR asserted by 
the BAC generates approximately an 
8 cycle bubble in the instruction 
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch 
Prediction Unit clears: BPU predicted 
a taken branch after incorrectly 
assuming that it was not taken. 

The BPU clear 
leads to 2 cycle 
bubble in the 
Front End.
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E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit 
clears due to Most Recently Used 
conflicts.  The PBU clear leads to a 3 
cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to 
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to 
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch 
operations due to HW prefetch or 
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to 
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations 
due to load, RFO, L1D writeback or 
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to 
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the S 
(shared) state. 

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines 
allocated in the L2 cache in the E 
(exclusive) state. 

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines 
allocated in the L2 cache. 

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted 
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache 
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted 
by a prefetch request.
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F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line 
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for 
any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU 
hints sent to L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits 
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is 
full.  Neither of the threads on this 
core will be able to access the 
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point 
operations executed that required 
micro-code assist intervention. 
Assists are required in the following 
cases: SSE instructions, (Denormal 
input when the DAZ flag is off or 
Underflow result when the FTZ flag 
is off): x87 instructions, (NaN or 
denormal are loaded to a register or 
used as input from memory, Division 
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point 
micro-code assist when the output 
value (destination register) is invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point 
micro-code assist when the input 
value (one of the source operands to 
an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit 
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit 
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit 
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit 
unpack operations.
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Non-architectural Performance monitoring events of the uncore sub-system for 
Processors with CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH, 
and 06_1FH support performance events listed in Table A-7.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit 
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit 
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit 
shift or move operations.

Table A-7.  Non-Architectural Performance Events In the Processor Uncore for 
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00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read 
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write 
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer 
probe tracker is full. The peer probe 
tracker queue tracks snoops from the 
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read 
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue 
write tracker has at least one valid 
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer 
probe tracker has at least one valid 
entry. The peer probe tracker queue 
tracks IOH and remote socket snoops.
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02H 01H UNC_GQ_OCCUPANC
Y.READ_TRACKER

Increments the number of queue 
entries (code read, data read, and 
RFOs) in the tread tracker. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker 
allocate to deallocate entries. The GQ 
read tracker allocate to deallocate 
occupancy count is divided by the 
count to obtain the average read 
tracker latency. 

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker 
entries for which a full cache line read 
has missed the L3. The GQ read 
tracker L3 miss to fill occupancy count 
is divided by this count to obtain the 
average cache line read L3 miss 
latency. The latency represents the 
time after which the L3 has 
determined that the cache line has 
missed.  The time between a GQ read 
tracker allocation and the L3 
determining that the cache line has 
missed is the average L3 hit latency. 
The total L3 cache line read miss 
latency is the hit latency + L3 miss 
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker queue that hit or miss the L3.  
The GQ read tracker L3 hit occupancy 
count is divided by this count to 
obtain the average L3 hit latency. 
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03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker 
entries that are allocated in the read 
tracker, have missed in the L3 and 
have not acquired a Request 
Transaction ID.   The GQ  read tracker 
L3 miss to RTID acquired occupancy 
count is divided by this count to 
obtain the average latency for a read 
L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker, have missed in the 
L3 and have not acquired a Request 
Transaction ID.   The GQ write tracker 
L3 miss to RTID occupancy count is 
divided by this count to obtain the 
average latency for a write L3 miss to 
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write 
tracker entries that are allocated in 
the write tracker queue that miss the 
L3.  The GQ write tracker occupancy 
count is divided by the this count to 
obtain the average L3 write miss 
latency. 

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe 
tracker (snoop) entries that are 
allocated in the peer probe tracker 
queue that miss the L3.  The GQ peer 
probe occupancy count is divided by 
this count to obtain the average L3 
peer probe miss latency. 

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath 
Interface input data port is busy 
importing data from the Quickpath 
Interface.  Each cycle the input port 
can transfer 8  or 16 bytes of data.
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04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath 
Memory Interface input data port is 
busy importing data from the 
Quickpath Memory Interface. Each 
cycle the input port can transfer 8  or 
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy 
importing data from the Last Level 
Cache. Each cycle the input port can 
transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data 
port is busy importing data from 
processor cores 0 and 2. Each cycle 
the input port can transfer 32 bytes 
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data 
port is busy importing data from 
processor cores 1 and 3. Each cycle 
the input port can transfer 32 bytes 
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data 
port is busy sending data to the 
Quickpath Interface or Quickpath 
Memory Interface. Each cycle the 
output port can transfer 32 bytes of 
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy 
sending data to the Last Level Cache. 
Each cycle the output port can 
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is 
busy sending data to the Cores. Each 
cycle the output port can transfer 32 
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the 
local home that L3 does not have the 
referenced cache line. 
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06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the 
local home that L3 has the referenced 
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the local home in the 
S state.

06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read 
invalidate snoops to the local home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the local home in the M 
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses 
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data 
read snoops to the local home that 
the L3 has the referenced line cached 
in the M state. 

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a 
remote home that L3 does not have 
the referenced cache line. 

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a 
remote home that L3 has the 
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced cache line 
in the E state. The L3 cache line state 
is changed to the S state and the line 
is forwarded to the remote home in 
the S state.
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07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read 
invalidate snoops to a remote home 
that the L3 has the referenced cache 
line in the M state. The L3 cache line 
state is invalidated and the line is 
forwarded to the remote home in the 
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses 
sent to the local home.

07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data 
read snoops to a remote home that 
the L3 has the referenced line cached 
in the M state. 

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a 
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and 
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that 
hit in the L3. Writebacks from the 
cores will always result in L3 hits due 
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote 
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit 
the L3. 

09H 01H UNC_L3_MISS.READ Number of code read, data read and 
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that 
miss the L3. Should always be zero as 
writebacks from the cores will always 
result in L3 hits due to the inclusive 
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote 
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss 
the L3. 
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0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines 
allocated in M state.  The only time a 
cache line is allocated in the M state is 
when the line was forwarded in M 
state is forwarded due to a Snoop 
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines 
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines 
allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines 
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines 
allocated in any state. 

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines 
victimized that were in the M state. 
When the victim cache line is in M 
state, the line is written to its home 
cache agent which can be either local 
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines 
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines 
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines 
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines 
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines 
victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOT
O_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state.

0CH 02H UNC_GQ_SNOOP.GOT
O_I

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state.
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0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the S state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_E

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from E state.

Requires 
writing MSR 
301H with 
mask = 2H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_F

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from F (forward) 
state.

Requires 
writing MSR 
301H with 
mask = 8H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_M

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from M state.

Requires 
writing MSR 
301H with 
mask = 1H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_S

Counts the number of remote snoops 
that have requested a cache line be 
set to the I state from S state.

Requires 
writing MSR 
301H with 
mask = 4H

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home 
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home 
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home 
Logic read requests from  a remote 
socket.
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20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home 
Logic write requests from a remote 
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home 
Logic read requests from  the local 
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home 
Logic write requests from  the local 
socket.

21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker 
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the 
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the 
Quickpath Home Logic remote tracker 
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the 
Quickpath Home Logic local tracker is 
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate 
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to 
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to 
deallocate read occupancy.
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24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
2 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address 
Table (AAT) entries that saw a max of 
3 conflicts. The AAT is a structure that 
tracks requests that are in conflict. 
The requests themselves are in the 
home tracker entries. The count is 
reported when an AAT entry 
deallocates.

25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home 
Logic IOH Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home 
Logic Remote Tracker contains two or 
more requests with an address 
conflict. A max of 3 requests can be in 
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home 
Logic Local Tracker contains two or 
more requests with an address 
conflict.  A max of 3 requests can be 
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the 
Quickpath Memory Controller that 
bypass the Quickpath Home Logic. All 
local accesses can be bypassed. For 
remote requests, only read requests 
can be bypassed.
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28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous read 
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the 
DRAM channel 1high priority queue 
are occupied with isochronous read 
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous read 
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the 
DRAM channel 0 high priority queue 
are occupied with isochronous write 
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the 
DRAM channel 1 high priority queue 
are occupied with isochronous write 
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the 
DRAM channel 2 high priority queue 
are occupied with isochronous write 
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 0.

29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding read request to  DRAM 
channel 2.
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29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath 
Memory Controller has at least 1 
outstanding write request to  DRAM 
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request 
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request 
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request 
occupancy.

2AH 07H UNC_QMC_OCCUPAN
CY.ANY

Normal read request occupancy for 
any channel.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request 
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request 
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request 
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 medium 
and low priority read requests. The 
QMC channel 0 normal read 
occupancy divided by this count 
provides the average QMC channel 0 
read latency. 
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2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 medium 
and low priority read requests. The 
QMC channel 1 normal read 
occupancy divided by this count 
provides the average QMC channel 1 
read latency. 

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 medium 
and low priority read requests. The 
QMC channel 2 normal read 
occupancy divided by this count 
provides the average QMC channel 2 
read latency. 

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath 
Memory Controller medium and low 
priority read requests. The QMC 
normal read occupancy divided by this 
count provides the average QMC read 
latency. 

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath 
Memory Controller channel 0 high 
priority isochronous read requests. 

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath 
Memory Controller channel 1 high 
priority isochronous read requests. 

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath 
Memory Controller channel 2 high 
priority isochronous read requests. 

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath 
Memory Controller high priority 
isochronous read requests. 

2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath 
Memory Controller channel 0 critical 
priority isochronous read requests. 

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath 
Memory Controller channel 1 critical 
priority isochronous read requests. 

Table A-7.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
A-110 Vol. 3B



PERFORMANCE-MONITORING EVENTS
2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath 
Memory Controller channel 2 critical 
priority isochronous read requests. 

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath 
Memory Controller critical priority 
isochronous read requests. 

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line 
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line 
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line 
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line 
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line 
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line 
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line 
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line 
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0 
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1 
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2 
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel 
requests.
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31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2 
priority updates. A priority update 
occurs when an ISOC high or critical 
request is received by the QHL and 
there is a matching request with 
normal priority that has already been 
issued to the QMC.  In this instance, 
the QHL will send a priority update to 
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority 
updates. A priority update occurs 
when an ISOC high or critical request 
is received by the QHL and there is a 
matching request with normal priority 
that has already been issued to the 
QMC.  In this instance, the QHL will 
send a priority update to QMC to 
expedite the request.

32H 01H UNC_IMC_RETRY.CH
0

Counts number of IMC DRAM channel 
0 retries. DRAM retry only occurs 
when configured in RAS mode.
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32H 02H UNC_IMC_RETRY.CH
1

Counts number of IMC DRAM channel 
1 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH
2

Counts number of IMC DRAM channel 
2 retries. DRAM retry only occurs 
when configured in RAS mode.

32H 07H UNC_IMC_RETRY.AN
Y

Counts number of IMC DRAM retries 
from any channel. DRAM retry only 
occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_
CNFLTS.IOH

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the IOH.

33H 02H UNC_QHL_FRC_ACK_
CNFLTS.REMOTE

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the remote 
home.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic to the local 
home.

33H 07H UNC_QHL_FRC_ACK_
CNFLTS.ANY

Counts number of Force Acknowledge 
Conflict messages sent by the 
Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IO
H_ORDER

Counts number of occurrences a 
request was put to sleep due to IOH 
ordering (write after read) conflicts. 
While in the sleep state, the request is 
not eligible to be scheduled to the 
QMC.

34H 02H UNC_QHL_SLEEPS.R
EMOTE_ORDER

Counts number of occurrences a 
request was put to sleep due to 
remote socket ordering (write after 
read) conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.
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34H 04H UNC_QHL_SLEEPS.L
OCAL_ORDER

Counts number of occurrences a 
request was put to sleep due to local 
socket ordering (write after read) 
conflicts. While in the sleep state, the 
request is not eligible to be scheduled 
to the QMC.

34H 08H UNC_QHL_SLEEPS.IO
H_CONFLICT

Counts number of occurrences a 
request was put to sleep due to IOH 
address conflicts. While in the sleep 
state, the request is not eligible to be 
scheduled to the QMC.

34H 10H UNC_QHL_SLEEPS.R
EMOTE_CONFLICT

Counts number of occurrences a 
request was put to sleep due to 
remote socket address conflicts. While 
in the sleep state, the request is not 
eligible to be scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.L
OCAL_CONFLICT

Counts number of occurrences a 
request was put to sleep due to local 
socket address conflicts. While in the 
sleep state, the request is not eligible 
to be scheduled to the QMC.

35H 01H UNC_ADDR_OPCODE
_MATCH.IOH

Counts number of requests from the 
IOH, address/opcode of request is 
qualified by mask value written to 
MSR 396H. The following mask values 
are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value
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35H 02H UNC_ADDR_OPCODE
_MATCH.REMOTE

Counts number of requests from the 
remote socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

35H 04H UNC_ADDR_OPCODE
_MATCH.LOCAL

Counts number of requests from the 
local socket, address/opcode of 
request is qualified by mask value 
written to MSR 396H. The following 
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match 
opcode/addres
s by writing 
MSR 396H 
with mask 
supported 
mask value

40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound 
link 0 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound 
link 0 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound 
link 0 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound 
link 1 HOME virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound 
link 1 SNOOP virtual channel is stalled 
due to lack of a VNA and VN0 credit. 
Note that this event does not filter 
out when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound 
link 1 non-data response virtual 
channel is stalled due to lack of a VNA 
and VN0 credit. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.
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40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of a VNA and VN0 credit. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound 
link 0 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Data ResponSe virtual channel 
is stalled due to lack of VNA and VN0 
credits. Note that this event does not 
filter out when a flit would not have 
been selected for arbitration because 
another virtual channel is getting 
arbitrated.
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41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Bypass virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound 
link 1 Non-Coherent Standard virtual 
channel is stalled due to lack of VNA 
and VN0 credits. Note that this event 
does not filter out when a flit would 
not have been selected for arbitration 
because another virtual channel is 
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound 
link 0 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound 
link 1 virtual channels are stalled due 
to lack of VNA and VN0 credits. Note 
that this event does not filter out 
when a flit would not have been 
selected for arbitration because 
another virtual channel is getting 
arbitrated.

42H 01H UNC_QPI_TX_HEADE
R.FULL.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 0 is busy.
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42H 04H UNC_QPI_TX_HEADE
R.FULL.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header 
buffer in the Quickpath Interface 
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 0 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets 
incoming to the Quickpath Interface 
link 1 are stalled and not sent to the 
GQ because the GQ Peer Probe 
Tracker (PPT) does not have any 
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2 
open commands issued either for read 
or write. To read or write data, the 
referenced DRAM page must first be 
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.
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61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to 
CLOSE a page due to page idle timer 
expiration. Closing a page is done by 
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 0 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 1 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges 
(PRE) that were issued to DRAM 
channel 2 because there was a page 
miss. A page miss refers to a situation 
in which a page is currently open and 
another page from the same bank 
needs to be opened. The new page 
experiences a page miss. Closing of 
the old page is done by issuing a 
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0.
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63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0.

64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write 
CAS command was issued on DRAM 
channel 0 where the command issued 
used the auto-precharge (auto page 
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write 
CAS command was issued on DRAM 
channel 1 where the command issued 
used the auto-precharge (auto page 
close) mode.
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64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write 
CAS command was issued on DRAM 
channel 2 where the command issued 
used the auto-precharge (auto page 
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2 
refresh commands. DRAM loses data 
content over time. In order to keep 
correct data content, the data values 
have to be refreshed periodically.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.
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66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2 
precharge-all (PREALL) commands 
that close all open pages in a rank. 
PREALL is issued when the DRAM 
needs to be refreshed or needs to go 
into a power down mode.

67H 01H UNC_DRAM_THERM
AL_THROTTLED

Uncore cycles DRAM was throttled 
due to its temperature being above 
the thermal throttling threshold.

80H 01H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is above the thermal throttling 
threshold temperature.

80H 02H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is above the thermal throttling 
threshold temperature.

80H 04H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is above the thermal throttling 
threshold temperature.

80H 08H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is above the thermal throttling 
threshold temperature.

81H 01H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_0

Cycles that the PCU records that core 
0 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 02H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_1

Cycles that the PCU records that core 
1 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 04H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_2

Cycles that the PCU records that core 
2 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.

81H 08H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_3

Cycles that the PCU records that core 
3 is in the power throttled state due 
to core’s temperature being above the 
thermal throttling threshold.
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82H 01H UNC_PROCHOT_ASS
ERTION

Number of system assertions of 
PROCHOT indicating the entire 
processor has exceeded the thermal 
limit.

83H 01H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_0

Cycles that the PCU records that core 
0 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 02H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_1

Cycles that the PCU records that core 
1 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 04H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_2

Cycles that the PCU records that core 
2 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

83H 08H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_3

Cycles that the PCU records that core 
3 is a low power state due to the 
system asserting PROCHOT the entire 
processor has exceeded the thermal 
limit.

84H 01H UNC_TURBO_MODE.
CORE_0

Uncore cycles that core 0 is operating 
in turbo mode.

84H 02H UNC_TURBO_MODE.
CORE_1

Uncore cycles that core 1 is operating 
in turbo mode.

84H 04H UNC_TURBO_MODE.
CORE_2

Uncore cycles that core 2 is operating 
in turbo mode.

84H 08H UNC_TURBO_MODE.
CORE_3

Uncore cycles that core 3 is operating 
in turbo mode.

85H 02H UNC_CYCLES_UNHAL
TED_L3_FLL_ENABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are enabled.

86H 01H UNC_CYCLES_UNHAL
TED_L3_FLL_DISABL
E

Uncore cycles that at least one core is 
unhalted and all L3 ways are disabled.

Table A-7.  Non-Architectural Performance Events In the Processor Uncore for 
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment
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A.5 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 5200, 5400 SERIES 
AND INTEL® CORE™2 EXTREME PROCESSORS QX 
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architec-
tural and non-architectural performance-monitoring events listed in Table A-1 and 
Table A-10. In addition, they also support the following non-architectural perfor-
mance-monitoring events listed in Table A-8. Fixed counters support the architecture 
events defined in Table A-9.

A.6 PERFORMANCE MONITORING EVENTS FOR 
INTEL® XEON® PROCESSOR 3000, 3200, 5100, 
5300 SERIES AND INTEL® CORE™2 DUO 
PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events. 

Fixed-function performance counters are introduced first on processors based on 
Intel Core microarchitecture. Table A-9 lists pre-defined performance events that can 
be counted using fixed-function performance counters.

Table A-8.  Non-Architectural Performance Events for Processors Based on Enhanced 
Intel Core Microarchitecture

Event
Num.

Umask
Value

Event Mask 
Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_H
OST

Instruction retired while in VMX 
root operations.

D2H 10H RAT_STAALS.OTHER
_SERIALIZATION_ST
ALLS

This events counts the number of 
stalls due to other RAT resource 
serialization not counted by Umask 
value 0FH. 
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Table A-10 lists general-purpose non-architectural performance-monitoring events 
supported in processors based on Intel Core microarchitecture. For convenience, 

Table A-9.  Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function 
Performance 
Counter Address

Event Mask 
Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIX
ED_CTR0

309H Inst_Retired.Any This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIX
ED_CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios. 

The core frequency may change from time 
to time due to transitions associated with 
Enhanced Intel SpeedStep Technology or 
TM2. For this reason this event may have 
a changing ratio with regards to time. 

When the core frequency is constant, this 
event can approximate elapsed time while 
the core was not in halt state. 

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIX
ED_CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of 
reference cycles when the core is not in a 
halt state and not in a TM stop-clock state. 
The core enters the halt state when it is 
running the HLT instruction or the MWAIT 
instruction. 

This event is not affected by core 
frequency changes (e.g., P states) but 
counts at the same frequency as the time 
stamp counter. This event can 
approximate elapsed time while the core 
was not in halt state and not in a TM stop-
clock state. 

This event has a constant ratio with the 
CPU_CLK_UNHALTED.BUS event. 
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Table A-10 also includes architectural events and describes minor model-specific 
behavior where applicable. Software must use a general-purpose performance 
counter to count events listed in Table A-10.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture

Event 
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked 
by a preceding 
store with 
unknown 
address 

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to an 
address that is not yet calculated. The 
number of events is greater or equal to 
the number of load operations that were 
blocked. 

If the load and the store are always to 
different addresses, check why the 
memory disambiguation mechanism is not 
working. To avoid such blocks, increase the 
distance between the store and the 
following load so that the store address is 
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked 
by a preceding 
store with 
unknown data

This event indicates that loads are blocked 
by preceding stores. A load is blocked 
when there is a preceding store to the 
same address and the stored data value is 
not yet known. The number of events is 
greater or equal to the number of load 
operations that were blocked. 

To avoid such blocks, increase the distance 
between the store and the dependant 
load, so that the store data is known at 
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that 
partially 
overlap an 
earlier store, or 
4-Kbyte aliased 
with a previous 
store

This event indicates that loads are blocked 
due to a variety of reasons. Some of the 
triggers for this event are when a load is 
blocked by a preceding store, in one of the 
following:  

• Some of the loaded byte locations are 
written by the preceding store and 
some are not.  

• The load is from bytes written by the 
preceding store, the store is aligned to 
its size and either:
Vol. 3B A-127



PERFORMANCE-MONITORING EVENTS
• The load’s data size is one or two bytes 
and it is not aligned to the store.  

• The load’s data size is of four or eight 
bytes and the load is misaligned. 

• The load is from bytes written by the 
preceding store, the store is misaligned 
and the load is not aligned on the 
beginning of the store.  

• The load is split over an eight byte 
boundary (excluding 16-byte loads). 

• The load and store have the same 
offset relative to the beginning of 
different 4-KByte pages. This case is 
also called 4-KByte aliasing. 

• In all these cases the load is blocked 
until after the blocking store retires and 
the stored data is committed to the 
cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked 
until retirement

This event indicates that load operations 
were blocked until retirement. The number 
of events is greater or equal to the 
number of load operations that were 
blocked. 
This includes mainly uncacheable loads 
and split loads (loads that cross the cache 
line boundary) but may include other cases 
where loads are blocked until retirement.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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03H 20H LOAD_BLOCK.L1D Loads blocked 
by the L1 data 
cache

This event indicates that loads are blocked 
due to one or more reasons.  Some 
triggers for this event are:  

• The number of L1 data cache misses 
exceeds the maximum number of 
outstanding misses supported by the 
processor. This includes misses 
generated as result of demand fetches, 
software prefetches or hardware 
prefetches.  

• Cache line split loads. 
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and 
more. 

• A locked load operation is in progress. 
The number of events is greater or 
equal to the number of load operations 
that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while 
stores are 
blocked due to 
store buffer 
drain

This event counts every cycle during 
which the store buffer is draining. This 
includes: 

• Serializing operations such as CPUID 
• Synchronizing operations such as XCHG 
• Interrupt acknowledgment 
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while 
store is waiting 
for a preceding 
store to be 
globally 
observed

This event counts the total duration, in 
number of cycles, which stores are waiting 
for a preceding stored cache line to be 
observed by other cores. 
This situation happens as a result of the 
strong store ordering behavior, as defined 
in “Memory Ordering,” Chapter 8, Intel® 64 
and IA-32 Architectures Software 
Developer’s Manual, Volume 3A. 

The stall may occur and be noticeable if 
there are many cases when a store either 
misses the L1 data cache or hits a cache 
line in the Shared state. If the store 
requires a bus transaction to read the 
cache line then the stall ends when snoop 
response for the bus transaction arrives.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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04H 08H STORE_BLOCK.
SNOOP

A store is 
blocked due to 
a conflict with 
an external or 
internal snoop.

This event counts the number of cycles 
the store port was used for snooping the 
L1 data cache and a store was stalled by 
the snoop. The store is typically 
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers 
cause a penalty. 

This event indicates performance issues in 
16-bit code. If this event occurs 
frequently, it may be useful to calculate 
the number of instructions retired per 
segment register load. If the resulting 
calculation is low (on average a small 
number of instructions are executed 
between segment register loads), then the 
code’s segment register usage should be 
optimized. 

As a result of branch misprediction, this 
event is speculative and may include 
segment register loads that do not 
actually occur. However, most segment 
register loads are internally serialized and 
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. 

This instruction prefetches the data to the 
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchT0 is executed. 
This instruction prefetches the data to the 
L1 data cache and L2 cache.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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07H 02H SSE_PRE_EXEC.L2  Streaming 
SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 are executed. These 
instructions prefetch the data to the L2 
cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD 
Extensions 
(SSE) Weakly-
ordered store 
instructions 
executed

This event counts the number of times 
SSE non-temporal store instructions are 
executed.

08H 01H DTLB_MISSES.
ANY

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses. The 
count includes misses detected as a result 
of speculative accesses. 

Typically a high count for this event 
indicates that the code accesses a large 
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses 
due to load 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to load operations. 

This count includes misses detected as a 
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses 
due to load 
operations

This event counts the number of level 0 
Data Table Lookaside Buffer (DTLB0) 
misses due to load operations. 

This count includes misses detected as a 
result of speculative accesses. Loads that 
miss that DTLB0 and hit the DTLB1 can 
incur two-cycle penalty.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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08H 08H DTLB_MISSES.
MISS_ST

TLB misses due 
to store 
operations

This event counts the number of Data 
Table Lookaside Buffer (DTLB) misses due 
to store operations. 

This count includes misses detected as a 
result of speculative accesses. Address 
translation for store operations is 
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory 
disambiguation 
reset cycles

This event counts the number of cycles 
during which memory disambiguation 
misprediction occurs. As a result the 
execution pipeline is cleaned and 
execution of the mispredicted load 
instruction and all succeeding instructions 
restarts. 

This event occurs when the data address 
accessed by a load instruction, collides 
infrequently with preceding stores, but 
usually there is no collision. It happens 
rarely, and may have a penalty of about 20 
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of 
loads 
successfully 
disambiguated.

This event counts the number of load 
operations that were successfully 
disambiguated. Loads are preceded by a 
store with an unknown address, but they 
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of 
page-walks 
executed

This event counts the number of page-
walks executed due to either a DTLB or 
ITLB miss. 

The page walk duration, 
PAGE_WALKS.CYCLES, divided by number 
of page walks is the average duration of a 
page walk. The average can hint whether 
most of the page-walks are satisfied by 
the caches or cause an L2 cache miss.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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0CH 02H PAGE_WALKS.
CYCLES

Duration of 
page-walks in 
core cycles 

This event counts the duration of page-
walks in core cycles. The paging mode in 
use typically affects the duration of page 
walks. 

Page walk duration divided by number of 
page walks is the average duration of 
page-walks. The average can hint at 
whether most of the page-walks are 
satisfied by the caches or cause an L2 
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point 
computational 
micro-ops 
executed

This event counts the number of floating 
point computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. Assists are 
required in the following cases:  

• Streaming SIMD Extensions (SSE) 
instructions: 

• Denormal input when the DAZ 
(Denormals Are Zeros) flag is off 

• Underflow result when the FTZ (Flush 
To Zero) flag is off 

• X87 instructions: 
• NaN or denormal are loaded to a 

register or used as input from memory 
• Division by 0  
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer 
as well as floating point multiply 
operations.

Use IA32_PMC1 only.

13H 00H DIV Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-
root operations executed.

Use IA32_PMC1 only.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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14H 00H CYCLES_DIV
_BUSY

Cycles the 
divider busy

This event counts the number of cycles 
the divider is busy executing divide or 
square root operations. The divide can be 
integer, X87 or Streaming SIMD 
Extensions (SSE). The square root 
operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the 
divider is busy 
and all other 
execution units 
are idle.

This event counts the number of cycles 
the divider is busy (with a divide or a 
square root operation) and no other 
execution unit or load operation is in 
progress. 

Load operations are assumed to hit the L1 
data cache. This event considers only 
micro-ops dispatched after the divider 
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass 
to FP operation

This event counts the number of times 
floating point operations use data 
immediately after the data was generated 
by a non-floating point execution unit. 
Such cases result in one penalty cycle due 
to data bypass between the units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass 
to SIMD 
operation

This event counts the number of times 
SIMD operations use data immediately 
after the data was generated by a non-
SIMD execution unit. Such cases result in 
one penalty cycle due to data bypass 
between the units.

Use IA32_PMC1 only.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
Comment
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19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass 
to load 
operation

This event counts the number of delayed 
bypass penalty cycles that a load 
operation incurred. 

When load operations use data 
immediately after the data was generated 
by an integer execution unit, they may 
(pending on certain dynamic internal 
conditions) incur one penalty cycle due to 
delayed data bypass between the units.

Use IA32_PMC1 only.

21H See 
Table 
30-2

L2_ADS.(Core) Cycles L2 
address bus is 
in use

This event counts the number of cycles 
the L2 address bus is being used for 
accesses to the L2 cache or bus queue. It 
can count occurrences for this core or both 
cores.

23H See 
Table 
30-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2 
transfers data 
to the core

This event counts the number of cycles 
during which the L2 data bus is busy 
transferring data from the L2 cache to the 
core. It counts for all L1 cache misses (data 
and instruction) that hit the L2 cache. 

This event can count occurrences for this 
core or both cores.

24H Com-
bined 
mask 
from 
Table 
30-2 
and 
Table 
30-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache 
misses

This event counts the number of cache 
lines allocated in the L2 cache. Cache lines 
are allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers 
to cache lines that are missing in the L2 
cache. 

This event can count occurrences for this 
core or both cores. It can also count 
demand requests and L2 hardware 
prefetch requests together or separately.

25H See 
Table 
30-2

L2_M_LINES_IN.
(Core)

L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache. 

This event can count occurrences for this 
core or both cores.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
Num

Umask
Value Event Name Definition

Description and
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26H See 
Table 
30-2 
and 
Table 
30-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

27H See 
Table 
30-2 
and 
Table 
30-4

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 
modified cache lines evicted. These lines 
are written back to memory unless they 
also exist in a modified-state in one of the 
L1 data caches. 

This event can count occurrences for this 
core or both cores. It can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H Com-
bined 
mask 
from 
Table 
30-2 
and 
Table 
30-5

L2_IFETCH.(Core, 
Cache Line State)

L2 cacheable 
instruction 
fetch requests

This event counts the number of 
instruction cache line requests from the 
IFU. It does not include fetch requests 
from uncacheable memory. It does not 
include ITLB miss accesses.  

This event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

29H Combin
ed mask 
from 
Table 
30-2, 
Table 
30-4, 
and 
Table 
30-5

L2_LD.(Core, 
Prefetch, Cache 
Line State)

L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers.  

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2 

hardware prefetch requests together or 
separately

• of accesses to cache lines at different 
MESI states

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)

Event 
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Umask
Value Event Name Definition
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2AH See 
Table 
30-2 
and 
Table 
30-5

L2_ST.(Core, Cache 
Line State)

L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the 
data from the L2 cache.  

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2BH See 
Table 
30-2 
and 
Table 
30-5

L2_LOCK.(Core, 
Cache Line State)

L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache. 

The event can count occurrences for this 
core or both cores. It can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
30-2, 
Table 
30-4, 
and 
Table 
30-5

L2_RQSTS.(Core, 
Prefetch, Cache 
Line State)

L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, instruction fetches, and 
all L2 hardware prefetch requests.  

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2 

hardware prefetch requests together, 
or separately

• of accesses to cache lines at different 
MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss 
the L2 cache. This includes L1 data cache 
reads, writes, and locked accesses, L1 data 
prefetch requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This 
includes L1 data cache reads, writes, and 
locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)
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30H See 
Table 
30-2, 
Table 
30-4, 
and 
Table 
30-5

L2_REJECT_BUSQ.(
Core, Prefetch, 
Cache Line State)

Rejected L2 
cache requests

This event indicates that a pending L2 
cache request that requires a bus 
transaction is delayed from moving to the 
bus queue. Some of the reasons for this 
event are: 

• The bus queue is full. 
• The bus queue already holds an entry 

for a cache line in the same set. 
The number of events is greater or equal 
to the number of requests that were 
rejected. 

• for this core or both cores. 
• due to demand requests and L2 

hardware prefetch requests together, 
or separately. 

• of accesses to cache lines at different 
MESI states.

32H See 
Table 
30-2

L2_NO_REQ.(Core) Cycles no L2 
cache requests 
are pending

This event counts the number of cycles 
that no L2 cache requests were pending 
from a core. When using the BOTH_CORE 
modifier, the event counts only if none of 
the cores have a pending request. The 
event counts also when one core is halted 
and the other is not halted. 

The event can count occurrences for this 
core or both cores.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep 
Technology 
(EIST) 
transitions

This event counts the number of 
transitions that include a frequency 
change, either with or without voltage 
change. This includes Enhanced Intel 
SpeedStep Technology (EIST) and TM2 
transitions.

The event is incremented only while the 
counting core is in C0 state. Since 
transitions to higher-numbered CxE states 
and TM2 transitions include a frequency 
change or voltage transition, the event is 
incremented accordingly. 

Table A-10.  Non-Architectural Performance Events 
in Processors Based on Intel Core Microarchitecture (Contd.)
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3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the 
thermal trip threshold temperature.

Following a thermal trip, the processor 
automatically reduces frequency and 
voltage. The processor checks the 
temperature every millisecond and returns 
to normal when the temperature falls 
below the thermal trip threshold 
temperature. 

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles 
when core is 
not halted

This event counts the number of core 
cycles while the core is not in a halt state. 
The core enters the halt state when it is 
running the HLT instruction. This event is a 
component in many key event ratios.  

The core frequency may change due to 
transitions associated with Enhanced Intel 
SpeedStep Technology or TM2. For this 
reason, this event may have a changing 
ratio in regard to time. 

When the core frequency is constant, this 
event can give approximate elapsed time 
while the core not in halt state.

This is an architectural performance event. 

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles 
when core is 
not halted

This event counts the number of bus 
cycles while the core is not in the halt 
state. This event can give a measurement 
of the elapsed time while the core was not 
in the halt state. The core enters the halt 
state when it is running the HLT 
instruction. 

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is 
the maximum bus to processor frequency 
ratio.  

Non-halted bus cycles are a component in 
many key event ratios.
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3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus 
cycles during which the core remains non-
halted and the other core on the processor 
is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine 
the amount of time that only one core was 
in use.

40H See 
Table 
30-5 

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable 
data reads

This event counts the number of data 
reads from cacheable memory. Locked 
reads are not counted.

41H See 
Table 
30-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable 
data writes

This event counts the number of data 
writes to cacheable memory. Locked 
writes are not counted.

42H See 
Table 
30-5

L1D_CACHE_
LOCK.(Cache Line 
State)

L1 data 
cacheable 
locked reads

This event counts the number of locked 
data reads from cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1 
data cacheable 
locked 
operation

This event counts the number of cycles 
during which any cache line is locked by 
any locking instruction. 

Locking happens at retirement and 
therefore the event does not occur for 
instructions that are speculatively 
executed. Locking duration is shorter than 
locked instruction execution duration.

43H 01H L1D_ALL_REF All references 
to the L1 data 
cache

This event counts all references to the L1 
data cache, including all loads and stores 
with any memory types. 

The event counts memory accesses only 
when they are actually performed. For 
example, a load blocked by unknown store 
address and later performed is only 
counted once. 

The event includes non-cacheable 
accesses, such as I/O accesses.
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43H 02H L1D_ALL_
CACHE_REF

L1 Data 
cacheable 
reads and 
writes

This event counts the number of data 
reads and writes from cacheable memory, 
including locked operations. 

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines 
allocated in the 
L1 data cache

This event counts the number of lines 
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache 
lines allocated 
in the L1 data 
cache

This event counts the number of modified 
lines brought into the L1 data cache. 

47H 00H L1D_M_EVICT Modified cache 
lines evicted 
from the L1 
data cache

This event counts the number of modified 
lines evicted from the L1 data cache, 
whether due to replacement or by snoop 
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of 
outstanding L1 
data cache 
misses at any 
cycle

This event counts the number of 
outstanding L1 data cache misses at any 
cycle. An L1 data cache miss is 
outstanding from the cycle on which the 
miss is determined until the first chunk of 
data is available. This event counts: 

• all cacheable demand requests
• L1 data cache hardware prefetch 

requests
• requests to write through memory
• requests to write combine memory 
Uncacheable requests are not counted. 
The count of this event divided by the 
number of L1 data cache misses, 
L1D_REPL, is the average duration in core 
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split 
loads from the 
L1 data cache

This event counts the number of load 
operations that span two cache lines. Such 
load operations are also called split loads. 
Split load operations are executed at 
retirement. 
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49H 02H L1D_SPLIT.
STORES

Cache line split 
stores to the 
L1 data cache

This event counts the number of store 
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchNTA were 
executed and missed all cache levels. 

Due to speculation an executed instruction 
might not retire. This instruction 
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT0 were 
executed and missed all cache levels. 

Due to speculation executed instruction 
might not retire. The prefetchT0 
instruction prefetches data to the L2 
cache and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
missing all 
cache levels

This event counts the number of times the 
SSE instructions prefetchT1 and 
prefetchT2 were executed and missed all 
cache levels. 

Due to speculation, an executed 
instruction might not retire. The 
prefetchT1 and PrefetchNT2 instructions 
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load 
operations 
conflicting with 
a software 
prefetch to the 
same address

This event counts load operations sent to 
the L1 data cache while a previous 
Streaming SIMD Extensions (SSE) prefetch 
instruction to the same cache line has 
started prefetching but has not yet 
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache 
prefetch 
requests

This event counts the number of times the 
L1 data cache requested to prefetch a 
data cache line. Requests can be rejected 
when the L2 cache is busy and 
resubmitted later or lost. 

All requests are counted, including those 
that are rejected.
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60H See 
Table 
30-2 
and 
Table 
30-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus 
Agents)

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending 
full cache line read transactions on the bus 
occurring in each cycle. A read transaction 
is pending from the cycle it is sent on the 
bus until the full cache line is received by 
the processor.

The event counts only full-line cacheable 
read requests from either the L1 data 
cache or the L2 prefetchers. It does not 
count Read for Ownership transactions, 
instruction byte fetch transactions, or any 
other bus transaction. 

61H See 
Table 
30-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus 
Not Ready 
signals 
asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional 
bus requests by other bus agents. 

A bus agent asserts the BNR signal when 
the number of data and snoop 
transactions is close to the maximum that 
the bus can handle. To obtain the number 
of bus cycles during which the BNR signal 
is asserted, multiply the event count by 
two. 

While this signal is asserted, new 
transactions cannot be submitted on the 
bus. As a result, transaction latency may 
have higher impact on program 
performance.
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62H See 
Table 
30-3

BUS_DRDY_
CLOCKS.(Bus 
Agents)

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus 
cycles during which the DRDY (Data 
Ready) signal is asserted on the bus. The 
DRDY signal is asserted when data is sent 
on the bus. With the 'THIS_AGENT' mask 
this event counts the number of bus 
cycles during which this agent (the 
processor) writes data on the bus back to 
memory or to other bus agents. This 
includes all explicit and implicit data 
writebacks, as well as partial writes. 

With the 'ALL_AGENTS' mask, this event 
counts the number of bus cycles during 
which any bus agent sends data on the 
bus. This includes all data reads and writes 
on the bus.

63H See 
Table 
30-2 
and 
Table 
30-3

BUS_LOCK_
CLOCKS.(Core and 
Bus Agents)

Bus cycles 
when a LOCK 
signal asserted

This event counts the number of bus 
cycles, during which the LOCK signal is 
asserted on the bus. A LOCK signal is 
asserted when there is a locked memory 
access, due to: 

• uncacheable memory 
• locked operation that spans two cache 

lines 
• page-walk from an uncacheable page 

table
Bus locks have a very high performance 
penalty and it is highly recommended to 
avoid such accesses.

64H See 
Table 
30-2

BUS_DATA_
RCV.(Core)

Bus cycles 
while processor 
receives data

This event counts the number of bus 
cycles during which the processor is busy 
receiving data. 

65H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_BRD.(
Core and Bus 
Agents)

Burst read bus 
transactions

This event counts the number of burst 
read transactions including: 

• L1 data cache read misses (and L1 data 
cache hardware prefetches) 

• L2 hardware prefetches by the DPL and 
L2 streamer 

• IFU read misses of cacheable lines. 
It does not include RFO transactions.
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66H See 
Table 
30-2 
and 
Table 
30-3.

BUS_TRANS_RFO.(
Core and Bus 
Agents)

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data 
cache and the L2 cache. It also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
30-2 
and 
Table 
30-3.

BUS_TRANS_WB.
(Core and Bus 
Agents)

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
IFETCH.(Core and 
Bus Agents)

Instruction-
fetch bus 
transactions

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
INVAL.(Core and 
Bus Agents)

Invalidate bus 
transactions

This event counts all invalidate 
transactions. Invalidate transactions are 
generated when: 

• A store operation hits a shared line in 
the L2 cache. 

• A full cache line write misses the L2 
cache or hits a shared line in the L2 
cache.

6AH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
PWR.(Core and Bus 
Agents)

Partial write 
bus transaction

This event counts partial write bus 
transactions.

6BH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS
_P.(Core and Bus 
Agents)

Partial bus 
transactions

This event counts all (read and write) 
partial bus transactions.
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6CH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_IO.(C
ore and Bus 
Agents)

IO bus 
transactions

This event counts the number of 
completed I/O bus transactions as a result 
of IN and OUT instructions. The count does 
not include memory mapped IO.

6DH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
DEF.(Core and Bus 
Agents)

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
BURST.(Core and 
Bus Agents)

Burst (full 
cache-line) bus 
transactions

This event counts burst (full cache line) 
transactions including: 

• Burst reads 
• RFOs 
• Explicit writebacks 
• Write combine lines

6FH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
MEM.(Core and Bus 
Agents)

Memory bus 
transactions

This event counts all memory bus 
transactions including: 

• Burst transactions
• Partial reads and writes - invalidate 

transactions 
The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_IVAL.

70H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_
ANY.(Core and Bus 
Agents)

All bus 
transactions

This event counts all bus transactions. This 
includes: 

• Memory transactions 
• IO transactions (non memory-mapped) 
• Deferred transaction completion 
• Other less frequent transactions, such 

as interrupts
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77H See 
Table 
30-2 
and 
Table 
30-6

EXT_SNOOP.
(Bus Agents, Snoop 
Response)

External 
snoops

This event counts the snoop responses to 
bus transactions. Responses can be 
counted separately by type and by bus 
agent. 

With the 'THIS_AGENT' mask, the event 
counts snoop responses from this 
processor to bus transactions sent by this 
processor. With the 'ALL_AGENTS' mask 
the event counts all snoop responses seen 
on the bus.

78H See 
Table 
30-2 
and 
Table 
30-7

CMP_SNOOP.(Core, 
Snoop Type)

L1 data cache 
snooped by 
other core

This event counts the number of times the 
L1 data cache is snooped for a cache line 
that is needed by the other core in the 
same processor. The cache line is either 
missing in the L1 instruction or data 
caches of the other core, or is available for 
reading only and the other core wishes to 
write the cache line. 

The snoop operation may change the 
cache line state. If the other core issued a 
read request that hit this core in E state, 
typically the state changes to S state in 
this core. If the other core issued a read 
for ownership request (due a write miss or 
hit to S state) that hits this core's cache 
line in E or S state, this typically results in 
invalidation of the cache line in this core.  If 
the snoop hits a line in M state, the state is 
changed at a later opportunity. 

These snoops are performed through the 
L1 data cache store port. Therefore, 
frequent snoops may conflict with 
extensive stores to the L1 data cache, 
which may increase store latency and 
impact performance.

7AH See 
Table 
30-3 

BUS_HIT_DRV.

(Bus Agents)

HIT signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HIT# pin to signal HIT snoop response. 
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7BH See 
Table 
30-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal 
asserted

This event counts the number of bus 
cycles during which the processor drives 
the HITM# pin to signal HITM snoop 
response.

7DH See 
Table 
30-2

BUSQ_EMPTY.

(Core)

Bus queue 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. It 
also counts when the core is halted and 
the other core is not halted. 

This event can count occurrences for this 
core or both cores.

7EH See 
Table 
30-2 
and 
Table 
30-3

SNOOP_STALL_
DRV.(Core and Bus 
Agents)

Bus stalled for 
snoops

This event counts the number of times 
that the bus snoop stall signal is asserted. 
To obtain the number of bus cycles during 
which snoops on the bus are prohibited, 
multiply the event count by two. 

During the snoop stall cycles, no new bus 
transactions requiring a snoop response 
can be initiated on the bus. A bus agent 
asserts a snoop stall signal if it cannot 
response to a snoop request within three 
bus cycles.

7FH See 
Table 
30-2 

BUS_IO_WAIT.
(Core)

IO requests 
waiting in the 
bus queue

This event counts the number of core 
cycles during which IO requests wait in the 
bus queue. With the SELF modifier this 
event counts IO requests per core.

With the BOTH_CORE modifier, this event 
increments by one for any cycle for which 
there is a request from either core.

80H 00H L1I_READS Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches that bypass 
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction 
Fetch Unit 
misses

This event counts all instruction fetches 
that miss the Instruction Fetch Unit (IFU) 
or produce memory requests. This 
includes uncacheable fetches. 

An instruction fetch miss is counted only 
once and not once for every cycle it is 
outstanding.
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82H 02H ITLB.SMALL_MISS ITLB small page 
misses

This event counts the number of 
instruction fetches from small pages that 
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page 
misses

This event counts the number of 
instruction fetches from large pages that 
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes. This usually happens upon CR3 or 
CR0 writes, which are executed by the 
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of 
instruction fetches from either small or 
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during 
which the 
instruction 
queue is full

This event counts the number of cycles 
during which the instruction queue is full. 
In this situation, the core front-end stops 
fetching more instructions. This is an 
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during 
which 
instruction 
fetches stalled

This event counts the number of cycles for 
which an instruction fetch stalls, including 
stalls due to any of the following reasons: 

• instruction Fetch Unit cache misses 
• instruction TLB misses 
• instruction TLB faults

87H 00H ILD_STALL Instruction 
Length Decoder 
stall cycles due 
to a length 
changing prefix

This event counts the number of cycles 
during which the instruction length 
decoder uses the slow length decoder. 
Usually, instruction length decoding is 
done in one cycle. When the slow decoder 
is used, instruction decoding requires 6 
cycles. 
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The slow decoder is used in the following 
cases: 

• operand override prefix (66H) 
preceding an instruction with 
immediate data 

• address override prefix (67H) preceding 
an instruction with a modr/m in real, big 
real, 16-bit protected or 32-bit 
protected modes

To avoid instruction length decoding stalls, 
generate code using imm8 or imm32 
values instead of imm16 values. If you 
must use an imm16 value, store the value 
in a register using “mov reg, imm32” and 
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch 
instructions 
executed

This event counts all executed branches 
(not necessarily retired). This includes only 
instructions and not micro-op branches. 

Frequent branching is not necessarily a 
major performance issue. However 
frequent branch mispredictions may be a 
problem.

89H 00H BR_MISSP_EXEC Mispredicted 
branch 
instructions 
executed

This event counts the number of 
mispredicted branch instructions that 
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch 
instructions 
mispredicted at 
decoding

This event counts the number of branch 
instructions that were mispredicted at 
decoding.

8BH 00H BR_CND_EXEC Conditional 
branch 
instructions 
executed.

This event counts the number of 
conditional branch instructions executed, 
but not necessarily retired. 

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted 
conditional 
branch 
instructions 
executed

This event counts the number of 
mispredicted conditional branch 
instructions that were executed.
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8DH 00H BR_IND_EXEC Indirect branch 
instructions 
executed

This event counts the number of indirect 
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted 
indirect branch 
instructions 
executed

This event counts the number of 
mispredicted indirect branch instructions 
that were executed.

8FH 00H BR_RET_EXEC RET 
instructions 
executed

This event counts the number of RET 
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted 
RET 
instructions 
executed

This event counts the number of 
mispredicted RET instructions that were 
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET 
instructions 
executed 
mispredicted at 
decoding

This event counts the number of RET 
instructions that were executed and were 
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL 
instructions 
executed

This event counts the number of CALL 
instructions executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted 
CALL 
instructions 
executed

This event counts the number of 
mispredicted CALL instructions that were 
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL 
instructions 
executed

This event counts the number of indirect 
CALL instructions that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch 
predicted taken 
with bubble 1

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.
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98H 00H BR_TKN_
BUBBLE_2

Branch 
predicted taken 
with bubble 2

The events BR_TKN_BUBBLE_1 and 
BR_TKN_BUBBLE_2 together count the 
number of times a taken branch prediction 
incurred a one-cycle penalty. The penalty 
incurs when: 

• Too many taken branches are placed 
together. To avoid this, unroll loops and 
add a non-taken branch in the middle of 
the taken sequence. 

• The branch target is unaligned. To avoid 
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops 
dispatched for 
execution

This event counts the number of micro-
ops dispatched for execution. Up to six 
micro-ops can be dispatched in each cycle. 

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched 
for execution 
on port 0

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Issue Ports are 
described in Intel® 64 and IA-32 
Architectures Optimization Reference 
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched 
for execution 
on port 1

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched 
for execution 
on port 2

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched 
for execution 
on port 3

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.
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A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched 
for execution 
on port 4

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched 
for execution 
on port 5

This event counts the number of cycles for 
which micro-ops dispatched for execution. 
Each cycle, at most one micro-op can be 
dispatched on the port. Use IA32_PMC0 
only.

AAH 01H MACRO_INSTS.
DECODED

Instructions 
decoded

This event counts the number of 
instructions decoded (but not necessarily 
executed or retired). 

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC 
Instructions 
decoded

This event counts the number of complex 
instructions decoded. Complex instructions 
usually have more than four micro-ops. 
Only one complex instruction can be 
decoded at a time. 

ABH 01H ESP.SYNCH ESP register 
content 
synchron-
ization

This event counts the number of times 
that the ESP register is explicitly used in 
the address expression of a load or store 
operation, after it is implicitly used, for 
example by a push or a pop instruction.

ESP synch micro-op uses resources from 
the rename pipe-stage and up to 
retirement.  The expected ratio of this 
event divided by the number of ESP 
implicit changes is 0,2. If the ratio is 
higher, consider rearranging your code to 
avoid ESP synchronization events.
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ABH 02H ESP.ADDITIONS ESP register 
automatic 
additions

This event counts the number of ESP 
additions performed automatically by the 
decoder. A high count of this event is good, 
since each automatic addition performed 
by the decoder saves a micro-op from the 
execution units. 

To maximize the number of ESP additions 
performed automatically by the decoder, 
choose instructions that implicitly use the 
ESP, such as PUSH, POP, CALL, and RET 
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. It does not count MOVQ and 
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD 
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD 
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD 
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD 
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
packed arithmetic micro-ops executed.
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C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired

This event counts the number of 
instructions that retire execution. For 
instructions that consist of multiple micro-
ops, this event counts the retirement of 
the last micro-op of the instruction. The 
counter continue counting during 
hardware interrupts, traps, and inside 
interrupt handlers. 

INST_RETIRED.ANY_P is an architectural 
performance event. 

C0H 01H INST_RETIRED.
LOADS

Instructions 
retired, which 
contain a load

This event counts the number of 
instructions retired that contain a load 
operation.

C0H 02H INST_RETIRED.
STORES

Instructions 
retired, which 
contain a store

This event counts the number of 
instructions retired that contain a store 
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions 
retired, with no 
load or store 
operation

This event counts the number of 
instructions retired that do not contain a 
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH 
instructions 
retired

This event counts the number of FXCH 
instructions retired. Modern compilers 
generate more efficient code and are less 
likely to use this instruction. If you obtain a 
high count for this event consider 
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired 
floating-point 
computational 
operations 
(precise event)

This event counts the number of floating-
point computational operations retired. It 
counts: 

• floating point computational operations 
executed by the assist handler 

• sub-operations of complex floating-
point instructions like transcendental 
instructions 
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This event does not count: 

• floating-point computational operations 
that cause traps or assists. 

• floating-point loads and stores. 
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op 
or load+indirect 
branch retired

This event counts the number of retired 
micro-ops that fused a load with another 
operation. This includes: 

• Fusion of a load and an arithmetic 
operation, such as with the following 
instruction: ADD EAX, [EBX] where the 
content of the memory location 
specified by EBX register is loaded, 
added to EXA register, and the result is 
stored in EAX.

• Fusion of a load and a branch in an 
indirect branch operation, such as with 
the following instructions:

• JMP [RDI+200] 
• RET 
• Fusion decreases the number of micro-

ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor 
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store 
address + data 
retired

This event counts the number of store 
address calculations that are fused with 
store data emission into one micro-op. 
Traditionally, each store operation 
required two micro-ops. 

This event counts fusion of retired micro-
ops only. Fusion decreases the number of 
micro-ops in the processor pipeline. A high 
value for this event count indicates that 
the code is using the processor resources 
effectively.
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C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired 
instruction 
pairs fused into 
one micro-op

This event counts the number of times 
CMP or TEST instructions were fused with 
a conditional branch instruction into one 
micro-op. It counts fusion by retired micro-
ops only. 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code 
uses the processor resources more 
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of 
retired fused micro-ops. The counts 
include the following fusion types: 

• Fusion of load operation with an 
arithmetic operation or with an indirect 
branch (counted by event 
UOPS_RETIRED.LD_IND_BR) 

• Fusion of store address and data 
(counted by event 
UOPS_RETIRED.STD_STA) 

• Fusion of CMP or TEST instruction with 
a conditional branch instruction 
(counted by event 
UOPS_RETIRED.MACRO_FUSION) 

Fusion decreases the number of micro-ops 
in the processor pipeline. A high value for 
this event count indicates that the code is 
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused 
micro-ops 
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-
ops retired. The processor decodes 
complex macro instructions into a 
sequence of simpler micro-ops. Most 
instructions are composed of one or two 
micro-ops. 
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Some instructions are decoded into longer 
sequences such as repeat instructions, 
floating point transcendental instructions, 
and assists. In some cases micro-op 
sequences are fused or whole instructions 
are fused into one micro-op.

See other UOPS_RETIRED events for 
differentiating retired fused and non-
fused micro-ops. 

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying 
Code detected

This event counts the number of times 
that a program writes to a code section. 
Self-modifying code causes a sever 
penalty in all Intel 64 and IA-32 
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution 
pipeline restart 
due to memory 
ordering 
conflict or 
memory 
disambiguation 
misprediction

This event counts the number of times the 
pipeline is restarted due to either multi-
threaded memory ordering conflicts or 
memory disambiguation misprediction.

A multi-threaded memory ordering conflict 
occurs when a store, which is executed in 
another core, hits a load that is executed 
out of order in this core but not yet retired. 
As a result, the load needs to be restarted 
to satisfy the memory ordering model. 

See Chapter 8, “Multiple-Processor 
Management” in the Intel® 64 and IA-32 
Architectures Software Developer’s 
Manual, Volume 3A.

To count memory disambiguation 
mispredictions, use the event 
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. This is an architectural 
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.
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C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were 
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were 
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired 
mispredicted 
branch 
instructions. 
(precise event)

This event counts the number of retired 
branch instructions that were 
mispredicted by the processor. A branch 
misprediction occurs when the processor 
predicts that the branch would be taken, 
but it is not, or vice-versa. 

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during 
which 
interrupts are 
disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during 
which 
interrupts are 
pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts 
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE 
packed-single 
instructions

This event counts the number of SSE 
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE 
scalar-single 
instructions

This event counts the number of SSE 
scalar-single instructions retired.
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C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2 
packed-double 
instructions

This event counts the number of SSE2 
packed-double instructions retired. 

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2 
scalar-double 
instructions

This event counts the number of SSE2 
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2 
vector integer 
instructions

This event counts the number of SSE2 
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired 
Streaming SIMD 
instructions  
(precise event)

This event counts the overall number of 
retired SIMD instructions that use XMM 
registers. To count each type of SIMD 
instruction separately, use the following 
events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired 
instructions 
that missed the 
ITLB

This event counts the number of retired 
instructions that missed the ITLB when 
they were fetched.
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CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired 
computational 
SSE packed-
single 
instructions

This event counts the number of 
computational SSE packed-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide).

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired 
computational 
SSE scalar-
single 
instructions

This event counts the number of 
computational SSE scalar-single 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired 
computational 
SSE2 packed-
double 
instructions

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired 
computational 
SSE2 scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations (for example: add, multiply 
and divide). 

Instructions that perform load and store 
operations or logical operations, like XOR, 
OR, and AND are not counted by this 
event.
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CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads 
that miss the 
L1 data cache 
(precise event)

This event counts the number of retired 
load operations that missed the L1 data 
cache. This includes loads from cache lines 
that are currently being fetched, due to a 
previous L1 data cache miss to the same 
cache line.  

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache 
line missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L1 data cache 
and send a request to the L2 cache to 
fetch the missing cache line. That is the 
missing cache line fetching has not yet 
started. 

The event count is equal to the number of 
cache lines fetched from the L2 cache by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.
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CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads 
that miss the 
L2 cache 
(precise event)

This event counts the number of retired 
load operations that missed the L2 cache.   

This event counts loads from cacheable 
memory only. It does not count loads by 
software prefetches.

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line 
missed by 
retired loads 
(precise event)

This event counts the number of load 
operations that miss the L2 cache and 
result in a bus request to fetch the missing 
cache line. That is the missing cache line 
fetching has not yet started.

This event count is equal to the number of 
cache lines fetched from memory by 
retired loads. 

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

The event might not be counted if the load 
is blocked (see LOAD_BLOCK events).

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event.

Use IA32_PMC0 only.
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CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired 
loads that missed the DTLB. The DTLB 
miss is not counted if the load operation 
causes a fault.

This event counts loads from cacheable 
memory only. The event does not count 
loads by software prefetches. 

When this event is captured with the 
precise event mechanism, the collected 
samples contain the address of the 
instruction that was executed immediately 
after the instruction that caused the 
event. 

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions 
from Floating 
Point to MMX 
Instructions

This event counts the first MMX 
instructions following a floating-point 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions 
from MMX 
Instructions to 
Floating Point 
Instructions

This event counts the first floating-point 
instructions following any MMX 
instruction. Use this event to estimate the 
penalties for the transitions between 
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD 
assists invoked. SIMD assists are invoked 
when an EMMS instruction is executed, 
changing the MMX state in the floating 
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD 
Instructions 
retired

This event counts the number of retired 
SIMD instructions that use MMX registers.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.
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D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port 
stalls cycles

This event counts the number of cycles 
when ROB read port stalls occurred, which 
did not allow new micro-ops to enter the 
out-of-order pipeline. 

Note that, at this stage in the pipeline, 
additional stalls may occur at the same 
cycle and prevent the stalled micro-ops 
from entering the pipe. In such a case, 
micro-ops retry entering the execution 
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register 
stall cycles

This event counts the number of cycles 
instruction execution latency became 
longer than the defined latency because 
the instruction uses a register that was 
partially written by previous instructions. 

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles 
during which execution stalled due to 
several reasons, one of which is a partial 
flag register stall. 

A partial register stall may occur when 
two conditions are met: 

• an instruction modifies some, but not 
all, of the flags in the flag register

• the next instruction, which depends on 
flags, depends on flags that were not 
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status 
word stall

This event indicates that the FPU status 
word (FPSW) is written. To obtain the 
number of times the FPSW is written 
divide the event count by 2.

The FPSW is written by instructions with 
long latency; a small count may indicate a 
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall 
cycles

This event counts the number of stall 
cycles due to conditions described by: 

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.
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D4H 01H SEG_RENAME_
STALLS.ES

Segment 
rename stalls - 
ES

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 02H SEG_RENAME_
STALLS.DS

Segment 
rename stalls - 
DS

This event counts the number of stalls due 
to the lack of renaming resources for the 
DS segment register. If a segment is 
renamed, but not retired and a second 
update to the same segment occurs, a stall 
occurs in the front-end of the pipeline until 
the renamed segment retires. 

D4H 04H SEG_RENAME_
STALLS.FS

Segment 
rename stalls - 
FS

This event counts the number of stalls due 
to the lack of renaming resources for the 
FS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 08H SEG_RENAME_
STALLS.GS

Segment 
rename stalls - 
GS

This event counts the number of stalls due 
to the lack of renaming resources for the 
GS segment register. 

If a segment is renamed, but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D4H 0FH SEG_RENAME_
STALLS.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename stall

This event counts the number of stalls due 
to the lack of renaming resources for the 
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired 
and a second update to the same segment 
occurs, a stall occurs in the front-end of 
the pipeline until the renamed segment 
retires. 

D5H 01H SEG_REG_
RENAMES.ES

Segment 
renames - ES

This event counts the number of times the 
ES segment register is renamed.
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D5H 02H SEG_REG_
RENAMES.DS

Segment 
renames - DS

This event counts the number of times the 
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment 
renames - FS

This event counts the number of times the 
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment 
renames - GS

This event counts the number of times the 
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any 
(ES/DS/FS/GS) 
segment 
rename

This event counts the number of times 
any of the four segment registers 
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during 
which the ROB 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for retirement reaches 
the limit the processor can handle. 

A high count for this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during 
which the RS 
full

This event counts the number of cycles 
when the number of instructions in the 
pipeline waiting for execution reaches the 
limit the processor can handle. 

A high count of this event indicates that 
there are long latency operations in the 
pipe (possibly load and store operations 
that miss the L2 cache, and other 
instructions that depend on these cannot 
execute until the former instructions 
complete execution). In this situation new 
instructions can not enter the pipe and 
start execution.
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DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during 
which the 
pipeline has 
exceeded load 
or store limit or 
waiting to 
commit all 
stores

This event counts the number of cycles 
while resource-related stalls occur due to:  

• The number of load instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
loading instruction retires. 

• The number of store instructions in the 
pipeline reached the limit the processor 
can handle. The stall ends when a 
storing instruction commits its data to 
the cache or memory. 

• There is an instruction in the pipe that 
can be executed only when all previous 
stores complete and their data is 
committed in the caches or memory. 
For example, the SFENCE and MFENCE 
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled 
due to FPU 
control word 
write

This event counts the number of cycles 
while execution was stalled due to writing 
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled 
due to branch 
misprediction

This event counts the number of cycles 
after a branch misprediction is detected at 
execution until the branch and all older 
micro-ops retire. During this time new 
micro-ops cannot enter the out-of-order 
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource 
related stalls

This event counts the number of cycles 
while resource-related stalls occurs for 
any conditions described by the following 
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.
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E4H 00H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected 
as taken branch instructions.

This results in a BACLEAR event. This 
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS 
asserted

This event counts the number of times the 
front end is resteered, mainly when the 
BPU cannot provide a correct prediction 
and this is corrected by other branch 
handling mechanisms at the front and. 
This can occur if the code has many 
branches such that they cannot be 
consumed by the BPU. 

Each BACLEAR asserted costs 
approximately 7 cycles of instruction 
fetch. The effect on total execution time 
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward 
prefetches 
issued from 
DPL

This event counts the number of upward 
prefetches issued from the Data Prefetch 
Logic (DPL) to the L2 cache. A prefetch 
request issued to the L2 cache cannot be 
cancelled and the requested cache line is 
fetched to the L2 cache. 

F8 00H PREF_RQSTS_DN Downward 
prefetches 
issued from 
DPL.

This event counts the number of 
downward prefetches issued from the 
Data Prefetch Logic (DPL) to the L2 cache. 
A prefetch request issued to the L2 cache 
cannot be cancelled and the requested 
cache line is fetched to the L2 cache.
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A.7 PERFORMANCE MONITORING EVENTS FOR 
INTEL® ATOM™ PROCESSORS

Processors based on the Intel Atom microarchitecture support the architectural and 
non-architectural performance-monitoring events listed in Table A-1 and Table A-10. 
In addition, they also support the following non-architectural performance-moni-
toring events listed in Table A-11. 

Table A-11.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWA
RDS.GOOD

Good store 
forwards

This event counts the number of times store 
data was forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of 
segment 
register loads

This event counts the number of segment 
register load operations. Instructions that 
load new values into segment registers cause 
a penalty. This event indicates performance 
issues in 16-bit code. If this event occurs 
frequently, it may be useful to calculate the 
number of instructions retired per segment 
register load. If the resulting calculation is low 
(on average a small number of instructions 
are executed between segment register 
loads), then the code’s segment register 
usage should be optimized. 

As a result of branch misprediction, this event 
is speculative and may include segment 
register loads that do not actually occur. 
However, most segment register loads are 
internally serialized and such speculative 
effects are minimized. 

07H 01H PREFETCH.PREF
ETCHT0

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT0 
instructions 
executed.

This event counts the number of times the 
SSE instruction prefetchT0 is executed. This 
instruction prefetches the data to the L1 
data cache and L2 cache.

07H 06H PREFETCH.SW_
L2

Streaming SIMD 
Extensions 
(SSE) 
PrefetchT1 and 
PrefetchT2 
instructions 
executed

This event counts the number of times the 
SSE instructions prefetchT1 and prefetchT2 
are executed. These instructions prefetch the 
data to the L2 cache.
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07H 08H PREFETCH.PREF
ETCHNTA

Streaming SIMD 
Extensions 
(SSE) Prefetch 
NTA 
instructions 
executed

This event counts the number of times the 
SSE instruction prefetchNTA is executed. This 
instruction prefetches the data to the L1 
data cache. 

08H 07H DATA_TLB_MIS
SES.DTLB_MISS

Memory 
accesses that 
missed the 
DTLB

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses. The count 
includes misses detected as a result of 
speculative accesses. Typically a high count 
for this event indicates that the code 
accesses a large number of data pages.

08H 05H DATA_TLB_MIS
SES.DTLB_MISS
_LD

DTLB misses 
due to load 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to load 
operations. This count includes misses 
detected as a result of speculative accesses.

08H 09H DATA_TLB_MIS
SES.L0_DTLB_M
ISS_LD

L0_DTLB misses 
due to load 
operations

This event counts the number of L0_DTLB 
misses due to load operations. This count 
includes misses detected as a result of 
speculative accesses.

08H 06H DATA_TLB_MIS
SES.DTLB_MISS
_ST

DTLB misses 
due to store 
operations

This event counts the number of Data Table 
Lookaside Buffer (DTLB) misses due to store 
operations. This count includes misses 
detected as a result of speculative accesses. 

0CH 03H PAGE_WALKS.W
ALKS

Number of 
page-walks 
executed

This event counts the number of page-walks 
executed due to either a DTLB or ITLB miss. 
The page walk duration, 
PAGE_WALKS.CYCLES, divided by number of 
page walks is the average duration of a page 
walk. This can hint to whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss.

Edge trigger bit must be set.

Table A-11.  Non-Architectural Performance Events for Intel Atom Processors 
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-171



PERFORMANCE-MONITORING EVENTS
0CH 03H PAGE_WALKS.C
YCLES

Duration of 
page-walks in 
core cycles

This event counts the duration of page-walks 
in core cycles. The paging mode in use 
typically affects the duration of page walks. 
Page walk duration divided by number of 
page walks is the average duration of page-
walks. This can hint at whether most of the 
page-walks are satisfied by the caches or 
cause an L2 cache miss. 

Edge trigger bit must be cleared.

10H 01H X87_COMP_OP
S_EXE.ANY.S

Floating point 
computational 
micro-ops 
executed

This event counts the number of x87 floating 
point computational micro-ops executed.

10H 81H X87_COMP_OP
S_EXE.ANY.AR

Floating point 
computational 
micro-ops 
retired

This event counts the number of x87 floating 
point computational micro-ops retired.

11H 01H FP_ASSIST Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

11H 81H FP_ASSIST.AR Floating point 
assists

This event counts the number of floating 
point operations executed that required 
micro-code assist intervention. These assists 
are required in the following cases: 

X87 instructions:

1. NaN or denormal are loaded to a register or 
used as input from memory

2. Division by 0 

3. Underflow output

12H 01H MUL.S Multiply 
operations 
executed

This event counts the number of multiply 
operations executed. This includes integer as 
well as floating point multiply operations.
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12H 81H MUL.AR Multiply 
operations 
retired

This event counts the number of multiply 
operations retired. This includes integer as 
well as floating point multiply operations.

13H 01H DIV.S Divide 
operations 
executed

This event counts the number of divide 
operations executed. This includes integer 
divides, floating point divides and square-root 
operations executed.

13H 81H DIV.AR Divide 
operations 
retired

This event counts the number of divide 
operations retired. This includes integer 
divides, floating point divides and square-root 
operations executed.

14H 01H CYCLES_DIV_BU
SY

Cycles the 
driver is busy

This event counts the number of cycles the 
divider is busy executing divide or square 
root operations. The divide can be integer, 
X87 or Streaming SIMD Extensions (SSE). The 
square root operation can be either X87 or 
SSE. 

21H See 
Table 
30-2

L2_ADS Cycles L2 
address bus is in 
use

This event counts the number of cycles the 
L2 address bus is being used for accesses to 
the L2 cache or bus queue. 

This event can count occurrences for this 
core or both cores. 

22H See 
Table 
30-2

L2_DBUS_BUSY Cycles the L2 
cache data bus 
is busy

This event counts core cycles during which 
the L2 cache data bus is busy transferring 
data from the L2 cache to the core.   It counts 
for all L1 cache misses (data and instruction) 
that hit the L2 cache.   The count will 
increment by two for a full cache-line 
request. 

24H See 
Table 
30-2 
and 
Table 
30-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines 
allocated in the L2 cache. Cache lines are 
allocated in the L2 cache as a result of 
requests from the L1 data and instruction 
caches and the L2 hardware prefetchers to 
cache lines that are missing in the L2 cache.

This event can count occurrences for this 
core or both cores. This event can also count 
demand requests and L2 hardware prefetch 
requests together or separately.
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25H See 
Table 
30-2

L2_M_LINES_IN L2 cache line 
modifications

This event counts whenever a modified 
cache line is written back from the L1 data 
cache to the L2 cache.

This event can count occurrences for this 
core or both cores.

26H See 
Table 
30-2 
and 
Table 
30-4

L2_LINES_OUT L2 cache lines 
evicted

This event counts the number of L2 cache 
lines evicted.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

27H See 
Table 
30-2 
and 
Table 
30-4

L2_M_LINES_O
UT

Modified lines 
evicted from 
the L2 cache

This event counts the number of L2 modified 
cache lines evicted. These lines are written 
back to memory unless they also exist in a 
shared-state in one of the L1 data caches.

This event can count occurrences for this 
core or both cores. This event can also count 
evictions due to demand requests and L2 
hardware prefetch requests together or 
separately.

28H See 
Table 
30-2 
and 
Table 
30-5

L2_IFETCH L2 cacheable 
instruction 
fetch requests

This event counts the number of instruction 
cache line requests from the ICache. It does 
not include fetch requests from uncacheable 
memory. It does not include ITLB miss 
accesses. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.
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29H See 
Table 
30-2, 
Table 
30-4 
and 
Table 
30-5

L2_LD L2 cache reads This event counts L2 cache read requests 
coming from the L1 data cache and L2 
prefetchers. 

This event can count occurrences for this 
core or both cores. This event can count 
occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together or separately.

- of accesses to cache lines at different MESI 
states.

2AH See 
Table 
30-2 
and 
Table 
30-5

L2_ST L2 store 
requests

This event counts all store operations that 
miss the L1 data cache and request the data 

from the L2 cache. 

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

2BH See 
Table 
30-2 
and 
Table 
30-5

L2_LOCK L2 locked 
accesses

This event counts all locked accesses to 
cache lines that miss the L1 data cache.

This event can count occurrences for this 
core or both cores. This event can also count 
accesses to cache lines at different MESI 
states.

2EH See 
Table 
30-2, 
Table 
30-4 
and 
Table 
30-5

L2_RQSTS L2 cache 
requests

This event counts all completed L2 cache 
requests. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, instruction fetches, and all L2 
hardware prefetch requests. 

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.
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2EH 41H L2_RQSTS.SELF.
DEMAND.I_STAT
E

L2 cache 
demand 
requests from 
this core that 
missed the L2

This event counts all completed L2 cache 
demand requests from this core that miss the 
L2 cache. This includes L1 data cache reads, 
writes, and locked accesses, L1 data prefetch 
requests, and instruction fetches. 

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache 
demand 
requests from 
this core

This event counts all completed L2 cache 
demand requests from this core. This includes 
L1 data cache reads, writes, and locked 
accesses, L1 data prefetch requests, and 
instruction fetches. 

This is an architectural performance event.

30H See 
Table 
30-2, 
Table 
30-4 
and 
Table 
30-5

L2_REJECT_BUS
Q

Rejected L2 
cache requests

This event indicates that a pending L2 cache 
request that requires a bus transaction is 
delayed from moving to the bus queue. Some 
of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a 
cache line in the same set.

The number of events is greater or equal to 
the number of requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware 
prefetch requests together, or separately.

- of accesses to cache lines at different MESI 
states.

32H See 
Table 
30-2

L2_NO_REQ Cycles no L2 
cache requests 
are pending

This event counts the number of cycles that 
no L2 cache requests are pending.

3AH 00H EIST_TRANS Number of 
Enhanced Intel 
SpeedStep(R) 
Technology 
(EIST) 
transitions

This event counts the number of Enhanced 
Intel SpeedStep(R) Technology (EIST) 
transitions that include a frequency change, 
either with or without VID change. This event 
is incremented only while the counting core is 
in C0 state. Since the CxE states include an 
EIST transition, the event will be incremented 
accordingly.
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EIST transitions are commonly initiated by 
OS, but can be initiated by HW internally. For 
example: CxE states are C-states (C1,C2,C3…) 
which not only place the CPU into a sleep 
state by turning off the clock and other 
components, but also lower the voltage 
(which reduces the leakage power 
consumption). The same is true for thermal 
throttling transition which uses EIST 
internally.

3BH C0H THERMAL_TRIP Number of 
thermal trips

This event counts the number of thermal 
trips. A thermal trip occurs whenever the 
processor temperature exceeds the thermal 
trip threshold temperature. Following a 
thermal trip, the processor automatically 
reduces frequency and voltage. The 
processor checks the temperature every 
millisecond, and returns to normal when the 
temperature falls below the thermal trip 
threshold temperature.

3CH 00H CPU_CLK_UNH
ALTED.CORE_P

Core cycles 
when core is not 
halted

This event counts the number of core cycles 
while the core is not in a halt state. The core 
enters the halt state when it is running the 
HLT instruction. This event is a component in 
many key event ratios. 

In mobile systems the core frequency may 
change from time to time. For this reason this 
event may have a changing ratio with regards 
to time. In systems with a constant core 
frequency, this event can give you a 
measurement of the elapsed time while the 
core was not in halt state by dividing the 
event count by the core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is 
counted by a programmable counter.

- The event CPU_CLK_UNHALTED.CORE is 
counted by a designated fixed counter, 
leaving the two programmable counters 
available for other events.
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3CH 01H CPU_CLK_UNH
ALTED.BUS

Bus cycles 
when core is not 
halted

This event counts the number of bus cycles 
while the core is not in the halt state. This 
event can give you a measurement of the 
elapsed time while the core was not in the 
halt state, by dividing the event count by the 
bus frequency. The core enters the halt state 
when it is running the HLT instruction.

The event also has a constant ratio with 
CPU_CLK_UNHALTED.REF event, which is the 
maximum bus to processor frequency ratio. 

Non-halted bus cycles are a component in 
many key event ratios. 

3CH 02H CPU_CLK_UNH
ALTED.NO_OTH
ER

Bus cycles 
when core is 
active and the 
other is halted

This event counts the number of bus cycles 
during which the core remains non-halted, 
and the other core on the processor is halted. 

This event can be used to determine the 
amount of parallelism exploited by an 
application or a system. Divide this event 
count by the bus frequency to determine the 
amount of time that only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable 
Data Reads

This event counts the number of data reads 
from cacheable memory.

40H 22H L1D_CACHE.ST L1 Cacheable 
Data Writes

This event counts the number of data writes 
to cacheable memory.

60H See 
Table 
30-2 
and 
Table 
30-3

BUS_REQUEST_
OUTSTANDING

Outstanding 
cacheable data 
read bus 
requests 
duration

This event counts the number of pending full 
cache line read transactions on the bus 
occurring in each cycle. A read transaction is 
pending from the cycle it is sent on the bus 
until the full cache line is received by the 
processor. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.
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61H See 
Table 
30-3

BUS_BNR_DRV Number of Bus 
Not Ready 
signals asserted

This event counts the number of Bus Not 
Ready (BNR) signals that the processor 
asserts on the bus to suspend additional bus 
requests by other bus agents. A bus agent 
asserts the BNR signal when the number of 
data and snoop transactions is close to the 
maximum that the bus can handle. 

While this signal is asserted, new 
transactions cannot be submitted on the bus. 
As a result, transaction latency may have 
higher impact on program performance. 
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

62H See 
Table 
30-3

BUS_DRDY_CLO
CKS

Bus cycles 
when data is 
sent on the bus

This event counts the number of bus cycles 
during which the DRDY (Data Ready) signal is 
asserted on the bus. The DRDY signal is 
asserted when data is sent on the bus.

This event counts the number of bus cycles 
during which this agent (the processor) 
writes data on the bus back to memory or to 
other bus agents. This includes all explicit and 
implicit data writebacks, as well as partial 
writes.
NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

63H See 
Table 
30-2 
and 
Table 
30-3

BUS_LOCK_CLO
CKS

Bus cycles 
when a LOCK 
signal is 
asserted.

This event counts the number of bus cycles, 
during which the LOCK signal is asserted on 
the bus. A LOCK signal is asserted when 
there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance 
penalty and it is highly recommended to avoid 
such accesses. NOTE: This event is thread-
independent and will not provide a count per 
logical processor when AnyThr is disabled.
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64H See 
Table 
30-2

BUS_DATA_RCV Bus cycles while 
processor 
receives data

This event counts the number of cycles 
during which the processor is busy receiving 
data. NOTE: This event is thread-independent 
and will not provide a count per logical 
processor when AnyThr is disabled.

65H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_B
RD

Burst read bus 
transactions

This event counts the number of burst read 
transactions including:

- L1 data cache read misses (and L1 data 
cache hardware prefetches)

- L2 hardware prefetches by the DPL and L2 
streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_RF
O

RFO bus 
transactions

This event counts the number of Read For 
Ownership (RFO) bus transactions, due to 
store operations that miss the L1 data cache 
and the L2 cache. This event also counts RFO 
bus transactions due to locked operations.

67H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_W
B

Explicit 
writeback bus 
transactions

This event counts all explicit writeback bus 
transactions due to dirty line evictions. It 
does not count implicit writebacks due to 
invalidation by a snoop request.

68H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_IF
ETCH

Instruction-
fetch bus 
transactions.

This event counts all instruction fetch full 
cache line bus transactions.

69H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_IN
VAL

Invalidate bus 
transactions

This event counts all invalidate transactions. 
Invalidate transactions are generated when:

- A store operation hits a shared line in the L2 
cache.

- A full cache line write misses the L2 cache 
or hits a shared line in the L2 cache.
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6AH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_P
WR

Partial write bus 
transaction.

This event counts partial write bus 
transactions.

6BH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_P Partial bus 
transactions

This event counts all (read and write) partial 
bus transactions.

6CH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_IO IO bus 
transactions

This event counts the number of completed 
I/O bus transactions as a result of IN and OUT 
instructions. The count does not include 
memory mapped IO.

6DH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_D
EF

Deferred bus 
transactions

This event counts the number of deferred 
transactions. 

6EH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_B
URST

Burst (full 
cache-line) bus 
transactions.

This event counts burst (full cache line) 
transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_M
EM

Memory bus 
transactions

This event counts all memory bus 
transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of 
BUS_TRANS_BURST, BUS_TRANS_P and 
BUS_TRANS_INVAL.
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70H See 
Table 
30-2 
and 
Table 
30-3

BUS_TRANS_A
NY

All bus 
transactions

This event counts all bus transactions. This 
includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as 
interrupts

77H See 
Table 
30-2 
and 
Table 
30-5

EXT_SNOOP External snoops This event counts the snoop responses to 
bus transactions. Responses can be counted 
separately by type and by bus agent. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7AH See 
Table 
30-3

BUS_HIT_DRV HIT signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HIT# 
pin to signal HIT snoop response. NOTE: This 
event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7BH See 
Table 
30-3

BUS_HITM_DRV HITM signal 
asserted

This event counts the number of bus cycles 
during which the processor drives the HITM# 
pin to signal HITM snoop response. NOTE: 
This event is thread-independent and will not 
provide a count per logical processor when 
AnyThr is disabled.

7DH See 
Table 
30-2

BUSQ_EMPTY Bus queue is 
empty

This event counts the number of cycles 
during which the core did not have any 
pending transactions in the bus queue. 

NOTE: This event is thread-independent and 
will not provide a count per logical processor 
when AnyThr is disabled.

7EH See 
Table 
30-2 
and 
Table 
30-3

SNOOP_STALL_
DRV

Bus stalled for 
snoops

This event counts the number of times that 
the bus snoop stall signal is asserted. During 
the snoop stall cycles no new bus 
transactions requiring a snoop response can 
be initiated on the bus. NOTE: This event is 
thread-independent and will not provide a 
count per logical processor when AnyThr is 
disabled.
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7FH See 
Table 
30-2

BUS_IO_WAIT IO requests 
waiting in the 
bus queue

This event counts the number of core cycles 
during which IO requests wait in the bus 
queue. This event counts IO requests from 
the core.

80H 03H ICACHE.ACCESS
ES

Instruction 
fetches

This event counts all instruction fetches, 
including uncacheable fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that 
miss the Instruction cache or produce 
memory requests. This includes uncacheable 
fetches. An instruction fetch miss is counted 
only once and not once for every cycle it is 
outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB 
flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction 
fetches that miss the ITLB. 

AAH 02H MACRO_INSTS.C
ISC_DECODED

CISC macro 
instructions 
decoded

This event counts the number of complex 
instructions decoded, but not necessarily 
executed or retired. Only one complex 
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.
ALL_DECODED

All Instructions 
decoded

This event counts the number of instructions 
decoded.

B0H 00H SIMD_UOPS_EX
EC.S

SIMD micro-ops 
executed 
(excluding 
stores)

This event counts all the SIMD micro-ops 
executed. This event does not count MOVQ 
and MOVD stores from register to memory.

B0H 80H SIMD_UOPS_EX
EC.AR

SIMD micro-ops 
retired 
(excluding 
stores)

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 00H SIMD_SAT_UOP
_EXEC.S

SIMD saturated 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD 
saturated arithmetic micro-ops executed.

B1H 80H SIMD_SAT_UOP
_EXEC.AR

SIMD saturated 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD 
saturated arithmetic micro-ops retired.
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B3H 01H SIMD_UOP_TYP
E_EXEC.MUL.S

SIMD packed 
multiply micro-
ops executed

This event counts the number of SIMD packed 
multiply micro-ops executed.

B3H 81H SIMD_UOP_TYP
E_EXEC.MUL.AR

SIMD packed 
multiply micro-
ops retired

This event counts the number of SIMD packed 
multiply micro-ops retired.

B3H 02H SIMD_UOP_TYP
E_EXEC.SHIFT.S

SIMD packed 
shift micro-ops 
executed

This event counts the number of SIMD packed 
shift micro-ops executed.

B3H 82H SIMD_UOP_TYP
E_EXEC.SHIFT.A
R

SIMD packed 
shift micro-ops 
retired

This event counts the number of SIMD packed 
shift micro-ops retired.

B3H 04H SIMD_UOP_TYP
E_EXEC.PACK.S

SIMD pack 
micro-ops 
executed

This event counts the number of SIMD pack 
micro-ops executed.

B3H 84H SIMD_UOP_TYP
E_EXEC.PACK.A
R

SIMD pack 
micro-ops 
retired

This event counts the number of SIMD pack 
micro-ops retired.

B3H 08H SIMD_UOP_TYP
E_EXEC.UNPAC
K.S

SIMD unpack 
micro-ops 
executed

This event counts the number of SIMD 
unpack micro-ops executed.

B3H 88H SIMD_UOP_TYP
E_EXEC.UNPAC
K.AR

SIMD unpack 
micro-ops 
retired

This event counts the number of SIMD 
unpack micro-ops retired.

B3H 10H SIMD_UOP_TYP
E_EXEC.LOGICA
L.S

SIMD packed 
logical micro-
ops executed

This event counts the number of SIMD packed 
logical micro-ops executed.

B3H 90H SIMD_UOP_TYP
E_EXEC.LOGICA
L.AR

SIMD packed 
logical micro-
ops retired

This event counts the number of SIMD packed 
logical micro-ops retired.

B3H 20H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.S

SIMD packed 
arithmetic 
micro-ops 
executed

This event counts the number of SIMD packed 
arithmetic micro-ops executed.

B3H A0H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.AR

SIMD packed 
arithmetic 
micro-ops 
retired

This event counts the number of SIMD packed 
arithmetic micro-ops retired.
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C0H 00H INST_RETIRED.
ANY_P

Instructions 
retired (precise 
event).

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

N/A 00H INST_RETIRED.
ANY

Instructions 
retired

This event counts the number of instructions 
that retire execution. For instructions that 
consist of multiple micro-ops, this event 
counts the retirement of the last micro-op of 
the instruction. The counter continues 
counting during hardware interrupts, traps, 
and inside interrupt handlers.

C2H 10H UOPS_RETIRED.
ANY

Micro-ops 
retired

This event counts the number of micro-ops 
retired. The processor decodes complex 
macro instructions into a sequence of simpler 
micro-ops. Most instructions are composed of 
one or two micro-ops. Some instructions are 
decoded into longer sequences such as 
repeat instructions, floating point 
transcendental instructions, and assists. In 
some cases micro-op sequences are fused or 
whole instructions are fused into one micro-
op. See other UOPS_RETIRED events for 
differentiating retired fused and non-fused 
micro-ops.

C3H 01H MACHINE_CLEA
RS.SMC

Self-Modifying 
Code detected

This event counts the number of times that a 
program writes to a code section. Self-
modifying code causes a severe penalty in all 
Intel® architecture processors.

C4H 00H BR_INST_RETIR
ED.ANY

Retired branch 
instructions

This event counts the number of branch 
instructions retired. 

This is an architectural performance event. 

C4H 01H BR_INST_RETIR
ED.PRED_NOT_
TAKEN

Retired branch 
instructions 
that were 
predicted not-
taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be not-taken.
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C4H 02H BR_INST_RETIR
ED.MISPRED_N
OT_TAKEN

Retired branch 
instructions 
that were 
mispredicted 
not-taken

This event counts the number of branch 
instructions retired that were mispredicted 
and not-taken.

C4H 04H BR_INST_RETIR
ED.PRED_TAKE
N

Retired branch 
instructions 
that were 
predicted taken

This event counts the number of branch 
instructions retired that were correctly 
predicted to be taken.

C4H 08H BR_INST_RETIR
ED.MISPRED_TA
KEN

Retired branch 
instructions 
that were 
mispredicted 
taken

This event counts the number of branch 
instructions retired that were mispredicted 
and taken.

C4H 0AH BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event)

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 

Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 
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To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C4H 0CH BR_INST_RETIR
ED.TAKEN

Retired taken 
branch 
instructions

This event counts the number of branches 
retired that were taken.

C4H 0FH BR_INST_RETIR
ED.ANY1

Retired branch 
instructions

This event counts the number of branch 
instructions retired that were mispredicted. 
This event is a duplicate of 
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIR
ED.MISPRED

Retired 
mispredicted 
branch 
instructions 
(precise event).

This event counts the number of retired 
branch instructions that were mispredicted 
by the processor. A branch misprediction 
occurs when the processor predicts that the 
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the 
performance because the processor starts 
executing instructions along a wrong path it 
predicts. When the misprediction is 
discovered, all the instructions executed in 
the wrong path must be discarded, and the 
processor must start again on the correct 
path. 
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Using the Profile-Guided Optimization (PGO) 
features of the Intel® C++ compiler may help 
reduce branch mispredictions. See the 
compiler documentation for more information 
on this feature. 

To determine the branch misprediction ratio, 
divide the BR_INST_RETIRED.MISPRED event 
count by the number of 
BR_INST_RETIRED.ANY event count. To 
determine the number of mispredicted 
branches per instruction, divide the number 
of mispredicted branches by the 
INST_RETIRED.ANY event count. To measure 
the impact of the branch mispredictions use 
the event 
RESOURCE_STALLS.BR_MISS_CLEAR. 

Tips

- See the optimization guide for tips on 
reducing branch mispredictions.

- PGO's purpose is to have straight line code 
for the most frequent execution paths, 
reducing branches taken and increasing the 
"basic block" size, possibly also reducing the 
code footprint or working-set.

C6H 01H CYCLES_INT_M
ASKED.CYCLES_I
NT_MASKED

Cycles during 
which interrupts 
are disabled

This event counts the number of cycles 
during which interrupts are disabled.

C6H 02H CYCLES_INT_M
ASKED.CYCLES_I
NT_PENDING_A
ND_MASKED

Cycles during 
which interrupts 
are pending and 
disabled

This event counts the number of cycles 
during which there are pending interrupts but 
interrupts are disabled.

C7H 01H SIMD_INST_RET
IRED.PACKED_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions

This event counts the number of SSE packed-
single instructions retired.
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C7H 02H SIMD_INST_RET
IRED.SCALAR_SI
NGLE

Retired 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions

This event counts the number of SSE scalar-
single instructions retired.

C7H 04H SIMD_INST_RET
IRED.PACKED_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions

This event counts the number of SSE2 
packed-double instructions retired.

C7H 08H SIMD_INST_RET
IRED.SCALAR_D
OUBLE

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions.

This event counts the number of SSE2 scalar-
double instructions retired.

C7H 10H SIMD_INST_RET
IRED.VECTOR

Retired 
Streaming SIMD 
Extensions 2 
(SSE2) vector 
instructions.

This event counts the number of SSE2 vector 
instructions retired.

C7H 1FH SIMD_INST_RET
IRED.ANY

Retired 
Streaming SIMD 
instructions

This event counts the overall number of SIMD 
instructions retired. To count each type of 
SIMD instruction separately, use the following 
events:

SIMD_INST_RETIRED.PACKED_SINGLE, 
SIMD_INST_RETIRED.SCALAR_SINGLE, 
SIMD_INST_RETIRED.PACKED_DOUBLE, 
SIMD_INST_RETIRED.SCALAR_DOUBLE, and 
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware 
interrupts 
received

This event counts the number of hardware 
interrupts received by the processor. This 
event will count twice for dual-pipe micro-
ops.
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CAH 01H SIMD_COMP_IN
ST_RETIRED.PA
CKED_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) packed-
single 
instructions.

This event counts the number of 
computational SSE packed-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 02H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_SINGLE

Retired 
computational 
Streaming SIMD 
Extensions 
(SSE) scalar-
single 
instructions.

This event counts the number of 
computational SSE scalar-single instructions 
retired. Computational instructions perform 
arithmetic computations, like add, multiply 
and divide. Instructions that perform load and 
store operations or logical operations, like 
XOR, OR, and AND are not counted by this 
event.

CAH 04H SIMD_COMP_IN
ST_RETIRED.PA
CKED_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) packed-
double 
instructions.

This event counts the number of 
computational SSE2 packed-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CAH 08H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_DOUBLE

Retired 
computational 
Streaming SIMD 
Extensions 2 
(SSE2) scalar-
double 
instructions

This event counts the number of 
computational SSE2 scalar-double 
instructions retired. Computational 
instructions perform arithmetic 
computations, like add, multiply and divide. 
Instructions that perform load and store 
operations or logical operations, like XOR, OR, 
and AND are not counted by this event.

CBH 01H MEM_LOAD_RE
TIRED.L2_HIT

Retired loads 
that hit the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L1 data cache and 
hit the L2 cache.

CBH 02H MEM_LOAD_RE
TIRED.L2_MISS

Retired loads 
that miss the L2 
cache (precise 
event)

This event counts the number of retired load 
operations that missed the L2 cache.
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CBH 04H MEM_LOAD_RE
TIRED.DTLB_MI
SS

Retired loads 
that miss the 
DTLB (precise 
event)

This event counts the number of retired loads 
that missed the DTLB. The DTLB miss is not 
counted if the load operation causes a fault. 

CDH 00H SIMD_ASSIST SIMD assists 
invoked

This event counts the number of SIMD assists 
invoked. SIMD assists are invoked when an 
EMMS instruction is executed after MMX™ 
technology code has changed the MMX state 
in the floating point stack. For example, these 
assists are required in the following cases: 

Streaming SIMD Extensions (SSE) 
instructions: 

1. Denormal input when the DAZ (Denormals 
Are Zeros) flag is off 

2. Underflow result when the FTZ (Flush To 
Zero) flag is off 

CEH 00H SIMD_INSTR_RE
TIRED

SIMD 
Instructions 
retired

This event counts the number of SIMD 
instructions that retired.

CFH 00H SIMD_SAT_INST
R_RETIRED

Saturated 
arithmetic 
instructions 
retired

This event counts the number of saturated 
arithmetic SIMD instructions that retired.

E0H 01H BR_INST_DECO
DED

Branch 
instructions 
decoded

This event counts the number of branch 
instructions decoded.
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E4H 01H BOGUS_BR Bogus branches This event counts the number of byte 
sequences that were mistakenly detected as 
taken branch instructions. This results in a 
BACLEAR event and the BTB is flushed. This 
occurs mainly after task switches.

E6H 01H BACLEARS.ANY BACLEARS 
asserted

This event counts the number of times the 
front end is redirected for a branch 
prediction, mainly when an early branch 
prediction is corrected by other branch 
handling mechanisms in the front-end. This 
can occur if the code has many branches such 
that they cannot be consumed by the branch 
predictor.   Each Baclear asserted costs 
approximately 7 cycles. The effect on total 
execution time depends on the surrounding 
code.
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A.8 PERFORMANCE MONITORING EVENTS FOR INTEL® 
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table A-12 lists non-architectural performance events for Intel Core Duo processors. 
If a non-architectural event requires qualification in core specificity, it is indicated in 
the comment column. Table A-12 also applies to Intel Core Solo processors; bits in 
the unit mask corresponding to core-specificity are reserved and should be 00B.

Table A-12.  Non-Architectural Performance Events 
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask 
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to 
store buffer blocks. 

The preceding store may be 
blocked due to unknown address, 
unknown data, or conflict due to 
partial overlap between the load 
and store. 

04H SD_Drains 00H Cycles while draining store buffers.

05H Misalign_Mem_Ref 00H Misaligned data memory 
references (MOB splits of loads 
and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction 
PREFETCHNTA retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction 
PREFETCHT1 retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction 
PREFETCHT2 retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction  
retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction 
executed. FADD, FSUB, FCOM, 
FMULs, MUL, IMUL, FDIVs, DIV, IDIV, 
FPREMs, FSQRT are included; but 
exclude FADD or FMUL used in the 
middle of a transcendental 
instruction.

11H FP_Assist 00H FP exceptions experienced 
microcode assists.

IA32_PMC1 
only.
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12H Mul 00H Multiply operations (a speculative 
count, including FP and integer 
multiplies).

IA32_PMC1 
only.

13H Div 00H Divide operations (a speculative 
count, including FP and integer 
divisions).

IA32_PMC1 
only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0 
only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus 
was busy (increments by 4).

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy 
transferring data to a core 
(increments by 4).

Requires core-
specificity

24H L2_Lines_In 00H L2 cache lines allocated. Requires core-
specificity and 
HW prefetch 
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines 
allocated.

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-
specificity and 
HW prefetch 
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines 
evicted.

28H L2_IFetch Requires 
MESI 
qualification

L2 instruction fetches from 
instruction fetch unit (includes 
speculative fetches).

Requires core-
specificity

29H L2_LD Requires 
MESI 
qualification

L2 cache reads. Requires core-
specificity

2AH L2_ST Requires 
MESI 
qualification

L2 cache writes (includes 
speculation).

Requires core-
specificity

Table A-12.  Non-Architectural Performance Events 
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2EH L2_Rqsts Requires 
MESI 
qualification

L2 cache reference requests. Requires core-
specificity, HW 
prefetch 
qualification30H L2_Reject_Cycles Requires 

MESI 
qualification

Cycles L2 is busy and rejecting 
new requests.

32H L2_No_Request_
Cycles

Requires 
MESI 
qualification

Cycles there is no request to 
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R) 
Technology transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep 
Technology frequency transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on 
the current core clock.

Use edge 
trigger to count 
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core 
executing code while the other 
core is halted.

40H DCache_Cache_LD Requires 
MESI 
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires 
MESI 
qualification

L1 cacheable data write 
operations.

42H DCache_Cache_
Lock

Requires 
MESI 
qualification

L1 cacheable lock read operations 
to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of 
cacheable and non-cacheable 
types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write 
operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line 
allocated.
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47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss 
outstanding.

Use Cmask =1 
to count 
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction  
missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU 
cache misses.

May overcount 
if request re-
submitted

60H Bus_Req_
Outstanding

00; Requires 
core-
specificity, 
and agent 
specificity

Weighted cycles of cacheable bus 
data read requests. This event 
counts full-line read request from 
DCU or HW prefetcher, but not 
RFO, write, instruction fetches, or 
others.

Use Cmask =1 
to count 
duration.

Use Umask bit 
12 to include 
HWP or exclude 
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR 
asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY 
asserted.

Requires agent 
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock 
signal asserted.

Requires core 
specificity 

64H Bus_Data_Rcv 40H Number of data chunks received 
by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data 
or code).

Requires core 
specificity 
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66H Bus_Trans_RFO See comment. Completed read for ownership 
(RFO) transactions.

Requires agent 
specificity

Requires core 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch 
transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write 
transactions.

6BH Bus_Trans_P See comment. Completed partial transactions 
(include partial read + partial write 
+ line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read 
and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core 
specificity

Retried  
transaction may 
be counted 
more than once

67H Bus_Trans_WB C0H Completed writeback transactions 
from DCU (does not include L2 
writebacks).

Requires agent 
specificity

Each 
transaction 
counts its 
address strobe

Retried  
transaction may 
be counted 
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full 
line transactions include reads, 
write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions. 
This includes Bus_Trans_Burst + 
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI 
qualification

Requires agent 
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1 
cache line due to L1 misses.

Requires core 
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no 
transaction from the core.

Requires core 
specificity
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7EH Bus_Snoop_Stall 00H Number of bus cycles while bus 
snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches 
from ICache, streaming buffers 
(both cacheable and uncacheable 
fetches).

81H ICache_Misses 00H Number of instruction fetch misses 
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting 
for data from memory.

87H ILD_Stall 00H Number of instruction length 
decoder stalls (Counts number of 
LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed 
(includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and 
mispredicted at execution  
(includes branches that do not 
have prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that 
were mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions 
executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions 
executed that were mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions 
executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions 
executed that were mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions 
executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions 
executed that were mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions 
executed that were mispredicted 
at the front end.
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92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed 
that were mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions 
executed.

A2H Resource_Stall 00H Cycles while there is a resource 
related stall (renaming, buffer 
entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions 
executed (does not include MOVQ 
and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating 
instructions executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed 
multiply instructions executed.

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed 
shift instructions executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack 
operations instruction executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack 
instructions executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed 
logical instructions executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed 
arithmetic instructions executed.

C0H Instr_Ret 00H Number of instruction retired 
(Macro fused instruction count 
as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute 
instructions retired (X87 
instruction or instruction that 
contain X87 operations).

Use IA32_PMC0 
only.

C2H Uops_Ret 00H Number of micro-ops retired 
(include fused uops).

C3H SMC_Detected 00H Number of times self-modifying 
code condition detected.
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C4H Br_Instr_Ret 00H Number of branch instructions 
retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch 
instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled 
and interrupts are pending.

C8H HW_Int_Rx 00H Number of hardware interrupts 
received.

C9H Br_Taken_Ret 00H Number of taken branch 
instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted 
branch instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX 
to X87.

CCH FP_MMX_Trans 01H Number of transitions from X87 to 
MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction 
retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction 
decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single 
precision instructions retired 
(packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single 
precision instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed 
double precision instructions 
retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double 
precision instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer  
instructions retired.
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D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed 
double precision compute 
instructions retired (does not 
include AND, OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double 
precision compute instructions 
retired (does not include AND, OR, 
XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the 
ROB (due to exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did 
not produce a prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch 
requests issued in forward 
streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch 
requests issued in backward 
streams.
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A.9 PENTIUM 4 AND INTEL XEON PROCESSOR 
PERFORMANCE-MONITORING EVENTS

Tables A-13, A-14 and  list performance-monitoring events that can be counted or 
sampled on processors based on Intel NetBurst® microarchitecture. Table A-13 lists 
the non-retirement events, and Table A-14 lists the at-retirement events. Tables 
A-16, A-17, and A-18 describes three sets of parameters that are available for three 
of the at-retirement counting events defined in Table A-14. Table A-19 shows which 
of the non-retirement and at retirement events are logical processor specific (TS) 
(see Section 30.10.4, “Performance Monitoring Events”) and which are non-logical 
processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events 
may be available only to specific models. The performance-monitoring events listed 
in Tables A-13 and A-14 apply to processors with CPUID signature that matches 
family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table  applies to processors 
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon 
processors is also available when IA-32e mode is enabled. 

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters  Parameter Value Description

TC_deliver_mode This event counts the duration (in 
clock cycles) of the operating 
modes of the trace cache and 
decode engine in the processor 
package. The mode is specified by 
one or more of the event mask 
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]
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ESCR Event Mask

Bit 

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in 
deliver mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is in 
build mode.

Logical processor 0 is in deliver 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow. 

3: BD

4: BB

Logical processor 0 is in build 
mode and logical processor 1 is in 
deliver mode.

Both logical processors are in build 
mode. 

5: BI Logical processor 0 is in build 
mode and logical processor 1 is 
either halted, under a machine 
clear condition or transitioning to 
a long microcode flow.

6: ID

7: IB

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in deliver mode.

Logical processor 0 is either 
halted, under a machine clear 
condition or transitioning to a long 
microcode flow. Logical processor 
1 is in build mode. 

CCCR Select 01H CCCR[15:13]

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
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Event Specific 
Notes

If only one logical processor is 
available from a physical 
processor package, the event 
mask should be interpreted as 
logical processor 1 is halted. Event 
mask bit 2 was previously known 
as “DELIVER”, bit 5 was previously 
known as “BUILD”.

BPU_fetch_
request 

This event counts instruction 
fetch requests of specified 
request type by the Branch 
Prediction unit. Specify one or 
more mask bits to qualify the 
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations 
using the Instruction Translation 
Look-aside Buffer (ITLB). 

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]
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ESCR Event Mask

Bit 

0: HIT

1: MISS

2: HIT_UC 

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

All page references regardless of 
the page size are looked up as 
actual 4-KByte pages. Use the 
page_walk_type event with the 
ITMISS mask for a more 
conservative count.

memory_cancel This event counts the canceling of 
various type of request in the 
Data cache Address Control unit 
(DAC). Specify one or more mask 
bits to select the type of requests 
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store 
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

All_CACHE_MISS includes 
uncacheable memory in count.

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
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memory_
complete 

This event counts the completion 
of a load split, store split, 
uncacheable (UC) split, or UC load. 
Specify one or more mask bits to 
select the operations to be 
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding 
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events 
at the load port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.
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Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
A-206 Vol. 3B



PERFORMANCE-MONITORING EVENTS
store_port_replay This event counts replayed events 
at the store port. Specify one or 
more mask bits to select the 
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Must use ESCR1 for at-retirement 
counting.

MOB_load_replay This event triggers if the memory 
order buffer (MOB) caused a load 
operation to be replayed. Specify 
one or more mask bits to select 
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown 
store address.

Replayed because of unknown 
store data.
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4: PARTIAL_DATA

5: UNALGN_ADDR 

Replayed because of partially 
overlapped data access between 
the load and store operations.

Replayed because the lower 4 bits 
of the linear address do not match 
between the load and store 
operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types 
of page walks that the page miss 
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss 
(either load or store).

Page walk for an instruction TLB 
miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference 

This event counts cache 
references (2nd level cache or 3rd 
level cache) as seen by the bus 
unit. 

Specify one or more mask bit to 
select an access according to the 
access type (read type includes 
both load and RFO, write type 
includes writebacks and evictions) 
and the access result (hit, misses).

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
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ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS 

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared 
(includes load and RFO)

Read 2nd level cache hit Exclusive 
(includes load and RFO)

Read 2nd level cache hit Modified 
(includes load and RFO)

Read 3rd level cache hit Shared 
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive 
(includes load and RFO)

Read 3rd level cache hit Modified 
(includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss 
(includes load and RFO)

Read 3rd level cache miss 
(includes load and RFO)

A Writeback lookup from DAC 
misses the 2nd level cache 
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: The implementation of this 
event in current Pentium 4 and 
Xeon processors treats either 
a load operation or a request 
for ownership (RFO) request as 
a “read” type operation. 
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2: Currently this event causes 
both over and undercounting 
by as much as a factor of two 
due to an erratum.

3:  It is possible for a transaction 
that is started as a prefetch to 
change the transaction's 
internal status, making it no 
longer a prefetch. or change 
the access result status (hit, 
miss) as seen by this event. 

IOQ_allocation This event counts the various 
types of transactions on the bus. 
A count is generated each time a 
transaction is allocated into the 
IOQ that matches the specified 
mask bits. An allocated entry can 
be a sector (64 bytes) or a chunks 
of 8 bytes. 

Requests are counted once per 
retry. The event mask bits 
constitute 4 bit fields. A 
transaction type is specified by 
interpreting the values of each bit 
field. 

Specify one or more event mask 
bits in a bit field to select the 
value of the bit field.

Each field (bits 0-4 are one field) 
are independent of and can be 
ORed with the others. The 
request type field is further 
combined with bit 5 and 6 to form 
a binary expression. Bits 7 and 8 
form a bit field to specify the 
memory type of the target 
address. 
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Bits 13 and 14 form a bit field to 
specify the source agent of the 
request. Bit 15 affects read 
operation only. The event is 
triggered by evaluating the logical 
expression: (((Request type) OR 
Bit 5 OR Bit 6) OR (Memory type)) 
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0, 
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits 

0-4 (single field)

 5:  ALL_READ

 6:  ALL_WRITE

 7:  MEM_UC

 8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries 

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]
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Event Specific 
Notes

1: If PREFETCH bit is cleared, 
sectors fetched using prefetch 
are excluded in the counts. If 
PREFETCH bit is set, all sectors 
or chunks read are counted. 

2: Specify the edge trigger in 
CCCR to avoid double counting.

3: The mapping of interpreted bit 
field values to transaction 
types may differ with different 
processor model 
implementations of the 
Pentium 4 processor family. 
Applications that program 
performance monitoring 
events should use CPUID to 
determine processor models 
when using this event. The 
logic equations that trigger the 
event are model-specific (see 
4a and 4b below).

4a:For Pentium 4 and Xeon 
Processors starting with CPUID 
Model field encoding equal to 2 
or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)).
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4b:For Pentium 4 and Xeon 
Processors with CPUID Model 
field encoding less than 2, this 
event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). Note 
that event mask bits for 
memory type are ignored if 
either ALL_READ or 
ALL_WRITE is specified.

5: This event is known to ignore 
CPL in early implementations 
of Pentium 4 and Xeon 
Processors. Both user requests 
and OS requests are included in 
the count. This behavior is 
fixed starting with Pentium 4 
and Xeon Processors with 
CPUID signature 0xF27 (Family 
15, Model 2, Stepping 7). 

6: For write-through (WT) and 
write-protected (WP) memory 
types, this event counts reads 
as the number of 64-byte 
sectors. Writes are counted by 
individual chunks.

7: For uncacheable (UC) memory 
types, this events counts the 
number of 8-byte chunks 
allocated.

8: For Pentium 4 and Xeon 
Processors with CPUID 
Signature less than 0xf27, only 
MSR_FSB_ESCR0 is available.
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IOQ_active_
entries

This event counts the number of 
entries (clipped at 15) in the IOQ 
that are active. An allocated entry 
can be a sector (64 bytes) or a 
chunks of 8 bytes.

The event must be programmed in 
conjunction with IOQ_allocation. 
Specify one or more event mask 
bits to select the transactions 
that is counted. 

ESCR restrictions MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits 

0-4 (single field)

5:  ALL_READ

6:  ALL_WRITE

7:  MEM_UC

8:  MEM_WC

ESCR[24:9]

Bus request type (use 00001 for 
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9:  MEM_WT

10: MEM_WP

Count write-through (WT) 
memory access entries.

Count write-protected (WP) 
memory access entries.

11: MEM_WB 

13: OWN

Count WB memory access entries. 

Count all store requests driven by 
processor, as opposed to other 
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other 
processors or DMA.

Include HW and SW prefetch 
requests in the count.

CCCR Select 06H CCCR[15:13]
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Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the ioq_allocation event 
for descriptions of the mask 
bits.

3: Edge triggering should not be 
used when counting cycles. 

4: The mapping of interpreted bit 
field values to transaction 
types may differ across 
different processor model 
implementations of the 
Pentium 4 processor family. 
Applications that programs 
performance monitoring 
events should use the CPUID 
instruction to detect processor 
models when using this event. 
The logical expression that 
triggers this event as describe 
below:

5a:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding equal to 
2 or greater, this event is 
triggered by evaluating the 
logical expression ((Request 
type) and (Bit 5 or Bit 6) and 
(Memory type) and (Source 
agent)). 
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5b:For Pentium 4 and Xeon 
Processors starting with CPUID 
MODEL field encoding less than 
2, this event is triggered by 
evaluating the logical 
expression [((Request type) or 
Bit 5 or Bit 6) or (Memory 
type)] and (Source agent). 
Event mask bits for memory 
type are ignored if either 
ALL_READ or ALL_WRITE is 
specified. 

5c:This event is known to ignore 
CPL in the current 
implementations of Pentium 4 
and Xeon Processors Both user 
requests and OS requests are 
included in the count.

6: An allocated entry can be a full 
line (64 bytes) or in individual 
chunks of 8 bytes.

FSB_data_
activity 

This event increments once for 
each DRDY or DBSY event that 
occurs on the front side bus. The 
event allows selection of a 
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0: 

ESCR[24:9]

DRDY_DRV Count when this processor drives 
data onto the bus - includes 
writes and implicit writebacks.

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
A-216 Vol. 3B



PERFORMANCE-MONITORING EVENTS
Asserted two processor clock 
cycles for partial writes and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line writes. 

1: DRDY_OWN Count when this processor reads 
data from the bus - includes loads 
and some PIC transactions. 
Asserted two processor clock 
cycles for partial reads and 4 
processor clocks (usually in 
consecutive bus clocks) for full 
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that 
we own.

2: DRDY_OTHER Count when data is on the bus but 
not being sampled by the 
processor. It may or may not be 
being driven by this processor.

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

3: DBSY_DRV Count when this processor 
reserves the bus for use in the 
next bus cycle in order to drive 
data. Asserted for two processor 
clock cycles for full line writes and 
not at all for partial line writes.

May be asserted multiple times (in 
consecutive bus clocks) if we stall 
the bus waiting for a cache lock to 
complete.
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4: DBSY_OWN Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will sample. 

Asserted for two processor clock 
cycles for full line writes and not 
at all for partial line writes. May be 
asserted multiple times (all one 
bus clock apart) if we stall the bus 
for some reason. 

5:DBSY_OTHER Count when some agent reserves 
the bus for use in the next bus 
cycle to drive data that this 
processor will NOT sample. It may 
or may not be being driven by this 
processor. 

Asserted two processor clock 
cycles for partial transactions and 
4 processor clocks (usually in 
consecutive bus clocks) for full 
line transactions. 

CCCR Select 06H CCCR[15:13]

Event Specific 
Notes

Specify edge trigger in the CCCR 
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are 
mutually exclusive; similarly for 
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in 
the Bus Sequence Unit (BSQ) 
according to the specified mask 
bit encoding. The event mask bits 
consist of four sub-groups: 

• request type, 
• request length
• memory type
• and sub-group consisting 

mostly of independent bits 
(bits 5, 6, 7, 8, 9, and 10) 

Specify an encoding for each sub-
group.
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ESCR restrictions MSR_BSU_ESCR0 

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit 

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and 
1) are: 

0 – Read (excludes read 
invalidate)
1 – Read invalidate
2 – Write (other than 
writebacks)
3 – Writeback (evicted from 
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3) 
are: 

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
     TYPE

7: REQ_CACHE_
     TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
    TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
       TYPE

Request type is a bus 8-byte 
chunk split across 8-byte 
boundary.

Request type is a demand if set. 
Request type is HW.SW prefetch 
if 0.

Request is an ordered type.
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11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit 
11-13) are: 

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specify edge trigger in CCCR to 
avoid double counting.

2: A writebacks to 3rd level cache 
from 2nd level cache counts as 
a separate entry, this is in 
additional to the entry 
allocated for a request to the 
bus. 

3: A read request to WB memory 
type results in a request to the 
64-byte sector, containing the 
target address, followed by a 
prefetch request to an 
adjacent sector. 

4: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 0 and 
1, an allocated BSQ entry 
includes both the demand 
sector and prefetched 2nd 
sector.

5: An allocated BSQ entry for a 
data chunk is any request less 
than 64 bytes. 

6a:This event may undercount for 
requests of split type 
transactions if the data 
address straddled across 
modulo-64 byte boundary.
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6b:This event may undercount for 
requests of read request of 
16-byte operands from WC or 
UC address.

6c: This event may undercount WC 
partial requests originated 
from store operands that are 
dwords. 

bsq_active_
entries 

This event represents the number 
of BSQ entries (clipped at 15) 
currently active (valid) which meet 
the subevent mask criteria during 
allocation in the BSQ. Active 
request entries are allocated on 
the BSQ until de-allocated. 

De-allocation of an entry does not 
necessarily imply the request is 
filled. This event must be 
programmed in conjunction with 
BSQ_allocation. Specify one or 
more event mask bits to select 
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers 
per ESCR

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific 
Notes

1: Specified desired mask bits in 
ESCR0 and ESCR1. 

2: See the BSQ_allocation event 
for descriptions of the mask 
bits. 

3: Edge triggering should not be 
used when counting cycles.
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4: This event can be used to 
estimate the latency of a 
transaction from allocation to 
de-allocation in the BSQ. The 
latency observed by 
BSQ_allocation includes the 
latency of FSB, plus additional 
overhead. 

5: Additional overhead may 
include the time it takes to 
issue two requests (the sector 
by demand and the adjacent 
sector via prefetch). Since 
adjacent sector prefetches 
have lower priority that 
demand fetches, on a heavily 
used system there is a high 
probability that the adjacent 
sector prefetch will have to 
wait until the next bus 
arbitration.

6: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value less than 3, this 
event is updated every clock. 

7: For Pentium 4 and Xeon 
processors with CPUID model 
encoding value equals to 3 or 4, 
this event is updated every 
other clock. 

SSE_input_assist This event counts the number of 
times an assist is requested to 
handle problems with input 
operands for SSE/SSE2/SSE3 
operations; most notably 
denormal source operands when 
the DAZ bit is not set. Set bit 15 
of the event mask to use this 
event.
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ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL 

ESCR[24:9]

Count assists for SSE/SSE2/SSE3 
μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: Not all requests for assists are 
actually taken. This event is 
known to overcount in that it 
counts requests for assists 
from instructions on the non-
retired path that do not incur a 
performance penalty. An assist 
is actually taken only for non-
bogus μops. Any appreciable 
counts for this event are an 
indication that the DAZ or FTZ 
bit should be set and/or the 
source code should be changed 
to eliminate the condition.

2: Two common situations for an 
SSE/SSE2/SSE3 operation 
needing an assist are: (1) when 
a denormal constant is used as 
an input and the Denormals-
Are-Zero (DAZ) mode is not 
set, (2) when the input operand 
uses the underflowed result of 
a previous SSE/SSE2/SSE3 
operation and neither the DAZ 
nor Flush-To-Zero (FTZ) modes 
are set.
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3: Enabling the DAZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the first situation. 
Enabling the FTZ mode 
prevents SSE/SSE2/SSE3 
operations from needing 
assists in the second situation.

packed_SP_uop This event increments for each 
packed single-precision μop, 
specified through the event mask 
for detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one packed SP μops, each 
packed SP μop that is specified 
by the event mask will be 
counted. 

2: This metric counts instances of 
packed memory μops in a 
repeat move string.

packed_DP_uop This event increments for each 
packed double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1
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Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one packed DP μops, each 
packed DP μop that is specified by 
the event mask will be counted.

scalar_SP_uop This event increments for each 
scalar single-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar SP μops, each 
scalar SP μop that is specified by 
the event mask will be counted.

scalar_DP_uop This event increments for each 
scalar double-precision μop, 
specified through the event mask 
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1
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Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on scalar 
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one scalar DP μops, each 
scalar DP μop that is specified by 
the event mask is counted.

64bit_MMX_uop This event increments for each 
MMX instruction, which operate 
on 64-bit SIMD operands. 

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 64- 
bit SIMD integer operands in 
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 64-bit MMX μops, each 
64-bit MMX μop that is specified 
by the event mask will be 
counted.

128bit_MMX_uop This event increments for each 
integer SIMD SSE2 instruction, 
which operate on 128-bit SIMD 
operands. 
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ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in 
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

If an instruction contains more 
than one 128-bit MMX μops, each 
128-bit MMX μop that is specified 
by the event mask will be 
counted.

x87_FP_uop This event increments for each 
x87 floating-point μop, specified 
through the event mask for 
detection. 

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers 
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL 

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

1: If an instruction contains more 
than one x87 FP μops, each 
x87 FP μop that is specified by 
the event mask will be counted. 

2: This event does not count x87 
FP μop for load, store, move 
between registers.
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TC_misc This event counts miscellaneous 
events detected by the TC. The 
counter will count twice for each 
occurrence. 

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events 

This event accumulates the time 
during which a processor is not 
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers 
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes 
the handling of HLT STPCLK and 
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of 
times that uop delivery changed 
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]
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ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes 

This event counts the number of 
valid uops written to the uop 
queue. Specify one or more mask 
bits to select the source type of 
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit 

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from 
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from 
TC deliver mode.

The uops being written are from 
microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring 
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.
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3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if:

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 

retired_branch

_type

This event counts retiring 
branches by type. Specify one or 
more mask bits to qualify the 
branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1 

Counter numbers 
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect 
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

This event may overcount 
conditional branches if :

• Mispredictions cause the trace 
cache and delivery engine to 
build new traces.

• When the processor's pipeline 
is being cleared. 

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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resource_stall This event monitors the 
occurrence or latency of stalls in 
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1 

Counter numbers 
per ESCR

ESCR0: 12, 13, 16 
ESCR1: 14, 15, 17 

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

WC_Buffer This event counts Write 
Combining Buffer operations that 
are selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1 

Counter numbers 
per ESCR

ESCR0: 8, 9 

ESCR1: 10, 11 

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
    EVICT

WC Buffer eviction: no WC buffer 
is available.

CCCR Select 05H CCCR[15:13]

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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Event Specific 
Notes

This event is useful for detecting 
the subset of 64K aliasing cases 
that are more costly (i.e. 64K 
aliasing cases involving stores) as 
long as there are no significant 
contributions due to write 
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to 
count the number back-to-back 
bus cycles using sub-event mask 
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

bnr This event can be configured to 
count bus not ready conditions 
using sub-event mask bits 0 
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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snoop This event can be configured to 
count snoop hit modified bus 
traffic using sub-event mask bits 
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0 
MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Response This event can be configured to 
count different types of 
responses using sub-event mask 
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1 

Counter numbers 
per ESCR

ESCR0: 0, 1 

ESCR1: 2, 3 

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific 
Notes

This event may not be supported 
in all models of the processor 
family.

Table A-13.  Performance Monitoring Events Supported by Intel NetBurst 
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting

Event Name Event Parameters  Parameter Value Description

front_end_event This event counts the retirement 
of tagged μops, which are 
specified through the front-end 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional 
MSRs for tagging

Selected ESCRs 
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by 
Front_end tagging in Table A-3

execution_event This event counts the retirement 
of tagged μops, which are 
specified through the execution 
tagging mechanism. 

The event mask allows from one 
to four types of μops to be 
specified as either bogus or non-
bogus μops to be tagged. 

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]
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ESCR Event Mask

Bit 

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Each of the 4 slots to specify the 
bogus/non-bogus μops must be 
coordinated with the 4 TagValue 
bits in the ESCR (for example, 
NBOGUS0 must accompany a ‘1’ in 
the lowest bit of the TagValue 
field in ESCR, NBOGUS1 must 
accompany a ‘1’ in the next but 
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional 
MSRs for tagging

An ESCR for an 
upstream event

See list of metrics supported by 
execution tagging in Table A-4.

replay_event This event counts the retirement 
of tagged μops, which are 
specified through the replay 
tagging mechanism. The event 
mask specifies bogus or non-bogus 
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

Supports counting tagged μops 
with additional MSRs.

Can Support PEBS Yes

Require Additional 
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by 
replay tagging in Table A-5.

instr_retired This event counts instructions that 
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are 
tagged using the front-end 
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are 
not tagged.

Non-bogus instructions that are 
tagged. 

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not 
tagged.

Bogus instructions that are 
tagged.

CCCR Select 04H CCCR[15:13]

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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Event Specific 
Notes

1: The event count may vary 
depending on the 
microarchitectural states of the 
processor when the event 
detection is enabled. 

2: The event may count more 
than once for some instructions 
with complex uop flows and 
were interrupted before 
retirement.

Can Support PEBS No

uops_retired This event counts μops that are 
retired during a clock cycle. Mask 
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction 
with the front-end at-retirement 
mechanism to tag load and store 
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific 
Notes

Setting the TAGLOADS and 
TAGSTORES mask bits does not 
cause a counter to increment. 
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement 
of a branch. Specify one or more 
mask bits to select any 
combination of taken, not-taken, 
predicted and mispredicted. 

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 30-28 for the addresses 
of the ESCR MSRs

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated 
with each ESCR are provided. The 
performance counters and 
corresponding CCCRs can be 
obtained from Table 30-28.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific 
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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mispred_branch_
retired 

This event represents the 
retirement of mispredicted branch 
instructions. 

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not 
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement 
of x87 instructions that required 
special handling. 

Specifies one or more event mask 
bits to select the type of 
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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machine_clear This event increments according to 
the mask bit specified while the 
entire pipeline of the machine is 
cleared. Specify one of the mask 
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers 
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 

0: CLEAR

ESCR[24:9]

Counts for a portion of the many 
cycles while the machine is cleared 
for any cause. Use Edge triggering 
for this bit only to get a count of 
occurrence versus a duration.

2:  MOCLEAR

6: SMCLEAR

Increments each time the machine 
is cleared due to memory ordering 
issues.

Increments each time the machine 
is cleared due to self-modifying 
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table A-14.  Performance Monitoring Events For Intel NetBurst 
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters  Parameter Value Description
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Table A-15.  Intel NetBurst Microarchitecture Model-Specific Performance Monitoring 
Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters  Parameter Value Description

instr_completed This event counts instructions that 
have completed and retired during 
a clock cycle. Mask bits specify 
whether the instruction is bogus 
or non-bogus and whether they 
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers 
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit 

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific 
Notes

This metric differs from 
instr_retired, since it counts 
instructions completed, rather 
than the number of times that 
instructions started.

Can Support PEBS No
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Table A-16.  List of Metrics Available for Front_end Tagging 
(For Front_end Event Only)

Front-end 
metric1

MSR_ 
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for 
Front_end_event

memory_loads None Set TAGLOADS bit 
in ESCR 
corresponding to 
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit 
in the ESCR 
corresponding to 
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of 

the floating point stack.

Table A-17.  List of Metrics Available for Execution Tagging 
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 

packed_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
128_bit_MMX_uop.

1 NBOGUS0
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64_bit_MMX_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event 
mask, TagUop bit in 
ESCR of 
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2 
bits in event mask, 
TagUop bit in ESCR 
of X87_SIMD_ 
moves_uop. 

1 NBOGUS0

Table A-18.  List of Metrics Available for Replay Tagging 
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24, 
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24, 
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16, 
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24, 
Bit 25

Bit 0 Select 
MOB_load_replay 
event and set 
PARTIAL_DATA and 
UNALGN_ADDR bit. 

NBOGUS

Table A-17.  List of Metrics Available for Execution Tagging 
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in 
Upstream ESCR

Event mask value for 
execution_event 
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split_load_retired Bit 10, Bit 24, 
Bit 25

Bit 0 Select 
load_port_replay 
event with the 
MSR_SAAT_ESCR1 
MSR and set the 
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24, 
Bit 25

Bit 1 Select 
store_port_replay 
event with the 
MSR_SAAT_ESCR0 
MSR and set the 
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses, 

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that 

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is 

the case where the data from a load that would otherwise be forwarded is not an aligned subset of 
the data from a preceding store.

Table A-18.  List of Metrics Available for Replay Tagging 
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field 
to Set

MSR_PEBS_
MATRIX_VERT 
Bit Field to Set

Additional MSR/ 
Event 

Event Mask 
Value for 
Replay_event
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Table A-19.  Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
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Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B A-247



PERFORMANCE-MONITORING EVENTS
Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit 

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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A.10 PERFORMANCE MONITORING EVENTS FOR 
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring 
events for the P6 family of processors. All of these performance events are model 
specific for the Pentium M processor and are not available in this form in other 
processors. Table A-20 lists the Performance-Monitoring events that were added in 
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table A-20.  Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep 
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency 
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to 
count number of thermal trips: bit 22 in 
PerfEvtSel0/1 needs to be set to enable 
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed 
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were 
mispredicted at execution.

Table A-19.  Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
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BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were 
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that 
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions 
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed 
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed 
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed 
that were mispredicted at front end 
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss 
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0   - Fused micro-ops

Mask = 1   -  Only load+Op micro-ops

Mask = 2   -  Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB, 
happened on a FP exception to a fused 
µop.

Table A-20.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
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A number of P6 family processor performance monitoring events are modified for the 
Pentium M processor. Table A-21 lists the performance monitoring events that were 
changed in the Pentium M processor, and differ from performance monitoring events 
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table A-21.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors

Name Hex 
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not 
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0  –  SSE packed single and scalar single

Mask = 1  –  SSE scalar-single

Mask = 2  –  SSE2 packed-double

Mask = 3  –  SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table A-20.  Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
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A.11 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-22 lists the events that can be counted with the performance-monitoring 
counters and read with the RDPMC instruction for the P6 family processors. The unit 
column gives the microarchitecture or bus unit that produces the event; the event 
number column gives the hexadecimal number identifying the event; the mnemonic 
event name column gives the name of the event; the unit mask column gives the unit 
mask required (if any); the description column describes the event; and the 
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and 
are not available in this form in the Pentium 4 processors or the Pentium processors. 
Some events (such as those added in later generations of the P6 family processors) 
are only available in specific processors in the P6 family. All performance event 
encodings not listed in Table A-22 are reserved and their use will result in undefined 
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1  –  count I state lines

Mask[1] = 1  –  count S state 
lines

Mask[2] = 1  –  count E state 
lines

Mask[3] = 1  –  count M state 
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched 
lines only

02H/03H – All (HW-prefetched 
lines and non HW --Prefetched 
lines)

L2_LINES_IN 24H L2 lines 
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines 
evicted

Table A-21.  Performance Monitoring Events Modified on Intel® Pentium® M 
Processors (Contd.)

Name Hex 
Values

Descriptions
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Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments

Data Cache 
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any 
memory type. All stores 
to any memory type. 
Each part of a split is 
counted separately. The 
internal logic counts not 
only memory loads and 
stores, but also internal 
retries.

80-bit floating-point 
accesses are double 
counted, since they are 
decomposed into a 16-bit 
exponent load and a 
64-bit mantissa load. 
Memory accesses are 
only counted when they 
are actually performed 
(such as a load that gets 
squashed because a 
previous cache miss is 
outstanding to the same 
address, and which finally 
gets performed, is only 
counted once).

Does not include I/O 
accesses, or other 
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in 
DCU.

46H DCU_M_LINES_IN 00H Number of M state lines 
allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines 
evicted from DCU.

This includes evictions 
via snoop HITM, 
intervention or 
replacement.
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48H DCU_MISS_
OUTSTANDING

00H Weighted number of 
cycles while a DCU miss is 
outstanding, incremented 
by the number of 
outstanding cache 
misses at any particular 
time.

Cacheable read requests 
only are considered.

Uncacheable requests 
are excluded.

Read-for-ownerships are 
counted, as well as line 
fills, invalidates, and 
stores.

An access that also 
misses the L2 is 
short-changed by 2 
cycles (i.e., if counts 
N cycles, should be 
N+2 cycles).

Subsequent loads 
to the same cache 
line will not result in 
any additional 
counts.

Count value not 
precise, but still 
useful.

Instruction 
Fetch Unit 
(IFU)

80H IFU_IFETCH 00H Number of instruction 
fetches, both cacheable 
and noncacheable, 
including UC fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction 
fetch misses

All instruction fetches 
that do not hit the IFU 
(i.e., that produce 
memory requests). This 
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles 
instruction fetch is 
stalled, for any reason.

Includes IFU cache 
misses, ITLB misses, ITLB 
faults, and other minor 
stalls.

87H ILD_STALL 00H Number of cycles that 
the instruction length 
decoder is stalled.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction 
fetches.

This event indicates that 
a normal instruction 
fetch was received by 
the L2.

The count includes only 
L2 cacheable instruction 
fetches; it does not 
include UC instruction 
fetches.

It does not include ITLB 
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that 
a normal, unlocked, load 
memory access was 
received by the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It does include L2 
cacheable TLB miss 
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data 
stores.

This event indicates that 
a normal, unlocked, store 
memory access was 
received by the L2.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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it indicates that the DCU 
sent a read-for-
ownership request to the 
L2. It also includes Invalid 
to Modified requests sent 
by the DCU to the L2.

It includes only L2 
cacheable memory 
accesses; it does not 
include I/O accesses, 
other nonmemory 
accesses, or memory 
accesses such as UC/WT 
memory accesses.

It includes TLB miss 
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated 
in the L2.

26H L2_LINES_OUT 00H Number of lines removed 
from the L2 for any 
reason.

25H L2_M_LINES_INM 00H Number of modified lines 
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines 
removed from the L2 for 
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2 
requests.

21H L2_ADS 00H Number of L2 address 
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during 
which the L2 cache data 
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during 
which the data bus was 
busy transferring read 
data from L2 to the 
processor.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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External 
Bus Logic 
(EBL)2

62H BUS_DRDY_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which DRDY# is asserted.

Utilization of the external 
system data bus during 
data transfers.

Unit Mask = 00H 
counts bus clocks 
when the processor 
is driving DRDY#.

Unit Mask = 20H 
counts in processor 
clocks when any 
agent is driving 
DRDY#.

63H BUS_LOCK_
CLOCKS

00H 
(Self)

20H 
(Any)

Number of clocks during 
which LOCK# is asserted 
on the external system 
bus.3

Always counts in 
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H 
(Self)

Number of bus requests 
outstanding.

This counter is 
incremented by the 
number of cacheable 
read bus requests 
outstanding in any given 
cycle.

Counts only DCU 
full-line cacheable 
reads, not RFOs, 
writes, instruction 
fetches, or anything 
else. Counts 
“waiting for bus to 
complete” (last data 
chunk received).

65H BUS_TRAN_BRD 00H 
(Self)

20H 
(Any)

Number of burst read 
transactions. 

66H BUS_TRAN_RFO 00H 
(Self)

20H 
(Any)

Number of completed 
read for ownership 
transactions.

67H BUS_TRANS_WB 00H 
(Self)

20H 
(Any)

Number of completed 
write back transactions.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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68H BUS_TRAN_
IFETCH

00H 
(Self)

20H 
(Any)

Number of completed 
instruction fetch 
transactions.

69H BUS_TRAN_INVA
L

00H 
(Self)

20H 
(Any)

Number of completed 
invalidate transactions.

6AH BUS_TRAN_PWR 00H 
(Self)

20H 
(Any)

Number of completed 
partial write 
transactions.

6BH BUS_TRANS_P 00H 
(Self)

20H 
(Any)

Number of completed 
partial transactions.

6CH BUS_TRANS_IO 00H 
(Self)

20H 
(Any)

Number of completed I/O 
transactions.

6DH BUS_TRAN_DEF 00H 
(Self)

20H 
(Any)

Number of completed 
deferred transactions.

6EH BUS_TRAN_
BURST

00H 
(Self)

20H 
(Any)

Number of completed 
burst transactions.

70H BUS_TRAN_ANY 00H 
(Self)

20H 
(Any)

Number of all completed 
bus transactions.

Address bus utilization 
can be calculated 
knowing the minimum 
address bus occupancy.

Includes special cycles, 
etc.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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6FH BUS_TRAN_MEM 00H 
(Self)

20H 
(Any)

Number of completed 
memory transactions.

64H BUS_DATA_RCV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is receiving 
data.

61H BUS_BNR_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
BNR# pin.

7AH BUS_HIT_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HIT# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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• If the PC bit is 
clear, the 
processor 
toggles the BPMi 
pins when the 
counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7BH BUS_HITM_DRV 00H 
(Self)

Number of bus clock 
cycles during which this 
processor is driving the 
HITM# pin.

Includes cycles due 
to snoop stalls.

The event counts 
correctly, but BPMi 
(breakpoint 
monitor) pins 
function as follows 
based on the 
setting of the PC 
bits (bit 19 in the 
PerfEvtSel0 and 
PerfEvtSel1 
registers):

• If the core-clock-
to- bus-clock 
ratio is 2:1 or 3:1, 
and a PC bit is 
set, the BPMi 
pins will be 
asserted for a 
single clock when 
the counters 
overflow.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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• If the PC bit is 
clear, the 
processor 
toggles the 
BPMipins when 
the counter 
overflows.

• If the clock ratio 
is not 2:1 or 3:1, 
the BPMi pins 
will not function 
for these 
performance-
monitoring 
counter events.

7EH BUS_SNOOP_
STALL

00H 
(Self)

Number of clock cycles 
during which the bus is 
snoop stalled.

Floating- 
Point Unit

C1H FLOPS 00H Number of computational 
floating-point operations 
retired.

Excludes floating-point 
computational operations 
that cause traps or 
assists.

Includes floating-point 
computational operations 
executed by the assist 
handler.

Includes internal sub-
operations for complex 
floating-point 
instructions like 
transcendentals.

Excludes floating-point 
loads and stores.

Counter 0 only.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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10H FP_COMP_OPS_
EXE

00H Number of computational 
floating-point operations 
executed.

The number of FADD, 
FSUB, FCOM, FMULs, 
integer MULs and IMULs, 
FDIVs, FPREMs, FSQRTS, 
integer DIVs, and IDIVs.

This number does not 
include the number of 
cycles, but the number of 
operations.

This event does not 
distinguish an FADD used 
in the middle of a 
transcendental flow from 
a separate FADD 
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point 
exception cases handled 
by microcode.

Counter 1 only.

This event includes 
counts due to 
speculative 
execution.

12H MUL 00H Number of multiplies.

This count includes 
integer as well as FP 
multiplies and is 
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes 
integer as well as FP 
divides and is 
speculative.

Counter 1 only.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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14H CYCLES_DIV_
BUSY

00H Number of cycles during 
which the divider is busy, 
and cannot accept new 
divides.

This includes integer and 
FP divides, FPREM, 
FPSQRT, etc. and is 
speculative.

Counter 0 only.

Memory 
Ordering

03H LD_BLOCKS 00H Number of load 
operations delayed due 
to store buffer blocks.

Includes counts caused 
by preceding stores 
whose addresses are 
unknown, preceding 
stores whose addresses 
are known but whose 
data is unknown, and 
preceding stores that 
conflicts with the load 
but which incompletely 
overlap the load.

04H SB_DRAINS 00H Number of store buffer 
drain cycles.

Incremented every cycle 
the store buffer is 
draining.

Draining is caused by 
serializing operations like 
CPUID, synchronizing 
operations like XCHG, 
interrupt 
acknowledgment, as well 
as other conditions (such 
as cache flushing).

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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05H MISALIGN_
MEM_REF

00H Number of misaligned 
data memory references.

Incremented by 1 every 
cycle, during which either 
the processor’s load or 
store pipeline dispatches 
a misaligned μop.

Counting is performed if 
it is the first or second 
half, or if it is blocked, 
squashed, or missed.

In this context, 
misaligned means 
crossing a 64-bit 
boundary.

MISALIGN_MEM_
REF is only an 
approximation to 
the true number of 
misaligned memory 
references.

The value returned 
is roughly 
proportional to the 
number of 
misaligned memory 
accesses (the size 
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming 
SIMD extensions 
prefetch/weakly-ordered 
instructions dispatched 
(speculative prefetches 
are included in counting):

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of 
prefetch/weakly-ordered 
instructions that miss all 
caches:

Counters 0 and 1. 
Pentium III 
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Instruction 
Decoding 
and 
Retirement

C0H INST_RETIRED 00H Number of instructions 
retired.

A hardware 
interrupt received 
during/after the 
last iteration of the 
REP STOS flow 
causes the counter 
to undercount by 1 
instruction.

An SMI received 
while executing a 
HLT instruction will 
cause the 
performance 
counter to not 
count the RSM 
instruction and 
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions 
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming 
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming 
SIMD extensions 
computation instructions 
retired:

0: packed and scalar

1: scalar

Counters 0 and 1. 
Pentium III 
processor only.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Interrupts C8H HW_INT_RX 00H Number of hardware 
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor 
cycles for which 
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor 
cycles for which 
interrupts are disabled 
and interrupts are 
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch 
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted 
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken 
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken 
mispredictions branches 
retired.

E0H BR_INST_
DECODED

00H Number of branch 
instructions decoded.

E2H BTB_MISSES 00H Number of branches for 
which the BTB did not 
produce a prediction.

E4H BR_BOGUS 00H Number of bogus 
branches. 

E6H BACLEARS 00H Number of times 
BACLEAR is asserted.

This is the number of 
times that a static branch 
prediction was made, in 
which the branch 
decoder decided to make 
a branch prediction 
because the BTB did not.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during 
every cycle for which 
there is a resource 
related stall.

Includes register 
renaming buffer entries, 
memory buffer entries.

Does not include stalls 
due to bus queue full, too 
many cache misses, etc.

In addition to resource 
related stalls, this event 
counts some other 
events.

Includes stalls arising 
during branch 
misprediction recovery, 
such as if retirement of 
the mispredicted branch 
is delayed and stalls 
arising while store buffer 
is draining from 
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or 
events for partial stalls. 
This includes flag partial 
stalls.

Segment 
Register 
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment 
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during 
which the processor is 
not halted.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX 
Instructions Executed.

Available in Intel 
Celeron, Pentium II 
and Pentium II Xeon 
processors only.

Does not account 
for MOVQ and 
MOVD stores from 
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX 
Saturating Instructions 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops 
Executed.

Available in Pentium 

II and Pentium III 
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply 
instructions executed.

MMX packed shift 
instructions executed.

MMX pack operation 
instructions executed.

Available in Pentium 

II and Pentium III 
processors only.

08H

10H

20H

MMX unpack operation 
instructions executed.

MMX packed logical 
instructions executed.

MMX packed arithmetic 
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX 
instruction to floating-
point instructions.

Transitions from floating-
point instructions to 
MMX instructions.

Available in Pentium 

II and Pentium III 
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists 
(that is, the number of 
EMMS instructions 
executed).

Available in Pentium 

II and Pentium III 
processors only.

CEH MMX_INSTR_RET 00H Number of MMX 
Instructions Retired.

Available in Pentium 

II processors only.

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name

Unit 
Mask Description Comments
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Segment 
Register 
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment 
Register Renaming Stalls:

Available in Pentium 

II and Pentium III 
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment 
Register Renames:

Available in Pentium 

II and Pentium III 
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers 
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment 
register rename events 
retired.

Available in Pentium 

II and Pentium III 
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field 

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in 
conjunction with L2 events to indicate the cache state or cache states involved. 
The P6 family processors identify cache states using the “MESI” protocol and consequently each 
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E 
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be 
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing 
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the 
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. 
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that 
result from any processor on the bus (UMSK[5] = 1). 

3. L2 cache locks, so it is possible to have a zero count. 

Table A-22.  Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event 
Num.

Mnemonic Event 
Name
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Mask Description Comments
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A.12 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-23 lists the events that can be counted with the performance-monitoring 
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event 
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of 
the event, and the Description and Comments columns give detailed descriptions of 
the events. Most events can be counted with either counter 0 or counter 1; however, 
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the 
Pentium processor with MMX technology.

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters

Event
Num.

Mnemonic Event 
Name Description Comments

00H DATA_READ Number of memory data 
reads (internal data 
cache hit and miss 
combined).

Split cycle reads are counted 
individually. Data Memory Reads that 
are part of TLB miss processing are 
not included. These events may 
occur at a maximum of two per clock. 
I/O is not included.

01H DATA_WRITE Number of memory data 
writes (internal data 
cache hit and miss 
combined); I/O not 
included.

Split cycle writes are counted 
individually. These events may occur 
at a maximum of two per clock. I/O is 
not included.

0H2 DATA_TLB_MISS Number of misses to the 
data cache translation 
look-aside buffer.
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03H DATA_READ_MISS Number of memory read 
accesses that miss the 
internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

04H DATA WRITE MISS Number of memory 
write accesses that miss 
the internal data cache 
whether or not the 
access is cacheable or 
noncacheable.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to 
exclusive or modified 
lines in the data cache.

These are the writes that may be 
held up if EWBE# is inactive. These 
events may occur a maximum of two 
per clock.

06H DATA_CACHE_
LINES_ 
WRITTEN_BACK

Number of dirty lines 
(all) that are written 
back, regardless of the 
cause.

Replacements and internal and 
external snoops can all cause 
writeback and are counted.

07H EXTERNAL_ 
SNOOPS

Number of accepted 
external snoops 
whether they hit in the 
code cache or data 
cache or neither.

Assertions of EADS# outside of the 
sampling interval are not counted, 
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external 
snoops to the data 
cache.

Snoop hits to a valid line in either the 
data cache, the data line fill buffer, or 
one of the write back buffers are all 
counted as hits.

09H MEMORY ACCESSES 
IN BOTH PIPES

Number of data memory 
reads or writes that are 
paired in both pipes of 
the pipeline.

These accesses are not necessarily 
run in parallel due to cache misses, 
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank 
conflicts.

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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0BH MISALIGNED DATA 
MEMORY OR I/O 
REFERENCES

Number of memory or 
I/O reads or writes that 
are misaligned.

A 2- or 4-byte access is misaligned 
when it crosses a 4-byte boundary; 
an 8-byte access is misaligned when 
it crosses an 8-byte boundary. Ten 
byte accesses are treated as two 
separate accesses of 8 and 2 bytes 
each.

0CH CODE READ Number of instruction 
reads; whether the read 
is cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0DH CODE TLB MISS Number of instruction 
reads that miss the code 
TLB whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction 
reads that miss the 
internal code cache; 
whether the read is 
cacheable or 
noncacheable.

Individual 8-byte noncacheable 
instruction reads are counted.

0FH ANY SEGMENT 
REGISTER LOADED

Number of writes into 
any segment register in 
real or protected mode 
including the LDTR, 
GDTR, IDTR, and TR.

Segment loads are caused by explicit 
segment register load instructions, 
far control transfers, and task 
switches. Far control transfers and 
task switches causing a privilege 
level change will signal this event 
twice. Interrupts and exceptions may 
initiate a far control transfer.

10H Reserved

11H Reserved

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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12H Branches Number of taken and 
not taken branches, 
including: conditional 
branches, jumps, calls, 
returns, software 
interrupts, and interrupt 
returns.

 Also counted as taken branches are 
serializing instructions, VERR and 
VERW instructions, some segment 
descriptor loads, hardware interrupts 
(including FLUSH#), and 
programmatic exceptions that invoke 
a trap or fault handler. The pipe is 
not necessarily flushed. 

The number of branches actually 
executed is measured, not the 
number of predicted branches.

13H BTB_HITS Number of BTB hits that 
occur.

Hits are counted only for those 
instructions that are actually 
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken 
branches or BTB hits 
that occur.

This event type is a logical OR of 
taken branches and BTB hits. It 
represents an event that may cause 
a hit in the BTB. Specifically, it is 
either a candidate for a space in the 
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline 
flushes that occur

Pipeline flushes are 
caused by BTB misses 
on taken branches, 
mispredictions, 
exceptions, interrupts, 
and some segment 
descriptor loads. 

The counter will not be incremented 
for serializing instructions (serializing 
instructions cause the prefetch 
queue to be flushed but will not 
trigger the Pipeline Flushed event 
counter) and software interrupts 
(software interrupts do not flush the 
pipeline).

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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16H INSTRUCTIONS_
EXECUTED

Number of instructions 
executed (up to two per 
clock).

Invocations of a fault handler are 
considered instructions. All hardware 
and software interrupts and 
exceptions will also cause the count 
to be incremented. Repeat prefixed 
string instructions will only 
increment this counter once despite 
the fact that the repeat loop 
executes the same instruction 
multiple times until the loop criteria 
is satisfied. 

This applies to all the Repeat string 
instruction prefixes (i.e., REP, REPE, 
REPZ, REPNE, and REPNZ). This 
counter will also only increment once 
per each HLT instruction executed 
regardless of how many cycles the 
processor remains in the HALT state.

17H INSTRUCTIONS_ 
EXECUTED_ V PIPE

Number of instructions 
executed in the V_pipe.

The event indicates the 
number of instructions 
that were paired.

This event is the same as the 16H 
event except it only counts the 
number of instructions actually 
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while 
a bus cycle is in 
progress.

This event measures 
bus use.

The count includes HLDA, AHOLD, 
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
due to full write buffers.

Full write buffers stall data memory 
read misses, data memory write 
misses, and data memory write hits 
to S-state lines. Stalls on I/O 
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while 
the pipeline is stalled 
while waiting for data 
memory reads.

Data TLB Miss processing is also 
included in the count. The pipeline 
stalls while a data memory read is in 
progress including attempts to read 
that are not bypassed while a line is 
being filled.

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
A-276 Vol. 3B



PERFORMANCE-MONITORING EVENTS
1BH STALL ON WRITE 
TO AN E- OR M-
STATE LINE

Number of stalls on 
writes to E- or M-state 
lines.

1CH LOCKED BUS CYCLE Number of locked bus 
cycles that occur as the 
result of the LOCK prefix 
or LOCK instruction, 
page-table updates, and 
descriptor table 
updates.

Only the read portion of the locked 
read-modify-write is counted. Split 
locked cycles (SCYC active) count as 
two separate accesses. Cycles 
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE 
CYCLE 

Number of bus cycles 
directed to I/O space.

Misaligned I/O accesses will generate 
two bus cycles. Bus cycles restarted 
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of 
noncacheable 
instruction or data 
memory read bus cycles.

The count includes read 
cycles caused by TLB 
misses, but does not 
include read cycles to 
I/O space. 

Cycles restarted due to BOFF# are 
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address 
generation interlock 
(AGI) stalls.

An AGI occurring in both 
the U- and V- pipelines 
in the same clock signals 
this event twice.

An AGI occurs when the instruction 
in the execute stage of either of U- 
or V-pipelines is writing to either the 
index or base address register of an 
instruction in the D2 (address 
generation) stage of either the U- or 
V- pipelines.

20H Reserved

21H Reserved

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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22H FLOPS Number of floating-
point operations that 
occur.

Number of floating-point adds, 
subtracts, multiplies, divides, 
remainders, and square roots are 
counted. The transcendental 
instructions consist of multiple adds 
and multiplies and will signal this 
event multiple times. Instructions 
generating the divide-by-zero, 
negative square root, special 
operand, or stack exceptions will not 
be counted.

Instructions generating all other 
floating-point exceptions will be 
counted. The integer multiply 
instructions and other instructions 
which use the x87 FPU will be 
counted.

23H BREAKPOINT 
MATCH ON DR0 
REGISTER

Number of matches on 
register DR0 breakpoint.

The counters is incremented 
regardless if the breakpoints are 
enabled or not. However, if 
breakpoints are not enabled, code 
breakpoint matches will not be 
checked for instructions executed in 
the V-pipe and will not cause this 
counter to be incremented. (They are 
checked on instruction executed in 
the U-pipe only when breakpoints 
are not enabled.) 

These events correspond to the 
signals driven on the BP[3:0] pins. 
Refer to Chapter 16, “Debugging, 
Profiling Branches and Time-Stamp 
Counter” for more information.

24H BREAKPOINT 
MATCH ON DR1 
REGISTER

Number of matches on 
register DR1 breakpoint.

See comment for 23H event.

25H BREAKPOINT 
MATCH ON DR2 
REGISTER

Number of matches on 
register DR2 breakpoint.

See comment for 23H event.

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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Mnemonic Event 
Name Description Comments
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26H BREAKPOINT 
MATCH ON DR3 
REGISTER

Number of matches on 
register DR3 breakpoint.

See comment for 23H event.

27H HARDWARE 
INTERRUPTS 

Number of taken INTR 
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data 
reads and/or writes 
(internal data cache hit 
and miss combined).

Split cycle reads and writes are 
counted individually. Data Memory 
Reads that are part of TLB miss 
processing are not included. These 
events may occur at a maximum of 
two per clock. I/O is not included.

29H DATA_READ_MISS 
OR_WRITE MISS

Number of memory read 
and/or write accesses 
that miss the internal 
data cache, whether or 
not the access is 
cacheable or 
noncacheable.

Additional reads to the same cache 
line after the first BRDY# of the 
burst line fill is returned but before 
the final (fourth) BRDY# has been 
returned, will not cause the counter 
to be incremented additional times.

Data accesses that are part of TLB 
miss processing are not included. 
Accesses directed to I/O space are 
not included.

2AH BUS_OWNERSHIP_
LATENCY 
(Counter 0)

The time from LRM bus 
ownership request to 
bus ownership granted 
(that is, the time from 
the earlier of a PBREQ 
(0), PHITM# or HITM# 
assertion to a PBGNT 
assertion)

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2AH BUS OWNERSHIP 
TRANSFERS 
(Counter 1)

The number of buss 
ownership transfers 
(that is, the number of 
PBREQ (0) assertions

The ratio of the 2AH events counted 
on counter 0 and counter 1 is the 
average stall time due to bus 
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX 
instructions executed in 
the U-pipe

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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Mnemonic Event 
Name Description Comments
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2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX 
instructions executed in 
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING 
(Counter 0)

Number of times a 
processor identified a 
hit to a modified line due 
to a memory access in 
the other processor 
(PHITM (O))

If the average memory latencies of 
the system are known, this event 
enables the user to count the Write 
Backs on PHITM(O) penalty and the 
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING 
(Counter 1)

Number of shared data 
lines in the L1 cache 
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of EMMS 
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_ 
AND_FP_
INSTRUCTIONS 
(Counter 1)

Number of transitions 
between MMX and 
floating-point 
instructions or vice 
versa

An even count indicates 
the processor is in MMX 
state. an odd count 
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX 
instruction or first MMX instruction 
following a floating-point instruction.

The count may be used to estimate 
the penalty in transitions between 
floating-point state and MMX state.

2EH BUS_UTILIZATION_ 
DUE_TO_ 
PROCESSOR_ 
ACTIVITY 
(Counter 0)

Number of clocks the 
bus is busy due to the 
processor’s own activity 
(the bus activity that is 
caused by the 
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY 
(Counter 1)

Number of write 
accesses to 
noncacheable memory

The count includes write cycles 
caused by TLB misses and I/O write 
cycles. 

Cycles restarted due to BOFF# are 
not re-counted.

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter 
0)

Number of saturating 
MMX instructions 
executed, 
independently of 
whether they actually 
saturated.

2FH SATURATIONS_
PERFORMED 
(Counter 1)

Number of MMX 
instructions that used 
saturating arithmetic 
when at least one of its 
results actually 
saturated

If an MMX instruction operating on 4 
doublewords saturated in three out 
of the four results, the counter will 
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_ 
HALT_STATE 
(Counter 0)

Number of cycles the 
processor is not idle due 
to HLT instruction

This event will enable the user to 
calculate “net CPI”. Note that during 
the time that the processor is 
executing the HLT instruction, the 
Time-Stamp Counter is not disabled. 
Since this event is controlled by the 
Counter Controls CC0, CC1 it can be 
used to calculate the CPI at CPL=3, 
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the 
pipeline is stalled due to 
a data cache translation 
look-aside buffer (TLB) 
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX 
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES 
(Counter 1)

Number of MMX 
instruction data read 
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while 
pipe is stalled due to a 
floating-point freeze

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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32H TAKEN_BRANCHES 
(Counter 1)

Number of taken 
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY 
(Counter 0)

Number of times D1 
stage cannot issue ANY 
instructions since the 
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1 
stage issues a single 
instruction (since the 
FIFO buffer had just one 
instruction ready) 

The D1 stage can issue 0, 1, or 2 
instructions per clock if those are 
available in an instructions FIFO 
buffer. 

When combined with the previously 
defined events, Instruction Executed 
(16H) and Instruction Executed in 
the V-pipe (17H), this event enables 
the user to calculate the numbers of 
time pairing rules prevented issuing 
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES 
(Counter 0)

Number of data writes 
caused by MMX 
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES 
(Counter 1)

Number of data write 
misses caused by MMX 
instructions

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)
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35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS 
(Counter 0)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush 
due to a branch that the pipeline did 
not follow correctly. It includes cases 
where a branch was not in the BTB, 
cases where a branch was in the BTB 
but was mispredicted, and cases 
where a branch was correctly 
predicted but to the wrong address.

Branches are resolved in either the 
Execute stage (E-stage) or the 
Writeback stage (WB-stage). In the 
later case, the misprediction penalty 
is larger by one clock. The difference 
between the 35H event count in 
counter 0 and counter 1 is the 
number of E-stage resolved 
branches.

35H PIPELINE_ 
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE 
(Counter 1)

Number of pipeline 
flushes due to wrong 
branch predictions 
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS 
(Counter 0)

Number of misaligned 
data memory references 
when executing MMX 
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during 
pipeline stalls caused by 
waits form MMX 
instruction data memory 
reads

T3:

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns 
predicted incorrectly or 
not predicted at all

The count is the difference between 
the total number of executed returns 
and the number of returns that were 
correctly predicted. Only RET 
instructions are counted (for 
example, IRET instructions are not 
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted 
returns (whether they 
are predicted correctly 
and incorrectly

Only RET instructions are counted 
(for example, IRET instructions are 
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK 
(Counter 0)

Number of clocks the 
pipe is stalled since the 
destination of previous 
MMX multiply 
instruction is not ready 
yet

The counter will not be incremented 
if there is another cause for a stall. 
For each occurrence of a multiply 
interlock, this event will be counted 
twice (if the stalled instruction 
comes on the next clock after the 
multiply) or by once (if the stalled 
instruction comes two clocks after 
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION 
(Counter 1)

Number of clocks a 
MOVD/MOVQ instruction 
store is stalled in D2 
stage due to a previous 
MMX operation with a 
destination to be used in 
the store instruction.

39H RETURNS 
(Counter 0)

Number or returns 
executed. 

Only RET instructions are counted; 
IRET instructions are not counted. 
Any exception taken on a RET 
instruction and any interrupt 
recognized by the processor on the 
instruction boundary prior to the 
execution of the RET instruction will 
also cause this counter to be 
incremented.

39H Reserved

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
A-284 Vol. 3B



PERFORMANCE-MONITORING EVENTS
3AH BTB_FALSE_
ENTRIES 
(Counter 0)

Number of false entries 
in the Branch Target 
Buffer

False entries are causes for 
misprediction other than a wrong 
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH 
(Counter 1)

Number of times the 
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS 
(Counter 0)

Number of clocks while 
the pipeline is stalled 
due to full write buffers 
while executing MMX 
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE 
(Counter 1)

Number of clocks during 
stalls on MMX 
instructions writing to 
E- or M-state lines

Table A-23.  Events That Can Be Counted with Pentium Processor 
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event 
Name Description Comments
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APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)

This appendix lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™, 
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6 
family processors, and Pentium® processors in Tables B-13, B-18, and B-19, respec-
tively. All MSRs listed can be read with the RDMSR and written with the WRMSR 
instructions. 

Register addresses are given in both hexadecimal and decimal. The register name is 
the mnemonic register name and the bit description describes individual bits in 
registers.

Model specific registers and its bit-fields may be supported for a finite range of 
processor families/models. To distinguish between different processor family and/or 
models, software must use CPUID.01H leaf function to query the combination of 
DisplayFamily and DisplayModel to determine model-specific availability of MSRs 
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel® 
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Table B-1 lists 
the signature values of DisplayFamily and DisplayModel for various processor fami-
lies or processor number series.

Table B-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5, 
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500 
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2 
Quad processors 8000, 9000 series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000 
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, 
Intel Pentium dual-core processors
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B.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next 
and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not 
change on future processor generations, are now considered architectural MSRs. For 
historical reasons (beginning with the Pentium 4 processor), these “architectural 
MSRs” were given the prefix “IA32_”. Table B-2 lists the architectural MSRs, their 
addresses, their current names, their names in previous IA-32 processors, and bit 
fields that are considered architectural. MSR addresses outside Table B-2 and certain 
bitfields in an MSR address that may overlap with architectural MSR addresses are 
model-specific. Code that accesses a machine specified MSR and that is executed on 
a processor that does not support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or 
transitioned at the granularity of certain processor family/model or the presence of 
certain CPUID feature flags. The right-most column of Table B-2 provides information 
on the introduction of each architectural MSR or its individual fields. This information 
is expressed either as signature values of “DF_DM“ (see Table B-1) or via CPUID 
flags.

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, 
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4, 
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4 
processors

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX 
Technology

Table B-1.  CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel  (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
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Certain bit field position may be related to the maximum physical address width, the 
value of which is expressed as “MAXPHYWID“ in Table B-2. “MAXPHYWID“ is reported by 
CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially 
reserved range. All existing and future processors will not implement any features 
using any MSR in this range.

Table B-2.  IA-32 Architectural MSRs

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal

0H 0 IA32_P5_MC_ADDR 
(P5_MC_ADDR)

See Appendix B.12, “MSRs in 
Pentium Processors.”

Pentium 
Processor 
(05_01H)

1H 1 IA32_P5_MC_TYPE 
(P5_MC_TYPE)

See Appendix B.12, “MSRs in 
Pentium Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_S
IZE

See Section 8.10.5, 
“Monitor/Mwait Address 
Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 16.12, “Time-
Stamp Counter.”

05_01H

17H 23 IA32_PLATFORM_ID 
(MSR_PLATFORM_ID )

Platform ID. (RO) 
The operating system can use 
this MSR to determine “slot” 
information for the processor 
and the proper microcode 
update to load.

06_01H

49:0 Reserved.

52:50 Platform Id. (RO) 

Contains information 
concerning the intended 
platform for the processor. 
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.
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1BH 27 IA32_APIC_BASE 
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 
Processor. (R/W)

If CPUID.01H: 
ECX[bit 5 or bit 6] 
= 1

0 Lock bit (R/WO): (1 = locked). 
When set, locks this MSR from 
being written, writes to this 
bit will result in GP(0).

Note: Once the Lock bit is set, 
the contents of this register 
cannot be modified. 
Therefore the lock bit must 
be set after configuring 
support

for Intel Virtualization 
Technology and prior to 
transferring control to an 
option ROM or the OS. Hence, 
once the Lock bit is set, the 
entire

IA32_FEATURE_CONTROL_M
SR contents are preserved 
across RESET when 
PWRGOOD is not deasserted.

If 
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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1 Enable VMX inside SMX 
operation (R/WL): This bit 
enables a system executive 
to use VMX in conjunction 
with SMX to support Intel® 
Trusted Execution 
Technology.

BIOS must set this bit only 
when the CPUID function 1 
returns VMX feature flag and 
SMX feature flag set (ECX bits 
5 and 6 respectively).

If 
CPUID.01H:ECX[bi
t 5 and bit 6] are 
set to 1

2 Enable VMX outside SMX 
operation (R/WL): This bit 
enables VMX for system 
executive that do not require 
SMX..

BIOS must set this bit only 
when the CPUID function 1 
returns VMX feature flag set 
(ECX bit 5).

If 
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function 
Enables (R/WL): When set, 
each bit in the field 
represents an enable control 
for a corresponding SENTER 
function. This bit is supported 
only if CPUID.1:ECX.[bit 6] is 
set

If 
CPUID.01H:ECX[bi
t 6] = 1

15 SENTER Global Enable (R/WL): 
This bit must be set to enable 
SENTER leaf functions. This 
bit is supported only if 
CPUID.1:ECX.[bit 6] is set

If 
CPUID.01H:ECX[bi
t 6] = 1

63:16 Reserved

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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MODEL-SPECIFIC REGISTERS (MSRS)
79H 121 IA32_BIOS_UPDT_TRIG 
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR 
instruction to this MSR causes 
a microcode update to be 
loaded into the processor. See 
Section 9.11.6, “Microcode 
Update Loader.”

A processor may prevent 
writing to this MSR when 
loading guest states on VM 
entries or saving guest states 
on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID 
(BIOS_SIGN/BBL_CR
_D3)

BIOS Update Signature (RO)

Returns the microcode update 
signature following the 
execution of CPUID.01H.

A processor may prevent 
writing to this MSR when 
loading guest states on VM 
entries or saving guest states 
on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this 
field be pre-loaded with 0 
prior to executing CPUID. 

If the field remains 0 
following the execution of 
CPUID; this indicates that no 
microcode update is loaded. 
Any non-zero value is the 
microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration 
(R/W)

If CPUID.01H: 
ECX[bit 5 or bit 6] 
= 1

0 Valid (R/W)

1 Reserved

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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2 Controls SMI unblocking by 
VMXOFF (see Section 
26.14.4)

If 
IA32_VMX_MISC[
bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter 
0 (R/W)

If CPUID.0AH: 
EAX[15:8] > 0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter 
1 (R/W)

If CPUID.0AH: 
EAX[15:8] > 1

C3H 195 IA32_PMC2 General Performance Counter 
2 (R/W)

If CPUID.0AH: 
EAX[15:8] > 2

C4H 196 IA32_PMC3 General Performance Counter 
3 (R/W)

If CPUID.0AH: 
EAX[15:8] > 3

C5H 197 IA32_PMC4 General Performance Counter 
4 (R/W)

If CPUID.0AH: 
EAX[15:8] > 4

C6H 198 IA32_PMC5 General Performance Counter 
5 (R/W)

If CPUID.0AH: 
EAX[15:8] > 5

C7H 199 IA32_PMC6 General Performance Counter 
6 (R/W)

If CPUID.0AH: 
EAX[15:8] > 6

C8H 200 IA32_PMC7 General Performance Counter 
7 (R/W)

If CPUID.0AH: 
EAX[15:8] > 7

E7H 231 IA32_MPERF Maximum Qualified 
Performance Clock Counter 
(R/Write to clear)

If CPUID.06H: 
ECX[0] = 1

63:0 C0_MCNT: C0 Maximum 
Frequency Clock Count. 

Increments at fixed interval 
(relative to TSC freq.) when 
the logical processor is in C0. 

Cleared upon overflow / 
wrap-around of IA32_APERF. 

E8H 232 IA32_APERF Actual Performance Clock 
Counter (R/Write to clear)

If CPUID.06H: 
ECX[0] = 1

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
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63:0 C0_ACNT: C0 Actual 
Frequency Clock Count.

Accumulates core clock 
counts at the coordinated 
clock frequency, when the 
logical processor is in C0. 

Cleared upon overflow / 
wrap-around of IA32_MPERF.

FEH 254 IA32_MTRRCAP 
(MTRRcap)

MTRR Capability (RO) Section 
11.11.2.1, 
“IA32_MTRR_DEF_TYPE 
MSR.”

06_01H

7:0 VCNT: The number of variable 
memory type ranges in the 
processor

8 Fixed range MTRRs are 
supported when set.

9 Reserved

10 WC Supported when set

11 SMRR Supported when set

63:12 Reserved

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP 
(MCG_CAP) 

Global Machine Check 
Capability (RO)

06_01H

7:0 Count: Number of reporting 
banks

8 MCG_CTL_P: IA32_MCG_CTL 
is present if this bit is set

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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9 MCG_EXT_P: Extended 
machine check state registers 
are present if this bit is set

10 MCP_CMCI_P: Support for 
corrected MC error event is 
present.

06_1AH

11 MCG_TES_P: Threshold-based 
error status register are 
present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of 
extended machine check 
state registers present.

24 MCG_SER_P: The processor 
supports software error 
recovery if this bit is set.

63:25 Reserved

17AH 378 IA32_MCG_STATUS 
(MCG_STATUS)

Global Machine Check Status 
(RO)

06_01H

17BH 379 IA32_MCG_CTL 
(MCG_CTL)

Global Machine Check Control 
(R/W)

06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0 
(PERFEVTSEL0)

Performance Event Select 
Register 0 (R/W)

If CPUID.0AH: 
EAX[15:8] > 0

7:0 Event Select: Selects a 
performance event logic unit

15:8 UMask: Qualifies the 
microarchitectural condition 
to detect on the selected 
event logic.

16 USR: Counts while in privilege 
level is not ring 0.

17 OS: Counts while in privilege 
level is ring 0.

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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18 Edge: Enables edge detection 
if set

19 PC: enables pin control

20 INT: enables interrupt on 
counter overflow

21 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

22 EN: enables the 
corresponding performance 
counter to commence 
counting when this bit is set

23 INV: invert the CMASK

31:24 CMASK: When CMASK is not 
zero, the corresponding 
performance counter 
increments each cycle if the 
event count is greater than or 
equal to the CMASK.

63:32 Reserved

187H 391 IA32_PERFEVTSEL1 
(PERFEVTSEL1)

Performance Event Select 
Register 1 (R/W)

If CPUID.0AH: 
EAX[15:8] > 1

188H 392 IA32_PERFEVTSEL2 Performance Event Select 
Register 2 (R/W)

If CPUID.0AH: 
EAX[15:8] > 2

189H 393 IA32_PERFEVTSEL3 Performance Event Select 
Register 3 (R/W)

If CPUID.0AH: 
EAX[15:8] > 3

18AH-
197H

394-
407

Reserved 06_0EH2

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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198H 408 IA32_PERF_STATUS (RO) 0F_03H 

15:0 Current performance State 
Value

63:16 Reserved

199H 409 IA32_PERF_CTL (R/W) 0F_03H 

15:0 Target performance State 
Value

31:16 Reserved

32 IDA Engage. (R/W)

When set to 1: disengages 
IDA

06_0FH (Mobile)

63:33 Reserved

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control 
(R/W)

See Section 14.5.3, “Software 
Controlled Clock Modulation.”

0F_0H

0 Extended On-Demand Clock 
Modulation Duty Cycle:

If 
CPUID.06H:EAX[5] 
= 1

3:1 On-Demand Clock Modulation 
Duty Cycle: Specific encoded 
values for target duty cycle 
modulation

4 On-Demand Clock Modulation 
Enable: Set 1 to enable 
modulation

63:5 Reserved

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control 
(R/W)

Enables and disables the 
generation of an interrupt on 
temperature transitions 
detected with the processor’s 
thermal sensors and thermal 
monitor. 

See Section 14.5.2, “Thermal 
Monitor.”

0F_0H

0 High-Temperature Interrupt 
Enable

1 Low-Temperature Interrupt 
Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt 
Enable

7:5 Reserved

14:8 Threshold #1 Value

15 Threshold #1 Interrupt 
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt 
Enable

24 Power Limit Notification 
Enable

If 
CPUID.06H:EAX[4] 
= 1

63:25 Reserved

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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19CH 412 IA32_THERM_STATUS Thermal Status Information 
(RO)

Contains status information 
about the processor’s thermal 
sensor and automatic thermal 
monitoring facilities. 

See Section 14.5.2, “Thermal 
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W): 

2 PROCHOT # or FORCEPR# 
event (RO)

3 PROCHOT # or FORCEPR# log 
(R/WC0)

4 Critical Temperature Status 
(RO)

5 Critical Temperature Status 
log (R/WC0)

6 Thermal Threshold #1 Status 
(RO)

If 
CPUID.01H:ECX[8] 
= 1

7 Thermal Threshold #1 log 
(R/WC0)

If 
CPUID.01H:ECX[8] 
= 1

8 Thermal Threshold #2 Status 
(RO)

If 
CPUID.01H:ECX[8] 
= 1

9 Thermal Threshold #1 log 
(R/WC0)

If 
CPUID.01H:ECX[8] 
= 1

10 Power Limitation Status (RO) If 
CPUID.06H:EAX[4] 
= 1

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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11 Power Limitation log (R/WC0) If 
CPUID.06H:EAX[4] 
= 1

15:12 Reserved

22:16 Digital Readout (RO) If 
CPUID.06H:EAX[0] 
= 1

26:23 Reserved

30:27 Resolution in Degrees Celsius 
(RO)

If 
CPUID.06H:EAX[0] 
= 1

31 Reading Valid (RO) If 
CPUID.06H:EAX[0] 
= 1

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor 
Features. (R/W) 

Allows a variety of processor 
functions to be enabled and 
disabled.

0 Fast-Strings Enable. 

When set, the fast-strings 
feature (for REP MOVS and 
REP STORS) is enabled 
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 
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3 Automatic Thermal Control 
Circuit Enable. (R/W) 

1 = Setting this bit enables 
the thermal control 
circuit (TCC) portion of 
the Intel Thermal 
Monitor feature. This 
allows the processor to 
automatically reduce 
power consumption in 
response to TCC 
activation.

0 = Disabled (default).
Note: In some products 
clearing this bit might be 
ignored in critical thermal 
conditions, and TM1, TM2 and 
adaptive thermal throttling 
will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring 
Available. (R) 

1 = Performance monitoring 
enabled

0 = Performance monitoring 
disabled

0F_0H

10:8 Reserved

11 Branch Trace Storage 
Unavailable. (RO)

1 = Processor doesn’t 
support branch trace 
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based 
Sampling (PEBS) 
Unavailable. (RO) 

1 = PEBS is not supported; 
0 = PEBS is supported. 

06_0FH
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15:13 Reserved

16 Enhanced Intel SpeedStep 
Technology Enable. (R/W)

0= Enhanced Intel 
SpeedStep Technology 
disabled

1 = Enhanced Intel 
SpeedStep Technology 
enabled

06_0DH

17 Reserved

18 ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the 
MONITOR feature flag is not 
set (CPUID.01H:ECX[bit 
3] = 0). This indicates that 
MONITOR/MWAIT are not 
supported. 

Software attempts to 
execute MONITOR/MWAIT will 
cause #UD when this bit is 0.

When this bit is set to 1 
(default), MONITOR/MWAIT 
are supported 
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag 
ECX[0] is not set 
(CPUID.01H:ECX[bit 0] = 0), 
the OS must not attempt to 
alter this bit. BIOS must leave 
it in the default state. Writing 
this bit when the SSE3 
feature flag is set to 0 may 
generate a #GP exception.

0F_03H

21:19 Reserved
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22 Limit CPUID Maxval. (R/W)

When this bit is set to 1, 
CPUID.00H returns a 
maximum value in EAX[7:0] of 
3.

BIOS should contain a setup 
question that allows users to 
specify when the installed OS 
does not support CPUID 
functions greater than 3.

Before setting this bit, BIOS 
must execute the CPUID.0H 
and examine the maximum 
value returned in EAX[7:0]. If 
the maximum value is greater 
than 3, the bit is supported.

Otherwise, the bit is not 
supported.  Writing to this bit 
when the maximum value is 
greater than 3 may generate 
a #GP exception.

Setting this bit may cause 
unexpected behavior in 
software that depends on the 
availability of CPUID leaves 
greater than 3.

0F_03H

23 xTPR Message Disable. 
(R/W)

When set to 1, xTPR 
messages are disabled. xTPR 
messages are optional 
messages that allow the 
processor to inform the 
chipset of its priority.

if 
CPUID.01H:ECX[1
4] = 1

33:24 Reserved
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34 XD Bit Disable. (R/W)

When set to 1, the Execute 
Disable Bit feature (XD Bit) is 
disabled and the XD Bit 
extended feature flag will be 
clear (CPUID.80000001H: 
EDX[20]=0).

When set to a 0 (default), the 
Execute Disable Bit feature (if 
available) allows the OS to 
enable PAE paging and take 
advantage of data only pages.

BIOS must not alter the 
contents of this bit location, if 
XD bit is not supported.. 
Writing this bit to 1 when the 
XD Bit extended feature flag 
is set to 0 may generate a 
#GP exception.

if 
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved

1B0H 432 IA32_ENERGY_PERF_BIA
S

Performance Energy Bias Hint 
(R/W)

if 
CPUID.6H:ECX[3] 
= 1

3:0 Power Policy Preference: 

0 indicates preference to 
highest performance.

15 indicates preference to 
maximize energy saving.

63:4 Reserved

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status 
Information (RO)

Contains status information 
about the package’s thermal 
sensor. 

See Section 14.6, “Package 
Level Thermal Management.”

06_2AH
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0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log 
(R/W): 

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature 
Status (RO)

5 Pkg Critical Temperature 
Status log (R/WC0)

6 Pkg Thermal Threshold #1 
Status (RO)

7 Pkg Thermal Threshold #1 log 
(R/WC0)

8 Pkg Thermal Threshold #2 
Status (RO)

9 Pkg Thermal Threshold #1 log 
(R/WC0)

10 Pkg Power Limitation Status 
(RO)

11 Pkg Power Limitation log 
(R/WC0)

15:12 Reserved

22:16 Pkg Digital Readout (RO)

63:23 Reserved

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt Control 
(R/W)

Enables and disables the 
generation of an interrupt on 
temperature transitions 
detected with the package’s 
thermal sensor. 

See Section 14.6, “Package 
Level Thermal Management.”

06_2AH
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0 Pkg High-Temperature 
Interrupt Enable

1 Pkg Low-Temperature 
Interrupt Enable

2 Pkg PROCHOT# Interrupt 
Enable

3 Reserved

4 Pkr Overheat Interrupt Enable

7:5 Reserved

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt 
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt 
Enable

24 Pkg Power Limit Notification 
Enable

63:25 Reserved

1D9H 473 IA32_DEBUGCTL 
(MSR_DEBUGCTLA, 
MSR_DEBUGCTLB)

Trace/Profile Resource 
Control (R/W)

06_0EH

0 LBR: Setting this bit to 1 
enables the processor to 
record a running trace of the 
most recent branches taken 
by the processor in the LBR 
stack.

06_01H

1 BTF: Setting this bit to 1 
enables the processor to 
treat EFLAGS.TF as single-
step on branches instead of 
single-step on instructions.

06_01H

5:2 Reserved
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6 TR: Setting this bit to 1 
enables branch trace 
messages to be sent.

06_0EH

7 BTS: Setting this bit enables 
branch trace messages 
(BTMs) to be logged in a BTS 
buffer.

06_0EH

8 BTINT: When clear, BTMs are 
logged in a BTS buffer in 
circular fashion. When this bit 
is set, an interrupt is 
generated by the BTS facility 
when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set, 
BTS or BTM is skipped if 
CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS 
or BTM is skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When 
set, the LBR stack is frozen on 
a PMI request.

If CPUID.01H: 
ECX[15] = 1 and 
CPUID.0AH: 
EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI: 
When set, each ENABLE bit of 
the global counter control 
MSR are frozen (address 
3BFH) on a PMI request

If CPUID.01H: 
ECX[15] = 1 and 
CPUID.0AH: 
EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When 
set, enables the logical 
processor to receive and 
generate PMI on behalf of the 
uncore.

06_1AH

14 FREEZE_WHILE_SMM: When 
set, freezes perfmon and 
trace messages while in SMM.

if  
IA32_PERF_CAPA
BILITIES[12] = '1

63:15 Reserved
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1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address. 
(Writeable only in SMM) 

Base address of SMM memory 
range.

06_1AH

7:0 Type. Specifies memory type 
of the range.

11:8 Reserved.

31:12 PhysBase. 

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask. 
(Writeable only in SMM) 

Range Mask of SMM memory 
range.

06_1AH

10:0  Reserved.

11 Valid. 

Enable range mask

31:12 PhysMask. 

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-
Hint type. 

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and 
Control register

06_2EH

0 DCA_ACTIVE: Set by HW 
when DCA is fuse-enabled 
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH
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16:13 DCA_DELAY: Writes will 
update the register but have 
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request 
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is 
blocked by HW (e.g. CR0.CD = 
1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0 
(MTRRphysBase0)

See Section 11.11.2.3, 
“Variable Range MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1  MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1  MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2  MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2  MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if 
IA32_MTRR_CAP[
7:0] > 8
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211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if 
IA32_MTRR_CAP[
7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if 
IA32_MTRR_CAP[
7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if 
IA32_MTRR_CAP[
7:0] > 9

250H 592 IA32_MTRR_FIX64K_000
00

MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_800
00

MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A00
00

MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C000
0 (MTRRfix4K_C0000 )

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C800
0

MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D000
0

MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D800
0

MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E000
0

MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E800
0

MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F000
0

MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F800
0

MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved
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10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count 
threshold

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH
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286H 646 IA32_MC6_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as 
IA32_MC0_CTL2

06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type
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9:3 Reserved

10 Fixed Range MTRR Enable 

11 MTRR Enable 

63:12 Reserved

309H 777 IA32_FIXED_CTR0 
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance 
Counter 0 (R/W): Counts 
Instr_Retired.Any

If CPUID.0AH: 
EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1 
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance 
Counter 1 0 (R/W): Counts 
CPU_CLK_Unhalted.Core

If CPUID.0AH: 
EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2 
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance 
Counter 0 0 (R/W): Counts 
CPU_CLK_Unhalted.Ref

If CPUID.0AH: 
EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H: 
ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is 
supported

13 1: Full width of counter 
writable via IA32_A_PMCx

63:14 Reserved

38DH 909 IA32_FIXED_CTR_CTRL 
(MSR_PERF_FIXED_CTR_C
TRL)

Fixed-Function Performance 
Counter Control (R/W)

Counter increments while the 
results of ANDing respective 
enable bit in 
IA32_PERF_GLOBAL_CTRL 
with the corresponding OS or 
USR bits in this MSR is true.

If CPUID.0AH: 
EAX[7:0] > 1
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0 EN0_OS: Enable Fixed 
Counter 0 to count while CPL 
= 0

1 EN0_Usr: Enable Fixed 
Counter 0 to count while CPL 
> 0

2 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when 
fixed counter 0 overflows

4 EN1_OS: Enable Fixed 
Counter 1to count while CPL 
= 0

5 EN1_Usr: Enable Fixed 
Counter 1to count while CPL 
> 0

6 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when 
fixed counter 1 overflows
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8 EN2_OS: Enable Fixed 
Counter 2 to count while CPL 
= 0

9 EN2_Usr: Enable Fixed 
Counter 2 to count while CPL 
> 0

10 AnyThread: When set to 1, it 
enables counting the 
associated event conditions 
occurring across all logical 
processors sharing a 
processor core. When set to 0, 
the counter only increments 
the associated event 
conditions occurring in the 
logical processor which 
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when 
fixed counter 2 overflows

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STA
TUS 
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter 
Status (RO)

If CPUID.0AH: 
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status 
of IA32_PMC0

If CPUID.0AH: 
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status 
of IA32_PMC1

If CPUID.0AH: 
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status 
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status 
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow 
status of IA32_FIXED_CTR0

If CPUID.0AH: 
EAX[7:0] > 1
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33 Ovf_FixedCtr1: Overflow 
status of IA32_FIXED_CTR1

If CPUID.0AH: 
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow 
status of IA32_FIXED_CTR2

If CPUID.0AH: 
EAX[7:0] > 1

60:35 Reserved

61 Ovf_Uncore: Uncore counter 
overflow status

06_2EH

62 OvfBuf: DS SAVE area Buffer 
overflow status

If CPUID.0AH: 
EAX[7:0] > 0

63 CondChg: status bits of this 
register has changed

If CPUID.0AH: 
EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTR
L 
(MSR_PERF_GLOBAL_CTR
L)

Global Performance Counter 
Control (R/W)

Counter increments while the 
result of ANDing respective 
enable bit in this MSR with 
the corresponding OS or USR 
bits in the general-purpose or 
fixed counter control MSR is 
true.

If CPUID.0AH: 
EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH: 
EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH: 
EAX[7:0] > 0

31:2 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH: 
EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH: 
EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH: 
EAX[7:0] > 1

63:35 Reserved
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390H 912 IA32_PERF_GLOBAL_OVF
_CTRL 
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter 
Overflow Control (R/W)

If CPUID.0AH: 
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH: 
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH: 
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear 
Ovf_FIXED_CTR0 bit

If CPUID.0AH: 
EAX[7:0] > 1

33 Set 1 to Clear 
Ovf_FIXED_CTR1 bit

If CPUID.0AH: 
EAX[7:0] > 1

34 Set 1 to Clear 
Ovf_FIXED_CTR2 bit

If CPUID.0AH: 
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore: bit 06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH: 
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH: 
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific 

31:4 Reserved

35-32 Reserved or Model specific 

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family 
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family 
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family 
Processors
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403H 1027 IA32_MC0_MISC MC0_MISC P6 Family 
Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family 
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family 
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family 
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family 
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family 
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family 
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family 
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family 
Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family 
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family 
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family 
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family 
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family 
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family 
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family 
Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family 
Processors
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414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH
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431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH
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44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic 
VMX Capabilities. (R/O)

See Appendix G.1, “Basic VMX 
Information”

If 
CPUID.01H:ECX.[bi
t 5] = 1

481H 1153 IA32_VMX_PINBASED_CT
LS

Capability Reporting 
Register of Pin-based 
VM-execution Controls. 
(R/O)

See Appendix G.3.1, “Pin-
Based VM-Execution Controls”

If 
CPUID.01H:ECX.[bi
t 5] = 1

482H 1154 IA32_VMX_PROCBASED_
CTLS

Capability Reporting 
Register of Primary 
Processor-based 
VM-execution Controls. 
(R/O)

See Appendix G.3.2, “Primary 
Processor-Based VM-
Execution Controls”

If 
CPUID.01H:ECX.[bi
t 5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting 
Register of VM-exit 
Controls. (R/O)

See Appendix G.4, “VM-Exit 
Controls”

If 
CPUID.01H:ECX.[bi
t 5] = 1
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484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting 
Register of VM-entry 
Controls. (R/O)

See Appendix G.5, “VM-Entry 
Controls”

If 
CPUID.01H:ECX.[bi
t 5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of 
Miscellaneous VMX 
Capabilities. (R/O)

See Appendix G.6, 
“Miscellaneous Data”

If 
CPUID.01H:ECX.[bi
t 5] = 1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting 
Register of CR0 Bits Fixed 
to 0. (R/O)

See Appendix G.7, “VMX-
Fixed Bits in CR0”

If 
CPUID.01H:ECX.[bi
t 5] = 1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting 
Register of CR0 Bits Fixed 
to 1. (R/O)

See Appendix G.7, “VMX-
Fixed Bits in CR0”

If 
CPUID.01H:ECX.[bi
t 5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting 
Register of CR4 Bits Fixed 
to 0. (R/O)

See Appendix G.8, “VMX-
Fixed Bits in CR4”

If 
CPUID.01H:ECX.[bi
t 5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting 
Register of CR4 Bits Fixed 
to 1. (R/O)

See Appendix G.8, “VMX-
Fixed Bits in CR4”

If 
CPUID.01H:ECX.[bi
t 5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting 
Register of VMCS Field 
Enumeration. (R/O).

See Appendix G.9, “VMCS 
Enumeration”

If 
CPUID.01H:ECX.[bi
t 5] = 1
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48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Capability Reporting 
Register of Secondary 
Processor-based 
VM-execution Controls. 
(R/O)

See Appendix G.3.3, 
“Secondary Processor-Based 
VM-Execution Controls”

If ( 
CPUID.01H:ECX.[bi
t 5] and 
IA32_VMX_PROC
BASED_CTLS[bit 6
3])

48CH 1164 IA32_VMX_EPT_VPID_CA
P

Capability Reporting 
Register of EPT and VPID. 
(R/O)

See Appendix G.10, “VPID and 
EPT Capabilities”

If ( 
CPUID.01H:ECX.[bi
t 5], 
IA32_VMX_PROC
BASED_CTLS[bit 6
3], and either 
IA32_VMX_PROC
BASED_CTLS2[bit
33] or 
IA32_VMX_PROC
BASED_CTLS2[bit 
37])

48DH 1165 IA32_VMX_TRUE_PINBAS
ED_CTLS

Capability Reporting 
Register of Pin-based 
VM-execution Flex Controls. 
(R/O)

See Appendix G.3.1, “Pin-
Based VM-Execution Controls”

If ( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

48EH 1166 IA32_VMX_TRUE_PROCB
ASED_CTLS

Capability Reporting 
Register of Primary 
Processor-based 
VM-execution Flex Controls. 
(R/O)

See Appendix G.3.2, “Primary 
Processor-Based VM-
Execution Controls”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

48FH 1167 IA32_VMX_TRUE_EXIT_C
TLS

Capability Reporting 
Register of VM-exit Flex 
Controls. (R/O)

See Appendix G.4, “VM-Exit 
Controls”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )
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490H 1168 IA32_VMX_TRUE_ENTRY
_CTLS

Capability Reporting 
Register of VM-entry Flex 
Controls. (R/O)

See Appendix G.5, “VM-Entry 
Controls”

If( 
CPUID.01H:ECX.[bi
t 5] = 1 and 
IA32_VMX_BASIC
[bit 55] )

4C1H 1217 IA32_A_PMC0 Full Width Writable 
IA32_PMC0 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 0) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable 
IA32_PMC1 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 1) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable 
IA32_PMC2 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 2) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable 
IA32_PMC3 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 3) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable 
IA32_PMC4 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 4) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable 
IA32_PMC5 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 5) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable 
IA32_PMC6 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 6) &

IA32_PERF_CAPA
BILITIES[13] = 1
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4C8H 1224 IA32_A_PMC7 Full Width Writable 
IA32_PMC7 Alias (R/W)

(If CPUID.0AH: 
EAX[15:8] > 7) &

IA32_PERF_CAPA
BILITIES[13] = 1

600H 1536 IA32_DS_AREA DS Save Area. (R/W) 

Points to the linear address of 
the first byte of the DS buffer 
management area, which is 
used to manage the BTS and 
PEBS buffers.

See Section 30.9.4, “Debug 
Store (DS) Mechanism.”

0F_0H

63:0 The linear address of the first 
byte of the DS buffer 
management area, if IA-32e 
mode is active.

31:0 The linear address of the first 
byte of the DS buffer 
management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e 
mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s 
TSC Deadline Mode. (R/W)

If( 
CPUID.01H:ECX.[bi
t 25] = 1 

802H 2050 IA32_X2APIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt 
Vector Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register 
Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register 
Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register 
Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register 
Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register 
Bits 159:128. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register 
Bits 191:160. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register 
Bits 223:192. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register 
Bits 255:224. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode 
Register Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode 
Register Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode 
Register Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode 
Register Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode 
Register Bits 159:128 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode 
Register Bits 191:160 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode 
Register Bits 223:192 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode 
Register Bits 255:224 (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request 
Register Bits 31:0. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request 
Register Bits 63:32. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request 
Register Bits 95:64. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request 
Register Bits 127:96. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request 
Register Bits 159:128. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )
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825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request 
Register Bits 191:160. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request 
Register Bits 223:192. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request 
Register Bits 255:224. 
(R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

828H 2088 IA32_X2APIC_ESR x2APIC Error Status 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected 
Machine Check Interrupt 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal Sensor 
Interrupt Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance 
Monitor Interrupt Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

837H 2103 IA32_X2APIC_LVT_ERRO
R

x2APIC LVT Error Register. 
(R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

Table B-2.  IA-32 Architectural MSRs (Contd.)
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838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count 
Register. (R/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration 
Register. (R/W)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register. 
(W/O)

If ( 
CPUID.01H:ECX.[bi
t 21] = 1 )

4000_
0000H 
- 
4000_
00FFH

Reserved MSR Address 
Space

All existing and future 
processors will not 
implement MSR in this 
range

C000_
0080H

IA32_EFER Extended Feature Enables. If ( 
CPUID.80000001.
EDX.[bit 20] or 
CPUID.80000001.
EDX.[bit29])

0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET 
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode 
operation.

9 Reserved.

10 IA-32e Mode Active. (R) 

Indicates IA-32e mode is 
active when set.

11 Execute Disable Bit Enable. 
(R)

63:12 Reserved

Table B-2.  IA-32 Architectural MSRs (Contd.)

Register 
Address

Architectural MSR Name 
and bit fields 

(Former MSR Name) MSR/Bit Description

Introduced as 
Architectural 

MSRHex Decimal
Vol. 3B B-43



MODEL-SPECIFIC REGISTERS (MSRS)
B.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table B-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and 
for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR 

C000_
0081H

IA32_STAR System Call Target Address. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call 
Target Address. (R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS. 
(R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE 
Address of GS. (R/W)

If 
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If 
CPUID.80000001
H: EDX[27] = 1

31:0 AUX: Auxiliary signature of 
TSC

63:32 Reserved

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR 
addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. 
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Table B-2.  IA-32 Architectural MSRs (Contd.)
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addresses are also included in Table B-3. These processors have a CPUID signature 
with DisplayFamily_DisplayModel of 06_0FH, see Table B-1. 

MSRs listed in Table B-2 and Table B-3 are also supported by processors based on the 
Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel Core 
microarchitecture have the CPUID signature DisplayFamily_DisplayModel of 06_17H. 

The column “Shared/Unique” applies to multi-core processors based on Intel Core 
microarchitecture. “Unique” means each processor core has a separate MSR, or a bit 
field in an MSR governs only a core independently. “Shared” means the MSR or the 
bit field in an MSR address governs the operation of both processor cores. 

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Appendix B.12, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Appendix B.12, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 16.12, “Time-Stamp Counter.” and 
see Table B-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R) 
See Table B-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R) 

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table B-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location.” and Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.
Vol. 3B B-45
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0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

3 MCERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W. 

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled 
Note: Not all processor implements R/W. 

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 N/2 Non-Integer Bus Ratio. (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor. 
(R/W).

see Table B-2

3 Unique SMRR Enable. (R/WL).

When this bit is set and the lock bit is set 
makes the SMRR_PHYS_BASE and 
SMRR_PHYS_MASK registers read visible and 
writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last four 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last four 
branches, exceptions, or interrupts taken by 
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

see Table B-2

A0H 160 MSR_SMRR_PHYS
BASE

Unique System Management Mode Base Address 
register. (WO in SMM)

Model-specific implementation of SMRR-like 
interface, read visible and write only in SMM.

11:0 Reserved

31:12 PhysBase. SMRR physical Base Address.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description
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63:32 Reserved

A1H 161 MSR_SMRR_PHYS
MASK

Unique System Management Mode Physical 
Address Mask register. (WO in SMM)

Model-specific implementation of SMRR-like 
interface, read visible and write only in SMM..

10:0 Reserved

11 Valid. Physical address base and range mask 
are valid

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Intel Core 
microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 000B.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 100B.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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63:3 Reserved

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Enhanced 
Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.

266.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 110B.

333.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 111B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW) see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Unique see Table B-2

11 Unique SMRR Capability Using MSR 0A0H and 
0A1H. (R) 

11EH 281 MSR_BBL_CR_
CTL3

Shared

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique see Table B-2

175H 373 IA32_SYSENTER_E
SP

Unique see Table B-2

176H 374 IA32_SYSENTER_E
IP

Unique see Table B-2

179H 377 IA32_MCG_CAP Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is 
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for 
the processor.

45 Reserved

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled. 
Applies processors based on Enhanced Intel 
Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

see Table B-2

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

see Table B-2

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

see Table B-2

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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0 Fast-Strings Enable. see Table B-2

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) see Table B-2

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) see 
Table B-2

8 Reserved.

9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher 
operation on streams of data. When clear 
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may 
impact processor performance.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) see 
Table B-2

12 Shared Precise Event Based Sampling Unavailable. 
(RO) see Table B-2

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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Shared/
Unique Bit Description
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When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermally managed state. 

The BIOS must enable this feature if the TM2 
feature flag (CPUID.1:ECX[8]) is set; if the TM2 
feature flag is not set, this feature is not 
supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification 
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W) see Table B-2

18 Shared ENABLE MONITOR FSM. (R/W) see Table B-2

19 Shared Adjacent Cache Line Prefetch Disable. 
(R/W) 

When set to 1, the processor fetches the 
cache line that contains data currently 
required by the processor. When set to 0, the 
processor fetches cache lines that comprise a 
cache line pair (128 bytes).

Single processor platforms should not set this 
bit. Server platforms should set or clear this 
bit based on platform performance observed 
in validation and testing. 

BIOS may contain a setup option that controls 
the setting of this bit.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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20 Shared Enhanced Intel SpeedStep Technology 
Select Lock. (R/WO)

When set, this bit causes the following bits to 
become read-only:

• Enhanced Intel SpeedStep Technology 
Select Lock (this bit), 

• Enhanced Intel SpeedStep Technology 
Enable bit.

The bit must be set before an Enhanced Intel 
SpeedStep Technology transition is requested. 
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W) see Table B-2

23 Shared xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) see Table B-2

36:35 Reserved.

37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache 
prefetcher is disabled. The default value after 
reset is 0. BIOS may write ‘1’ to disable this 
feature. 

The DCU prefetcher is an L1 data cache 
prefetcher.  When the DCU prefetcher detects 
multiple loads from the same line done within 
a time limit, the DCU prefetcher assumes the 
next line will be required. The next line is 
prefetched in to the L1 data cache from 
memory or L2.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA, 
the Intel Dynamic Acceleration feature (IDA) is 
disabled and the IDA_Enable feature flag will 
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of IDA is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of IDA. If 
power-on default value is 1, IDA is available in 
the processor. If power-on default value is 0, 
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled. 
The default value after reset is 0. BIOS may 
write ‘1’ to disable this feature. 

The IP prefetcher is an L1 data cache 
prefetcher. The IP prefetcher looks for 
sequential load history to determine whether 
to prefetch the next expected data into the 
L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

200H 512 IA32_MTRR_PHYS
BASE0

Unique see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Unique see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Unique see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Unique see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Unique see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Unique see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Unique see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Unique see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Unique see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Unique see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Unique see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Unique see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Unique see Table B-2

Table B-3.  MSRs in Processors Based on Intel Core Microarchitecture (Contd.)
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20DH 525 IA32_MTRR_PHYS
MASK6

Unique see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Unique see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Unique see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Unique see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Unique see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Unique see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Unique see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Unique see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Unique see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Unique see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Unique see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Unique see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Unique see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Unique see Table B-2

277H 631 IA32_PAT Unique see Table B-2

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W) see Table B-2
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309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter 
Register 0. (R/W) see Table B-2

309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter 
Register 0. (R/W) 

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter 
Register 1. (R/W) see Table B-2

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter 
Register 1. (R/W) 

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter 
Register 2. (R/W) see Table B-2

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter 
Register 2. (R/W) 

345H 837 IA32_PERF_CAPA
BILITIES

Unique see Table B-2. See Section 16.4.1, 
“IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPAB
ILITIES

Unique RO. This applies to processors that do not 
support architectural perfmon version 2.

5:0 LBR Format. see Table B-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. see Table B-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) see Table B-2

38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) 

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.” 

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 30.4.2, “Global Counter Control 
Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 30.4.2, “Global Counter Control 
Facilities.”
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390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 30.4.2, “Global Counter Control 
Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table B-2. See Section 30.4.4, “Precise 
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique
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416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_
STATUS

Unique Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
15.3.2.2, “IA32_MCi_STATUS MSRS.” and 
Appendix E.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”
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488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS) 
Mechanism.”

107CC
H

MSR_EMON_L3_C
TR_CTL0

Unique GBUSQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107CD
H

MSR_EMON_L3_C
TR_CTL1

Unique GBUSQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107CE
H

MSR_EMON_L3_C
TR_CTL2

Unique GSNPQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2
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107CF
H

MSR_EMON_L3_C
TR_CTL3

Unique GSNPQ Event Control/Counter Register. 
(R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107D0
H

MSR_EMON_L3_C
TR_CTL4

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107D1
H

MSR_EMON_L3_C
TR_CTL5

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107D2
H

MSR_EMON_L3_C
TR_CTL6

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107D3
H

MSR_EMON_L3_C
TR_CTL7

Unique FSB Event Control/Counter Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

107D8
H

MSR_EMON_L3
_GL_CTL

Unique L3/FSB Common Control Register. (R/W). 

Apply to Intel Xeon processor 7400 series 
(processor signature 06_1D) only. See Section 
16.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). see 
Table B-2

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address. 
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). see Table B-2
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B.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table B-4 lists model-specific registers (MSRs) for Intel Atom processor family, archi-
tectural MSR addresses are also included in Table B-4. These processors have a 
CPUID signature with DisplayFamily_DisplayModel of 06_1CH, see Table B-1. 

The column “Shared/Unique” applies to logical processors sharing the same core in 
processors based on the Intel Atom microarchitecture. “Unique” means each logical 
processor has a separate MSR, or a bit field in an MSR governs only a logical 
processor. “Shared” means the MSR or the bit field in an MSR address governs the 
operation of both logical processors in the same core.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). see 
Table B-2

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). see 
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W). 
see Table B-2

Table B-4.  MSRs in Intel Atom Processor Family

Register 
Address Register Name
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Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Shared See Appendix B.12, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Shared See Appendix B.12, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Shared See Section 16.12, “Time-Stamp Counter.” and 
see Table B-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R) 
See Table B-2.
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17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R) 

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R) 

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location.” and Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0. 

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests. 
(R/W)

1 = Enabled; 0 = Disabled
Always 0. 

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled 
Always 0.

8 Reserved
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9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

10 AERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 
Always 0.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor. 
(R/W).

see Table B-2

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of eight pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last eight 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”
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41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_F
ROM_IP

Unique Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_F
ROM_IP

Unique Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_F
ROM_IP

Unique Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_F
ROM_IP

Unique Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of eight pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
eight branches, exceptions, or interrupts 
taken by the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

64H 100 MSR_
LASTBRANCH_4_
TO_LIP

Unique Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

65H 101 MSR_
LASTBRANCH_5_
TO_LIP

Unique Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

66H 102 MSR_
LASTBRANCH_6_
TO_LIP

Unique Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

67H 103 MSR_
LASTBRANCH_7_
TO_LIP

Unique Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W) 

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO). 

This field indicates the intended scaleable bus 
clock speed for processors based on Intel 
Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 011B.
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63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW) see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register. (R) see 
Table B-2

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique see Table B-2

175H 373 IA32_SYSENTER_E
SP

Unique see Table B-2

176H 374 IA32_SYSENTER_E
IP

Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique
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0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for 
the processor.

63:45 Reserved.
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199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

see Table B-2

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

see Table B-2

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

see Table B-2

19DH 413 MSR_THERM2_
CTL

Shared

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_
ENABLE

Unique Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Fast-Strings Enable. see Table B-2

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) see Table B-2

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) see 
Table B-2
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8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) see 
Table B-2

12 Shared Precise Event Based Sampling Unavailable. 
(RO) see Table B-2

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermally managed state. 

The BIOS must enable this feature if the TM2 
feature flag (CPUID.1:ECX[8]) is set; if the TM2 
feature flag is not set, this feature is not 
supported and BIOS must not alter the 
contents of the TM2 bit location. 

The processor is operating out of specification 
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W) see Table B-2
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18 Shared ENABLE MONITOR FSM. (R/W) see Table B-2

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology 
Select Lock. (R/WO)

When set, this bit causes the following bits to 
become read-only:

• Enhanced Intel SpeedStep Technology 
Select Lock (this bit), 

• Enhanced Intel SpeedStep Technology 
Enable bit.

The bit must be set before an Enhanced Intel 
SpeedStep Technology transition is requested. 
This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval. (R/W) see Table B-2

23 Shared xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) see Table B-2

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-2) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.
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1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

200H 512 IA32_MTRR_PHYS
BASE0

Shared see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Shared see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Shared see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Shared see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Shared see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Shared see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Shared see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Shared see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Shared see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Shared see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Shared see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Shared see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Shared see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Shared see Table B-2
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20EH 526 IA32_MTRR_PHYS
BASE7

Shared see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Shared see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Shared see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Shared see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Shared see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Shared see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Shared see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Shared see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Shared see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Shared see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Shared see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Shared see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Shared see Table B-2

277H 631 IA32_PAT Unique see Table B-2

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter 
Register 0. (R/W) see Table B-2

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter 
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter 
Register 2. (R/W) see Table B-2

Table B-4.  MSRs in Intel Atom Processor Family (Contd.)
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345H 837 IA32_PERF_CAPA
BILITIES

Shared see Table B-2. See Section 16.4.1, 
“IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register. 
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.” 

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table B-2. See Section 30.4.4, “Precise 
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”
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40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”
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482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”
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B.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE 
NAME NEHALEM

Table B-5 lists model-specific registers (MSRs) that are common for Intel® microar-
chitecture code name Nehalem. These include Intel Core i7 and i5 processor family. 
Architectural MSR addresses are also included in Table B-5. These processors have a 
CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH, 
06_2EH, see Table B-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are 
listed in Table B-6. Some MSRs listed in these tables are used by BIOS. More informa-
tion about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field 
of an MSR. “Thread” means this bit field must be programmed on each logical 
processor independently. “Core” means the bit field must be programmed on each 
processor core independently, logical processors in the same core will be affected by 
change of this bit on the other logical processor in the same core. “Package“ means 
the bit field must be programmed once for each physical package. Change of a bit 
filed with a package scope will affect all logical processors in that physical package.

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS) 
Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). see 
Table B-2

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address. 
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). see 
Table B-2

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). see 
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W). 
see Table B-2
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Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Appendix B.12, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Appendix B.12, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 16.12, “Time-Stamp Counter.” and 
see Table B-2

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R) 
See Table B-2.

17H 23 MSR_PLATFORM_I
D

Package Model Specific Platform ID. (R) 

49:0 Reserved.

52:50 See Table B-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and 
Location.” and Table B-2

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O) 

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor. 
(R/W).

see Table B-2

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W) 

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Thread Performance counter register. see Table B-2
B-82 Vol. 3B
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C2H 194 IA32_PMC1 Thread Performance counter register. see Table B-2

C3H 195 IA32_PMC2 Thread Performance counter register. see Table B-2

C4H 196 IA32_PMC3 Thread Performance counter register. see Table B-2

CEH 206 MSR_PLATFORM_I
NFO

Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O) 

The is the ratio of the frequency that invariant 
TSC runs at. The invariant TSC frequency can 
be computed by multiplying this ratio by 
133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that Programmable 
Ratio Limits for Turbo mode is enabled, and 
when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo 
Mode. (R/O) 

When set to 1, indicates that TDC/TDP Limits 
for Turbo mode are programmable, and when 
set to 0, indicates TDC and TDP Limits for 
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O) 

The is the minimum ratio (maximum 
efficiency) that the processor can operates, in 
units of 133.33MHz.

63:48 Reserved.
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E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State limit. (R/W) 

Specifies the lowest processor-specific C-
state code name (consuming the least power). 
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings 
are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit 
package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable. (R/W) 

When set, will map IO_read instructions sent 
to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT 
instructions

14:11 Reserved. 

15 CFG Lock. (R/WO) 

When set, lock bits 15:0 of this register until 
next reset

23:16 Reserved. 
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24 Interrupt filtering enable. (R/W) 

When set, processor cores in a deep C-State 
will wake only when the event message is 
destined for that core. When 0, all processor 
cores in a deep C-State will wake for an event 
message

25 C3 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C6/C7 requests to C3 based on uncore 
auto-demote information

26 C1 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C3/C6/C7 requests to C1 based on 
uncore auto-demote information

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state 
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W) 

Specifies the base address visible to software 
for IO redirection. If IO MWAIT Redirection is 
enabled, reads to this address will be 
consumed by the power management logic 
and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the 
IO port address reported to the OS/software

18:16 C-state Range. (R/W) 

Specifies the encoding value of the maximum 
C-State code name to be included when IO 
read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.
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E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock 
Count. (RW) see Table B-2

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count. 
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Thread see Table B-2

174H 372 IA32_SYSENTER_C
S

Thread see Table B-2

175H 373 IA32_SYSENTER_E
SP

Thread see Table B-2

176H 374 IA32_SYSENTER_E
IP

Thread see Table B-2

179H 377 IA32_MCG_CAP Thread see Table B-2

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
(Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
B-86 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
186H 390 IA32_
PERFEVTSEL0

Thread see Table B-2

187H 391 IA32_
PERFEVTSEL1

Thread see Table B-2

188H 392 IA32_
PERFEVTSEL2

Thread see Table B-2

189H 393 IA32_
PERFEVTSEL3

Thread see Table B-2

198H 408 IA32_PERF_STAT
US

Core see Table B-2

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W) 

see Table B-2

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

0 Reserved

3:1 On demand Clock Modulation Duty Cycle (R/W).

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W) 

see Table B-2

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W) 

see Table B-2

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Thread Fast-Strings Enable. see Table B-2

2:1 Reserved.
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3 Thread Automatic Thermal Control Circuit Enable. 
(R/W) see Table B-2

6:4 Reserved.

7 Thread Performance Monitoring Available. (R) see 
Table B-2

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) see 
Table B-2

12 Thread Precise Event Based Sampling Unavailable. 
(RO) see Table B-2

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology 
Enable. (R/W) see Table B-2

18 Thread ENABLE MONITOR FSM. (R/W) see Table B-2

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) see Table B-2

23 Thread xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) see Table B-2

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel 
Turbo Boost Technology, the turbo mode 
feature is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of turbo 
mode. If power-on default value is 1, turbo 
mode is available in the processor. If power-on 
default value is 0, turbo mode is not available.
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63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Thread

15:0 Reserved.

23:16 Temperature Target. (R) 

The minimum temperature at which 
PROCHOT# will be asserted. The value is 
degree C.

63:24 Reserved

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W).

When 0, enables hardware coordination of 
EIST request from processor cores; When 1, 
disables hardware coordination of EIST 
requests.

1 Thread Energy/Performance Bias Enable. (R/W) 

This bit makes the IA32_ENERGY_PERF_BIAS 
register (MSR 1B0h) visible to software with 
Ring 0 privileges. This bit’s status (1 or 0) is 
also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved

1ACH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W) 

TDP limit in 1/8 Watt granularity

15 Package TDP Limit Override Enable (R/W) 

A value = 0 indicates override is not active, 
and a value = 1 indicates active

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
(Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-89



MODEL-SPECIFIC REGISTERS (MSRS)
30:16 Package TDC Limit (R/W) 

TDC limit in 1/8 Amp granularity

31 Package TDC Limit Override Enable (R/W) 

A value = 0 indicates override is not active, 
and a value = 1 indicates active

63:32 Reserved

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register 
(R/W) see Section 16.6.2, “Filtering of Last 
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP 

Thread Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.
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1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1F2H 498 IA32_SMRR_PHYS
BASE

Core see Table B-2

1F3H 499 IA32_SMRR_PHYS
MASK

Core see Table B-2

1FCH 508 MSR_POWER_CTL Core Power Control Register. See 
http://biosbits.org.

0 Reserved.

1 Package C1E Enable. (R/W) 

When set to ‘1’, will enable the CPU to switch 
to the Minimum Enhanced Intel SpeedStep 
Technology operating point when all 
execution cores enter MWAIT (C1).

63:2 Reserved

200H 512 IA32_MTRR_PHYS
BASE0

Thread see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Thread see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Thread see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Thread see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Thread see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Thread see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Thread see Table B-2
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207H 519 IA32_MTRR_PHYS
MASK3

Thread see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Thread see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Thread see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Thread see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Thread see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Thread see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Thread see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Thread see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Thread see Table B-2

210H 528 IA32_MTRR_PHYS
BASE8

Thread see Table B-2

211H 529 IA32_MTRR_PHYS
MASK8

Thread see Table B-2

212H 530 IA32_MTRR_PHYS
BASE9

Thread see Table B-2

213H 531 IA32_MTRR_PHYS
MASK9

Thread see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Thread see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Thread see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread see Table B-2
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268H 616 IA32_MTRR_FIX4
K_C0000

Thread see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Thread see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread see Table B-2

277H 631 IA32_PAT Thread see Table B-2

280H 640 IA32_MC0_CTL2 Package see Table B-2

281H 641 IA32_MC1_CTL2 Package see Table B-2

282H 642 IA32_MC2_CTL2 Core see Table B-2

283H 643 IA32_MC3_CTL2 Core see Table B-2

284H 644 IA32_MC4_CTL2 Core see Table B-2

285H 645 IA32_MC5_CTL2 Core see Table B-2

286H 646 IA32_MC6_CTL2 Package see Table B-2

287H 647 IA32_MC7_CTL2 Package see Table B-2

288H 648 IA32_MC8_CTL2 Package see Table B-2

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) see Table B-2

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter 
Register 0. (R/W) see Table B-2
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30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter 
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter 
Register 2. (R/W) see Table B-2

345H 837 IA32_PERF_CAPA
BILITIES

Thread see Table B-2. See Section 16.4.1, 
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. see Table B-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. see Table B-2.

11:8 PEBS_REC_FORMAT. see Table B-2.

12 SMM_FREEZE. see Table B-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register. 
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.” 

38EH 910 MSR_PERF_
GLOBAL_STAUS

Thread  (RO)

61 UNC_Ovf. Uncore overflowed if 1.

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Thread  (R/W)

61 CLR_UNC_Ovf. Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_
ENABLE

Thread see See Section 30.6.1.1, “Precise Event 
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)
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2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 30.6.1.2, “Load Latency 
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged 
load operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.
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63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”
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405H 1029 IA32_MC1_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.
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40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. 

When not implemented in the processor, all 
reads and writes to this MSR will cause a 
general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.
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422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit 
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry 
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”
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48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field 
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS) 
Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last sixteen 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
(Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
B-100 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.
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6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
sixteen branches, exceptions, or interrupts 
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
(Contd.)
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6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

802H 2050 IA32_X2APIC_API
CID

Thread x2APIC ID register (R/O) see x2APIC 
specification

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O) 

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W) 

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O) 

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O) 

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O) 

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register 
(R/W) 

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O) 

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O) 

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
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812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O) 

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O) 

814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128] 
(R/O) 

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160] 
(R/O) 

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192] 
(R/O) 

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224] 
(R/O) 

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O) 

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32] 
(R/O) 

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64] 
(R/O) 

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96] 
(R/O) 

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128] 
(R/O) 

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160] 
(R/O) 

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192] 
(R/O) 

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224] 
(R/O) 

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0] 
(R/O) 

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32] 
(R/O) 

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
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822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64] 
(R/O) 

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits 
[127:96] (R/O) 

824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits 
[159:128] (R/O) 

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits 
[191:160] (R/O) 

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits 
[223:192] (R/O) 

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits 
[255:224] (R/O) 

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W) 

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check 
Interrupt register (R/W) 

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W) 

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W) 

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register 
(R/W) 

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register 
(R/W) 

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W) 

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W) 

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W) 

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W) 

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O) 

Table B-5.  MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem 
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B.4.1  Additional MSRs in the Intel® Xeon® Processor 5500 and 
3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific regis-
ters listed in Table B-6. These MSRs also apply to Intel Core i7 and i5 processor family 
CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and 06_1FH, 
see Table B-1. 

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W) 

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O) 

C000_
0080H

IA32_EFER Thread Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). see 
Table B-2

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address. 
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). see 
Table B-2

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). see 
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W). 
see Table B-2

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). see 
Table B-2 and Section 16.12.2, 
“IA32_TSC_AUX Register and RDTSCP 
Support.” 
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Table B-6.  Additional MSRs in Intel Xeon Processor 5500 and 3400 Series

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied 
by 133.33MHz. (not available to model 
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O) 

maximum Turbo mode ratio limit with 1 core 
active. 

15:8 Maximum Turbo Ratio Limit 2C. (R/O) 

maximum Turbo mode ratio limit with 2cores 
active. 

23:16 Maximum Turbo Ratio Limit 3C. (R/O) 

maximum Turbo mode ratio limit with 3cores 
active. 

31:24 Maximum Turbo Ratio Limit 4C. (R/O) 

maximum Turbo mode ratio limit with 4 cores 
active. 

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_
MESF

Package

0 From M to S (R/W).

1 From E to S (R/W).

2 From S to S (R/W).

3 From F to S (R/W).

4 From M to I (R/W).

5 From E to I (R/W).

6 From S to I (R/W).

7 From F to I (R/W).

63:8 Reserved

391H 913 MSR_UNCORE_PE
RF_GLOBAL_CTRL

Package See Section 30.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PE
RF_GLOBAL_STAT
US

Package See Section 30.6.2.1, “Uncore Performance 
Monitoring Management Facility.”
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393H 915 MSR_UNCORE_PE
RF_GLOBAL_OVF_
CTRL

Package See Section 30.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIX
ED_CTR0

Package See Section 30.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIX
ED_CTR_CTRL

Package See Section 30.6.2.1, “Uncore Performance 
Monitoring Management Facility.”

396H 918 MSR_UNCORE_AD
DR_OPCODE_MAT
CH

Package See Section 30.6.2.3, “Uncore Address/Opcode 
Match MSR.”

3B0H 960 MSR_UNCORE_PM
C0

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B1H 961 MSR_UNCORE_PM
C1

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B2H 962 MSR_UNCORE_PM
C2

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B3H 963 MSR_UNCORE_PM
C3

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B4H 964 MSR_UNCORE_PM
C4

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B6H 966 MSR_UNCORE_PM
C6

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3B7H 967 MSR_UNCORE_PM
C7

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C0H 944 MSR_UNCORE_PE
RFEVTSEL0

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C1H 945 MSR_UNCORE_PE
RFEVTSEL1

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C2H 946 MSR_UNCORE_PE
RFEVTSEL2

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C3H 947 MSR_UNCORE_PE
RFEVTSEL3

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table B-6.  Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)
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B.4.2  Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table B-5 (except MSR 
address 1ADH) and additional model-specific registers listed in Table B-7. 

3C4H 948 MSR_UNCORE_PE
RFEVTSEL4

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C5H 949 MSR_UNCORE_PE
RFEVTSEL5

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C6H 950 MSR_UNCORE_PE
RFEVTSEL6

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

3C7H 951 MSR_UNCORE_PE
RFEVTSEL7

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved. 

Attempt to read/write will cause #UD

289H 649 IA32_MC9_CTL2 Package see Table B-2

28AH 650 IA32_MC10_CTL2 Package see Table B-2

28BH 651 IA32_MC11_CTL2 Package see Table B-2

28CH 652 IA32_MC12_CTL2 Package see Table B-2

28DH 653 IA32_MC13_CTL2 Package see Table B-2

28EH 654 IA32_MC14_CTL2 Package see Table B-2

28FH 655 IA32_MC15_CTL2 Package see Table B-2

290H 656 IA32_MC16_CTL2 Package see Table B-2

291H 657 IA32_MC17_CTL2 Package see Table B-2

292H 658 IA32_MC18_CTL2 Package see Table B-2

293H 659 IA32_MC19_CTL2 Package see Table B-2

294H 660 IA32_MC20_CTL2 Package see Table B-2

Table B-6.  Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-109



MODEL-SPECIFIC REGISTERS (MSRS)
295H 661 IA32_MC21_CTL2 Package see Table B-2

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter 

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control 
MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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451H 1105 MSR_MC20_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control 
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow 
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
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MODEL-SPECIFIC REGISTERS (MSRS)
C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow 
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow 
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow 
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow 
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit 
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow 
control MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow 
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit 
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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MODEL-SPECIFIC REGISTERS (MSRS)
D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow 
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow 
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow 
control MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow 
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow 
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow 
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow 
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow 
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow 
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0 
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1 
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2 
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3 
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4 
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5 
select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6 
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7 
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0 
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1 
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2 
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3 
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow 
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8 
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9 
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10 
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11 
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12 
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13 
select MSR

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14 
select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15 
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4 
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5 
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6 
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7 
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)
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E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address 
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address 
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address 
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address 
match/mask config MSR

Table B-7.  Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
B-130 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
B.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES 
(INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture code name Westmere) 
supports the MSR interfaces listed in Table B-5, Table B-6, plus additional MSR listed 
in Table B-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family with 
CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table B-1.

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address 
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address 
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 30.6.2.2, “Uncore Performance 
Event Configuration Facility.”

Table B-8.  Additional MSRs Supported by Intel Processors (Intel Microarchitecture 
Code Name Westmere)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.
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B.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY 
(INTEL® MICROARCHITECTURE CODE NAME 
WESTMERE)

Intel Xeon processor E7 family (Intel® microarchitecture code name Westmere) 
supports the MSR interfaces listed in Table B-5 (except MSR address 1ADH), Table 
B-6, plus additional MSR listed in Table B-9. 

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C. 

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C. 

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

Table B-9.  Additional MSRs Supported by Intel Xeon Processor E7 Family

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved. 

Attempt to read/write will cause #UD

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

F40H 3904 MSR_C8_PMON_B
OX_CTRL

Package Uncore C-box 8 perfmon local box control MSR

Table B-8.  Additional MSRs Supported by Intel Processors  (Contd.)(Intel 
Microarchitecture Code Name Westmere)
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F41H 3905 MSR_C8_PMON_B
OX_STATUS

Package Uncore C-box 8 perfmon local box status MSR

F42H 3906 MSR_C8_PMON_B
OX_OVF_CTRL

Package Uncore C-box 8 perfmon local box overflow 
control MSR

F50H 3920 MSR_C8_PMON_E
VNT_SEL0

Package Uncore C-box 8 perfmon event select MSR

F51H 3921 MSR_C8_PMON_C
TR0

Package Uncore C-box 8 perfmon counter MSR

F52H 3922 MSR_C8_PMON_E
VNT_SEL1

Package Uncore C-box 8 perfmon event select MSR

F53H 3923 MSR_C8_PMON_C
TR1

Package Uncore C-box 8 perfmon counter MSR

F54H 3924 MSR_C8_PMON_E
VNT_SEL2

Package Uncore C-box 8 perfmon event select MSR

F55H 3925 MSR_C8_PMON_C
TR2

Package Uncore C-box 8 perfmon counter MSR

F56H 3926 MSR_C8_PMON_E
VNT_SEL3

Package Uncore C-box 8 perfmon event select MSR

F57H 3927 MSR_C8_PMON_C
TR3

Package Uncore C-box 8 perfmon counter MSR

F58H 3928 MSR_C8_PMON_E
VNT_SEL4

Package Uncore C-box 8 perfmon event select MSR

F59H 3929 MSR_C8_PMON_C
TR4

Package Uncore C-box 8 perfmon counter MSR

F5AH 3930 MSR_C8_PMON_E
VNT_SEL5

Package Uncore C-box 8 perfmon event select MSR

F5BH 3931 MSR_C8_PMON_C
TR5

Package Uncore C-box 8 perfmon counter MSR

FC0H 4032 MSR_C9_PMON_B
OX_CTRL

Package Uncore C-box 9 perfmon local box control MSR

FC1H 4033 MSR_C9_PMON_B
OX_STATUS

Package Uncore C-box 9 perfmon local box status MSR

Table B-9.  Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)
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B.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL® 
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table B-10 lists model-specific registers (MSRs) that are common to Intel® processor 
family based on Intel® microarchitecture (Sandy Bridge). All architectural MSRs 
listed in Table B-2 are supported. These processors have a CPUID signature with 

FC2H 4034 MSR_C9_PMON_B
OX_OVF_CTRL

Package Uncore C-box 9 perfmon local box overflow 
control MSR

FD0H 4048 MSR_C9_PMON_E
VNT_SEL0

Package Uncore C-box 9 perfmon event select MSR

FD1H 4049 MSR_C9_PMON_C
TR0

Package Uncore C-box 9 perfmon counter MSR

FD2H 4050 MSR_C9_PMON_E
VNT_SEL1

Package Uncore C-box 9 perfmon event select MSR

FD3H 4051 MSR_C9_PMON_C
TR1

Package Uncore C-box 9 perfmon counter MSR

FD4H 4052 MSR_C9_PMON_E
VNT_SEL2

Package Uncore C-box 9 perfmon event select MSR

FD5H 4053 MSR_C9_PMON_C
TR2

Package Uncore C-box 9 perfmon counter MSR

FD6H 4054 MSR_C9_PMON_E
VNT_SEL3

Package Uncore C-box 9 perfmon event select MSR

FD7H 4055 MSR_C9_PMON_C
TR3

Package Uncore C-box 9 perfmon counter MSR

FD8H 4056 MSR_C9_PMON_E
VNT_SEL4

Package Uncore C-box 9 perfmon event select MSR

FD9H 4057 MSR_C9_PMON_C
TR4

Package Uncore C-box 9 perfmon counter MSR

FDAH 4058 MSR_C9_PMON_E
VNT_SEL5

Package Uncore C-box 9 perfmon event select MSR

FDBH 4059 MSR_C9_PMON_C
TR5

Package Uncore C-box 9 perfmon counter MSR

Table B-9.  Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)
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DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table B-1. Additional MSRs 
specific to 06_2AH are listed in Table B-11.

Table B-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Appendix B.12, “MSRs in Pentium 
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Appendix B.12, “MSRs in Pentium 
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 16.12, “Time-Stamp Counter.” and 
see Table B-2

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R) 
See Table B-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and 
Location.” and Table B-2

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O) 

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor. 
(R/W).

see Table B-2

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W) 

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Thread Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Thread Performance counter register. see Table B-2

C3H 195 IA32_PMC2 Thread Performance counter register. see Table B-2

C4H 196 IA32_PMC3 Thread Performance counter register. see Table B-2

C5H 197 IA32_PMC4 Core Performance counter register. see Table B-2
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C6H 198 IA32_PMC5 Core Performance counter register. see Table B-2

C7H 199 IA32_PMC6 Core Performance counter register. see Table B-2

C8H 200 IA32_PMC7 Core Performance counter register. see Table B-2

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O) 

The is the ratio of the frequency that invariant 
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that Programmable 
Ratio Limits for Turbo mode is enabled, and 
when set to 0, indicates Programmable Ratio 
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode. 
(R/O) 

When set to 1, indicates that TDP Limits for 
Turbo mode are programmable, and when set 
to 0, indicates TDP Limit for Turbo mode is not 
programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O) 

The is the minimum ratio (maximum 
efficiency) that the processor can operates, in 
units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table B-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge (Contd.)
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2:0 Package C-State limit. (R/W) 

Specifies the lowest processor-specific C-
state code name (consuming the least power). 
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings 
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit 
package C-state to C3.

9:3 Reserved. 

10 I/O MWAIT Redirection Enable. (R/W) 

When set, will map IO_read instructions sent 
to IO register specified by 
MSR_PMG_IO_CAPTURE_BASE to MWAIT 
instructions

14:11 Reserved. 

15 CFG Lock. (R/WO) 

When set, lock bits 15:0 of this register until 
next reset

24:16 Reserved. 

25 C3 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C6/C7 requests to C3 based on uncore 
auto-demote information

Table B-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge (Contd.)
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26 C1 state auto demotion enable. (R/W) 

When set, the processor will conditionally 
demote C3/C6/C7 requests to C1 based on 
uncore auto-demote information

27 Enable C3 undemotion (R/W) 

When set, enables undemotion from demoted 
C3

28 Enable C1 undemotion (R/W) 

When set, enables undemotion from demoted 
C1

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state 
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W) 

Specifies the base address visible to software 
for IO redirection. If IO MWAIT Redirection is 
enabled, reads to this address will be 
consumed by the power management logic 
and decoded to MWAIT instructions. When IO 
port address redirection is enabled, this is the 
IO port address reported to the OS/software

18:16 C-state Range. (R/W) 

Specifies the encoding value of the maximum 
C-State code name to be included when IO 
read to MWAIT redirection is enabled by 
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock 
Count. (RW) see Table B-2

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count. 
(RW) see Table B-2
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FEH 254 IA32_MTRRCAP Thread see Table B-2

174H 372 IA32_SYSENTER_C
S

Thread see Table B-2

175H 373 IA32_SYSENTER_E
SP

Thread see Table B-2

176H 374 IA32_SYSENTER_E
IP

Thread see Table B-2

179H 377 IA32_MCG_CAP Thread see Table B-2

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) can be used to restart the 
program. If cleared, the program cannot be 
reliably restarted

1 EIPV. 

When set, bit indicates that the instruction 
addressed by the instruction pointer pushed 
on the stack (when the machine check was 
generated) is directly associated with the 
error.

2 MCIP. 

When set, bit indicates that a machine check 
has been generated. If a second machine 
check is detected while this bit is still set, the 
processor enters a shutdown state. Software 
should write this bit to 0 after processing a 
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread see Table B-2

187H 391 IA32_
PERFEVTSEL1

Thread see Table B-2
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188H 392 IA32_
PERFEVTSEL2

Thread see Table B-2

189H 393 IA32_
PERFEVTSEL3

Thread see Table B-2

18AH 394 IA32_
PERFEVTSEL4

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STAT
US

Package see Table B-2

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATU
S

Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W) 

see Table B-2

IA32_CLOCK_MODULATION MSR was 
originally named IA32_THERM_CONTROL 
MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W).

In 6.25% increment

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.
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19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W) 

see Table B-2

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W) 

see Table B-2

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W) 

Allows a variety of processor functions to be 
enabled and disabled.

0 Thread Fast-Strings Enable. see Table B-2

6:1 Reserved.

7 Thread Performance Monitoring Available. (R) see 
Table B-2

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) see 
Table B-2

12 Thread Precise Event Based Sampling Unavailable. 
(RO) see Table B-2

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology 
Enable. (R/W) see Table B-2

18 Thread ENABLE MONITOR FSM. (R/W) see Table B-2

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) see Table B-2

23 Thread xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) see Table B-2

37:35 Reserved.
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38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel 
Turbo Boost Technology, the turbo mode 
feature is disabled and the IDA_Enable feature 
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support 
IDA, CPUID.06H: EAX[1] reports the 
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by 
BIOS to detect hardware support of turbo 
mode. If power-on default value is 1, turbo 
mode is available in the processor. If power-on 
default value is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Unique

15:0 Reserved.

23:16 Temperature Target. (R) 

The minimum temperature at which 
PROCHOT# will be asserted. The value is 
degree C.

63:24 Reserved

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ACH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package see Table B-2

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package see Table B-2
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1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register 
(R/W) see Section 16.6.2, “Filtering of Last 
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP 

Thread Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1F2H 498 IA32_SMRR_PHYS
BASE

Core see Table B-2

1F3H 499 IA32_SMRR_PHYS
MASK

Core see Table B-2

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYS
BASE0

Thread see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Thread see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Thread see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Thread see Table B-2
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204H 516 IA32_MTRR_PHYS
BASE2

Thread see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Thread see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Thread see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Thread see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Thread see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Thread see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Thread see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Thread see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Thread see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Thread see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Thread see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Thread see Table B-2

210H 528 IA32_MTRR_PHYS
BASE8

Thread see Table B-2

211H 529 IA32_MTRR_PHYS
MASK8

Thread see Table B-2

212H 530 IA32_MTRR_PHYS
BASE9

Thread see Table B-2

213H 531 IA32_MTRR_PHYS
MASK9

Thread see Table B-2
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250H 592 IA32_MTRR_FIX6
4K_00000

Thread see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Thread see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Thread see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Thread see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread see Table B-2

277H 631 IA32_PAT Thread see Table B-2

280H 640 IA32_MC0_CTL2 Core see B-2

281H 641 IA32_MC1_CTL2 Core see B-2

282H 642 IA32_MC2_CTL2 Core see B-2

283H 643 IA32_MC3_CTL2 Core see B-2

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported)

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) see Table B-2

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter 
Register 0. (R/W) see Table B-2
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30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter 
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter 
Register 2. (R/W) see Table B-2

345H 837 IA32_PERF_CAPA
BILITIES

Thread see Table B-2. See Section 16.4.1, 
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. see Table B-2.

6 PEBS Record Format. 

7 PEBSSaveArchRegs. see Table B-2.

11:8 PEBS_REC_FORMAT. see Table B-2.

12 SMM_FREEZE. see Table B-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register. 
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.” 

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread see Table B-2. See Section 30.4.2, “Global 
Counter Control Facilities.”

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved

29 Enable all uncore counters

30 Enable PMI on overflow

31 Enable Freezing counter when overflow
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63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status 

0 Fixed counter overflowed

1 CBox counter overflowed

63:2 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3F1H 1009 MSR_PEBS_
ENABLE

Thread see See Section 30.6.1.1, “Precise Event 
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved
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3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 30.6.1.2, “Load Latency 
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged 
load operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.
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63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C3 states. Count at the 
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C6 states. Count at the 
same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in 
processor-specific C7 states. Count at the 
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.
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40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W) 

When set, enables signaling of PCU hardware 
detected errors. 

1 PCU Controller Error. (R/W) 

When set, enables signaling of PCU controller 
detected errors

2 PCU Firmware Error. (R/W) 

When set, enables signaling of PCU firmware 
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”
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483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit 
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry 
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX 
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field 
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

4C1H 1217 IA32_A_PMC0 Thread see Table B-2

4C2H 1218 IA32_A_PMC1 Thread see Table B-2

4C3H 1219 IA32_A_PMC2 Thread see Table B-2

4C4H 1220 IA32_A_PMC3 Thread see Table B-2
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4C5H 1221 IA32_A_PMC4 Core see Table B-2

4C6H 1222 IA32_A_PMC5 Core see Table B-2

4C7H 1223 IA32_A_PMC6 Core see Table B-2

C8H 200 IA32_A_PMC7 Core see Table B-2

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS) 
Mechanism.”

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O) 
See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W) 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C3 state. 

12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 
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63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the 
package to exit from C6 to a C0 state, where 
interrupt request can be delivered to the core 
and serviced. Additional core-exit latency amy 
be applicable depending on the actual C-state 
the core is in. 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C6 state. 

12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 

63:16 Reserved.
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60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W) 

This MSR defines the budget allocated for the 
package to exit from C7 to a C0 state, where 
interrupt request can be delivered to the core 
and serviced. Additional core-exit latency amy 
be applicable depending on the actual C-state 
the core is in. 

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W) 

Specifies the limit that should be used to 
decide if the package should be put into a 
package C7 state. 

12:10 Time Unit. (R/W) 

Specifies the encoding value of time unit of 
the interrupt response time limit. The 
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved. 

15 Valid. (R/W) 

Indicates whether the values in bits 12:0 are 
valid and can be used by the processor for 
package C-sate management. 

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT 
extension C-state parameters or ACPI C-
States.
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63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in 
processor-specific C2 states. Count at the 
same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See 
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3, 
“Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_S
TATUS

Package PKG Performance Throttling Status (R/O) See 
Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section 
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
source instruction for one of the last sixteen 
branches, exceptions, or interrupts taken by 
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

Table B-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-155



MODEL-SPECIFIC REGISTERS (MSRS)
682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP. 

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.
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68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of 
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record 
registers on the last branch record stack. This 
part of the stack contains pointers to the 
destination instruction for one of the last 
sixteen branches, exceptions, or interrupts 
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 
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6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of 
MSR_LASTBRANCH_0_TO_LIP. 

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table B-2.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

Table B-10.  MSRs Supported by Intel Processors Based on Intel Microarchitecture 
Code Name Sandy Bridge (Contd.)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec
B-158 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
705H 1797 MSR_UNC_CBO_0_
UNIT_STATUS

Package Uncore C-Box 0, Overflow Status

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0 

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

715H 1813 MSR_UNC_CBO_1_
UNIT_STATUS

Package Uncore C-Box 1, Overflow Status

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0 

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

725H 1829 MSR_UNC_CBO_2_
UNIT_STATUS

Package Uncore C-Box 2, Overflow Status

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0 

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

725H 1845 MSR_UNC_CBO_3_
UNIT_STATUS

Package Uncore C-Box 3, Overflow Status
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B.7.1  MSRs In Second Generation Intel® Core Processor Family 
(Intel® Microarchitecture Code Name Sandy Bridge)

Table B-11 lists model-specific registers (MSRs) that are specific to second genera-
tion for Intel® Core processor family (Intel® microarchitecture code name Sandy 
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel 
of 06_2AH, see Table B-1. 

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0 

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

C000_
0080H

IA32_EFER Thread Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). see 
Table B-2

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address. 
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). see 
Table B-2

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). see 
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W). 
see Table B-2

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). see 
Table B-2 and Section 16.12.2, 
“IA32_TSC_AUX Register and RDTSCP 
Support.” 
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B.7.2  MSRs In Next Generation Intel® Xeon Processor Family 
(Intel® Microarchitecture Code Name Sandy Bridge)

Table B-12 lists selected model-specific registers (MSRs) that are specific to the next 
generation Intel® Xeon processor family (Intel® microarchitecture code name Sandy 
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel 
of 06_2DH, see Table B-1. 

Table B-11.  MSRs Supported by Second Generation Intel Core Processors (Intel 
Microarchitecture Code Name Sandy Bridge)

Register 
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C. 

Maximum turbo ratio limit of 1 core active. 

15:8 Package Maximum Ratio Limit for 2C. 

Maximum turbo ratio limit of 2 core active. 

23:16 Package Maximum Ratio Limit for 3C. 

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C. 

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See 
Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4, 
“PP0/PP1 RAPL Domains.”
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Table B-12.  Selected MSRs Supported by Next Generation Intel Xeon Processors 
(Intel Microarchitecture Code Name Sandy Bridge)
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285H 645 IA32_MC5_CTL2 Package see Table B-2

286H 646 IA32_MC6_CTL2 Package see Table B-2

287H 647 IA32_MC7_CTL2 Package see Table B-2

288H 648 IA32_MC8_CTL2 Package see Table B-2

289H 649 IA32_MC9_CTL2 Package see Table B-2

28AH 650 IA32_MC10_CTL2 Package see Table B-2

28BH 651 IA32_MC11_CTL2 Package see Table B-2

28CH 652 IA32_MC12_CTL2 Package see Table B-2

28DH 653 IA32_MC13_CTL2 Package see Table B-2

28EH 654 IA32_MC14_CTL2 Package see Table B-2

28FH 655 IA32_MC15_CTL2 Package see Table B-2

290H 656 IA32_MC16_CTL2 Package see Table B-2

291H 657 IA32_MC17_CTL2 Package see Table B-2

292H 658 IA32_MC18_CTL2 Package see Table B-2

293H 659 IA32_MC19_CTL2 Package see Table B-2

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.
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41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.
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436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.” and Appendix E.

Table B-12.  Selected MSRs Supported by Next Generation Intel Xeon Processors 
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register 
Address Register Name

Scope
Bit Description
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B.8 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® 
PROCESSORS

Table B-13 lists MSRs (architectural and model-specific) that are defined across 
processor generations based on Intel NetBurst microarchitecture. The processor can 
be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see 
Table B-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that 

the functions of these MSRs and their addresses remain the same for succeeding 
families of IA-32 processors.

• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within 
the Pentium 4 and Intel Xeon processor family at the specified register address. 
The model encoding value of a processor can be queried using CPUID. See 
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See 
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5, 
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O) 
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section 
14.7.5, “DRAM RAPL Domain.”

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors 

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description
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0H 0 IA32_P5_MC_ADDR 0, 1, 2, 
3, 4, 6

Shared See Appendix B.12, “MSRs in 
Pentium Processors.”

Table B-12.  Selected MSRs Supported by Next Generation Intel Xeon Processors 
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)
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1H 1 IA32_P5_MC_TYPE 0, 1, 2, 
3, 4, 6

Shared See Appendix B.12, “MSRs in 
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 8.10.5, 
“Monitor/Mwait Address Range 
Determination.”

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2, 
3, 4, 6

Unique Time Stamp Counter. 

see Table B-2

On earlier processors, only the 
lower 32 bits are writable. On any 
write to the lower 32 bits, the 
upper 32 bits are cleared. For 
processor family 0FH, models 3 
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2, 
3, 4, 6

Shared Platform ID. (R). see Table B-2

The operating system can use this 
MSR to determine “slot” 
information for the processor and 
the proper microcode update to 
load.

1BH 27 IA32_APIC_BASE 0, 1, 2, 
3, 4, 6

Unique APIC Location and Status. (R/W)

see Table B-2. See Section 10.4.4, 
“Local APIC Status and Location.”

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2, 
3, 4, 6

Shared Processor Hard Power-On 
Configuration. 

(R/W) Enables and disables 
processor features; (R) indicates 
current processor configuration.

0 Output Tri-state Enabled. (R)

Indicates whether tri-state output 
is enabled (1) or disabled (0) as set 
by the strapping of SMI#. The 
value in this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags
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ability
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1 Execute BIST. (R) 

Indicates whether the execution 
of the BIST is enabled (1) or 
disabled (0) as set by the 
strapping of INIT#. The value in 
this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

2 In Order Queue Depth. (R)

Indicates whether the in order 
queue depth for the system bus is 
1 (1) or up to 12 (0) as set by the 
strapping of A7#. The value in this 
bit is written on the deassertion of 
RESET#; the bit is set to 1 when 
the address bus signal is asserted.

3 MCERR# Observation Disabled. 
(R)

Indicates whether MCERR# 
observation is enabled (0) or 
disabled (1) as determined by the 
strapping of A9#. The value in this 
bit is written on the deassertion of 
RESET#; the bit is set to 1 when 
the address bus signal is asserted.

4 BINIT# Observation Enabled. (R)

Indicates whether BINIT# 
observation is enabled (0) or 
disabled (1) as determined by the 
strapping of A10#. The value in 
this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-167



MODEL-SPECIFIC REGISTERS (MSRS)
6:5 APIC Cluster ID. (R) 

Contains the logical APIC cluster ID 
value as set by the strapping of 
A12# and A11#. The logical 
cluster ID value is written into the 
field on the deassertion of 
RESET#; the field is set to 1 when 
the address bus signal is asserted.

7 Bus Park Disable. (R) 

Indicates whether bus park is 
enabled (0) or disabled (1) as set 
by the strapping of A15#. The 
value in this bit is written on the 
deassertion of RESET#; the bit is 
set to 1 when the address bus 
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R) 

Contains the logical agent ID value 
as set by the strapping of BR[3:0]. 
The logical ID value is written into 
the field on the deassertion of 
RESET#; the field is set to 1 when 
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2, 
3, 4, 6

Shared Processor Soft Power-On 
Configuration. (R/W) 

Enables and disables processor 
features.

0 RCNT/SCNT On Request 
Encoding Enable. (R/W) 

Controls the driving of RCNT/SCNT 
on the request encoding. Set to 
enable (1); clear to disabled (0, 
default).

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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1 Data Error Checking Disable. 
(R/W) 

Set to disable system data bus 
parity checking; clear to enable 
parity checking.

2 Response Error Checking 
Disable. (R/W) 

Set to disable (default); clear to 
enable. 

3 Address/Request Error Checking 
Disable. (R/W) 

Set to disable (default); clear to 
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for 
initiator bus requests (default); 
clear to enable. 

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for 
initiator internal errors (default); 
clear to enable. 

6 BINIT# Driver Disable. (R/W) 

Set to disable BINIT# driver 
(default); clear to enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4, 
6

Shared Processor Frequency 
Configuration. 

The bit field layout of this MSR 
varies according to the MODEL 
value in the CPUID version 
information. The following bit field 
layout applies to Pentium 4 and 
Xeon Processors with MODEL 
encoding equal or greater than 2. 

(R) The field Indicates the current 
processor frequency configuration.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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Address
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15:0 Reserved.

18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable 
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 001B. 

166.67 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 011B.

266.67 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 000B and model encoding = 3 
or 4.

333.33 MHz should be utilized if 
performing calculation with 
System Bus Speed when encoding 
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved

31:24 Core Clock Frequency to System 
Bus Frequency Ratio. (R)

The processor core clock 
frequency to system bus 
frequency ratio observed at the 
de-assertion of the reset pin.

63:25 Reserved.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency 
Configuration. (R) 

The bit field layout of this MSR 
varies according to the MODEL 
value of the CPUID version 
information. This bit field layout 
applies to Pentium 4 and Xeon 
Processors with MODEL encoding 
less than 2.

Indicates current processor 
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable 
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32 
Processor. (R/W). see Table B-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2, 
3, 4, 6

Shared BIOS Update Trigger Register. 
(W) see Table B-2

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2, 
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

see Table B-2

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration. 
(R/W). see Table B-2

FEH 254 IA32_MTRRCAP 0, 1, 2, 
3, 4, 6

Unique MTRR Information. 

See Section 11.11.1, “MTRR 
Feature Identification.”.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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174H 372 IA32_SYSENTER_CS 0, 1, 2, 
3, 4, 6

Unique CS register target for CPL 0 
code. (R/W). see Table B-2

See Section 5.8.7, “Performing 
Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT 
Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2, 
3, 4, 6

Unique Stack pointer for CPL 0 stack. 
(R/W). see Table B-2

See Section 5.8.7, “Performing 
Fast Calls to System Procedures 
with the SYSENTER and SYSEXIT 
Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2, 
3, 4, 6

Unique CPL 0 code entry point. (R/W). 

see Table B-2. See Section 5.8.7, 
“Performing Fast Calls to System 
Procedures with the SYSENTER 
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2, 
3, 4, 6

Unique Machine Check Capabilities. (R)

see Table B-2. See Section 
15.3.1.1, “IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2, 
3, 4, 6

Unique Machine Check Status. (R). see 
Table B-2. See Section 15.3.1.2, 
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable. 
(R/W). see Table B-2

See Section 15.3.1.3, 
“IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2, 
3, 4, 6

Unique Machine Check EAX/RAX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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181H 385 MSR_MCG_RBX 0, 1, 2, 
3, 4, 6

Unique Machine Check EBX/RBX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

182H 386 MSR_MCG_RCX 0, 1, 2, 
3, 4, 6

Unique Machine Check ECX/RCX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

183H 387 MSR_MCG_RDX 0, 1, 2, 
3, 4, 6

Unique Machine Check EDX/RDX Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

184H 388 MSR_MCG_RSI 0, 1, 2, 
3, 4, 6

Unique Machine Check ESI/RSI Save 
State.

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

185H 389 MSR_MCG_RDI 0, 1, 2, 
3, 4, 6

Unique Machine Check EDI/RDI Save 
State.

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

186H 390 MSR_MCG_RBP 0, 1, 2, 
3, 4, 6

Unique Machine Check EBP/RBP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

187H 391 MSR_MCG_RSP 0, 1, 2, 
3, 4, 6

Unique Machine Check ESP/RSP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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188H 392 MSR_MCG_RFLAGS 0, 1, 2, 
3, 4, 6

Unique Machine Check EFLAGS/RFLAG 
Save State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

189H 393 MSR_MCG_RIP 0, 1, 2, 
3, 4, 6

Unique Machine Check EIP/RIP Save 
State. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63:0 Contains register state at time of 
machine check error. When in non-
64-bit modes at the time of the 
error, bits 63-32 do not contain 
valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2, 
3, 4, 6

Unique Machine Check Miscellaneous. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

0 DS. 

When set, the bit indicates that a 
page assist or page fault occurred 
during DS normal operation. The 
processors response is to shut 
down. 

The bit is used as an aid for 
debugging DS handling code. It is 
the responsibility of the user (BIOS 
or operating system) to clear this 
bit for normal operation.

63:1 Reserved.
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18BH - 
18FH

395 MSR_MCG_
RESERVED1 - 
MSR_MCG_
RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2, 
3, 4, 6

Unique Machine Check R8. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2, 
3, 4, 6

Unique Machine Check R9D/R9. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2, 
3, 4, 6

Unique Machine Check R10. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)
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193H 403 MSR_MCG_R11 0, 1, 2, 
3, 4, 6

Unique Machine Check R11. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2, 
3, 4, 6

Unique Machine Check R12. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2, 
3, 4, 6

Unique Machine Check R13. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2, 
3, 4, 6

Unique Machine Check R14. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”
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63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2, 
3, 4, 6

Unique Machine Check R15. 

See Section 15.3.2.6, “IA32_MCG 
Extended Machine Check State 
MSRs.”

63-0 Registers R8-15 (and the 
associated state-save MSRs) exist 
only in Intel 64 processors. These 
registers contain valid information 
only when the processor is 
operating in 64-bit mode at the 
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique see Table B-2. See Section 14.1, 
“Enhanced Intel Speedstep® 
Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique see Table B-2. See Section 14.1, 
“Enhanced Intel Speedstep® 
Technology.”

19AH 410 IA32_CLOCK_
MODULATION 

0, 1, 2, 
3, 4, 6

Unique Thermal Monitor Control. (R/W)

see Table B-2. 

See Section 14.5.3, “Software 
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2, 
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

See Section 14.5.2, “Thermal 
Monitor.” and see Table B-2

19CH 412 IA32_THERM_STATUS 0, 1, 2, 
3, 4, 6

Shared Thermal Monitor Status. (R/W)

See Section 14.5.2, “Thermal 
Monitor.” and see Table B-2

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.
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3, Shared For Family F, Model 3 processors: 
When read, specifies the value of 
the target TM2 transition last 
written. When set, it sets the next 
target value for TM2 transition. 

4, 6 Shared For Family F, Model 4 and Model 6 
processors: When read, specifies 
the value of the target TM2 
transition last written. Writes may 
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2, 
3, 4, 6

Shared Enable Miscellaneous Processor 
Features. (R/W) 

0 Fast-Strings Enable. see Table B-2

1 Reserved. 

2 x87 FPU Fopcode Compatibility 
Mode Enable. 

3 Thermal Monitor 1 Enable. 

See Section 14.5.2, “Thermal 
Monitor.” and see Table B-2.

4 Split-Lock Disable. 

When set, the bit causes an #AC 
exception to be issued instead of a 
split-lock cycle. Operating systems 
that set this bit must align system 
structures to avoid split-lock 
scenarios. 

When the bit is clear (default), 
normal split-locks are issued to the 
bus.

This debug feature is specific to 
the Pentium 4 processor.

5 Reserved.
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6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is 
disabled; when clear (default) the 
third-level cache is enabled. This 
flag is reserved for processors 
that do not have a third-level 
cache. 

Note that the bit controls only the 
third-level cache; and only if 
overall caching is enabled through 
the CD flag of control register CR0, 
the page-level cache controls, 
and/or the MTRRs.

See Section 11.5.4, “Disabling and 
Enabling the L3 Cache.”

7 Performance Monitoring 
Available. (R). see Table B-2

8 Suppress Lock Enable. 

When set, assertion of LOCK on 
the bus is suppressed during a 
Split Lock access. When clear 
(default), LOCK is not suppressed.

9 Prefetch Queue Disable. 

When set, disables the prefetch 
queue. When clear (default), 
enables the prefetch queue.

10 FERR# Interrupt Reporting 
Enable. (R/W) 

When set, interrupt reporting 
through the FERR# pin is enabled; 
when clear, this interrupt 
reporting function is disabled. 

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-180 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
When this flag is set and the 
processor is in the stop-clock state 
(STPCLK# is asserted), asserting 
the FERR# pin signals to the 
processor that an interrupt (such 
as, INIT#, BINIT#, INTR, NMI, SMI#, 
or RESET#) is pending and that 
the processor should return to 
normal operation to handle the 
interrupt.

This flag does not affect the 
normal operation of the FERR# pin 
(to indicate an unmasked floating-
point error) when the STPCLK# 
pin is not asserted.

11 Branch Trace Storage 
Unavailable (BTS_UNAVILABLE). 
(R). see Table B-2

When set, the processor does not 
support branch trace storage 
(BTS); when clear, BTS is 
supported.

12 PEBS_UNAVILABLE: Precise 
Event Based Sampling 
Unavailable. (R). see Table B-2

When set, the processor does not 
support precise event-based 
sampling (PEBS); when clear, PEBS 
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the 
thermal sensor indicates that the 
die temperature is at the pre-
determined threshold, the 
Thermal Monitor 2 mechanism is 
engaged. TM2 will reduce the bus 
to core ratio and voltage according 
to the value last written to 
MSR_THERM2_CTL bits 15:0.
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When this bit is clear (0, default), 
the processor does not change the 
VID signals or the bus to core ratio 
when the processor enters a 
thermal managed state.

If the TM2 feature flag (ECX[8]) is 
not set to 1 after executing CPUID 
with EAX = 1, then this feature is 
not supported and BIOS must not 
alter the contents of this bit 
location. The processor is 
operating out of spec if both this 
bit and the TM1 bit are set to 
disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

see Table B-2

19 Adjacent Cache Line Prefetch 
Disable. (R/W) 

When set to 1, the processor 
fetches the cache line of the 128-
byte sector containing currently 
required data. When set to 0, the 
processor fetches both cache lines 
in the sector.

Single processor platforms should 
not set this bit. Server platforms 
should set or clear this bit based 
on platform performance 
observed in validation and testing. 

BIOS may contain a setup option 
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W) 

see Table B-2
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Setting this can cause unexpected 
behavior to software that 
depends on the availability of 
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

see Table B-2.

24 L1 Data Cache Context Mode. 
(R/W) 

When set, the L1 data cache is 
placed in shared mode; when clear 
(default), the cache is placed in 
adaptive mode. This bit is only 
enabled for IA-32 processors that 
support Intel Hyper-Threading 
Technology. See Section 11.5.6, 
“L1 Data Cache Context Mode.”

When L1 is running in adaptive 
mode and CR3s are identical, data 
in L1 is shared across logical 
processors. Otherwise, L1 is not 
shared and cache use is 
competitive.

If the Context ID feature flag 
(ECX[10]) is set to 0 after 
executing CPUID with EAX = 1, the 
ability to switch modes is not 
supported. BIOS must not alter the 
contents of 
IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

see Table B-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements. 
(R)

17:0 Reserved.
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18 PLATFORM Requirements.

When set to 1, indicates the 
processor has specific platform 
requirements. The details of the 
platform requirements are listed in 
the respective data sheets of the 
processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2, 
3, 4, 6

Unique Last Exception Record From 
Linear IP. (R) 

Contains a pointer to the last 
branch instruction that the 
processor executed prior to the 
last exception that was generated 
or the last interrupt that was 
handled.

See Section 16.8.3, “Last 
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch 
instruction. 

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch 
instruction (If IA-32e mode is 
active). 

1D8H 472 MSR_LER_TO_LIP 0, 1, 2, 
3, 4, 6

Unique Last Exception Record To Linear 
IP. (R) 

This area contains a pointer to the 
target of the last branch 
instruction that the processor 
executed prior to the last 
exception that was generated or 
the last interrupt that was 
handled.

See Section 16.8.3, “Last 
Exception Records.”
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31:0 From Linear IP.

Linear address of the target of the 
last branch instruction. 

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the 
last branch instruction (If IA-32e 
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2, 
3, 4, 6

Unique Debug Control. (R/W) 

Controls how several debug 
features are used. Bit definitions 
are discussed in the referenced 
section.

See Section 16.8.1, 
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2, 
3, 4, 6

Unique Last Branch Record Stack TOS. 
(R) 

Contains an index (0-3 or 0-15) 
that points to the top of the last 
branch record stack (that is, that 
points the index of the MSR 
containing the most recent branch 
record).

See Section 16.8.2, “LBR Stack for 
Processors Based on Intel 
NetBurst® Microarchitecture”; and 
addresses 1DBH-1DEH and 680H-
68FH.
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1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W) 

One of four last branch record 
registers on the last branch record 
stack. It contains pointers to the 
source and destination instruction 
for one of the last four branches, 
exceptions, or interrupts that the 
processor took.

MSR_LASTBRANCH_0 through 
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family 
0FH, models 0H-02H. They have 
been replaced by the MSRs at 
680H-68FH and 6C0H-6CFH. 

See Section 16.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2. 

See description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3. 

See description of the 
MSR_LASTBRANCH_0 MSR at 
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2, 
3, 4, 6

Shared Variable Range Base MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”
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203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”
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20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2, 
3, 4, 6

Shared Variable Range Mask MTRR. 

See Section 11.11.2.3, “Variable 
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”
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26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2, 
3, 4, 6

Shared Fixed Range MTRR. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2, 
3, 4, 6

Unique Page Attribute Table. 

See Section 11.11.2.2, “Fixed 
Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2, 
3, 4, 6

Shared Default Memory Types. (R/W) 

see Table B-2 

See Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-189



MODEL-SPECIFIC REGISTERS (MSRS)
30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.2, “Performance 
Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-190 Vol. 3B



MODEL-SPECIFIC REGISTERS (MSRS)
369H 873 MSR_FLAME_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”
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3A8H 936 MSR_DAC_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”
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3B9H 953 MSR_CRU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 30.9.1, “ESCR MSRs.”

This MSR is not available on later 
processors. It is only available on 
processor family 0FH, models 
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 30.9.1, “ESCR MSRs.”

This MSR is not available on later 
processors. It is only available on 
processor family 0FH, models 
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”
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3CAH 970 MSR_ALF_ESCR0 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2, 
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2, 
3, 4, 6

Shared Precise Event-Based Sampling 
(PEBS). (R/W) 

Controls the enabling of precise 
event sampling and replay tagging. 

12:0 See Table A-18.

23:13 Reserved.

24 UOP Tag. 

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical 
processor when set; disables PEBS 
when clear (default). 

See Section 30.10.3, 
“IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical 
processor. 

This bit is called ENABLE_PEBS in 
IA-32 processors that do not 
support Intel Hyper-Threading 
Technology.
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26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical 
processor when set; disables PEBS 
when clear (default).

See Section 30.10.3, 
“IA32_PEBS_ENABLE MSR,” for an 
explanation of the target logical 
processor. 

This bit is reserved for IA-32 
processors that do not support 
Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2, 
3, 4, 6

Shared See Table A-18.

400H 1024 IA32_MC0_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.” 

The IA32_MC0_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC0_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC0_STATUS register is 
clear. 
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When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.” 

The IA32_MC1_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC1_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC1_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”
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40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC2_STATUS 
register is clear. When not 
implemented in the processor, all 
reads and writes to this MSR will 
cause a general-protection 
exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC2_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC3_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.
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40FH 1039 IA32_MC3_MISC 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC3_STATUS register is 
clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.1, 
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2, 
3, 4, 6

Shared See Section 15.3.2.2, 
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3, 
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is 
either not implemented or 
contains no address if the ADDRV 
flag in the IA32_MC4_STATUS 
register is clear. 

When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4, 
“IA32_MCi_MISC MSRs.” 

The IA32_MC2_MISC MSR is either 
not implemented or does not 
contain additional information if 
the MISCV flag in the 
IA32_MC4_STATUS register is 
clear. 
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When not implemented in the 
processor, all reads and writes to 
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX 
Capabilities. (R/O). see Table B-2.

See Appendix G.1, “Basic VMX 
Information”

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of 
Pin-based VM-execution 
Controls. (R/O). see Table B-2.

See Appendix G.3, “VM-Execution 
Controls”

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of 
Primary Processor-based 
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution 
Controls” and see Table B-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of 
VM-exit Controls. (R/O)

See Appendix G.4, “VM-Exit 
Controls” and see Table B-2.

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of 
VM-entry Controls. (R/O)

See Appendix G.5, “VM-Entry 
Controls” and see Table B-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of 
Miscellaneous VMX Capabilities. 
(R/O)

See Appendix G.6, “Miscellaneous 
Data” and see Table B-2.

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of 
CR0 Bits Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits 
in CR0” and see Table B-2.
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487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of 
CR0 Bits Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits 
in CR0” and see Table B-2.

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of 
CR4 Bits Fixed to 0. (R/O)

See Appendix G.8, “VMX-Fixed Bits 
in CR4” and see Table B-2.

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of 
CR4 Bits Fixed to 1. (R/O)

See Appendix G.8, “VMX-Fixed Bits 
in CR4” and see Table B-2.

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of 
VMCS Field Enumeration. (R/O).

See Appendix G.9, “VMCS 
Enumeration” and see Table B-2.

48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of 
Secondary Processor-based 
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution 
Controls” and see Table B-2.

600H 1536 IA32_DS_AREA 0, 1, 2, 
3, 4, 6

Unique DS Save Area. (R/W). see 
Table B-2.

See Section 30.9.4, “Debug Store 
(DS) Mechanism.”

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W) 

One of 16 pairs of last branch 
record registers on the last branch 
record stack (680H-68FH). This 
part of the stack contains pointers 
to the source instruction for one 
of the last 16 branches, 
exceptions, or interrupts taken by 
the processor.
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The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor 
releases before family 0FH, model 
03H. These MSRs replace MSRs 
previously located at 1DBH-
1DEH.which performed the same 
function for early releases. 

See Section 16.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1. 

See description of 
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2. 

See description of 
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3. 

See description of 
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4. 

See description of 
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5. 

See description of 
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6. 

See description of 
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7. 

See description of 
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8. 

See description of 
MSR_LASTBRANCH_0 at 680H.
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689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14. 

See description of 
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15. 

See description of 
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W) 

One of 16 pairs of last branch 
record registers on the last branch 
record stack (6C0H-6CFH). This 
part of the stack contains pointers 
to the destination instruction for 
one of the last 16 branches, 
exceptions, or interrupts that the 
processor took.

See Section 16.8, “Last Branch, 
Interrupt, and Exception Recording 
(Processors based on Intel 
NetBurst® Microarchitecture).”
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6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-203



MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15. 

See description of 
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables. see 
Table B-2

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address. 
(R/W)

see Table B-2

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target 
Address. (R/W)

see Table B-2

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W) 

see Table B-2

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS. 
(R/W)

see Table B-2

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS. 
(R/W)

see Table B-2

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of 
GS. (R/W)

see Table B-2
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B.8.1  MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table B-14 apply to Intel Xeon Processor MP with up to 8MB level 
three cache. These processors can be detected by enumerating the deterministic 
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model 
encoding 3 or 4 (See CPUID instruction for more details.).

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If 

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is 
unique, this means that each logical processor has its own MSR.

Table B-14.  MSRs Unique to 64-bit Intel Xeon Processor MP with 
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control 
and Counter Register. 
(R/W)

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control 
and Counter Register. 
(R/W) 

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control 
and Counter Register. 
(R/W) 

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

Table B-13.  MSRs in the Pentium 4 and Intel Xeon Processors  (Contd.)

Register 
Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
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The MSRs listed in Table B-15 apply to Intel Xeon Processor 7100 series. These 
processors can be detected by enumerating the deterministic cache parameter leaf of 
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level 
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID 
instruction for more details.). The performance monitoring MSRs listed in Table B-15 
are shared between logical processors in the same core, but are replicated for each 
core.

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control 
and Counter Register. 
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control 
and Counter Register. 
(R/W) 

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control 
and Counter Register. 
(R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control 
Register. (R/W)

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event 
Counter Register. (R/W) 

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.” 

Table B-14.  MSRs Unique to 64-bit Intel Xeon Processor MP with 
Up to an 8 MB L3 Cache (Contd.)

Register Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique Bit Description
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Table B-15.  MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model 
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and 
Counter Register. (R/W)

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and 
Counter Register. (R/W) 

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and 
Counter Register. (R/W) 

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and 
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and 
Counter Register. (R/W) 

See Section 30.14, 
“Performance Monitoring on 
64-bit Intel Xeon Processor 
MP with Up to 8-MByte L3 
Cache” for details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and 
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and 
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and 
Counter Register. (R/W)
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B.9 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ 

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and 
Dual-core Intel Xeon processor LV are listed in Table B-16. The column 
“Shared/Unique” applies to Intel Core Duo processor. “Unique” means each 
processor core has a separate MSR, or a bit field in an MSR governs only a core inde-
pendently. “Shared” means the MSR or the bit field in an MSR address governs the 
operation of both processor cores.

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Appendix B.12, “MSRs in Pentium 
Processors.” and see Table B-2

1H 1 P5_MC_TYPE Unique See Appendix B.12, “MSRs in Pentium 
Processors.” and see Table B-2

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address 
Range Determination.” and see Table B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 16.12, “Time-Stamp Counter.” and 
see Table B-2

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R) see Table B-2

The operating system can use this MSR to 
determine “slot” information for the processor 
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and 
Location.” and see Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration. 
(R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.
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3 MCERR# Drive Enable. (R/W) 

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Clock Frequency Ratio. (R/O)

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W) 

see Table B-2

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the 
last branch record stack: bits 31-0 hold the 
‘from’ address and bits 63-32 hold the ‘to’ 
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M 
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0. 

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). see 
Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO). see 
Table B-2

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock 
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 101B. 

166.67 MHz should be utilized if performing 
calculation with System Bus Speed when 
encoding is 001B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock 
Count. (RW). see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count. 
(RW). see Table B-2

FEH 254 IA32_MTRRCAP Unique see Table B-2

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not 
respond to the WBINVD instruction or the 
assertion of the FLUSH# input.

22:9 Reserved.

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique see Table B-2

175H 373 IA32_SYSENTER
_ESP

Unique see Table B-2

176H 374 IA32_SYSENTER
_EIP

Unique see Table B-2

179H 377 IA32_MCG_CAP Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV. 

When set, this bit indicates that the 
instruction addressed by the instruction 
pointer pushed on the stack (when the 
machine check was generated) can be used to 
restart the program. If this bit is cleared, the 
program cannot be reliably restarted

1 EIPV. 

When set, this bit indicates that the 
instruction addressed by the instruction 
pointer pushed on the stack (when the 
machine check was generated) is directly 
associated with the error.

2 MCIP. 

When set, this bit indicates that a machine 
check has been generated. If a second 
machine check is detected while this bit is still 
set, the processor enters a shutdown state. 
Software should write this bit to 0 after 
processing a machine check exception.

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2 

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W) 

see Table B-2

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W) 

see Table B-2 

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W) 

see Table B-2. 

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated 
on-die modulation of the stop-clock duty 
cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither 
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions 
to be enabled and disabled.

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable. 
(R/W) 

see Table B-2 

6:4 Reserved

7 Shared Performance Monitoring Available. (R). see 
Table B-2

9:8 Reserved

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to 
indicate a pending break event within 
the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO). see 
Table B-2

12 Reserved.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor 
indicates that the die temperature is at the 
pre-determined threshold, the Thermal 
Monitor 2 mechanism is engaged. TM2 will 
reduce the bus to core ratio and voltage 
according to the value last written to 
MSR_THERM2_CTL bits 15:0.

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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When this bit is clear (0, default), the 
processor does not change the VID signals or 
the bus to core ratio when the processor 
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1 
after executing CPUID with EAX = 1, then this 
feature is not supported and BIOS must not 
alter the contents of this bit location. The 
processor is operating out of spec if both this 
bit and the TM1 bit are set to disabled states.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology 
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology 
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

see Table B-2

19 Reserved. 

22 Shared Limit CPUID Maxval. (R/W) 

see Table B-2. 

Setting this bit may cause behavior in 
software that depends on the availability of 
CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

see Table B-2

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the 
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H)

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) 

Controls how several debug features are used. 
Bit definitions are discussed in the referenced 
section.

1DDH 477 MSR_LER_FROM_
LIP 

Unique Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch 
instruction that the processor executed prior 
to the last exception that was generated or 
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of 
the last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was 
handled. 

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W). see 
Table B-2. 

See Section 11.11.2.1, 
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC0_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC1_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the IA32_MC2_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
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40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC4_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS 
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the 
ADDRV flag in the MSR_MC3_STATUS register 
is clear. When not implemented in the 
processor, all reads and writes to this MSR will 
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX 
Capabilities. (R/O). see Table B-2

See Appendix G.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based 
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description
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482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit 
Controls. (R/O)

See Appendix G.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry 
Controls. (R/O)

See Appendix G.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX 
Capabilities. (R/O)

See Appendix G.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits 
Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits 
Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits 
Fixed to 0. (R/O)

See Appendix G.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits 
Fixed to 1. (R/O)

See Appendix G.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description
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B.10 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those 
described in Section B.11 for P6 family processors. The following table describes new 
MSRs and MSRs whose behavior has changed on the Pentium M processor. 

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field 
Enumeration. (R/O).

See Appendix G.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary 
Processor-based VM-execution Controls. 
(R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and 
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W) 

see Table B-2.

See Section 30.9.4, “Debug Store (DS) 
Mechanism.”

31:0 DS Buffer Management Area. 

Linear address of the first byte of the DS 
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique see Table B-2

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table B-16.  MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel 
Xeon Processor LV (Contd.)

Register 
Address Register Name

Shared/
Unique Bit Description
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Table B-17.  MSRs in Pentium M Processors

Register 
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.12, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.12, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 16.12, “Time-Stamp Counter.” and see 
Table B-2

17H 23 IA32_PLATFORM_ID Platform ID. (R). see Table B-2

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R) 
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable. (R) 

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable. (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled 

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled 
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10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled 
Always 0 on the Pentium M processor.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last 
branch record stack: bits 31-0 hold the ‘from’ 
address and bits 63-32 hold the to address. 

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

Table B-17.  MSRs in Pentium M Processors (Contd.)

Register 
Address

Register Name Bit Description
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42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0. 

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0. 

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0. 

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0. 

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data 
bus. ECC is always generated on write cycles. 

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the 
cache data bus is always enabled.

7:6 Reserved.

Table B-17.  MSRs in Pentium M Processors (Contd.)

Register 
Address

Register Name Bit Description
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8 L2 Enabled. (R/W) 

1 = L2 cache has been initialized 
0 = Disabled (default)
Until this bit is set the processor will not respond 
to the WBINVD instruction or the assertion of the 
FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO) 

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error 
reporting banks available in the processor

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the 
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction 
addressed by the instruction pointer pushed on 
the stack (when the machine check was 
generated) can be used to restart the program. If 
this bit is cleared, the program cannot be reliably 
restarted

1 EIPV. 

When set, this bit indicates that the instruction 
addressed by the instruction pointer pushed on 
the stack (when the machine check was 
generated) is directly associated with the error.

Table B-17.  MSRs in Pentium M Processors (Contd.)
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2 MCIP. 

When set, this bit indicates that a machine check 
has been generated. If a second machine check is 
detected while this bit is still set, the processor 
enters a shutdown state. Software should write 
this bit to 0 after processing a machine check 
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS see Table B-2

199H 409 IA32_PERF_CTL see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W). see Table B-2. 

See Section 14.5.3, “Software Controlled Clock 
Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W). see Table B-2. 

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W). see Table B-2

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT. (R/W) 

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die 
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated 
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is 
cleared, TM_SELECT has no effect. Neither TM1 
nor TM2 will be enabled.

63:16 Reserved

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features. 
(R/W)

Allows a variety of processor functions to be 
enabled and disabled.

2:0 Reserved.

Table B-17.  MSRs in Pentium M Processors (Contd.)
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3 Automatic Thermal Control Circuit Enable. (R/W) 

1 = Setting this bit enables the thermal control 
circuit (TCC) portion of the Intel Thermal 
Monitor feature. This allows processor clocks 
to be automatically modulated based on the 
processor's thermal sensor operation. 

0 = Disabled (default). 
The automatic thermal control circuit enable bit 
determines if the thermal control circuit (TCC) will 
be activated when the processor's internal 
thermal sensor determines the processor is about 
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the 
processors clocks will be forced to a 50% duty 
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R) 

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate 
a pending break event within the processor 

0 =  Indicates compatible FERR# signaling 
behavior

This bit must be set to 1 to support XAPIC 
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace 
storage (BTS)

0 = BTS is supported

Table B-17.  MSRs in Pentium M Processors (Contd.)
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12 Precise Event Based Sampling Unavailable. (RO) 

1 = Processor does not support precise event-
based sampling (PEBS); 

0 = PEBS is supported. 
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable. 
(R/W) 

1 = Enhanced Intel SpeedStep Technology 
enabled.

On the Pentium M processor, this bit may be 
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR 
messages are optional messages that allow the 
processor to inform the chipset of its priority. The 
default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R) 

Contains an index (bits 0-3) that points to the MSR 
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 16.10, “Last Branch, Interrupt, and 

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W) 

Controls how several debug features are used. Bit 
definitions are discussed in the referenced section.

See Section 16.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors).”

Table B-17.  MSRs in Pentium M Processors (Contd.)

Register 
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Register Name Bit Description
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1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R) 

This area contains a pointer to the target of the 
last branch instruction that the processor 
executed prior to the last exception that was 
generated or the last interrupt that was handled.

See Section 16.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors)” and 
Section 16.11.2, “Last Branch and Last Exception 
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R) 

Contains a pointer to the last branch instruction 
that the processor executed prior to the last 
exception that was generated or the last interrupt 
that was handled.

See Section 16.10, “Last Branch, Interrupt, and 
Exception Recording (Pentium M Processors)” and 
Section 16.11.2, “Last Branch and Last Exception 
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W) 

Sets the memory type for the regions of physical 
memory that are not mapped by the MTRRs. 

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE 
MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”. 

The IA32_MC0_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC0_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table B-17.  MSRs in Pentium M Processors (Contd.)
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406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC1_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the IA32_MC2_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the MSR_MC4_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.” 

The MSR_MC3_ADDR register is either not 
implemented or contains no address if the ADDRV 
flag in the MSR_MC3_STATUS register is clear. 
When not implemented in the processor, all reads 
and writes to this MSR will cause a general-
protection exception.

Table B-17.  MSRs in Pentium M Processors (Contd.)
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B.11 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table 
that are shaded are available only in the Pentium II and Pentium III processors. 
Beginning with the Pentium 4 processor, some of the MSRs in this list have been 
designated as “architectural” and have had their names changed. See Table B-2 for a 
list of the architectural MSRs.

600H 1536 IA32_DS_AREA DS Save Area. (R/W). see Table B-2

Points to the DS buffer management area, which is 
used to manage the BTS and PEBS buffers. See 
Section 30.9.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area. 

Linear address of the first byte of the DS buffer 
management area.

63:32 Reserved.

Table B-18.  MSRs in the P6 Family Processors 

Register 
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.12, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.12, “MSRs in Pentium Processors.”

10H 16 TSC See Section 16.12, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R) 

The operating system can use this MSR to 
determine “slot” information for the processor and 
the proper microcode update to load.

49:0 Reserved.

Table B-17.  MSRs in Pentium M Processors (Contd.)
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52:50 Platform Id. (R)

Contains information concerning the intended 
platform for the processor. 
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4 
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit. 

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled 
0 = Disabled 

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R) 
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled 

Table B-18.  MSRs in the P6 Family Processors  (Contd.)
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2 Response Error Checking Enable FRCERR 
Observation Enable. (R/W)

1 = Enabled 
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled 

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled 

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors. 
(R/W)

1 = Enabled
0 = Disabled 

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled 

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled 

9 Execute BIST. (R)

1 = Enabled
0 = Disabled 

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled 

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled 

Table B-18.  MSRs in the P6 Family Processors  (Contd.)
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13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled 

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#. 

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

    88     136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and 
read from the L2

    89     137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and 
read from the L2

    8A     138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and 
read from the L2

Table B-18.  MSRs in the P6 Family Processors  (Contd.)
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8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data 
register D[63:0]. 

Used to write to and read from the L2 depending 
on the usage model

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

   116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address 
(A31-A3) to L2 during cache initialization accesses.

Reserved, 

Address bits [35:3]

Reserved Set to 0.

   118  280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and 
read ECC to/from L2

   119  281 BBL_CR_CTL 

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to 
be issued via cache configuration accesses 
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2 

Modified - 11,Exclusive - 10, Shared - 01, Invalid - 
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2
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BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

   11A  282 BBL_CR_TRIG Trigger register: used to initiate a cache 
configuration accesses access, Write only with Data 
= 0.

   11B  283 BBL_CR_BUSY Busy register: indicates when a cache configuration 
accesses L2 command is in progress. D[0] = 1 = 
BUSY

11E  286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved 

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110 
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table B-18.  MSRs in the P6 Family Processors  (Contd.)
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 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of 
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count 
options.
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16 USER.

Controls the counting of events at Privilege levels 
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level 
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter 
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input 
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in 
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).
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187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of 
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count 
options.

16 USER.

Controls the counting of events at Privilege levels 
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level 
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter 
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input 
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

Table B-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

Table B-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD 

31:16 MC_STATUS_MSCOD 

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV 

59 MC_STATUS_MISCV 

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this 
bit is hardcoded to 1.)

61 MC_STATUS_UC 

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented 
in the P6 family processors

Table B-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented 
in the P6 family processors

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented 
in the P6 family processors

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0, 
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented 
in P6 Family processors

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented 
in the P6 family processors

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented 
in the P6 family processors

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family 

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR 

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be 
cleared. This bit is write-once. The processor number feature will be disabled until the processor 
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will 
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to 
use bit 11 to implement its own shutdown policy.

Table B-18.  MSRs in the P6 Family Processors  (Contd.)

Register 
Address

Register Name Bit Description

 Hex Dec
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B.12 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR, 
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and 
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is, 
code that accesses these registers will run on Pentium 4 and P6 family processors 
without generating exceptions (see Section B.1, “Architectural MSRs”). The CESR, 
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these 
registers will generate exceptions on Pentium 4 and P6 family processors.

Table B-19.  MSRs in the Pentium Processor

Register 
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check 
Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check 
Exception Handling.”

10H 16 TSC See Section 16.12, “Time-Stamp Counter.”

11H 17 CESR See Section 30.17.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 30.17.3, “Events Counted.”

13H 19 CTR1 Section 30.17.3, “Events Counted.”
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APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS

This appendix describes the MP initialization process for systems that use multiple P6 
family processors. This process uses the MP initialization protocol that was intro-
duced with the Pentium Pro processor (see Section 8.4, “Multiple-Processor (MP) 
Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4 
processors that reside on single system bus; however, it can support from 2 to 15 
processors in a multi-clustered system when the APIC busses are tied together. 
Larger systems are not supported.

C.1 OVERVIEW OF THE MP INITIALIZATION PROCESS 
FOR P6 FAMILY PROCESSORS

During the execution of the MP initialization protocol, one processor is selected as the 
bootstrap processor (BSP) and the remaining processors are designated as applica-
tion processors (APs), see Section 8.4.1, “BSP and AP Processors.” Thereafter, the 
BSP manages the initialization of itself and the APs. This initialization includes 
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP 

protocol has been completed and a BSP has been chosen, subsequent INITs 
(either to a specific processor or system wide) do not cause the MP protocol to be 
repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR) 
to determine whether it should execute the BIOS boot-strap code (if it is the BSP) 
or enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the 
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the 
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and 
when the AP responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the 
boot phase of the MP initialization protocol. These IPIs are broadcast on the APIC 
bus.
• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the 

group of processors on the system bus and designates the remainder of the 
processors as APs. Each processor on the system bus broadcasts a BIPI to all the 
processors following a power-up or RESET. 
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• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This 
IPI is broadcast to all the processors on the system bus, but only the BSP 
responds to it. The BSP responds by beginning execution of the BIOS initialization 
code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI 
message contains a vector to the AP initialization code in the BIOS.

Table C-1 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the 
processor issuing the message and the upper 4 bits contain the “generation ID” of 
the message. All P6 family processor will have a generation ID of 4H. BIPIs will there-
fore use vector values ranging from 40H to 4EH (4FH can not be used because FH is 
not a valid APIC ID). 

C.2 MP INITIALIZATION PROTOCOL ALGORITHM
Following a power-up or RESET of a system, the P6 family processors in the system 
execute the MP initialization protocol algorithm to initialize each of the processors on 
the system bus. In the course of executing this algorithm, the following boot-up and 
initialization operations are carried out:

1. Each processor on the system bus is assigned a unique APIC ID, based on system 
topology (see Section 8.4.5, “Identifying Logical Processors in an MP System”). 
This ID is written into the local APIC ID register for each processor.

2. Each processor executes its internal BIST simultaneously with the other 
processors on the system bus. Upon completion of the BIST (at T0), each 
processor broadcasts a BIPI to “all including self” (see Figure 1). 

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a 
time (at T1, T2, T3, and T4). 

4. When the first BIPI is received (at time T1), each APIC compares the four least 
significant bits of the BIPI’s vector field with its APIC ID. If the vector and APIC ID 
match, the processor selects itself as the BSP by setting the BSP flag in its 

Table C-1.  Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including 
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including 
self

Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding 
self

Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
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IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor 
selects itself as an AP by entering the “wait for SIPI” state. (Note that in Figure 1, 
the BIPI from processor 1 is the first BIPI to be handled, so processor 1 becomes 
the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The 
FIPI is guaranteed to be handled only after the completion of the BIPIs that were 
issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a 
time (at T2, T3, and T4) and ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds 
by fetching and executing BIOS boot-strap code, beginning at the reset vector 
(physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and 
adds its initial APIC ID to these tables as appropriate. 

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all 
the APs in the system. Here, the SIPI message contains a vector to the BIOS AP 
initialization code (at 000V V000H, where VV is the vector contained in the SIPI 
message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore. 
The first one to the semaphore begins executing the initialization code. (See MP 
init code for semaphore implementation details.) As part of the AP initialization 
procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-

 

Figure C-1.  MP System With Multiple Pentium III Processors
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priate. At the completion of the initialization procedure, the AP executes a CLI 
instruction (to clear the IF flag in the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP 
initialization code and all written their APIC IDs into the appropriate places in the 
ACPI and MP tables, the BSP establishes a count for the number of processors 
connected to the system bus, completes executing the BIOS boot-strap code, 
and then begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the 
APs remain in the halted state. In this state they will respond only to INITs, NMIs, 
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of 
the MP protocol to boot IA-32 processors in an MP. This code should run on any IA-32 
processor that used the MP protocol.

C.2.1  Error Detection and Handling During the MP Initialization 
Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors 
may be transient or permanent and can be caused by a variety of failure mechanisms 
(for example, broken traces, soft errors during bus usage, etc.). All serial bus related 
errors will result in an APIC checksum or acceptance error. 

The MP initialization protocol makes the following assumptions regarding errors that 
occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization 

protocol, the processors that detect the errors are shut down. 
• The MP initialization protocol will be executed by processors even if they fail their 

BIST sequences.
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APPENDIX D
PROGRAMMING THE LINT0 AND LINT1 INPUTS

The following procedure describes how to program the LINT0 and LINT1 local APIC 
pins on a processor after multiple processors have been booted and initialized 
(as described in Appendix C, “MP Initialization For P6 Family Processors,” and 
Appendix D, “Programming the LINT0 and LINT1 Inputs.” In this example, LINT0 is 
programmed to be the ExtINT pin and LINT1 is programmed to be the NMI pin.

D.1 CONSTANTS
The following constants are defined:

LVT1EQU 0FEE00350H
LVT2EQU 0FEE00360H
LVT3 EQU 0FEE00370H
SVR   EQU 0FEE000F0H

D.2 LINT[0:1] PINS PROGRAMMING PROCEDURE
Use the following to program the LINT[1:0] pins:

1. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR  EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

3. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all 
processors cores listed in the destination as an interrupt that originated in an 
externally connected interrupt controller.

MOV ESI, LVT1
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10, 12, 14 and 16 
OR  EAX, 700H; Bit 16=0 for not masked, Bit 15=0 for edge 

; triggered, Bit 13=0 for high active input 
; polarity, Bits 8-10 are 111b for ExtINT 

MOV [ESI], EAX; Write to LVT1
Vol. 3B D-1



PROGRAMMING THE LINT0 AND LINT1 INPUTS
4. Program LVT2 as NMI, which delivers the signal on the NMI signal of all processor 
cores listed in the destination. 

MOV ESI, LVT2
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10 and 15
OR  EAX, 000000400H ; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX; Write to LVT2
;Unmask 8259 interrupts and allow NMI.
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APPENDIX E
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across 
processor families. The differences are documented in the following sections.

E.1 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 06H MACHINE ERROR CODES 
FOR MACHINE CHECK

Section E.1 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor family 06H. The references to processor 
family 06H refers to only IA-32 processors with CPUID signatures listed in Table E-1. 

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported archi-
tecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the 
MCA error code field. See Chapter 15 for information on the interpretation of 
compound error codes. Incremental decoding information is listed in Table E-2.

Table E-1.   CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH, 
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor 

06_01H Intel Pentium Pro Processor 
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Table E-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
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Model specific 
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific 
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other 
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has received a hard error response 
on a split transaction one access that has 
needed to be split across the 64-bit external 
bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 15-bit ROB 
time-out counter carries a 1 out of its high 
order bit. 2 The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table E-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this 
component has initiated 2 failing bus 
transactions which have failed due to Address 
Parity Errors AERR asserted). While this bit is 
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in 
IA32_MCi_STATUS for uncorrected ECC errors. 
While this bit is asserted, the ECC syndrome 
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in 
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS 
contains the 8-bit ECC syndrome only if the 
error was a correctable/uncorrectable ECC error 
and there wasn't a previous valid ECC error 
syndrome logged in IA32_MCi_STATUS. 

A previous valid ECC error in IA32_MCi_STATUS 
is indicated by IA32_MCi_STATUS.bit45 
uncorrectable error occurred) being asserted. 
After processing an ECC error, machine-check 
handling software should clear 
IA32_MCi_STATUS.bit45 so that future ECC 
error syndromes can be logged.

Table E-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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E.2 INCREMENTAL DECODING INFORMATION: INTEL 
CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES 
FOR MACHINE CHECK

Table E-4 provides information for interpreting additional model-specific fields for 
external bus errors relating to processor based on Intel Core microarchitecture, 
which implements the P4 bus specification. Table E-3 lists the CPUID signatures for 
Intel 64 processors that are covered by Table E-4. These errors are reported in the 
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors 
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter 
15 for information on the interpretation of compound error codes.

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB 

time-out counter carries a 1 out of its high order bit.

Table E-3.   CPUID DisplayFamily_DisplayModel Signatures for Processors Based on 
Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad 
processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel 
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors, 
Intel Pentium dual-core processors

Table E-2.  Incremental Decoding Information: Processor Family 06H 
Machine Error Codes For Machine Check  (Contd.)

Type Bit No. Bit Function Bit Description
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Table E-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15

Model specific 
errors

16-18 Reserved Reserved

Model specific 
errors

19-24 Bus queue request 
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error
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INTERPRETING MACHINE-CHECK ERROR CODES
Model specific 
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific 
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other 
information

32-33 Reserved Reserved

34 PIC and FSB data 
parity

Data Parity detected on either PIC or FSB 
access

35 Reserved Reserved

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this 
component has received a parity error on the 
RS[2:0]# pins for a response transaction. The 
RS signals are checked by the RSP# external 
pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a ROB time-out, 
which indicates that no micro-instruction has 
been retired for a predetermined period of 
time.

A ROB time-out occurs when the 23-bit ROB 
time-out counter carries a 1 out of its high 
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by 
the core processor, RESET is asserted, or when 
a ROB BINIT occurs.

Table E-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the 
8-bit PIC timer which is a divide by 128 of the 
bus clock the bus clock is 1:2, 1:3, 1:4 of the 
core clock). When a carry out of the 8-bit PIC 
timer occurs, the ROB counter counts up by 
one. While this bit is asserted, it cannot be 
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this 
component has initiated a bus transactions 
which has received a hard error response. While 
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this 
component has experienced a failure that 
causes the IERR pin to be asserted. While this 
bit is asserted, it cannot be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table E-4.  Incremental Bus Error Codes of Machine Check for Processors Based on 
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE-CHECK ERROR CODES
E.2.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally 
follows the description of Chapter 15 and Section E.2. Additional error codes specific 
to Intel Xeon processor 7400 series is describe in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side 
bus errors for Intel Xeon processor 7400 series. It supports the L3 Errors, Bus and 
Interconnect Errors Compound Error Codes in the MCA Error Code Field.

E.2.1.1  Processor Machine Check Status Register 
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus 
internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It defines 
incremental Machine Check error types (IA32_MC6_STATUS[15:0]) beyond those 
defined in Chapter 15. Table E-5 lists these incremental MCA error code types that 
apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS 
[31:16] (see Section E.2.2), the "Model Specific Error Code" field. The information 
in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor 
error types and contains a correctable event count and specifies the MC6_MISC 
register format.

Table E-5.  Incremental MCA Error Code Types for Intel Xeon Processor 7400 

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
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INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

E.2.2  Intel Xeon Processor 7400 Model Specific Error Code Field

E.2.2.1  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

E.2.2.2  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table E-6.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail 
Response

“Hard Failure“ response received for a local transaction

21 FSB Response 
Parity

Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved

Table E-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB
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INTERPRETING MACHINE-CHECK ERROR CODES
E.3 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_1AH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table E-8 through Table E-12 provide information for interpreting additional model-
specific fields for memory controller errors relating to the processor family with 
CPUID DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath 
Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for 
internal machine check is reported in the register bank IA32_MC7, and incremental 
error codes for the memory controller unit is reported in the register banks 
IA32_MC8.

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1010   0x000A Inclusion Error from Core 2

0000_0000_0000_1011   0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

0000_0101_0000_0000   0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000   0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000   0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Table E-7.  Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description
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INTERPRETING MACHINE-CHECK ERROR CODES
E.3.1  Intel QPI Machine Check Errors

Table E-8.  Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and 
IA32_MC1_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as 
poisoned by the sender

21-20 Reserved Reserved

22 Unsupported 
Message

If 1, QPI received a message encoding it does 
not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the 
receiver.

25 Received Failed 
Response

If 1, Indicates that sender sent a failed 
response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI 
clocking

56-27 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
Table E-9.  Intel QPI Machine Check Error Codes for IA32_MC0_MISC and 
IA32_MC1_MISC

E.3.2  Internal Machine Check Errors

Table E-10.  Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with 
the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

23-16 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC 
controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
E.3.3  Memory Controller Errors

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Table E-11.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific 
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity 

24 Byte enable parity 
error

If 1, bad enable parity 

Other 
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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Table E-12.  Incremental Memory Controller Error Codes of Machine Check for 
IA32_MC8_MISC

E.4 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY WITH CPUID 
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 
06_2DH, MACHINE ERROR CODES FOR MACHINE 
CHECK

Table E-8 through Table E-12 provide information for interpreting additional model-
specific fields for memory controller errors relating to the processor family with 
CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel QuickPath 
Interconnect links. Incremental MC error codes related to the Intel QPI links are 
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for 
internal machine check error from PCU controller is reported in the register bank 
IA32_MC4, and incremental error codes for the memory controller unit is reported in 
the register banks IA32_MC8-IA32_MC11.

Type Bit No. Bit Function Bit Description

Model specific 
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome
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E.4.1  Internal Machine Check Errors

Table E-13.  Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error 
codes1 

0-15 MCACOD

Model specific 
errors

19:16 Reserved except for 
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for 
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

70h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h - 
MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
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INTERPRETING MACHINE-CHECK ERROR CODES
56-32 Reserved Reserved

Status register 
validity  
indicators1 

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

Type Bit No. Bit Function Bit Description
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INTERPRETING MACHINE-CHECK ERROR CODES
E.4.2  Intel QPI Machine Check Errors

Table E-14.  Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

E.4.3  Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the 
MSRs IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are 
follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

E.5 INCREMENTAL DECODING INFORMATION: 
PROCESSOR FAMILY 0FH MACHINE ERROR CODES 
FOR MACHINE CHECK

Table E-15 provides information for interpreting additional family 0FH model-specific 
fields for external bus errors. These errors are reported in the IA32_MCi_STATUS 
MSRs. They are reported architecturally) as compound errors with a general form of 
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on 
the interpretation of compound error codes.

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific 
errors

56-16 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
Table E-10 provides information on interpreting additional family 0FH, model specific 
fields for cache hierarchy errors. These errors are reported in one of the 

Table E-15.  Incremental Decoding Information: Processor Family 0FH 
Machine Error Codes For Machine Check 

Type Bit No. Bit Function Bit Description

MCA error 
codes1 

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” 

for more information.

0-15

Model-specific 
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB 
access

20 Processor Signature = 
00000F04H: Invalid PIC 
request

All other processors:

Reserved

Processor Signature = 00000F04H. 
Indicates error due to an invalid PIC request 
access was made to PIC space with WB 
memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N 
data-strobe relative timing has become 
unsynchronized or a glitch has been 
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other 
Information

24-56 Reserved Reserved

Status register 
validity  
indicators1 

57-63
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INTERPRETING MACHINE-CHECK ERROR CODES
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound 
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See 
Chapter 15 for how to interpret the compound error code. 

E.5.1  Model-Specific Machine Check Error Codes for Intel Xeon 
Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information 
related to Machine Check Errors. MCi_STATUS[63:0] refers to all 5 register banks. 
MC0_STATUS[63:0] through MC3_STATUS[63:0] is the same as on previous genera-
tion of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error 
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus 
and Interconnect Errors Compound Error Codes in the MCA Error Code Field.

Table E-16.  MCi_STATUS Register Bit Definition 

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the 
machine check error condition detected. The machine check 
architecture defined error codes are guaranteed to be the same for 
all Intel Architecture processors that implement the machine check 
architecture. See tables below 

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the 
machine check error condition detected. The model specific error 
codes may differ among Intel Architecture processors for the same 
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific 
and are not part of the machine check architecture. Software that is 
intended to be portable among Intel Architecture processors should 
not rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of 
the processor might have been corrupted by the error 
condition detected and that reliable restarting of the processor may 
not be possible. When clear, this flag indicates that the error did not 
affect the processor's state. This bit will always be set for MC errors 
which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register 
contains the address where the error occurred. When clear, this flag 
indicates that the MC_ADDR register does not contain the address 
where the error occurred. The MC_ADDR register should not be 
read if the ADDRV bit is clear.
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INTERPRETING MACHINE-CHECK ERROR CODES
E.5.1.1  Processor Machine Check Status Register 
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its 
CBC internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It 
defines additional Machine Check error types (IA32_MC4_STATUS[15:0]) beyond 
those defined in Chapter 15. Table E-17 lists these model-specific MCA error codes. 
Error code details are specified in MC4_STATUS [31:16] (see Section E.5.3), the 
"Model Specific Error Code" field. The information in the "Other_Info" field 
(MC4_STATUS[56:32]) is common to the three processor error types and contains a 
correctable event count and specifies the MC4_MISC register format.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register 
contains additional information regarding the error. When clear, this 
flag indicates that the MC_MISC register does not contain additional 
information regarding the error. MC_MISC should not be read if the 
MISCV bit is not set.  

EN 60 Error enabled flag indicates that reporting of the machine check 
exception for this error was enabled by the associated flag bit of 
the MC_CTL register. Note that correctable errors do not have 
associated enable bits in the MC_CTL register so the EN bit should 
be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct 
the error condition. When clear, this flag indicates that the 
processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error 
occurred while the results of a previous error were still in the 
register bank (i.e., the VAL bit was already set in the 
MC_STATUS register). The processor sets the OVER flag and 
software is responsible for clearing it.  Enabled errors are written 
over disabled errors, and uncorrected errors are written over 
corrected events. Uncorrected errors are not written over previous 
valid uncorrected errors. 

VAL 63 MC_STATUS register valid flag indicates that the information within 
the MC_STATUS register is valid. When this flag is set, the processor 
follows the rules given for the OVER flag in the MC_STATUS register 
when overwriting previously valid entries. The processor sets the 
VAL flag and software is responsible for clearing it.

Table E-16.  MCi_STATUS Register Bit Definition  (Contd.)

Bit Field Name Bits Description
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The Bold faced binary encodings are the only encodings used by the processor for 
MC4_STATUS[15:0].

E.5.2  Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types 
(A, B & C):

Table E-17.  Incremental MCA Error Code for Intel Xeon Processor MP 7100 

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and 
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for 
compatibility with other MCA 
implementations
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INTERPRETING MACHINE-CHECK ERROR CODES
Table E-18.  Other Information Field Bit Definition 

Bit Field Name Bits Description

39:32 8-bit 
Correct
able 
Event 
Count

Holds a count of the number of correctable events since cold reset.  
This is a saturating counter; the counter begins at 1 (with the first 
error) and saturates at a count of 255.

41:40 MC4_MI
SC 
format 
type

The value in this field specifies the format of information in the 
MC4_MISC register.  Currently, only two values are defined.  Valid 
only when MISCV is asserted.

43:42 – Reserved

51:44 ECC 
syndro
me

ECC syndrome value for a correctable ECC event when the “Valid 
ECC syndrome” bit is asserted

52 Valid 
ECC 
syndro
me

Set when correctable ECC event supplies the ECC syndrome

54:53 Thresh
old-
Based 
Error 
Status

00: No tracking - No hardware status tracking is provided for the 
structure reporting this event.

01: Green - Status tracking is provided for the structure posting the 
event; the current status is green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the 
event; the current status is yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
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E.5.3  Processor Model Specific Error Code Field

E.5.3.1  MCA Error Type A:  L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

E.5.3.2  Processor Model Specific Error Code Field
Type B:  Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Table E-19.  Type A: L3 Error Codes

Bit 
Num

Sub-Field 
Name

Description Legal Value(s)

18:16 L3 Error 
Code

Describes the L3 
error 
encountered

000 - No error

001 - More than one way reporting a correctable 
event

010 - More than one way reporting an uncorrectable 
error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event 

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event 
while one or more ways are reporting an 
uncorrectable error 

20:19 – Reserved 00 

31:21 – Fixed pattern 0010_0000_000
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Exactly one of the bits defined in the preceding table will be set for a Bus and Inter-
connect Error.  The Data ECC can be correctable or uncorrectable (the 
MC4_STATUS.UC bit, of course, distinguishes between correctable and uncorrectable 
cases with the Other_Info field possibly providing the ECC Syndrome for correctable 
errors).  All other errors for this processor MCA Error Type are uncorrectable.

Table E-20.  Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request 
Parity

Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response 
Parity

Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data 
ECC

Data ECC event to error on inbound data (correctable or 
uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing 
error)

31:28 --- Reserved
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E.5.3.3  Processor Model Specific Error Code Field
Type C:  Cache Bus Controller Error

Table E-21.  Type C Cache Bus Controller Error Codes 

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001   0x0001 Inclusion Error from Core 0

0000_0000_0000_0010   0x0002 Inclusion Error from Core 1

0000_0000_0000_0011   0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100   0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101   0x0005 Inclusion Error from FSB

0000_0000_0000_0110   0x0006 SNP Stall Error from FSB

0000_0000_0000_0111   0x0007 Write Stall Error from FSB

0000_0000_0000_1000   0x0008 FSB Arb Timeout Error

0000_0000_0000_1001   0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000   0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000   0x0200 Internal Timeout error

0000_0011_0000_0000   0x0300 Internal Timeout Error

0000_0100_0000_0000   0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

1100_0000_0000_0001   0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010   0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100   0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001   0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010   0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100   0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
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All errors - except for the correctable ECC types - in this table are uncorrectable.  The 
correctable ECC events may supply the ECC syndrome in the Other_Info field of the 
MC4_STATUS MSR..

Table E-22.  Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error 
codes1

0-15

Model 
specific error 
codes

16-17 Tag Error Code Contains the tag error code for this machine check 
error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check 
error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated 
in the L3 it can be ignored for invalid PIC request 
errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access 
was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other 
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset. 
The counter begins at 0 for the first error and 
saturates at a count of 255.

40-56 Reserved Reserved

Status 
register 
validity 
indicators1

57-63
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NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for 

more information.
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APPENDIX F
APIC BUS MESSAGE FORMATS

This appendix describes the message formats used when transmitting messages on 
the serial APIC bus. The information described here pertains only to the Pentium and 
P6 family processors.

F.1 BUS MESSAGE FORMATS
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI 
message, short message, and non-focused lowest priority message. The purpose of 
each type of message and its format are described below.

F.2 EOI MESSAGE
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level trig-
gered interrupt has been accepted by the processor. This interrupt, in turn, is a result 
of software writing into the EOI register of the local APIC. Table F-1 shows the cycles 
in an EOI message.

Table F-1.  EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle
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The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit 
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to 
the sum. If any APIC computes a different checksum than the one appearing on the 
bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this 
case, the APICs disregard the message. The sending APIC will receive an appropriate 
error indication (see Section 10.5.3, “Error Handling”) and resend the message. The 
status cycles are defined in Table F-4.

F.2.1  Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up, 
ExtINT and lowest-priority-with-focus interrupts. Table F-2 shows the cycles in a 
short message.

Table F-2.  Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle
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If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC 
ID and cycles 13 and 14 are considered don't care by the receiver. If the logical 
delivery mode is being used, then cycles 13 through 16 are the 8-bit logical destina-
tion field. 

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an 
arbitration priority of 15 (D0:D3 = 1111) are used. The agent sending the message 
is the only one required to distinguish between the two cases. It does so using 
internal information.

When using lowest priority delivery with an existing focus processor, the focus 
processor identifies itself by driving 10 during cycle 19 and accepts the interrupt. 
This is an indication to other APICs to terminate arbitration. If the focus processor 
has not been found, the short message is extended on-the-fly to the non-focused 
lowest-priority message. Note that except for the EOI message, messages gener-
ating a checksum or an acceptance error (see Section 10.5.3, “Error Handling”) 
terminate after cycle 21.

F.2.2  Non-focused Lowest Priority Message
These 34-cycle messages (see Table F-3) are used in the lowest priority delivery 
mode when a focus processor is not present. Cycles 1 through 20 are same as for the 
short message. If during the status cycle (cycle 19) the state of the (A:A) flags is 
10B, a focus processor has been identified, and the short message format is used 
(see Table F-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started 
and the 34-cycles of the non-focused lowest priority message are competed. For 
other combinations of status flags, refer to Section F.2.3, “APIC Bus Status Cycles.”

Table F-3.  Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode 

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The 
processors participating in the arbitration drive their inverted processor priority on 
the bus. Only the local APICs having free interrupt slots participate in the lowest 
priority arbitration. If no such APIC exists, the message will be rejected, requiring it 
to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors 
have the same lowest priority. In the lowest priority delivery mode, all combinations 
of errors in cycle 33 (A2 A2) will set the “accept error” bit in the error status register 
(see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not 
affected by errors detected in cycle 33. Only the local APIC that wins in the lowest 

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0 

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table F-3.  Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
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priority arbitration, drives cycle 33. An error in cycle 33 will force the sender to 
resend the message.

F.2.3  APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the 
status flags (A:A) and (A1:A1) are examined. Table F-4 shows how these status flags 
are interpreted, depending on the current delivery mode and existence of a focus 
processor.

Table F-4.  APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update 
ArbID and 
Cycle#

Message 
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT, 
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept 
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
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Lowest 00: CS_OK, 
NoFocus

11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK, 
NoFocus

11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

10: End and 
Retry

XX: Yes, 20 34 Cycle Yes

00: CS_OK, 
NoFocus

0X: Error XX: No 34 Cycle Yes

10: CS_OK, 
Focus

XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table F-4.  APIC Bus Status Cycles Interpretation (Contd.)
Delivery
Mode

A Status A1 Status A2 Status Update 
ArbID and 
Cycle#

Message 
Length

Retry
F-6 Vol. 3B



APPENDIX G
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX 
features.

Support for specific features detailed in Chapter 21 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed 
starting at MSR address 480H. VMX capability MSRs are read-only; an attempt to 
write them (with WRMSR) produces a general-protection exception (#GP(0)). They 
do not exist on processors that do not support VMX operation; an attempt to read 
them (with RDMSR) on such processors produces a general-protection exception 
(#GP(0)).

G.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor. 

Logical processors that use the same VMCS revision identifier use the same size 
for VMCS regions (see next item)

• Bits 44:32 report the number of bytes that software should allocate for the 
VMXON region and any VMCS region. It is a value greater than 0 and at most 
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the 
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS 
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0, 
these addresses are limited to the processor’s physical-address width.1 If the bit 
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that 
support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment 
of system-management interrupts and system-management mode. See Section 
26.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the 
VMCS for VMREAD and VMWRITE and to access the VMCS, data structures 
referenced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas 
for VMX transitions), and the MSEG header during VM entries, VM exits, and in 
VMX non-root operation.2

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
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The first processors to support VMX operation use the write-back type. The 
values used are given in Table G-1.

If software needs to access these data structures (e.g., to modify the contents of 
the MSR bitmaps), it can configure the paging structures to map them into the 
linear-address space. If it does so, it should establish mappings that use the 
memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit 
instruction-information field on VM exits due to execution of the INS and OUTS 
instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See 
Appendix G.2 for details. It also reports support for the VMX capability MSRs 
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS, 
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See 
Appendix G.3.1, Appendix G.3.2, Appendix G.4, and Appendix G.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

G.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 21, “Virtual-Machine Control Structures”, certain VMX controls 
are reserved and must be set to a specific value (0 or 1) determined by the processor. 
The specific value to which a reserved control must be set is its default setting. 

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the 
logical processor uses the UC memory type to access the indicated data structures, regardless of 
the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The processor will also use the UC 
memory type if the setting of CR0.CD on this logical processor (or another logical processor on 
the same physical processor) would cause it to do so for all memory accesses. The values of 
IA32_MTRR_DEF_TYPE.E and CR0.CD do not affect the value reported in 
IA32_VMX_BASIC[53:50].

Table G-1.  Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

1. Alternatively, software may map any of these regions or structures with the UC memory type. 
(This may be necessary for the MSEG header.) Doing so is discouraged unless necessary as it will 
cause the performance of software accesses to those structures to suffer. The processor will 
continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the 
exceptions noted.
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Software can discover the default setting of a reserved control by consulting the 
appropriate VMX capability MSR (see Appendix G.3 through Appendix G.5).

Future processors may define new functionality for one or more reserved controls. 
Such processors would allow each newly defined control to be set either to 0 or to 1. 
Software that does not desire a control’s new functionality should set the control to 
its default setting. For that reason, it is useful for software to know the default 
settings of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix G.1, a logical processor uses bit 55 of the 
IA32_VMX_BASIC MSR to indicate whether any of the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are 

reserved and must be 1. VM entry will fail if any of these controls are 1 (see 
Section 23.2.1).

• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls 
are reserved, and some (but not necessarily all) may be 0. The CPU supports four 
(4) new VMX capability MSRs: IA32_VMX_TRUE_PINBASED_CTLS, 
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and 
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix G.3 through Appendix G.5 for 
details. (These MSRs are not supported if bit 55 of the IA32_VMX_BASIC MSR is 
read as 0.)

See Section 27.5.1 for recommended software algorithms for proper capability 
detection of the default1 controls.

G.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the 
primary processor-based VM-execution controls, and the secondary processor-based 
VM-execution controls. These are described in Appendix G.3.1, Appendix G.3.2, and 
Appendix G.3.3, respectively.

G.3.1  Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings 
of most of the pin-based VM-execution controls (see Section 21.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR 
is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
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Exceptions are made for the pin-based VM-execution controls in the default1 
class (see Appendix G.2). These are bits 1, 2, and 4; the corresponding bits of 
the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of 
these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the 
pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed 
settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the pin-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the pin-based VM-execution controls is contained in 
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS 
MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the pin-based VM-execution controls is contained in 
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that 
the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4, 
there is no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

G.3.2  Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed 
settings of most of the primary processor-based VM-execution controls (see Section 
21.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the primary processor-based VM-execution controls) to be 0 if 
bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if 
control X is 0.
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Exceptions are made for the primary processor-based VM-execution controls in 
the default1 class (see Appendix G.2). These are bits 1, 4–6, 8, 13–16, and 26; 
the corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read 
as 1. The treatment of these controls by VM entry is determined by bit 55 in the 
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the 
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the 
primary processor-based VM-execution controls in the default1 class can be 0 
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed 
settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the primary processor-based VM-execution controls is 
contained in the IA32_VMX_PROCBASED_CTLS MSR. (The 
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the processor-based VM-execution controls is contained in the 
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that 
the default1 class of processor-based VM-execution controls contains bits 1, 4–6, 
8, 13–16, and 26, there is no need for software to consult the 
IA32_VMX_PROCBASED_CTLS MSR.

G.3.3  Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed 
settings of the secondary processor-based VM-execution controls (see Section 
21.6.2). VM entries perform the following checks:
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• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always 
0. This fact indicates that VM entry allows each bit of the secondary processor-
based VM-execution controls to be 0.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X (bit X of the secondary processor-based VM-execution controls) to be 1 
if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry 
fails if control X and the “activate secondary controls” primary processor-based 
VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the 
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of 
the IA32_VMX_PROCBASED_CTLS MSR is 1).

G.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of 
most of the VM-exit controls (see Section 21.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0; 
if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix 
G.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of 
the IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any 
VM-exit control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit 
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS 
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the VM-exit controls:
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• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 
allowed settings of the VM-exit controls is contained in the 
IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the VM-exit controls is contained in the 
IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the 
default1 class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17, 
there is no need for software to consult the IA32_VMX_EXIT_CTLS MSR.

G.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of 
most of the VM-entry controls (see Section 21.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X (bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to 
0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see 
Appendix G.2). These are bits 0–8 and 12; the corresponding bits of the 
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these 
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any 
VM-entry control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the 
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the 
VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X 
is 1 in the VM-entry controls and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, 
the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports on the allowed 
settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows 

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, 
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows 
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is 
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine 
the allowed settings of the VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the 

allowed settings of the VM-entry controls is contained in the 
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IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not 
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the 
allowed settings of the VM-entry controls is contained in the 
IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the 
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for 
software to consult the IA32_VMX_ENTRY_CTLS MSR.

G.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the 

VMX-preemption timer and that of the timestamp counter (TSC). Specifically, the 
VMX-preemption timer (if it is active) counts down by 1 every time bit X in the 
TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e 
mode guest” VM-entry control; see Section 24.2 for more details. This bit is read 
as 1 on any logical processor that supports the 1-setting of the “unrestricted 
guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail 
if it attempts to establish that activity state. All implementations support 
VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor. 
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if 
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that 
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the 
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is 
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be 
included in each list. If the limit is exceeded, undefined processor behavior may 
result (including a machine check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1. 
VMXOFF unblocks SMIs unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 
26.14.4).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 15:9 and bits 31:29 are reserved and are read as 0.
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G.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR 
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on 
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If 
bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to 
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0, 
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in 
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus, 
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both 
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

G.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR 
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on 
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X is 1 
in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX 
operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0, then 
that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX_CR4_FIXED1, 
then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed 
to 0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in 
IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

G.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 21.10.2, each field in the VMCS is associated with a 32-bit 
encoding which is structured as follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width 

and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the 
encoding of any field supported by the processor:
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• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

G.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the 
capabilities of the logical processor with regard to virtual-processor identifiers 
(VPIDs, Section 25.1) and extended page tables (EPT, Section 25.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT 

paging-structure entries in which bits 2:0 have value 100b (indicating an 
execute-only translation). 

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT 

paging-structure memory type to be uncacheable (UC); see Section 21.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT 

paging-structure memory type to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE 

to map a 2-Mbyte page (by setting bit 7 in the EPT PDE). 
• If bit 17 is read as 1, the logical processor allows software to configure a EPT 

PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE). 
• Support for the INVEPT instruction (see Chapter 6 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A and Section 25.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• Support for the INVVPID instruction (see Chapter 6 of the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3A and Section 25.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is 
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33, 
and bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the 
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the 
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“enable EPT” VM-execution control (only if bit 33 of the 
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-
execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).
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APPENDIX H
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by 
VMREAD and VMWRITE. Section 21.10.2 describes the structure of the encoding 
space (the meanings of the bits in each 32-bit encoding). 

This appendix enumerates all fields in the VMCS and their encodings. Fields are 
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

H.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state 
areas and the host-state area contain 16-bit fields. As noted in Section 21.10.2, each 
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such 
encoding is thus an even number.

H.1.1  16-Bit Control Field
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. There is only one such 16-bit field as 
given in Table H-1.

H.1.2  16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-2 enumerates 
16-bit guest-state fields.

Table H-1.  Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution 

control.

000000000B 00000000H

Table H-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H
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H.1.3  16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-3 enumerates 
the 16-bit host-state fields.

H.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit 
fields only for controls and for guest state. As noted in Section 21.10.2, every 64-bit 
field has two encodings, which differ on bit 0, the access type. Thus, each such field 
has an even encoding for full access and an odd encoding for high access.

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Table H-3.  Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table H-2.  Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B) 
Field Name Index Encoding
H-2 Vol. 3B



FIELD ENCODING IN VMCS
H.2.1  64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table H-4 enumerates the 64-bit 
control fields.

Table H-4.  Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps” 

VM-execution control.

000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow” 
VM-execution control.

000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3

3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses” 
VM-execution control.

000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

EPT pointer (EPTP; full)4 000001101B 0000201AH

EPT pointer (EPTP; high)4 000001101B 0000201BH
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H.2.2  64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. There is only one such 64-bit field 
as given in Table H-5.(As with other 64-bit fields, this one has two encodings.)

H.2.3  64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-6 enumerates 
the 64-bit guest-state fields.

4. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution 
control.

Table H-5.  Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution 

control.

000000000B 00002400H

Guest-physical address (high)1 000000000B 00002401H

Table H-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Guest IA32_PAT (full)1 000000010B 00002804H

Guest IA32_PAT (high)1 000000010B 00002805H

Guest IA32_EFER (full)2 000000011B 00002806H

Guest IA32_EFER (high)2 000000011B 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3 000000100B 00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 000000100B 00002809H

Guest PDPTE0 (full)4 000000101B 0000280AH

Guest PDPTE0 (high)4 000000101B 0000280BH
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H.2.4  64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-7 enumerates 
the 64-bit control fields.

Guest PDPTE1 (full)4 000000110B 0000280CH

Guest PDPTE1 (high)4 000000110B 0000280DH

Guest PDPTE2 (full)4 000000111B 0000280EH

Guest PDPTE2 (high)4 000000111B 0000280FH

Guest PDPTE3 (full)4 000001000B 00002810H

Guest PDPTE3 (high)4 000001000B 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-

entry control or that of the "save IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-

entry control or that of the "save IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load 

IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution 

control.

Table H-7.  Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit 

control.

000000000B 00002C00H

Host IA32_PAT (high)1 000000000B 00002C01H

Host IA32_EFER (full)2

2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit 
control.

000000001B 00002C02H

Host IA32_EFER (high)2 000000001B 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3 000000010B 00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 000000010B 00002C05H

Table H-6.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) 
Field Name Index Encoding
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H.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section 
21.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding 
is 0. Each such encoding is thus an even number.

H.3.1  32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table H-8 enumerates the 32-bit 
control fields.

3. This field exists only on processors that support the 1-setting of the "load 
IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table H-8.  Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H
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H.3.2  32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. Table H-9 enumerates the 32-bit 
read-only data fields.

H.3.3  32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-10 enumer-
ates the 32-bit guest-state fields.

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls” 

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting” 

VM-execution control.

Table H-9.  Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table H-10.  Encodings for 32-Bit Guest-State Fields 
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H
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The limit fields for GDTR and IDTR are defined to be 32 bits in width even though 
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry 
ensures that the high 16 bits of both these fields are cleared to 0.

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1 000010111B 0000482EH

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption 

timer" VM-execution control.

Table H-10.  Encodings for 32-Bit Guest-State Fields 
(0100_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
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H.3.4  32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
There is only one such 32-bit field as given in Table H-11.

H.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in 
Section 21.10.2, each of these fields allows only full access, meaning that bit 0 of its 
encoding is 0. Each such encoding is thus an even number.

H.4.1  Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are 
distinguished by their index value in bits 9:1. Table H-12 enumerates the natural-
width control fields.

Table H-11.  Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table H-12.  Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

000000111B 0000600EH
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H.4.2  Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields 
are distinguished by their index value in bits 9:1. Table H-13 enumerates the 
natural-width read-only data fields.

H.4.3  Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-14 enumer-
ates the natural-width guest-state fields.

Table H-13.  Encodings for Natural-Width Read-Only Data Fields 
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table H-14.  Encodings for Natural-Width Guest-State Fields 
(0110_10xx_xxxx_xxx0B) 

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H
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The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to 
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even 
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry 
ensures that the high 32 bits of these fields are cleared to 0.

H.4.4  Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area. 
These fields are distinguished by their index value in bits 9:1. Table H-15 enumer-
ates the natural-width host-state fields.

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table H-15.  Encodings for Natural-Width Host-State Fields 
(0110_11xx_xxxx_xxx0B) 

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Table H-14.  Encodings for Natural-Width Guest-State Fields 
(0110_10xx_xxxx_xxx0B)  (Contd.)

Field Name Index Encoding
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Host RIP 000001011B 00006C16H

Table H-15.  Encodings for Natural-Width Host-State Fields 
(0110_11xx_xxxx_xxx0B)  (Contd.)

Field Name Index Encoding
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APPENDIX I
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 21.9.1). Certain 
VM-entry failures also do this (see Section 23.7). The low 16 bits of the exit-reason 
field form the basic exit reason which provides basic information about the cause of 
the VM exit or VM-entry failure.

Table I-1 lists values for basic exit reasons and explains their meaning. Entries apply 
to VM exits, unless otherwise noted.

Table I-1.  Basic Exit Reasons 
Basic Exit 
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap 
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting” 
VM-execution control was 1. This case includes executions of BOUND that cause 
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF, 
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt 
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to 
call the double-fault handler and that exception did not itself cause a VM exit due 
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after 
retirement of an I/O instruction and caused an SMM VM exit (see Section 26.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 26.15.2) but 
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events 
were not blocked by STI or by MOV SS; and the “interrupt-window exiting” 
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking; 
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution 
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
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11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting” 
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting” 
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting” 
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting” 
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an 
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see 
Section 26.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or 
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate 
that a VM exit should occur (see Section 22.1 for details). This basic exit reason is 
not used for trap-like VM exits following executions of the MOV to CR8 instruction 
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the 
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O 
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap 
associated with one of the ports accessed by the I/O instruction was 1.

Table I-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the 

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in 

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in 

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the 

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in 

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in 

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks 
identified in Section 23.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load 
MSRs. See Section 23.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting” 
VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap 
flag” VM-execution control and injection of an MTF VM exit as part of VM entry. 
See Section 22.7.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR 
exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE 
exiting” VM-execution control was 1 or the “PAUSE-loop exiting” VM-execution 
control was 1 and guest software executed a PAUSE loop with execution time 
exceeding PLE_Window (see Section 22.1.3).

41 VM-entry failure due to machine check. A machine check occurred during VM entry 
(see Section 23.8).

43 TPR below threshold. The logical processor determined that the value of the TPR 
shadow was below that of the TPR threshold VM-execution control field while the 
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 22.1.3).
• As part of a TPR-shadow update (see Section 22.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 23.6.7).

Table I-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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44 APIC access. Guest software attempted to access memory at a physical address on 
the APIC-access page and the “virtualize APIC accesses” VM-execution control was 
1 (see Section 22.2).

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT, 
or SIDT and the “descriptor-table exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or 
STR and the “descriptor-table exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was 
disallowed by the configuration of the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address 
encountered a misconfigured EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP” 
and “RDTSC exiting” VM-execution controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting” 
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

Table I-1.  Basic Exit Reasons  (Contd.)
Basic Exit 
Reason Description
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Numerics
16-bit code, mixing with 32-bit code, 18-1
32-bit code, mixing with 16-bit code, 18-1
32-bit physical addressing

overview, 3-7
36-bit physical addressing

overview, 3-7
64-bit mode

call gates, 5-20
code segment descriptors, 5-5, 9-16
control registers, 2-17
CR8 register, 2-18
D flag, 5-5
debug registers, 2-9
descriptors, 5-5, 5-7
DPL field, 5-5
exception handling, 6-22
external interrupts, 10-46
fast system calls, 5-32
GDTR register, 2-16, 2-17
GP faults, causes of, 6-52
IDTR register, 2-17
initialization process, 2-12, 9-14
interrupt and trap gates, 6-23
interrupt controller, 10-46
interrupt descriptors, 2-7
interrupt handling, 6-22
interrupt stack table, 6-26
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address translation, 3-9
MOV CRn, 2-17, 10-46
null segment checking, 5-9
paging, 2-8
reading counters, 2-33
reading & writing MSRs, 2-33
registers and mode changes, 9-16
RFLAGS register, 2-15
segment descriptor tables, 3-22, 5-5
segment loading instructions, 3-12
segments, 3-6
stack switching, 5-28, 6-25
SYSCALL and SYSRET, 2-10, 5-32
SYSENTER and SYSEXIT, 5-31
system registers, 2-9
task gate, 7-22
task priority, 2-25, 10-46
task register, 2-17
TSS

stack pointers, 7-23
See also: IA-32e mode, compatibility mode

8086
emulation, support for, 17-1

processor, exceptions and interrupts, 17-8
8086/8088 processor, 19-8
8087 math coprocessor, 19-9
82489DX, 19-37

Local APIC and I/O APICs, 10-5

A
A20M# signal, 17-4, 19-46, 20-5
Aborts

description of, 6-7
restarting a program or task after, 6-8

AC (alignment check) flag, EFLAGS register, 2-14, 
6-61, 19-8

Access rights
checking, 2-30
checking caller privileges, 5-37
description of, 5-35
invalid values, 19-26

ADC instruction, 8-5
ADD instruction, 8-5
Address

size prefix, 18-2
space, of task, 7-19

Address translation
in real-address mode, 17-3
logical to linear, 3-9
overview, 3-8

Addressing, segments, 1-8
Advanced power management

C-state and Sub C-state, 14-9
MWAIT extensions, 14-9
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O 
APIC or Local APIC)

Alignment
check exception, 2-14, 6-60, 19-16, 19-29
checking, 5-39

AM (alignment mask) flag
CR0 control register, 2-14, 2-20, 19-25

AND instruction, 8-5
APIC, 10-58, 10-60
APIC bus

arbitration mechanism and protocol, 10-37, 10-48
bus message format, 10-49, F-1
diagram of, 10-3, 10-4
EOI message format, 10-20, F-1
message formats, F-1
nonfocused lowest priority message, F-3
short message format, F-2
SMI message, 26-3
status cycles, F-5
structure of, 10-5
See also
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local APIC
APIC flag, CPUID instruction, 10-10
APIC ID, 10-58, 10-64, 10-67
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-30, 5-38

not supported in 64-bit mode, 2-30
Atomic operations

automatic bus locking, 8-4
effects of a locked operation on internal processor 

caches, 8-7
guaranteed, description of, 8-3
overview of, 8-2, 8-4
software-controlled bus locking, 8-5

At-retirement
counting, 30-23, 30-84
events, 30-23, 30-68, 30-70, 30-84, 30-91

Auto HALT restart
field, SMM, 26-18
SMM, 26-18

Automatic bus locking, 8-4
Automatic thermal monitoring mechanism, 14-10

B
B (busy) flag

TSS descriptor, 7-7, 7-13, 7-14, 7-18, 8-4
B (default stack size) flag

segment descriptor, 18-2, 19-45
B0-B3 (BP condition detected) flags

DR6 register, 16-4
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-14
BD (debug register access detected) flag, DR6 

register, 16-4, 16-12
Binary numbers, 1-8
BINIT# signal, 2-31
BIOS role in microcode updates, 9-49
Bit order, 1-6
BOUND instruction, 2-7, 6-6, 6-33
BOUND range exceeded exception (#BR), 6-33
BP0#, BP1#, BP2#, and BP3# pins, 16-44, 16-47
Branch record

branch trace message, 16-17
IA-32e mode, 16-26
saving, 16-19, 16-33, 16-40
saving as a branch trace message, 16-17
structure, 16-40
structure of in BTS buffer, 16-24

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 6-6, 6-31, 16-13
Breakpoints

data breakpoint, 16-7
data breakpoint exception conditions, 16-12
description of, 16-1
DR0-DR3 debug registers, 16-4
example, 16-7
exception, 6-31

field recognition, 16-6, 16-8
general-detect exception condition, 16-12
instruction breakpoint, 16-7
instruction breakpoint exception condition, 16-10
I/O breakpoint exception conditions, 16-12
LEN0 - LEN3 (Length) fields

DR7 register, 16-6
R/W0-R/W3 (read/write) fields

DR7 register, 16-5
single-step exception condition, 16-12
task-switch exception condition, 16-13

BS (single step) flag, DR6 register, 16-4
BSP flag, IA32_APIC_BASE MSR, 10-11
BSWAP instruction, 19-6
BT (task switch) flag, DR6 register, 16-4, 16-13
BTC instruction, 8-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 16-47
BTMs (branch trace messages)

description of, 16-17
enabling, 16-15, 16-29, 16-30, 16-39, 16-42, 

16-45
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 16-39
MSR_DEBUGCTLB MSR, 16-15, 16-42, 16-45

BTR instruction, 8-5
BTS, 16-22
BTS buffer

description of, 16-22
introduction to, 16-14, 16-18
records in, 16-24
setting up, 16-29
structure of, 16-23, 16-26, 30-32

BTS instruction, 8-5
BTS (branch trace store) facilities

availability of, 16-38
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 16-22, B-181
introduction to, 16-14
setting up BTS buffer, 16-29
writing an interrupt service routine for, 16-31

Built-in self-test (BIST)
description of, 9-1
performing, 9-2

Bus
errors detected with MCA, 15-35
hold, 19-48
locking, 8-4, 19-48

Byte order, 1-6

C
C (conforming) flag, segment descriptor, 5-16
C1 flag, x87 FPU status word, 19-10, 19-20
C2 flag, x87 FPU status word, 19-11
Cache control, 11-30

adaptive mode, L1 Data Cache, 11-26
cache management instructions, 11-25, 11-26
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cache mechanisms in IA-32 processors, 19-40
caching terminology, 11-7
CD flag, CR0 control register, 11-15, 19-26
choosing a memory type, 11-12
CPUID feature flag, 11-26
flags and fields, 11-14
flushing TLBs, 11-29
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

internal caches, 11-1
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI protocol, 11-7, 11-13
methods of caching available, 11-8
MTRR initialization, 11-41
MTRR precedences, 11-41
MTRRs, description of, 11-30
multiple-processor considerations, 11-46
NW flag, CR0 control register, 11-18, 19-26
operating modes, 11-17
overview of, 11-1
page attribute table (PAT), 11-48
PCD flag

CR3 control register, 11-19
page-directory entries, 11-19, 11-47
page-table entries, 11-19, 11-47

PGE (page global enable) flag, CR4 control register
, 11-19

precedence of controls, 11-19
preventing caching, 11-24
protocol, 11-13
PWT flag

CR3 control register, 11-19
page-directory entries, 11-47
page-table entries, 11-47

remapping memory types, 11-42
setting up memory ranges with MTRRs, 11-33
shared mode, L1 Data Cache, 11-26
variable-range MTRRs, 11-34, 11-37

Caches, 2-10
cache hit, 11-7
cache line, 11-7
cache line fill, 11-7
cache write hit, 11-7
description of, 11-1
effects of a locked operation on internal processor 

caches, 8-7
enabling, 9-8
management, instructions, 2-31, 11-25

Caching
cache control protocol, 11-13
cache line, 11-7
cache management instructions, 11-25
cache mechanisms in IA-32 processors, 19-40
caching terminology, 11-7
choosing a memory type, 11-12
flushing TLBs, 11-29

implicit caching, 11-27
internal caches, 11-1
L1 (level 1) cache, 11-5
L2 (level 2) cache, 11-5
L3 (level 3) cache, 11-5
methods of caching available, 11-8
MTRRs, description of, 11-30
operating modes, 11-17
overview of, 11-1
self-modifying code, effect on, 11-27, 19-41
snooping, 11-8
store buffer, 11-29
TLBs, 11-6
UC (strong uncacheable) memory type, 11-8
UC- (uncacheable) memory type, 11-9
WB (write back) memory type, 11-10
WC (write combining) memory type, 11-9
WP (write protected) memory type, 11-10
write-back caching, 11-8
WT (write through) memory type, 11-10

Call gates
16-bit, interlevel return from, 19-44
accessing a code segment through, 5-22
description of, 5-19
for 16-bit and 32-bit code modules, 18-2
IA-32e mode, 5-20
introduction to, 2-5
mechanism, 5-22
privilege level checking rules, 5-23

CALL instruction, 2-6, 3-11, 5-15, 5-22, 5-29, 7-3, 
7-12, 7-13, 18-7

Caller access privileges, checking, 5-37
Calls

16 and 32-bit code segments, 18-4
controlling operand-size attribute, 18-7
returning from, 5-28

Capability MSRs
See VMX capability MSRs

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 14-12
catastrophic shutdown detector, 14-10
CC0 and CC1 (counter control) fields, CESR MSR 

(Pentium processor), 30-120
CD (cache disable) flag, CR0 control register, 2-19, 

9-8, 11-15, 11-17, 11-19, 11-24, 11-46, 
11-47, 19-25, 19-26, 19-40

CESR (control and event select) MSR (Pentium 
processor), 30-119

CLFLSH feature flag, CPUID instruction, 9-10
CLFLUSH instruction, 2-21, 8-9, 9-10, 11-26
CLI instruction, 6-10
Clocks

counting processor clocks, 30-95
Hyper-Threading Technology, 30-95
nominal CPI, 30-95
non-halted clockticks, 30-95
non-halted CPI, 30-95
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non-sleep Clockticks, 30-95
time stamp counter, 30-95

CLTS instruction, 2-29, 5-34, 22-3, 22-16
Cluster model, local APIC, 10-34
CMOVcc instructions, 19-6
CMPXCHG instruction, 8-5, 19-6
CMPXCHG8B instruction, 8-5, 19-6
Code modules

16 bit vs. 32 bit, 18-2
mixing 16-bit and 32-bit code, 18-1
sharing data, mixed-size code segs, 18-4
transferring control, mixed-size code segs, 18-4

Code segments
accessing data in, 5-14
accessing through a call gate, 5-22
description of, 3-16
descriptor format, 5-3
descriptor layout, 5-3
direct calls or jumps to, 5-15
paging of, 2-8
pointer size, 18-5
privilege level checks

transferring control between code segs, 5-14
Compatibility

IA-32 architecture, 19-1
software, 1-7

Compatibility mode
code segment descriptor, 5-5
code segment descriptors, 9-16
control registers, 2-17
CS.L and CS.D, 9-16
debug registers, 2-31
EFLAGS register, 2-15
exception handling, 2-7
gates, 2-6
GDTR register, 2-16, 2-17
global and local descriptor tables, 2-5
IDTR register, 2-17
interrupt handling, 2-7
L flag, 3-16, 5-5
memory management, 2-8
operation, 9-16
segment loading instructions, 3-12
segments, 3-6
switching to, 9-16
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system flags, 2-15
system registers, 2-9
task register, 2-17
See also: 64-bit mode, IA-32e mode

compilers
documentation, 1-11

Condition code flags, x87 FPU status word
compatibility information, 19-10

Conforming code segments
accessing, 5-17
C (conforming) flag, 5-16

description of, 3-18
Context, task (see Task state)
Control registers

64-bit mode, 2-17
CR0, 2-17
CR1 (reserved), 2-17
CR2, 2-17
CR3 (PDBR), 2-8, 2-17
CR4, 2-17
description of, 2-17
introduction to, 2-9
VMX operation, 27-25

Coprocessor segment
overrun exception, 6-41, 19-16

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 

processors), 30-6, 30-117
CPL

description of, 5-10
field, CS segment selector, 5-2

CPUID instruction
AP-485, 1-11
availability, 19-6
control register flags, 2-26
detecting features, 19-3
serializing instructions, 8-25
syntax for data, 1-9

CR0 control register, 19-9
description of, 2-17
introduction to, 2-9
state following processor reset, 9-2

CR1 control register (reserved), 2-17
CR2 control register

description of, 2-17
introduction to, 2-9

CR3 control register (PDBR)
associated with a task, 7-1, 7-3
description of, 2-17
in TSS, 7-5, 7-19
introduction to, 2-9
loading during initialization, 9-13
memory management, 2-8
page directory base address, 2-8
page table base address, 2-7

CR4 control register
description of, 2-17
enabling control functions, 19-2
inclusion in IA-32 architecture, 19-24
introduction to, 2-9
VMX usage of, 20-4

CR8 register, 2-9
64-bit mode, 2-18
compatibility mode, 2-18
description of, 2-18
task priority level bits, 2-25
when available, 2-18

CS register, 19-14
state following initialization, 9-6
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C-state, 14-9
CTR0 and CTR1 (performance counters) MSRs 

(Pentium processor), 30-119, 30-121
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 18-2, 19-45
Data breakpoint exception conditions, 16-12
Data segments

description of, 3-16
descriptor layout, 5-3
expand-down type, 3-15
paging of, 2-8
privilege level checking when accessing, 5-12

DE (debugging extensions) flag, CR4 control register, 
2-23, 19-24, 19-27, 19-28

Debug exception (#DB), 6-10, 6-29, 7-6, 16-9, 16-16, 
16-48

Debug store (see DS)
DEBUGCTLMSR MSR, 16-46, 16-48, B-239
Debugging facilities

breakpoint exception (#BP), 16-1
debug exception (#DB), 16-1
DR6 debug status register, 16-1
DR7 debug control register, 16-1
exceptions, 16-9
INT3 instruction, 16-1
last branch, interrupt, and exception recording, 

16-2, 16-14
masking debug exceptions, 6-10
overview of, 16-1
performance-monitoring counters, 30-1
registers

description of, 16-2
introduction to, 2-9
loading, 2-30

RF (resume) flag, EFLAGS, 16-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 16-1
TF (trap) flag, EFLAGS, 16-1
virtualization, 28-1
VMX operation, 28-2

DEC instruction, 8-5
Denormal operand exception (#D), 19-13
Denormalized operand, 19-17
Device-not-available exception (#NM), 2-21, 2-30, 

6-36, 9-8, 19-15, 19-16
DFR

Destination Format Register, 10-55, 10-60, 10-66
Digital readout bits, 14-21, 14-25
DIV instruction, 6-28
Divide configuration register, local APIC, 10-23
Divide-error exception (#DE), 6-28, 19-29
Double-fault exception (#DF), 6-38, 19-37
DPL (descriptor privilege level) field, segment 

descriptor, 3-14, 5-2, 5-5, 5-10

DR0-DR3 breakpoint-address registers, 16-1, 16-4, 
16-44, 16-47, 16-48

DR4-DR5 debug registers, 16-4, 19-27
DR6 debug status register, 16-4

B0-B3 (BP detected) flags, 16-4
BD (debug register access detected) flag, 16-4
BS (single step) flag, 16-4
BT (task switch) flag, 16-4
debug exception (#DB), 6-29
reserved bits, 19-27

DR7 debug control register, 16-5
G0-G3 (global breakpoint enable) flags, 16-5
GD (general detect enable) flag, 16-5
GE (global exact breakpoint enable) flag, 16-5
L0-L3 (local breakpoint enable) flags, 16-5
LE local exact breakpoint enable) flag, 16-5
LEN0-LEN3 (Length) fields, 16-6
R/W0-R/W3 (read/write) fields, 16-5, 19-27

DS feature flag, CPUID instruction, 16-21, 16-38, 
16-43, 16-45

DS save area, 16-23, 16-25, 16-26
DS (debug store) mechanism

availability of, 30-74
description of, 30-74
DS feature flag, CPUID instruction, 30-74
DS save area, 16-21, 16-25
IA-32e mode, 16-25
interrupt service routine (DS ISR), 16-31
setting up, 16-28

Dual-core technology
architecture, 8-47
logical processors supported, 8-36
MTRR memory map, 8-48
multi-threading feature flag, 8-36
performance monitoring, 30-100
specific features, 19-5

Dual-monitor treatment, 26-27
D/B (default operation size/default stack pointer size 

and/or upper bound) flag, segment 
descriptor, 3-15, 5-6

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family), 
30-5

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1 
MSRs (P6 family processors), 30-116

E (expansion direction) flag
segment descriptor, 5-2, 5-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, 11-33

EFLAGS register
identifying 32-bit processors, 19-8
introduction to, 2-9
new flags, 19-7
saved in TSS, 7-5
system flags, 2-12
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VMX operation, 27-4
EIP register, 19-14

saved in TSS, 7-6
state following initialization, 9-6

EM (emulation) flag
CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8, 

12-1, 13-3
EMMS instruction, 12-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 14-2
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
introduction, 14-1
multiple processor cores, 14-2
performance transitions, 14-1
P-state coordination, 14-2
See also: thermal monitoring

EOI
End Of Interrupt register, 10-56

Error code, E-5, E-11, E-15, E-18
architectural MCA, E-1, E-5, E-11, E-15, E-18
decoding IA32_MCi_STATUS, E-1, E-5, E-11, 

E-15, E-18
exception, description of, 6-20
external bus, E-1, E-5, E-11, E-15, E-18
memory hierarchy, E-5, E-11, E-15, E-18
pushing on stack, 19-44
watchdog timer, E-1, E-5, E-11, E-15, E-18

Error signals, 19-14, 19-15
Error-reporting bank registers, 15-3
ERROR#

input, 19-22
output, 19-22

ES0 and ES1 (event select) fields, CESR MSR (Pentium 
processor), 30-119

ESR
Error Status Register, 10-57

ET (extension type) flag, CR0 control register, 2-20, 
19-9

Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs 
(P6 family processors), 30-4, 30-20, 
30-115

Events
at-retirement, 30-84
at-retirement (Pentium 4 processor), 30-68
non-retirement (Pentium 4 processor), 30-68, 

A-202
P6 family processors, A-254
Pentium processor, A-272

Exception handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
machine-check exception handler, 15-35
machine-check exceptions (#MC), 15-35
machine-error logging utility, 15-35

procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Exceptions
alignment check, 19-16
classifications, 6-6
compound error codes, 15-27
conditions checked during a task switch, 7-15
coprocessor segment overrun, 19-16
description of, 2-7, 6-1
device not available, 19-16
double fault, 6-38
error code, 6-20
exception bitmap, 28-2
execute-disable bit, 5-47
floating-point error, 19-16
general protection, 19-16
handler mechanism, 6-16
handler procedures, 6-16
handling, 6-15
handling in real-address mode, 17-6
handling in SMM, 26-14
handling in virtual-8086 mode, 17-16
handling through a task gate in virtual-8086 mode

, 17-21
handling through a trap or interrupt gate in 

virtual-8086 mode, 17-18
IA-32e mode, 2-7
IDT, 6-12
initializing for protected-mode operation, 9-13
invalid-opcode, 19-7
masking debug exceptions, 6-10
masking when switching stack segments, 6-11
MCA error codes, 15-26
MMX instructions, 12-1
notation, 1-10
overview of, 6-1
priorities among simultaneous exceptions and 

interrupts, 6-11
priority of, 19-30
priority of, x87 FPU exceptions, 19-14
reference information on all exceptions, 6-27
reference information, 64-bit mode, 6-22
restarting a task or program, 6-7
segment not present, 19-16
simple error codes, 15-26
sources of, 6-5
summary of, 6-3
vectors, 6-2

Executable, 3-15
Execute-disable bit capability

conditions for, 5-43
CPUID flag, 5-43
detecting and enabling, 5-43
exception handling, 5-47
page-fault exceptions, 6-54
paging data structures, 13-14
protection matrix for IA-32e mode, 5-44
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protection matrix for legacy modes, 5-45
reserved bit checking, 5-45

Execution events, A-242
Exit-reason numbers

VM entries & exits, I-1
Expand-down data segment type, 3-15
Extended signature table, 9-41
extended signature table, 9-41
External bus errors, detected with machine-check 

architecture, 15-35

F
F2XM1 instruction, 19-18
Family 06H, E-1
Family 0FH, E-1

microcode update facilities, 9-37
Faults

description of, 6-6
restarting a program or task after, 6-7

FCMOVcc instructions, 19-6
FCOMI instruction, 19-6
FCOMIP instruction, 19-6
FCOS instruction, 19-18
FDISI instruction (obsolete), 19-20
FDIV instruction, 19-15, 19-17
FE (fixed MTRRs enabled) flag, 

IA32_MTRR_DEF_TYPE MSR, 11-33
Feature

determination, of processor, 19-3
information, processor, 19-3

FENI instruction (obsolete), 19-20
FINIT/FNINIT instructions, 19-10, 19-22
FIX (fixed range registers supported) flag, 

IA32_MTRRCAPMSR, 11-32
Fixed-range MTRRs

description of, 11-34
Flat segmentation model, 3-3, 3-4
FLD instruction, 19-18
FLDENV instruction, 19-16
FLDL2E instruction, 19-19
FLDL2T instruction, 19-19
FLDLG2 instruction, 19-19
FLDLN2 instruction, 19-19
FLDPI instruction, 19-19
Floating-point error exception (#MF), 19-16
Floating-point exceptions

denormal operand exception (#D), 19-13
invalid operation (#I), 19-19
numeric overflow (#O), 19-13
numeric underflow (#U), 19-14
saved CS and EIP values, 19-14

FLUSH# pin, 6-4
FNSAVE instruction, 12-4
Focus processor, local APIC, 10-37
FORCEPR# log, 14-20, 14-25
FORCPR# interrupt enable bit, 14-22
FPATAN instruction, 19-18

FPREM instruction, 19-10, 19-15, 19-17
FPREM1 instruction, 19-10, 19-17
FPTAN instruction, 19-11, 19-18
Front_end events, A-242
FRSTOR instruction, 12-4, 19-16
FSAVE instruction, 12-3, 12-4
FSAVE/FNSAVE instructions, 19-16, 19-20
FSCALE instruction, 19-17
FSIN instruction, 19-18
FSINCOS instruction, 19-18
FSQRT instruction, 19-15, 19-17
FSTENV instruction, 12-3
FSTENV/FNSTENV instructions, 19-20
FTAN instruction, 19-11
FUCOM instruction, 19-17
FUCOMI instruction, 19-6
FUCOMIP instruction, 19-6
FUCOMP instruction, 19-17
FUCOMPP instruction, 19-17
FWAIT instruction, 6-36
FXAM instruction, 19-19, 19-20
FXRSTOR instruction, 2-24, 2-25, 9-10, 12-3, 12-4, 

12-5, 13-1, 13-3, 13-8
FXSAVE instruction, 2-24, 2-25, 9-10, 12-3, 12-4, 

12-5, 13-1, 13-3, 13-8
FXSR feature flag, CPUID instruction, 9-10
FXTRACT instruction, 19-13, 19-19

G
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

G (granularity) flag
segment descriptor, 3-13, 3-15, 5-2, 5-6

G0-G3 (global breakpoint enable) flags
DR7 register, 16-5

Gate descriptors
call gates, 5-19
description of, 5-18
IA-32e mode, 5-20

Gates, 2-5
IA-32e mode, 2-6

GD (general detect enable) flag
DR7 register, 16-5, 16-12

GDT
description of, 2-5, 3-21
IA-32e mode, 2-5
index field of segment selector, 3-9
initializing, 9-12
paging of, 2-8
pointers to exception/interrupt handlers, 6-16
segment descriptors in, 3-13
selecting with TI flag of segment selector, 3-10
task switching, 7-12
task-gate descriptor, 7-11
TSS descriptors, 7-7
use in address translation, 3-8
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GDTR register
description of, 2-5, 2-9, 2-16, 3-21
IA-32e mode, 2-5, 2-16
limit, 5-7
loading during initialization, 9-12
storing, 3-21

GE (global exact breakpoint enable) flag
DR7 register, 16-5, 16-12

General-detect exception condition, 16-12
General-protection exception (#GP), 3-17, 5-9, 5-10, 

5-16, 5-17, 6-13, 6-19, 6-50, 7-7, 16-2, 
19-16, 19-29, 19-46, 19-48

General-purpose registers, saved in TSS, 7-5
Global control MSRs, 15-3
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 26-5, 26-18
Hardware reset

description of, 9-1
processor state after reset, 9-2
state of MTRRs following, 11-30
value of SMBASE following, 26-5

Hexadecimal numbers, 1-8
high-temperature interrupt enable bit, 14-22, 14-26
HITM# line, 11-8
HLT instruction, 2-31, 5-34, 6-39, 22-3, 26-18, 26-19
Hyper-Threading Technology

architectural state of a logical processor, 8-47
architecture description, 8-39
caches, 8-44
counting clockticks, 30-97
debug registers, 8-42
description of, 8-35, 19-5
detecting, 8-51, 8-52, 8-57, 8-58
executing multiple threads, 8-38
execution-based timing loops, 8-73
external signal compatibility, 8-46
halting logical processors, 8-72
handling interrupts, 8-38
HLT instruction, 8-65
IA32_MISC_ENABLE MSR, 8-43, 8-48
initializing IA-32 processors with, 8-37
introduction of into the IA-32 architecture, 19-5
local a, 8-40
local APIC

functionality in logical processor, 8-41
logical processors, identifying, 8-52
machine check architecture, 8-42
managing idle and blocked conditions, 8-65
mapping resources, 8-49
memory ordering, 8-43
microcode update resources, 8-44, 8-48, 9-46
MP systems, 8-39
MTRRs, 8-41, 8-47

multi-threading feature flag, 8-36
multi-threading support, 8-35
PAT, 8-42
PAUSE instruction, 8-66, 8-67
performance monitoring, 30-89, 30-100
performance monitoring counters, 8-43, 8-48
placement of locks and semaphores, 8-74
required operating system support, 8-69
scheduling multiple threads, 8-73
self modifying code, 8-44
serializing instructions, 8-43
spin-wait loops

PAUSE instructions in, 8-69, 8-70, 8-72
thermal monitor, 8-45
TLBs, 8-45

I
IA32, 15-5
IA-32 Intel architecture

compatibility, 19-1
processors, 19-1

IA32e mode
registers and mode changes, 9-16

IA-32e mode
call gates, 5-20
code segment descriptor, 5-5
D flag, 5-5
data structures and initialization, 9-15
debug registers, 2-9
debug store area, 16-25
descriptors, 2-6
DPL field, 5-5
exceptions during initialization, 9-15
feature-enable register, 2-10
gates, 2-6
global and local descriptor tables, 2-5
IA32_EFER MSR, 2-10, 5-43
initialization process, 9-14
interrupt stack table, 6-26
interrupts and exceptions, 2-7
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address, 3-9
MOV CRn, 9-14
MTRR calculations, 11-40
NXE bit, 5-43
page level protection, 5-43
paging, 2-8
PDE tables, 5-44
PDP tables, 5-44
PML4 tables, 5-44
PTE tables, 5-44
registers and data structures, 2-2
segment descriptor tables, 3-22, 5-5
segment descriptors, 3-13
segment loading instructions, 3-12
segmentation, 3-6
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stack switching, 5-28, 6-25
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system descriptors, 3-19
system registers, 2-9
task switching, 7-22
task-state segments, 2-7
terminating mode operation, 9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 14-2
IA32_APIC_BASE MSR, 8-28, 8-29, 10-8, 10-11, 

B-166
IA32_BIOS_SIGN_ID MSR, B-171
IA32_BIOS_UPDT_TRIG MSR, 28-13, B-171
IA32_BISO_SIGN_ID MSR, 28-13
IA32_CLOCK_MODULATION MSR, 8-46, 14-16, 

14-17, 14-18, 14-21, 14-32, 14-33, 
14-35, 14-36, 14-37, 14-38, B-53, B-73, 
B-87, B-140, B-178, B-213, B-226

IA32_CTL MSR, B-172
IA32_DEBUGCTL MSR, 24-34, B-185
IA32_DS_AREA MSR, 16-21, 16-22, 16-25, 16-28, 

30-65, 30-88, B-200
IA32_EFER MSR, 2-10, 2-12, 5-43, 24-34, 27-23
IA32_FEATURE_CONTROL MSR, 20-4
IA32_KernelGSbase MSR, 2-10
IA32_LSTAR MSR, 2-10, 5-32
IA32_MCG_CAP MSR, 15-3, 15-36, B-172
IA32_MCG_CTL MSR, 15-3, 15-5
IA32_MCG_EAX MSR, 15-13
IA32_MCG_EBP MSR, 15-13
IA32_MCG_EBX MSR, 15-13
IA32_MCG_ECX MSR, 15-13
IA32_MCG_EDI MSR, 15-13
IA32_MCG_EDX MSR, 15-13
IA32_MCG_EFLAGS MSR, 15-13
IA32_MCG_EIP MSR, 15-13
IA32_MCG_ESI MSR, 15-13
IA32_MCG_ESP MSR, 15-13
IA32_MCG_MISC MSR, 15-13, 15-14, B-175
IA32_MCG_R10 MSR, 15-14, B-176
IA32_MCG_R11 MSR, 15-15, B-177
IA32_MCG_R12 MSR, 15-15
IA32_MCG_R13 MSR, 15-15
IA32_MCG_R14 MSR, 15-15
IA32_MCG_R15 MSR, 15-15, B-178
IA32_MCG_R8 MSR, 15-14
IA32_MCG_R9 MSR, 15-14
IA32_MCG_RAX MSR, 15-14, B-172
IA32_MCG_RBP MSR, 15-14
IA32_MCG_RBX MSR, 15-14, B-173
IA32_MCG_RCX MSR, 15-14
IA32_MCG_RDI MSR, 15-14
IA32_MCG_RDX MSR, 15-14
IA32_MCG_RESERVEDn, B-176
IA32_MCG_RESERVEDn MSR, 15-14
IA32_MCG_RFLAGS MSR, 15-14, B-175
IA32_MCG_RIP MSR, 15-14, B-175

IA32_MCG_RSI MSR, 15-14
IA32_MCG_RSP MSR, 15-14
IA32_MCG_STATUS MSR, 15-3, 15-4, 15-36, 15-38, 

24-4
IA32_MCi_ADDR MSR, 15-10, 15-38, B-195
IA32_MCi_CTL MSR, 15-5, B-195
IA32_MCi_MISC MSR, 15-11, 15-12, 15-13, 15-38, 

B-195
IA32_MCi_STATUS MSR, 15-6, 15-36, 15-38, B-195

decoding for Family 06H, E-1
decoding for Family 0FH, E-1, E-5, E-11, E-15, 

E-18
IA32_MISC_ENABLE MSR, 14-1, 14-12, 16-22, 16-38, 

30-65, B-178, B-179
IA32_MPERF MSR, 14-2
IA32_MTRRCAP MSR, 11-32, 11-33, B-171
IA32_MTRR_DEF_TYPE MSR, 11-33
IA32_MTRR_FIXn, fixed ranger MTRRs, 11-34
IA32_MTRR_PHYS BASEn MTRR, B-186
IA32_MTRR_PHYSBASEn MTRR, B-186
IA32_MTRR_PHYSMASKn MTRR, B-186
IA32_P5_MC_ADDR MSR, B-165
IA32_P5_MC_TYPE MSR, B-166
IA32_PAT_CR MSR, 11-49
IA32_PEBS_ENABLE MSR, 30-24, 30-65, 30-88, 

A-243, B-194
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
IA32_PLATFORM_ID, B-45, B-66, B-82, B-135, 

B-166, B-208, B-222, B-231
IA32_STAR MSR, 5-32
IA32_STAR_CS MSR, 2-10
IA32_STATUS MSR, B-172
IA32_SYSCALL_FLAG_MASK MSR, 2-10
IA32_SYSENTER_CS MSR, 5-31, 5-32, 24-27, B-172
IA32_SYSENTER_EIP MSR, 5-31, 24-34, B-172
IA32_SYSENTER_ESP MSR, 5-31, 24-34, B-172
IA32_TERM_CONTROL MSR, B-53, B-73, B-87, 

B-140
IA32_THERM_INTERRUPT MSR, 14-15, 14-18, 

14-19, 14-22, B-178
FORCPR# interrupt enable bit, 14-22
high-temperature interrupt enable bit, 14-22, 

14-26
low-temperature interrupt enable bit, 14-22, 

14-26
overheat interrupt enable bit, 14-22, 14-26
THERMTRIP# interrupt enable bit, 14-22, 14-26
threshold #1 interrupt enable bit, 14-23, 14-27
threshold #1 value, 14-22, 14-26
threshold #2 interrupt enable, 14-23, 14-27
threshold #2 value, 14-23, 14-27

IA32_THERM_STATUS MSR, 14-18, 14-19, B-178
digital readout bits, 14-21, 14-25
out-of-spec status bit, 14-20, 14-25
out-of-spec status log, 14-20, 14-25
PROCHOT# or FORCEPR# event bit, 14-20, 

14-24, 14-25
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PROCHOT# or FORCEPR# log, 14-20, 14-25
resolution in degrees, 14-21
thermal status bit, 14-19, 14-24
thermal status log, 14-19, 14-24
thermal threshold #1 log, 14-20, 14-25
thermal threshold #1 status, 14-20, 14-25
thermal threshold #2 log, 14-21, 14-25
thermal threshold #2 status, 14-21, 14-25
validation bit, 14-21

IA32_TIME_STAMP_COUNTER MSR, B-166
IA32_VMX_BASIC MSR, 21-4, 27-2, 27-7, 27-8, 27-9, 

27-17, B-63, B-79, B-99, B-150, B-199, 
B-219, G-1, G-3

IA32_VMX_CR0_FIXED0 MSR, 20-5, 27-6, B-63, 
B-80, B-99, B-151, B-199, B-220, G-9

IA32_VMX_CR0_FIXED1 MSR, 20-5, 27-6, B-63, 
B-80, B-99, B-151, B-200, B-220, G-9

IA32_VMX_CR4_FIXED0 MSR, 20-5, 27-6, B-64, 
B-80, B-99, B-151, B-200, B-220, G-9

IA32_VMX_CR4_FIXED1 MSR, 20-5, 27-6, B-64, 
B-80, B-99, B-100, B-151, B-200, B-220, 
B-221, G-9

IA32_VMX_ENTRY_CTLS MSR, 27-7, 27-8, 27-9, 
B-63, B-80, B-99, B-151, B-199, B-220, 
G-3, G-7, G-8

IA32_VMX_EXIT_CTLS MSR, 27-7, 27-8, 27-9, B-63, 
B-80, B-99, B-151, B-199, B-220, G-3, 
G-6, G-7

IA32_VMX_MISC MSR, 21-8, 23-4, 23-16, 26-36, 
B-63, B-80, B-99, B-151, B-199, B-220, 
G-8

IA32_VMX_PINBASED_CTLS MSR, 27-7, 27-8, 27-9, 
B-63, B-79, B-99, B-150, B-199, B-219, 
G-3, G-4

IA32_VMX_PROCBASED_CTLS MSR, 21-12, 27-7, 
27-8, 27-9, B-63, B-64, B-80, B-99, 
B-100, B-150, B-151, B-199, B-220, 
B-221, G-3, G-4, G-5, G-6, G-10

IA32_VMX_VMCS_ENUM MSR, B-200, G-9
ICR

Interrupt Command Register, 10-55, 10-60, 
10-68

ID (identification) flag
EFLAGS register, 2-15, 19-8

IDIV instruction, 6-28, 19-29
IDT

64-bit mode, 6-23
call interrupt & exception-handlers from, 6-15
change base & limit in real-address mode, 17-7
description of, 6-12
handling NMIs during initialization, 9-11
initializing protected-mode operation, 9-13
initializing real-address mode operation, 9-11
introduction to, 2-7
limit, 19-37
paging of, 2-8
structure in real-address mode, 17-7
task switching, 7-13

task-gate descriptor, 7-11
types of descriptors allowed, 6-14
use in real-address mode, 17-6

IDTR register
description of, 2-17, 6-13
IA-32e mode, 2-17
introduction to, 2-7
limit, 5-7
loading in real-address mode, 17-7
storing, 3-21

IE (invalid operation exception) flag
x87 FPU status word, 19-11

IEEE Standard 754 for Binary Floating-Point 
Arithmetic, 19-11, 19-12, 19-13, 19-14, 
19-17, 19-19

IF (interrupt enable) flag
EFLAGS register, 2-13, 2-14, 6-9, 6-14, 6-19, 

17-6, 17-29, 26-14
IN instruction, 8-23, 19-47, 22-3
INC instruction, 8-5
Index field, segment selector, 3-9
INIT interrupt, 10-5
Initial-count register, local APIC, 10-22, 10-23
Initialization

built-in self-test (BIST), 9-1, 9-2
CS register state following, 9-6
EIP register state following, 9-6
example, 9-19
first instruction executed, 9-6
hardware reset, 9-1
IA-32e mode, 9-14
IDT, protected mode, 9-13
IDT, real-address mode, 9-11
Intel486 SX processor and Intel 487 SX math 

coprocessor, 19-22
location of software-initialization code, 9-6
machine-check initialization, 15-24
model and stepping information, 9-5
multiple-processor (MP) bootup sequence for P6 

family processors, C-1
multitasking environment, 9-14
overview, 9-1
paging, 9-13
processor state after reset, 9-2
protected mode, 9-11
real-address mode, 9-10
RESET# pin, 9-1
setting up exception- and interrupt-handling 

facilities, 9-13
x87 FPU, 9-6

INIT# pin, 6-4, 9-2
INIT# signal, 2-31, 20-6
INS instruction, 16-12
Instruction operands, 1-8
Instruction-breakpoint exception condition, 16-10
Instructions

new instructions, 19-5
obsolete instructions, 19-7
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privileged, 5-33
serializing, 8-25, 8-43, 19-21
supported in real-address mode, 17-4
system, 2-10, 2-27

INS/INSB/INSW/INSD instruction, 22-3
INT 3 instruction, 2-7, 6-31
INT instruction, 2-7, 5-15
INT n instruction, 3-11, 6-1, 6-5, 6-6, 16-13
INT (APIC interrupt enable) flag, PerfEvtSel0 and 

PerfEvtSel1 MSRs (P6 family processors), 
30-6, 30-116

INT15 and microcode updates, 9-55
INT3 instruction, 3-11, 6-6
Intel 287 math coprocessor, 19-9
Intel 387 math coprocessor system, 19-9
Intel 487 SX math coprocessor, 19-9, 19-22
Intel 64 architecture

definition of, 1-3
relation to IA-32, 1-3

Intel 8086 processor, 19-9
Intel Core Solo and Duo processors

model-specific registers, B-208
Intel Core Solo and Intel Core Duo processors

Enhanced Intel SpeedStep technology, 14-1
event mask (Umask), 30-16, 30-18
last branch, interrupt, exception recording, 16-42
notes on P-state transitions, 14-2
performance monitoring, 30-16, 30-18
performance monitoring events, A-2, A-18, 

A-125, A-170
sub-fields layouts, 30-16, 30-18
time stamp counters, 16-49

Intel developer link, 1-12
Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-12
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, 1-11
Intel Xeon processor, 1-1

last branch, interrupt, and exception recording, 
16-37

time-stamp counter, 16-49
Intel Xeon processor MP

with 8MB L3 cache, 30-100, 30-105
Intel286 processor, 19-9
Intel386 DX processor, 19-9
Intel386 SL processor, 2-10
Intel486 DX processor, 19-9
Intel486 SX processor, 19-9, 19-22
Interprivilege level calls

call mechanism, 5-22
stack switching, 5-25

Interprocessor interrupt (IPIs), 10-2
Interprocessor interrupt (IPI)

in MP systems, 10-1
interrupt, 6-17
Interrupt Command Register, 10-54

Interrupt command register (ICR), local APIC, 10-26
Interrupt gates

16-bit, interlevel return from, 19-44
clearing IF flag, 6-10, 6-19
difference between interrupt and trap gates, 

6-19
for 16-bit and 32-bit code modules, 18-2
handling a virtual-8086 mode interrupt or 

exception through, 17-18
in IDT, 6-14
introduction to, 2-5, 2-7
layout of, 6-14

Interrupt handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Interrupts
APIC priority levels, 10-41
automatic bus locking, 19-48
control transfers between 16- and 32-bit code 

modules, 18-8
description of, 2-7, 6-1
destination, 10-38
distribution mechanism, local APIC, 10-36
enabling and disabling, 6-9
handling, 6-15
handling in real-address mode, 17-6
handling in SMM, 26-14
handling in virtual-8086 mode, 17-16
handling multiple NMIs, 6-9
handling through a task gate in virtual-8086 mode

, 17-21
handling through a trap or interrupt gate in 

virtual-8086 mode, 17-18
IA-32e mode, 2-7, 2-17
IDT, 6-12
IDTR, 2-17
initializing for protected-mode operation, 9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 6-3, 17-8
local APIC, 10-1
maskable hardware interrupts, 2-13
masking maskable hardware interrupts, 6-9
masking when switching stack segments, 6-11
message signalled interrupts, 10-49
on-die sensors for, 14-11
overview of, 6-1
priorities among simultaneous exceptions and 

interrupts, 6-11
priority, 10-41
propagation delay, 19-36
real-address mode, 17-8
restarting a task or program, 6-7
software, 6-68
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sources of, 10-1
summary of, 6-3
thermal monitoring, 14-11
user defined, 6-2, 6-68
valid APIC interrupts, 10-20
vectors, 6-2
virtual-8086 mode, 17-8

INTO instruction, 2-7, 3-11, 6-6, 6-32, 16-13
INTR# pin, 6-2, 6-9
Invalid opcode exception (#UD), 2-22, 6-34, 6-65, 

12-1, 16-4, 19-7, 19-15, 19-28, 19-29, 
26-4

Invalid TSS exception (#TS), 6-42, 7-8
Invalid-operation exception, x87 FPU, 19-15, 19-19
INVD instruction, 2-31, 5-34, 11-25, 19-6
INVLPG instruction, 2-31, 5-34, 19-6, 22-3, 28-5, 

28-6
IOPL (I/O privilege level) field, EFLAGS register

description of, 2-13
on return from exception, interrupt handler, 6-18
sensitive instructions in virtual-8086 mode, 

17-15
virtual interrupt, 2-14, 2-15

IPI (see interprocessor interrupt)
IRET instruction, 3-11, 6-9, 6-10, 6-18, 6-19, 6-25, 

7-13, 8-25, 17-6, 17-29, 22-16
IRETD instruction, 2-14, 8-25
IRR

Interrupt Request Register, 10-56, 10-60, 10-68
IRR (interrupt request register), local APIC, 10-43
ISR

In Service Register, 10-56, 10-60, 10-68
I/O

breakpoint exception conditions, 16-12
in virtual-8086 mode, 17-15
instruction restart flag

SMM revision identifier field, 26-20
instruction restart flag, SMM revision identifier 

field, 26-21
IO_SMI bit, 26-15
I/O permission bit map, TSS, 7-6
map base address field, TSS, 7-6
restarting following SMI interrupt, 26-20
saving I/O state, 26-15
SMM state save map, 26-15

I/O APIC, 10-38
bus arbitration, 10-37
description of, 10-1
external interrupts, 6-4
information about, 10-1
interrupt sources, 10-2
local APIC and I/O APIC, 10-3, 10-4
overview of, 10-1
valid interrupts, 10-20
See also: local APIC

J
JMP instruction, 2-6, 3-11, 5-15, 5-22, 7-3, 7-12, 

7-13

K
KEN# pin, 11-19, 19-50

L
L0-L3 (local breakpoint enable) flags

DR7 register, 16-5
L1 (level 1) cache

caching methods, 11-8
CPUID feature flag, 11-26
description of, 11-5
effect of using write-through memory, 11-12
introduction of, 19-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13
shared and adaptive mode, 11-26

L2 (level 2) cache
caching methods, 11-8
description of, 11-5
disabling, 11-25
effect of using write-through memory, 11-12
introduction of, 19-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13

L3 (level 3) cache
caching methods, 11-8
description of, 11-5
disabling and enabling, 11-19, 11-25
effect of using write-through memory, 11-12
introduction of, 19-42
invalidating and flushing, 11-25
MESI cache protocol, 11-13

LAR instruction, 2-30, 5-35
Larger page sizes

introduction of, 19-42
support for, 19-26

Last branch
interrupt & exception recording

description of, 16-14, 16-32, 16-33, 16-36, 
16-37, 16-39, 16-42, 16-44, 16-46

record stack, 16-20, 16-21, 16-33, 16-38, 16-40, 
16-43, 16-45, B-185, B-186, B-200

record top-of-stack pointer, 16-20, 16-33, 16-38, 
16-43, 16-45

LastBranchFromIP MSR, 16-47, 16-48
LastBranchToIP MSR, 16-47, 16-48
LastExceptionFromIP MSR, 16-33, 16-41, 16-43, 

16-47, 16-48
LastExceptionToIP MSR, 16-33, 16-41, 16-43, 16-47, 

16-48
LBR (last branch/interrupt/exception) flag, 

DEBUGCTLMSR MSR, 16-16, 16-38, 16-46, 
16-48
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LDR
Logical Destination Register, 10-60, 10-66, 10-67

LDS instruction, 3-11, 5-12
LDT

associated with a task, 7-3
description of, 2-5, 2-6, 3-21
index into with index field of segment selector, 

3-9
pointer to in TSS, 7-6
pointers to exception and interrupt handlers, 6-16
segment descriptors in, 3-13
segment selector field, TSS, 7-19
selecting with TI (table indicator) flag of segment 

selector, 3-10
setting up during initialization, 9-12
task switching, 7-12
task-gate descriptor, 7-11
use in address translation, 3-8

LDTR register
description of, 2-5, 2-6, 2-9, 2-16, 3-21
IA-32e mode, 2-16
limit, 5-7
storing, 3-21

LE (local exact breakpoint enable) flag, DR7 register, 
16-5, 16-12

LEN0-LEN3 (Length) fields, DR7 register, 16-6
LES instruction, 3-11, 5-12, 6-34
LFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
LFS instruction, 3-11, 5-12
LGDT instruction, 2-29, 5-34, 8-25, 9-12, 19-28
LGS instruction, 3-11, 5-12
LIDT instruction, 2-29, 5-34, 6-13, 8-25, 9-11, 17-7, 

19-37
Limit checking

description of, 5-6
pointer offsets are within limits, 5-36

Limit field, segment descriptor, 5-2, 5-6
Linear address

description of, 3-8
IA-32e mode, 3-9
introduction to, 2-8

Linear address space, 3-8
defined, 3-1
of task, 7-19

Link (to previous task) field, TSS, 6-20
Linking tasks

mechanism, 7-16
modifying task linkages, 7-18

LINT pins
function of, 6-2
programming, D-1

LLDT instruction, 2-29, 5-34, 8-25
LMSW instruction, 2-29, 5-34, 22-3, 22-17
Local APIC, 10-55

64-bit mode, 10-46
APIC_ID value, 8-49
arbitration over the APIC bus, 10-37
arbitration over the system bus, 10-37

block diagram, 10-6
cluster model, 10-34
CR8 usage, 10-46
current-count register, 10-23
description of, 10-1
detecting with CPUID, 10-10
DFR (destination format register), 10-34
divide configuration register, 10-23
enabling and disabling, 10-10
external interrupts, 6-2
features

Pentium 4 and Intel Xeon, 19-38
Pentium and P6, 19-38

focus processor, 10-37
global enable flag, 10-12
IA32_APIC_BASE MSR, 10-11
initial-count register, 10-22, 10-23
internal error interrupts, 10-2
interrupt command register (ICR), 10-26
interrupt destination, 10-38
interrupt distribution mechanism, 10-36
interrupt sources, 10-2
IRR (interrupt request register), 10-43
I/O APIC, 10-1
local APIC and 82489DX, 19-37
local APIC and I/O APIC, 10-3, 10-4
local vector table (LVT), 10-16
logical destination mode, 10-33
LVT (local-APIC version register), 10-15
mapping of resources, 8-49
MDA (message destination address), 10-33
overview of, 10-1
performance-monitoring counter, 30-118
physical destination mode, 10-33
receiving external interrupts, 6-2
register address map, 10-8, 10-55
shared resources, 8-49
SMI interrupt, 26-3
spurious interrupt, 10-47
spurious-interrupt vector register, 10-11
state after a software (INIT) reset, 10-15
state after INIT-deassert message, 10-15
state after power-up reset, 10-14
state of, 10-48
SVR (spurious-interrupt vector register), 10-11
timer, 10-22
timer generated interrupts, 10-2
TMR (trigger mode register), 10-43
valid interrupts, 10-20
version register, 10-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 10-16
thermal entry, 14-15

Local x2APIC, 10-45, 10-60, 10-66
Local xAPIC ID, 10-60
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LOCK prefix, 2-31, 2-32, 6-34, 8-2, 8-4, 8-5, 8-23, 
19-48

Locked (atomic) operations
automatic bus locking, 8-4
bus locking, 8-4
effects on caches, 8-7
loading a segment descriptor, 19-27
on IA-32 processors, 19-48
overview of, 8-2
software-controlled bus locking, 8-5

LOCK# signal, 2-32, 8-2, 8-4, 8-5, 8-8
Logical address

description of, 3-8
IA-32e mode, 3-9

Logical address space, of task, 7-20
Logical destination mode, local APIC, 10-33
Logical processors

per physical package, 8-36
Logical x2APIC ID, 10-66
low-temperature interrupt enable bit, 14-22, 14-26
LSL instruction, 2-30, 5-36
LSS instruction, 3-11, 5-12
LTR instruction, 2-29, 5-34, 7-9, 8-25, 9-14
LVT (see Local vector table)

M
Machine check architecture

VMX considerations, 29-15
Machine-check architecture

availability of MCA and exception, 15-24
compatibility with Pentium processor, 15-1
compound error codes, 15-27
CPUID flags, 15-24
error codes, 15-26, 15-27
error-reporting bank registers, 15-2
error-reporting MSRs, 15-5
extended machine check state MSRs, 15-13
external bus errors, 15-35
first introduced, 19-30
global MSRs, 15-2, 15-3
initialization of, 15-24
interpreting error codes, example (P6 family 

processors), F-1
introduction of in IA-32 processors, 19-50
logging correctable errors, 15-37, 15-39, 15-45
machine-check exception handler, 15-35
machine-check exception (#MC), 15-1
MSRs, 15-2
overview of MCA, 15-1
Pentium processor exception handling, 15-37
Pentium processor style error reporting, 15-15
simple error codes, 15-26
VMX considerations, 29-12, 29-13
writing machine-check software, 15-35

Machine-check exception (#MC), 6-63, 15-1, 15-24, 
15-35, 19-28, 19-50

Mapping of shared resources, 8-49

Maskable hardware interrupts
description of, 6-5
handling with virtual interrupt mechanism, 17-22
masking, 2-13, 6-9

MCA flag, CPUID instruction, 15-24
MCE flag, CPUID instruction, 15-24
MCE (machine-check enable) flag

CR4 control register, 2-24, 19-24
MDA (message destination address)

local APIC, 10-33
Memory, 11-1
Memory management

introduction to, 2-8
overview, 3-1
paging, 3-1, 3-2
registers, 2-15
segments, 3-1, 3-2, 3-3, 3-9
virtualization of, 28-3

Memory ordering
in IA-32 processors, 19-46
out of order stores for string operations, 8-18
overview, 8-8
processor ordering, 8-8
strengthening or weakening, 8-23
write ordering, 8-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 11-8
choosing, 11-12
MTRR types, 11-30
selecting for Pentium III and Pentium 4 processors

, 11-21
selecting for Pentium Pro and Pentium II 

processors, 11-20
UC (strong uncacheable), 11-8
UC- (uncacheable), 11-9
WB (write back), 11-10
WC (write combining), 11-9
WP (write protected), 11-10
writing values across pages with different 

memory types, 11-23
WT (write through), 11-10

MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI cache protocol, 11-7, 11-13
Message address register, 10-50
Message data register format, 10-51
Message signalled interrupts

message address register, 10-49
message data register format, 10-49

MFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
Microcode update facilities

authenticating an update, 9-48
BIOS responsibilities, 9-49
calling program responsibilities, 9-52
checksum, 9-44
extended signature table, 9-41
family 0FH processors, 9-37
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field definitions, 9-37
format of update, 9-37
function 00H presence test, 9-56
function 01H write microcode update data, 9-57
function 02H microcode update control, 9-62
function 03H read microcode update data, 9-63
general description, 9-37
HT Technology, 9-46
INT 15H-based interface, 9-55
overview, 9-36
process description, 9-37
processor identification, 9-41
processor signature, 9-41
return codes, 9-64
update loader, 9-45
update signature and verification, 9-47
update specifications, 9-49
VMX non-root operation, 22-21, 28-12
VMX support

early loading, 28-12
late loading, 28-12
virtualization issues, 28-11

Mixing 16-bit and 32-bit code
in IA-32 processors, 19-45
overview, 18-1

MMX technology
debugging MMX code, 12-6
effect of MMX instructions on pending x87 

floating-point exceptions, 12-6
emulation of the MMX instruction set, 12-1
exceptions that can occur when executing MMX 

instructions, 12-1
introduction of into the IA-32 architecture, 19-3
register aliasing, 12-1
state, 12-1
state, saving and restoring, 12-4
system programming, 12-1
task or context switches, 12-5
using TS flag to control saving of MMX state, 

13-10
Mode switching

example, 9-19
real-address and protected mode, 9-17
to SMM, 26-3

Model and stepping information, following processor 
initialization or reset, 9-5

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 22-4
MOV instruction, 3-11, 5-12
MOV (control registers) instructions, 2-29, 2-30, 

5-34, 8-25, 9-17
MOV (debug registers) instructions, 2-30, 5-34, 8-25, 

16-12
MOVNTDQ instruction, 8-9, 11-7, 11-26
MOVNTI instruction, 2-21, 8-9, 11-7, 11-26
MOVNTPD instruction, 8-9, 11-7, 11-26
MOVNTPS instruction, 8-9, 11-7, 11-26

MOVNTQ instruction, 8-9, 11-7, 11-26
MP (monitor coprocessor) flag

CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8, 
12-1, 19-10

MSR, B-202
Model Specific Register, 10-53, 10-54, 10-55

MSRs
architectural, B-2
description of, 9-9
introduction of in IA-32 processors, 19-49
introduction to, 2-9
list of, B-1
machine-check architecture, 15-3
P6 family processors, B-231
Pentium 4 processor, B-44, B-66, B-165, B-205
Pentium processors, B-243
reading and writing, 2-26, 2-33, 2-34
reading & writing in 64-bit mode, 2-33
virtualization support, 27-22
VMX support, 27-22

MSR_ TC_PRECISE_EVENT MSR, A-242
MSR_DEBUBCTLB MSR, 16-15, 16-35, 16-43, 16-45
MSR_DEBUGCTLA MSR, 16-14, 16-21, 16-29, 16-31, 

16-38, 30-14, 30-19, 30-23, 30-55, B-185
MSR_DEBUGCTLB MSR, 16-14, 16-42, 16-44, B-57, 

B-75, B-90, B-143, B-216, B-228
MSR_EBC_FREQUENCY_ID MSR, B-169, B-171
MSR_EBC_HARD_POWERON MSR, B-166
MSR_EBC_SOFT_POWERON MSR, B-168
MSR_IFSB_CNTR7 MSR, 30-104
MSR_IFSB_CTRL6 MSR, 30-104
MSR_IFSB_DRDY0 MSR, 30-103
MSR_IFSB_DRDY1 MSR, 30-103
MSR_IFSB_IBUSQ0 MSR, 30-101
MSR_IFSB_IBUSQ1 MSR, 30-101
MSR_IFSB_ISNPQ0 MSR, 30-102
MSR_IFSB_ISNPQ1 MSR, 30-102
MSR_LASTBRANCH _TOS, B-185
MSR_LASTBRANCH_n MSR, 16-20, 16-21, 16-40, 

B-186
MSR_LASTBRANCH_n_FROM_LIP MSR, 16-20, 16-21, 

16-40, 16-41, B-200
MSR_LASTBRANCH_n_TO_LIP MSR, 16-20, 16-21, 

16-40, 16-41, B-202
MSR_LASTBRANCH_TOS MSR, 16-40
MSR_LER_FROM_LIP MSR, 16-33, 16-41, 16-43, 

B-184
MSR_LER_TO_LIP MSR, 16-33, 16-41, 16-43, B-184
MSR_PEBS_ MATRIX_VERT MSR, A-243
MSR_PEBS_MATRIX_VERT MSR, B-195
MSR_PLATFORM_BRV, B-183
MTRR feature flag, CPUID instruction, 11-32
MTRRcap MSR, 11-32
MTRRfix MSR, 11-34
MTRRs, 8-23

base & mask calculations, 11-38, 11-40
cache control, 11-19
description of, 9-9, 11-30
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dual-core processors, 8-48
enabling caching, 9-8
feature identification, 11-32
fixed-range registers, 11-34
IA32_MTRRCAP MSR, 11-32
IA32_MTRR_DEF_TYPE MSR, 11-33
initialization of, 11-41
introduction of in IA-32 processors, 19-49
introduction to, 2-9
large page size considerations, 11-47
logical processors, 8-48
mapping physical memory with, 11-31
memory types and their properties, 11-30
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
multiple-processor considerations, 11-46
precedence of cache controls, 11-19
precedences, 11-41
programming interface, 11-42
remapping memory types, 11-42
state of following a hardware reset, 11-30
variable-range registers, 11-34, 11-37

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 8-4
guaranteed atomic operations, 8-3
initialization

MP protocol, 8-27
procedure, C-2

local APIC, 10-1
memory ordering, 8-8
MP protocol, 8-27
overview of, 8-1
SMM considerations, 26-22
VMM design, 27-15

asymmetric, 27-15
CPUID emulation, 27-18
external data structures, 27-17
index-data registers, 27-17
initialization, 27-16
moving between processors, 27-16
symmetric, 27-15

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 10-4
local APIC and I/O APIC, P6 family, 10-4

Multisegment model, 3-5
Multitasking

initialization for, 9-14
initializing IA-32e mode, 9-14
linking tasks, 7-16
mechanism, description of, 7-3
overview, 7-1
setting up TSS, 9-14
setting up TSS descriptor, 9-14

Multi-threading support
executing multiple threads, 8-38
handling interrupts, 8-38

logical processors per package, 8-36
mapping resources, 8-49
microcode updates, 8-48
performance monitoring counters, 8-48
programming considerations, 8-49
See also: Hyper-Threading Technology and 

dual-core technology
MWAIT instruction, 22-4

power management extensions, 14-9
MXCSR register, 6-65, 9-10, 13-8

N
NaN, compatibility, IA-32 processors, 19-12
NE (numeric error) flag

CR0 control register, 2-20, 6-58, 9-6, 9-8, 19-10, 
19-25

NEG instruction, 8-5
NetBurst microarchitecture (see Intel NetBurst 

microarchitecture)
NMI interrupt, 2-31, 10-5

description of, 6-2
handling during initialization, 9-11
handling in SMM, 26-14
handling multiple NMIs, 6-9
masking, 19-36
receiving when processor is shutdown, 6-39
reference information, 6-30
vector, 6-2

NMI# pin, 6-2, 6-30
Nominal CPI method, 30-96
Nonconforming code segments

accessing, 5-16
C (conforming) flag, 5-16
description of, 3-18

Non-halted clockticks, 30-96
setting up counters, 30-96

Non-Halted CPI method, 30-96
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 30-68
used for at-retirement counting, 30-85
writing an interrupt service routine for, 16-31

Non-retirement events, 30-68, A-202
Non-sleep clockticks, 30-96

setting up counters, 30-96
NOT instruction, 8-5
Notation

bit and byte order, 1-6
conventions, 1-6
exceptions, 1-10
hexadecimal and binary numbers, 1-8
Instructions

operands, 1-8
reserved bits, 1-7
segmented addressing, 1-8

NT (nested task) flag
EFLAGS register, 2-13, 7-13, 7-16
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Null segment selector, checking for, 5-9
Numeric overflow exception (#O), 19-13
Numeric underflow exception (#U), 19-14
NV (invert) flag, PerfEvtSel0 MSR

(P6 family processors), 30-6, 30-116
NW (not write-through) flag

CR0 control register, 2-20, 9-8, 11-17, 11-18, 
11-24, 11-46, 11-47, 19-25, 19-26, 19-40

NXE bit, 5-43

O
Obsolete instructions, 19-7, 19-20
OF flag, EFLAGS register, 6-32
On die digital thermal sensor, 14-19

relevant MSRs, 14-19
sensor enumeration, 14-19

On-Demand
clock modulation enable bits, 14-17

On-demand
clock modulation duty cycle bits, 14-17

On-die sensors, 14-11
Opcodes

undefined, 19-7
Operands

instruction, 1-8
operand-size prefix, 18-2

Operating modes
64-bit mode, 2-10
compatibility mode, 2-10
IA-32e mode, 2-10, 2-11
introduction to, 2-10
protected mode, 2-10
SMM (system management mode), 2-10
transitions between, 2-11, 13-17
virtual-8086 mode, 2-11
VMX operation

enabling and entering, 20-4
guest environments, 27-1

OR instruction, 8-5
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only), 
30-5, 30-116

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, 2-24, 9-10, 13-3

OSXMMEXCPT (SIMD floating-point exception 
support) flag, CR4 control register, 2-25, 
6-65, 9-10, 13-3

OUT instruction, 8-23, 22-3
Out-of-spec status bit, 14-20, 14-25
Out-of-spec status log, 14-20, 14-25
OUTS/OUTSB/OUTSW/OUTSD instruction, 16-12, 

22-3
Overflow exception (#OF), 6-32
Overheat interrupt enable bit, 14-22, 14-26

P
P (present) flag

page-directory entry, 6-54
page-table entry, 6-54
segment descriptor, 3-14

P5_MC_ADDR MSR, 15-15, 15-37, B-45, B-66, B-82, 
B-135, B-208, B-222, B-231, B-243

P5_MC_TYPE MSR, 15-15, 15-37, B-45, B-66, B-82, 
B-135, B-208, B-222, B-231, B-243

P6 family processors
compatibility with FP software, 19-9
description of, 1-1
last branch, interrupt, and exception recording, 

16-46
list of performance-monitoring events, A-254
MSR supported by, B-231

PAE paging
feature flag, CR4 register, 2-23
flag, CR4 control register, 3-7, 19-24, 19-25

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 11-52
detecting support for, 11-48
IA32_CR_PAT MSR, 11-49
introduction to, 11-48
memory types that can be encoded with, 11-49
MSR, 11-19
precedence of cache controls, 11-20
programming, 11-50
selecting a memory type with, 11-50

Page directories, 2-8
Page directory

base address (PDBR), 7-6
introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page directory pointers, 2-8
Page frame (see Page)
Page tables, 2-8

introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page-directory entries, 8-5, 11-6
Page-fault exception (#PF), 4-63, 6-54, 19-29
Pages

disabling protection of, 5-1
enabling protection of, 5-1
introduction to, 2-8
overview, 3-2
PG flag, CR0 control register, 5-2
split, 19-21

Page-table entries, 8-5, 11-6, 11-27
Paging

combining segment and page-level protection, 
5-41

combining with segmentation, 3-7
defined, 3-1
IA-32e mode, 2-8
initializing, 9-13
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introduction to, 2-8
large page size MTRR considerations, 11-47
mapping segments to pages, 4-64
page boundaries regarding TSS, 7-6
page-fault exception, 6-54
page-level protection, 5-2, 5-5, 5-39
page-level protection flags, 5-40
virtual-8086 tasks, 17-10

Parameter
passing, between 16- and 32-bit call gates, 18-8
translation, between 16- and 32-bit code 

segments, 18-8
PAUSE instruction, 2-21, 22-4
PBi (performance monitoring/breakpoint pins) flags, 

DEBUGCTLMSR MSR, 16-44, 16-47
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1 

MSRs (P6 family processors), 30-6, 30-116
PC0 and PC1 (pin control) fields, CESR MSR (Pentium 

processor), 30-120
PCD pin (Pentium processor), 11-19
PCD (page-level cache disable) flag

CR3 control register, 2-22, 11-19, 19-25, 19-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-19, 11-47, 19-42

PCE (performance monitoring counter enable) flag, 
CR4 control register, 2-24, 5-34, 30-72, 
30-117

PCE (performance-monitoring counter enable) flag, 
CR4 control register, 19-24

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register, 

2-22, 5-1, 9-13, 9-17, 26-12
PEBS records, 16-26
PEBS (precise event-based sampling) facilities

availability of, 30-88
description of, 30-69, 30-87
DS save area, 16-21
IA-32e mode, 16-26
PEBS buffer, 16-22, 30-88
PEBS records, 16-21, 16-24
writing a PEBS interrupt service routine, 30-88
writing interrupt service routine, 16-31

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 16-22, B-181

Pentium 4 processor, 1-1
compatibility with FP software, 19-9
last branch, interrupt, and exception recording, 

16-37
list of performance-monitoring events, A-1, 

A-202
MSRs supported, B-44, B-66, B-165, B-205
time-stamp counter, 16-49

Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium M processor

last branch, interrupt, and exception recording, 
16-44

MSRs supported by, B-221

time-stamp counter, 16-49
Pentium Pro processor, 1-2
Pentium processor, 1-1, 19-9

compatibility with MCA, 15-1
list of performance-monitoring events, A-272
MSR supported by, B-243
performance-monitoring counters, 30-119

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 30-115, 30-117

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 30-115

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family 
processors), 30-115

Performance events
architectural, 30-1
Intel Core Solo and Intel Core Duo processors, 

30-1
non-architectural, 30-1
non-retirement events (Pentium 4 processor), 

A-202
P6 family processors, A-254
Pentium 4 and Intel Xeon processors, 16-37
Pentium M processors, 16-44
Pentium processor, A-272

Performance state, 14-2
Performance-monitoring counters

counted events (P6 family processors), A-254
counted events (Pentium 4 processor), A-1, 

A-202
counted events (Pentium processors), 30-121
description of, 30-1, 30-2
events that can be counted (Pentium processors), 

A-272
interrupt, 10-2
introduction of in IA-32 processors, 19-50
monitoring counter overflow (P6 family 

processors), 30-118
overflow, monitoring (P6 family processors), 

30-118
overview of, 2-10
P6 family processors, 30-114
Pentium II processor, 30-114
Pentium Pro processor, 30-114
Pentium processor, 30-119
reading, 2-32, 30-117
setting up (P6 family processors), 30-115
software drivers for, 30-118
starting and stopping, 30-117

PG (paging) flag
CR0 control register, 2-19, 5-2

PG (paging) flag, CR0 control register, 9-13, 9-17, 
19-43, 26-12

PGE (page global enable) flag, CR4 control register, 
2-24, 11-19, 19-24, 19-26

PhysBase field, IA32_MTRR_PHYSBASEn MTRR, 
11-35, 11-37

Physical address extension
introduction to, 3-7
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Physical address space
4 GBytes, 3-7
64 GBytes, 3-7
addressing, 2-8
defined, 3-1
description of, 3-7
guest and host spaces, 28-3
IA-32e mode, 3-8
mapped to a task, 7-19
mapping with variable-range MTRRs, 11-34, 

11-37
memory virtualization, 28-3
See also: VMM, VMX

Physical destination mode, local APIC, 10-33
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 11-35, 11-37
PM0/BP0 and PM1/BP1 (performance-monitor) pins 

(Pentium processor), 30-119, 30-121
PML4 tables, 2-8
Pointers

code-segment pointer size, 18-5
limit checking, 5-36
validation, 5-34

POP instruction, 3-11
POPF instruction, 6-10, 16-12
Power consumption

software controlled clock, 14-11, 14-16
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-21, 11-7, 11-25
Previous task link field, TSS, 7-6, 7-16, 7-18
Priority levels, APIC interrupts, 10-41
Privilege levels

checking when accessing data segments, 5-12
checking, for call gates, 5-22
checking, when transferring program control 

between code segments, 5-14
description of, 5-9
protection rings, 5-11

Privileged instructions, 5-33
Processor families

06H, E-1
0FH, E-1

Processor management
initialization, 9-1
local APIC, 10-1
microcode update facilities, 9-36
overview of, 8-1
See also: multiple-processor management

Processor ordering, description of, 8-8
PROCHOT# log, 14-20, 14-25
PROCHOT# or FORCEPR# event bit, 14-20, 14-24, 

14-25
Protected mode

IDT initialization, 9-13
initialization for, 9-11
mixing 16-bit and 32-bit code modules, 18-2
mode switching, 9-17
PE flag, CR0 register, 5-1

switching to, 5-1, 9-17
system data structures required during 

initialization, 9-11, 9-12
Protection

combining segment & page-level, 5-41
disabling, 5-1
enabling, 5-1
flags used for page-level protection, 5-2, 5-5
flags used for segment-level protection, 5-2
IA-32e mode, 5-5
of exception, interrupt-handler procedures, 6-18
overview of, 5-1
page level, 5-1, 5-39, 5-41, 5-43
page level, overriding, 5-41
page-level protection flags, 5-40
read/write, page level, 5-40
segment level, 5-1
user/supervisor type, 5-40

Protection rings, 5-11
PSE (page size extension) flag

CR4 control register, 2-23, 11-29, 19-24, 19-26
PSE-36 page size extension, 3-7
Pseudo-infinity, 19-12
Pseudo-NaN, 19-12
Pseudo-zero, 19-12
P-state, 14-2
PUSH instruction, 19-8
PUSHF instruction, 6-10, 19-9
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-14, 2-15, 2-23, 19-24
PWT pin (Pentium processor), 11-19
PWT (page-level write-through) flag

CR3 control register, 2-23, 11-19, 19-25, 19-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-47, 19-42

Q
QNaN, compatibility, IA-32 processors, 19-12

R
RDMSR instruction, 2-26, 2-33, 2-34, 5-34, 16-40, 

16-48, 16-50, 19-6, 19-49, 22-5, 22-19, 
30-72, 30-115, 30-117, 30-119

RDPMC instruction, 2-32, 5-34, 19-6, 19-24, 19-50, 
22-5, 30-71, 30-115, 30-117

in 64-bit mode, 2-33
RDTSC instruction, 2-32, 5-34, 16-50, 19-6, 22-5, 

22-20
in 64-bit mode, 2-33

reading sensors, 14-19
Read/write

protection, page level, 5-40
rights, checking, 5-36

Real-address mode
8086 emulation, 17-1
address translation in, 17-3
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description of, 17-1
exceptions and interrupts, 17-8
IDT initialization, 9-11
IDT, changing base and limit of, 17-7
IDT, structure of, 17-7
IDT, use of, 17-6
initialization, 9-10
instructions supported, 17-4
interrupt and exception handling, 17-6
interrupts, 17-8
introduction to, 2-10
mode switching, 9-17
native 16-bit mode, 18-1
overview of, 17-1
registers supported, 17-4
switching to, 9-18

Recursive task switching, 7-18
Related literature, 1-11
Replay events, A-243
Requested privilege level (see RPL)
Reserved bits, 1-7, 19-2
RESET# pin, 6-4, 19-22
RESET# signal, 2-31
Resolution in degrees, 14-21
Restarting program or task, following an exception or 

interrupt, 6-7
Restricting addressable domain, 5-40
RET instruction, 5-15, 5-28, 18-7
Returning

from a called procedure, 5-28
from an interrupt or exception handler, 6-18

RF (resume) flag
EFLAGS register, 2-14, 6-10

RPL
description of, 3-10, 5-11
field, segment selector, 5-2

RSM instruction, 2-31, 8-25, 19-7, 22-5, 26-1, 26-3, 
26-4, 26-17, 26-21, 26-25

RsvdZ, 10-58
R/S# pin, 6-4
R/W (read/write) flag

page-directory entry, 5-2, 5-3, 5-40
page-table entry, 5-2, 5-3, 5-40

R/W0-R/W3 (read/write) fields
DR7 register, 16-5, 19-27

S
S (descriptor type) flag

segment descriptor, 3-14, 3-16, 5-2, 5-7
SBB instruction, 8-5
Segment descriptors

access rights, 5-35
access rights, invalid values, 19-26
automatic bus locking while updating, 8-4
base address fields, 3-14
code type, 5-3
data type, 5-3

description of, 2-5, 3-13
DPL (descriptor privilege level) field, 3-14, 5-2
D/B (default operation size/default stack pointer 

size and/or upper bound) flag, 3-15, 5-6
E (expansion direction) flag, 5-2, 5-6
G (granularity) flag, 3-15, 5-2, 5-6
limit field, 5-2, 5-6
loading, 19-27
P (segment-present) flag, 3-14
S (descriptor type) flag, 3-14, 3-16, 5-2, 5-7
segment limit field, 3-13
system type, 5-3
tables, 3-20
TSS descriptor, 7-7, 7-8
type field, 3-14, 3-16, 5-2, 5-7
type field, encoding, 3-19
when P (segment-present) flag is clear, 3-15

Segment limit
checking, 2-30
field, segment descriptor, 3-13

Segment not present exception (#NP), 3-14
Segment registers

description of, 3-10
IA-32e mode, 3-12
saved in TSS, 7-5

Segment selectors
description of, 3-9
index field, 3-9
null, 5-9
null in 64-bit mode, 5-9
RPL field, 3-10, 5-2
TI (table indicator) flag, 3-10

Segmented addressing, 1-8
Segment-not-present exception (#NP), 6-46
Segments

64-bit mode, 3-6
basic flat model, 3-3
code type, 3-16
combining segment, page-level protection, 5-41
combining with paging, 3-7
compatibility mode, 3-6
data type, 3-16
defined, 3-1
disabling protection of, 5-1
enabling protection of, 5-1
mapping to pages, 4-64
multisegment usage model, 3-5
protected flat model, 3-4
segment-level protection, 5-2, 5-5
segment-not-present exception, 6-46
system, 2-5
types, checking access rights, 5-35
typing, 5-7
using, 3-3
wraparound, 19-46

SELF IPI register, 10-55
Self-modifying code, effect on caches, 11-27
Serializing, 8-25
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Serializing instructions
CPUID, 8-25
HT technology, 8-43
non-privileged, 8-25
privileged, 8-25

SF (stack fault) flag, x87 FPU status word, 19-11
SFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
SGDT instruction, 2-29, 3-21
Shared resources

mapping of, 8-49
Shutdown

resulting from double fault, 6-39
resulting from out of IDT limit condition, 6-39

SIDT instruction, 2-29, 3-21, 6-13
SIMD floating-point exception (#XF), 2-25, 6-65, 9-10
SIMD floating-point exceptions

description of, 6-65, 13-7
handler, 13-3
support for, 2-25

Single-stepping
breakpoint exception condition, 16-12
on branches, 16-16
on exceptions, 16-16
on interrupts, 16-16
TF (trap) flag, EFLAGS register, 16-12

SLDT instruction, 2-29
SLTR instruction, 3-21
SMBASE

default value, 26-5
relocation of, 26-19

SMI handler
description of, 26-1
execution environment for, 26-12
exiting from, 26-4
location in SMRAM, 26-5
VMX treatment of, 26-23

SMI interrupt, 2-31, 10-5
description of, 26-1, 26-3
IO_SMI bit, 26-15
priority, 26-4
switching to SMM, 26-3
synchronous and asynchronous, 26-15
VMX treatment of, 26-23

SMI# pin, 6-4, 26-3, 26-21
SMM

asynchronous SMI, 26-15
auto halt restart, 26-18
executing the HLT instruction in, 26-19
exiting from, 26-4
handling exceptions and interrupts, 26-14
introduction to, 2-10
I/O instruction restart, 26-20
I/O state implementation, 26-15
native 16-bit mode, 18-1
overview of, 26-1
revision identifier, 26-17
revision identifier field, 26-17
switching to, 26-3

switching to from other operating modes, 26-3
synchronous SMI, 26-15
VMX operation

default RSM treatment, 26-24
default SMI delivery, 26-23
dual-monitor treatment, 26-27
overview, 26-2
protecting CR4.VMXE, 26-26
RSM instruction, 26-25
SMM monitor, 26-2
SMM VM exits, 24-1, 26-27
SMM-transfer VMCS, 26-27
SMM-transfer VMCS pointer, 26-27
VMCS pointer preservation, 26-23
VMX-critical state, 26-23

SMRAM
caching, 26-11
description of, 26-1
state save map, 26-6
structure of, 26-5

SMSW instruction, 2-29, 22-20
SNaN, compatibility, IA-32 processors, 19-12, 19-19
Snooping mechanism, 11-8
Software controlled clock

modulation control bits, 14-17
power consumption, 14-11, 14-16

Software interrupts, 6-5
Software-controlled bus locking, 8-5
Split pages, 19-21
Spurious interrupt, local APIC, 10-47
SSE extensions

checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
facilities for automatic saving of state, 13-9, 

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 19-3
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE feature flag
CPUID instruction, 13-2

SSE2 extensions
checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
facilities for automatic saving of state, 13-9, 

13-12
initialization, 9-10
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introduction of into the IA-32 architecture, 19-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving state, 13-10

SSE2 feature flag
CPUID instruction, 13-2

SSE3 extensions
checking for with CPUID, 13-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
example verifying SS3 support, 8-62, 8-66, 14-3
facilities for automatic saving of state, 13-9, 

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 19-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE3 feature flag
CPUID instruction, 13-2

Stack fault exception (#SS), 6-48
Stack fault, x87 FPU, 19-11, 19-18
Stack pointers

privilege level 0, 1, and 2 stacks, 7-6
size of, 3-15

Stack segments
paging of, 2-8
privilege level check when loading SS register, 

5-14
size of stack pointer, 3-15

Stack switching
exceptions/interrupts when switching stacks, 

6-11
IA-32e mode, 6-25
inter-privilege level calls, 5-25

Stack-fault exception (#SS), 19-46
Stacks

error code pushes, 19-44
faults, 6-48
for privilege levels 0, 1, and 2, 5-26
interlevel RET/IRET

from a 16-bit interrupt or call gate, 19-44
interrupt stack table, 64-bit mode, 6-26
management of control transfers for

16- and 32-bit procedure calls, 18-5
operation on pushes and pops, 19-43
pointers to in TSS, 7-6
stack switching, 5-25, 6-25
usage on call to exception

or interrupt handler, 19-44

Stepping information, following processor 
initialization or reset, 9-5

STI instruction, 6-10
Store buffer

caching terminology, 11-8
characteristics of, 11-5
description of, 11-7, 11-29
in IA-32 processors, 19-46
location of, 11-1
operation of, 11-29

STPCLK# pin, 6-4
STR instruction, 2-29, 3-21, 7-9
Strong uncached (UC) memory type

description of, 11-8
effect on memory ordering, 8-24
use of, 9-10, 11-12

Sub C-state, 14-9
SUB instruction, 8-5
Supervisor mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

SVR (spurious-interrupt vector register), local APIC, 
10-11, 19-37

SWAPGS instruction, 2-10, 27-23
SYSCALL instruction, 2-10, 5-32, 27-23
SYSENTER instruction, 3-11, 5-15, 5-30, 5-31, 

27-23, 27-24
SYSENTER_CS_MSR, 5-30
SYSENTER_EIP_MSR, 5-30
SYSENTER_ESP_MSR, 5-30
SYSEXIT instruction, 3-11, 5-15, 5-30, 5-31, 27-23, 

27-24
SYSRET instruction, 2-10, 5-32, 27-23
System

architecture, 2-2, 2-3
data structures, 2-3
instructions, 2-10, 2-27
registers in IA-32e mode, 2-9
registers, introduction to, 2-9
segment descriptor, layout of, 5-3
segments, paging of, 2-8

System programming
MMX technology, 12-1
SSE/SSE2/SSE3 extensions, 13-1
virtualization of resources, 28-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 7-6
Task gates

descriptor, 7-11
executing a task, 7-3
handling a virtual-8086 mode interrupt or 

exception through, 17-21
IA-32e mode, 2-7
in IDT, 6-14
introduction for IA-32e, 2-6
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introduction to, 2-5, 2-6, 2-7
layout of, 6-14
referencing of TSS descriptor, 6-20

Task management, 7-1
data structures, 7-4
mechanism, description of, 7-3

Task register, 3-21
description of, 2-17, 7-1, 7-9
IA-32e mode, 2-17
initializing, 9-14
introduction to, 2-9

Task switching
description of, 7-3
exception condition, 16-13
operation, 7-13
preventing recursive task switching, 7-18
saving MMX state on, 12-5
saving SSE/SSE2/SSE3 state

on task or context switches, 13-9
T (debug trap) flag, 7-6

Tasks
address space, 7-19
description of, 7-1
exception-handler task, 6-16
executing, 7-3
Intel 286 processor tasks, 19-51
interrupt-handler task, 6-16
interrupts and exceptions, 6-20
linking, 7-16
logical address space, 7-20
management, 7-1
mapping linear and physical address space, 7-19
restart following an exception or interrupt, 6-7
state (context), 7-2, 7-3
structure, 7-1
switching, 7-3
task management data structures, 7-4

TF (trap) flag, EFLAGS register, 2-12, 6-19, 16-12, 
16-15, 16-39, 16-42, 16-44, 16-47, 17-6, 
17-29, 26-14

Thermal monitoring
advanced power management, 14-9
automatic, 14-12
automatic thermal monitoring, 14-10
catastrophic shutdown detector, 14-10, 14-12
clock-modulation bits, 14-17
C-state, 14-9
detection of facilities, 14-18
Enhanced Intel SpeedStep Technology, 14-1
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_THERM_INTERRUPT MSR, 14-19
IA32_THERM_STATUS MSR, 14-19
interrupt enable/disable flags, 14-15
interrupt mechanisms, 14-11
MWAIT extensions for, 14-9
on die sensors, 14-11, 14-19
overview of, 14-1, 14-10

performance state transitions, 14-14
sensor interrupt, 10-2
setting thermal thresholds, 14-19
software controlled clock modulation, 14-11, 

14-16
status flags, 14-14
status information, 14-14, 14-16
stop clock mechanism, 14-11
thermal monitor 1 (TM1), 14-12
thermal monitor 2 (TM2), 14-12
TM flag, CPUID instruction, 14-18

Thermal status bit, 14-19, 14-24
Thermal status log bit, 14-19, 14-24
Thermal threshold #1 log, 14-20, 14-25
Thermal threshold #1 status, 14-20, 14-25
Thermal threshold #2 log, 14-21, 14-25
Thermal threshold #2 status, 14-21, 14-25
THERMTRIP# interrupt enable bit, 14-22, 14-26
thread timeout indicator, E-5, E-11, E-15, E-18
Threshold #1 interrupt enable bit, 14-23, 14-27
Threshold #1 value, 14-22, 14-26
Threshold #2 interrupt enable, 14-23, 14-27
Threshold #2 value, 14-23, 14-27
TI (table indicator) flag, segment selector, 3-10
Timer, local APIC, 10-22
Time-stamp counter

counting clockticks, 30-96
description of, 16-49
IA32_TIME_STAMP_COUNTER MSR, 16-49
RDTSC instruction, 16-49
reading, 2-32
software drivers for, 30-118
TSC flag, 16-49
TSD flag, 16-49

TLBs
description of, 11-1, 11-6
flushing, 11-29
invalidating (flushing), 2-31
relationship to PGE flag, 19-26
relationship to PSE flag, 11-29
virtual TLBs, 28-5

TM1 and TM2
See: thermal monitoring, 14-12

TMR
Trigger Mode Register, 10-45, 10-56, 10-60, 

10-68
TMR (Trigger Mode Register), local APIC, 10-43
TPR

Task Priority Register, 10-55, 10-60
TR (trace message enable) flag

DEBUGCTLMSR MSR, 16-15, 16-39, 16-42, 16-45, 
16-47

Trace cache, 11-6
Transcendental instruction accuracy, 19-10, 19-20
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and trap gates, 
6-19
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for 16-bit and 32-bit code modules, 18-2
handling a virtual-8086 mode interrupt or 

exception through, 17-18
in IDT, 6-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-7
layout of, 6-14

Traps
description of, 6-6
restarting a program or task after, 6-7

TS (task switched) flag
CR0 control register, 2-20, 2-30, 6-36, 12-1, 

13-4, 13-10
TSD (time-stamp counter disable) flag

CR4 control register, 2-23, 5-34, 16-50, 19-24
TSS

16-bit TSS, structure of, 7-21
32-bit TSS, structure of, 7-4
64-bit mode, 7-22
CR3 control register (PDBR), 7-5, 7-19
description of, 2-5, 2-6, 7-1, 7-4
EFLAGS register, 7-5
EFLAGS.NT, 7-16
EIP, 7-6
executing a task, 7-3
floating-point save area, 19-16
format in 64-bit mode, 7-22
general-purpose registers, 7-5
IA-32e mode, 2-7
initialization for multitasking, 9-14
interrupt stack table, 7-23
invalid TSS exception, 6-42
IRET instruction, 7-16
I/O map base address field, 7-6, 19-39
I/O permission bit map, 7-6, 7-23
LDT segment selector field, 7-6, 7-19
link field, 6-20
order of reads/writes to, 19-39
pointed to by task-gate descriptor, 7-11
previous task link field, 7-6, 7-16, 7-18
privilege-level 0, 1, and 2 stacks, 5-26
referenced by task gate, 6-20
segment registers, 7-5
T (debug trap) flag, 7-6
task register, 7-9
using 16-bit TSSs in a 32-bit environment, 19-39
virtual-mode extensions, 19-39

TSS descriptor
B (busy) flag, 7-7
busy flag, 7-18
initialization for multitasking, 9-14
structure of, 7-7, 7-8

TSS segment selector
field, task-gate descriptor, 7-11
writes, 19-39

Type
checking, 5-7
field, IA32_MTRR_DEF_TYPE MSR, 11-33

field, IA32_MTRR_PHYSBASEn MTRR, 11-35, 
11-37

field, segment descriptor, 3-14, 3-16, 3-19, 5-2, 
5-7

of segment, 5-7

U
UC- (uncacheable) memory type, 11-9
UD2 instruction, 19-6
Uncached (UC-) memory type, 11-12
Uncached (UC) memory type (see Strong uncached 

(UC) memory type)
Undefined opcodes, 19-7
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs 

(P6 family processors), 30-5, 30-7, 30-8, 
30-9, 30-10, 30-11, 30-12, 30-13, 30-20, 
30-21, 30-22, 30-37, 30-40, 30-50, 
30-51, 30-52, 30-116

Un-normal number, 19-12
User mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

User-defined interrupts, 6-2, 6-68
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1 

MSRs (P6 family processors), 30-5, 30-7, 
30-8, 30-9, 30-11, 30-12, 30-13, 30-20, 
30-21, 30-22, 30-37, 30-40, 30-50, 
30-51, 30-52, 30-116

U/S (user/supervisor) flag
page-directory entry, 5-2, 5-3, 5-40
page-table entries, 17-11
page-table entry, 5-2, 5-3, 5-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 11-36, 11-37
Variable-range MTRRs, description of, 11-34, 11-37
VCNT (variable range registers count) field, 

IA32_MTRRCAP MSR, 11-32
Vectors

exceptions, 6-2
interrupts, 6-2
reserved, 10-41

VERR instruction, 2-30, 5-36
VERW instruction, 2-30, 5-36
VIF (virtual interrupt) flag

EFLAGS register, 2-14, 2-15, 19-8
VIP (virtual interrupt pending) flag

EFLAGS register, 2-14, 2-15, 19-8
Virtual memory, 2-8, 3-1, 3-2
Virtual-8086 mode

8086 emulation, 17-1
description of, 17-8
emulating 8086 operating system calls, 17-27
enabling, 17-9
entering, 17-11
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exception and interrupt handling overview, 17-16
exceptions and interrupts, handling through a task 

gate, 17-20
exceptions and interrupts, handling through a trap 

or interrupt gate, 17-18
handling exceptions and interrupts through a task 

gate, 17-21
interrupts, 17-8
introduction to, 2-11
IOPL sensitive instructions, 17-15
I/O-port-mapped I/O, 17-15
leaving, 17-14
memory mapped I/O, 17-16
native 16-bit mode, 18-1
overview of, 17-1
paging of virtual-8086 tasks, 17-10
protection within a virtual-8086 task, 17-11
special I/O buffers, 17-16
structure of a virtual-8086 task, 17-9
virtual I/O, 17-15
VM flag, EFLAGS register, 2-14

Virtual-8086 tasks
paging of, 17-10
protection within, 17-11
structure of, 17-9

Virtualization
debugging facilities, 28-1
interrupt vector space, 29-4
memory, 28-3
microcode update facilities, 28-11
operating modes, 28-3
page faults, 28-8
system resources, 28-1
TLBs, 28-5

VM
OSs and application software, 27-1
programming considerations, 27-1

VM entries
basic VM-entry checks, 23-2
checking guest state

control registers, 23-10
debug registers, 23-10
descriptor-table registers, 23-15
MSRs, 23-10
non-register state, 23-16
RIP and RFLAGS, 23-15
segment registers, 23-12

checks on controls, host-state area, 23-3
registers and MSRs, 23-8
segment and descriptor-table registers, 23-9
VMX control checks, 23-3

exit-reason numbers, I-1
loading guest state, 23-19

control and debug registers, MSRs, 23-20
RIP, RSP, RFLAGS, 23-22
segment & descriptor-table registers, 23-21

loading MSRs, 23-23
failure cases, 23-23

VM-entry MSR-load area, 23-23
overview of failure conditions, 23-1
overview of steps, 23-1
VMLAUNCH and VMRESUME, 23-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 24-1
updating state before exit, 24-2

basic VM-exit information fields, 24-5
basic exit reasons, 24-5
exit qualification, 24-6

exception bitmap, 24-1
exceptions (faults, traps, and aborts), 22-14
exit-reason numbers, I-1
external interrupts, 22-14
handling of exits due to exceptions, 27-12
IA-32 faults and VM exits, 22-1
INITs, 22-15
instructions that cause:

conditional exits, 22-3
unconditional exits, 22-2

interrupt-window exiting, 22-15
non-maskable interrupts (NMIs), 22-14
overview of, 24-1
page faults, 22-14
reflecting exceptions to guest, 27-12
resuming guest after exception handling, 27-14
start-up IPIs (SIPIs), 22-15
task switches, 22-15
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-12, 2-14

VMCLEAR instruction, 27-10
VMCS

field encodings, 1-6, H-1
16-bit guest-state fields, H-1
16-bit host-state fields, H-2
32-bit control fields, H-1, H-6
32-bit guest-state fields, H-7
32-bit read-only data fields, H-7
64-bit control fields, H-3
64-bit guest-state fields, H-4, H-5
natural-width control fields, H-9
natural-width guest-state fields, H-10
natural-width host-state fields, H-11
natural-width read-only data fields, H-10

format of VMCS region, 21-3
guest-state area, 21-4, 21-5

guest non-register state, 21-7
guest register state, 21-5

host-state area, 21-4, 21-10
introduction, 21-1
migrating between processors, 21-31
software access to, 21-31
VMCS data, 21-3
VMCS pointer, 21-1, 27-2
VMCS region, 21-1, 27-2
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VMCS revision identifier, 21-3
VM-entry control fields, 21-4, 21-24

entry controls, 21-24
entry controls for event injection, 21-25
entry controls for MSRs, 21-25

VM-execution control fields, 21-4, 21-11
controls for CR8 accesses, 21-18
CR3-target controls, 21-17
exception bitmap, 21-16
I/O bitmaps, 21-16
masks & read shadows CR0 & CR4, 21-17
pin-based controls, 21-11
processor-based controls, 21-12
time-stamp counter offset, 21-17

VM-exit control fields, 21-4, 21-21
exit controls, 21-21
exit controls for MSRs, 21-23

VM-exit information fields, 21-4, 21-27
basic exit information, 21-27, I-1
basic VM-exit information, 21-27
exits due to instruction execution, 21-30
exits due to vectored events, 21-28
exits occurring during event delivery, 21-29
VM-instruction error field, 21-30

VM-instruction error field, 23-1
VMREAD instruction, 27-2

field encodings, 1-6, H-1
VMWRITE instruction, 27-2

field encodings, 1-6, H-1
VMX-abort indicator, 21-3
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control 
register, 2-14, 2-15, 2-23, 19-24

VMLAUNCH instruction, 27-11
VMM

asymmetric design, 27-15
control registers, 27-25
CPUID instruction emulation, 27-18
debug exceptions, 28-2
debugging facilities, 28-1, 28-2
entering VMX root operation, 27-6
error handling, 27-4
exception bitmap, 28-2
external interrupts, 29-1
fast instruction set emulator, 27-1
index data pairs, usage of, 27-17
interrupt handling, 29-1
interrupt vectors, 29-4
leaving VMX operation, 27-6
machine checks, 29-12, 29-13, 29-15
memory virtualization, 28-3
microcode update facilities, 28-11
multi-processor considerations, 27-15
operating modes, 27-18
programming considerations, 27-1
response to page faults, 28-8
root VMCS, 27-2
SMI transfer monitor, 27-6

steps for launching VMs, 27-10
SWAPGS instruction, 27-23
symmetric design, 27-15
SYSCALL/SYSRET instructions, 27-23
SYSENTER/SYSEXIT instructions, 27-23
triple faults, 29-1
virtual TLBs, 28-5
virtual-8086 container, 27-1
virtualization of system resources, 28-1
VM exits, 24-1
VM exits, handling of, 27-11
VMCLEAR instruction, 27-10
VMCS field width, 27-19
VMCS pointer, 27-2
VMCS region, 27-2
VMCS revision identifier, 27-2
VMCS, writing/reading fields, 27-3
VM-exit failures, 29-11
VMLAUNCH instruction, 27-11
VMREAD instruction, 27-3
VMRESUME instruction, 27-11
VMWRITE instruction, 27-3, 27-10
VMXOFF instruction, 27-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, 29-1
VMREAD instruction, 27-2, 27-3

field encodings, H-1
VMRESUME instruction, 27-11
VMWRITE instruction, 27-2, 27-3, 27-10

field encodings, H-1
VMX

A20M# signal, 20-5
capability MSRs

overview, 20-3, G-1
IA32_VMX_BASIC MSR, 21-4, 27-2, 27-7, 

27-8, 27-9, 27-17, B-63, B-79, B-99, 
B-150, B-199, B-219, G-1, G-3

IA32_VMX_CR0_FIXED0 MSR, 20-5, 27-6, 
B-63, B-80, B-99, B-151, B-199, B-220, 
G-9

IA32_VMX_CR0_FIXED1 MSR, 20-5, 27-6, 
B-63, B-80, B-99, B-151, B-200, B-220, 
G-9

IA32_VMX_CR4_FIXED0 MSR, 20-5, 27-6, 
B-64, B-80, B-99, B-151, B-200, B-220

IA32_VMX_CR4_FIXED1 MSR, 20-5, 27-6, 
B-64, B-80, B-99, B-100, B-151, B-200, 
B-220, B-221

IA32_VMX_ENTRY_CTLS MSR, 27-7, 27-8, 
27-9, B-63, B-80, B-99, B-151, B-199, 
B-220, G-3, G-7, G-8

IA32_VMX_EXIT_CTLS MSR, 27-7, 27-8, 27-9, 
B-63, B-80, B-99, B-151, B-199, B-220, 
G-3, G-6, G-7

IA32_VMX_MISC MSR, 21-8, 23-4, 23-16, 
26-36, B-63, B-80, B-99, B-151, B-199, 
B-220, G-8
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IA32_VMX_PINBASED_CTLS MSR, 27-7, 27-8, 
27-9, B-63, B-79, B-99, B-150, B-199, 
B-219, G-3, G-4

IA32_VMX_PROCBASED_CTLS MSR, 21-12, 
27-7, 27-8, 27-9, B-63, B-64, B-80, B-99, 
B-100, B-150, B-151, B-199, B-220, 
B-221, G-3, G-4, G-5, G-6, G-10

IA32_VMX_VMCS_ENUM MSR, B-200
CPUID instruction, 20-3, G-1
CR4 control register, 20-4
CR4 fixed bits, G-9
debugging facilities, 28-1
EFLAGS, 27-4
entering operation, 20-4
entering root operation, 27-6
error handling, 27-4
guest software, 20-1
IA32_FEATURE_CONTROL MSR, 20-4
INIT# signal, 20-6
instruction set, 20-3
introduction, 20-1
memory virtualization, 28-3
microcode update facilities, 22-21, 28-11, 28-12
non-root operation, 20-1

event blocking, 22-26
instruction changes, 22-16
overview, 22-1
task switches not allowed, 22-26
see VM exits

operation restrictions, 20-5
root operation, 20-1
SMM

CR4.VMXE reserved, 26-26
overview, 26-2
RSM instruction, 26-25
VMCS pointer, 26-23
VMX-critical state, 26-23

testing for support, 20-3
virtual TLBs, 28-5
virtual-machine control structure (VMCS), 20-3
virtual-machine monitor (VMM), 20-1
vitualization of system resources, 28-1
VM entries and exits, 20-1
VM exits, 24-1
VMCS pointer, 20-3
VMM life cycle, 20-2
VMXOFF instruction, 20-4
VMXON instruction, 20-4
VMXON pointer, 20-4
VMXON region, 20-4
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 20-4
VMXON instruction, 20-4

W
WAIT/FWAIT instructions, 6-36, 19-10, 19-21
WB (write back) memory type, 8-24, 11-10, 11-12

WB (write-back) pin (Pentium processor), 11-19
WBINVD instruction, 2-31, 5-34, 11-24, 11-25, 19-6
WB/WT# pins, 11-19
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 11-32
memory type, 11-9, 11-12

WP (write protected) memory type, 11-10
WP (write protect) flag

CR0 control register, 2-20, 5-41, 19-25
Write

hit, 11-7
Write combining (WC) buffer, 11-5, 11-11
Write-back caching, 11-8
WRMSR instruction, 2-26, 2-32, 2-33, 2-34, 5-34, 

8-25, 16-38, 16-46, 16-50, 19-6, 19-49, 
22-21, 30-72, 30-115, 30-117, 30-119

WT (write through) memory type, 11-10, 11-12
WT# (write-through) pin (Pentium processor), 11-19

X
x2APIC ID, 10-58, 10-60, 10-64, 10-67
x2APIC Mode, 10-45, 10-54, 10-55, 10-58, 10-60, 

10-64, 10-65, 10-66, 10-67
x87 FPU

compatibility with IA-32 x87 FPUs and math 
coprocessors, 19-9

configuring the x87 FPU environment, 9-6
device-not-available exception, 6-36
effect of MMX instructions on pending x87 

floating-point exceptions, 12-6
effects of MMX instructions on x87 FPU state, 

12-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR 

instructions on x87 FPU tag word, 12-3
error signals, 19-14, 19-15
initialization, 9-6
instruction synchronization, 19-21
register stack, aliasing with MMX registers, 12-2
setting up for software emulation of x87 FPU 

functions, 9-7
using TS flag to control saving of x87 FPU state, 

13-10
x87 floating-point error exception (#MF), 6-58

x87 FPU control word
compatibility, IA-32 processors, 19-11

x87 FPU floating-point error exception (#MF), 6-58
x87 FPU status word

condition code flags, 19-10
x87 FPU tag word, 19-11
XADD instruction, 8-5, 19-6
xAPIC, 10-55, 10-58

determining lowest priority processor, 10-36
interrupt control register, 10-30
introduction to, 10-5
message passing protocol on system bus, 10-48
new features, 19-38
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spurious vector, 10-47
using system bus, 10-5

xAPIC Mode, 10-45, 10-54, 10-60, 10-64, 10-65, 
10-66

XCHG instruction, 8-4, 8-5, 8-23
XFEATURE_ENABLED_MASK, 2-25, 13-13, 13-14, 

13-15, 13-17, 13-18
XGETBV, 2-25, 2-28, 2-29, 13-13, 13-18
XMM registers, saving, 13-8
XOR instruction, 8-5
XSAVE, 2-25, 13-1, 13-12, 13-13, 13-14, 13-15, 

13-16, 13-17, 13-18
XSETBV, 2-25, 2-26, 2-28, 2-34, 13-1, 13-13, 13-17

Z
ZF flag, EFLAGS register, 5-36
-, B-208
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