
Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3 (3A & 3B):
System Programming Guide

NOTE: The Intel 64 and IA-32 Architectures Software Developer's Manual
consists of three volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-Z, Order Number 325383; System
Programming Guide, Order Number 325384. Refer to all three volumes
when evaluating your design needs.

Order Number: 325384-039US
May 2011

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR IN-
TENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITU-
ATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or "un-
defined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Intel® Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an Intel® HT Technology enabled chipset, BIOS and operating system.
Performance will vary depending on the specific hardware and software you use. For more information, see
http://www.intel.com/technology/hyperthread/index.htm; including details on which processors support Intel HT
Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo,
Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, Intel Atom, and VTune are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s website at http://www.intel.com

Copyright © 1997-2011 Intel Corporation
ii Vol. 3A

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 PROCESSORS COVERED IN THIS MANUAL . 1-1
1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE . 1-3
1.3 NOTATIONAL CONVENTIONS . 1-6
1.3.1 Bit and Byte Order . 1-6
1.3.2 Reserved Bits and Software Compatibility . 1-7
1.3.3 Instruction Operands . 1-8
1.3.4 Hexadecimal and Binary Numbers. 1-8
1.3.5 Segmented Addressing. 1-8
1.3.6 Syntax for CPUID, CR, and MSR Values . 1-9
1.3.7 Exceptions . 1-10
1.4 RELATED LITERATURE . 1-11

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW
2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE . 2-2
2.1.1 Global and Local Descriptor Tables . 2-5
2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode . 2-5
2.1.2 System Segments, Segment Descriptors, and Gates. 2-5
2.1.2.1 Gates in IA-32e Mode . 2-6
2.1.3 Task-State Segments and Task Gates . 2-6
2.1.3.1 Task-State Segments in IA-32e Mode . 2-7
2.1.4 Interrupt and Exception Handling . 2-7
2.1.4.1 Interrupt and Exception Handling IA-32e Mode . 2-7
2.1.5 Memory Management . 2-8
2.1.5.1 Memory Management in IA-32e Mode . 2-8
2.1.6 System Registers . 2-9
2.1.6.1 System Registers in IA-32e Mode . 2-9
2.1.7 Other System Resources . 2-10
2.2 MODES OF OPERATION . 2-10
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER . 2-12
2.3.1 System Flags and Fields in IA-32e Mode. 2-15
2.4 MEMORY-MANAGEMENT REGISTERS . 2-15
2.4.1 Global Descriptor Table Register (GDTR). 2-16
2.4.2 Local Descriptor Table Register (LDTR) . 2-16
2.4.3 IDTR Interrupt Descriptor Table Register . 2-17
2.4.4 Task Register (TR) . 2-17
2.5 CONTROL REGISTERS . 2-17
2.5.1 CPUID Qualification of Control Register Flags . 2-26
2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0) . 2-26
2.7 SYSTEM INSTRUCTION SUMMARY. 2-27
2.7.1 Loading and Storing System Registers . 2-29
2.7.2 Verifying of Access Privileges . 2-30
2.7.3 Loading and Storing Debug Registers . 2-30
2.7.4 Invalidating Caches and TLBs . 2-31
2.7.5 Controlling the Processor. 2-31
Vol. 3A iii

CONTENTS
PAGE
2.7.6 Reading Performance-Monitoring and Time-Stamp Counters . 2-32
2.7.6.1 Reading Counters in 64-Bit Mode . 2-33
2.7.7 Reading and Writing Model-Specific Registers . 2-33
2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode. 2-33
2.7.8 Enabling Processor Extended States . 2-34

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW. 3-1
3.2 USING SEGMENTS . 3-3
3.2.1 Basic Flat Model. 3-3
3.2.2 Protected Flat Model . 3-4
3.2.3 Multi-Segment Model. 3-5
3.2.4 Segmentation in IA-32e Mode . 3-6
3.2.5 Paging and Segmentation . 3-7
3.3 PHYSICAL ADDRESS SPACE . 3-7
3.3.1 Intel® 64 Processors and Physical Address Space . 3-8
3.4 LOGICAL AND LINEAR ADDRESSES . 3-8
3.4.1 Logical Address Translation in IA-32e Mode . 3-9
3.4.2 Segment Selectors . 3-9
3.4.3 Segment Registers. 3-10
3.4.4 Segment Loading Instructions in IA-32e Mode . 3-12
3.4.5 Segment Descriptors . 3-13
3.4.5.1 Code- and Data-Segment Descriptor Types . 3-16
3.5 SYSTEM DESCRIPTOR TYPES . 3-18
3.5.1 Segment Descriptor Tables . 3-20
3.5.2 Segment Descriptor Tables in IA-32e Mode. 3-22

CHAPTER 4
PAGING
4.1 PAGING MODES AND CONTROL BITS . 4-1
4.1.1 Three Paging Modes . 4-2
4.1.2 Paging-Mode Enabling . 4-4
4.1.3 Paging-Mode Modifiers . 4-5
4.1.4 Enumeration of Paging Features by CPUID . 4-6
4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW . 4-7
4.3 32-BIT PAGING. 4-10
4.4 PAE PAGING . 4-17
4.4.1 PDPTE Registers . 4-17
4.4.2 Linear-Address Translation with PAE Paging. 4-19
4.5 IA-32E PAGING. 4-26
4.6 ACCESS RIGHTS . 4-40
4.7 PAGE-FAULT EXCEPTIONS. 4-41
4.8 ACCESSED AND DIRTY FLAGS . 4-43
4.9 PAGING AND MEMORY TYPING. 4-43
4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium II

Processors) . 4-44
4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent

Processor Families) . 4-44
4.9.3 Caching Paging-Related Information about Memory Typing . 4-45
iv Vol. 3A

CONTENTS
PAGE
4.10 CACHING TRANSLATION INFORMATION. 4-45
4.10.1 Process-Context Identifiers (PCIDs) .4-46
4.10.2 Translation Lookaside Buffers (TLBs) .4-47
4.10.2.1 Page Numbers, Page Frames, and Page Offsets .4-47
4.10.2.2 Caching Translations in TLBs .4-48
4.10.2.3 Details of TLB Use. .4-48
4.10.2.4 Global Pages .4-49
4.10.3 Paging-Structure Caches .4-50
4.10.3.1 Caches for Paging Structures .4-50
4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses 4-52
4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry.4-53
4.10.4 Invalidation of TLBs and Paging-Structure Caches .4-54
4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches 4-54
4.10.4.2 Recommended Invalidation. .4-56
4.10.4.3 Optional Invalidation .4-58
4.10.4.4 Delayed Invalidation .4-59
4.10.5 Propagation of Paging-Structure Changes to Multiple Processors 4-60
4.11 INTERACTIONS WITH VIRTUAL-MACHINE EXTENSIONS (VMX) . 4-62
4.11.1 VMX Transitions. .4-62
4.11.2 VMX Support for Address Translation .4-62
4.12 USING PAGING FOR VIRTUAL MEMORY . 4-63
4.13 MAPPING SEGMENTS TO PAGES . 4-64

CHAPTER 5
PROTECTION
5.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION . 5-1
5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTION 5-2
5.2.1 Code Segment Descriptor in 64-bit Mode . 5-5
5.3 LIMIT CHECKING . 5-6
5.3.1 Limit Checking in 64-bit Mode . 5-7
5.4 TYPE CHECKING . 5-7
5.4.1 Null Segment Selector Checking . 5-9
5.4.1.1 NULL Segment Checking in 64-bit Mode . 5-9
5.5 PRIVILEGE LEVELS. 5-9
5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA SEGMENTS 5-12
5.6.1 Accessing Data in Code Segments .5-14
5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS REGISTER . 5-14
5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL BETWEEN CODE

SEGMENTS . 5-14
5.8.1 Direct Calls or Jumps to Code Segments .5-15
5.8.1.1 Accessing Nonconforming Code Segments .5-16
5.8.1.2 Accessing Conforming Code Segments. .5-17
5.8.2 Gate Descriptors .5-18
5.8.3 Call Gates .5-19
5.8.3.1 IA-32e Mode Call Gates .5-20
5.8.4 Accessing a Code Segment Through a Call Gate .5-22
5.8.5 Stack Switching .5-25
5.8.5.1 Stack Switching in 64-bit Mode. .5-28
5.8.6 Returning from a Called Procedure .5-28
5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT

Instructions .5-30
Vol. 3A v

CONTENTS
PAGE
5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode. 5-31
5.8.8 Fast System Calls in 64-bit Mode. 5-32
5.9 PRIVILEGED INSTRUCTIONS . 5-33
5.10 POINTER VALIDATION. 5-34
5.10.1 Checking Access Rights (LAR Instruction). 5-35
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions) . 5-36
5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction). 5-36
5.10.4 Checking Caller Access Privileges (ARPL Instruction) . 5-37
5.10.5 Checking Alignment . 5-39
5.11 PAGE-LEVEL PROTECTION . 5-39
5.11.1 Page-Protection Flags . 5-40
5.11.2 Restricting Addressable Domain . 5-40
5.11.3 Page Type . 5-40
5.11.4 Combining Protection of Both Levels of Page Tables . 5-41
5.11.5 Overrides to Page Protection . 5-41
5.12 COMBINING PAGE AND SEGMENT PROTECTION . 5-41
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE BIT. 5-43
5.13.1 Detecting and Enabling the Execute-Disable Capability . 5-43
5.13.2 Execute-Disable Page Protection . 5-44
5.13.3 Reserved Bit Checking . 5-45
5.13.4 Exception Handling. 5-47

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING
6.1 INTERRUPT AND EXCEPTION OVERVIEW . 6-1
6.2 EXCEPTION AND INTERRUPT VECTORS . 6-2
6.3 SOURCES OF INTERRUPTS. 6-2
6.3.1 External Interrupts. 6-2
6.3.2 Maskable Hardware Interrupts. 6-5
6.3.3 Software-Generated Interrupts . 6-5
6.4 SOURCES OF EXCEPTIONS . 6-5
6.4.1 Program-Error Exceptions . 6-5
6.4.2 Software-Generated Exceptions . 6-6
6.4.3 Machine-Check Exceptions. 6-6
6.5 EXCEPTION CLASSIFICATIONS . 6-6
6.6 PROGRAM OR TASK RESTART . 6-7
6.7 NONMASKABLE INTERRUPT (NMI) . 6-8
6.7.1 Handling Multiple NMIs . 6-9
6.8 ENABLING AND DISABLING INTERRUPTS . 6-9
6.8.1 Masking Maskable Hardware Interrupts . 6-9
6.8.2 Masking Instruction Breakpoints . 6-10
6.8.3 Masking Exceptions and Interrupts When Switching Stacks . 6-11
6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 6-11
6.10 INTERRUPT DESCRIPTOR TABLE (IDT). 6-12
6.11 IDT DESCRIPTORS. 6-14
6.12 EXCEPTION AND INTERRUPT HANDLING . 6-15
6.12.1 Exception- or Interrupt-Handler Procedures . 6-16
6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures 6-18
6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure . 6-19
6.12.2 Interrupt Tasks . 6-20
6.13 ERROR CODE . 6-21
vi Vol. 3A

CONTENTS
PAGE
6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE. 6-22
6.14.1 64-Bit Mode IDT .6-23
6.14.2 64-Bit Mode Stack Frame .6-24
6.14.3 IRET in IA-32e Mode .6-25
6.14.4 Stack Switching in IA-32e Mode .6-25
6.14.5 Interrupt Stack Table .6-26
6.15 EXCEPTION AND INTERRUPT REFERENCE. 6-27

Interrupt 0—Divide Error Exception (#DE). .6-28
Interrupt 1—Debug Exception (#DB). .6-29
Interrupt 2—NMI Interrupt .6-30
Interrupt 3—Breakpoint Exception (#BP) .6-31
Interrupt 4—Overflow Exception (#OF) .6-32
Interrupt 5—BOUND Range Exceeded Exception (#BR) .6-33
Interrupt 6—Invalid Opcode Exception (#UD) .6-34
Interrupt 7—Device Not Available Exception (#NM). .6-36
Interrupt 8—Double Fault Exception (#DF) .6-38
Interrupt 9—Coprocessor Segment Overrun. .6-41
Interrupt 10—Invalid TSS Exception (#TS) .6-42
Interrupt 11—Segment Not Present (#NP). .6-46
Interrupt 12—Stack Fault Exception (#SS) .6-48
Interrupt 13—General Protection Exception (#GP). .6-50
Interrupt 14—Page-Fault Exception (#PF) .6-54
Interrupt 16—x87 FPU Floating-Point Error (#MF). .6-58
Interrupt 17—Alignment Check Exception (#AC). .6-60
Interrupt 18—Machine-Check Exception (#MC) .6-63
Interrupt 19—SIMD Floating-Point Exception (#XM) .6-65
Interrupts 32 to 255—User Defined Interrupts. .6-68

CHAPTER 7
TASK MANAGEMENT
7.1 TASK MANAGEMENT OVERVIEW . 7-1
7.1.1 Task Structure . 7-1
7.1.2 Task State . 7-2
7.1.3 Executing a Task . 7-3
7.2 TASK MANAGEMENT DATA STRUCTURES. 7-4
7.2.1 Task-State Segment (TSS) . 7-4
7.2.2 TSS Descriptor . 7-7
7.2.3 TSS Descriptor in 64-bit mode. 7-8
7.2.4 Task Register . 7-9
7.2.5 Task-Gate Descriptor .7-11
7.3 TASK SWITCHING . 7-12
7.4 TASK LINKING . 7-16
7.4.1 Use of Busy Flag To Prevent Recursive Task Switching. .7-18
7.4.2 Modifying Task Linkages .7-18
7.5 TASK ADDRESS SPACE. 7-19
7.5.1 Mapping Tasks to the Linear and Physical Address Spaces .7-19
7.5.2 Task Logical Address Space .7-20
7.6 16-BIT TASK-STATE SEGMENT (TSS) . 7-21
7.7 TASK MANAGEMENT IN 64-BIT MODE . 7-22
Vol. 3A vii

CONTENTS
PAGE
CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT
8.1 LOCKED ATOMIC OPERATIONS . 8-2
8.1.1 Guaranteed Atomic Operations . 8-3
8.1.2 Bus Locking. 8-4
8.1.2.1 Automatic Locking . 8-4
8.1.2.2 Software Controlled Bus Locking . 8-5
8.1.3 Handling Self- and Cross-Modifying Code . 8-6
8.1.4 Effects of a LOCK Operation on Internal Processor Caches . 8-7
8.2 MEMORY ORDERING. 8-8
8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors 8-8
8.2.2 Memory Ordering in P6 and More Recent Processor Families . 8-9
8.2.3 Examples Illustrating the Memory-Ordering Principles . 8-11
8.2.3.1 Assumptions, Terminology, and Notation . 8-12
8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations 8-13
8.2.3.3 Stores Are Not Reordered With Earlier Loads . 8-13
8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations 8-14
8.2.3.5 Intra-Processor Forwarding Is Allowed . 8-15
8.2.3.6 Stores Are Transitively Visible . 8-15
8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors 8-16
8.2.3.8 Locked Instructions Have a Total Order . 8-17
8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions 8-17
8.2.4 Out-of-Order Stores and Fast-String Operation . 8-18
8.2.4.1 Memory-Ordering Model for String Operations on Write-back (WB) Memory 8-19
8.2.4.2 Examples Illustrating Memory-Ordering Principles for String Operations. 8-20
8.2.5 Strengthening or Weakening the Memory-Ordering Model . 8-23
8.3 SERIALIZING INSTRUCTIONS . 8-25
8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION . 8-27
8.4.1 BSP and AP Processors. 8-27
8.4.2 MP Initialization Protocol Requirements and Restrictions . 8-28
8.4.3 MP Initialization Protocol Algorithm for Intel Xeon Processors . 8-28
8.4.4 MP Initialization Example . 8-30
8.4.4.1 Typical BSP Initialization Sequence. 8-31
8.4.4.2 Typical AP Initialization Sequence. 8-33
8.4.5 Identifying Logical Processors in an MP System. 8-33
8.5 INTEL® HYPER-THREADING TECHNOLOGY AND INTEL® MULTI-CORE TECHNOLOGY . 8-35
8.6 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY 8-36
8.6.1 Initializing Processors Supporting Hyper-Threading Technology 8-37
8.6.2 Initializing Multi-Core Processors . 8-38
8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware

Multi-Threading . 8-38
8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 8-38
8.7 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE . 8-39
8.7.1 State of the Logical Processors . 8-40
8.7.2 APIC Functionality . 8-41
8.7.3 Memory Type Range Registers (MTRR). 8-41
8.7.4 Page Attribute Table (PAT) . 8-42
8.7.5 Machine Check Architecture . 8-42
8.7.6 Debug Registers and Extensions . 8-42
8.7.7 Performance Monitoring Counters . 8-43
8.7.8 IA32_MISC_ENABLE MSR . 8-43
viii Vol. 3A

CONTENTS
PAGE
8.7.9 Memory Ordering .8-43
8.7.10 Serializing Instructions. .8-43
8.7.11 MICROCODE UPDATE Resources .8-44
8.7.12 Self Modifying Code .8-44
8.7.13 Implementation-Specific Intel HT Technology Facilities .8-44
8.7.13.1 Processor Caches. .8-44
8.7.13.2 Processor Translation Lookaside Buffers (TLBs). .8-45
8.7.13.3 Thermal Monitor. .8-45
8.7.13.4 External Signal Compatibility .8-46
8.8 MULTI-CORE ARCHITECTURE . 8-47
8.8.1 Logical Processor Support. .8-47
8.8.2 Memory Type Range Registers (MTRR) .8-47
8.8.3 Performance Monitoring Counters .8-48
8.8.4 IA32_MISC_ENABLE MSR .8-48
8.8.5 MICROCODE UPDATE Resources .8-48
8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING CAPABLE

PROCESSORS. 8-49
8.9.1 Hierarchical Mapping of Shared Resources .8-49
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf .8-51
8.9.3 Hierarchical ID of Logical Processors in an MP System .8-52
8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID. .8-54
8.9.4 Algorithm for Three-Level Mappings of APIC_ID .8-55
8.9.5 Identifying Topological Relationships in a MP System .8-61
8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS . 8-65
8.10.1 HLT Instruction. .8-65
8.10.2 PAUSE Instruction .8-66
8.10.3 Detecting Support MONITOR/MWAIT Instruction .8-66
8.10.4 MONITOR/MWAIT Instruction. .8-67
8.10.5 Monitor/Mwait Address Range Determination .8-68
8.10.6 Required Operating System Support. .8-69
8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops. .8-69
8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops .8-70
8.10.6.3 Halt Idle Logical Processors .8-72
8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops .8-72
8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution

Resources .8-73
8.10.6.6 Eliminate Execution-Based Timing Loops. .8-73
8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory.8-74

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1 INITIALIZATION OVERVIEW . 9-1
9.1.1 Processor State After Reset . 9-2
9.1.2 Processor Built-In Self-Test (BIST) . 9-2
9.1.3 Model and Stepping Information . 9-5
9.1.4 First Instruction Executed. 9-6
9.2 X87 FPU INITIALIZATION . 9-6
9.2.1 Configuring the x87 FPU Environment. 9-6
9.2.2 Setting the Processor for x87 FPU Software Emulation . 9-7
9.3 CACHE ENABLING. 9-8
9.4 MODEL-SPECIFIC REGISTERS (MSRS) . 9-9
Vol. 3A ix

CONTENTS
PAGE
9.5 MEMORY TYPE RANGE REGISTERS (MTRRS) . 9-9
9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS . 9-10
9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION. 9-10
9.7.1 Real-Address Mode IDT. 9-11
9.7.2 NMI Interrupt Handling . 9-11
9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION . 9-11
9.8.1 Protected-Mode System Data Structures . 9-12
9.8.2 Initializing Protected-Mode Exceptions and Interrupts. 9-13
9.8.3 Initializing Paging . 9-13
9.8.4 Initializing Multitasking . 9-14
9.8.5 Initializing IA-32e Mode . 9-14
9.8.5.1 IA-32e Mode System Data Structures . 9-15
9.8.5.2 IA-32e Mode Interrupts and Exceptions . 9-15
9.8.5.3 64-bit Mode and Compatibility Mode Operation . 9-16
9.8.5.4 Switching Out of IA-32e Mode Operation . 9-16
9.9 MODE SWITCHING . 9-17
9.9.1 Switching to Protected Mode . 9-17
9.9.2 Switching Back to Real-Address Mode. 9-18
9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE . 9-19
9.10.1 Assembler Usage . 9-22
9.10.2 STARTUP.ASM Listing . 9-23
9.10.3 MAIN.ASM Source Code. 9-33
9.10.4 Supporting Files. 9-34
9.11 MICROCODE UPDATE FACILITIES . 9-36
9.11.1 Microcode Update. 9-37
9.11.2 Optional Extended Signature Table . 9-41
9.11.3 Processor Identification . 9-41
9.11.4 Platform Identification . 9-42
9.11.5 Microcode Update Checksum . 9-44
9.11.6 Microcode Update Loader . 9-45
9.11.6.1 Hard Resets in Update Loading . 9-46
9.11.6.2 Update in a Multiprocessor System . 9-46
9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology 9-46
9.11.6.4 Update in a System Supporting Dual-Core Technology . 9-46
9.11.6.5 Update Loader Enhancements . 9-47
9.11.7 Update Signature and Verification . 9-47
9.11.7.1 Determining the Signature . 9-48
9.11.7.2 Authenticating the Update . 9-48
9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update Specifications. . 9-49
9.11.8.1 Responsibilities of the BIOS . 9-49
9.11.8.2 Responsibilities of the Calling Program . 9-52
9.11.8.3 Microcode Update Functions. 9-55
9.11.8.4 INT 15H-based Interface . 9-55
9.11.8.5 Function 00H—Presence Test . 9-56
9.11.8.6 Function 01H—Write Microcode Update Data . 9-57
9.11.8.7 Function 02H—Microcode Update Control . 9-62
9.11.8.8 Function 03H—Read Microcode Update Data . 9-63
9.11.8.9 Return Codes . 9-64
x Vol. 3A

CONTENTS
PAGE
CHAPTER 10
ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (APIC)
10.1 LOCAL AND I/O APIC OVERVIEW . 10-1
10.2 SYSTEM BUS VS. APIC BUS . 10-5
10.3 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, THE XAPIC, AND THE X2APIC. . . . 10-5
10.4 LOCAL APIC . 10-6
10.4.1 The Local APIC Block Diagram .10-6
10.4.2 Presence of the Local APIC. 10-10
10.4.3 Enabling or Disabling the Local APIC . 10-10
10.4.4 Local APIC Status and Location . 10-11
10.4.5 Relocating the Local APIC Registers . 10-12
10.4.6 Local APIC ID . 10-12
10.4.7 Local APIC State . 10-13
10.4.7.1 Local APIC State After Power-Up or Reset . 10-14
10.4.7.2 Local APIC State After It Has Been Software Disabled . 10-14
10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State) 10-15
10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI . 10-15
10.4.8 Local APIC Version Register . 10-15
10.5 HANDLING LOCAL INTERRUPTS . 10-16
10.5.1 Local Vector Table. 10-16
10.5.2 Valid Interrupt Vectors . 10-20
10.5.3 Error Handling. 10-20
10.5.4 APIC Timer . 10-22
10.5.4.1 TSC-Deadline Mode . 10-24
10.5.5 Local Interrupt Acceptance. 10-26
10.6 ISSUING INTERPROCESSOR INTERRUPTS . 10-26
10.6.1 Interrupt Command Register (ICR) . 10-26
10.6.2 Determining IPI Destination . 10-32
10.6.2.1 Physical Destination Mode . 10-33
10.6.2.2 Logical Destination Mode . 10-33
10.6.2.3 Broadcast/Self Delivery Mode . 10-35
10.6.2.4 Lowest Priority Delivery Mode . 10-36
10.6.3 IPI Delivery and Acceptance . 10-37
10.7 SYSTEM AND APIC BUS ARBITRATION . 10-37
10.8 HANDLING INTERRUPTS . 10-38
10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors 10-38
10.8.2 Interrupt Handling with the P6 Family and Pentium Processors 10-39
10.8.3 Interrupt, Task, and Processor Priority . 10-41
10.8.3.1 Task and Processor Priorities . 10-42
10.8.4 Interrupt Acceptance for Fixed Interrupts . 10-43
10.8.5 Signaling Interrupt Servicing Completion . 10-45
10.8.6 Task Priority in IA-32e Mode . 10-46
10.8.6.1 Interaction of Task Priorities between CR8 and APIC . 10-46
10.9 SPURIOUS INTERRUPT. 10-47
10.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY, PENTIUM

PROCESSORS) . 10-48
10.10.1 Bus Message Formats . 10-49
10.11 MESSAGE SIGNALLED INTERRUPTS. 10-49
10.11.1 Message Address Register Format . 10-50
10.11.2 Message Data Register Format . 10-51
Vol. 3A xi

CONTENTS
PAGE
10.12 EXTENDED XAPIC (X2APIC) . 10-53
10.12.1 Detecting and Enabling x2APIC Mode .10-53
10.12.1.1 Instructions to Access APIC Registers .10-54
10.12.1.2 x2APIC Register Address Space. .10-55
10.12.1.3 Reserved Bit Checking .10-58
10.12.2 x2APIC Register Availability .10-58
10.12.3 MSR Access in x2APIC Mode .10-59
10.12.4 VM-Exit Controls for MSRs and x2APIC Registers .10-59
10.12.5 x2APIC State Transitions .10-60
10.12.5.1 x2APIC States .10-60

x2APIC After Reset .10-61
x2APIC Transitions From x2APIC Mode. .10-62
x2APIC Transitions From Disabled Mode. .10-62
State Changes From xAPIC Mode to x2APIC Mode .10-62

10.12.6 Routing of Device Interrupts in x2APIC Mode .10-63
10.12.7 Initialization by System Software .10-63
10.12.8 CPUID Extensions And Topology Enumeration .10-63
10.12.8.1 Consistency of APIC IDs and CPUID. .10-64
10.12.9 ICR Operation in x2APIC Mode .10-65
10.12.10 Determining IPI Destination in x2APIC Mode .10-66
10.12.10.1 Logical Destination Mode in x2APIC Mode .10-66
10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID .10-67
10.12.11 SELF IPI Register. .10-67

CHAPTER 11
MEMORY CACHE CONTROL
11.1 INTERNAL CACHES, TLBS, AND BUFFERS . 11-1
11.2 CACHING TERMINOLOGY. 11-7
11.3 METHODS OF CACHING AVAILABLE . 11-8
11.3.1 Buffering of Write Combining Memory Locations. .11-11
11.3.2 Choosing a Memory Type. .11-12
11.3.3 Code Fetches in Uncacheable Memory. .11-13
11.4 CACHE CONTROL PROTOCOL . 11-13
11.5 CACHE CONTROL. 11-14
11.5.1 Cache Control Registers and Bits. .11-15
11.5.2 Precedence of Cache Controls .11-19
11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors11-20
11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families. .11-21
11.5.2.3 Writing Values Across Pages with Different Memory Types11-23
11.5.3 Preventing Caching .11-24
11.5.4 Disabling and Enabling the L3 Cache .11-25
11.5.5 Cache Management Instructions .11-25
11.5.6 L1 Data Cache Context Mode .11-26
11.5.6.1 Adaptive Mode. .11-26
11.5.6.2 Shared Mode .11-26
11.6 SELF-MODIFYING CODE . 11-27
11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, AND P6 FAMILY PROCESSORS) 11-27
11.8 EXPLICIT CACHING . 11-28
11.9 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS). 11-29
11.10 STORE BUFFER . 11-29
11.11 MEMORY TYPE RANGE REGISTERS (MTRRS) . 11-30
xii Vol. 3A

CONTENTS
PAGE
11.11.1 MTRR Feature Identification . 11-32
11.11.2 Setting Memory Ranges with MTRRs . 11-33
11.11.2.1 IA32_MTRR_DEF_TYPE MSR . 11-33
11.11.2.2 Fixed Range MTRRs . 11-34
11.11.2.3 Variable Range MTRRs. 11-34
11.11.2.4 System-Management Range Register Interface . 11-37
11.11.3 Example Base and Mask Calculations . 11-38
11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support11-40
11.11.4 Range Size and Alignment Requirement . 11-41
11.11.4.1 MTRR Precedences . 11-41
11.11.5 MTRR Initialization. 11-41
11.11.6 Remapping Memory Types . 11-42
11.11.7 MTRR Maintenance Programming Interface . 11-42
11.11.7.1 MemTypeGet() Function . 11-42
11.11.7.2 MemTypeSet() Function . 11-44
11.11.8 MTRR Considerations in MP Systems . 11-46
11.11.9 Large Page Size Considerations . 11-47
11.12 PAGE ATTRIBUTE TABLE (PAT). 11-48
11.12.1 Detecting Support for the PAT Feature . 11-48
11.12.2 IA32_PAT MSR . 11-49
11.12.3 Selecting a Memory Type from the PAT . 11-50
11.12.4 Programming the PAT . 11-50
11.12.5 PAT Compatibility with Earlier IA-32 Processors. 11-52

CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
12.1 EMULATION OF THE MMX INSTRUCTION SET. 12-1
12.2 THE MMX STATE AND MMX REGISTER ALIASING . 12-1
12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag

Word .12-3
12.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS . 12-4
12.4 SAVING MMX STATE ON TASK OR CONTEXT SWITCHES . 12-5
12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS 12-5
12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions.12-6
12.6 DEBUGGING MMX CODE . 12-6

CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
PROCESSOR EXTENDED STATES
13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR

SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS. 13-1
13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4

Extensions .13-2
13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support. .13-2
13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions 13-3
13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions .13-3
13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the

SSE/SSE2/SSE3/SSSE3/SSE4 Instructions. .13-5
13.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM)13-7
13.1.6.1 Numeric Error flag and IGNNE#. .13-7
Vol. 3A xiii

CONTENTS
PAGE
13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS. 13-8
13.3 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE 13-8
13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES . 13-9
13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND

SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR CONTEXT SWITCHES 13-9
13.5.1 Using the TS Flag to Control the Saving of the

x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State .13-10
13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE MANAGEMENT 13-12
13.6.1 XSAVE Header .13-13
13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND FXSAVE/FXRSTOR 13-15
13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR EXTENDED STATE SUPPORT. . 13-17
13.8.1 Application Programming Model and Processor Extended States.13-18
13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX) AND YMM STATE. 13-19
13.10 YMM STATE MANAGEMENT. 13-20
13.10.1 Detection of YMM State Support .13-20
13.10.2 Enabling of YMM State .13-20
13.10.3 Enabling of SIMD Floating-Exception Support .13-21
13.10.4 The Layout of XSAVE Area .13-21
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR. .13-23
13.10.6 Processor Extended State Save Optimization and XSAVEOPT13-24
13.10.6.1 XSAVEOPT Usage Guidelines .13-25

CHAPTER 14
POWER AND THERMAL MANAGEMENT
14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY . 14-1
14.1.1 Software Interface For Initiating Performance State Transitions 14-1
14.2 P-STATE HARDWARE COORDINATION . 14-2
14.3 SYSTEM SOFTWARE CONSIDERATIONS AND OPPORTUNISTIC PROCESSOR PERFORMANCE

OPERATION. 14-4
14.3.1 Intel Dynamic Acceleration . 14-4
14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation . 14-4
14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation 14-5
14.3.2.2 OS Control of Opportunistic Processor Performance Operation 14-5
14.3.2.3 Required Changes to OS Power Management P-state Policy 14-6
14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional). 14-7
14.3.3 Intel Turbo Boost Technology . 14-8
14.3.4 Performance and Energy Bias Hint support . 14-8
14.4 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENT . 14-9
14.5 THERMAL MONITORING AND PROTECTION . 14-10
14.5.1 Catastrophic Shutdown Detector .14-12
14.5.2 Thermal Monitor .14-12
14.5.2.1 Thermal Monitor 1 .14-12
14.5.2.2 Thermal Monitor 2 .14-12
14.5.2.3 Two Methods for Enabling TM2. .14-13
14.5.2.4 Performance State Transitions and Thermal Monitoring. .14-14
14.5.2.5 Thermal Status Information .14-14
14.5.2.6 Adaptive Thermal Monitor .14-16
14.5.3 Software Controlled Clock Modulation .14-16
14.5.3.1 Extension of Software Controlled Clock Modulation .14-18
14.5.4 Detection of Thermal Monitor and Software Controlled Clock Modulation

Facilities. .14-18
xiv Vol. 3A

CONTENTS
PAGE
14.5.4.1 Detection of Software Controlled Clock Modulation Extension 14-19
14.5.5 On Die Digital Thermal Sensors . 14-19
14.5.5.1 Digital Thermal Sensor Enumeration . 14-19
14.5.5.2 Reading the Digital Sensor . 14-19
14.5.6 Power Limit Notification . 14-23
14.6 PACKAGE LEVEL THERMAL MANAGEMENT. 14-23
14.6.1 Support for Passive and Active cooling . 14-27
14.7 PLATFORM SPECIFIC POWER MANAGEMENT SUPPORT . 14-27
14.7.1 RAPL Interfaces . 14-28
14.7.2 RAPL Domains and Platform Specificity . 14-29
14.7.3 Package RAPL Domain . 14-30
14.7.4 PP0/PP1 RAPL Domains . 14-33
14.7.5 DRAM RAPL Domain . 14-36

CHAPTER 15
MACHINE-CHECK ARCHITECTURE
15.1 MACHINE-CHECK ARCHITECTURE . 15-1
15.2 COMPATIBILITY WITH PENTIUM PROCESSOR . 15-1
15.3 MACHINE-CHECK MSRS . 15-2
15.3.1 Machine-Check Global Control MSRs .15-3
15.3.1.1 IA32_MCG_CAP MSR. .15-3
15.3.1.2 IA32_MCG_STATUS MSR. .15-4
15.3.1.3 IA32_MCG_CTL MSR .15-5
15.3.2 Error-Reporting Register Banks .15-5
15.3.2.1 IA32_MCi_CTL MSRs .15-5
15.3.2.2 IA32_MCi_STATUS MSRS .15-6
15.3.2.3 IA32_MCi_ADDR MSRs. 15-10
15.3.2.4 IA32_MCi_MISC MSRs . 15-11
15.3.2.5 IA32_MCi_CTL2 MSRs . 15-12
15.3.2.6 IA32_MCG Extended Machine Check State MSRs . 15-13
15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check

Architecture . 15-15
15.4 ENHANCED CACHE ERROR REPORTING . 15-16
15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT . 15-16
15.5.1 CMCI Local APIC Interface . 15-17
15.5.2 System Software Recommendation for Managing CMCI and Machine Check

Resources. 15-18
15.5.2.1 CMCI Initialization. 15-18
15.5.2.2 CMCI Threshold Management. 15-19
15.5.2.3 CMCI Interrupt Handler . 15-19
15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR) ERRORS . 15-20
15.6.1 Detection of Software Error Recovery Support . 15-20
15.6.2 UCR Error Reporting and Logging. 15-21
15.6.3 UCR Error Classification . 15-22
15.6.4 UCR Error Overwrite Rules . 15-23
15.7 MACHINE-CHECK AVAILABILITY . 15-24
15.8 MACHINE-CHECK INITIALIZATION . 15-24
15.9 INTERPRETING THE MCA ERROR CODES . 15-26
15.9.1 Simple Error Codes . 15-26
15.9.2 Compound Error Codes. 15-27
15.9.2.1 Correction Report Filtering (F) Bit . 15-28
Vol. 3A xv

CONTENTS
PAGE
15.9.2.2 Transaction Type (TT) Sub-Field .15-28
15.9.2.3 Level (LL) Sub-Field .15-28
15.9.2.4 Request (RRRR) Sub-Field .15-29
15.9.2.5 Bus and Interconnect Errors .15-29
15.9.2.6 Memory Controller Errors. .15-30
15.9.3 Architecturally Defined UCR Errors. .15-30
15.9.3.1 Architecturally Defined SRAO Errors .15-31
15.9.3.2 Architecturally Defined SRAR Errors .15-32
15.9.4 Multiple MCA Errors .15-34
15.9.5 Machine-Check Error Codes Interpretation. .15-35
15.10 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE. 15-35
15.10.1 Machine-Check Exception Handler .15-35
15.10.2 Pentium Processor Machine-Check Exception Handling .15-37
15.10.3 Logging Correctable Machine-Check Errors .15-37
15.10.4 Machine-Check Software Handler Guidelines for Error Recovery15-39
15.10.4.1 Machine-Check Exception Handler for Error Recovery .15-39
15.10.4.2 Corrected Machine-Check Handler for Error Recovery .15-45

CHAPTER 16
DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.1 OVERVIEW OF DEBUG SUPPORT FACILITIES . 16-1
16.2 DEBUG REGISTERS . 16-2
16.2.1 Debug Address Registers (DR0-DR3) . 16-4
16.2.2 Debug Registers DR4 and DR5. 16-4
16.2.3 Debug Status Register (DR6) . 16-4
16.2.4 Debug Control Register (DR7). 16-5
16.2.5 Breakpoint Field Recognition . 16-6
16.2.6 Debug Registers and Intel® 64 Processors . 16-8
16.3 DEBUG EXCEPTIONS . 16-9
16.3.1 Debug Exception (#DB)—Interrupt Vector 1 . 16-9
16.3.1.1 Instruction-Breakpoint Exception Condition. .16-10
16.3.1.2 Data Memory and I/O Breakpoint Exception Conditions. .16-12
16.3.1.3 General-Detect Exception Condition. .16-12
16.3.1.4 Single-Step Exception Condition .16-12
16.3.1.5 Task-Switch Exception Condition .16-13
16.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3 .16-13
16.4 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING OVERVIEW. 16-14
16.4.1 IA32_DEBUGCTL MSR .16-14
16.4.2 Monitoring Branches, Exceptions, and Interrupts. .16-16
16.4.3 Single-Stepping on Branches .16-16
16.4.4 Branch Trace Messages .16-17
16.4.4.1 Branch Trace Message Visibility .16-17
16.4.5 Branch Trace Store (BTS). .16-17
16.4.6 CPL-Qualified Branch Trace Mechanism. .16-18
16.4.7 Freezing LBR and Performance Counters on PMI. .16-18
16.4.8 LBR Stack .16-19
16.4.8.1 LBR Stack and Intel® 64 Processors .16-20
16.4.8.2 LBR Stack and IA-32 Processors .16-21
16.4.8.3 Last Exception Records and Intel 64 Architecture .16-21
16.4.9 BTS and DS Save Area .16-21
16.4.9.1 DS Save Area and IA-32e Mode Operation .16-25
xvi Vol. 3A

CONTENTS
PAGE
16.4.9.2 Setting Up the DS Save Area . 16-28
16.4.9.3 Setting Up the BTS Buffer . 16-29
16.4.9.4 Setting Up CPL-Qualified BTS . 16-30
16.4.9.5 Writing the DS Interrupt Service Routine . 16-31
16.5 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™2 DUO AND

INTEL® ATOM™ PROCESSOR FAMILY) . 16-32
16.5.1 LBR Stack . 16-33
16.6 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON

INTEL® MICROARCHITECTURE CODE NAME NEHALEM . 16-33
16.6.1 LBR Stack . 16-35
16.6.2 Filtering of Last Branch Records. 16-36
16.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING FOR PROCESSORS BASED ON

INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE . 16-36
16.8 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED ON INTEL

NETBURST® MICROARCHITECTURE) . 16-37
16.8.1 MSR_DEBUGCTLA MSR . 16-38
16.8.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture. 16-40
16.8.3 Last Exception Records . 16-41
16.9 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ SOLO AND

INTEL® CORE™ DUO PROCESSORS). 16-42
16.10 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PENTIUM M

PROCESSORS) . 16-44
16.11 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (P6 FAMILY

PROCESSORS) . 16-46
16.11.1 DEBUGCTLMSR Register . 16-46
16.11.2 Last Branch and Last Exception MSRs . 16-47
16.11.3 Monitoring Branches, Exceptions, and Interrupts . 16-48
16.12 TIME-STAMP COUNTER . 16-49
16.12.1 Invariant TSC. 16-50
16.12.2 IA32_TSC_AUX Register and RDTSCP Support . 16-51

CHAPTER 17
8086 EMULATION
17.1 REAL-ADDRESS MODE . 17-1
17.1.1 Address Translation in Real-Address Mode .17-3
17.1.2 Registers Supported in Real-Address Mode .17-4
17.1.3 Instructions Supported in Real-Address Mode .17-4
17.1.4 Interrupt and Exception Handling. .17-6
17.2 VIRTUAL-8086 MODE. 17-8
17.2.1 Enabling Virtual-8086 Mode .17-9
17.2.2 Structure of a Virtual-8086 Task .17-9
17.2.3 Paging of Virtual-8086 Tasks . 17-10
17.2.4 Protection within a Virtual-8086 Task . 17-11
17.2.5 Entering Virtual-8086 Mode . 17-11
17.2.6 Leaving Virtual-8086 Mode . 17-14
17.2.7 Sensitive Instructions. 17-15
17.2.8 Virtual-8086 Mode I/O . 17-15
17.2.8.1 I/O-Port-Mapped I/O . 17-15
17.2.8.2 Memory-Mapped I/O . 17-16
17.2.8.3 Special I/O Buffers. 17-16
Vol. 3A xvii

CONTENTS
PAGE
17.3 INTERRUPT AND EXCEPTION HANDLING
IN VIRTUAL-8086 MODE . 17-16

17.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode17-18
17.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt

Gate .17-18
17.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception

Handler .17-20
17.3.1.3 Handling an Interrupt or Exception Through a Task Gate .17-21
17.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual

Interrupt Mechanism .17-22
17.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode .17-24
17.3.3.1 Method 1: Software Interrupt Handling .17-27
17.3.3.2 Methods 2 and 3: Software Interrupt Handling .17-28
17.3.3.3 Method 4: Software Interrupt Handling .17-28
17.3.3.4 Method 5: Software Interrupt Handling .17-28
17.3.3.5 Method 6: Software Interrupt Handling .17-29
17.4 PROTECTED-MODE VIRTUAL INTERRUPTS . 17-30

CHAPTER 18
MIXING 16-BIT AND 32-BIT CODE
18.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES . 18-2
18.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 18-2
18.3 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS . 18-4
18.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS . 18-4
18.4.1 Code-Segment Pointer Size. 18-5
18.4.2 Stack Management for Control Transfer. 18-5
18.4.2.1 Controlling the Operand-Size Attribute For a Call . 18-7
18.4.2.2 Passing Parameters With a Gate . 18-8
18.4.3 Interrupt Control Transfers . 18-8
18.4.4 Parameter Translation . 18-8
18.4.5 Writing Interface Procedures . 18-9

CHAPTER 19
ARCHITECTURE COMPATIBILITY
19.1 PROCESSOR FAMILIES AND CATEGORIES . 19-1
19.2 RESERVED BITS. 19-2
19.3 ENABLING NEW FUNCTIONS AND MODES. 19-2
19.4 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE 19-3
19.5 INTEL MMX TECHNOLOGY . 19-3
19.6 STREAMING SIMD EXTENSIONS (SSE). 19-3
19.7 STREAMING SIMD EXTENSIONS 2 (SSE2) . 19-4
19.8 STREAMING SIMD EXTENSIONS 3 (SSE3) . 19-4
19.9 ADDITIONAL STREAMING SIMD EXTENSIONS . 19-4
19.10 INTEL HYPER-THREADING TECHNOLOGY . 19-5
19.11 MULTI-CORE TECHNOLOGY . 19-5
19.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR . 19-5
19.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS 19-5
19.13.1 Instructions Added Prior to the Pentium Processor . 19-6
19.14 OBSOLETE INSTRUCTIONS. 19-7
19.15 UNDEFINED OPCODES . 19-7
xviii Vol. 3A

CONTENTS
PAGE
19.16 NEW FLAGS IN THE EFLAGS REGISTER . 19-7
19.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors.19-8
19.17 STACK OPERATIONS . 19-8
19.17.1 PUSH SP .19-8
19.17.2 EFLAGS Pushed on the Stack. .19-9
19.18 X87 FPU . 19-9
19.18.1 Control Register CR0 Flags .19-9
19.18.2 x87 FPU Status Word. 19-10
19.18.2.1 Condition Code Flags (C0 through C3). 19-10
19.18.2.2 Stack Fault Flag . 19-11
19.18.3 x87 FPU Control Word . 19-11
19.18.4 x87 FPU Tag Word . 19-11
19.18.5 Data Types. 19-12
19.18.5.1 NaNs . 19-12
19.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats. 19-12
19.18.6 Floating-Point Exceptions . 19-13
19.18.6.1 Denormal Operand Exception (#D). 19-13
19.18.6.2 Numeric Overflow Exception (#O) . 19-13
19.18.6.3 Numeric Underflow Exception (#U) . 19-14
19.18.6.4 Exception Precedence . 19-14
19.18.6.5 CS and EIP For FPU Exceptions . 19-14
19.18.6.6 FPU Error Signals . 19-14
19.18.6.7 Assertion of the FERR# Pin . 19-15
19.18.6.8 Invalid Operation Exception On Denormals . 19-15
19.18.6.9 Alignment Check Exceptions (#AC) . 19-16
19.18.6.10 Segment Not Present Exception During FLDENV . 19-16
19.18.6.11 Device Not Available Exception (#NM) . 19-16
19.18.6.12 Coprocessor Segment Overrun Exception . 19-16
19.18.6.13 General Protection Exception (#GP) . 19-16
19.18.6.14 Floating-Point Error Exception (#MF) . 19-16
19.18.7 Changes to Floating-Point Instructions. 19-17
19.18.7.1 FDIV, FPREM, and FSQRT Instructions . 19-17
19.18.7.2 FSCALE Instruction . 19-17
19.18.7.3 FPREM1 Instruction . 19-17
19.18.7.4 FPREM Instruction . 19-17
19.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions . 19-17
19.18.7.6 FPTAN Instruction . 19-18
19.18.7.7 Stack Overflow. 19-18
19.18.7.8 FSIN, FCOS, and FSINCOS Instructions . 19-18
19.18.7.9 FPATAN Instruction . 19-18
19.18.7.10 F2XM1 Instruction. 19-18
19.18.7.11 FLD Instruction . 19-18
19.18.7.12 FXTRACT Instruction . 19-19
19.18.7.13 Load Constant Instructions. 19-19
19.18.7.14 FSETPM Instruction. 19-19
19.18.7.15 FXAM Instruction . 19-20
19.18.7.16 FSAVE and FSTENV Instructions . 19-20
19.18.8 Transcendental Instructions. 19-20
19.18.9 Obsolete Instructions . 19-20
19.18.10 WAIT/FWAIT Prefix Differences . 19-21
19.18.11 Operands Split Across Segments and/or Pages . 19-21
19.18.12 FPU Instruction Synchronization. 19-21
Vol. 3A xix

CONTENTS
PAGE
19.19 SERIALIZING INSTRUCTIONS . 19-21
19.20 FPU AND MATH COPROCESSOR INITIALIZATION . 19-22
19.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization .19-22
19.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization 19-22
19.21 CONTROL REGISTERS . 19-24
19.22 MEMORY MANAGEMENT FACILITIES . 19-25
19.22.1 New Memory Management Control Flags .19-25
19.22.1.1 Physical Memory Addressing Extension .19-25
19.22.1.2 Global Pages .19-26
19.22.1.3 Larger Page Sizes .19-26
19.22.2 CD and NW Cache Control Flags .19-26
19.22.3 Descriptor Types and Contents .19-26
19.22.4 Changes in Segment Descriptor Loads. .19-27
19.23 DEBUG FACILITIES. 19-27
19.23.1 Differences in Debug Register DR6 .19-27
19.23.2 Differences in Debug Register DR7 .19-27
19.23.3 Debug Registers DR4 and DR5. .19-27
19.24 RECOGNITION OF BREAKPOINTS . 19-28
19.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS . 19-28
19.25.1 Machine-Check Architecture .19-30
19.25.2 Priority of Exceptions .19-30
19.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers . .19-30
19.26 INTERRUPTS. 19-36
19.26.1 Interrupt Propagation Delay .19-36
19.26.2 NMI Interrupts .19-36
19.26.3 IDT Limit .19-37
19.27 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC) . 19-37
19.27.1 Software Visible Differences Between the Local APIC and the 82489DX.19-37
19.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium

Processors .19-38
19.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon

Processors .19-38
19.28 TASK SWITCHING AND TSS . 19-38
19.28.1 P6 Family and Pentium Processor TSS .19-39
19.28.2 TSS Selector Writes .19-39
19.28.3 Order of Reads/Writes to the TSS. .19-39
19.28.4 Using A 16-Bit TSS with 32-Bit Constructs .19-39
19.28.5 Differences in I/O Map Base Addresses. .19-39
19.29 CACHE MANAGEMENT . 19-40
19.29.1 Self-Modifying Code with Cache Enabled .19-41
19.29.2 Disabling the L3 Cache .19-42
19.30 PAGING. 19-42
19.30.1 Large Pages .19-42
19.30.2 PCD and PWT Flags .19-42
19.30.3 Enabling and Disabling Paging. .19-43
19.31 STACK OPERATIONS . 19-43
19.31.1 Selector Pushes and Pops .19-43
19.31.2 Error Code Pushes .19-44
19.31.3 Fault Handling Effects on the Stack .19-44
19.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate .19-44
19.32 MIXING 16- AND 32-BIT SEGMENTS . 19-45
19.33 SEGMENT AND ADDRESS WRAPAROUND . 19-45
xx Vol. 3A

CONTENTS
PAGE
19.33.1 Segment Wraparound. 19-46
19.34 STORE BUFFERS AND MEMORY ORDERING . 19-46
19.35 BUS LOCKING . 19-48
19.36 BUS HOLD . 19-48
19.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32 . 19-48
19.37.1 Model-Specific Registers . 19-49
19.37.2 RDMSR and WRMSR Instructions . 19-49
19.37.3 Memory Type Range Registers . 19-49
19.37.4 Machine-Check Exception and Architecture . 19-50
19.37.5 Performance-Monitoring Counters. 19-50
19.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS . 19-51

CHAPTER 20
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
20.1 OVERVIEW . 20-1
20.2 VIRTUAL MACHINE ARCHITECTURE. 20-1
20.3 INTRODUCTION TO VMX OPERATION . 20-1
20.4 LIFE CYCLE OF VMM SOFTWARE. 20-2
20.5 VIRTUAL-MACHINE CONTROL STRUCTURE. 20-3
20.6 DISCOVERING SUPPORT FOR VMX. 20-3
20.7 ENABLING AND ENTERING VMX OPERATION . 20-4
20.8 RESTRICTIONS ON VMX OPERATION. 20-5

CHAPTER 21
VIRTUAL-MACHINE CONTROL STRUCTURES
21.1 OVERVIEW . 21-1
21.2 FORMAT OF THE VMCS REGION . 21-3
21.3 ORGANIZATION OF VMCS DATA . 21-4
21.4 GUEST-STATE AREA . 21-5
21.4.1 Guest Register State .21-5
21.4.2 Guest Non-Register State .21-7
21.5 HOST-STATE AREA . 21-10
21.6 VM-EXECUTION CONTROL FIELDS . 21-11
21.6.1 Pin-Based VM-Execution Controls . 21-11
21.6.2 Processor-Based VM-Execution Controls . 21-12
21.6.3 Exception Bitmap. 21-16
21.6.4 I/O-Bitmap Addresses. 21-16
21.6.5 Time-Stamp Counter Offset . 21-17
21.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4. 21-17
21.6.7 CR3-Target Controls . 21-17
21.6.8 Controls for APIC Accesses. 21-18
21.6.9 MSR-Bitmap Address . 21-19
21.6.10 Executive-VMCS Pointer . 21-20
21.6.11 Extended-Page-Table Pointer (EPTP) . 21-20
21.6.12 Virtual-Processor Identifier (VPID) . 21-20
21.6.13 Controls for PAUSE-Loop Exiting . 21-21
21.7 VM-EXIT CONTROL FIELDS . 21-21
21.7.1 VM-Exit Controls . 21-21
21.7.2 VM-Exit Controls for MSRs . 21-23
21.8 VM-ENTRY CONTROL FIELDS . 21-24
Vol. 3A xxi

CONTENTS
PAGE
21.8.1 VM-Entry Controls .21-24
21.8.2 VM-Entry Controls for MSRs .21-25
21.8.3 VM-Entry Controls for Event Injection .21-25
21.9 VM-EXIT INFORMATION FIELDS . 21-27
21.9.1 Basic VM-Exit Information .21-27
21.9.2 Information for VM Exits Due to Vectored Events. .21-28
21.9.3 Information for VM Exits That Occur During Event Delivery .21-29
21.9.4 Information for VM Exits Due to Instruction Execution .21-30
21.9.5 VM-Instruction Error Field .21-30
21.10 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES. 21-31
21.10.1 Software Use of Virtual-Machine Control Structures .21-31
21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields .21-32
21.10.3 Initializing a VMCS. .21-34
21.10.4 Software Access to Related Structures .21-35
21.10.5 VMXON Region .21-35

CHAPTER 22
VMX NON-ROOT OPERATION
22.1 INSTRUCTIONS THAT CAUSE VM EXITS . 22-1
22.1.1 Relative Priority of Faults and VM Exits . 22-1
22.1.2 Instructions That Cause VM Exits Unconditionally . 22-2
22.1.3 Instructions That Cause VM Exits Conditionally . 22-3
22.2 APIC-ACCESS VM EXITS. 22-7
22.2.1 Linear Accesses to the APIC-Access Page . 22-7
22.2.1.1 Linear Accesses That Cause APIC-Access VM Exits. 22-7
22.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses 22-9
22.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing

Memory .22-10
22.2.2 Guest-Physical Accesses to the APIC-Access Page .22-10
22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits 22-11
22.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses22-12
22.2.3 Physical Accesses to the APIC-Access Page. .22-12
22.2.4 VTPR Accesses .22-13
22.3 OTHER CAUSES OF VM EXITS . 22-14
22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 22-16
22.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS . 22-22
22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations 22-22
22.5.2 Physical Accesses to the APIC-Access Page. .22-22
22.5.3 VTPR Accesses .22-23
22.5.3.1 Treatment of Individual VTPR Accesses .22-23
22.5.3.2 Operations with Multiple Accesses .22-24
22.5.3.3 TPR-Shadow Updates .22-25
22.6 OTHER CHANGES IN VMX NON-ROOT OPERATION . 22-26
22.6.1 Event Blocking .22-26
22.6.2 Treatment of Task Switches. .22-26
22.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION . 22-28
22.7.1 VMX-Preemption Timer .22-28
22.7.2 Monitor Trap Flag .22-29
22.7.3 Translation of Guest-Physical Addresses Using EPT .22-30
22.8 UNRESTRICTED GUESTS. 22-30
xxii Vol. 3A

CONTENTS
PAGE
CHAPTER 23
VM ENTRIES
23.1 BASIC VM-ENTRY CHECKS. 23-2
23.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA . 23-3
23.2.1 Checks on VMX Controls .23-3
23.2.1.1 VM-Execution Control Fields .23-3
23.2.1.2 VM-Exit Control Fields .23-6
23.2.1.3 VM-Entry Control Fields. .23-7
23.2.2 Checks on Host Control Registers and MSRs .23-8
23.2.3 Checks on Host Segment and Descriptor-Table Registers .23-9
23.2.4 Checks Related to Address-Space Size .23-9
23.3 CHECKING AND LOADING GUEST STATE . 23-10
23.3.1 Checks on the Guest State Area . 23-10
23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs 23-10
23.3.1.2 Checks on Guest Segment Registers. 23-12
23.3.1.3 Checks on Guest Descriptor-Table Registers . 23-15
23.3.1.4 Checks on Guest RIP and RFLAGS . 23-15
23.3.1.5 Checks on Guest Non-Register State . 23-16
23.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries . 23-18
23.3.2 Loading Guest State . 23-19
23.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs 23-20
23.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers 23-21
23.3.2.3 Loading Guest RIP, RSP, and RFLAGS . 23-22
23.3.2.4 Loading Page-Directory-Pointer-Table Entries. 23-22
23.3.2.5 Updating Non-Register State. 23-23
23.3.3 Clearing Address-Range Monitoring. 23-23
23.4 LOADING MSRS . 23-23
23.5 EVENT INJECTION. 23-24
23.5.1 Vectored-Event Injection. 23-24
23.5.1.1 Details of Vectored-Event Injection. 23-25
23.5.1.2 VM Exits During Event Injection . 23-27
23.5.1.3 Event Injection for VM Entries to Real-Address Mode . 23-28
23.5.2 Injection of Pending MTF VM Exits. 23-28
23.6 SPECIAL FEATURES OF VM ENTRY . 23-29
23.6.1 Interruptibility State . 23-29
23.6.2 Activity State . 23-30
23.6.3 Delivery of Pending Debug Exceptions after VM Entry. 23-31
23.6.4 VMX-Preemption Timer . 23-32
23.6.5 Interrupt-Window Exiting . 23-32
23.6.6 NMI-Window Exiting . 23-33
23.6.7 VM Exits Induced by the TPR Shadow . 23-33
23.6.8 Pending MTF VM Exits . 23-34
23.6.9 VM Entries and Advanced Debugging Features . 23-34
23.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE 23-34
23.8 MACHINE CHECKS DURING VM ENTRY . 23-35

CHAPTER 24
VM EXITS
24.1 ARCHITECTURAL STATE BEFORE A VM EXIT . 24-1
24.2 RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL FIELDS . . . 24-5
Vol. 3A xxiii

CONTENTS
PAGE
24.2.1 Basic VM-Exit Information . 24-5
24.2.2 Information for VM Exits Due to Vectored Events. .24-13
24.2.3 Information for VM Exits During Event Delivery. .24-15
24.2.4 Information for VM Exits Due to Instruction Execution .24-17
24.3 SAVING GUEST STATE. 24-26
24.3.1 Saving Control Registers, Debug Registers, and MSRs .24-27
24.3.2 Saving Segment Registers and Descriptor-Table Registers .24-27
24.3.3 Saving RIP, RSP, and RFLAGS .24-28
24.3.4 Saving Non-Register State .24-30
24.4 SAVING MSRS. 24-32
24.5 LOADING HOST STATE . 24-33
24.5.1 Loading Host Control Registers, Debug Registers, MSRs .24-33
24.5.2 Loading Host Segment and Descriptor-Table Registers. .24-35
24.5.3 Loading Host RIP, RSP, and RFLAGS .24-37
24.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries24-37
24.5.5 Updating Non-Register State .24-37
24.5.6 Clearing Address-Range Monitoring .24-38
24.6 LOADING MSRS . 24-38
24.7 VMX ABORTS . 24-39
24.8 MACHINE CHECK DURING VM EXIT . 24-40

CHAPTER 25
VMX SUPPORT FOR ADDRESS TRANSLATION
25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS). 25-1
25.2 THE EXTENDED PAGE TABLE MECHANISM (EPT) . 25-2
25.2.1 EPT Overview . 25-2
25.2.2 EPT Translation Mechanism . 25-4
25.2.3 EPT-Induced VM Exits .25-10
25.2.3.1 EPT Misconfigurations. .25-12
25.2.3.2 EPT Violations .25-12
25.2.3.3 Prioritization of EPT-Induced VM Exits .25-13
25.2.4 EPT and Memory Typing. .25-14
25.2.4.1 Memory Type Used for Accessing EPT Paging Structures .25-15
25.2.4.2 Memory Type Used for Translated Guest-Physical Addresses 25-15
25.3 CACHING TRANSLATION INFORMATION . 25-16
25.3.1 Information That May Be Cached .25-16
25.3.2 Creating and Using Cached Translation Information .25-17
25.3.3 Invalidating Cached Translation Information .25-19
25.3.3.1 Operations that Invalidate Cached Mappings. .25-19
25.3.3.2 Operations that Need Not Invalidate Cached Mappings .25-21
25.3.3.3 Guidelines for Use of the INVVPID Instruction .25-21
25.3.3.4 Guidelines for Use of the INVEPT Instruction .25-23

CHAPTER 26
SYSTEM MANAGEMENT MODE
26.1 SYSTEM MANAGEMENT MODE OVERVIEW . 26-1
26.1.1 System Management Mode and VMX Operation . 26-2
26.2 SYSTEM MANAGEMENT INTERRUPT (SMI) . 26-3
26.3 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES 26-3
26.3.1 Entering SMM. 26-3
xxiv Vol. 3A

CONTENTS
PAGE
26.3.2 Exiting From SMM .26-4
26.4 SMRAM . 26-5
26.4.1 SMRAM State Save Map. .26-6
26.4.1.1 SMRAM State Save Map and Intel 64 Architecture. .26-8
26.4.2 SMRAM Caching . 26-11
26.4.2.1 System Management Range Registers (SMRR) . 26-12
26.5 SMI HANDLER EXECUTION ENVIRONMENT . 26-12
26.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM . 26-14
26.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT

INTERRUPTS . 26-15
26.7.1 I/O State Implementation . 26-15
26.8 NMI HANDLING WHILE IN SMM. 26-17
26.9 SMM REVISION IDENTIFIER . 26-17
26.10 AUTO HALT RESTART . 26-18
26.10.1 Executing the HLT Instruction in SMM . 26-19
26.11 SMBASE RELOCATION . 26-19
26.11.1 Relocating SMRAM to an Address Above 1 MByte . 26-20
26.12 I/O INSTRUCTION RESTART . 26-20
26.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used 26-22
26.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS . 26-22
26.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND SMX

OPERATION . 26-23
26.14.1 Default Treatment of SMI Delivery . 26-23
26.14.2 Default Treatment of RSM . 26-24
26.14.3 Protection of CR4.VMXE in SMM. 26-26
26.14.4 VMXOFF and SMI Unblocking . 26-26
26.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM . 26-26
26.15.1 Dual-Monitor Treatment Overview . 26-27
26.15.2 SMM VM Exits . 26-27
26.15.2.1 Architectural State Before a VM Exit . 26-28
26.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers. 26-28
26.15.2.3 Recording VM-Exit Information . 26-28
26.15.2.4 Saving Guest State . 26-29
26.15.2.5 Updating Non-Register State. 26-30
26.15.3 Operation of an SMM Monitor . 26-30
26.15.4 VM Entries that Return from SMM . 26-30
26.15.4.1 Checks on the Executive-VMCS Pointer Field . 26-31
26.15.4.2 Checks on VM-Execution Control Fields . 26-31
26.15.4.3 Checks on VM-Entry Control Fields . 26-32
26.15.4.4 Checks on the Guest State Area . 26-32
26.15.4.5 Loading Guest State . 26-32
26.15.4.6 VMX-Preemption Timer . 26-33
26.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers. 26-33
26.15.4.8 VM Exits Induced by VM Entry . 26-33
26.15.4.9 SMI Blocking . 26-34
26.15.4.10 Failures of VM Entries That Return from SMM. 26-34
26.15.5 Enabling the Dual-Monitor Treatment. 26-34
26.15.6 Activating the Dual-Monitor Treatment . 26-36
26.15.6.1 Initial Checks . 26-37
26.15.6.2 MSEG Checking . 26-38
26.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers. 26-38
26.15.6.4 Loading Host State . 26-38
Vol. 3A xxv

CONTENTS
PAGE
26.15.6.5 Loading MSRs. .26-40
26.15.7 Deactivating the Dual-Monitor Treatment .26-41
26.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT . 26-41

CHAPTER 27
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.1 VMX SYSTEM PROGRAMMING OVERVIEW . 27-1
27.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS 27-1
27.2.1 Using Unrestricted Guest Mode . 27-2
27.3 MANAGING VMCS REGIONS AND POINTERS . 27-2
27.4 USING VMX INSTRUCTIONS . 27-4
27.5 VMM SETUP & TEAR DOWN. 27-6
27.5.1 Algorithms for Determining VMX Capabilities . 27-7
27.6 PREPARATION AND LAUNCHING A VIRTUAL MACHINE . 27-10
27.7 HANDLING OF VM EXITS. 27-11
27.7.1 Handling VM Exits Due to Exceptions .27-12
27.7.1.1 Reflecting Exceptions to Guest Software. .27-12
27.7.1.2 Resuming Guest Software after Handling an Exception .27-14
27.8 MULTI-PROCESSOR CONSIDERATIONS. 27-15
27.8.1 Initialization .27-16
27.8.2 Moving a VMCS Between Processors .27-16
27.8.3 Paired Index-Data Registers .27-17
27.8.4 External Data Structures .27-17
27.8.5 CPUID Emulation .27-18
27.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS . 27-18
27.9.1 Operating Modes of Guest Environments .27-18
27.9.2 Handling Widths of VMCS Fields. .27-19
27.9.2.1 Natural-Width VMCS Fields .27-19
27.9.2.2 64-Bit VMCS Fields. .27-19
27.9.3 IA-32e Mode Hosts. .27-19
27.9.4 IA-32e Mode Guests .27-20
27.9.5 32-Bit Guests .27-21
27.10 HANDLING MODEL SPECIFIC REGISTERS . 27-22
27.10.1 Using VM-Execution Controls .27-22
27.10.2 Using VM-Exit Controls for MSRs. .27-23
27.10.3 Using VM-Entry Controls for MSRs .27-23
27.10.4 Handling Special-Case MSRs and Instructions .27-23
27.10.4.1 Handling IA32_EFER MSR .27-23
27.10.4.2 Handling the SYSENTER and SYSEXIT Instructions .27-24
27.10.4.3 Handling the SYSCALL and SYSRET Instructions .27-24
27.10.4.4 Handling the SWAPGS Instruction .27-24
27.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs27-25
27.10.5 Handling Accesses to Reserved MSR Addresses .27-25
27.11 HANDLING ACCESSES TO CONTROL REGISTERS. 27-25
27.12 PERFORMANCE CONSIDERATIONS . 27-25
27.13 USE OF THE VMX-PREEMPTION TIMER . 27-26

CHAPTER 28
VIRTUALIZATION OF SYSTEM RESOURCES
28.1 OVERVIEW. 28-1
xxvi Vol. 3A

CONTENTS
PAGE
28.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES . 28-1
28.2.1 Debug Exceptions .28-2
28.3 MEMORY VIRTUALIZATION. 28-3
28.3.1 Processor Operating Modes & Memory Virtualization .28-3
28.3.2 Guest & Host Physical Address Spaces. .28-3
28.3.3 Virtualizing Virtual Memory by Brute Force .28-4
28.3.4 Alternate Approach to Memory Virtualization .28-4
28.3.5 Details of Virtual TLB Operation .28-6
28.3.5.1 Initialization of Virtual TLB .28-7
28.3.5.2 Response to Page Faults. .28-8
28.3.5.3 Response to Uses of INVLPG . 28-11
28.3.5.4 Response to CR3 Writes . 28-11
28.4 MICROCODE UPDATE FACILITY . 28-11
28.4.1 Early Load of Microcode Updates . 28-12
28.4.2 Late Load of Microcode Updates . 28-12

CHAPTER 29
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
29.1 OVERVIEW . 29-1
29.2 INTERRUPT HANDLING IN VMX OPERATION. 29-1
29.3 EXTERNAL INTERRUPT VIRTUALIZATION . 29-3
29.3.1 Virtualization of Interrupt Vector Space .29-4
29.3.2 Control of Platform Interrupts. .29-5
29.3.2.1 PIC Virtualization .29-6
29.3.2.2 xAPIC Virtualization .29-6
29.3.2.3 Local APIC Virtualization .29-6
29.3.2.4 I/O APIC Virtualization .29-7
29.3.2.5 Virtualization of Message Signaled Interrupts .29-8
29.3.3 Examples of Handling of External Interrupts .29-8
29.3.3.1 Guest Setup. .29-9
29.3.3.2 Processor Treatment of External Interrupt .29-9
29.3.3.3 Processing of External Interrupts by VMM .29-9
29.3.3.4 Generation of Virtual Interrupt Events by VMM . 29-10
29.4 ERROR HANDLING BY VMM . 29-11
29.4.1 VM-Exit Failures . 29-11
29.4.2 Machine Check Considerations. 29-12
29.4.3 MCA Error Handling Guidelines for VMM. 29-13
29.4.3.1 VMM Error Handling Strategies. 29-13
29.4.3.2 Basic VMM MCA error recovery handling . 29-14
29.4.3.3 Implementation Considerations for the Basic Model . 29-14
29.4.3.4 MCA Virtualization. 29-15
29.4.3.5 Implementation Considerations for the MCA Virtualization Model. 29-15
29.5 HANDLING ACTIVITY STATES BY VMM . 29-15

CHAPTER 30
PERFORMANCE MONITORING
30.1 PERFORMANCE MONITORING OVERVIEW . 30-1
30.2 ARCHITECTURAL PERFORMANCE MONITORING . 30-2
30.2.1 Architectural Performance Monitoring Version 1 .30-3
30.2.1.1 Architectural Performance Monitoring Version 1 Facilities .30-4
Vol. 3A xxvii

CONTENTS
PAGE
30.2.2 Additional Architectural Performance Monitoring Extensions . 30-6
30.2.2.1 Architectural Performance Monitoring Version 2 Facilities. 30-7
30.2.2.2 Architectural Performance Monitoring Version 3 Facilities.30-10
30.2.2.3 Full-Width Writes to Performance Counter Registers. .30-13
30.2.3 Pre-defined Architectural Performance Events .30-14
30.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND INTEL® CORE™ DUO

PROCESSORS) . 30-16
30.4 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE™

MICROARCHITECTURE) . 30-18
30.4.1 Fixed-function Performance Counters. .30-19
30.4.2 Global Counter Control Facilities .30-20
30.4.3 At-Retirement Events .30-23
30.4.4 Precise Event Based Sampling (PEBS) .30-23
30.4.4.1 Setting up the PEBS Buffer. .30-24
30.4.4.2 PEBS Record Format .30-24
30.4.4.3 Writing a PEBS Interrupt Service Routine. .30-25
30.4.4.4 Re-configuring PEBS Facilities .30-26
30.5 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® ATOM™

MICROARCHITECTURE) . 30-27
30.6 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE

CODE NAME NEHALEM . 30-27
30.6.1 Enhancements of Performance Monitoring in the Processor Core30-29
30.6.1.1 Precise Event Based Sampling (PEBS) .30-29
30.6.1.2 Load Latency Performance Monitoring Facility. .30-34
30.6.1.3 Off-core Response Performance Monitoring in the Processor Core.30-36
30.6.2 Performance Monitoring Facility in the Uncore. .30-39
30.6.2.1 Uncore Performance Monitoring Management Facility. .30-39
30.6.2.2 Uncore Performance Event Configuration Facility .30-42
30.6.2.3 Uncore Address/Opcode Match MSR .30-44
30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring Facility30-45
30.7 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE

CODE NAME WESTMERE . 30-48
30.7.1 Intel Xeon Processor E7 Family Performance Monitoring Facility.30-48
30.8 PERFORMANCE MONITORING FOR PROCESSORS BASED ON INTEL® MICROARCHITECTURE

CODE NAME SANDY BRIDGE . 30-49
30.8.1 Global Counter Control Facilities In Intel® Microarchitecture Code Name Sandy

Bridge .30-50
30.8.2 Counter Coalescence .30-52
30.8.3 Full Width Writes to Performance Counters. .30-53
30.8.4 PEBS Support in Intel® microarchitecture code name Sandy Bridge30-53
30.8.4.1 PEBS Record Format .30-54
30.8.4.2 Load Latency Performance Monitoring Facility. .30-56
30.8.4.3 Precise Store Facility. .30-57
30.8.4.4 Precise Distribution of Instructions Retired (PDIR) .30-58
30.8.5 Off-core Response Performance Monitoring .30-59
30.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5, i3 Processors 2xxx

Series .30-63
30.8.6.1 Uncore Performance Monitoring Events .30-64
30.9 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL NETBURST®

MICROARCHITECTURE) . 30-65
30.9.1 ESCR MSRs .30-69
30.9.2 Performance Counters .30-71
xxviii Vol. 3A

CONTENTS
PAGE
30.9.3 CCCR MSRs. 30-72
30.9.4 Debug Store (DS) Mechanism. 30-74
30.9.5 Programming the Performance Counters for Non-Retirement Events. 30-75
30.9.5.1 Selecting Events to Count. 30-75
30.9.5.2 Filtering Events . 30-77
30.9.5.3 Starting Event Counting . 30-79
30.9.5.4 Reading a Performance Counter’s Count . 30-79
30.9.5.5 Halting Event Counting . 30-80
30.9.5.6 Cascading Counters. 30-80
30.9.5.7 EXTENDED CASCADING . 30-81
30.9.5.8 Generating an Interrupt on Overflow . 30-83
30.9.5.9 Counter Usage Guideline . 30-83
30.9.6 At-Retirement Counting . 30-84
30.9.6.1 Using At-Retirement Counting . 30-85
30.9.6.2 Tagging Mechanism for Front_end_event. 30-86
30.9.6.3 Tagging Mechanism For Execution_event . 30-86
30.9.6.4 Tagging Mechanism for Replay_event . 30-87
30.9.7 Precise Event-Based Sampling (PEBS) . 30-87
30.9.7.1 Detection of the Availability of the PEBS Facilities . 30-88
30.9.7.2 Setting Up the DS Save Area . 30-88
30.9.7.3 Setting Up the PEBS Buffer . 30-88
30.9.7.4 Writing a PEBS Interrupt Service Routine . 30-88
30.9.7.5 Other DS Mechanism Implications. 30-89
30.9.8 Operating System Implications . 30-89
30.10 PERFORMANCE MONITORING AND INTEL HYPER-THREADING TECHNOLOGY IN

PROCESSORS BASED ON INTEL NETBURST® MICROARCHITECTURE 30-89
30.10.1 ESCR MSRs. 30-90
30.10.2 CCCR MSRs. 30-91
30.10.3 IA32_PEBS_ENABLE MSR . 30-93
30.10.4 Performance Monitoring Events . 30-93
30.11 COUNTING CLOCKS . 30-95
30.11.1 Non-Halted Clockticks. 30-96
30.11.2 Non-Sleep Clockticks. 30-97
30.11.3 Incrementing the Time-Stamp Counter. 30-98
30.11.4 Non-Halted Reference Clockticks . 30-98
30.11.5 Cycle Counting and Opportunistic Processor Operation . 30-98
30.12 PERFORMANCE MONITORING, BRANCH PROFILING AND SYSTEM EVENTS 30-99
30.13 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGY. 30-100
30.14 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP WITH UP TO 8-

MBYTE L3 CACHE. 30-100
30.15 PERFORMANCE MONITORING ON L3 AND CACHING BUS CONTROLLER SUB-

SYSTEMS . 30-105
30.15.1 Overview of Performance Monitoring with L3/Caching Bus Controller 30-107
30.15.2 GBSQ Event Interface. 30-108
30.15.3 GSNPQ Event Interface . 30-110
30.15.4 FSB Event Interface . 30-112
30.15.4.1 FSB Sub-Event Mask Interface . 30-113
30.15.5 Common Event Control Interface . 30-114
30.16 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR) . 30-114
30.16.1 PerfEvtSel0 and PerfEvtSel1 MSRs. 30-115
30.16.2 PerfCtr0 and PerfCtr1 MSRs . 30-117
30.16.3 Starting and Stopping the Performance-Monitoring Counters 30-117
Vol. 3A xxix

CONTENTS
PAGE
30.16.4 Event and Time-Stamp Monitoring Software. 30-118
30.16.5 Monitoring Counter Overflow . 30-118
30.17 PERFORMANCE MONITORING (PENTIUM PROCESSORS). 30-119
30.17.1 Control and Event Select Register (CESR). 30-119
30.17.2 Use of the Performance-Monitoring Pins . 30-121
30.17.3 Events Counted . 30-121

APPENDIX A
PERFORMANCE-MONITORING EVENTS
A.1 ARCHITECTURAL PERFORMANCE-MONITORING EVENTS . A-1
A.2 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ PROCESSOR 2XXX

SERIES . A-2
A.3 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™I7 PROCESSOR FAMILY AND

XEON PROCESSOR FAMILY . A-18
A.4 PERFORMANCE MONITORING EVENTS FOR PROCESSORS BASED ON

INTEL® MICROARCHITECTURE CODE NAME WESTMERE. A-69
A.5 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 5200, 5400

SERIES AND INTEL® CORE™2 EXTREME PROCESSORS QX 9000 SERIES. A-125
A.6 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR 3000, 3200,

5100, 5300 SERIES AND INTEL® CORE™2 DUO PROCESSORS . A-125
A.7 PERFORMANCE MONITORING EVENTS FOR INTEL® ATOM™ PROCESSORS A-170
A.8 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCESSORS . A-193
A.9 PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-MONITORING EVENTS . . A-202
A.10 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M PROCESSORS . . . A-251
A.11 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTS . A-254
A.12 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS . A-272

APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)
B.1 ARCHITECTURAL MSRS. B-2
B.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY. B-44
B.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY . B-66
B.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE NAME NEHALEM. B-81
B.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 SeriesB-106
B.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 SeriesB-109
B.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES (INTEL® MICROARCHITECTURE CODE

NAME WESTMERE) . B-131
B.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY (INTEL® MICROARCHITECTURE CODE

NAME WESTMERE) . B-132
B.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL® MICROARCHITECTURE CODE NAME SANDY

BRIDGE) . B-134
B.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel® Microarchitecture

Code Name Sandy Bridge) .B-160
B.7.2 MSRs In Next Generation Intel® Xeon Processor Family (Intel® Microarchitecture Code

Name Sandy Bridge) .B-161
B.8 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORS B-165
B.8.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache .B-205
B.9 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS B-208
B.10 MSRS IN THE PENTIUM M PROCESSOR . B-221
xxx Vol. 3A

CONTENTS
PAGE
B.11 MSRS IN THE P6 FAMILY PROCESSORS . B-231
B.12 MSRS IN PENTIUM PROCESSORS . B-243

APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS
C.1 OVERVIEW OF THE MP INITIALIZATION PROCESS FOR P6 FAMILY PROCESSORS C-1
C.2 MP INITIALIZATION PROTOCOL ALGORITHM . C-2
C.2.1 Error Detection and Handling During the MP Initialization Protocol C-4

APPENDIX D
PROGRAMMING THE LINT0 AND LINT1 INPUTS
D.1 CONSTANTS . D-1
D.2 LINT[0:1] PINS PROGRAMMING PROCEDURE . D-1

APPENDIX E
INTERPRETING MACHINE-CHECK
ERROR CODES
E.1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE ERROR

CODES FOR MACHINE CHECK . E-1
E.2 INCREMENTAL DECODING INFORMATION: INTEL CORE 2 PROCESSOR FAMILY MACHINE

ERROR CODES FOR MACHINE CHECK. E-5
E.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series. . . . E-9
E.2.1.1 Processor Machine Check Status Register

Incremental MCA Error Code Definition . E-9
E.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field .E-10
E.2.2.1 Processor Model Specific Error Code Field

Type B: Bus and Interconnect Error .E-10
E.2.2.2 Processor Model Specific Error Code Field

Type C: Cache Bus Controller Error .E-10
E.3 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID

DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_1AH, MACHINE ERROR CODES FOR
MACHINE CHECK. E-11

E.3.1 Intel QPI Machine Check Errors .E-12
E.3.2 Internal Machine Check Errors .E-13
E.3.3 Memory Controller Errors .E-14
E.4 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY WITH CPUID

DISPLAYFAMILY_DISPLAYMODEL SIGNATURE 06_2DH, MACHINE ERROR CODES FOR
MACHINE CHECK. E-15

E.4.1 Internal Machine Check Errors .E-16
E.4.2 Intel QPI Machine Check Errors .E-18
E.4.3 Integrated Memory Controller Machine Check Errors. .E-18
E.5 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 0FH MACHINE ERROR CODES

FOR MACHINE CHECK . E-18
E.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100

Series. .E-20
E.5.1.1 Processor Machine Check Status Register

MCA Error Code Definition .E-21
E.5.2 Other_Info Field (all MCA Error Types) .E-22
Vol. 3A xxxi

CONTENTS
PAGE
E.5.3 Processor Model Specific Error Code Field . E-24
E.5.3.1 MCA Error Type A: L3 Error . E-24
E.5.3.2 Processor Model Specific Error Code Field

Type B: Bus and Interconnect Error. E-24
E.5.3.3 Processor Model Specific Error Code Field

Type C: Cache Bus Controller Error . E-26

APPENDIX F
APIC BUS MESSAGE FORMATS
F.1 BUS MESSAGE FORMATS . F-1
F.2 EOI MESSAGE . F-1
F.2.1 Short Message. .F-2
F.2.2 Non-focused Lowest Priority Message .F-3
F.2.3 APIC Bus Status Cycles .F-5

APPENDIX G
VMX CAPABILITY REPORTING FACILITY
G.1 BASIC VMX INFORMATION. G-1
G.2 RESERVED CONTROLS AND DEFAULT SETTINGS. G-2
G.3 VM-EXECUTION CONTROLS . G-3
G.3.1 Pin-Based VM-Execution Controls . G-3
G.3.2 Primary Processor-Based VM-Execution Controls . G-4
G.3.3 Secondary Processor-Based VM-Execution Controls. G-5
G.4 VM-EXIT CONTROLS. G-6
G.5 VM-ENTRY CONTROLS . G-7
G.6 MISCELLANEOUS DATA. G-8
G.7 VMX-FIXED BITS IN CR0 . G-9
G.8 VMX-FIXED BITS IN CR4 . G-9
G.9 VMCS ENUMERATION . G-9
G.10 VPID AND EPT CAPABILITIES . G-10

APPENDIX H
FIELD ENCODING IN VMCS
H.1 16-BIT FIELDS . H-1
H.1.1 16-Bit Control Field . H-1
H.1.2 16-Bit Guest-State Fields. H-1
H.1.3 16-Bit Host-State Fields. H-2
H.2 64-BIT FIELDS . H-2
H.2.1 64-Bit Control Fields . H-3
H.2.2 64-Bit Read-Only Data Field . H-4
H.2.3 64-Bit Guest-State Fields. H-4
H.2.4 64-Bit Host-State Fields. H-5
H.3 32-BIT FIELDS . H-6
H.3.1 32-Bit Control Fields . H-6
H.3.2 32-Bit Read-Only Data Fields . H-7
H.3.3 32-Bit Guest-State Fields. H-7
H.3.4 32-Bit Host-State Field. H-9
H.4 NATURAL-WIDTH FIELDS . H-9
H.4.1 Natural-Width Control Fields . H-9
xxxii Vol. 3A

CONTENTS
PAGE
H.4.2 Natural-Width Read-Only Data Fields . H-10
H.4.3 Natural-Width Guest-State Fields . H-10
H.4.4 Natural-Width Host-State Fields . H-11

APPENDIX I
VMX BASIC EXIT REASONS
Vol. 3A xxxiii

CONTENTS
PAGE
FIGURES

Figure 1-1. Bit and Byte Order . 1-7
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation . 1-10
Figure 2-1. IA-32 System-Level Registers and Data Structures . 2-3
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode 2-4
Figure 2-3. Transitions Among the Processor’s Operating Modes . 2-11
Figure 2-4. System Flags in the EFLAGS Register . 2-13
Figure 2-5. Memory Management Registers . 2-16
Figure 2-6. Control Registers . 2-19
Figure 2-7. XCR0. 2-26
Figure 3-1. Segmentation and Paging . 3-2
Figure 3-2. Flat Model . 3-4
Figure 3-3. Protected Flat Model . 3-4
Figure 3-4. Multi-Segment Model. 3-6
Figure 3-5. Logical Address to Linear Address Translation . 3-9
Figure 3-6. Segment Selector . 3-10
Figure 3-7. Segment Registers. 3-11
Figure 3-8. Segment Descriptor . 3-13
Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear . 3-15
Figure 3-10. Global and Local Descriptor Tables . 3-20
Figure 3-11. Pseudo-Descriptor Formats. 3-22
Figure 4-1. Enabling and Changing Paging Modes . 4-4
Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging 4-12
Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging 4-12
Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging. 4-13
Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging 4-20
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging 4-21
Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging 4-24
Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging 4-28
Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging 4-29
Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging 4-30
Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging 4-39
Figure 4-12. Page-Fault Error Code. 4-42
Figure 4-13. Memory Management Convention That Assigns a Page Table to Each Segment 4-65
Figure 5-1. Descriptor Fields Used for Protection . 5-4
Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode . 5-6
Figure 5-3. Protection Rings . 5-10
Figure 5-4. Privilege Check for Data Access. 5-12
Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels. 5-13
Figure 5-6. Privilege Check for Control Transfer Without Using a Gate . 5-16
Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments From Various

Privilege Levels . 5-17
Figure 5-8. Call-Gate Descriptor . 5-19
Figure 5-9. Call-Gate Descriptor in IA-32e Mode. 5-21
Figure 5-10. Call-Gate Mechanism . 5-22
Figure 5-11. Privilege Check for Control Transfer with Call Gate. 5-23
Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels. 5-25
Figure 5-13. Stack Switching During an Interprivilege-Level Call. 5-27
Figure 5-14. MSRs Used by SYSCALL and SYSRET . 5-33
Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure . 5-38
Figure 6-1. Relationship of the IDTR and IDT. 6-14
xxxiv Vol. 3A

CONTENTS
PAGE
Figure 6-2. IDT Gate Descriptors. .6-15
Figure 6-3. Interrupt Procedure Call .6-16
Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines6-18
Figure 6-5. Interrupt Task Switch. .6-21
Figure 6-6. Error Code .6-22
Figure 6-7. 64-Bit IDT Gate Descriptors .6-23
Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change. .6-26
Figure 6-9. Page-Fault Error Code .6-55
Figure 7-1. Structure of a Task . 7-2
Figure 7-2. 32-Bit Task-State Segment (TSS) . 7-5
Figure 7-3. TSS Descriptor . 7-7
Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode . 7-9
Figure 7-5. Task Register .7-10
Figure 7-6. Task-Gate Descriptor .7-11
Figure 7-7. Task Gates Referencing the Same Task. .7-12
Figure 7-8. Nested Tasks .7-17
Figure 7-9. Overlapping Linear-to-Physical Mappings .7-20
Figure 7-10. 16-Bit TSS Format. .7-22
Figure 7-11. 64-Bit TSS Format. .7-24
Figure 8-1. Example of Write Ordering in Multiple-Processor Systems .8-11
Figure 8-2. Interpretation of APIC ID in Early MP Systems. .8-35
Figure 8-3. Local APICs and I/O APIC in MP System Supporting Intel HT Technology8-39
Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT Technology. .8-40
Figure 8-5. Generalized Four level Interpretation of the APIC ID .8-50
Figure 8-6. Conceptual Five-level Topology and 32-bit APIC ID Composition8-51
Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP

Platform .8-53
Figure 9-1. Contents of CR0 Register after Reset . 9-5
Figure 9-2. Version Information in the EDX Register after Reset . 9-5
Figure 9-3. Processor State After Reset .9-21
Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines 162-172 of

List File) .9-31
Figure 9-5. Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List File) . . .9-32
Figure 9-6. Task Switching (Lines 282-296 of List File) .9-33
Figure 9-7. Applying Microcode Updates .9-37
Figure 9-8. Microcode Update Write Operation Flow [1]. .9-60
Figure 9-9. Microcode Update Write Operation Flow [2]. .9-61
Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems10-3
Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-

Processor Systems .10-4
Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in Multiple-

Processor Systems .10-4
Figure 10-4. Local APIC Structure .10-7
Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family). 10-12
Figure 10-6. Local APIC ID Register . 10-13
Figure 10-7. Local APIC Version Register . 10-16
Figure 10-8. Local Vector Table (LVT) . 10-18
Figure 10-9. Error Status Register (ESR) . 10-21
Figure 10-10. Divide Configuration Register . 10-23
Figure 10-11. Initial Count and Current Count Registers . 10-23
Figure 10-12. Interrupt Command Register (ICR) . 10-27
Figure 10-13. Logical Destination Register (LDR). 10-34
Vol. 3A xxxv

CONTENTS
PAGE
Figure 10-14. Destination Format Register (DFR) .10-34
Figure 10-15. Arbitration Priority Register (APR) .10-36
Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and Intel Xeon

Processors) .10-38
Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and Pentium

Processors) .10-40
Figure 10-18. Task Priority Register (TPR) .10-42
Figure 10-19. Processor Priority Register (PPR) .10-43
Figure 10-20. IRR, ISR and TMR Registers .10-44
Figure 10-21. EOI Register .10-45
Figure 10-22. CR8 Register .10-46
Figure 10-23. Spurious-Interrupt Vector Register (SVR) .10-48
Figure 10-24. Layout of the MSI Message Address Register. .10-50
Figure 10-25. Layout of the MSI Message Data Register .10-52
Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC .10-54
Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset 10-61
Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode .10-65
Figure 10-29. Logical Destination Register in x2APIC Mode .10-66
Figure 10-30. SELF IPI register .10-68
Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors 11-1
Figure 11-2. Cache Structure of the Intel Core i7 Processors. 11-2
Figure 11-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32 Processors. . .11-16
Figure 11-4. Mapping Physical Memory With MTRRs .11-31
Figure 11-5. IA32_MTRRCAP Register .11-32
Figure 11-6. IA32_MTRR_DEF_TYPE MSR .11-33
Figure 11-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range

Register Pair. .11-36
Figure 11-8. IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair11-38
Figure 11-9. IA32_PAT MSR .11-49
Figure 12-1. Mapping of MMX Registers to Floating-Point Registers. 12-2
Figure 12-2. Mapping of MMX Registers to x87 FPU Data Register Stack 12-7
Figure 13-1. Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3 State During

an Operating-System Controlled Task Switch .13-11
Figure 13-2. Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets of

Processor State Extensions .13-14
Figure 13-3. OS Enabling of Processor Extended State Support .13-17
Figure 13-4. Application Detection of New Instruction Extensions and Processor Extended

State .13-19
Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination 14-2
Figure 14-2. IA32_PERF_CTL Register. 14-6
Figure 14-3. Periodic Query of Activity Ratio of Opportunistic Processor Operation 14-7
Figure 14-4. IA32_ENERGY_PERF_BIAS Register. 14-9
Figure 14-5. Processor Modulation Through Stop-Clock Mechanism .14-11
Figure 14-6. MSR_THERM2_CTL Register On Processors with CPUID Family/Model/Stepping

Signature Encoded as 0x69n or 0x6Dn .14-13
Figure 14-7. MSR_THERM2_CTL Register for Supporting TM2 .14-14
Figure 14-8. IA32_THERM_STATUS MSR .14-15
Figure 14-9. IA32_THERM_INTERRUPT MSR .14-15
Figure 14-10. IA32_CLOCK_MODULATION MSR. .14-17
Figure 14-11. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension.14-18
Figure 14-12. IA32_THERM_STATUS Register .14-20
Figure 14-13. IA32_THERM_INTERRUPT Register .14-22
xxxvi Vol. 3A

CONTENTS
PAGE
Figure 14-14. IA32_PACKAGE_THERM_STATUS Register . 14-24
Figure 14-15. IA32_PACKAGE_THERM_INTERRUPT Register . 14-26
Figure 14-16. MSR_RAPL_POWER_UNIT Register . 14-29
Figure 14-17. MSR_PKG_POWER_LIMIT Register. 14-31
Figure 14-18. MSR_PKG_ENERGY_STATUS MSR . 14-32
Figure 14-19. MSR_PKG_POWER_INFO Register . 14-32
Figure 14-20. MSR_PKG_PERF_STATUS MSR . 14-33
Figure 14-21. MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register 14-34
Figure 14-22. MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR 14-35
Figure 14-23. MSR_PP0_POLICY/MSR_PP1_POLICY Register . 14-35
Figure 14-24. MSR_PP0_PERF_STATUS MSR . 14-36
Figure 14-25. MSR_DRAM_POWER_LIMIT Register . 14-36
Figure 14-26. MSR_DRAM_ENERGY_STATUS MSR . 14-37
Figure 14-27. MSR_DRAM_POWER_INFO Register . 14-38
Figure 14-28. MSR_DRAM_PERF_STATUS MSR . 14-38
Figure 15-1. Machine-Check MSRs .15-2
Figure 15-2. IA32_MCG_CAP Register. .15-3
Figure 15-3. IA32_MCG_STATUS Register. .15-4
Figure 15-4. IA32_MCi_CTL Register .15-6
Figure 15-5. IA32_MCi_STATUS Register. .15-7
Figure 15-6. IA32_MCi_ADDR MSR. 15-10
Figure 15-7. UCR Support in IA32_MCi_MISC Register. 15-11
Figure 15-8. IA32_MCi_CTL2 Register . 15-12
Figure 15-9. CMCI Behavior . 15-17
Figure 16-1. Debug Registers. .16-3
Figure 16-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology16-9
Figure 16-3. IA32_DEBUGCTL MSR for Processors based on Intel Core microarchitecture . . 16-15
Figure 16-4. 64-bit Address Layout of LBR MSR . 16-20
Figure 16-5. DS Save Area . 16-23
Figure 16-6. 32-bit Branch Trace Record Format . 16-24
Figure 16-7. PEBS Record Format. 16-25
Figure 16-8. IA-32e Mode DS Save Area . 16-26
Figure 16-9. 64-bit Branch Trace Record Format . 16-27
Figure 16-10. 64-bit PEBS Record Format . 16-27
Figure 16-11. IA32_DEBUGCTL MSR for Processors based

on Intel microarchitecture code name Nehalem . 16-35
Figure 16-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors. 16-39
Figure 16-13. LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon Processor

Family . 16-41
Figure 16-14. IA32_DEBUGCTL MSR for Intel Core Solo and Intel Core Duo Processors 16-43
Figure 16-15. LBR Branch Record Layout for the Intel Core Solo and Intel Core Duo

Processor . 16-44
Figure 16-16. MSR_DEBUGCTLB MSR for Pentium M Processors . 16-45
Figure 16-17. LBR Branch Record Layout for the Pentium M Processor . 16-46
Figure 16-18. DEBUGCTLMSR Register (P6 Family Processors). 16-47
Figure 17-1. Real-Address Mode Address Translation .17-4
Figure 17-2. Interrupt Vector Table in Real-Address Mode .17-7
Figure 17-3. Entering and Leaving Virtual-8086 Mode . 17-13
Figure 17-4. Privilege Level 0 Stack After Interrupt or Exception in Virtual-8086 Mode. . . . 17-19
Figure 17-5. Software Interrupt Redirection Bit Map in TSS . 17-27
Figure 18-1. Stack after Far 16- and 32-Bit Calls .18-6
Figure 19-1. I/O Map Base Address Differences. 19-40
Vol. 3A xxxvii

CONTENTS
PAGE
Figure 20-1. Interaction of a Virtual-Machine Monitor and Guests . 20-3
Figure 21-1. States of VMCS X . 21-3
Figure 25-1. Formats of EPTP and EPT Paging-Structure Entries .25-11
Figure 26-1. SMRAM Usage . 26-6
Figure 26-2. SMM Revision Identifier .26-18
Figure 26-3. Auto HALT Restart Field .26-19
Figure 26-4. SMBASE Relocation Field .26-20
Figure 26-5. I/O Instruction Restart Field .26-21
Figure 27-1. VMX Transitions and States of VMCS in a Logical Processor 27-4
Figure 28-1. Virtual TLB Scheme . 28-7
Figure 29-1. Host External Interrupts and Guest Virtual Interrupts . 29-5
Figure 30-1. Layout of IA32_PERFEVTSELx MSRs. 30-5
Figure 30-2. Layout of IA32_FIXED_CTR_CTRL MSR . 30-7
Figure 30-3. Layout of IA32_PERF_GLOBAL_CTRL MSR . 30-8
Figure 30-4. Layout of IA32_PERF_GLOBAL_STATUS MSR . 30-9
Figure 30-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR .30-10
Figure 30-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural Performance

Monitoring Version 3 .30-11
Figure 30-7. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural Performance

Monitoring Version 3 .30-12
Figure 30-8. Layout of Global Performance Monitoring Control MSR .30-13
Figure 30-9. Layout of MSR_PERF_FIXED_CTR_CTRL MSR. .30-20
Figure 30-10. Layout of MSR_PERF_GLOBAL_CTRL MSR. .30-21
Figure 30-11. Layout of MSR_PERF_GLOBAL_STATUS MSR. .30-22
Figure 30-12. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR .30-22
Figure 30-13. IA32_PERF_GLOBAL_STATUS MSR .30-28
Figure 30-14. Layout of IA32_PEBS_ENABLE MSR .30-30
Figure 30-15. PEBS Programming Environment. .30-32
Figure 30-16. Layout of MSR_PEBS_LD_LAT MSR .30-36
Figure 30-17. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to Configure

Off-core Response Events. .30-37
Figure 30-18. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR .30-40
Figure 30-19. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR .30-41
Figure 30-20. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR .30-41
Figure 30-21. Layout of MSR_UNCORE_PERFEVTSELx MSRs. .30-42
Figure 30-22. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR .30-43
Figure 30-23. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR .30-44
Figure 30-24. Distributed Units of the Uncore of Intel Xeon Processor 7500 Series30-46
Figure 30-25. IA32_PERF_GLOBAL_CTRL MSR in Intel Microarchitecture Code Name

Sandy Bridge .30-50
Figure 30-26. IA32_PERF_GLOBAL_STATUS MSR in Intel Microarchitecture Code Name

Sandy Bridge .30-51
Figure 30-27. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel Microarchitecture Code Name

Sandy Bridge .30-52
Figure 30-28. Layout of IA32_PEBS_ENABLE MSR .30-54
Figure 30-29. Request_Type Fields for MSR_OFFCORE_RSP_x .30-60
Figure 30-30. Response_Type Fields for MSR_OFFCORE_RSP_x .30-61
Figure 30-31. Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N30-63
Figure 30-32. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore 30-64
Figure 30-33. Event Selection Control Register (ESCR) for Pentium 4 and Intel Xeon

Processors without Intel HT Technology Support .30-70
Figure 30-34. Performance Counter (Pentium 4 and Intel Xeon Processors).30-72
xxxviii Vol. 3A

CONTENTS
PAGE
Figure 30-35. Counter Configuration Control Register (CCCR) . 30-73
Figure 30-36. Effects of Edge Filtering . 30-79
Figure 30-37. Event Selection Control Register (ESCR) for the Pentium 4 Processor, Intel Xeon

Processor and Intel Xeon Processor MP Supporting Hyper-Threading
Technology . 30-90

Figure 30-38. Counter Configuration Control Register (CCCR) . 30-92
Figure 30-39. Layout of IA32_PERF_CAPABILITIES MSR. 30-100
Figure 30-40. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3. 30-101
Figure 30-41. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH. 30-102
Figure 30-42. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH . 30-103
Figure 30-43. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H . 30-104
Figure 30-44. MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: 107D3H. . . 30-105
Figure 30-45. Block Diagram of Intel Xeon Processor 7400 Series . 30-106
Figure 30-46. Block Diagram of Intel Xeon Processor 7100 Series . 30-107
Figure 30-47. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH 30-109
Figure 30-48. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH. 30-112
Figure 30-49. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H. 30-113
Figure 30-50. PerfEvtSel0 and PerfEvtSel1 MSRs. 30-116
Figure 30-51. CESR MSR (Pentium Processor Only). 30-120
Figure C-1. MP System With Multiple Pentium III Processors. C-3
Vol. 3A xxxix

CONTENTS
PAGE
TABLES

Table 2-1. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and
TS . 2-21

Table 2-2. Summary of System Instructions . 2-27
Table 3-1. Code- and Data-Segment Types . 3-17
Table 3-2. System-Segment and Gate-Descriptor Types . 3-19
Table 4-1. Properties of Different Paging Modes . 4-3
Table 4-2. Paging Structures in the Different Paging Modes. 4-9
Table 4-3. Use of CR3 with 32-Bit Paging. 4-14
Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page 4-14
Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table 4-15
Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page 4-16
Table 4-7. Use of CR3 with PAE Paging . 4-17
Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE) 4-18
Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page 4-21
Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table 4-22
Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page 4-23
Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0. 4-26
Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1. 4-27
Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-Directory-Pointer

Table. 4-33
Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-

GByte Page. 4-34
Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that References a

Page Directory. 4-35
Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page 4-36
Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table 4-37
Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page 4-38
Table 5-1. Privilege Check Rules for Call Gates . 5-23
Table 5-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change. 5-28
Table 5-3. Combined Page-Directory and Page-Table Protection . 5-42
Table 5-4. Extended Feature Enable MSR (IA32_EFER) . 5-43
Table 5-5. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability . 5-44
Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix with Execute-Disable Bit

Capability. 5-45
Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection with Execute-Disable Bit

Capability. 5-45
Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit Capability

Enabled . 5-46
Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled 5-47
Table 6-1. Protected-Mode Exceptions and Interrupts . 6-3
Table 6-2. Priority Among Simultaneous Exceptions and Interrupts . 6-11
Table 6-3. Debug Exception Conditions and Corresponding Exception Classes. 6-29
Table 6-4. Interrupt and Exception Classes . 6-38
Table 6-5. Conditions for Generating a Double Fault . 6-39
Table 6-6. Invalid TSS Conditions . 6-42
Table 6-7. Alignment Requirements by Data Type. 6-60
Table 6-8. SIMD Floating-Point Exceptions Priority . 6-66
Table 7-1. Exception Conditions Checked During a Task Switch . 7-15
Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS

Flag . 7-17
xl Vol. 3A

CONTENTS
PAGE
Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel Xeon MP
Processors Supporting Intel Hyper-Threading Technology1 .8-53

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two Physical
Processors Supporting Dual-Core and Intel Hyper-Threading Technology8-54

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two Physical
Processors Supporting x2APIC and Intel Hyper-Threading Technology 8-54

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT . 9-2
Table 9-2. Recommended Settings of EM and MP Flags on IA-32 Processors 9-7
Table 9-3. Software Emulation Settings of EM, MP, and NE Flags . 9-8
Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing .9-21
Table 9-5. Relationship Between BLD Item and ASM Source File .9-35
Table 9-6. Microcode Update Field Definitions .9-38
Table 9-7. Microcode Update Format. .9-40
Table 9-8. Extended Processor Signature Table Header Structure .9-41
Table 9-9. Processor Signature Structure .9-41
Table 9-10. Processor Flags .9-43
Table 9-11. Microcode Update Signature .9-48
Table 9-12. Microcode Update Functions .9-55
Table 9-13. Parameters for the Presence Test .9-56
Table 9-14. Parameters for the Write Update Data Function .9-57
Table 9-15. Parameters for the Control Update Sub-function .9-62
Table 9-17. Parameters for the Read Microcode Update Data Function .9-63
Table 9-16. Mnemonic Values. .9-63
Table 9-18. Return Code Definitions .9-65
Table 10-1 Local APIC Register Address Map .10-8
Table 10-2. Local APIC Timer Modes. 10-24
Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’ Local xAPIC

Interrupt Command Register . 10-30
Table 10-4 Valid Combinations for the P6 Family Processors’

Local APIC Interrupt Command Register . 10-31
Table 10-5. x2APIC Operating Mode Configurations . 10-54
Table 10-6. Local APIC Register Address Map Supported by x2APIC. 10-55
Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation 10-59
Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and Write Combining Buffer in Intel

64 and IA-32 Processors. .11-2
Table 11-2. Memory Types and Their Properties .11-9
Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium

M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors 11-10
Table 11-4. MESI Cache Line States . 11-14
Table 11-5. Cache Operating Modes . 11-17
Table 11-6. Effective Page-Level Memory Type for Pentium Pro and Pentium II

Processors . 11-20
Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent Processor

Families. 11-22
Table 11-8. Memory Types That Can Be Encoded in MTRRs . 11-30
Table 11-9. Address Mapping for Fixed-Range MTRRs. 11-35
Table 11-10. Memory Types That Can Be Encoded With PAT . 11-49
Table 11-11. Selection of PAT Entries with PAT, PCD, and PWT Flags . 11-50
Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset. 11-50
Table 12-1. Action Taken By MMX Instructions for Different Combinations of EM, MP and

TS .12-1
Table 12-2. Effects of MMX Instructions on x87 FPU State .12-3
Vol. 3A xli

CONTENTS
PAGE
Table 12-3. Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word . 12-4

Table 13-1. Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2, SSE3, EM, MP,
and TS1 . 13-4

Table 13-2. Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS 13-5
Table 13-3. XSAVE Header Format .13-14
Table 13-4. XRSTOR Action on MXCSR, x87 FPU, XMM Register. .13-16
Table 13-5. XSAVE Action on MXCSR, x87 FPU, XMM Register .13-16
Table 13-6. XCR0 and Processor State Components .13-21
Table 13-7. CR4 bits for AVX New Instructions technology support. .13-21
Table 13-8. Layout of XSAVE Area For Processor Supporting YMM State 13-22
Table 13-9. XSAVE Header Format .13-22
Table 13-10. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)13-23
Table 13-11. XRSTOR Action on MXCSR, XMM Registers, YMM Registers.13-23
Table 13-12. Processor Supplied Init Values XRSTOR May Use .13-24
Table 13-13. XSAVE Action on MXCSR, XMM, YMM Register .13-24
Table 14-1. On-Demand Clock Modulation Duty Cycle Field Encoding. .14-17
Table 14-2. RAPL MSR Interfaces and RAPL Domains .14-30
Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] = 1 and

UC = 0. 15-8
Table 15-2. Overwrite Rules for Enabled Errors . 15-9
Table 15-3. Address Mode in IA32_MCi_MISC[8:6] .15-11
Table 15-4. Extended Machine Check State MSRs in Processors Without Support for Intel 64

Architecture .15-13
Table 15-5. Extended Machine Check State MSRs In Processors With Support For Intel 64

Architecture .15-14
Table 15-6. MC Error Classifications .15-23
Table 15-7. Overwrite Rules for UC, CE, and UCR Errors. .15-24
Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding .15-26
Table 15-9. IA32_MCi_Status [15:0] Compound Error Code Encoding .15-27
Table 15-10. Encoding for TT (Transaction Type) Sub-Field .15-28
Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field 15-28
Table 15-12. Encoding of Request (RRRR) Sub-Field .15-29
Table 15-13. Encodings of PP, T, and II Sub-Fields .15-29
Table 15-14. Encodings of MMM and CCCC Sub-Fields .15-30
Table 15-15. MCA Compound Error Code Encoding for SRAO Errors .15-31
Table 15-16. IA32_MCi_STATUS Values for SRAO Errors .15-31
Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors .15-32
Table 15-18. MCA Compound Error Code Encoding for SRAR Errors .15-32
Table 15-19. IA32_MCi_STATUS Values for SRAR Errors .15-33
Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors. .15-33
Table 16-1. Breakpoint Examples. 16-7
Table 16-2. Debug Exception Conditions .16-10
Table 16-3. LBR Stack Size and TOS Pointer Range .16-19
Table 16-4. IA32_DEBUGCTL Flag Encodings .16-29
Table 16-5. CPL-Qualified Branch Trace Store Encodings. .16-30
Table 16-6. IA32_LASTBRANCH_x_FROM_IP .16-35
Table 16-7. IA32_LASTBRANCH_x_TO_IP .16-35
Table 16-8. LBR Stack Size and TOS Pointer Range. .16-36
Table 16-9. MSR_LBR_SELECT for Intel Microarchitecture Code Name Nehalem.16-36
Table 16-10. MSR_LBR_SELECT for Intel Microarchitecture Code Name Sandy Bridge 16-37
Table 16-11. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the
xlii Vol. 3A

CONTENTS
PAGE
Intel® Xeon® Processor Family . 16-40
Table 17-1. Real-Address Mode Exceptions and Interrupts .17-8
Table 17-2. Software Interrupt Handling Methods While in Virtual-8086 Mode 17-26
Table 18-1. Characteristics of 16-Bit and 32-Bit Program Modules .18-1
Table 19-1. New Instruction in the Pentium Processor and Later IA-32 Processors19-6
Table 19-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX

Microprocessor/Intel 487 SX Math Coprocessor System . 19-22
Table 19-3. EM and MP Flag Interpretation . 19-23
Table 19-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP Exception and 16-

Byte Alignment . 19-31
Table 19-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP

Exception . 19-32
Table 19-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and without FP

Exception . 19-33
Table 19-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference 19-34
Table 19-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP

Exception . 19-35
Table 19-9. Exception Conditions for Legacy SIMD/MMX Instructions without Memory

Reference . 19-36
Table 21-1. Format of the VMCS Region. .21-3
Table 21-2. Format of Access Rights .21-6
Table 21-3. Format of Interruptibility State. .21-8
Table 21-4. Format of Pending-Debug-Exceptions .21-9
Table 21-5. Definitions of Pin-Based VM-Execution Controls. 21-12
Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls 21-13
Table 21-7. Definitions of Secondary Processor-Based VM-Execution Controls 21-15
Table 21-8. Format of Extended-Page-Table Pointer . 21-20
Table 21-9. Definitions of VM-Exit Controls. 21-21
Table 21-10. Format of an MSR Entry . 21-23
Table 21-11. Definitions of VM-Entry Controls . 21-24
Table 21-12. Format of the VM-Entry Interruption-Information Field . 21-25
Table 21-13. Format of Exit Reason . 21-27
Table 21-14. Format of the VM-Exit Interruption-Information Field. 21-28
Table 21-15. Format of the IDT-Vectoring Information Field . 21-29
Table 21-16. Structure of VMCS Component Encoding. 21-32
Table 24-1. Exit Qualification for Debug Exceptions .24-6
Table 24-2. Exit Qualification for Task Switch .24-6
Table 24-3. Exit Qualification for Control-Register Accesses .24-8
Table 24-4. Exit Qualification for MOV DR .24-9
Table 24-5. Exit Qualification for I/O Instructions .24-9
Table 24-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical

Accesses. 24-10
Table 24-7. Exit Qualification for EPT Violations . 24-11
Table 24-8. Format of the VM-Exit Instruction-Information Field as Used for INS and

OUTS . 24-18
Table 24-9. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or

SGDT . 24-19
Table 24-10. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and

STR. 24-21
Table 24-11. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD,

VMPTRST, and VMXON . 24-22
Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and
Vol. 3A xliii

CONTENTS
PAGE
VMWRITE. .24-23
Table 24-13. Format of the VM-Exit Instruction-Information Field as Used for INVEPT and

INVVPID .24-25
Table 25-1. Format of an EPT PML4 Entry (PML4E). 25-5
Table 25-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte

Page . 25-6
Table 25-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an

EPT Page Directory . 25-7
Table 25-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page 25-8
Table 25-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page

Table. 25-9
Table 25-6. Format of an EPT Page-Table Entry .25-10
Table 26-1. SMRAM State Save Map . 26-6
Table 26-2. Processor Signatures and 64-bit SMRAM State Save Map Format 26-9
Table 26-3. SMRAM State Save Map for Intel 64 Architecture . 26-9
Table 26-4. Processor Register Initialization in SMM .26-13
Table 26-5. I/O Instruction Information in the SMM State Save Map .26-16
Table 26-6. I/O Instruction Type Encodings .26-16
Table 26-7. Auto HALT Restart Flag Values .26-19
Table 26-8. I/O Instruction Restart Field Values .26-21
Table 26-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/O

Instruction. .26-29
Table 26-10. Format of MSEG Header .26-35
Table 27-1. Operating Modes for Host and Guest Environments .27-18
Table 30-1. UMask and Event Select Encodings for Pre-Defined Architectural Performance

Events .30-14
Table 30-2. Core Specificity Encoding within a Non-Architectural Umask.30-16
Table 30-3. Agent Specificity Encoding within a Non-Architectural Umask30-17
Table 30-4. HW Prefetch Qualification Encoding within a Non-Architectural Umask.30-17
Table 30-5. MESI Qualification Definitions within a Non-Architectural Umask.30-17
Table 30-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask30-18
Table 30-7. Snoop Type Qualification Definitions within a Non-Architectural Umask30-19
Table 30-8. Association of Fixed-Function Performance Counters with Architectural Performance

Events .30-19
Table 30-9. At-Retirement Performance Events for Intel Core Microarchitecture30-23
Table 30-10. PEBS Performance Events for Intel Core Microarchitecture.30-23
Table 30-11. Requirements to Program PEBS .30-25
Table 30-12. PEBS Record Format for Intel Core i7 Processor Family .30-30
Table 30-13. Data Source Encoding for Load Latency Record. .30-35
Table 30-14. Off-Core Response Event Encoding .30-37
Table 30-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition30-37
Table 30-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH.30-44
Table 30-17. Uncore PMU MSR Summary. .30-46
Table 30-18. Uncore PMU MSR Summary for Intel Xeon Processor E7 Family.30-48
Table 30-19. Core PMU Comparison .30-49
Table 30-20. PEBS Facility Comparison. .30-53
Table 30-21. PEBS Performance Events for Intel Microarchitecture Code Name Sandy

Bridge .30-55
Table 30-22. Layout of Data Source Field of Load Latency Record. .30-57
Table 30-23. Layout of Precise Store Information In PEBS Record .30-58
Table 30-24. Off-Core Response Event Encoding .30-59
Table 30-25. MSR_OFFCORE_RSP_x Request_Type Field Definition .30-60
xliv Vol. 3A

CONTENTS
PAGE
Table 30-26. MSR_OFFCORE_RSP_x Response Type Field Definition . 30-61
Table 30-27. Uncore PMU MSR Summary . 30-64
Table 30-28. Performance Counter MSRs and Associated CCCR and ESCR MSRs (Pentium 4 and

Intel Xeon Processors) . 30-66
Table 30-29. Event Example . 30-75
Table 30-30. CCR Names and Bit Positions . 30-81
Table 30-31. Effect of Logical Processor and CPL Qualification for Logical-Processor-Specific (TS)

Events . 30-94
Table 30-32. Effect of Logical Processor and CPL Qualification for Non-logical-Processor-specific

(TI) Events . 30-95
Table A-1. Architectural Performance Events. A-2
Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core i7, i5, i3

Processors 2xxx Series . A-2
Table A-3. Non-Architectural Performance Events In the Processor Uncore for Intel Core i7, i5,

i3 Processor 2xxx Series .A-17
Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core i7

Processor and Intel Xeon Processor 5500 Series .A-19
Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel Core i7

Processor and Intel Xeon Processor 5500 Series .A-48
Table A-6. Non-Architectural Performance Events In the Processor Core for Processors Based

on Intel Microarchitecture Code Name Westmere. .A-70
Table A-7. Non-Architectural Performance Events In the Processor Uncore for Processors Based

on Intel Microarchitecture Code Name Westmere. .A-98
Table A-8. Non-Architectural Performance Events for Processors Based on Enhanced Intel Core

Microarchitecture . A-125
Table A-9. Fixed-Function Performance Counter and Pre-defined Performance Events . . A-126
Table A-10. Non-Architectural Performance Events in Processors Based on Intel Core

Microarchitecture . A-127
Table A-11. Non-Architectural Performance Events for Intel Atom Processors. A-170
Table A-12. Non-Architectural Performance Events in Intel Core Solo and Intel Core Duo

Processors . A-193
Table A-13. Performance Monitoring Events Supported by Intel NetBurst Microarchitecture for

Non-Retirement Counting . A-202
Table A-14. Performance Monitoring Events For Intel NetBurst Microarchitecture for At-

Retirement Counting . A-234
Table A-15. Intel NetBurst Microarchitecture Model-Specific Performance Monitoring Events (For

Model Encoding 3, 4 or 6) . A-241
Table A-17. List of Metrics Available for Execution Tagging (For Execution Event Only) . . . A-242
Table A-16. List of Metrics Available for Front_end Tagging (For Front_end Event Only) . . A-242
Table A-18. List of Metrics Available for Replay Tagging (For Replay Event Only) A-243
Table A-19. Event Mask Qualification for Logical Processors . A-245
Table A-20. Performance Monitoring Events on Intel® Pentium® M Processors A-251
Table A-21. Performance Monitoring Events Modified on Intel® Pentium® M Processors . . A-253
Table A-22. Events That Can Be Counted with the P6 Family Performance-Monitoring

Counters . A-255
Table A-23. Events That Can Be Counted with Pentium Processor Performance-Monitoring

Counters . A-272
Table B-1. CPUID Signature Values of DisplayFamily_DisplayModel . B-1
Table B-2. IA-32 Architectural MSRs . B-3
Table B-3. MSRs in Processors Based on Intel Core Microarchitecture .B-45
Table B-4. MSRs in Intel Atom Processor Family .B-66
Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name NehalemB-82
Vol. 3A xlv

CONTENTS
PAGE
Table B-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 SeriesB-107
Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series .B-109
Table B-8. Additional MSRs Supported by Intel Processors (Intel Microarchitecture Code Name

Westmere) .B-131
Table B-9. Additional MSRs Supported by Intel Xeon Processor E7 FamilyB-132
Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture Code Name

Sandy Bridge .B-135
Table B-11. MSRs Supported by Second Generation Intel Core Processors (Intel Microarchitecture

Code Name Sandy Bridge) .B-161
Table B-12. Selected MSRs Supported by Next Generation Intel Xeon Processors (Intel

Microarchitecture Code Name Sandy Bridge). .B-162
Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors .B-165
Table B-14. MSRs Unique to 64-bit Intel Xeon Processor MP with Up to an 8 MB L3 Cache.B-205
Table B-15. MSRs Unique to Intel Xeon Processor 7100 Series. .B-207
Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel Xeon

Processor LV .B-208
Table B-17. MSRs in Pentium M Processors .B-222
Table B-18. MSRs in the P6 Family Processors .B-231
Table B-19. MSRs in the Pentium Processor .B-243
Table C-1. Boot Phase IPI Message Format .C-2
Table E-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06HE-1
Table E-2. Incremental Decoding Information: Processor Family 06H Machine Error Codes For

Machine Check .E-2
Table E-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on Intel Core

Microarchitecture .E-5
Table E-4. Incremental Bus Error Codes of Machine Check for Processors Based on Intel Core

Microarchitecture .E-6
Table E-5. Incremental MCA Error Code Types for Intel Xeon Processor 7400 E-9
Table E-6. Type B Bus and Interconnect Error Codes . E-10
Table E-7. Type C Cache Bus Controller Error Codes . E-10
Table E-8. Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and

IA32_MC1_STATUS . E-12
Table E-9. Intel QPI Machine Check Error Codes for IA32_MC0_MISC and IA32_MC1_MISC . E-13
Table E-10. Machine Check Error Codes for IA32_MC7_STATUS . E-13
Table E-11. Incremental Memory Controller Error Codes of Machine Check for

IA32_MC8_STATUS . E-14
Table E-12. Incremental Memory Controller Error Codes of Machine Check for

IA32_MC8_MISC . E-15
Table E-13. Machine Check Error Codes for IA32_MC4_STATUS . E-16
Table E-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS. E-18
Table E-15. Incremental Decoding Information: Processor Family 0FH Machine Error Codes For

Machine Check . E-19
Table E-16. MCi_STATUS Register Bit Definition. E-20
Table E-17. Incremental MCA Error Code for Intel Xeon Processor MP 7100 E-22
Table E-18. Other Information Field Bit Definition . E-23
Table E-19. Type A: L3 Error Codes . E-24
Table E-20. Type B Bus and Interconnect Error Codes . E-25
Table E-21. Type C Cache Bus Controller Error Codes . E-26
Table E-22. Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors E-27
Table F-1. EOI Message (14 Cycles). .F-1
Table F-2. Short Message (21 Cycles) .F-2
Table F-3. Non-Focused Lowest Priority Message (34 Cycles). .F-3
xlvi Vol. 3A

CONTENTS
PAGE
Table F-4. APIC Bus Status Cycles Interpretation . F-5
Table G-1. Memory Types Used For VMCS Access. G-2
Table H-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)H-1
Table H-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)H-1
Table H-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B) H-2
Table H-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)H-3
Table H-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)H-4
Table H-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb) H-4
Table H-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb) H-5
Table H-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)H-6
Table H-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)H-7
Table H-10. Encodings for 32-Bit Guest-State Fields (0100_10xx_xxxx_xxx0B)H-7
Table H-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B) H-9
Table H-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B).H-9
Table H-13. Encodings for Natural-Width Read-Only Data Fields (0110_01xx_xxxx_xxx0B) H-10
Table H-14. Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B) . . . H-10
Table H-15. Encodings for Natural-Width Host-State Fields (0110_11xx_xxxx_xxx0B) H-11
Table I-1. Basic Exit Reasons . I-1
Vol. 3A xlvii

CONTENTS
PAGE
xlviii Vol. 3A

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668) and the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) are part of a set that describes the architecture
and programming environment of Intel 64 and IA-32 Architecture processors. The
other volumes in this set are:
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic

Architecture (order number 253665).
• Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 PROCESSORS COVERED IN THIS MANUAL
This manual set includes information pertaining primarily to the most recent Intel®
64 and IA-32 processors, which include:
• Pentium® processors
• P6 family processors
• Pentium® 4 processors
• Pentium® M processors
• Intel® Xeon® processors
• Pentium® D processors
• Pentium® processor Extreme Editions
• 64-bit Intel® Xeon® processors
• Intel® Core™ Duo processor
• Intel® Core™ Solo processor
Vol. 3A 1-1

ABOUT THIS MANUAL
• Dual-Core Intel® Xeon® processor LV
• Intel® Core™2 Duo processor
• Intel® Core™2 Quad processor Q6000 series
• Intel® Xeon® processor 3000, 3200 series
• Intel® Xeon® processor 5000 series
• Intel® Xeon® processor 5100, 5300 series
• Intel® Core™2 Extreme processor X7000 and X6800 series
• Intel® Core™2 Extreme QX6000 series
• Intel® Xeon® processor 7100 series
• Intel® Pentium® Dual-Core processor
• Intel® Xeon® processor 7200, 7300 series
• Intel® Core™2 Extreme QX9000 series
• Intel® Xeon® processor 5200, 5400, 7400 series
• Intel® CoreTM2 Extreme processor QX9000 and X9000 series
• Intel® CoreTM2 Quad processor Q9000 series
• Intel® CoreTM2 Duo processor E8000, T9000 series
• Intel® AtomTM processor family
• Intel® CoreTM i7 processor
• Intel® CoreTM i5 processor
• Intel® Xeon® processor E7-8800/4800/2800 product families

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® III, and Pentium® III Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® CoreTM2 Quad processor
Q9000 series, and Intel® CoreTM2 Extreme processors QX9000, X9000 series, Intel®
CoreTM2 processor E8000 series are based on Enhanced Intel® CoreTM microarchitec-
ture.

The Intel® AtomTM processor family is based on the Intel® AtomTM microarchitecture
and supports Intel 64 architecture.
1-2 Vol. 3A

ABOUT THIS MANUAL
The Intel® CoreTM i7 processor and the Intel® CoreTM i5 processor are based on the
Intel® microarchitecture code name Nehalem and support Intel 64 architecture.

Processors based on Intel® microarchitecture code name Westmere support Intel 64
architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture. The Intel® Atom™ processor Z5xx series
support IA-32 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 product families, Intel® Xeon®
processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400
series, Intel® Core™2 Duo, Intel® Core™2 Extreme processors, Intel Core 2 Quad
processors, Pentium® D processors, Pentium® Dual-Core processor, newer genera-
tions of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
IA-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE
A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and IA-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

Chapter 4 — Paging. Describes the paging modes supported by Intel 64 and IA-32
processors.

Chapter 5 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and IA-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.
Vol. 3A 1-3

ABOUT THIS MANUAL
Chapter 6 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and IA-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given at the end of this
chapter.

Chapter 7 — Task Management. Describes mechanisms the Intel 64 and IA-32
architectures provide to support multitasking and inter-task protection.

Chapter 8 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Intel® Hyper-Threading Technology.

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or IA-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or IA-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Advanced Programmable Interrupt Controller (APIC).
Describes the programming interface to the local APIC and gives an overview of the
interface between the local APIC and the I/O APIC.

Chapter 11 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or IA-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium III,
Pentium 4, and Intel Xeon processors is also given.

Chapter 12 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered
at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 13 — System Programming For Instruction Set Extensions And
Processor Extended States. Describes the operating system requirements to
support SSE/SSE2/SSE3/SSSE3/SSE4 extensions, including task switching, excep-
tion handling, and compatibility with existing system environments. The latter part of
this chapter describes the extensible framework of operating system requirements to
support processor extended states. Processor extended state may be required by
instruction set extensions beyond those of SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

Chapter 14 — Power and Thermal Management. Describes facilities of Intel 64
and IA-32 architecture used for power management and thermal monitoring.

Chapter 15 — Machine-Check Architecture. Describes the machine-check
architecture and machine-check exception mechanism found in the Pentium
4, Intel Xeon, and P6 family processors. Additionally, a signaling mechanism
for software to respond to hardware corrected machine check error is
covered.
1-4 Vol. 3A

ABOUT THIS MANUAL
Chapter 16 — Debugging, Branch Profiles and Time-Stamp Counter.
Describes the debugging registers and other debug mechanism provided in Intel 64
or IA-32 processors. This chapter also describes the time-stamp counter.

Chapter 17 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the IA-32 architecture.

Chapter 18 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 19 — IA-32 Architecture Compatibility. Describes architectural
compatibility among IA-32 processors.

Chapter 20 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and IA-32 Architectures.

Chapter 21 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 22— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted
programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 23 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 24 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 25 — VMX Support for Address Translation. Describes virtual-machine
extensions that support address translation and the virtualization of physical
memory.

Chapter 26 — System Management Mode. Describes Intel 64 and IA-32 architec-
tures’ system management mode (SMM) facilities.

Chapter 27 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 28 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 29 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.
Vol. 3A 1-5

ABOUT THIS MANUAL
Chapter 30 — Performance Monitoring. Describes the Intel 64 and IA-32 archi-
tectures’ facilities for monitoring performance.

Appendix A — Performance-Monitoring Events. Lists architectural performance
events. Non-architectural performance events (i.e. model-specific events) are listed
for each generation of microarchitecture.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core
Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINT0 and LINT1 Inputs. Gives an example of
how to program the LINT0 and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMIs, external interrupts, and
triple faults.

1.3 NOTATIONAL CONVENTIONS
This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order
In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
1-6 Vol. 3A

ABOUT THIS MANUAL
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

1.3.2 Reserved Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers which contain such bits. Mask out the reserved bits before testing.
• Do not depend on the states of any reserved bits when storing to memory or to a

register.
• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

NOTE
Avoid any software dependence upon the state of reserved bits in
Intel 64 and IA-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0
Address

Lowest

Bit offset

28

24
20
16
12
8

4

0 Address

Byte Offset
Vol. 3A 1-7

ABOUT THIS MANUAL
1.3.3 Instruction Operands
When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:
• A label is an identifier which is followed by a colon.
• A mnemonic is a reserved name for a class of instruction opcodes which have

the same function.
• The operands argument1, argument2, and argument3 are optional. There

may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers
Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing
The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
1-8 Vol. 3A

ABOUT THIS MANUAL
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:EIP

1.3.6 Syntax for CPUID, CR, and MSR Values
Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.
Vol. 3A 1-9

ABOUT THIS MANUAL
1.3.7 Exceptions
An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation
1-10 Vol. 3A

ABOUT THIS MANUAL
This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:

http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
• The data sheet for a particular Intel 64 or IA-32 processor
• The specification update for a particular Intel 64 or IA-32 processor
• Intel® C++ Compiler documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® Fortran Compiler documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® VTune™ Performance Analyzer documentation and online help

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® 64 and IA-32 Architectures Optimization Reference Manual

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® Processor Identification with the CPUID Instruction, AP-485

http://www.intel.com/design/processor/applnots/241618.htm
• Intel® 64 Architecture Memory Ordering White Paper,

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® 64 Architecture x2APIC Specification:

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® Virtualization Technology for Directed I/O, Rev 1.2 specification

http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_I
O.pdf
Vol. 3A 1-11

http://developer.intel.com/products/processor/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL
• Intel® 64 Architecture Processor Topology Enumeration:
http://softwarecommunity.intel.com/articles/eng/3887.htm

• Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

• Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:
• Software network link:

http://softwarecommunity.intel.com/isn/home/
• Developer centers:

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
• Processor support general link:

http://www.intel.com/support/processors/
• Software products and packages:

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
• Intel® 64 and IA-32 processor manuals (printed or PDF downloads):

http://developer.intel.com/products/processor/manuals/index.htm
• Intel® multi-core technology:

http://developer.intel.com/multi-core/index.htm
• Intel® Hyper-Threading Technology (Intel® HT Technology):

http://developer.intel.com/technology/hyperthread/
1-12 Vol. 3A

http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/
http://developer.intel.com/products/processor/manuals/index.htm

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:
• Real mode, protected mode, virtual 8086 mode, and system management mode.

These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in IA-32 architecture and extends them to a new operating mode (IA-32e mode) that
supports a 64-bit programming environment. IA-32e mode allows software to
operate in one of two sub-modes:
• 64-bit mode supports 64-bit OS and 64-bit applications
• Compatibility mode allows most legacy software to run; it co-exists with 64-bit

applications under a 64-bit OS.

The IA-32 system-level architecture and includes features to assist in the following
operations:
• Memory management
• Protection of software modules
• Multitasking
• Exception and interrupt handling
• Multiprocessing
• Cache management
• Hardware resource and power management
• Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the IA-32 architecture. IA-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or
reset (see Chapter 9, “Processor Management and Initialization”). Software then
Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW
initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to IA-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to IA-32e mode are
shown in Figure 2-2.
2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
Figure 2-1. IA-32 System-Level Registers and Data Structures

Local Descriptor
Table (LDT)

EFLAGS Register

Control Registers

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Task-State
Segment (TSS)

Code
Data

Stack

Task

Interrupt Handler

Exception Handler

Protected Procedure

TSS Seg. Sel.

Call-Gate
Segment Selector

Dir Table Offset
Linear Address

Page Directory

Pg. Dir. Entry

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or
Stack Segment

Interrupt
Vector

TSS Desc.

Seg. Desc.

Task Gate

Current
TSS

Call Gate

Task-State
Segment (TSS)

Code
Data

Stack

Task

Seg. Desc.

Current
TSS

Current
TSS

Segment Selector

Linear Address

Task Register

CR3*

Page Table

Pg. Tbl. Entry

Page

Physical Addr.

LDTR

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

Register

*Physical Address

Physical Address

XCR0 (XFEM)
Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW
Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

Local Descriptor
Table (LDT)

CR1
CR2
CR3
CR4

CR0 Global Descriptor
Table (GDT)

Interrupt Descriptor
Table (IDT)

IDTR

GDTR

Interrupt Gate

Trap Gate

LDT Desc.

TSS Desc.

Code

Stack

Code
Stack

Code
Stack

Current TSS
Code

Stack

Interr. Handler

Interrupt Handler

Exception Handler

Protected Procedure

TR

Call-Gate
Segment Selector

Linear Address

PML4

PML4.

Linear Address Space

Linear Addr.

0

Seg. Desc.Segment Sel.

Code, Data or Stack
Segment (Base =0)

Interrupt
Vector

Seg. Desc.

Seg. Desc.

NULL

Call Gate

Task-State
Segment (TSS)

Seg. Desc.

NULL

NULL

Segment Selector

Linear Address

Task Register

CR3*

Page

LDTR

This page mapping example is for 4-KByte pages
and 40-bit physical address size.

Register

*Physical Address

Physical Address

CR8
Control Register

RFLAGS

OffsetTableDirectory

Page Table

Entry

Physical
Addr.Page Tbl

Entry

Page Dir.Pg. Dir. Ptr.

PML4 Dir. Pointer

Pg. Dir.
Entry

Interrupt Gate

IST

XCR0 (XFEM)
2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.1.1 Global and Local Descriptor Tables
When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode
GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates
Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.
Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW
The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure1 supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode
In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in IA-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates
The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the base address of the paging-
structure hierarchy.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).
2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2. Loads the task register with the segment selector for the new task.

3. Accesses the new TSS through a segment descriptor in the GDT.

4. Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (base address of
the paging-structure hierarchy), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode
Hardware task switches are not supported in IA-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
• Stack pointer addresses for each privilege level
• Pointer addresses for the interrupt stack table
• Offset address of the IO-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See
also: Section 7.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling
External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode
In IA-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.
Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW
The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

2.1.5 Memory Management
System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in the paging structures. These structures reside in physical memory (see
Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control
register CR3. The entries in the paging structures determine the physical address of
the base of a page frame, access rights and memory management information.

To use this paging mechanism, a linear address is broken into parts. The parts
provide separate offsets into the paging structures and the page frame. A system can
have a single hierarchy of paging structures or several. For example, each task can
have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode
In IA-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:
• The page map level 4 (PML4) — An entry in a PML4 table contains the physical

address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

• A set of page directory pointer tables — An entry in a page directory pointer
table contains the physical address of the base of a page directory table, access
rights, and memory management information.

• Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

• Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.
2-8 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.1.6 System Registers
To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:
• The system flags and IOPL field in the EFLAGS register control task and mode

switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

• The control registers (CR0, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “Control Registers.”

• The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 16,
“Debugging, Profiling Branches and Time-Stamp Counter.”

• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, “Memory-Management
Registers.”

• The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, “Memory-Management Registers.”

• Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRs).

The number and function of these registers varies among different members of the
Intel 64 and IA-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode
In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CR0–CR4 are expanded to 64 bits. CR8 becomes available.
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DR0–DR7 are 64 bits. In compatibility mode,
address-matching in DR0–DR3 is also done at 64-bit granularity.
Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW
On systems that support IA-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of IA-32e
mode and other IA-32e mode operations. In addition, there are several model-
specific registers that govern IA-32e mode instructions:
• IA32_KernelGSbase — Used by SWAPGS instruction.
• IA32_LSTAR — Used by SYSCALL instruction.
• IA32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
• IA32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources
Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:
• Operating system instructions (see also: Section 2.7, “System Instruction

Summary”).
• Performance-monitoring counters (not shown in Figure 2-1).
• Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the number of
interrupts received, or the number of cache loads. See also: Section 20, “Introduc-
tion to Virtual-Machine Extensions.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 11, “Memory Cache Control.”

2.2 MODES OF OPERATION
The IA-32 supports three operating modes and one quasi-operating mode:
• Protected mode — This is the native operating mode of the processor. It

provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

• Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

• System management mode (SMM) — SMM is a standard architectural feature
in all IA-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently
2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

• Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e
modes:
• IA-32e mode — In IA-32e mode, the processor supports two sub-modes:

compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CR0 then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.” and Section
4.1.2, “Paging-Mode Enabling.”

Figure 2-3. Transitions Among the Processor’s Operating Modes

Real-Address

Protected Mode

Virtual-8086
Mode

System
Management

Mode

PE=1
Reset or

VM=1VM=0

PE=0

Reset
or

RSM

SMI#

RSM

SMI#

RSM

SMI#

Reset

 Mode

IA-32e
Mode

RSM

SMI#LME=1, CR0.PG=1*

See**

* See Section 9.8.5

** See Section 9.8.5.4
Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW
The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and
virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 17.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating
in IA-32e mode. When running in IA-32e mode, 64-bit or compatibility sub-mode
operation is determined by CS.L bit of the code segment. The processor enters into
IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initializa-
tion.”

The processor switches to SMM whenever it receives an SMI while the processor is in
real-address, protected, virtual-8086, or IA-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see
Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.
2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
IF Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 6.3.2, “Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

IOPL I/O privilege level field (bits 12 and 13) — Indicates the I/O privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the I/O address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1.

NT Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be
explicitly set or cleared with the POPF/POPFD instructions; however,

Figure 2-4. System Flags in the EFLAGS Register

31 22 21 20 19 18 17 16

R
F

I
D

A
C

V
M

VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— I/O Privilege Level
IF — Interrupt Enable Flag

AC — Alignment Check

ID — Identification Flag
VIP — Virtual Interrupt Pending

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 00

V
I
P

V
I
F

O
F

I
O
P
L

VIF — Virtual Interrupt Flag

TF — Trap Flag

Reserved

Reserved (set to 0)
Vol. 3A 2-13

SYSTEM ARCHITECTURE OVERVIEW
changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 7.4, “Task Linking.”

RF Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When clear,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 16.3.1.1, “Instruction-Breakpoint Exception Condition.”

VM Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 17.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check (bit 18) — Set this flag and the AM flag in control register
CR0 to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 17.3.3.5, “Method 6: Software Interrupt Handling,” and
Section 17.4, “Protected-Mode Virtual Interrupts.”
2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 17.3.3.5, “Method 6: Software Interrupt Handling,” and Section
17.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode
In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in IA-32e mode if the NT bit is
set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS
The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.
Vol. 3A 2-15

SYSTEM ARCHITECTURE OVERVIEW
2.4.1 Global Descriptor Table Register (GDTR)
The GDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to 0FFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)
The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte 0 of the LDT
segment; the segment limit specifies the number of bytes in the segment. See also:
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of 0 and the limit is set to 0FFFFH.

Figure 2-5. Memory Management Registers

047(79)

GDTR

IDTR

System Table Registers

32(64)-bit Linear Base Address 16-Bit Table Limit

1516

32(64)-bit Linear Base Address

0
Task

LDTR

System Segment

Seg. Sel.

15

Seg. Sel.

Segment Descriptor Registers (Automatically Loaded)

32(64)-bit Linear Base Address Segment Limit

Attributes
Registers

32(64)-bit Linear Base Address Segment Limit
Register

16-Bit Table Limit
2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.4.3 IDTR Interrupt Descriptor Table Register
The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of 0
and the limit is set to 0FFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2.4.4 Task Register (TR)
The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in IA-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of 0 and the limit is set to 0FFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS
Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:
• Bits 63:32 of CR0 and CR4 are reserved and must be written with zeros. Writing

a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

• All 64 bits of CR2 are writable by software.
• Bits 51:40 of CR3 are reserved and must be 0.
Vol. 3A 2-17

SYSTEM ARCHITECTURE OVERVIEW
• The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

• Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CR0).
• CR0 — Contains system control flags that control operating mode and states of

the processor.
• CR1 — Reserved.
• CR2 — Contains the page-fault linear address (the linear address that caused a

page fault).
• CR3 — Contains the physical address of the base of the paging-structure

hierarchy and two flags (PCD and PWT). Only the most-significant bits (less the
lower 12 bits) of the base address are specified; the lower 12 bits of the address
are assumed to be 0. The first paging structure must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of that paging
structure in the processor’s internal data caches (they do not control TLB caching
of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In IA-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”
• CR4 — Contains a group of flags that enable several architectural extensions,

and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

• CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.
2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit 0 of register CR0) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also
requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 11-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Figure 2-6. Control Registers

CR1

W
P

A
M

Page-Directory Base

V
M
E

P
S
E

T
S
D

D
E

P
V
I

P
G
E

M
C
E

P
A
E

P
C
E

N
W

P
G

C
D

P
W
T

P
C
D

Page-Fault Linear Address

P
E

E
M

M
P

T
S

N
E

E
T

CR2

CR0

CR4

Reserved

CR3

Reserved

31 2930 28 19 18 17 16 15 6 5 4 3 2 1 0

31(63) 0

31(63) 0

31(63) 12 11 5 4 3 2

31(63) 9 8 7 6 5 4 3 2 1 0

(PDBR)

13 12 11 10

OSFXSR
OSXMMEXCPT

V
M
X
EE

X
M
S

1418

OSXSAVE
PCIDE

17

SMEP

S
M
E
P

20
Vol. 3A 2-19

SYSTEM ARCHITECTURE OVERVIEW
See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache
Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 11-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

WP Write Protect (bit 16 of CR0) — When set, inhibits supervisor-level proce-
dures from writing into read-only pages; when clear, allows supervisor-level
procedures to write into read-only pages (regardless of the U/S bit setting;
see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the
copy-on-write method of creating a new process (forking) used by operating
systems such as UNIX.

NE Numeric Error (bit 5 of CR0) — Enables the native (internal) mechanism
for reporting x87 FPU errors when set; enables the PC-style x87 FPU error
reporting mechanism when clear. When the NE flag is clear and the IGNNE#
input is asserted, x87 FPU errors are ignored. When the NE flag is clear and
the IGNNE# input is deasserted, an unmasked x87 FPU error causes the
processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt
controller (the FERR# pin emulates the ERROR# pin of the Intel 287 and
Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR# pin
are used with external logic to implement PC-style error reporting. Using
FERR# and IGNNE# to handle floating-point exceptions is deprecated by
modern operating systems; this non-native approach also limits newer
processors to operate with one logical processor active.

See also: “Software Exception Handling” in Chapter 8, “Programming with
the x87 FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1.

ET Extension Type (bit 4 of CR0) — Reserved in the Pentium 4, Intel Xeon, P6
family, and Pentium processors. In the Pentium 4, Intel Xeon, and P6 family
processors, this flag is hardcoded to 1. In the Intel386 and Intel486 proces-
sors, this flag indicates support of Intel 387 DX math coprocessor instruc-
tions when set.

TS Task Switched (bit 3 of CR0) — Allows the saving of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be
2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task
switch and tests it when executing x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

• If the TS flag is set and the EM flag (bit 2 of CR0) is clear, a device-not-
available exception (#NM) is raised prior to the execution of any x87
FPU/MMX/SSE/ SSE2/SSE3/SSSE3/SSE4 instruction; with the exception
of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT. See the paragraph below for the special case of the
WAIT/FWAIT instructions.

• If the TS flag is set and the MP flag (bit 1 of CR0) and EM flag are clear, an
#NM exception is not raised prior to the execution of an x87 FPU
WAIT/FWAIT instruction.

• If the EM flag is set, the setting of the TS flag has no affect on the
execution of x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-1 shows the actions taken when the processor encounters an x87
FPU instruction based on the settings of the TS, EM, and MP flags. Table 12-1
and 13-1 show the actions taken when the processor encounters an
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM,
and MXCSR registers on a task switch. Instead, it sets the TS flag, which
causes the processor to raise an #NM exception whenever it encounters an
x87 FPU/MMX/SSE /SSE2/SSE3/SSSE3/SSE4 instruction in the instruction
stream for the new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with
the CLTS instruction) and save the context of the x87 FPU, XMM, and MXCSR regis-
ters. If the task never encounters an x87 FPU/MMX/SSE/SSE2/SSE3//SSSE3/SSE4
instruction; the x87 FPU/MMX/SSE/SSE2/ SSE3/SSSE3/SSE4 context is never saved.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type

EM MP TS Floating-Point WAIT/FWAIT

0 0 0 Execute Execute.

0 0 1 #NM Exception Execute.

0 1 0 Execute Execute.

0 1 1 #NM Exception #NM exception.

1 0 0 #NM Exception Execute.

1 0 1 #NM Exception Execute.

1 1 0 #NM Exception Execute.
Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW
EM Emulation (bit 2 of CR0) — Indicates that the processor does not have an
internal or external x87 FPU when set; indicates an x87 FPU is present when
clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

When the EM flag is set, execution of an x87 FPU instruction generates a
device-not-available exception (#NM). This flag must be set when the
processor does not have an internal x87 FPU or is not connected to an
external math coprocessor. Setting this flag forces all floating-point instruc-
tions to be handled by software emulation. Table 9-2 shows the recom-
mended setting of this flag, depending on the IA-32 processor and x87 FPU
or math coprocessor present in the system. Table 2-1 shows the interaction
of the EM, MP, and TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an
invalid-opcode exception (#UD) to be generated (see Table 12-1). Thus, if an
IA-32 or Intel 64 processor incorporates MMX technology, the EM flag must
be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is
set, execution of most SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an
invalid opcode exception (#UD) to be generated (see Table 13-1). If an IA-32
or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, the EM flag must be set to 0 to enable execution of these extensions.
SSE/SSE2/SSE3/SSSE3/SSE4 instructions not affected by the EM flag
include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH,
CRC32, and POPCNT.

MP Monitor Coprocessor (bit 1 of CR0). — Controls the interaction of the
WAIT (or FWAIT) instruction with the TS flag (bit 3 of CR0). If the MP flag is
set, a WAIT instruction generates a device-not-available exception (#NM) if
the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the
setting of the TS flag. Table 9-2 shows the recommended setting of this flag,
depending on the IA-32 processor and x87 FPU or math coprocessor present
in the system. Table 2-1 shows the interaction of the MP, EM, and TS flags.

PE Protection Enable (bit 0 of CR0) — Enables protected mode when set;
enables real-address mode when clear. This flag does not enable paging
directly. It only enables segment-level protection. To enable paging, both the
PE and PG flags must be set.

See also: Section 9.9, “Mode Switching.”

PCD Page-level Cache Disable (bit 4 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-

1 1 1 #NM Exception #NM exception.

Table 2-1. Action Taken By x87 FPU Instructions for Different
Combinations of EM, MP, and TS

CR0 Flags x87 FPU Instruction Type
2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

PWT Page-level Write-Through (bit 3 of CR3) — Controls the memory type
used to access the first paging structure of the current paging-structure hier-
archy. See Section 4.9, “Paging and Memory Typing”. This bit is not used if
paging is disabled, with PAE paging, or with IA-32e paging if CR4.PCIDE=1.

VME Virtual-8086 Mode Extensions (bit 0 of CR4) — Enables interrupt- and
exception-handling extensions in virtual-8086 mode when set; disables the
extensions when clear. Use of the virtual mode extensions can improve the
performance of virtual-8086 applications by eliminating the overhead of
calling the virtual-8086 monitor to handle interrupts and exceptions that
occur while executing an 8086 program and, instead, redirecting the inter-
rupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environ-
ments.

See also: Section 17.3, “Interrupt and Exception Handling in Virtual-8086
Mode.”

PVI Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware
support for a virtual interrupt flag (VIF) in protected mode when set; disables
the VIF flag in protected mode when clear.

See also: Section 17.4, “Protected-Mode Virtual Interrupts.”

TSD Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the
RDTSC instruction (including RDTSCP instruction if
CPUID.80000001H:EDX[27] = 1) to procedures running at privilege level 0
when set; allows RDTSC instruction (including RDTSCP instruction if
CPUID.80000001H:EDX[27] = 1) to be executed at any privilege level when
clear.

DE Debugging Extensions (bit 3 of CR4) — References to debug registers
DR4 and DR5 cause an undefined opcode (#UD) exception to be generated
when set; when clear, processor aliases references to registers DR4 and DR5
for compatibility with software written to run on earlier IA-32 processors.

See also: Section 16.2.2, “Debug Registers DR4 and DR5.”

PSE Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit
paging when set; restricts 32-bit paging to pages to 4 KBytes when clear.

See also: Section 4.3, “32-Bit Paging.”

PAE Physical Address Extension (bit 5 of CR4) — When set, enables paging
to produce physical addresses with more than 32 bits. When clear, restricts
physical addresses to 32 bits. PAE must be set before entering IA-32e mode.

See also: Chapter 4, “Paging.”
Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW
MCE Machine-Check Enable (bit 6 of CR4) — Enables the machine-check
exception when set; disables the machine-check exception when clear.

See also: Chapter 15, “Machine-Check Architecture.”

PGE Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family proces-
sors.) Enables the global page feature when set; disables the global page
feature when clear. The global page feature allows frequently used or shared
pages to be marked as global to all users (done with the global flag, bit 8, in
a page-directory or page-table entry). Global pages are not flushed from the
translation-lookaside buffer (TLB) on a task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting
the PG flag in control register CR0) before the PGE flag is set. Reversing this
sequence may affect program correctness, and processor performance will
be impacted.

See also: Section 4.10, “Caching Translation Information.”

PCE Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables
execution of the RDPMC instruction for programs or procedures running at
any protection level when set; RDPMC instruction can be executed only at
protection level 0 when clear.

OSFXSR
Operating System Support for FXSAVE and FXRSTOR instructions
(bit 9 of CR4) — When set, this flag: (1) indicates to software that the oper-
ating system supports the use of the FXSAVE and FXRSTOR instructions, (2)
enables the FXSAVE and FXRSTOR instructions to save and restore the
contents of the XMM and MXCSR registers along with the contents of the x87
FPU and MMX registers, and (3) enables the processor to execute
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and
restore the contents of the x87 FPU and MMX instructions, but they may not
save and restore the contents of the XMM and MXCSR registers. Also, the
processor will generate an invalid opcode exception (#UD) if it attempts to
execute any SSE/SSE2/SSE3 instruction, with the exception of PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and
POPCNT. The operating system or executive must explicitly set this flag.

NOTE
CPUID feature flags FXSR indicates availability of the
FXSAVE/FXRSTOR instructions. The OSFXSR bit provides operating
system software with a means of enabling FXSAVE/FXRSTOR to
save/restore the contents of the X87 FPU, XMM and MXCSR registers.
2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
Consequently OSFXSR bit indicates that the operating system
provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

OSXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Excep-
tions (bit 10 of CR4) — When set, indicates that the operating system
supports the handling of unmasked SIMD floating-point exceptions through
an exception handler that is invoked when a SIMD floating-point exception
(#XF) is generated. SIMD floating-point exceptions are only generated by
SSE/SSE2/SSE3/SSE4.1 SIMD floating-point instructions.

The operating system or executive must explicitly set this flag. If this flag is
not set, the processor will generate an invalid opcode exception (#UD)
whenever it detects an unmasked SIMD floating-point exception.

VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See
Chapter 20, “Introduction to Virtual-Machine Extensions.”

SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See
Chapter 6, “Safer Mode Extensions Reference” of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers
(PCIDs) when set. See Section 4.10.1, “Process-Context Identifiers
(PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

OSXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) —
When set, this flag: (1) indicates (via CPUID.01H:ECX.OSXSAVE[bit 27])
that the operating system supports the use of the XGETBV, XSAVE and
XRSTOR instructions by general software; (2) enables the XSAVE and
XRSTOR instructions to save and restore the x87 FPU state (including MMX
registers), the SSE state (XMM registers and MXCSR), along with other
processor extended states enabled in XCR0; (3) enables the processor to
execute XGETBV and XSETBV instructions in order to read and write XCR0.
See Section 2.6 and Chapter 13, “System Programming for Instruction Set
Extensions and Processor Extended States”.

SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution
prevention (SMEP) when set. See Section 4.6, “Access Rights”.

TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corre-
sponding to the highest-priority interrupt to be blocked. A value of 0 means
all interrupts are enabled. This field is available in 64-bit mode. A value of 15
means all interrupts will be disabled.
Vol. 3A 2-25

SYSTEM ARCHITECTURE OVERVIEW
2.5.1 CPUID Qualification of Control Register Flags
Not all flags in control register CR4 are implemented on all processors. With the
exception of the PCE flag, they can be qualified with the CPUID instruction to deter-
mine if they are implemented on the processor before they are used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCR0)
If CPUID.01H:ECX.XSAVE[bit 26] is 1, the processor supports one or more
extended control registers (XCRs). Currently, the only such register defined is
XCR0. This register specifies the set of processor states that the operating system
enables on that processor, e.g. x87 FPU state, SSE state, AVX state, and other
processor extended states that Intel 64 architecture may introduce in the future. The
OS programs XCR0 to reflect the features it supports.

Software can access XCR0 only if CR4.OSXSAVE[bit 18] = 1. (This bit is also readable
as CPUID.01H:ECX.OSXSAVE[bit 27].) The layout of XCR0 is architected to allow
software to use CPUID leaf function 0DH to enumerate the set of bits that the
processor supports in XCR0 (see CPUID instruction in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A). Each processor state (X87 FPU
state, SSE state, AVX state, or a future processor extended state) is represented by
a bit in XCR0. The OS can enable future processor extended states in a forward
manner by specifying the appropriate bit mask value using the XSETBV instruction
according to the results of the CPUID leaf 0DH.
With the exception of bit 63, each bit in XCR0 corresponds to a subset of the
processor states. XCR0 thus provides space for up to 63 sets of processor state
extensions. Bit 63 of XCR0 is reserved for future expansion and will not represent a
processor extended state.

Figure 2-7. XCR0

63

Reserved for XCR0 bit vector expansion
Reserved / Future processor extended states

2 1 0

AVX state

1

Reserved (must be 0)

x87 FPU/MMX state (must be 1)
SSE state
2-26 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
Currently, XCR0 has three processor states defined, with up to 61 bits reserved for
future processor extended states:
• XCR0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a

#GP exception.
• XCR0.SSE (bit 1): If 1, XSAVE, XSAVEOPT, and XRSTOR can be used to manage

MXCSR and XMM registers (XMM0-XMM15 in 64-bit mode; otherwise XMM0-
XMM7).

• XCR0.AVX (bit 2): If 1, AVX instructions can be executed and XSAVE, XSAVEOPT,
and XRSTOR can be used to manage the upper halves of the YMM registers
(YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM7).

Any attempt to set a reserved bit (as determined by the contents of EAX and EDX
after executing CPUID with EAX=0DH, ECX= 0H) in XCR0 for a given processor will
result in a #GP exception. An attempt to write 0 to XCR0.x87 (bit 0) will result in a
#GP exception. An attempt to write 0 to XCR0.SSE (bit 1) and 1 to XCR0.AVX (bit 2)
also results in a #GP exception.

If a bit in XCR0 is 1, software can use the XSAVE instruction to save the corre-
sponding processor state to memory (see XSAVE instruction in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B).
After reset, all bits (except bit 0) in XCR0 are cleared to zero, XCR0[0] is set to 1.

2.7 SYSTEM INSTRUCTION SUMMARY
System instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of
these instructions can be executed only by operating-system or executive proce-
dures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-2 lists the system instructions and indicates whether they are available and
useful for application programs. These instructions are described in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

Table 2-2. Summary of System Instructions

Instruction Description
Useful to
Application?

Protected from
Application?

LLDT Load LDT Register No Yes

SLDT Store LDT Register No No

LGDT Load GDT Register No Yes

SGDT Store GDT Register No No

LTR Load Task Register No Yes

STR Store Task Register No No
Vol. 3A 2-27

SYSTEM ARCHITECTURE OVERVIEW
LIDT Load IDT Register No Yes

SIDT Store IDT Register No No

MOV CRn Load and store control registers No Yes

SMSW Store MSW Yes No

LMSW Load MSW No Yes

CLTS Clear TS flag in CR0 No Yes

ARPL Adjust RPL Yes1, 5 No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No

VERR Verify for Reading Yes No

VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes

WBINVD Invalidate cache, with writeback No Yes

INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes

LOCK (Prefix) Bus Lock Yes No

RSM Return from system management
mode

No Yes

RDMSR3 Read Model-Specific Registers No Yes

WRMSR3 Write Model-Specific Registers No Yes

RDPMC4 Read Performance-Monitoring
Counter

Yes Yes2

RDTSC3 Read Time-Stamp Counter Yes Yes2

RDTSCP7 Read Serialized Time-Stamp Counter Yes Yes2

XGETBV Return the state of XCR0 Yes No

XSETBV Enable one or more processor
extended states

No6 Yes

Table 2-2. Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
2-28 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
2.7.1 Loading and Storing System Registers
The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for
loading data into and storing data from the register:
• LGDT (Load GDTR Register) — Loads the GDT base address and limit from

memory into the GDTR register.
• SGDT (Store GDTR Register) — Stores the GDT base address and limit from

the GDTR register into memory.
• LIDT (Load IDTR Register) — Loads the IDT base address and limit from

memory into the IDTR register.
• SIDT (Load IDTR Register — Stores the IDT base address and limit from the

IDTR register into memory.
• LLDT (Load LDT Register) — Loads the LDT segment selector and segment

descriptor from memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

• SLDT (Store LDT Register) — Stores the LDT segment selector from the LDTR
register into memory or a general-purpose register.

• LTR (Load Task Register) — Loads segment selector and segment descriptor
for a TSS from memory into the task register. (The segment selector operand can
also be located in a general-purpose register.)

• STR (Store Task Register) — Stores the segment selector for the current task
TSS from the task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word)
instructions operate on bits 0 through 15 of control register CR0. These instructions
are provided for compatibility with the 16-bit Intel 286 processor. Programs written
to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CR0 using the MOV instruction.

NOTES:
1. Useful to application programs running at a CPL of 1 or 2.
2. The TSD and PCE flags in control register CR4 control access to these instructions by application

programs running at a CPL of 3.
3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.
4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and

the Pentium processor with MMX technology.
5. This instruction is not supported in 64-bit mode.
6. Application uses XGETBV to query which set of processor extended states are enabled.
7. RDTSCP is introduced in Intel Core i7 processor.

Table 2-2. Summary of System Instructions (Contd.)

Instruction Description
Useful to
Application?

Protected from
Application?
Vol. 3A 2-29

SYSTEM ARCHITECTURE OVERVIEW
The CLTS (clear TS flag in CR0) instruction is provided for use in handling a device-
not-available exception (#NM) that occurs when the processor attempts to execute a
floating-point instruction when the TS flag is set. This instruction allows the TS flag to
be cleared after the x87 FPU context has been saved, preventing further #NM excep-
tions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV
instruction. The instruction loads a control register from a general-purpose register
or stores the content of a control register in a general-purpose register.

2.7.2 Verifying of Access Privileges
The processor provides several instructions for examining segment selectors and
segment descriptors to determine if access to their associated segments is allowed.
These instructions duplicate some of the automatic access rights and type checking
done by the processor, thus allowing operating-system or executive software to
prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a
segment selector to match that of the program or procedure that supplied the
segment selector. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed explanation of the function and use of this instruction.
Note that ARPL is not supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified
segment and loads access rights information from the segment’s segment descriptor
into a general-purpose register. Software can then examine the access rights to
determine if the segment type is compatible with its intended use. See Section
5.10.1, “Checking Access Rights (LAR Instruction),” for a detailed explanation of the
function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified
segment and loads the segment limit from the segment’s segment descriptor into a
general-purpose register. Software can then compare the segment limit with an
offset into the segment to determine whether the offset lies within the segment. See
Section 5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction),”
for a detailed explanation of the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a
selected segment is readable or writable, respectively, at a given CPL. See Section
5.10.2, “Checking Read/Write Rights (VERR and VERW Instructions),” for a detailed
explanation of the function and use of this instruction.

2.7.3 Loading and Storing Debug Registers
Internal debugging facilities in the processor are controlled by a set of 8 debug regis-
ters (DR0-DR7). The MOV instruction allows setup data to be loaded to and stored
from these registers.
2-30 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
On processors that support Intel 64 architecture, debug registers DR0-DR7 are 64
bits. In 32-bit modes and compatibility mode, writes to a debug register fill the upper
32 bits with zeros. Reads return the lower 32 bits. In 64-bit mode, the upper 32 bits
of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register
(operand-size prefixes are ignored). All 64 bits of DR0-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DR0-DR3 are
in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.7.4 Invalidating Caches and TLBs
The processor provides several instructions for use in explicitly invalidating its caches
and TLB entries. The INVD (invalidate cache with no writeback) instruction invali-
dates all data and instruction entries in the internal caches and sends a signal to the
external caches indicating that they should be also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same func-
tion as the INVD instruction, except that it writes back modified lines in its internal
caches to memory before it invalidates the caches. After invalidating the internal
caches, WBINVD signals external caches to write back modified data and invalidate
their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for
a specified page.

2.7.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt
(such as NMI or SMI, which are normally enabled), a debug exception, the BINIT#
signal, the INIT# signal, or the RESET# signal is received. The processor generates a
special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the
front panel may be turned on. An NMI interrupt for recording diagnostic information
may be generated. Reset initialization may be invoked (note that the BINIT# pin was
introduced with the Pentium Pro processor). If any non-wake events are pending
during shutdown, they will be handled after the wake event from shutdown is
processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modi-
fying a memory operand. This mechanism is used to allow reliable communications
between processors in multiprocessor systems, as described below:
Vol. 3A 2-31

SYSTEM ARCHITECTURE OVERVIEW
• In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes
the processor to assert the LOCK# signal during the instruction. This always
causes an explicit bus lock to occur.

• In the Pentium 4, Intel Xeon, and P6 family processors, the locking operation is
handled with either a cache lock or bus lock. If a memory access is cacheable and
affects only a single cache line, a cache lock is invoked and the system bus and
the actual memory location in system memory are not locked during the
operation. Here, other Pentium 4, Intel Xeon, or P6 family processors on the bus
write-back any modified data and invalidate their caches as necessary to
maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted
and the processor does not respond to requests for bus control during the locked
operation.

The RSM (return from SMM) instruction restores the processor (from a context
dump) to the state it was in prior to an system management mode (SMM) interrupt.

2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp
counter) instructions allow application programs to read the processor’s perfor-
mance-monitoring and time-stamp counters, respectively. Processors based on Intel
NetBurst® microarchitecture have eighteen 40-bit performance-monitoring
counters; P6 family processors have two 40-bit counters. Intel® Atom™ processors
and most of the processors based on the Intel Core microarchitecture support two
types of performance monitoring counters: two programmable performance
counters similar to those available in the P6 family, and three fixed-function perfor-
mance monitoring counters.

The programmable performance counters can support counting either the occurrence
or duration of events. Events that can be monitored on programmable counters
generally are model specific (except for architectural performance events enumer-
ated by CPUID leaf 0AH); they may include the number of instructions decoded,
interrupts received, or the number of cache loads. Individual counters can be set up
to monitor different events. Use the system instruction WRMSR to set up values in
IA32_PERFEVTSEL0/1 (for Intel Atom, Intel Core 2, Intel Core Duo, and Intel
Pentium M processors), in one of the 45 ESCRs and one of the 18 CCCR MSRs (for
Pentium 4 and Intel Xeon processors); or in the PerfEvtSel0 or the PerfEvtSel1 MSR
(for the P6 family processors). The RDPMC instruction loads the current count from
the selected counter into the EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in
Chapter 20, “Introduction to Virtual-Machine Extensions”, and the width/number of
fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each
time the processor is reset. If not reset, the counter will increment ~9.5 x 1016

times per year when the processor is operating at a clock rate of 3GHz. At this
2-32 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW
clock frequency, it would take over 190 years for the counter to wrap around. The
RDTSC instruction loads the current count of the time-stamp counter into the
EDX:EAX registers.

See Section 30.1, “Performance Monitoring Overview,” and Section 16.12, “Time-
Stamp Counter,” for more information about the performance monitoring and time-
stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium
processor. The RDPMC instruction was introduced into the IA-32 architecture with the
Pentium Pro processor and the Pentium processor with MMX technology. Earlier
Pentium processors have two performance-monitoring counters, but they can be
read only with the RDMSR instruction, and only at privilege level 0.

2.7.6.1 Reading Counters in 64-Bit Mode
In 64-bit mode, RDTSC operates the same as in protected mode. The count in the
time-stamp counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with
RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring
counter. In 64-bit mode for Pentium 4 or Intel Xeon processor families, the index is
specified in ECX[30:0]. The current count of the performance-monitoring counter is
stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32]
cleared).

2.7.7 Reading and Writing Model-Specific Registers
The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions allow a processor’s 64-bit model-specific registers (MSRs) to be
read and written, respectively. The MSR to be read or written is specified by the value
in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR
writes the value in the EDX:EAX registers to the specified MSR. RDMSR and WRMSR
were introduced into the IA-32 architecture with the Pentium processor.

See Section 9.4, “Model-Specific Registers (MSRs),” for more information.

2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode
RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit
mode, the index is 32 bits; it is specified using ECX.
Vol. 3A 2-33

SYSTEM ARCHITECTURE OVERVIEW
2.7.8 Enabling Processor Extended States
The XSETBV instruction is required to enable OS support of individual processor
extended states in XCR0 (see Section 2.6).
2-34 Vol. 3A

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory
management facilities, including the physical memory requirements, segmentation
mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection
mechanism) and Chapter 17, “8086 Emulation” (for a description of memory
addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW
The memory management facilities of the IA-32 architecture are divided into two
parts: segmentation and paging. Segmentation provides a mechanism of isolating
individual code, data, and stack modules so that multiple programs (or tasks) can
run on the same processor without interfering with one another. Paging provides a
mechanism for implementing a conventional demand-paged, virtual-memory system
where sections of a program’s execution environment are mapped into physical
memory as needed. Paging can also be used to provide isolation between multiple
tasks. When operating in protected mode, some form of segmentation must be used.
There is no mode bit to disable segmentation. The use of paging, however, is
optional.

These two mechanisms (segmentation and paging) can be configured to support
simple single-program (or single-task) systems, multitasking systems, or multiple-
processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the
processor’s addressable memory space (called the linear address space) into
smaller protected address spaces called segments. Segments can be used to hold
the code, data, and stack for a program or to hold system data structures (such as a
TSS or LDT). If more than one program (or task) is running on a processor, each
program can be assigned its own set of segments. The processor then enforces the
boundaries between these segments and insures that one program does not interfere
with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations
that may be performed on a particular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space.
To locate a byte in a particular segment, a logical address (also called a far pointer)
must be provided. A logical address consists of a segment selector and an offset. The
segment selector is a unique identifier for a segment. Among other things it provides
an offset into a descriptor table (such as the global descriptor table, GDT) to a data
structure called a segment descriptor. Each segment has a segment descriptor, which
specifies the size of the segment, the access rights and privilege level for the
Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT
segment, the segment type, and the location of the first byte of the segment in the
linear address space (called the base address of the segment). The offset part of the
logical address is added to the base address for the segment to locate a byte within
the segment. The base address plus the offset thus forms a linear address in the
processor’s linear address space.

If paging is not used, the linear address space of the processor is mapped directly
into the physical address space of processor. The physical address space is defined as
the range of addresses that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space
much larger than it is economically feasible to contain all at once in physical memory,
some method of “virtualizing” the linear address space is needed. This virtualization
of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space
is simulated with a small amount of physical memory (RAM and ROM) and some disk

Figure 3-1. Segmentation and Paging

Global Descriptor
Table (GDT)

Linear Address
Space

Segment
Segment
Descriptor

Offset

Logical Address

Segment
Base Address

Page

Phy. Addr.
Lin. Addr.

Segment
Selector

Dir Table Offset
Linear Address

Page Table

Page Directory

 Entry

Physical

Space

Entry

(or Far Pointer)

PagingSegmentation

Address

Page
3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
storage. When using paging, each segment is divided into pages (typically 4 KBytes
each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep
track of the pages. When a program (or task) attempts to access an address location
in the linear address space, the processor uses the page directory and page tables to
translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor inter-
rupts execution of the program (by generating a page-fault exception). The oper-
ating system or executive then reads the page into physical memory from the disk
and continues executing the program.

When paging is implemented properly in the operating-system or executive, the
swapping of pages between physical memory and the disk is transparent to the
correct execution of a program. Even programs written for 16-bit IA-32 processors
can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to
implement a wide variety of system designs. These designs range from flat models
that make only minimal use of segmentation to protect programs to multi-
segmented models that employ segmentation to create a robust operating environ-
ment in which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed
in a system to improve memory management performance and reliability.

3.2.1 Basic Flat Model
The simplest memory model for a system is the basic “flat model,” in which the oper-
ating system and application programs have access to a continuous, unsegmented
address space. To the greatest extent possible, this basic flat model hides the
segmentation mechanism of the architecture from both the system designer and the
application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two
segment descriptors must be created, one for referencing a code segment and one
for referencing a data segment (see Figure 3-2). Both of these segments, however,
are mapped to the entire linear address space: that is, both segment descriptors
have the same base address value of 0 and the same segment limit of 4 GBytes. By
setting the segment limit to 4 GBytes, the segmentation mechanism is kept from
generating exceptions for out of limit memory references, even if no physical
memory resides at a particular address. ROM (EPROM) is generally located at the top
of the physical address space, because the processor begins execution at
Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT
FFFF_FFF0H. RAM (DRAM) is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model
The protected flat model is similar to the basic flat model, except the segment limits
are set to include only the range of addresses for which physical memory actually
exists (see Figure 3-3). A general-protection exception (#GP) is then generated on
any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Figure 3-2. Flat Model

Figure 3-3. Protected Flat Model

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFHSegment

LimitAccess

Base Address

Registers

CS

SS

DS

ES

FS

GS

Code

0

Code- and Data-Segment
Descriptors

Stack

Not Present

Linear Address Space
(or Physical Memory)

Data and

FFFFFFFFH
Segment

LimitAccess

Base Address

Registers

CS

ES

SS

DS

FS

GS

Code

0

Segment
Descriptors

LimitAccess

Base Address

Memory I/O

Stack

Not Present
3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
More complexity can be added to this protected flat model to provide more protec-
tion. For example, for the paging mechanism to provide isolation between user and
supervisor code and data, four segments need to be defined: code and data
segments at privilege level 3 for the user, and code and data segments at privilege
level 0 for the supervisor. Usually these segments all overlay each other and start at
address 0 in the linear address space. This flat segmentation model along with a
simple paging structure can protect the operating system from applications, and by
adding a separate paging structure for each task or process, it can also protect appli-
cations from each other. Similar designs are used by several popular multitasking
operating systems.

3.2.3 Multi-Segment Model
A multi-segment model (such as the one shown in Figure 3-4) uses the full capabili-
ties of the segmentation mechanism to provided hardware enforced protection of
code, data structures, and programs and tasks. Here, each program (or task) is given
its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to
all segments and to the execution environments of individual programs running on
the system is controlled by hardware.
Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT
Access checks can be used to protect not only against referencing an address outside
the limit of a segment, but also against performing disallowed operations in certain
segments. For example, since code segments are designated as read-only segments,
hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels.
Protection levels can be used to protect operating-system procedures from unautho-
rized access by application programs.

3.2.4 Segmentation in IA-32e Mode
In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on
whether the processor is running in compatibility mode or 64-bit mode. In compati-
bility mode, segmentation functions just as it does using legacy 16-bit or 32-bit
protected mode semantics.

Figure 3-4. Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS
LimitAccess

Base Address

DS
LimitAccess

Base Address

ES
LimitAccess

Base Address

FS
LimitAccess

Base Address

GS
LimitAccess

Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data
3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
In 64-bit mode, segmentation is generally (but not completely) disabled, creating a
flat 64-bit linear-address space. The processor treats the segment base of CS, DS,
ES, SS as zero, creating a linear address that is equal to the effective address. The FS
and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as an additional base registers in linear address calculations. They
facilitate addressing local data and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit
mode.

3.2.5 Paging and Segmentation
Paging can be used with any of the segmentation models described in Figures 3-2,
3-3, and 3-4. The processor’s paging mechanism divides the linear address space
(into which segments are mapped) into pages (as shown in Figure 3-1). These linear-
address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used
with or instead of the segment-protection facilities. For example, it lets read-write
protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-
by-page basis.

3.3 PHYSICAL ADDRESS SPACE
In protected mode, the IA-32 architecture provides a normal physical address space
of 4 GBytes (232

 bytes). This is the address space that the processor can address on
its address bus. This address space is flat (unsegmented), with addresses ranging
continuously from 0 to FFFFFFFFH. This physical address space can be mapped to
read-write memory, read-only memory, and memory mapped I/O. The memory
mapping facilities described in this chapter can be used to divide this physical
memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an
extension of the physical address space to 236 bytes (64 GBytes); with a maximum
physical address of FFFFFFFFFH. This extension is invoked in either of two ways:
• Using the physical address extension (PAE) flag, located in bit 5 of control

register CR4.
• Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium

III processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4,
“Paging” for more information about 36-bit physical addressing.
Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT
3.3.1 Intel® 64 Processors and Physical Address Space
On processors that support Intel 64 architecture (CPUID.80000001:EDX[29] = 1),
the size of the physical address range is implementation-specific and indicated by
CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see “CPUID—CPU Identification” in
Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES
At the system-architecture level in protected mode, the processor uses two stages of
address translation to arrive at a physical address: logical-address translation and
linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address
space is accessed with a logical address. A logical address consists of a 16-bit
segment selector and a 32-bit offset (see Figure 3-5). The segment selector identi-
fies the segment the byte is located in and the offset specifies the location of the byte
in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address
is a 32-bit address in the processor’s linear address space. Like the physical address
space, the linear address space is a flat (unsegmented), 232-byte address space,
with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all
the segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the
segment in the GDT or LDT and reads it into the processor. (This step is needed
only when a new segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the
segment to insure that the segment is accessible and that the offset is within the
limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset
to form a linear address.
3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
If paging is not used, the processor maps the linear address directly to a physical
address (that is, the linear address goes out on the processor’s address bus). If the
linear address space is paged, a second level of address translation is used to trans-
late the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode
In IA-32e mode, an Intel 64 processor uses the steps described above to translate a
logical address to a linear address. In 64-bit mode, the offset and base address of the
segment are 64-bits instead of 32 bits. The linear address format is also 64 bits wide
and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to
execute 64-bit code or legacy 32-bit code by code segment.

3.4.2 Segment Selectors
A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not
point directly to the segment, but instead points to the segment descriptor that
defines the segment. A segment selector contains the following items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or
LDT. The processor multiplies the index value by 8 (the number of
bytes in a segment descriptor) and adds the result to the base address
of the GDT or LDT (from the GDTR or LDTR register, respectively).

Figure 3-5. Logical Address to Linear Address Translation

Offset (Effective Address)
0

Base Address

Descriptor Table

 Segment
Descriptor

31(63)
Seg. Selector

015
Logical

Address

+

Linear Address
031(63)
Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT
TI (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag
selects the GDT; setting this flag selects the current LDT.

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The priv-
ilege level can range from 0 to 3, with 0 being the most privileged
level. See Section 5.5, “Privilege Levels”, for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and
the descriptor privilege level (DPL) of the descriptor the segment
selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points
to this entry of the GDT (that is, a segment selector with an index of 0 and the TI flag
set to 0) is used as a “null segment selector.” The processor does not generate an
exception when a segment register (other than the CS or SS registers) is loaded with
a null selector. It does, however, generate an exception when a segment register
holding a null selector is used to access memory. A null selector can be used to
initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable,
but the values of selectors are usually assigned or modified by link editors or linking
loaders, not application programs.

3.4.3 Segment Registers
To reduce address translation time and coding complexity, the processor provides
registers for holding up to 6 segment selectors (see Figure 3-7). Each of these
segment registers support a specific kind of memory reference (code, stack, or
data). For virtually any kind of program execution to take place, at least the code-
segment (CS), data-segment (DS), and stack-segment (SS) registers must be
loaded with valid segment selectors. The processor also provides three additional
data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

Figure 3-6. Segment Selector

15 3 2 1 0

T
IIndex

Table Indicator
 0 = GDT
 1 = LDT
Requested Privilege Level (RPL)

RPL
3-10 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
For a program to access a segment, the segment selector for the segment must have
been loaded in one of the segment registers. So, although a system can define thou-
sands of segments, only 6 can be available for immediate use. Other segments can
be made available by loading their segment selectors into these registers during
program execution.

Every segment register has a “visible” part and a “hidden” part. (The hidden part is
sometimes referred to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment register, the processor
also loads the hidden part of the segment register with the base address, segment
limit, and access control information from the segment descriptor pointed to by the
segment selector. The information cached in the segment register (visible and
hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which
multiple processors have access to the same descriptor tables, it is the responsibility
of software to reload the segment registers when the descriptor tables are modified.
If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and
RET instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn,
INTO and INT3 instructions. These instructions change the contents of the CS
register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store visible part of a segment register in a
general-purpose register.

Figure 3-7. Segment Registers

CS

SS

DS

ES

FS

GS

Segment Selector Base Address, Limit, Access Information

Visible Part Hidden Part
Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT
3.4.4 Segment Loading Instructions in IA-32e Mode
Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields
(base, limit, and attribute) in segment descriptor registers are ignored. Some forms
of segment load instructions are also invalid (for example, LDS, POP ES). Address
calculations that reference the ES, DS, or SS segments are treated as if the segment
base is zero.

The processor checks that all linear-address references are in canonical form instead
of performing limit checks. Mode switching does not change the contents of the
segment registers or the associated descriptor registers. These registers are also not
changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions
(MOV to Sreg, POP Sreg) work normally in 64-bit mode. An entry is read from the
system descriptor table (GDT or LDT) and is loaded in the hidden portion of the
segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of the data and stack segment selector and the
descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base
addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size
supported by the implementation. The resulting effective address calculation can
wrap across positive and negative addresses; the resulting linear address must be
canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are
not checked for a runtime limit nor subjected to attribute-checking. Normal segment
loads (MOV to Sreg and POP Sreg) into FS and GS load a standard 32-bit base value
in the hidden portion of the segment descriptor register. The base address bits above
the standard 32 bits are cleared to 0 to allow consistency for implementations that
use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped
to MSRs in order to load all address bits supported by a 64-bit implementation. Soft-
ware with CPL = 0 (privileged software) can load all supported linear-address bits
into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base and
GS.base registers must be in canonical form. A WRMSR instruction that attempts to
write a non-canonical address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode
behavior regardless of the value loaded into the upper 32 linear-address bits of the
hidden descriptor register base field. Compatibility mode ignores the upper 32 bits
when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS
exchanges the kernel data structure pointer from the IA32_KernelGSbase MSR with
the GS base register. The kernel can then use the GS prefix on normal memory refer-
ences to access the kernel data structures. An attempt to write a non-canonical value
(using WRMSR) to the IA32_KernelGSBase MSR causes a #GP fault.
3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
3.4.5 Segment Descriptors
A segment descriptor is a data structure in a GDT or LDT that provides the processor
with the size and location of a segment, as well as access control and status informa-
tion. Segment descriptors are typically created by compilers, linkers, loaders, or the
operating system or executive, but not application programs. Figure 3-8 illustrates
the general descriptor format for all types of segment descriptors.

The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the
two segment limit fields to form a 20-bit value. The processor inter-
prets the segment limit in one of two ways, depending on the setting
of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from
1 byte to 1 MByte, in byte increments.

• If the granularity flag is set, the segment size can range from
4 KBytes to 4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways,
depending on whether the segment is an expand-up or an expand-
down segment. See Section 3.4.5.1, “Code- and Data-Segment
Descriptor Types”, for more information about segment types. For
expand-up segments, the offset in a logical address can range from 0

Figure 3-8. Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

TypeSL 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
D
/
B

A
V
L

Seg.
Limit
19:16

G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

DPL — Descriptor privilege level

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

L — 64-bit code segment (IA-32e mode only)
Vol. 3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT
to the segment limit. Offsets greater than the segment limit generate
general-protection exceptions (#GP, for all segment other than SS) or
stack-fault exceptions (#SS for the SS segment). For expand-down
segments, the segment limit has the reverse function; the offset can
range from the segment limit plus 1 to FFFFFFFFH or FFFFH,
depending on the setting of the B flag. Offsets less than or equal to
the segment limit generate general-protection exceptions or stack-
fault exceptions. Decreasing the value in the segment limit field for an
expand-down segment allocates new memory at the bottom of the
segment's address space, rather than at the top. IA-32 architecture
stacks always grow downwards, making this mechanism convenient
for expandable stacks.

Base address fields
Defines the location of byte 0 of the segment within the 4-GByte
linear address space. The processor puts together the three base
address fields to form a single 32-bit value. Segment base addresses
should be aligned to 16-byte boundaries. Although 16-byte alignment
is not required, this alignment allows programs to maximize perfor-
mance by aligning code and data on 16-byte boundaries.

Type field Indicates the segment or gate type and specifies the kinds of access
that can be made to the segment and the direction of growth. The
interpretation of this field depends on whether the descriptor type flag
specifies an application (code or data) descriptor or a system
descriptor. The encoding of the type field is different for code, data,
and system descriptors (see Figure 5-1). See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types”, for a description of how this
field is used to specify code and data-segment types.

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment
(S flag is clear) or a code or data segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can
range from 0 to 3, with 0 being the most privileged level. The DPL is
used to control access to the segment. See Section 5.5, “Privilege
Levels”, for a description of the relationship of the DPL to the CPL of
the executing code segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not
present (clear). If this flag is clear, the processor generates a
segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register.
Memory management software can use this flag to control which
segments are actually loaded into physical memory at a given time. It
offers a control in addition to paging for managing virtual memory.
3-14 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Figure 3-9 shows the format of a segment descriptor when the
segment-present flag is clear. When this flag is clear, the operating
system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of
the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound)
flag
Performs different functions depending on whether the segment
descriptor is an executable code segment, an expand-down data
segment, or a stack segment. (This flag should always be set to 1 for
32-bit code and data segments and to 0 for 16-bit code and data
segments.)

• Executable code segment. The flag is called the D flag and it
indicates the default length for effective addresses and operands
referenced by instructions in the segment. If the flag is set, 32-bit
addresses and 32-bit or 8-bit operands are assumed; if it is clear,
16-bit addresses and 16-bit or 8-bit operands are assumed.
The instruction prefix 66H can be used to select an operand size
other than the default, and the prefix 67H can be used select an
address size other than the default.

• Stack segment (data segment pointed to by the SS
register). The flag is called the B (big) flag and it specifies the
size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is
used, which is stored in the 32-bit ESP register; if the flag is clear,
a 16-bit stack pointer is used, which is stored in the 16-bit SP
register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also
specifies the upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it
specifies the upper bound of the segment. If the flag is set, the
upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

31 16 15 1314 12 11 8 7 0

0Available
D
P
L

TypeS 4

31 0

Available 0

Available
Vol. 3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT
G (granularity) flag
Determines the scaling of the segment limit field. When the granu-
larity flag is clear, the segment limit is interpreted in byte units; when
flag is set, the segment limit is interpreted in 4-KByte units. (This flag
does not affect the granularity of the base address; it is always byte
granular.) When the granularity flag is set, the twelve least significant
bits of an offset are not tested when checking the offset against the
segment limit. For example, when the granularity flag is set, a limit of
0 results in valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment
descriptor indicates whether a code segment contains native 64-bit
code. A value of 1 indicates instructions in this code segment are
executed in 64-bit mode. A value of 0 indicates the instructions in this
code segment are executed in compatibility mode. If L-bit is set, then
D-bit must be cleared. When not in IA-32e mode or for non-code
segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available
for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types
When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for
either a code or a data segment. The highest order bit of the type field (bit 11 of the
second double word of the segment descriptor) then determines whether the
descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are
interpreted as accessed (A), write-enable (W), and expansion-direction (E). See
Table 3-1 for a description of the encoding of the bits in the type field for code and
data segments. Data segments can be read-only or read/write segments, depending
on the setting of the write-enable bit.
3-16 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Stack segments are data segments which must be read/write segments. Loading the
SS register with a segment selector for a nonwritable data segment generates a
general-protection exception (#GP). If the size of a stack segment needs to be
changed dynamically, the stack segment can be an expand-down data segment
(expansion-direction flag set). Here, dynamically changing the segment limit causes
stack space to be added to the bottom of the stack. If the size of a stack segment is
intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last
time the operating-system or executive cleared the bit. The processor sets this bit
whenever it loads a segment selector for the segment into a segment register,
assuming that the type of memory that contains the segment descriptor supports
processor writes. The bit remains set until explicitly cleared. This bit can be used both
for virtual memory management and for debugging.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor
Type

Description

Decimal 11 10
E

9
W

8
A

0 0 0 0 0 Data Read-Only

1 0 0 0 1 Data Read-Only, accessed

2 0 0 1 0 Data Read/Write

3 0 0 1 1 Data Read/Write, accessed

4 0 1 0 0 Data Read-Only, expand-down

5 0 1 0 1 Data Read-Only, expand-down, accessed

6 0 1 1 0 Data Read/Write, expand-down

7 0 1 1 1 Data Read/Write, expand-down, accessed

C R A

8 1 0 0 0 Code Execute-Only

9 1 0 0 1 Code Execute-Only, accessed

10 1 0 1 0 Code Execute/Read

11 1 0 1 1 Code Execute/Read, accessed

12 1 1 0 0 Code Execute-Only, conforming

13 1 1 0 1 Code Execute-Only, conforming, accessed

14 1 1 1 0 Code Execute/Read, conforming

15 1 1 1 1 Code Execute/Read, conforming, accessed
Vol. 3A 3-17

PROTECTED-MODE MEMORY MANAGEMENT
For code segments, the three low-order bits of the type field are interpreted as
accessed (A), read enable (R), and conforming (C). Code segments can be execute-
only or execute/read, depending on the setting of the read-enable bit. An
execute/read segment might be used when constants or other static data have been
placed with instruction code in a ROM. Here, data can be read from the code segment
either by using an instruction with a CS override prefix or by loading a segment
selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution
into a more-privileged conforming segment allows execution to continue at the
current privilege level. A transfer into a nonconforming segment at a different privi-
lege level results in a general-protection exception (#GP), unless a call gate or task
gate is used (see Section 5.8.1, “Direct Calls or Jumps to Code Segments”, for more
information on conforming and nonconforming code segments). System utilities that
do not access protected facilities and handlers for some types of exceptions (such as,
divide error or overflow) may be loaded in conforming code segments. Utilities that
need to be protected from less privileged programs and procedures should be placed
in nonconforming code segments.

NOTE
Execution cannot be transferred by a call or a jump to a less-
privileged (numerically higher privilege level) code segment,
regardless of whether the target segment is a conforming or noncon-
forming code segment. Attempting such an execution transfer will
result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less
privileged programs or procedures (code executing at numerically high privilege
levels). Unlike code segments, however, data segments can be accessed by more
privileged programs or procedures (code executing at numerically lower privilege
levels) without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can
enter an indefinite loop if software or the processor attempts to update (write to) the
ROM-based segment descriptors. To prevent this problem, set the accessed bits for
all segment descriptors placed in a ROM. Also, remove operating-system or executive
code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES
When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type
is a system descriptor. The processor recognizes the following types of system
descriptors:
• Local descriptor-table (LDT) segment descriptor.
3-18 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
• Task-state segment (TSS) descriptor.
• Call-gate descriptor.
• Interrupt-gate descriptor.
• Trap-gate descriptor.
• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate
descriptors. System-segment descriptors point to system segments (LDT and TSS
segments). Gate descriptors are in themselves “gates,” which hold pointers to proce-
dure entry points in code segments (call, interrupt, and trap gates) or which hold
segment selectors for TSS’s (task gates).

Table 3-2 shows the encoding of the type field for system-segment descriptors and
gate descriptors. Note that system descriptors in IA-32e mode are 16 bytes instead
of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description

Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Upper 8 byte of an 16-
byte descriptor

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)

10 1 0 1 0 Reserved Reserved

11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)

12 1 1 0 0 32-bit Call Gate 64-bit Call Gate

13 1 1 0 1 Reserved Reserved

14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate

15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate
Vol. 3A 3-19

PROTECTED-MODE MEMORY MANAGEMENT
See also: Section 3.5.1, “Segment Descriptor Tables”, and Section 7.2.2, “TSS
Descriptor” (for more information on the system-segment descriptors); see Section
5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section 7.2.5, “Task-Gate
Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors (see Figure 3-10). A
descriptor table is variable in length and can contain up to 8192 (213) 8-byte descrip-
tors. There are two kinds of descriptor tables:
• The global descriptor table (GDT)
• The local descriptor tables (LDT)

Figure 3-10. Global and Local Descriptor Tables

Segment
Selector

Global
Descriptor

T

First Descriptor in
GDT is Not Used

TI = 0I

56

40

48

32

24

16

8

0

TI = 1

56

40

48

32

24

16

8

0

Table (GDT)

Local
Descriptor

Table (LDT)

Base Address
Limit

GDTR Register LDTR Register

Base Address
Seg. Sel.

Limit
3-20 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT
Each system must have one GDT defined, which may be used for all programs and
tasks in the system. Optionally, one or more LDTs can be defined. For example, an
LDT can be defined for each separate task being run, or some or all tasks can share
the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space.
The base linear address and limit of the GDT must be loaded into the GDTR register
(see Section 2.4, “Memory-Management Registers”). The base addresses of the GDT
should be aligned on an eight-byte boundary to yield the best processor perfor-
mance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit
value of 0 results in exactly one valid byte. Because segment descriptors are always
8 bytes long, the GDT limit should always be one less than an integral multiple of
eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to
this “null descriptor” does not generate an exception when loaded into a data-
segment register (DS, ES, FS, or GS), but it always generates a general-protection
exception (#GP) when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to
unused segment registers can be guaranteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a
segment descriptor for the LDT segment. If the system supports multiple LDTs, each
must have a separate segment selector and segment descriptor in the GDT. The
segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when
accessing the LDT, the segment selector, base linear address, limit, and access rights
of the LDT are stored in the LDTR register (see Section 2.4, “Memory-Management
Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-
descriptor” is stored in memory (see top diagram in Figure 3-11). To avoid alignment
check faults in user mode (privilege level 3), the pseudo-descriptor should be located
at an odd word address (that is, address MOD 4 is equal to 2). This causes the
processor to store an aligned word, followed by an aligned doubleword. User-mode
programs normally do not store pseudo-descriptors, but the possibility of generating
an alignment check fault can be avoided by aligning pseudo-descriptors in this way.
The same alignment should be used when storing the IDTR register using the SIDT
instruction. When storing the LDTR or task register (using the SLTR or STR instruc-
tion, respectively), the pseudo-descriptor should be located at a doubleword address
(that is, address MOD 4 is equal to 0).
Vol. 3A 3-21

PROTECTED-MODE MEMORY MANAGEMENT
3.5.2 Segment Descriptor Tables in IA-32e Mode
In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte
descriptors. An entry in the segment descriptor table can be 8 bytes. System descrip-
tors are expanded to 16 bytes (occupying the space of two entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corre-
sponding pseudo-descriptor is 80 bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:

— Call gate descriptors (see Section 5.8.3.1, “IA-32e Mode Call Gates”)

— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT”)

— LDT and TSS descriptors (see Section 7.2.3, “TSS Descriptor in 64-bit
mode”).

Figure 3-11. Pseudo-Descriptor Formats

0

32-bit Base Address Limit

47 1516

0

64-bit Base Address Limit

79 1516
3-22 Vol. 3A

CHAPTER 4
PAGING

Chapter 3 explains how segmentation converts logical addresses to linear addresses.
Paging (or linear-address translation) is the process of translating linear addresses
so that they can be used to access memory or I/O devices. Paging translates each
linear address to a physical address and determines, for each translation, what
accesses to the linear address are allowed (the address’s access rights) and the
type of caching used for such accesses (the address’s memory type).

Intel-64 processors support three different paging modes. These modes are identi-
fied and defined in Section 4.1. Section 4.2 gives an overview of the translation
mechanism that is used in all modes. Section 4.3, Section 4.4, and Section 4.5
discuss the three paging modes in detail.

Section 4.6 details how paging determines and uses access rights. Section 4.7
discusses exceptions that may be generated by paging (page-fault exceptions).
Section 4.8 considers data which the processor writes in response to linear-address
accesses (accessed and dirty flags).

Section 4.9 describes how paging determines the memory types used for accesses to
linear addresses. Section 4.10 provides details of how a processor may cache infor-
mation about linear-address translation. Section 4.11 outlines interactions between
paging and certain VMX features. Section 4.12 gives an overview of how paging can
be used to implement virtual memory.

4.1 PAGING MODES AND CONTROL BITS
Paging behavior is controlled by the following control bits:
• The WP and PG flags in control register CR0 (bit 16 and bit 31, respectively).
• The PSE, PAE, PGE, PCIDE, and SMEP flags in control register CR4 (bit 4, bit 5,

bit 7, bit 17, and bit 20 respectively).
• The LME and NXE flags in the IA32_EFER MSR (bit 8 and bit 11, respectively).

Software enables paging by using the MOV to CR0 instruction to set CR0.PG. Before
doing so, software should ensure that control register CR3 contains the physical
address of the first paging structure that the processor will use for linear-address
translation (see Section 4.2) and that structure is initialized as desired. See
Table 4-3, Table 4-7, and Table 4-12 for the use of CR3 in the different paging
modes.

Section 4.1.1 describes how the values of CR0.PG, CR4.PAE, and IA32_EFER.LME
determine whether paging is in use and, if so, which of three paging modes is in use.
Section 4.1.2 explains how to manage these bits to establish or make changes in
Vol. 3A 4-1

PAGING
paging modes. Section 4.1.3 discusses how CR0.WP, CR4.PSE, CR4.PGE, CR4.PCIDE,
CR4.SMEP, and IA32_EFER.NXE modify the operation of the different paging modes.

4.1.1 Three Paging Modes
If CR0.PG = 0, paging is not used. The logical processor treats all linear addresses as
if they were physical addresses. CR4.PAE and IA32_EFER.LME are ignored by the
processor, as are CR0.WP, CR4.PSE, CR4.PGE, CR4.SMEP, and IA32_EFER.NXE.

Paging is enabled if CR0.PG = 1. Paging can be enabled only if protection is enabled
(CR0.PE = 1). If paging is enabled, one of three paging modes is used. The values of
CR4.PAE and IA32_EFER.LME determine which paging mode is used:
• If CR0.PG = 1 and CR4.PAE = 0, 32-bit paging is used. 32-bit paging is detailed

in Section 4.3. 32-bit paging uses CR0.WP, CR4.PSE, CR4.PGE, and CR4.SMEP as
described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 0, PAE paging is used. PAE
paging is detailed in Section 4.4. PAE paging uses CR0.WP, CR4.PGE, CR4.SMEP,
and IA32_EFER.NXE as described in Section 4.1.3.

• If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LME = 1, IA-32e paging is used.1
IA-32e paging is detailed in Section 4.5. IA-32e paging uses CR0.WP, CR4.PGE,
CR4.PCIDE, CR4.SMEP, and IA32_EFER.NXE as described in Section 4.1.3.
IA-32e paging is available only on processors that support the Intel 64 archi-
tecture.

The three paging modes differ with regard to the following details:
• Linear-address width. The size of the linear addresses that can be translated.
• Physical-address width. The size of the physical addresses produced by paging.
• Page size. The granularity at which linear addresses are translated. Linear

addresses on the same page are translated to corresponding physical addresses
on the same page.

• Support for execute-disable access rights. In some paging modes, software can
be prevented from fetching instructions from pages that are otherwise readable.

• Support for PCIDs. In some paging modes, software can enable a facility by
which a logical processor caches information for multiple linear-address spaces.

1. The LMA flag in the IA32_EFER MSR (bit 10) is a status bit that indicates whether the logical pro-
cessor is in IA-32e mode (and thus using IA-32e paging). The processor always sets
IA32_EFER.LMA to CR0.PG & IA32_EFER.LME. Software cannot directly modify IA32_EFER.LMA;
an execution of WRMSR to the IA32_EFER MSR ignores bit 10 of its source operand.
4-2 Vol. 3A

PAGING
The processor may retain cached information when software switches between
different linear-address spaces.

Table 4-1 illustrates the key differences between the three paging modes.

Because they are used only if IA32_EFER.LME = 0, 32-bit paging and PAE paging is
used only in legacy protected mode. Because legacy protected mode cannot produce
linear addresses larger than 32 bits, 32-bit paging and PAE paging translate 32-bit
linear addresses.

Because it is used only if IA32_EFER.LME = 1, IA-32e paging is used only in IA-32e
mode. (In fact, it is the use of IA-32e paging that defines IA-32e mode.) IA-32e
mode has two sub-modes:
• Compatibility mode. This mode uses only 32-bit linear addresses. IA-32e paging

treats bits 47:32 of such an address as all 0.
• 64-bit mode. While this mode produces 64-bit linear addresses, the processor

ensures that bits 63:47 of such an address are identical.1 IA-32e paging does not
use bits 63:48 of such addresses.

Table 4-1. Properties of Different Paging Modes

Paging
Mode

PG in
CR0

PAE in
CR4

LME in
IA32_EFER

Lin.-
Addr.
Width

Phys.-
Addr.
Width1

NOTES:
1. The physical-address width is always bounded by MAXPHYADDR; see Section 4.1.4.

Page
Sizes

Supports
Execute-
Disable?

Supports
PCIDs?

None 0 N/A N/A 32 32 N/A No No

32-bit 1 0 02

2. The processor ensures that IA32_EFER.LME must be 0 if CR0.PG = 1 and CR4.PAE = 0.

32
Up to
403

3. 32-bit paging supports physical-address widths of more than 32 bits only for 4-MByte pages and
only if the PSE-36 mechanism is supported; see Section 4.1.4 and Section 4.3.

4 KB
4 MB4

4. 4-MByte pages are used with 32-bit paging only if CR4.PSE = 1; see Section 4.3.

No No

PAE 1 1 0 32
Up to
52

4 KB
2 MB

Yes5

5. Execute-disable access rights are applied only if IA32_EFER.NXE = 1; see Section 4.6.

No

IA-32e 1 1 2 48
Up to
52

4 KB
2 MB
1 GB6

6. Not all processors that support IA-32e paging support 1-GByte pages; see Section 4.1.4.

Yes5 Yes7

7. PCIDs are used only if CR4.PCIDE = 1; see Section 4.10.1.
Vol. 3A 4-3

PAGING
4.1.2 Paging-Mode Enabling
If CR0.PG = 1, a logical processor is in one of three paging modes, depending on the
values of CR4.PAE and IA32_EFER.LME. Figure 4-1 illustrates how software can
enable these modes and make transitions between them. The following items identify
certain limitations and other details:

1. Such an address is called canonical. Use of a non-canonical linear address in 64-bit mode pro-
duces a general-protection exception (#GP(0)); the processor does not attempt to translate non-
canonical linear addresses using IA-32e paging.

Figure 4-1. Enabling and Changing Paging Modes

PG = 1

No Paging
PAE Paging

PAE = 1
LME = 0

PG = 0
PAE = 0
LME = 0

32-bit Paging

PG = 1
PAE = 0
LME = 0

PG = 0
PAE = 0
LME = 1

Set PG Set PAE

Clear PAEClear PG

No Paging

PG = 0
PAE = 1
LME = 0

No Paging

PG = 1

IA-32e Paging

PAE = 1
LME = 1

Clear LME

Setr LME

PG = 0
PAE = 1
LME = 1

No Paging

Clear PAE
Set PAE Clear PG

Set PG

Set PAE
Clear PAE

Setr LME

Clear LME

Clear PG

Set PG

#GP

Set LME

#GP

Set LME

#GP

Set PG

Clear PAE

#GP

Clear LME

#GP
4-4 Vol. 3A

PAGING
• IA32_EFER.LME cannot be modified while paging is enabled (CR0.PG = 1).
Attempts to do so using WRMSR cause a general-protection exception (#GP(0)).

• Paging cannot be enabled (by setting CR0.PG to 1) while CR4.PAE = 0 and
IA32_EFER.LME = 1. Attempts to do so using MOV to CR0 cause a general-
protection exception (#GP(0)).

• CR4.PAE cannot be cleared while IA-32e paging is active (CR0.PG = 1 and
IA32_EFER.LME = 1). Attempts to do so using MOV to CR4 cause a general-
protection exception (#GP(0)).

• Regardless of the current paging mode, software can disable paging by clearing
CR0.PG with MOV to CR0.1

• Software can make transitions between 32-bit paging and PAE paging by
changing the value of CR4.PAE with MOV to CR4.

• Software cannot make transitions directly between IA-32e paging and either of
the other two paging modes. It must first disable paging (by clearing CR0.PG with
MOV to CR0), then set CR4.PAE and IA32_EFER.LME to the desired values (with
MOV to CR4 and WRMSR), and then re-enable paging (by setting CR0.PG with
MOV to CR0). As noted earlier, an attempt to clear either CR4.PAE or
IA32_EFER.LME cause a general-protection exception (#GP(0)).

• VMX transitions allow transitions between paging modes that are not possible
using MOV to CR or WRMSR. This is because VMX transitions can load CR0, CR4,
and IA32_EFER in one operation. See Section 4.11.1.

4.1.3 Paging-Mode Modifiers
Details of how each paging mode operates are determined by the following control
bits:
• The WP flag in CR0 (bit 16).
• The PSE, PGE, PCIDE, and SMEP flags in CR4 (bit 4, bit 7, bit 17, and bit 20,

respectively).
• The NXE flag in the IA32_EFER MSR (bit 11).

CR0.WP allows pages to be protected from supervisor-mode writes. If CR0.WP = 0,
software operating with CPL < 3 (supervisor mode) can write to linear addresses
with read-only access rights; if CR0.WP = 1, it cannot. (Software operating with
CPL = 3 — user mode — cannot write to linear addresses with read-only access
rights, regardless of the value of CR0.WP.) Section 4.6 explains how access rights are
determined.

CR4.PSE enables 4-MByte pages for 32-bit paging. If CR4.PSE = 0, 32-bit paging can
use only 4-KByte pages; if CR4.PSE = 1, 32-bit paging can use both 4-KByte pages

1. If CR4.PCIDE = 1, an attempt to clear CR0.PG causes a general-protection exception (#GP); soft-
ware should clear CR4.PCIDE before attempting to disable paging.
Vol. 3A 4-5

PAGING
and 4-MByte pages. See Section 4.3 for more information. (PAE paging and IA-32e
paging can use multiple page sizes regardless of the value of CR4.PSE.)

CR4.PGE enables global pages. If CR4.PGE = 0, no translations are shared across
address spaces; if CR4.PGE = 1, specified translations may be shared across address
spaces. See Section 4.10.2.4 for more information.

CR4.PCIDE enables process-context identifiers (PCIDs) for IA-32e paging
(CR4.PCIDE can be 1 only when IA-32e paging is in use). PCIDs allow a logical
processor to cache information for multiple linear-address spaces. See Section
4.10.1 for more information.

CR4.SMEP allows pages to be protected from supervisor-mode instruction fetches. If
CR4.SMEP = 1, software operating with CPL < 3 (supervisor mode) cannot fetch
instructions from linear addresses that are accessible in user mode (CPL = 3).
Section 4.6 explains how access rights are determined.

IA32_EFER.NXE enables execute-disable access rights for PAE paging and IA-32e
paging. If IA32_EFER.NXE = 1, instructions fetches can be prevented from specified
linear addresses (even if data reads from the addresses are allowed). Section 4.6
explains how access rights are determined. (IA32_EFER.NXE has no effect with 32-
bit paging. Software that wants to use this feature to limit instruction fetches from
readable pages must use either PAE paging or IA-32e paging.)

4.1.4 Enumeration of Paging Features by CPUID
Software can discover support for different paging features using the CPUID instruc-
tion:
• PSE: page-size extensions for 32-bit paging.

If CPUID.01H:EDX.PSE [bit 3] = 1, CR4.PSE may be set to 1, enabling support
for 4-MByte pages with 32-bit paging (see Section 4.3).

• PAE: physical-address extension.
If CPUID.01H:EDX.PAE [bit 6] = 1, CR4.PAE may be set to 1, enabling PAE
paging (this setting is also required for IA-32e paging).

• PGE: global-page support.
If CPUID.01H:EDX.PGE [bit 13] = 1, CR4.PGE may be set to 1, enabling the
global-page feature (see Section 4.10.2.4).

• PAT: page-attribute table.
If CPUID.01H:EDX.PAT [bit 16] = 1, the 8-entry page-attribute table (PAT) is
supported. When the PAT is supported, three bits in certain paging-structure
entries select a memory type (used to determine type of caching used) from the
PAT (see Section 4.9.2).

• PSE-36: page-size extensions with 40-bit physical-address extension.
If CPUID.01H:EDX.PSE-36 [bit 17] = 1, the PSE-36 mechanism is supported,
indicating that translations using 4-MByte pages with 32-bit paging may produce
physical addresses with up to 40 bits (see Section 4.3).
4-6 Vol. 3A

PAGING
• PCID: process-context identifiers.
If CPUID.01H:ECX.PCID [bit 17] = 1, CR4.PCIDE may be set to 1, enabling
process-context identifiers (see Section 4.10.1).

• SMEP: supervisor-mode execution prevention.
If CPUID.(EAX=07H,ECX=0H):EBX.SMEP [bit 7] = 1, CR4.SMEP may be set to 1,
enabling supervisor-mode execution prevention (see Section 4.6).

• NX: execute disable.
If CPUID.80000001H:EDX.NX [bit 20] = 1, IA32_EFER.NXE may be set to 1,
allowing PAE paging and IA-32e paging to disable execute access to selected
pages (see Section 4.6). (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.NXE to be set to 1.)

• Page1GB: 1-GByte pages.
If CPUID.80000001H:EDX.Page1GB [bit 26] = 1, 1-GByte pages are supported
with IA-32e paging (see Section 4.5).

• LM: IA-32e mode support.
If CPUID.80000001H:EDX.LM [bit 29] = 1, IA32_EFER.LME may be set to 1,
enabling IA-32e paging. (Processors that do not support CPUID function
80000001H do not allow IA32_EFER.LME to be set to 1.)

• CPUID.80000008H:EAX[7:0] reports the physical-address width supported by
the processor. (For processors that do not support CPUID function 80000008H,
the width is generally 36 if CPUID.01H:EDX.PAE [bit 6] = 1 and 32 otherwise.)
This width is referred to as MAXPHYADDR. MAXPHYADDR is at most 52.

• CPUID.80000008H:EAX[15:8] reports the linear-address width supported by the
processor. Generally, this value is 48 if CPUID.80000001H:EDX.LM [bit 29] = 1
and 32 otherwise. (Processors that do not support CPUID function 80000008H,
support a linear-address width of 32.)

4.2 HIERARCHICAL PAGING STRUCTURES: AN OVERVIEW
All three paging modes translate linear addresses use hierarchical paging struc-
tures. This section provides an overview of their operation. Section 4.3, Section 4.4,
and Section 4.5 provide details for the three paging modes.

Every paging structure is 4096 Bytes in size and comprises a number of individual
entries. With 32-bit paging, each entry is 32 bits (4 bytes); there are thus 1024
entries in each structure. With PAE paging and IA-32e paging, each entry is 64 bits
(8 bytes); there are thus 512 entries in each structure. (PAE paging includes one
exception, a paging structure that is 32 bytes in size, containing 4 64-bit entries.)

The processor uses the upper portion of a linear address to identify a series of
paging-structure entries. The last of these entries identifies the physical address of
the region to which the linear address translates (called the page frame). The lower
portion of the linear address (called the page offset) identifies the specific address
within that region to which the linear address translates.
Vol. 3A 4-7

PAGING
Each paging-structure entry contains a physical address, which is either the address
of another paging structure or the address of a page frame. In the first case, the
entry is said to reference the other paging structure; in the latter, the entry is said
to map a page.

The first paging structure used for any translation is located at the physical address
in CR3. A linear address is translated using the following iterative procedure. A
portion of the linear address (initially the uppermost bits) select an entry in a paging
structure (initially the one located using CR3). If that entry references another
paging structure, the process continues with that paging structure and with the
portion of the linear address immediately below that just used. If instead the entry
maps a page, the process completes: the physical address in the entry is that of the
page frame and the remaining lower portion of the linear address is the page offset.

The following items give an example for each of the three paging modes (each
example locates a 4-KByte page frame):
• With 32-bit paging, each paging structure comprises 1024 = 210 entries. For this

reason, the translation process uses 10 bits at a time from a 32-bit linear
address. Bits 31:22 identify the first paging-structure entry and bits 21:12
identify a second. The latter identifies the page frame. Bits 11:0 of the linear
address are the page offset within the 4-KByte page frame. (See Figure 4-2 for
an illustration.)

• With PAE paging, the first paging structure comprises only 4 = 22 entries.
Translation thus begins by using bits 31:30 from a 32-bit linear address to
identify the first paging-structure entry. Other paging structures comprise
512 =29 entries, so the process continues by using 9 bits at a time. Bits 29:21
identify a second paging-structure entry and bits 20:12 identify a third. This last
identifies the page frame. (See Figure 4-5 for an illustration.)

• With IA-32e paging, each paging structure comprises 512 = 29 entries and
translation uses 9 bits at a time from a 48-bit linear address. Bits 47:39 identify
the first paging-structure entry, bits 38:30 identify a second, bits 29:21 a third,
and bits 20:12 identify a fourth. Again, the last identifies the page frame. (See
Figure 4-8 for an illustration.)

The translation process in each of the examples above completes by identifying a
page frame. However, the paging structures may be configured so that translation
terminates before doing so. This occurs if process encounters a paging-structure
entry that is marked “not present” (because its P flag — bit 0 — is clear) or in which
a reserved bit is set. In this case, there is no translation for the linear address; an
access to that address causes a page-fault exception (see Section 4.7).

In the examples above, a paging-structure entry maps a page with 4-KByte page
frame when only 12 bits remain in the linear address; entries identified earlier always
reference other paging structures. That may not apply in other cases. The following
items identify when an entry maps a page and when it references another paging
structure:
4-8 Vol. 3A

PAGING
• If more than 12 bits remain in the linear address, bit 7 (PS — page size) of the
current paging-structure entry is consulted. If the bit is 0, the entry references
another paging structure; if the bit is 1, the entry maps a page.

• If only 12 bits remain in the linear address, the current paging-structure entry
always maps a page (bit 7 is used for other purposes).

If a paging-structure entry maps a page when more than 12 bits remain in the linear
address, the entry identifies a page frame larger than 4 KBytes. For example, 32-bit
paging uses the upper 10 bits of a linear address to locate the first paging-structure
entry; 22 bits remain. If that entry maps a page, the page frame is 222 Bytes = 4
MBytes. 32-bit paging supports 4-MByte pages if CR4.PSE = 1. PAE paging and
IA-32e paging support 2-MByte pages (regardless of the value of CR4.PSE). IA-32e
paging may support 1-GByte pages (see Section 4.1.4).

Paging structures are given different names based their uses in the translation
process. Table 4-2 gives the names of the different paging structures. It also
provides, for each structure, the source of the physical address used to locate it (CR3
or a different paging-structure entry); the bits in the linear address used to select an
entry from the structure; and details of about whether and how such an entry can
map a page.

Table 4-2. Paging Structures in the Different Paging Modes

Paging
Structure

Entry
Name Paging Mode

Physical
Address of
Structure

Bits
Selecting
Entry

Page Mapping

PML4 table PML4E
32-bit, PAE N/A

IA-32e CR3 47:39 N/A (PS must be 0)

Page-directory-
pointer table

PDPTE

32-bit N/A

PAE CR3 31:30 N/A (PS must be 0)

IA-32e PML4E 38:30 1-GByte page if PS=11

NOTES:
1. Not all processors allow the PS flag to be 1 in PDPTEs; see Section 4.1.4 for how to determine

whether 1-GByte pages are supported.

Page directory PDE
32-bit CR3 31:22 4-MByte page if PS=12

PAE, IA-32e PDPTE 29:21 2-MByte page if PS=1

Page table PTE
32-bit

PDE
21:12 4-KByte page

PAE, IA-32e 20:12 4-KByte page
Vol. 3A 4-9

PAGING
4.3 32-BIT PAGING
A logical processor uses 32-bit paging if CR0.PG = 1 and CR4.PAE = 0. 32-bit paging
translates 32-bit linear addresses to 40-bit physical addresses.1 Although 40 bits
corresponds to 1 TByte, linear addresses are limited to 32 bits; at most 4 GBytes of
linear-address space may be accessed at any given time.

32-bit paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the page directory.
Table 4-3 illustrates how CR3 is used with 32-bit paging.

32-bit paging may map linear addresses to either 4-KByte pages or 4-MByte pages.
Figure 4-2 illustrates the translation process when it uses a 4-KByte page; Figure 4-3
covers the case of a 4-MByte page. The following items describe the 32-bit paging
process in more detail as well has how the page size is determined:
• A 4-KByte naturally aligned page directory is located at the physical address

specified in bits 31:12 of CR3 (see Table 4-3). A page directory comprises 1024
32-bit entries (PDEs). A PDE is selected using the physical address defined as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from CR3.

— Bits 11:2 are bits 31:22 of the linear address.

— Bits 1:0 are 0.

Because a PDE is identified using bits 31:22 of the linear address, it controls access
to a 4-Mbyte region of the linear-address space. Use of the PDE depends on CR.PSE
and the PDE’s PS flag (bit 7):
• If CR4.PSE = 1 and the PDE’s PS flag is 1, the PDE maps a 4-MByte page (see

Table 4-4). The final physical address is computed as follows:

— Bits 39:32 are bits 20:13 of the PDE.

2. 32-bit paging ignores the PS flag in a PDE (and uses the entry to reference a page table) unless
CR4.PSE = 1. Not all processors allow CR4.PSE to be 1; see Section 4.1.4 for how to determine
whether 4-MByte pages are supported with 32-bit paging.

1. Bits in the range 39:32 are 0 in any physical address used by 32-bit paging except those used to
map 4-MByte pages. If the processor does not support the PSE-36 mechanism, this is true also
for physical addresses used to map 4-MByte pages. If the processor does support the PSE-36
mechanism and MAXPHYADDR < 40, bits in the range 39:MAXPHYADDR are 0 in any physical
address used to map a 4-MByte page. (The corresponding bits are reserved in PDEs.) See Section
4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.
4-10 Vol. 3A

PAGING
— Bits 31:22 are bits 31:22 of the PDE.1

— Bits 21:0 are from the original linear address.
• If CR4.PSE = 0 or the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is

located at the physical address specified in bits 31:12 of the PDE (see Table 4-5).
A page table comprises 1024 32-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PDE.

— Bits 11:2 are bits 21:12 of the linear address.

— Bits 1:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE

maps a 4-KByte page (see Table 4-6). The final physical address is computed as
follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:
• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend

on MAXPHYADDR whether the PSE-36 mechanism is supported:2

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where
M is the minimum of 40 and MAXPHYADDR.

• If the PAT is not supported:3

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

1. The upper bits in the final physical address do not all come from corresponding positions in the
PDE; the physical-address bits in the PDE are not all contiguous.

2. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is
supported.

3. See Section 4.1.4 for how to determine whether the PAT is supported.
Vol. 3A 4-11

PAGING
A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0

Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18
4-12 Vol. 3A

PAGING
Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries
with 32-bit paging. For the paging structure entries, it identifies separately the
format of entries that map pages, those that reference other paging structures, and
those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are
highlighted because they determine how such an entry is used.

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with

32-bit paging.

Ignored
P
C
D

P
W
T

Ignored CR3

Bits 31:22 of address
of 2MB page frame

Reserved
(must be 0)

Bits 39:32
of

address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller,
the number of bits reserved in positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
Vol. 3A 4-13

PAGING
Table 4-3. Use of CR3 with 32-Bit Paging

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory during linear-address translation (see Section 4.9)

11:5 Ignored

31:12 Physical address of the 4-KByte aligned page directory used for linear-address
translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see Table 4-5)
4-14 Vol. 3A

PAGING
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

(M–20):13 Bits (M–1):32 of physical address of the 4-MByte page referenced by this entry2

21:(M–19) Reserved (must be 0)

31:22 Bits 31:22 of physical address of the 4-MByte page referenced by this entry

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.
2. If the PSE-36 mechanism is not supported, M is 32, and this row does not apply. If the PSE-36

mechanism is supported, M is the minimum of 40 and MAXPHYADDR (this row does not apply if
MAXPHYADDR = 32). See Section 4.1.4 for how to determine MAXPHYADDR and whether the
PSE-36 mechanism is supported.

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

Table 4-4. Format of a 32-Bit Page-Directory Entry that Maps a 4-MByte Page

Bit
Position(s)

Contents
Vol. 3A 4-15

PAGING
6 Ignored

7 (PS) If CR4.PSE = 1, must be 0 (otherwise, this entry maps a 4-MByte page; see
Table 4-4); otherwise, ignored

11:8 Ignored

31:12 Physical address of 4-KByte aligned page table referenced by this entry

Table 4-6. Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

31:12 Physical address of the 4-KByte page referenced by this entry

Table 4-5. Format of a 32-Bit Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents
4-16 Vol. 3A

PAGING
4.4 PAE PAGING
A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 0. PAE paging translates 32-bit linear addresses to 52-bit physical
addresses.1 Although 52 bits corresponds to 4 PBytes, linear addresses are limited to
32 bits; at most 4 GBytes of linear-address space may be accessed at any given
time.

With PAE paging, a logical processor maintains a set of four (4) PDPTE registers,
which are loaded from an address in CR3. Linear address are translated using 4 hier-
archies of in-memory paging structures, each located using one of the PDPTE regis-
ters. (This is different from the other paging modes, in which there is one hierarchy
referenced by CR3.)

Section 4.4.1 discusses the PDPTE registers. Section 4.4.2 describes linear-address
translation with PAE paging.

4.4.1 PDPTE Registers
When PAE paging is used, CR3 references the base of a 32-Byte page-directory-
pointer table. Table 4-7 illustrates how CR3 is used with PAE paging.

The page-directory-pointer-table comprises four (4) 64-bit entries called PDPTEs.
Each PDPTE controls access to a 1-GByte region of the linear-address space. Corre-
sponding to the PDPTEs, the logical processor maintains a set of four (4) internal,
non-architectural PDPTE registers, called PDPTE0, PDPTE1, PDPTE2, and PDPTE3.

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by PAE paging. (The corresponding bits are reserved in the paging-structure entries.) See Section
4.1.4 for how to determine MAXPHYADDR.

Table 4-7. Use of CR3 with PAE Paging

Bit
Position(s)

Contents

4:0 Ignored

31:5 Physical address of the 32-Byte aligned page-directory-pointer table used for
linear-address translation

63:32 Ignored (these bits exist only on processors supporting the Intel-64 architecture)
Vol. 3A 4-17

PAGING
The logical processor loads these registers from the PDPTEs in memory as part of
certain operations:
• If PAE paging would be in use following an execution of MOV to CR0 or MOV to

CR4 (see Section 4.1.1) and the instruction is modifying any of CR0.CD, CR0.NW,
CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then the PDPTEs are loaded
from the address in CR3.

• If MOV to CR3 is executed while the logical processor is using PAE paging, the
PDPTEs are loaded from the address being loaded into CR3.

• If PAE paging is in use and a task switch changes the value of CR3, the PDPTEs
are loaded from the address in the new CR3 value.

• Certain VMX transitions load the PDPTE registers. See Section 4.11.1.

Table 4-8 gives the format of a PDPTE. If any of the PDPTEs sets both the P flag
(bit 0) and any reserved bit, the MOV to CR instruction causes a general-protection
exception (#GP(0)) and the PDPTEs are not loaded.1 As shown in Table 4-8, bits 2:1,
8:5, and 63:MAXPHYADDR are reserved in the PDPTEs.

1. On some processors, reserved bits are checked even in PDPTEs in which the P flag (bit 0) is 0.

Table 4-8. Format of a PAE Page-Directory-Pointer-Table Entry (PDPTE)

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

2:1 Reserved (must be 0)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9)

8:5 Reserved (must be 0)

11:9 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
4-18 Vol. 3A

PAGING
4.4.2 Linear-Address Translation with PAE Paging
PAE paging may map linear addresses to either 4-KByte pages or 2-MByte pages.
Figure 4-5 illustrates the translation process when it produces a 4-KByte page;
Figure 4-6 covers the case of a 2-MByte page. The following items describe the PAE
paging process in more detail as well has how the page size is determined:
• Bits 31:30 of the linear address select a PDPTE register (see Section 4.4.1); this

is PDPTEi, where i is the value of bits 31:30.1 Because a PDPTE register is
identified using bits 31:30 of the linear address, it controls access to a 1-GByte
region of the linear-address space. If the P flag (bit 0) of PDPTEi is 0, the
processor ignores bits 63:1, and there is no mapping for the 1-GByte region
controlled by PDPTEi. A reference using a linear address in this region causes a
page-fault exception (see Section 4.7).

• If the P flag of PDPTEi is 1, 4-KByte naturally aligned page directory is located at
the physical address specified in bits 51:12 of PDPTEi (see Table 4-8 in Section
4.4.1) A page directory comprises 512 64-bit entries (PDEs). A PDE is selected
using the physical address defined as follows:

— Bits 51:12 are from PDPTEi.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are 0.

Because a PDE is identified using bits 31:21 of the linear address, it controls access
to a 2-Mbyte region of the linear-address space. Use of the PDE depends on its PS
flag (bit 7):
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page (see Table 4-9). The final

physical address is computed as follows:

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the

physical address specified in bits 51:12 of the PDE (see Table 4-10). A page
directory comprises 512 64-bit entries (PTEs). A PTE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are 0.
• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps

a 4-KByte page (see Table 4-11). The final physical address is computed as
follows:

1. With PAE paging, the processor does not use CR3 when translating a linear address (as it does
the other paging modes). It does not access the PDPTEs in the page-directory-pointer table dur-
ing linear-address translation.
Vol. 3A 4-19

PAGING
— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If the P flag (bit 0) of a PDE or a PTE is 0 or if a PDE or a PTE sets any reserved bit,
the entry is used neither to reference another paging-structure entry nor to map a
page. A reference using a linear address whose translation would use such a paging-
structure entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with PAE paging:
• If the P flag (bit 0) of a PDE or a PTE is 1, bits 62:MAXPHYADDR are reserved.
• If the P flag and the PS flag (bit 7) of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63)

is reserved.
• If the PAT is not supported:1

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

1. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-5. Linear-Address Translation to a 4-KByte Page using PAE Paging

0

Directory Table Offset

Page Directory

PDE with PS=0

Page Table

PTE

4-KByte Page

Physical Address

31 20 111221
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory Pointer

2

9

12

9

40

40

40
4-20 Vol. 3A

PAGING
Figure 4-6. Linear-Address Translation to a 2-MByte Page using PAE Paging

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-10)

0

Directory Offset

Page Directory

PDE with PS=1

2-MByte Page

Physical Address

31 2021
Linear Address

PDPTE value

30 29

PDPTE Registers

Directory
Pointer

2

9

21

31

40
Vol. 3A 4-21

PAGING
8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
2-MByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

Table 4-9. Format of a PAE Page-Directory Entry that Maps a 2-MByte Page (Contd.)

Bit
Position(s)

Contents
4-22 Vol. 3A

PAGING
6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-9)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) If the PAT is supported, indirectly determines the memory type used to access the
4-KByte page referenced by this entry (see Section 4.9.2); otherwise, reserved
(must be 0)1

Table 4-10. Format of a PAE Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents
Vol. 3A 4-23

PAGING
Figure 4-7 gives a summary of the formats of CR3 and the paging-structure entries
with PAE paging. For the paging structure entries, it identifies separately the format
of entries that map pages, those that reference other paging structures, and those
that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how a paging-structure entry is used.

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

62:M Reserved (must be 0)

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)

NOTES:
1. See Section 4.1.4 for how to determine whether the PAT is supported.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Ignored2 Address of page-directory-pointer table Ignored CR3

Reserved3 Address of page directory Ign. Rsvd.
P
C
D

P
W
T

Rs
vd 1 PDPTE:

present

Ignored 0
PDTPE:

not
present

X
D
4

Ignored Rsvd. Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging

Table 4-11. Format of a PAE Page-Table Entry that Maps a 4-KByte Page (Contd.)

Bit
Position(s)

Contents
4-24 Vol. 3A

PAGING
Ignored 0
PDE:
not

present

X
D

Ignored Rsvd. Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. CR3 has 64 bits only on processors supporting the Intel-64 architecture. These bits are ignored with

PAE paging.
3. Reserved fields must be 0.
4. If IA32_EFER.NXE = 0 and the P flag of a PDE or a PTE is 1, the XD flag (bit 63) is reserved.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Figure 4-7. Formats of CR3 and Paging-Structure Entries with PAE Paging (Contd.)
Vol. 3A 4-25

PAGING
4.5 IA-32E PAGING
A logical processor uses IA-32e paging if CR0.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 1. With IA-32e paging, linear address are translated using a hier-
archy of in-memory paging structures located using the contents of CR3. IA-32e
paging translates 48-bit linear addresses to 52-bit physical addresses.1 Although 52
bits corresponds to 4 PBytes, linear addresses are limited to 48 bits; at most 256
TBytes of linear-address space may be accessed at any given time.

IA-32e paging uses a hierarchy of paging structures to produce a translation for a
linear address. CR3 is used to locate the first paging-structure, the PML4 table. Use
of CR3 with IA-32e paging depends on whether process-context identifiers (PCIDs)
have been enabled by setting CR4.PCIDE:
• Table 4-12 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 0.

1. If MAXPHYADDR < 52, bits in the range 51:MAXPHYADDR will be 0 in any physical address used
by IA-32e paging. (The corresponding bits are reserved in the paging-structure entries.) See Sec-
tion 4.1.4 for how to determine MAXPHYADDR.

Table 4-12. Use of CR3 with IA-32e Paging and CR4.PCIDE = 0

Bit
Position(s)

Contents

2:0 Ignored

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the PML4 table during linear-address translation (see Section 4.9.2)

11:5 Ignored

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation1

NOTES:
1. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)
4-26 Vol. 3A

PAGING
• Table 4-13 illustrates how CR3 is used with IA-32e paging if CR4.PCIDE = 1.

After software modifies the value of CR4.PCIDE, the logical processor immediately
begins using CR3 as specified for the new value. For example, if software changes
CR4.PCIDE from 1 to 0, the current PCID immediately changes from CR3[11:0] to
000H (see also Section 4.10.4.1). In addition, the logical processor subsequently
determines the memory type used to access the PML4 table using CR3.PWT and
CR3.PCD, which had been bits 4:3 of the PCID.

IA-32e paging may map linear addresses to 4-KByte pages, 2-MByte pages, or 1-
GByte pages.1 Figure 4-8 illustrates the translation process when it produces a 4-
KByte page; Figure 4-9 covers the case of a 2-MByte page, and Figure 4-10 the case
of a 1-GByte page.

Table 4-13. Use of CR3 with IA-32e Paging and CR4.PCIDE = 1

Bit
Position(s)

Contents

11:0 PCID (see Section 4.10.1)1

NOTES:
1. Section 4.9.2 explains how the processor determines the memory type used to access the PML4

table during linear-address translation with CR4.PCIDE = 1.

M–1:12 Physical address of the 4-KByte aligned PML4 table used for linear-address
translation2

2. M is an abbreviation for MAXPHYADDR, which is at most 52; see Section 4.1.4.

63:M Reserved (must be 0)3

3. See Section 4.10.4.1 for use of bit 63 of the source operand of the MOV to CR3 instruction.

1. Not all processors support 1-GByte pages; see Section 4.1.4.
Vol. 3A 4-27

PAGING
Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40
4-28 Vol. 3A

PAGING
Figure 4-9. Linear-Address Translation to a 2-MByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE

CR3

39 38

Pointer Table

9
9

40

21

31

2-MByte Page

Offset

Physical Addr

PDE with PS=1

02021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40
Vol. 3A 4-29

PAGING
The following items describe the IA-32e paging process in more detail as well has
how the page size is determined.
• A 4-KByte naturally aligned PML4 table is located at the physical address

specified in bits 51:12 of CR3 (see Table 4-12). A PML4 table comprises 512 64-
bit entries (PML4Es). A PML4E is selected using the physical address defined as
follows:

— Bits 51:12 are from CR3.

— Bits 11:3 are bits 47:39 of the linear address.

— Bits 2:0 are all 0.
Because a PML4E is identified using bits 47:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

• A 4-KByte naturally aligned page-directory-pointer table is located at the
physical address specified in bits 51:12 of the PML4E (see Table 4-14). A page-
directory-pointer table comprises 512 64-bit entries (PDPTEs). A PDPTE is
selected using the physical address defined as follows:

— Bits 51:12 are from the PML4E.

Figure 4-10. Linear-Address Translation to a 1-GByte Page using IA-32e Paging

Directory Ptr

Linear Address

PDPTE with PS=1

CR3

39 38

Pointer Table

9

40

30

22

1-GByte Page

Offset

Physical Addr

030 29

Page-Directory-

PML4

47

9

PML4E

40
4-30 Vol. 3A

PAGING
— Bits 11:3 are bits 38:30 of the linear address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the linear address, it controls
access to a 1-GByte region of the linear-address space. Use of the PDPTE depends on
its PS flag (bit 7):1

• If the PDPTE’s PS flag is 1, the PDPTE maps a 1-GByte page (see Table 4-15). The
final physical address is computed as follows:

— Bits 51:30 are from the PDPTE.

— Bits 29:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page directory is located at

the physical address specified in bits 51:12 of the PDPTE (see Table 4-16). A
page directory comprises 512 64-bit entries (PDEs). A PDE is selected using the
physical address defined as follows:

— Bits 51:12 are from the PDPTE.

— Bits 11:3 are bits 29:21 of the linear address.

— Bits 2:0 are all 0.

Because a PDE is identified using bits 47:21 of the linear address, it controls access
to a 2-MByte region of the linear-address space. Use of the PDE depends on its PS
flag:
• If the PDE’s PS flag is 1, the PDE maps a 2-MByte page. The final physical address

is computed as shown in Table 4-17.

— Bits 51:21 are from the PDE.

— Bits 20:0 are from the original linear address.
• If the PDE’s PS flag is 0, a 4-KByte naturally aligned page table is located at the

physical address specified in bits 51:12 of the PDE (see Table 4-18). A page table
comprises 512 64-bit entries (PTEs). A PTE is selected using the physical address
defined as follows:

— Bits 51:12 are from the PDE.

— Bits 11:3 are bits 20:12 of the linear address.

— Bits 2:0 are all 0.
• Because a PTE is identified using bits 47:12 of the linear address, every PTE

maps a 4-KByte page (see Table 4-19). The final physical address is computed as
follows:

— Bits 51:12 are from the PTE.

— Bits 11:0 are from the original linear address.

1. The PS flag of a PDPTE is reserved and must be 0 (if the P flag is 1) if 1-GByte pages are not sup-
ported. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
Vol. 3A 4-31

PAGING
If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the
entry is used neither to reference another paging-structure entry nor to map a page.
A reference using a linear address whose translation would use such a paging-struc-
ture entry causes a page-fault exception (see Section 4.7).

The following bits are reserved with IA-32e paging:
• If the P flag of a paging-structure entry is 1, bits 51:MAXPHYADDR are reserved.
• If the P flag of a PML4E is 1, the PS flag is reserved.
• If 1-GByte pages are not supported and the P flag of a PDPTE is 1, the PS flag is

reserved.1

• If the P flag and the PS flag of a PDPTE are both 1, bits 29:13 are reserved.
• If the P flag and the PS flag of a PDE are both 1, bits 20:13 are reserved.
• If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag

(bit 63) is reserved.

A reference using a linear address that is successfully translated to a physical
address is performed only if allowed by the access rights of the translation; see
Section 4.6.

Figure 4-11 gives a summary of the formats of CR3 and the IA-32e paging-structure
entries. For the paging structure entries, it identifies separately the format of entries
that map pages, those that reference other paging structures, and those that do
neither because they are “not present”; bit 0 (P) and bit 7 (PS) are highlighted
because they determine how a paging-structure entry is used.

1. See Section 4.1.4 for how to determine whether 1-GByte pages are supported.
4-32 Vol. 3A

PAGING
Table 4-14. Format of an IA-32e PML4 Entry (PML4E) that References a Page-
Directory-Pointer Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page-directory-pointer table

1 (R/W) Read/write; if 0, writes may not be allowed to the 512-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 512-GByte
region controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page-directory-pointer table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Reserved (must be 0)

11:8 Ignored

M–1:12 Physical address of 4-KByte aligned page-directory-pointer table referenced by
this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 512-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-33

PAGING
Table 4-15. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
Maps a 1-GByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 1-GByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 1-GByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page directory; see
Table 4-16)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 1-GByte page
referenced by this entry (see Section 4.9.2)1

29:13 Reserved (must be 0)

(M–1):30 Physical address of the 1-GByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-34 Vol. 3A

PAGING
NOTES:
1. The PAT is supported on all processors that support IA-32e paging.

Table 4-16. Format of an IA-32e Page-Directory-Pointer-Table Entry (PDPTE) that
References a Page Directory

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page directory

1 (R/W) Read/write; if 0, writes may not be allowed to the 1-GByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 1-GByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page directory referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 1-GByte page; see Table 4-15)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page directory referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 1-GByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-35

PAGING
Table 4-17. Format of an IA-32e Page-Directory Entry that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 2-MByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 2-MByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 2-MByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 4.8)

7 (PS) Page size; must be 1 (otherwise, this entry references a page table; see
Table 4-18)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

12 (PAT) Indirectly determines the memory type used to access the 2-MByte page
referenced by this entry (see Section 4.9.2)

20:13 Reserved (must be 0)

(M–1):21 Physical address of the 2-MByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-36 Vol. 3A

PAGING
Table 4-18. Format of an IA-32e Page-Directory Entry that References a Page Table

Bit
Position(s)

Contents

0 (P) Present; must be 1 to reference a page table

1 (R/W) Read/write; if 0, writes may not be allowed to the 2-MByte region controlled by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 2-MByte region
controlled by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the page table referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether this entry has been used for linear-address
translation (see Section 4.8)

6 Ignored

7 (PS) Page size; must be 0 (otherwise, this entry maps a 2-MByte page; see Table 4-17)

11:8 Ignored

(M–1):12 Physical address of 4-KByte aligned page table referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 2-MByte region controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
Vol. 3A 4-37

PAGING
Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0 (P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by
this entry (depends on CPL and CR0.WP; see Section 4.6)

2 (U/S) User/supervisor; if 0, accesses with CPL=3 are not allowed to the 4-KByte page
referenced by this entry (see Section 4.6)

3 (PWT) Page-level write-through; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access
the 4-KByte page referenced by this entry (see Section 4.9.2)

5 (A) Accessed; indicates whether software has accessed the 4-KByte page referenced
by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page
referenced by this entry (see Section 4.9.2)

8 (G) Global; if CR4.PGE = 1, determines whether the translation is global (see Section
4.10); ignored otherwise

11:9 Ignored

(M–1):12 Physical address of the 4-KByte page referenced by this entry

51:M Reserved (must be 0)

62:52 Ignored

63 (XD) If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed
from the 4-KByte page controlled by this entry; see Section 4.6); otherwise,
reserved (must be 0)
4-38 Vol. 3A

PAGING
.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1

NOTES:
1. M is an abbreviation for MAXPHYADDR.

M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2

2. Reserved fields must be 0.

Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

3. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.

Ignored Rsvd. Address of page-directory-pointer table Ign.

R
s
v
d

I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Ignored Rsvd.
Address of
1GB page

frame
Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Ignored Rsvd. Address of
2MB page frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Ignored Rsvd. Address of 4KB page frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with IA-32e Paging
Vol. 3A 4-39

PAGING
4.6 ACCESS RIGHTS
There is a translation for a linear address if the processes described in Section 4.3,
Section 4.4.2, and Section 4.5 (depending upon the paging mode) completes and
produces a physical address. The accesses permitted by a translation is determined
by the access rights specified by the paging-structure entries controlling the transla-
tion.1 The following items detail how paging determines access rights:
• For accesses in supervisor mode (CPL < 3):

— Data reads.
Data may be read from any linear address with a valid translation.

— Data writes.

• If CR0.WP = 0, data may be written to any linear address with a valid
translation.

• If CR0.WP = 1, data may be written to any linear address with a valid
translation for which the R/W flag (bit 1) is 1 in every paging-structure
entry controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, access rights depend on the
value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which the U/S flag (bit 2) is 0 in at
least one of the paging-structure entries controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, access rights
depend on the value of CR4.SMEP:

— If CR4.SMEP = 0, instructions may be fetched from any linear
address with a valid translation for which the XD flag (bit 63) is 0 in
every paging-structure entry controlling the translation.

— If CR4.SMEP = 1, instructions may be fetched from any linear
address with a valid translation for which (1) the U/S flag is 0 in at
least one of the paging-structure entries controlling the translation;
and (2) the XD flag is 0 in every paging-structure entry controlling
the translation.

• For accesses in user mode (CPL = 3):

— Data reads.
Data may be read from any linear address with a valid translation for which
the U/S flag (bit 2) is 1 in every paging-structure entry controlling the trans-
lation.

1. With PAE paging, the PDPTEs do not determine access rights.
4-40 Vol. 3A

PAGING
— Data writes.
Data may be written to any linear address with a valid translation for which
both the R/W flag and the U/S flag are 1 in every paging-structure entry
controlling the translation.

— Instruction fetches.

• For 32-bit paging or if IA32_EFER.NXE = 0, instructions may be fetched
from any linear address with a valid translation for which the U/S flag is 1
in every paging-structure entry controlling the translation.

• For PAE paging or IA-32e paging with IA32_EFER.NXE = 1, instructions
may be fetched from any linear address with a valid translation for which
the U/S flag is 1 and the XD flag is 0 in every paging-structure entry
controlling the translation.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about access rights. The processor may enforce access rights based on the TLBs
and paging-structure caches instead of on the paging structures in memory.

This fact implies that, if software modifies a paging-structure entry to change access
rights, the processor might not use that change for a subsequent access to an
affected linear address (see Section 4.10.4.3). See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified access rights.

4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception
14). An access to a linear address may cause page-fault exception for either of two
reasons: (1) there is no valid translation for the linear address; or (2) there is a valid
translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no valid translation
for a linear address if the translation process for that address would use a paging-
structure entry in which the P flag (bit 0) is 0 or one that sets a reserved bit. If there
is a valid translation for a linear address, its access rights are determined as specified
in Section 4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a
page-fault exception. The following items explain how the bits in the error code
describe the nature of the page-fault exception:
• P flag (bit 0).

This flag is 0 if there is no valid translation for the linear address because the P
flag was 0 in one of the paging-structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1;
otherwise, it is 0. This flag describes the access causing the page-fault exception,
not the access rights specified by paging.
Vol. 3A 4-41

PAGING
• U/S (bit 2).
If a user-mode (CPL= 3) access caused the page-fault exception, this flag is 1; it
is 0 if a supervisor-mode (CPL < 3) access did so. This flag describes the access
causing the page-fault exception, not the access rights specified by paging.

• RSVD flag (bit 3).
This flag is 1 if there is no valid translation for the linear address because a
reserved bit was set in one of the paging-structure entries used to translate that
address. (Because reserved bits are not checked in a paging-structure entry
whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)
Bits reserved in the paging-structure entries are reserved for future functionality.
Software developers should be aware that such bits may be used in the future
and that a paging-structure entry that causes a page-fault exception on one
processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction
fetch; and (2) either (a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE
paging or IA-32e paging is in use); and (ii) IA32_EFER.NXE = 1. Otherwise, the
flag is 0. This flag describes the access causing the page-fault exception, not the
access rights specified by paging.

Page-fault exceptions occur only due to an attempt to use a linear address. Failures
to load the PDPTE registers with PAE paging (see Section 4.4.1) cause general-
protection exceptions (#GP(0)) and not page-fault exceptions.

Figure 4-12. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode (CPL < 3).
The access causing the fault originated when the processor
was executing in user mode (CPL = 3).

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD

paging-structure entry.
4-42 Vol. 3A

PAGING
4.8 ACCESSED AND DIRTY FLAGS
For any paging-structure entry that is used during linear-address translation, bit 5 is
the accessed flag.1 For paging-structure entries that map a page (as opposed to
referencing another paging structure), bit 6 is the dirty flag. These flags are
provided for use by memory-management software to manage the transfer of pages
and paging structures into and out of physical memory.

Whenever the processor uses a paging-structure entry as part of linear-address
translation, it sets the accessed flag in that entry (if it is not already set).

Whenever there is a write to a linear address, the processor sets the dirty flag (if it is
not already set) in the paging-structure entry that identifies the final physical
address for the linear address (either a PTE or a paging-structure entry in which the
PS flag is 1).

Memory-management software may clear these flags when a page or a paging struc-
ture is initially loaded into physical memory. These flags are “sticky,” meaning that,
once set, the processor does not clear them; only software can clear them.

A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). This fact implies that, if software
changes an accessed flag or a dirty flag from 1 to 0, the processor might not set the
corresponding bit in memory on a subsequent access using an affected linear
address (see Section 4.10.4.3). See Section 4.10.4.2 for how software can ensure
that these bits are updated as desired.

NOTE
The accesses used by the processor to set these flags may or may not
be exposed to the processor’s self-modifying code detection logic. If
the processor is executing code from the same memory area that is
being used for the paging structures, the setting of these flags may
or may not result in an immediate change to the executing code
stream.

4.9 PAGING AND MEMORY TYPING
The memory type of a memory access refers to the type of caching used for that
access. Chapter 11, “Memory Cache Control” provides many details regarding
memory typing in the Intel-64 and IA-32 architectures. This section describes how
paging contributes to the determination of memory typing.

The way in which paging contributes to memory typing depends on whether the
processor supports the Page Attribute Table (PAT; see Section 11.12).2 Section

1. With PAE paging, the PDPTEs are not used during linear-address translation but only to load the
PDPTE registers for some executions of the MOV CR instruction (see Section 4.4.1). For this rea-
son, the PDPTEs do not contain accessed flags with PAE paging.
Vol. 3A 4-43

PAGING
4.9.1 and Section 4.9.2 explain how paging contributes to memory typing depending
on whether the PAT is supported.

4.9.1 Paging and Memory Typing When the PAT is Not Supported
(Pentium Pro and Pentium II Processors)

NOTE
The PAT is supported on all processors that support IA-32e paging.
Thus, this section applies only to 32-bit paging and PAE paging.

If the PAT is not supported, paging contributes to memory typing in conjunction with
the memory-type range registers (MTRRs) as specified in Table 11-6 in Section
11.5.2.1.

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a PCD value and a PWT value. The latter
two values are determined as follows:
• For an access to a PDE with 32-bit paging, the PCD and PWT values come from

CR3.
• For an access to a PDE with PAE paging, the PCD and PWT values come from the

relevant PDPTE register.
• For an access to a PTE, the PCD and PWT values come from the relevant PDE.
• For an access to the physical address that is the translation of a linear address,

the PCD and PWT values come from the relevant PTE (if the translation uses a 4-
KByte page) or the relevant PDE (otherwise).

• With PAE paging, the UC memory type is used when loading the PDPTEs (see
Section 4.4.1).

4.9.2 Paging and Memory Typing When the PAT is Supported
(Pentium III and More Recent Processor Families)

If the PAT is supported, paging contributes to memory typing in conjunction with the
PAT and the memory-type range registers (MTRRs) as specified in Table 11-7 in
Section 11.5.2.2.

The PAT is a 64-bit MSR (IA32_PAT; MSR index 277H) comprising eight (8) 8-bit
entries (entry i comprises bits 8i+7:8i of the MSR).

For any access to a physical address, the table combines the memory type specified
for that physical address by the MTRRs with a memory type selected from the PAT.

2. The PAT is supported on Pentium III and more recent processor families. See Section 4.1.4 for
how to determine whether the PAT is supported.
4-44 Vol. 3A

PAGING
Table 11-11 in Section 11.12.3 specifies how a memory type is selected from the PAT.
Specifically, it comes from entry i of the PAT, where i is defined as follows:
• For an access to an entry in a paging structure whose address is in CR3 (e.g., the

PML4 table with IA-32e paging):

— For IA-32e paging with CR4.PCIDE = 1, i = 0.

— Otherwise, i = 2*PCD+PWT, where the PCD and PWT values come from CR3.
• For an access to a PDE with PAE paging, i = 2*PCD+PWT, where the PCD and

PWT values come from the relevant PDPTE register.
• For an access to a paging-structure entry X whose address is in another paging-

structure entry Y, i = 2*PCD+PWT, where the PCD and PWT values come from Y.
• For an access to the physical address that is the translation of a linear address,

i = 4*PAT+2*PCD+PWT, where the PAT, PCD, and PWT values come from the
relevant PTE (if the translation uses a 4-KByte page), the relevant PDE (if the
translation uses a 2-MByte page or a 4-MByte page), or the relevant PDPTE (if
the translation uses a 1-GByte page).

• With PAE paging, the WB memory type is used when loading the PDPTEs (see
Section 4.4.1).1

4.9.3 Caching Paging-Related Information about Memory Typing
A processor may cache information from the paging-structure entries in TLBs and
paging-structure caches (see Section 4.10). These structures may include informa-
tion about memory typing. The processor may use memory-typing information from
the TLBs and paging-structure caches instead of from the paging structures in
memory.

This fact implies that, if software modifies a paging-structure entry to change the
memory-typing bits, the processor might not use that change for a subsequent
translation using that entry or for access to an affected linear address. See Section
4.10.4.2 for how software can ensure that the processor uses the modified memory
typing.

4.10 CACHING TRANSLATION INFORMATION
The Intel-64 and IA-32 architectures may accelerate the address-translation process
by caching data from the paging structures on the processor. Because the processor
does not ensure that the data that it caches are always consistent with the structures
in memory, it is important for software developers to understand how and when the

1. Some older IA-32 processors used the UC memory type when loading the PDPTEs. Some proces-
sors may use the UC memory type if CR0.CD = 1 or if the MTRRs are disabled. These behaviors
are model-specific and not architectural.
Vol. 3A 4-45

PAGING
processor may cache such data. They should also understand what actions software
can take to remove cached data that may be inconsistent and when it should do so.
This section provides software developers information about the relevant processor
operation.

Section 4.10.1 introduces process-context identifiers (PCIDs), which a logical
processor may use to distinguish information cached for different linear-address
spaces. Section 4.10.2 and Section 4.10.3 describe how the processor may cache
information in translation lookaside buffers (TLBs) and paging-structure caches,
respectively. Section 4.10.4 explains how software can remove inconsistent cached
information by invalidating portions of the TLBs and paging-structure caches. Section
4.10.5 describes special considerations for multiprocessor systems.

4.10.1 Process-Context Identifiers (PCIDs)
Process-context identifiers (PCIDs) are a facility by which a logical processor may
cache information for multiple linear-address spaces. The processor may retain
cached information when software switches to a different linear-address space with a
different PCID (e.g., by loading CR3; see Section 4.10.4.1 for details).

A PCID is a 12-bit identifier. Non-zero PCIDs are enabled by setting the PCIDE flag
(bit 17) of CR4. If CR4.PCIDE = 0, the current PCID is always 000H; otherwise, the
current PCID is the value of bits 11:0 of CR3. Not all processors allow CR4.PCIDE to
be set to 1; see Section 4.1.4 for how to determine whether this is allowed.

The processor ensures that CR4.PCIDE can be 1 only in IA-32e mode (thus, 32-bit
paging and PAE paging use only PCID 000H). In addition, software can change
CR4.PCIDE from 0 to 1 only if CR3[11:0] = 000H. These requirements are enforced
by the following limitations on the MOV CR instruction:
• MOV to CR4 causes a general-protection exception (#GP) if it would change

CR4.PCIDE from 0 to 1 and either IA32_EFER.LMA = 0 or CR3[11:0] ≠ 000H.
• MOV to CR0 causes a general-protection exception if it would clear CR0.PG to 0

while CR4.PCIDE = 1.

When a logical processor creates entries in the TLBs (Section 4.10.2) and paging-
structure caches (Section 4.10.3), it associates those entries with the current PCID.
When using entries in the TLBs and paging-structure caches to translate a linear
address, a logical processor uses only those entries associated with the current PCID
(see Section 4.10.2.4 for an exception).

If CR4.PCIDE = 0, a logical processor does not cache information for any PCID other
than 000H. This is because (1) if CR4.PCIDE = 0, the logical processor will associate
any newly cached information with the current PCID, 000H; and (2) if MOV to CR4
clears CR4.PCIDE, all cached information is invalidated (see Section 4.10.4.1).

NOTE
In revisions of this manual that were produced when no processors
allowed CR4.PCIDE to be set to 1, Section 4.10 discussed the caching
4-46 Vol. 3A

PAGING
of translation information without any reference to PCIDs. While the
section now refers to PCIDs in its specification of this caching, this
documentation change is not intended to imply any change to the
behavior of processors that do not allow CR4.PCIDE to be set to 1.

4.10.2 Translation Lookaside Buffers (TLBs)
A processor may cache information about the translation of linear addresses in trans-
lation lookaside buffers (TLBs). In general, TLBs contain entries that map page
numbers to page frames; these terms are defined in Section 4.10.2.1. Section
4.10.2.2 describes how information may be cached in TLBs, and Section 4.10.2.3
gives details of TLB usage. Section 4.10.2.4 explains the global-page feature, which
allows software to indicate that certain translations should receive special treatment
when cached in the TLBs.

4.10.2.1 Page Numbers, Page Frames, and Page Offsets
Section 4.3, Section 4.4.2, and Section 4.5 give details of how the different paging
modes translate linear addresses to physical addresses. Specifically, the upper bits of
a linear address (called the page number) determine the upper bits of the physical
address (called the page frame); the lower bits of the linear address (called the
page offset) determine the lower bits of the physical address. The boundary
between the page number and the page offset is determined by the page size.
Specifically:
• 32-bit paging:

— If the translation does not use a PTE (because CR4.PSE = 1 and the PS flag is
1 in the PDE used), the page size is 4 MBytes and the page number comprises
bits 31:22 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

• PAE paging:

— If the translation does not use a PTE (because the PS flag is 1 in the PDE
used), the page size is 2 MBytes and the page number comprises bits 31:21
of the linear address.

— If the translation does uses a PTE, the page size is 4 KBytes and the page
number comprises bits 31:12 of the linear address.

• IA-32e paging:

— If the translation does not use a PDE (because the PS flag is 1 in the PDPTE
used), the page size is 1 GBytes and the page number comprises bits 47:30
of the linear address.
Vol. 3A 4-47

PAGING
— If the translation does use a PDE but does not uses a PTE (because the PS flag
is 1 in the PDE used), the page size is 2 MBytes and the page number
comprises bits 47:21 of the linear address.

— If the translation does use a PTE, the page size is 4 KBytes and the page
number comprises bits 47:12 of the linear address.

4.10.2.2 Caching Translations in TLBs
The processor may accelerate the paging process by caching individual translations
in translation lookaside buffers (TLBs). Each entry in a TLB is an individual trans-
lation. Each translation is referenced by a page number. It contains the following
information from the paging-structure entries used to translate linear addresses with
the page number:
• The physical address corresponding to the page number (the page frame).
• The access rights from the paging-structure entries used to translate linear

addresses with the page number (see Section 4.6):

— The logical-AND of the R/W flags.

— The logical-AND of the U/S flags.

— The logical-OR of the XD flags (necessary only if IA32_EFER.NXE = 1).
• Attributes from a paging-structure entry that identifies the final page frame for

the page number (either a PTE or a paging-structure entry in which the PS flag is
1):

— The dirty flag (see Section 4.8).

— The memory type (see Section 4.9).

(TLB entries may contain other information as well. A processor may implement
multiple TLBs, and some of these may be for special purposes, e.g., only for instruc-
tion fetches. Such special-purpose TLBs may not contain some of this information if
it is not necessary. For example, a TLB used only for instruction fetches need not
contain information about the R/W and dirty flags.)

As noted in Section 4.10.1, any TLB entries created by a logical processor are associ-
ated with the current PCID.

Processors need not implement any TLBs. Processors that do implement TLBs may
invalidate any TLB entry at any time. Software should not rely on the existence of
TLBs or on the retention of TLB entries.

4.10.2.3 Details of TLB Use
Because the TLBs cache only valid translations, there can be a TLB entry for a page
number only if the P flag is 1 and the reserved bits are 0 in each of the paging-struc-
ture entries used to translate that page number. In addition, the processor does not
cache a translation for a page number unless the accessed flag is 1 in each of the
4-48 Vol. 3A

PAGING
paging-structure entries used during translation; before caching a translation, the
processor sets any of these accessed flags that is not already 1.

The processor may cache translations required for prefetches and for accesses that
are a result of speculative execution that would never actually occur in the executed
code path.

If the page number of a linear address corresponds to a TLB entry associated with the
current PCID, the processor may use that TLB entry to determine the page frame,
access rights, and other attributes for accesses to that linear address. In this case,
the processor may not actually consult the paging structures in memory. The
processor may retain a TLB entry unmodified even if software subsequently modifies
the relevant paging-structure entries in memory. See Section 4.10.4.2 for how soft-
ware can ensure that the processor uses the modified paging-structure entries.

If the paging structures specify a translation using a page larger than 4 KBytes, some
processors may choose to cache multiple smaller-page TLB entries for that transla-
tion. Each such TLB entry would be associated with a page number corresponding to
the smaller page size (e.g., bits 47:12 of a linear address with IA-32e paging), even
though part of that page number (e.g., bits 20:12) are part of the offset with respect
to the page specified by the paging structures. The upper bits of the physical address
in such a TLB entry are derived from the physical address in the PDE used to create
the translation, while the lower bits come from the linear address of the access for
which the translation is created. There is no way for software to be aware that
multiple translations for smaller pages have been used for a large page.

If software modifies the paging structures so that the page size used for a 4-KByte
range of linear addresses changes, the TLBs may subsequently contain multiple
translations for the address range (one for each page size). A reference to a linear
address in the address range may use any of these translations. Which translation is
used may vary from one execution to another, and the choice may be implementa-
tion-specific.

4.10.2.4 Global Pages
The Intel-64 and IA-32 architectures also allow for global pages when the PGE flag
(bit 7) is 1 in CR4. If the G flag (bit 8) is 1 in a paging-structure entry that maps a
page (either a PTE or a paging-structure entry in which the PS flag is 1), any TLB
entry cached for a linear address using that paging-structure entry is considered to
be global. Because the G flag is used only in paging-structure entries that map a
page, and because information from such entries are not cached in the paging-struc-
ture caches, the global-page feature does not affect the behavior of the paging-
structure caches.

A logical processor may use a global TLB entry to translate a linear address, even if
the TLB entry is associated with a PCID different from the current PCID.
Vol. 3A 4-49

PAGING
4.10.3 Paging-Structure Caches
In addition to the TLBs, a processor may cache other information about the paging
structures in memory.

4.10.3.1 Caches for Paging Structures
A processor may support any or of all the following paging-structure caches:
• PML4 cache (IA-32e paging only). Each PML4-cache entry is referenced by a 9-

bit value and is used for linear addresses for which bits 47:39 have that value.
The entry contains information from the PML4E used to translate such linear
addresses:

— The physical address from the PML4E (the address of the page-directory-
pointer table).

— The value of the R/W flag of the PML4E.

— The value of the U/S flag of the PML4E.

— The value of the XD flag of the PML4E.

— The values of the PCD and PWT flags of the PML4E.
The following items detail how a processor may use the PML4 cache:

— If the processor has a PML4-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E in memory).

— The processor does not create a PML4-cache entry unless the P flag is 1 and
all reserved bits are 0 in the PML4E in memory.

— The processor does not create a PML4-cache entry unless the accessed flag is
1 in the PML4E in memory; before caching a translation, the processor sets
the accessed flag if it is not already 1.

— The processor may create a PML4-cache entry even if there are no transla-
tions for any linear address that might use that entry (e.g., because the P
flags are 0 in all entries in the referenced page-directory-pointer table).

— If the processor creates a PML4-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
in memory.

• PDPTE cache (IA-32e paging only).1 Each PDPTE-cache entry is referenced by
an 18-bit value and is used for linear addresses for which bits 47:30 have that
value. The entry contains information from the PML4E and PDPTE used to
translate such linear addresses:

— The physical address from the PDPTE (the address of the page directory). (No
PDPTE-cache entry is created for a PDPTE that maps a 1-GByte page.)

1. With PAE paging, the PDPTEs are stored in internal, non-architectural registers. The operation of
these registers is described in Section 4.4.1 and differs from that described here.
4-50 Vol. 3A

PAGING
— The logical-AND of the R/W flags in the PML4E and the PDPTE.

— The logical-AND of the U/S flags in the PML4E and the PDPTE.

— The logical-OR of the XD flags in the PML4E and the PDPTE.

— The values of the PCD and PWT flags of the PDPTE.
The following items detail how a processor may use the PDPTE cache:

— If the processor has a PDPTE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E and the
PDPTE in memory).

— The processor does not create a PDPTE-cache entry unless the P flag is 1, the
PS flag is 0, and the reserved bits are 0 in the PML4E and the PDPTE in
memory.

— The processor does not create a PDPTE-cache entry unless the accessed flags
are 1 in the PML4E and the PDPTE in memory; before caching a translation,
the processor sets any accessed flags that are not already 1.

— The processor may create a PDPTE-cache entry even if there are no transla-
tions for any linear address that might use that entry.

— If the processor creates a PDPTE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E
or PDPTE in memory.

• PDE cache. The use of the PDE cache depends on the paging mode:

— For 32-bit paging, each PDE-cache entry is referenced by a 10-bit value and
is used for linear addresses for which bits 31:22 have that value.

— For PAE paging, each PDE-cache entry is referenced by an 11-bit value and is
used for linear addresses for which bits 31:21 have that value.

— For IA-32e paging, each PDE-cache entry is referenced by a 27-bit value and
is used for linear addresses for which bits 47:21 have that value.

A PDE-cache entry contains information from the PML4E, PDPTE, and PDE used to
translate the relevant linear addresses (for 32-bit paging and PAE paging, only
the PDE applies):

— The physical address from the PDE (the address of the page table). (No PDE-
cache entry is created for a PDE that maps a page.)

— The logical-AND of the R/W flags in the PML4E, PDPTE, and PDE.

— The logical-AND of the U/S flags in the PML4E, PDPTE, and PDE.

— The logical-OR of the XD flags in the PML4E, PDPTE, and PDE.

— The values of the PCD and PWT flags of the PDE.
The following items detail how a processor may use the PDE cache (references
below to PML4Es and PDPTEs apply on to IA-32e paging):
Vol. 3A 4-51

PAGING
— If the processor has a PDE-cache entry for a linear address, it may use that
entry when translating the linear address (instead of the PML4E, the PDPTE,
and the PDE in memory).

— The processor does not create a PDE-cache entry unless the P flag is 1, the PS
flag is 0, and the reserved bits are 0 in the PML4E, the PDPTE, and the PDE in
memory.

— The processor does not create a PDE-cache entry unless the accessed flag is
1 in the PML4E, the PDPTE, and the PDE in memory; before caching a trans-
lation, the processor sets any accessed flags that are not already 1.

— The processor may create a PDE-cache entry even if there are no translations
for any linear address that might use that entry.

— If the processor creates a PDE-cache entry, the processor may retain it
unmodified even if software subsequently modifies the corresponding PML4E,
the PDPTE, or the PDE in memory.

Information from a paging-structure entry can be included in entries in the paging-
structure caches for other paging-structure entries referenced by the original entry.
For example, if the R/W flag is 0 in a PML4E, then the R/W flag will be 0 in any PDPTE-
cache entry for a PDPTE from the page-directory-pointer table referenced by that
PML4E. This is because the R/W flag of each such PDPTE-cache entry is the logical-
AND of the R/W flags in the appropriate PML4E and PDPTE.

The paging-structure caches contain information only from paging-structure entries
that reference other paging structures (and not those that map pages). Because the
G flag is not used in such paging-structure entries, the global-page feature does not
affect the behavior of the paging-structure caches.

The processor may create entries in paging-structure caches for translations
required for prefetches and for accesses that are a result of speculative execution
that would never actually occur in the executed code path.

As noted in Section 4.10.1, any entries created in paging-structure caches by a
logical processor are associated with the current PCID.

A processor may or may not implement any of the paging-structure caches. Software
should rely on neither their presence nor their absence. The processor may invalidate
entries in these caches at any time. Because the processor may create the cache
entries at the time of translation and not update them following subsequent modifi-
cations to the paging structures in memory, software should take care to invalidate
the cache entries appropriately when causing such modifications. The invalidation of
TLBs and the paging-structure caches is described in Section 4.10.4.

4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
When a linear address is accessed, the processor uses a procedure such as the
following to determine the physical address to which it translates and whether the
access should be allowed:
4-52 Vol. 3A

PAGING
• If the processor finds a TLB entry that is for the page number of the linear
address and that is associated with the current PCID (or which is global), it may
use the physical address, access rights, and other attributes from that entry.

• If the processor does not find a relevant TLB entry, it may use the upper bits of
the linear address to select an entry from the PDE cache that is associated with
the current PCID (Section 4.10.3.1 indicates which bits are used in each paging
mode). It can then use that entry to complete the translation process (locating a
PTE, etc.) as if it had traversed the PDE (and, for IA-32e paging, the PDPTE and
PML4) corresponding to the PDE-cache entry.

• The following items apply when IA-32e paging is used:

— If the processor does not find a relevant TLB entry or a relevant PDE-cache
entry, it may use bits 47:30 of the linear address to select an entry from the
PDPTE cache that is associated with the current PCID. It can then use that
entry to complete the translation process (locating a PDE, etc.) as if it had
traversed the PDPTE and the PML4 corresponding to the PDPTE-cache entry.

— If the processor does not find a relevant TLB entry, a relevant PDE-cache
entry, or a relevant PDPTE-cache entry, it may use bits 47:39 of the linear
address to select an entry from the PML4 cache that is associated with the
current PCID. It can then use that entry to complete the translation process
(locating a PDPTE, etc.) as if it had traversed the corresponding PML4.

(Any of the above steps would be skipped if the processor does not support the cache
in question.)

If the processor does not find a TLB or paging-structure-cache entry for the linear
address, it uses the linear address to traverse the entire paging-structure hierarchy,
as described in Section 4.3, Section 4.4.2, and Section 4.5.

4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry
The paging-structure caches and TLBs and paging-structure caches may contain
multiple entries associated with a single PCID and with information derived from a
single paging-structure entry. The following items give some examples for IA-32e
paging:
• Suppose that two PML4Es contain the same physical address and thus reference

the same page-directory-pointer table. Any PDPTE in that table may result in two
PDPTE-cache entries, each associated with a different set of linear addresses.
Specifically, suppose that the n1

th and n2
th entries in the PML4 table contain the

same physical address. This implies that the physical address in the mth PDPTE in
the page-directory-pointer table would appear in the PDPTE-cache entries
associated with both p1 and p2, where (p1 » 9) = n1, (p2 » 9) = n2, and (p1 &
1FFH) = (p2 & 1FFH) = m. This is because both PDPTE-cache entries use the
same PDPTE, one resulting from a reference from the n1

th PML4E and one from
the n2

th PML4E.
Vol. 3A 4-53

PAGING
• Suppose that the first PML4E (i.e., the one in position 0) contains the physical
address X in CR3 (the physical address of the PML4 table). This implies the
following:

— Any PML4-cache entry associated with linear addresses with 0 in bits 47:39
contains address X.

— Any PDPTE-cache entry associated with linear addresses with 0 in bits 47:30
contains address X. This is because the translation for a linear address for
which the value of bits 47:30 is 0 uses the value of bits 47:39 (0) to locate a
page-directory-pointer table at address X (the address of the PML4 table). It
then uses the value of bits 38:30 (also 0) to find address X again and to store
that address in the PDPTE-cache entry.

— Any PDE-cache entry associated with linear addresses with 0 in bits 47:21
contains address X for similar reasons.

— Any TLB entry for page number 0 (associated with linear addresses with 0 in
bits 47:12) translates to page frame X » 12 for similar reasons.

The same PML4E contributes its address X to all these cache entries because the
self-referencing nature of the entry causes it to be used as a PML4E, a PDPTE, a
PDE, and a PTE.

4.10.4 Invalidation of TLBs and Paging-Structure Caches
As noted in Section 4.10.2 and Section 4.10.3, the processor may create entries in
the TLBs and the paging-structure caches when linear addresses are translated, and
it may retain these entries even after the paging structures used to create them have
been modified. To ensure that linear-address translation uses the modified paging
structures, software should take action to invalidate any cached entries that may
contain information that has since been modified.

4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
The following instructions invalidate entries in the TLBs and the paging-structure
caches:
• INVLPG. This instruction takes a single operand, which is a linear address. The

instruction invalidates any TLB entries that are for a page number corresponding
to the linear address and that are associated with the current PCID. It also
invalidates any global TLB entries with that page number, regardless of PCID
(see Section 4.10.2.4).1 INVLPG also invalidates all entries in all paging-structure
caches associated with the current PCID, regardless of the linear addresses to
which they correspond.

1. If the paging structures map the linear address using a page larger than 4 KBytes and there are
multiple TLB entries for that page (see Section 4.10.2.3), the instruction invalidates all of them.
4-54 Vol. 3A

PAGING
• MOV to CR0. The instruction invalidates all TLB entries (including global entries)
and all entries in all paging-structure caches (for all PCIDs) if it changes the
value of CR0.PG from 1 to 0.

• MOV to CR3. The behavior of the instruction depends on the value of CR4.PCIDE:

— If CR4.PCIDE = 0, the instruction invalidates all TLB entries associated with
PCID 000H except those for global pages. It also invalidates all entries in all
paging-structure caches associated with PCID 000H.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 0, the
instruction invalidates all TLB entries associated with the PCID specified in
bits 11:0 of the instruction’s source operand except those for global pages. It
also invalidates all entries in all paging-structure caches associated with that
PCID. It is not required to invalidate entries in the TLBs and paging-structure
caches that are associated with other PCIDs.

— If CR4.PCIDE = 1 and bit 63 of the instruction’s source operand is 1, the
instruction is not required to invalidate any TLB entries or entries in paging-
structure caches.

• MOV to CR4. The behavior of the instruction depends on the bits being modified:

— The instruction invalidates all TLB entries (including global entries) and all
entries in all paging-structure caches (for all PCIDs) if (1) it changes the
value of CR4.PGE;1 or (2) it changes the value of the CR4.PCIDE from 1 to 0.

— The instruction invalidates all TLB entries and all entries in all paging-
structure caches for the current PCID if (1) it changes the value of CR4.PAE;
or (2) it changes the value of CR4.SMEP from 0 to 1.

• Task switch. If a task switch changes the value of CR3, it invalidates all TLB
entries associated with PCID 000H except those for global pages. It also
invalidates all entries in all paging-structure caches for associated with PCID
000H.2

• VMX transitions. See Section 4.11.1.

The processor is always free to invalidate additional entries in the TLBs and paging-
structure caches. The following are some examples:
• INVLPG may invalidate TLB entries for pages other than the one corresponding to

its linear-address operand. It may invalidate TLB entries and paging-structure-
cache entries associated with PCIDs other than the current PCID.

• MOV to CR0 may invalidate TLB entries even if CR0.PG is not changing. For
example, this may occur if either CR0.CD or CR0.NW is modified.

1. If CR4.PGE is changing from 0 to 1, there were no global TLB entries before the execution; if
CR4.PGE is changing from 1 to 0, there will be no global TLB entries after the execution.

2. Task switches do not occur in IA-32e mode and thus cannot occur with IA-32e paging. Since
CR4.PCIDE can be set only with IA-32e paging, task switches occur only with CR4.PCIDE = 0.
Vol. 3A 4-55

PAGING
• MOV to CR3 may invalidate TLB entries for global pages. If CR4.PCIDE = 1 and
bit 63 of the instruction’s source operand is 0, it may invalidate TLB entries and
entries in the paging-structure caches associated with PCIDs other than the
current PCID. It may invalidate entries if CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 1.

• MOV to CR4 may invalidate TLB entries when changing CR4.PSE or when
changing CR4.SMEP from 1 to 0.

• On a processor supporting Hyper-Threading Technology, invalidations performed
on one logical processor may invalidate entries in the TLBs and paging-structure
caches used by other logical processors.

(Other instructions and operations may invalidate entries in the TLBs and the paging-
structure caches, but the instructions identified above are recommended.)

In addition to the instructions identified above, page faults invalidate entries in the
TLBs and paging-structure caches. In particular, a page-fault exception resulting
from an attempt to use a linear address will invalidate any TLB entries that are for a
page number corresponding to that linear address and that are associated with the
current PCID. it also invalidates all entries in the paging-structure caches that would
be used for that linear address and that are associated with the current PCID.1 These
invalidations ensure that the page-fault exception will not recur (if the faulting
instruction is re-executed) if it would not be caused by the contents of the paging
structures in memory (and if, therefore, it resulted from cached entries that were not
invalidated after the paging structures were modified in memory).

As noted in Section 4.10.2, some processors may choose to cache multiple smaller-
page TLB entries for a translation specified by the paging structures to use a page
larger than 4 KBytes. There is no way for software to be aware that multiple transla-
tions for smaller pages have been used for a large page. The INVLPG instruction and
page faults provide the same assurances that they provide when a single TLB entry
is used: they invalidate all TLB entries corresponding to the translation specified by
the paging structures.

4.10.4.2 Recommended Invalidation
The following items provide some recommendations regarding when software should
perform invalidations:
• If software modifies a paging-structure entry that identifies the final page frame

for a page number (either a PTE or a paging-structure entry in which the PS flag
is 1), it should execute INVLPG for any linear address with a page number whose
translation uses that PTE.2

(If the paging-structure entry may be used in the translation of different page
numbers — see Section 4.10.3.3 — software should execute INVLPG for linear

1. Unlike INVLPG, page faults need not invalidate all entries in the paging-structure caches, only
those that would be used to translate the faulting linear address.

2. One execution of INVLPG is sufficient even for a page with size greater than 4 KBytes.
4-56 Vol. 3A

PAGING
addresses with each of those page numbers; alternatively, it could use MOV to
CR3 or MOV to CR4.)

• If software modifies a paging-structure entry that references another paging
structure, it may use one of the following approaches depending upon the types
and number of translations controlled by the modified entry:

— Execute INVLPG for linear addresses with each of the page numbers with
translations that would use the entry. However, if no page numbers that
would use the entry have translations (e.g., because the P flags are 0 in all
entries in the paging structure referenced by the modified entry), it remains
necessary to execute INVLPG at least once.

— Execute MOV to CR3 if the modified entry controls no global pages.

— Execute MOV to CR4 to modify CR4.PGE.
• If CR4.PCIDE = 1 and software modifies a paging-structure entry that does not

map a page or in which the G flag (bit 8) is 0, additional steps are required if the
entry may be used for PCIDs other than the current one. Any one of the following
suffices:

— Execute MOV to CR4 to modify CR4.PGE, either immediately or before again
using any of the affected PCIDs. For example, software could use different
(previously unused) PCIDs for the processes that used the affected PCIDs.

— For each affected PCID, execute MOV to CR3 to make that PCID current (and
to load the address of the appropriate PML4 table). If the modified entry
controls no global pages and bit 63 of the source operand to MOV to CR3 was
0, no further steps are required. Otherwise, execute INVLPG for linear
addresses with each of the page numbers with translations that would use
the entry; if no page numbers that would use the entry have translations,
execute INVLPG at least once.

• If software using PAE paging modifies a PDPTE, it should reload CR3 with the
register’s current value to ensure that the modified PDPTE is loaded into the
corresponding PDPTE register (see Section 4.4.1).

• If the nature of the paging structures is such that a single entry may be used for
multiple purposes (see Section 4.10.3.3), software should perform invalidations
for all of these purposes. For example, if a single entry might serve as both a PDE
and PTE, it may be necessary to execute INVLPG with two (or more) linear
addresses, one that uses the entry as a PDE and one that uses it as a PTE. (Alter-
natively, software could use MOV to CR3 or MOV to CR4.)

• As noted in Section 4.10.2, the TLBs may subsequently contain multiple transla-
tions for the address range if software modifies the paging structures so that the
page size used for a 4-KByte range of linear addresses changes. A reference to a
linear address in the address range may use any of these translations.
Software wishing to prevent this uncertainty should not write to a paging-
structure entry in a way that would change, for any linear address, both the page
size and either the page frame, access rights, or other attributes. It can instead
use the following algorithm: first clear the P flag in the relevant paging-structure
Vol. 3A 4-57

PAGING
entry (e.g., PDE); then invalidate any translations for the affected linear
addresses (see above); and then modify the relevant paging-structure entry to
set the P flag and establish modified translation(s) for the new page size.

• Software should clear bit 63 of the source operand to a MOV to CR3 instruction
that establishes a PCID that had been used earlier for a different linear-address
space (e.g., with a different value in bits 51:12 of CR3). This ensures invalidation
of any information that may have been cached for the previous linear-address
space.
This assumes that both linear-address spaces use the same global pages and
that it is thus not necessary to invalidate any global TLB entries. If that is not the
case, software should invalidate those entries by executing MOV to CR4 to modify
CR4.PGE.

4.10.4.3 Optional Invalidation
The following items describe cases in which software may choose not to invalidate
and the potential consequences of that choice:
• If a paging-structure entry is modified to change the P flag from 0 to 1, no inval-

idation is necessary. This is because no TLB entry or paging-structure cache
entry is created with information from a paging-structure entry in which the P
flag is 0.1

• If a paging-structure entry is modified to change the accessed flag from 0 to 1,
no invalidation is necessary (assuming that an invalidation was performed the
last time the accessed flag was changed from 1 to 0). This is because no TLB
entry or paging-structure cache entry is created with information from a paging-
structure entry in which the accessed flag is 0.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted write access) but no other adverse behavior. Such
an exception will occur at most once for each affected linear address (see Section
4.10.4.1).

• If CR4.SMEP = 0 and a paging-structure entry is modified to change the U/S flag
from 0 to 1, failure to perform an invalidation may result in a “spurious” page-
fault exception (e.g., in response to an attempted user-mode access) but no
other adverse behavior. Such an exception will occur at most once for each
affected linear address (see Section 4.10.4.1).

• If a paging-structure entry is modified to change the XD flag from 1 to 0, failure
to perform an invalidation may result in a “spurious” page-fault exception (e.g.,
in response to an attempted instruction fetch) but no other adverse behavior.

1. If it is also the case that no invalidation was performed the last time the P flag was changed
from 1 to 0, the processor may use a TLB entry or paging-structure cache entry that was cre-
ated when the P flag had earlier been 1.
4-58 Vol. 3A

PAGING
Such an exception will occur at most once for each affected linear address (see
Section 4.10.4.1).

• If a paging-structure entry is modified to change the accessed flag from 1 to 0,
failure to perform an invalidation may result in the processor not setting that bit
in response to a subsequent access to a linear address whose translation uses the
entry. Software cannot interpret the bit being clear as an indication that such an
access has not occurred.

• If software modifies a paging-structure entry that identifies the final physical
address for a linear address (either a PTE or a paging-structure entry in which the
PS flag is 1) to change the dirty flag from 1 to 0, failure to perform an invalidation
may result in the processor not setting that bit in response to a subsequent write
to a linear address whose translation uses the entry. Software cannot interpret
the bit being clear as an indication that such a write has not occurred.

• The read of a paging-structure entry in translating an address being used to fetch
an instruction may appear to execute before an earlier write to that paging-
structure entry if there is no serializing instruction between the write and the
instruction fetch. Note that the invalidating instructions identified in Section
4.10.4.1 are all serializing instructions.

• Section 4.10.3.3 describes situations in which a single paging-structure entry
may contain information cached in multiple entries in the paging-structure
caches. Because all entries in these caches are invalidated by any execution of
INVLPG, it is not necessary to follow the modification of such a paging-structure
entry by executing INVLPG multiple times solely for the purpose of invalidating
these multiple cached entries. (It may be necessary to do so to invalidate
multiple TLB entries.)

4.10.4.4 Delayed Invalidation
Required invalidations may be delayed under some circumstances. Software devel-
opers should understand that, between the modification of a paging-structure entry
and execution of the invalidation instruction recommended in Section 4.10.4.2, the
processor may use translations based on either the old value or the new value of the
paging-structure entry. The following items describe some of the potential conse-
quences of delayed invalidation:
• If a paging-structure entry is modified to change from 1 to 0 the P flag from 1 to

0, an access to a linear address whose translation is controlled by this entry may
or may not cause a page-fault exception.

• If a paging-structure entry is modified to change the R/W flag from 0 to 1, write
accesses to linear addresses whose translation is controlled by this entry may or
may not cause a page-fault exception.

• If a paging-structure entry is modified to change the U/S flag from 0 to 1, user-
mode accesses to linear addresses whose translation is controlled by this entry
may or may not cause a page-fault exception.
Vol. 3A 4-59

PAGING
• If a paging-structure entry is modified to change the XD flag from 1 to 0,
instruction fetches from linear addresses whose translation is controlled by this
entry may or may not cause a page-fault exception.

As noted in Section 8.1.1, an x87 instruction or an SSE instruction that accesses data
larger than a quadword may be implemented using multiple memory accesses. If
such an instruction stores to memory and invalidation has been delayed, some of the
accesses may complete (writing to memory) while another causes a page-fault
exception.1 In this case, the effects of the completed accesses may be visible to soft-
ware even though the overall instruction caused a fault.

In some cases, the consequences of delayed invalidation may not affect software
adversely. For example, when freeing a portion of the linear-address space (by
marking paging-structure entries “not present”), invalidation using INVLPG may be
delayed if software does not re-allocate that portion of the linear-address space or
the memory that had been associated with it. However, because of speculative
execution (or errant software), there may be accesses to the freed portion of the
linear-address space before the invalidations occur. In this case, the following can
happen:
• Reads can occur to the freed portion of the linear-address space. Therefore,

invalidation should not be delayed for an address range that has read side
effects.

• The processor may retain entries in the TLBs and paging-structure caches for an
extended period of time. Software should not assume that the processor will not
use entries associated with a linear address simply because time has passed.

• As noted in Section 4.10.3.1, the processor may create an entry in a paging-
structure cache even if there are no translations for any linear address that might
use that entry. Thus, if software has marked “not present” all entries in page
table, the processor may subsequently create a PDE-cache entry for the PDE that
references that page table (assuming that the PDE itself is marked “present”).

• If software attempts to write to the freed portion of the linear-address space, the
processor might not generate a page fault. (Such an attempt would likely be the
result of a software error.) For that reason, the page frames previously
associated with the freed portion of the linear-address space should not be
reallocated for another purpose until the appropriate invalidations have been
performed.

4.10.5 Propagation of Paging-Structure Changes to Multiple
Processors

As noted in Section 4.10.4, software that modifies a paging-structure entry may
need to invalidate entries in the TLBs and paging-structure caches that were derived
from the modified entry before it was modified. In a system containing more than

1. If the accesses are to different pages, this may occur even if invalidation has not been delayed.
4-60 Vol. 3A

PAGING
one logical processor, software must account for the fact that there may be entries in
the TLBs and paging-structure caches of logical processors other than the one used
to modify the paging-structure entry. The process of propagating the changes to a
paging-structure entry is commonly referred to as “TLB shootdown.”

TLB shootdown can be done using memory-based semaphores and/or interprocessor
interrupts (IPI). The following items describe a simple but inefficient example of a
TLB shootdown algorithm for processors supporting the Intel-64 and IA-32 architec-
tures:

1. Begin barrier: Stop all but one logical processor; that is, cause all but one to
execute the HLT instruction or to enter a spin loop.

2. Allow the active logical processor to change the necessary paging-structure
entries.

3. Allow all logical processors to perform invalidations appropriate to the modifica-
tions to the paging-structure entries.

4. Allow all logical processors to resume normal operation.

Alternative, performance-optimized, TLB shootdown algorithms may be developed;
however, software developers must take care to ensure that the following conditions
are met:
• All logical processors that are using the paging structures that are being modified

must participate and perform appropriate invalidations after the modifications
are made.

• If the modifications to the paging-structure entries are made before the barrier
or if there is no barrier, the operating system must ensure one of the following:
(1) that the affected linear-address range is not used between the time of modifi-
cation and the time of invalidation; or (2) that it is prepared to deal with the
consequences of the affected linear-address range being used during that period.
For example, if the operating system does not allow pages being freed to be
reallocated for another purpose until after the required invalidations, writes to
those pages by errant software will not unexpectedly modify memory that is in
use.

• Software must be prepared to deal with reads, instruction fetches, and prefetch
requests to the affected linear-address range that are a result of speculative
execution that would never actually occur in the executed code path.

When multiple logical processors are using the same linear-address space at the
same time, they must coordinate before any request to modify the paging-structure
entries that control that linear-address space. In these cases, the barrier in the TLB
shootdown routine may not be required. For example, when freeing a range of linear
addresses, some other mechanism can assure no logical processor is using that
range before the request to free it is made. In this case, a logical processor freeing
the range can clear the P flags in the PTEs associated with the range, free the phys-
ical page frames associated with the range, and then signal the other logical proces-
sors using that linear-address space to perform the necessary invalidations. All the
affected logical processors must complete their invalidations before the linear-
Vol. 3A 4-61

PAGING
address range and the physical page frames previously associated with that range
can be reallocated.

4.11 INTERACTIONS WITH VIRTUAL-MACHINE
EXTENSIONS (VMX)

The architecture for virtual-machine extensions (VMX) includes features that interact
with paging. Section 4.11.1 discusses ways in which VMX-specific control transfers,
called VMX transitions specially affect paging. Section 4.11.2 gives an overview of
VMX features specifically designed to support address translation.

4.11.1 VMX Transitions
The VMX architecture defines two control transfers called VM entries and VM exits;
collectively, these are called VMX transitions. VM entries and VM exits are
described in detail in Chapter 23 and Chapter 24, respectively, in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B. The following items
identify paging-related details:
• VMX transitions modify the CR0 and CR4 registers and the IA32_EFER MSR

concurrently. For this reason, they allow transitions between paging modes that
would not otherwise be possible:

— VM entries allow transitions from IA-32e paging directly to either 32-bit
paging or PAE paging.

— VM exits allow transitions from either 32-bit paging or PAE paging directly to
IA-32e paging.

• VMX transitions that result in PAE paging load the PDPTE registers (see Section
4.4.1) as follows:

— VM entries load the PDPTE registers either from the physical address being
loaded into CR3 or from the virtual-machine control structure (VMCS); see
Section 23.3.2.4.

— VM exits load the PDPTE registers from the physical address being loaded into
CR3; see Section 24.5.4.

• VMX transitions invalidate the TLBs and paging-structure caches based on certain
control settings. See Section 23.3.2.5 and Section 24.5.5 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

4.11.2 VMX Support for Address Translation
Chapter 25, “Support for Address Translation,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B describe two features of the virtual-
4-62 Vol. 3A

PAGING
machine extensions (VMX) that interact directly with paging. These are virtual-
processor identifiers (VPIDs) and the extended page table mechanism (EPT).

VPIDs provide a way for software to identify to the processor the address spaces for
different “virtual processors.” The processor may use this identification to maintain
concurrently information for multiple address spaces in its TLBs and paging-structure
caches, even when non-zero PCIDs are not being used. See Section 25.1 for details.

When EPT is in use, the addresses in the paging-structures are not used as physical
addresses to access memory and memory-mapped I/O. Instead, they are treated as
guest-physical addresses and are translated through a set of EPT paging structures
to produce physical addresses. EPT can also specify its own access rights and
memory typing; these are used on conjunction with those specified in this chapter.
See Section 25.2 for more information.

Both VPIDs and EPT may change the way that a processor maintains information in
TLBs and paging structure caches and the ways in which software can manage that
information. Some of the behaviors documented in Section 4.10 may change. See
Section 25.3 for details.

4.12 USING PAGING FOR VIRTUAL MEMORY
With paging, portions of the linear-address space need not be mapped to the phys-
ical-address space; data for the unmapped addresses can be stored externally (e.g.,
on disk). This method of mapping the linear-address space is referred to as virtual
memory or demand-paged virtual memory.

Paging divides the linear address space into fixed-size pages that can be mapped into
the physical-address space and/or external storage. When a program (or task) refer-
ences a linear address, the processor uses paging to translate the linear address into
a corresponding physical address if such an address is defined.

If the page containing the linear address is not currently mapped into the physical-
address space, the processor generates a page-fault exception as described in
Section 4.7. The handler for page-fault exceptions typically directs the operating
system or executive to load data for the unmapped page from external storage into
physical memory (perhaps writing a different page from physical memory out to
external storage in the process) and to map it using paging (by updating the paging
structures). When the page has been loaded into physical memory, a return from the
exception handler causes the instruction that generated the exception to be
restarted.

Paging differs from segmentation through its use of fixed-size pages. Unlike
segments, which usually are the same size as the code or data structures they hold,
pages have a fixed size. If segmentation is the only form of address translation used,
a data structure present in physical memory will have all of its parts in memory. If
paging is used, a data structure can be partly in memory and partly in disk storage.
Vol. 3A 4-63

PAGING
4.13 MAPPING SEGMENTS TO PAGES
The segmentation and paging mechanisms provide in the support a wide variety of
approaches to memory management. When segmentation and paging are combined,
segments can be mapped to pages in several ways. To implement a flat (unseg-
mented) addressing environment, for example, all the code, data, and stack modules
can be mapped to one or more large segments (up to 4-GBytes) that share same
range of linear addresses (see Figure 3-2 in Section 3.2.2). Here, segments are
essentially invisible to applications and the operating-system or executive. If paging
is used, the paging mechanism can map a single linear-address space (contained in
a single segment) into virtual memory. Alternatively, each program (or task) can
have its own large linear-address space (contained in its own segment), which is
mapped into virtual memory through its own paging structures.

Segments can be smaller than the size of a page. If one of these segments is placed
in a page which is not shared with another segment, the extra memory is wasted. For
example, a small data structure, such as a 1-Byte semaphore, occupies 4 KBytes if it
is placed in a page by itself. If many semaphores are used, it is more efficient to pack
them into a single page.

The Intel-64 and IA-32 architectures do not enforce correspondence between the
boundaries of pages and segments. A page can contain the end of one segment and
the beginning of another. Similarly, a segment can contain the end of one page and
the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which
can fit in one page is placed in two pages, there may be twice as much paging over-
head to support access to that segment.

One approach to combining paging and segmentation that simplifies memory-
management software is to give each segment its own page table, as shown in
Figure 4-13. This convention gives the segment a single entry in the page directory,
and this entry provides the access control information for paging the entire segment.
4-64 Vol. 3A

PAGING
Figure 4-13. Memory Management Convention That Assigns a Page Table
to Each Segment

Seg. Descript.

LDT

Seg. Descript.
PDE

Page Directory

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables

Page Frames
Vol. 3A 4-65

PAGING
4-66 Vol. 3A

CHAPTER 5
PROTECTION

In protected mode, the Intel 64 and IA-32 architectures provide a protection mecha-
nism that operates at both the segment level and the page level. This protection
mechanism provides the ability to limit access to certain segments or pages based on
privilege levels (four privilege levels for segments and two privilege levels for pages).
For example, critical operating-system code and data can be protected by placing
them in more privileged segments than those that contain applications code. The
processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to
assist in localizing and detecting design problems and bugs. It can also be incorpo-
rated into end-products to offer added robustness to operating systems, utilities soft-
ware, and applications software.

When the protection mechanism is used, each memory reference is checked to verify
that it satisfies various protection checks. All checks are made before the memory
cycle is started; any violation results in an exception. Because checks are performed
in parallel with address translation, there is no performance penalty. The protection
checks that are performed fall into the following categories:
• Limit checks.
• Type checks.
• Privilege level checks.
• Restriction of addressable domain.
• Restriction of procedure entry-points.
• Restriction of instruction set.

All protection violation results in an exception being generated. See Chapter 6,
“Interrupt and Exception Handling,” for an explanation of the exception mechanism.
This chapter describes the protection mechanism and the violations which lead to
exceptions.

The following sections describe the protection mechanism available in protected
mode. See Chapter 17, “8086 Emulation,” for information on protection in real-
address and virtual-8086 mode.

5.1 ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CR0 causes the processor to switch to protected mode,
which in turn enables the segment-protection mechanism. Once in protected mode,
Vol. 3A 5-1

PROTECTION
there is no control bit for turning the protection mechanism on or off. The part of the
segment-protection mechanism that is based on privilege levels can essentially be
disabled while still in protected mode by assigning a privilege level of 0 (most privi-
leged) to all segment selectors and segment descriptors. This action disables the
privilege level protection barriers between segments, but other protection checks
such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the
PG flag in register CR0). Here again there is no mode bit for turning off page-level
protection once paging is enabled. However, page-level protection can be disabled by
performing the following operations:
• Clear the WP flag in control register CR0.
• Set the read/write (R/W) and user/supervisor (U/S) flags for each page-directory

and page-table entry.

This action makes each page a writable, user page, which in effect disables page-
level protection.

5.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the
system data structures to control access to segments and pages:
• Descriptor type (S) flag — (Bit 12 in the second doubleword of a segment

descriptor.) Determines if the segment descriptor is for a system segment or a
code or data segment.

• Type field — (Bits 8 through 11 in the second doubleword of a segment
descriptor.) Determines the type of code, data, or system segment.

• Limit field — (Bits 0 through 15 of the first doubleword and bits 16 through 19
of the second doubleword of a segment descriptor.) Determines the size of the
segment, along with the G flag and E flag (for data segments).

• G flag — (Bit 23 in the second doubleword of a segment descriptor.) Determines
the size of the segment, along with the limit field and E flag (for data segments).

• E flag — (Bit 10 in the second doubleword of a data-segment descriptor.)
Determines the size of the segment, along with the limit field and G flag.

• Descriptor privilege level (DPL) field — (Bits 13 and 14 in the second
doubleword of a segment descriptor.) Determines the privilege level of the
segment.

• Requested privilege level (RPL) field — (Bits 0 and 1 of any segment
selector.) Specifies the requested privilege level of a segment selector.

• Current privilege level (CPL) field — (Bits 0 and 1 of the CS segment
register.) Indicates the privilege level of the currently executing program or
5-2 Vol. 3A

PROTECTION
procedure. The term current privilege level (CPL) refers to the setting of this
field.

• User/supervisor (U/S) flag — (Bit 2 of paging-structure entries.) Determines
the type of page: user or supervisor.

• Read/write (R/W) flag — (Bit 1 of paging-structure entries.) Determines the
type of access allowed to a page: read-only or read/write.

• Execute-disable (XD) flag — (Bit 63 of certain paging-structure entries.)
Determines the type of access allowed to a page: executable or not-executable.

Figure 5-1 shows the location of the various fields and flags in the data, code, and
system- segment descriptors; Figure 3-6 shows the location of the RPL (or CPL) field
in a segment selector (or the CS register); and Chapter 4 identifies the locations of
the U/S, R/W, and XD flags in the paging-structure entries.
Vol. 3A 5-3

PROTECTION
Many different styles of protection schemes can be implemented with these fields
and flags. When the operating system creates a descriptor, it places values in these
fields and flags in keeping with the particular protection style chosen for an operating
system or executive. Application program do not generally access or modify these
fields and flags.

Figure 5-1. Descriptor Fields Used for Protection

Base 23:16

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

B
AWE0

Data-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

1
0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Base 23:16
A
V
L

Limit
19:16

D
ARC1

Code-Segment Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type0 4

31 16 15 0

Base Address 15:00 Segment Limit 15:00 0

Limit
19:16

System-Segment Descriptor

A

B
C
D
DPL

Accessed

Big
Conforming
Default
Descriptor Privilege Level

Reserved

E
G
R
LIMIT
W
P

Expansion Direction
Granularity
Readable
Segment Limit
Writable
Present

0

AVL Available to Sys. Programmer’s
5-4 Vol. 3A

PROTECTION
The following sections describe how the processor uses these fields and flags to
perform the various categories of checks described in the introduction to this chapter.

5.2.1 Code Segment Descriptor in 64-bit Mode
Code segments continue to exist in 64-bit mode even though, for address calcula-
tions, the segment base is treated as zero. Some code-segment (CS) descriptor
content (the base address and limit fields) is ignored; the remaining fields function
normally (except for the readable bit in the type field).

Code segment descriptors and selectors are needed in IA-32e mode to establish the
processor’s operating mode and execution privilege-level. The usage is as follows:
• IA-32e mode uses a previously unused bit in the CS descriptor. Bit 53 is defined

as the 64-bit (L) flag and is used to select between 64-bit mode and compatibility
mode when IA-32e mode is active (IA32_EFER.LMA = 1). See Figure 5-2.

— If CS.L = 0 and IA-32e mode is active, the processor is running in compati-
bility mode. In this case, CS.D selects the default size for data and addresses.
If CS.D = 0, the default data and address size is 16 bits. If CS.D = 1, the
default data and address size is 32 bits.

— If CS.L = 1 and IA-32e mode is active, the only valid setting is CS.D = 0. This
setting indicates a default operand size of 32 bits and a default address size
of 64 bits. The CS.L = 1 and CS.D = 1 bit combination is reserved for future
use and a #GP fault will be generated on an attempt to use a code segment
with these bits set in IA-32e mode.

• In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks
(as in legacy 32-bit mode).
Vol. 3A 5-5

PROTECTION
5.3 LIMIT CHECKING
The limit field of a segment descriptor prevents programs or procedures from
addressing memory locations outside the segment. The effective value of the limit
depends on the setting of the G (granularity) flag (see Figure 5-1). For data
segments, the limit also depends on the E (expansion direction) flag and the B
(default stack pointer size and/or upper bound) flag. The E flag is one of the bits in
the type field when the segment descriptor is for a data-segment type.

When the G flag is clear (byte granularity), the effective limit is the value of the
20-bit limit field in the segment descriptor. Here, the limit ranges from 0 to FFFFFH
(1 MByte). When the G flag is set (4-KByte page granularity), the processor scales
the value in the limit field by a factor of 212 (4 KBytes). In this case, the effective
limit ranges from FFFH (4 KBytes) to FFFFFFFFH (4 GBytes). Note that when scaling
is used (G flag is set), the lower 12 bits of a segment offset (address) are not checked
against the limit; for example, note that if the segment limit is 0, offsets 0 through
FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is
the last address that is allowed to be accessed in the segment, which is one less than
the size, in bytes, of the segment. The processor causes a general-protection excep-
tion (or, if the segment is SS, a stack-fault exception) any time an attempt is made to
access the following addresses in a segment:
• A byte at an offset greater than the effective limit
• A word at an offset greater than the (effective-limit – 1)

Figure 5-2. Descriptor Fields with Flags used in IA-32e Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PG
D
P
L

Type

1
L 4

0

0

A
V
L

D
ARC1

Code-Segment Descriptor

31

A

C
D
DPL

Accessed

Conforming
Default
Descriptor Privilege Level

G
R

Granularity
Readable

AVL Available to Sys. Programmer’s

L 64-Bit Flag

P Present
5-6 Vol. 3A

PROTECTION
• A doubleword at an offset greater than the (effective-limit – 3)
• A quadword at an offset greater than the (effective-limit – 7)
• A double quadword at an offset greater than the (effective limit – 15)

When the effective limit is FFFFFFFFH (4 GBytes), these accesses may or may not
cause the indicated exceptions. Behavior is implementation-specific and may vary
from one execution to another.

For expand-down data segments, the segment limit has the same function but is
interpreted differently. Here, the effective limit specifies the last address that is not
allowed to be accessed within the segment; the range of valid offsets is from (effec-
tive-limit + 1) to FFFFFFFFH if the B flag is set and from (effective-limit + 1) to FFFFH
if the B flag is clear. An expand-down segment has maximum size when the segment
limit is 0.

Limit checking catches programming errors such as runaway code, runaway
subscripts, and invalid pointer calculations. These errors are detected when they
occur, so identification of the cause is easier. Without limit checking, these errors
could overwrite code or data in another segment.

In addition to checking segment limits, the processor also checks descriptor table
limits. The GDTR and IDTR registers contain 16-bit limit values that the processor
uses to prevent programs from selecting a segment descriptors outside the respec-
tive descriptor tables. The LDTR and task registers contain 32-bit segment limit value
(read from the segment descriptors for the current LDT and TSS, respectively). The
processor uses these segment limits to prevent accesses beyond the bounds of the
current LDT and TSS. See Section 3.5.1, “Segment Descriptor Tables,” for more infor-
mation on the GDT and LDT limit fields; see Section 6.10, “Interrupt Descriptor Table
(IDT),” for more information on the IDT limit field; and see Section 7.2.4, “Task
Register,” for more information on the TSS segment limit field.

5.3.1 Limit Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime limit checking on code or
data segments. However, the processor does check descriptor-table limits.

5.4 TYPE CHECKING
Segment descriptors contain type information in two places:
• The S (descriptor type) flag.
• The type field.

The processor uses this information to detect programming errors that result in an
attempt to use a segment or gate in an incorrect or unintended manner.

The S flag indicates whether a descriptor is a system type or a code or data type. The
type field provides 4 additional bits for use in defining various types of code, data,
Vol. 3A 5-7

PROTECTION
and system descriptors. Table 3-1 shows the encoding of the type field for code and
data descriptors; Table 3-2 shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on
segment selectors and segment descriptors. The following list gives examples of
typical operations where type checking is performed (this list is not exhaustive):
• When a segment selector is loaded into a segment register — Certain

segment registers can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system
segments cannot be loaded into data-segment registers (DS, ES, FS, and
GS).

— Only segment selectors of writable data segments can be loaded into the SS
register.

• When a segment selector is loaded into the LDTR or task register — For example:

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.
• When instructions access segments whose descriptors are already

loaded into segment registers — Certain segments can be used by instruc-
tions only in certain predefined ways, for example:

— No instruction may write into an executable segment.

— No instruction may write into a data segment if it is not writable.

— No instruction may read an executable segment unless the readable flag is
set.

• When an instruction operand contains a segment selector — Certain
instructions can access segments or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task
gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.

— The LTR instruction must reference a segment descriptor for a TSS.

— The LAR instruction must reference a segment or gate descriptor for an LDT,
TSS, call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
• During certain internal operations — For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or
5-8 Vol. 3A

PROTECTION
jump to another code segment, a call or jump through a gate, or a task
switch) by checking the type field in the segment (or gate) descriptor pointed
to by the segment (or gate) selector given as an operand in the CALL or JMP
instruction. If the descriptor type is for a code segment or call gate, a call or
jump to another code segment is indicated; if the descriptor type is for a TSS
or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler
call through a trap or interrupt gate), the processor automatically checks that
the segment descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or
exception-handler call to a new task through a task gate), the processor
automatically checks that the segment descriptor being pointed to by the
task gate is for a TSS.

— On a call or jump to a new task by a direct reference to a TSS, the processor
automatically checks that the segment descriptor being pointed to by the
CALL or JMP instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor
checks that the previous task link field in the current TSS points to a TSS.

5.4.1 Null Segment Selector Checking
Attempting to load a null segment selector (see Section 3.4.2, “Segment Selectors”)
into the CS or SS segment register generates a general-protection exception (#GP).
A null segment selector can be loaded into the DS, ES, FS, or GS register, but any
attempt to access a segment through one of these registers when it is loaded with a
null segment selector results in a #GP exception being generated. Loading unused
data-segment registers with a null segment selector is a useful method of detecting
accesses to unused segment registers and/or preventing unwanted accesses to data
segments.

5.4.1.1 NULL Segment Checking in 64-bit Mode
In 64-bit mode, the processor does not perform runtime checking on NULL segment
selectors. The processor does not cause a #GP fault when an attempt is made to
access memory where the referenced segment register has a NULL segment selector.

5.5 PRIVILEGE LEVELS
The processor’s segment-protection mechanism recognizes 4 privilege levels,
numbered from 0 to 3. The greater numbers mean lesser privileges. Figure 5-3
shows how these levels of privilege can be interpreted as rings of protection.
Vol. 3A 5-9

PROTECTION
The center (reserved for the most privileged code, data, and stacks) is used for the
segments containing the critical software, usually the kernel of an operating system.
Outer rings are used for less critical software. (Systems that use only 2 of the 4
possible privilege levels should use levels 0 and 3.)

The processor uses privilege levels to prevent a program or task operating at a lesser
privilege level from accessing a segment with a greater privilege, except under
controlled situations. When the processor detects a privilege level violation, it gener-
ates a general-protection exception (#GP).

To carry out privilege-level checks between code segments and data segments, the
processor recognizes the following three types of privilege levels:
• Current privilege level (CPL) — The CPL is the privilege level of the currently

executing program or task. It is stored in bits 0 and 1 of the CS and SS segment
registers. Normally, the CPL is equal to the privilege level of the code segment
from which instructions are being fetched. The processor changes the CPL when
program control is transferred to a code segment with a different privilege level.
The CPL is treated slightly differently when accessing conforming code segments.
Conforming code segments can be accessed from any privilege level that is equal
to or numerically greater (less privileged) than the DPL of the conforming code
segment. Also, the CPL is not changed when the processor accesses a conforming
code segment that has a different privilege level than the CPL.

• Descriptor privilege level (DPL) — The DPL is the privilege level of a segment
or gate. It is stored in the DPL field of the segment or gate descriptor for the
segment or gate. When the currently executing code segment attempts to access
a segment or gate, the DPL of the segment or gate is compared to the CPL and
RPL of the segment or gate selector (as described later in this section). The DPL

Figure 5-3. Protection Rings

Level 0

Level 1

Level 2

Level 3

Protection Rings

Operating

Operating System
Services

System
Kernel

Applications
5-10 Vol. 3A

PROTECTION
is interpreted differently, depending on the type of segment or gate being
accessed:

— Data segment — The DPL indicates the numerically highest privilege level
that a program or task can have to be allowed to access the segment. For
example, if the DPL of a data segment is 1, only programs running at a CPL of
0 or 1 can access the segment.

— Nonconforming code segment (without using a call gate) — The DPL
indicates the privilege level that a program or task must be at to access the
segment. For example, if the DPL of a nonconforming code segment is 0, only
programs running at a CPL of 0 can access the segment.

— Call gate — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
call gate. (This is the same access rule as for a data segment.)

— Conforming code segment and nonconforming code segment
accessed through a call gate — The DPL indicates the numerically lowest
privilege level that a program or task can have to be allowed to access the
segment. For example, if the DPL of a conforming code segment is 2,
programs running at a CPL of 0 or 1 cannot access the segment.

— TSS — The DPL indicates the numerically highest privilege level that the
currently executing program or task can be at and still be able to access the
TSS. (This is the same access rule as for a data segment.)

• Requested privilege level (RPL) — The RPL is an override privilege level that
is assigned to segment selectors. It is stored in bits 0 and 1 of the segment
selector. The processor checks the RPL along with the CPL to determine if access
to a segment is allowed. Even if the program or task requesting access to a
segment has sufficient privilege to access the segment, access is denied if the
RPL is not of sufficient privilege level. That is, if the RPL of a segment selector is
numerically greater than the CPL, the RPL overrides the CPL, and vice versa. The
RPL can be used to insure that privileged code does not access a segment on
behalf of an application program unless the program itself has access privileges
for that segment. See Section 5.10.4, “Checking Caller Access Privileges (ARPL
Instruction),” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is
loaded into a segment register. The checks used for data access differ from those
used for transfers of program control among code segments; therefore, the two
kinds of accesses are considered separately in the following sections.

5.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATA
SEGMENTS

To access operands in a data segment, the segment selector for the data segment
must be loaded into the data-segment registers (DS, ES, FS, or GS) or into the stack-
Vol. 3A 5-11

PROTECTION
segment register (SS). (Segment registers can be loaded with the MOV, POP, LDS,
LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment selector
into a segment register, it performs a privilege check (see Figure 5-4) by comparing
the privilege levels of the currently running program or task (the CPL), the RPL of the
segment selector, and the DPL of the segment’s segment descriptor. The processor
loads the segment selector into the segment register if the DPL is numerically greater
than or equal to both the CPL and the RPL. Otherwise, a general-protection fault is
generated and the segment register is not loaded.

Figure 5-5 shows four procedures (located in codes segments A, B, C, and D), each
running at different privilege levels and each attempting to access the same data
segment.

1. The procedure in code segment A is able to access data segment E using segment
selector E1, because the CPL of code segment A and the RPL of segment selector
E1 are equal to the DPL of data segment E.

2. The procedure in code segment B is able to access data segment E using segment
selector E2, because the CPL of code segment B and the RPL of segment selector
E2 are both numerically lower than (more privileged) than the DPL of data
segment E. A code segment B procedure can also access data segment E using
segment selector E1.

3. The procedure in code segment C is not able to access data segment E using
segment selector E3 (dotted line), because the CPL of code segment C and the
RPL of segment selector E3 are both numerically greater than (less privileged)
than the DPL of data segment E. Even if a code segment C procedure were to use
segment selector E1 or E2, such that the RPL would be acceptable, it still could
not access data segment E because its CPL is not privileged enough.

4. The procedure in code segment D should be able to access data segment E
because code segment D’s CPL is numerically less than the DPL of data segment

Figure 5-4. Privilege Check for Data Access

CPL

RPL

DPL

Privilege
Check

Data-Segment Descriptor

CS Register

Segment Selector
For Data Segment
5-12 Vol. 3A

PROTECTION
E. However, the RPL of segment selector E3 (which the code segment D
procedure is using to access data segment E) is numerically greater than the DPL
of data segment E, so access is not allowed. If the code segment D procedure
were to use segment selector E1 or E2 to access the data segment, access would
be allowed.

As demonstrated in the previous examples, the addressable domain of a program or
task varies as its CPL changes. When the CPL is 0, data segments at all privilege
levels are accessible; when the CPL is 1, only data segments at privilege levels 1
through 3 are accessible; when the CPL is 3, only data segments at privilege level 3
are accessible.

The RPL of a segment selector can always override the addressable domain of a
program or task. When properly used, RPLs can prevent problems caused by acci-
dental (or intensional) use of segment selectors for privileged data segments by less
privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under
software control. For example, an application program running at a CPL of 3 can set
the RPL for a data- segment selector to 0. With the RPL set to 0, only the CPL checks,
not the RPL checks, will provide protection against deliberate, direct attempts to
violate privilege-level security for the data segment. To prevent these types of privi-
lege-level-check violations, a program or procedure can check access privileges
whenever it receives a data-segment selector from another procedure (see Section
5.10.4, “Checking Caller Access Privileges (ARPL Instruction)”).

Figure 5-5. Examples of Accessing Data Segments From Various Privilege Levels

Data

Lowest Privilege

Highest Privilege

Segment E

3

2

1

0

CPL=1

CPL=3

CPL=0

DPL=2
CPL=2

Segment Sel. E3
RPL=3

Segment Sel. E1
RPL=2

Segment Sel. E2
RPL=1

Code
Segment C

Code
Segment A

Code
Segment B

Code
Segment D
Vol. 3A 5-13

PROTECTION
5.6.1 Accessing Data in Code Segments
In some instances it may be desirable to access data structures that are contained in
a code segment. The following methods of accessing data in code segments are
possible:
• Load a data-segment register with a segment selector for a nonconforming,

readable, code segment.
• Load a data-segment register with a segment selector for a conforming,

readable, code segment.
• Use a code-segment override prefix (CS) to read a readable, code segment

whose selector is already loaded in the CS register.

The same rules for accessing data segments apply to method 1. Method 2 is always
valid because the privilege level of a conforming code segment is effectively the
same as the CPL, regardless of its DPL. Method 3 is always valid because the DPL of
the code segment selected by the CS register is the same as the CPL.

5.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilege level checking also occurs when the SS register is loaded with the segment
selector for a stack segment. Here all privilege levels related to the stack segment
must match the CPL; that is, the CPL, the RPL of the stack-segment selector, and the
DPL of the stack-segment descriptor must be the same. If the RPL and DPL are not
equal to the CPL, a general-protection exception (#GP) is generated.

5.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to another, the segment selector
for the destination code segment must be loaded into the code-segment register
(CS). As part of this loading process, the processor examines the segment descriptor
for the destination code segment and performs various limit, type, and privilege
checks. If these checks are successful, the CS register is loaded, program control is
transferred to the new code segment, and program execution begins at the instruc-
tion pointed to by the EIP register.

Program control transfers are carried out with the JMP, CALL, RET, SYSENTER,
SYSEXIT, INT n, and IRET instructions, as well as by the exception and interrupt
mechanisms. Exceptions, interrupts, and the IRET instruction are special cases
discussed in Chapter 6, “Interrupt and Exception Handling.” This chapter discusses
only the JMP, CALL, RET, SYSENTER, and SYSEXIT instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
5-14 Vol. 3A

PROTECTION
• The target operand contains the segment selector for the target code segment.
• The target operand points to a call-gate descriptor, which contains the segment

selector for the target code segment.
• The target operand points to a TSS, which contains the segment selector for the

target code segment.
• The target operand points to a task gate, which points to a TSS, which in turn

contains the segment selector for the target code segment.

The following sections describe first two types of references. See Section 7.3, “Task
Switching,” for information on transferring program control through a task gate
and/or TSS.

The SYSENTER and SYSEXIT instructions are special instructions for making fast calls
to and returns from operating system or executive procedures. These instructions
are discussed briefly in Section 5.8.7, “Performing Fast Calls to System Procedures
with the SYSENTER and SYSEXIT Instructions.”

5.8.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions transfer program control
within the current code segment, so privilege-level checks are not performed. The far
forms of the JMP, CALL, and RET instructions transfer control to other code segments,
so the processor does perform privilege-level checks.

When transferring program control to another code segment without going through a
call gate, the processor examines four kinds of privilege level and type information
(see Figure 5-6):
• The CPL. (Here, the CPL is the privilege level of the calling code segment; that is,

the code segment that contains the procedure that is making the call or jump.)

Figure 5-6. Privilege Check for Control Transfer Without Using a Gate

CPL

RPL

DPL

Privilege
Check

CS Register

Segment Selector
For Code Segment

Destination Code
Segment Descriptor

C

Vol. 3A 5-15

PROTECTION
• The DPL of the segment descriptor for the destination code segment that
contains the called procedure.

• The RPL of the segment selector of the destination code segment.
• The conforming (C) flag in the segment descriptor for the destination code

segment, which determines whether the segment is a conforming (C flag is set)
or nonconforming (C flag is clear) code segment. See Section 3.4.5.1, “Code-
and Data-Segment Descriptor Types,” for more information about this flag.

The rules that the processor uses to check the CPL, RPL, and DPL depends on the
setting of the C flag, as described in the following sections.

5.8.1.1 Accessing Nonconforming Code Segments
When accessing nonconforming code segments, the CPL of the calling procedure
must be equal to the DPL of the destination code segment; otherwise, the processor
generates a general-protection exception (#GP). For example in Figure 5-7:
• Code segment C is a nonconforming code segment. A procedure in code segment

A can call a procedure in code segment C (using segment selector C1) because
they are at the same privilege level (CPL of code segment A is equal to the DPL of
code segment C).

• A procedure in code segment B cannot call a procedure in code segment C (using
segment selector C2 or C1) because the two code segments are at different
privilege levels.
5-16 Vol. 3A

PROTECTION
The RPL of the segment selector that points to a nonconforming code segment has a
limited effect on the privilege check. The RPL must be numerically less than or equal
to the CPL of the calling procedure for a successful control transfer to occur. So, in the
example in Figure 5-7, the RPLs of segment selectors C1 and C2 could legally be set
to 0, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment is loaded into the CS
register, the privilege level field is not changed; that is, it remains at the CPL (which
is the privilege level of the calling procedure). This is true, even if the RPL of the
segment selector is different from the CPL.

5.8.1.2 Accessing Conforming Code Segments
When accessing conforming code segments, the CPL of the calling procedure may be
numerically equal to or greater than (less privileged) the DPL of the destination code
segment; the processor generates a general-protection exception (#GP) only if the
CPL is less than the DPL. (The segment selector RPL for the destination code segment
is not checked if the segment is a conforming code segment.)

Figure 5-7. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels

Code
Segment D

Code
Segment CCode

Segment A

Lowest Privilege

Highest Privilege

CPL=3

Code
Segment B

Nonconforming
Code Segment

Conforming
Code Segment

3

2

1

0

CPL=2
DPL=2

DPL=1

Segment Sel. D1
RPL=2

Segment Sel. D2
RPL=3

Segment Sel. C2
RPL=3

Segment Sel. C1
RPL=2
Vol. 3A 5-17

PROTECTION
In the example in Figure 5-7, code segment D is a conforming code segment. There-
fore, calling procedures in both code segment A and B can access code segment D
(using either segment selector D1 or D2, respectively), because they both have CPLs
that are greater than or equal to the DPL of the conforming code segment. For
conforming code segments, the DPL represents the numerically lowest priv-
ilege level that a calling procedure may be at to successfully make a call to
the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective
RPLs. But since RPLs are not checked when accessing conforming code segments,
the two segment selectors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not
change, even if the DPL of the destination code segment is less than the CPL. This
situation is the only one where the CPL may be different from the DPL of the current
code segment. Also, since the CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and excep-
tion handlers, which support applications but do not require access to protected
system facilities. These modules are part of the operating system or executive soft-
ware, but they can be executed at numerically higher privilege levels (less privileged
levels). Keeping the CPL at the level of a calling code segment when switching to a
conforming code segment prevents an application program from accessing noncon-
forming code segments while at the privilege level (DPL) of a conforming code
segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can
be transferred only to code segments at the same level of privilege, unless the
transfer is carried out through a call gate, as described in the following sections.

5.8.2 Gate Descriptors
To provide controlled access to code segments with different privilege levels, the
processor provides special set of descriptors called gate descriptors. There are four
kinds of gate descriptors:
• Call gates
• Trap gates
• Interrupt gates
• Task gates

Task gates are used for task switching and are discussed in Chapter 7, “Task Manage-
ment”. Trap and interrupt gates are special kinds of call gates used for calling excep-
tion and interrupt handlers. The are described in Chapter 6, “Interrupt and Exception
Handling.” This chapter is concerned only with call gates.
5-18 Vol. 3A

PROTECTION
5.8.3 Call Gates
Call gates facilitate controlled transfers of program control between different privi-
lege levels. They are typically used only in operating systems or executives that use
the privilege-level protection mechanism. Call gates are also useful for transferring
program control between 16-bit and 32-bit code segments, as described in Section
18.4, “Transferring Control Among Mixed-Size Code Segments.”

Figure 5-8 shows the format of a call-gate descriptor. A call-gate descriptor may
reside in the GDT or in an LDT, but not in the interrupt descriptor table (IDT). It
performs six functions:
• It specifies the code segment to be accessed.
• It defines an entry point for a procedure in the specified code segment.
• It specifies the privilege level required for a caller trying to access the procedure.

• If a stack switch occurs, it specifies the number of optional parameters to be
copied between stacks.

• It defines the size of values to be pushed onto the target stack: 16-bit gates force
16-bit pushes and 32-bit gates force 32-bit pushes.

• It specifies whether the call-gate descriptor is valid.

The segment selector field in a call gate specifies the code segment to be accessed.
The offset field specifies the entry point in the code segment. This entry point is
generally to the first instruction of a specific procedure. The DPL field indicates the
privilege level of the call gate, which in turn is the privilege level required to access
the selected procedure through the gate. The P flag indicates whether the call-gate
descriptor is valid. (The presence of the code segment to which the gate points is
indicated by the P flag in the code segment’s descriptor.) The parameter count field
indicates the number of parameters to copy from the calling procedures stack to the
new stack if a stack switch occurs (see Section 5.8.5, “Stack Switching”). The param-
eter count specifies the number of words for 16-bit call gates and doublewords for
32-bit call gates.

Figure 5-8. Call-Gate Descriptor

31 16 15 1314 12 11 8 7 0

POffset in Segment 31:16
D
P
L

Type

0
4

31 16 15 0

Segment Selector Offset in Segment 15:00 0

Param.

0011

P
DPL

Gate Valid
Descriptor Privilege Level

Count

456

0 0 0
Vol. 3A 5-19

PROTECTION
Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a
not present (#NP) exception is generated when a program attempts to access the
descriptor. The operating system can use the P flag for special purposes. For
example, it could be used to track the number of times the gate is used. Here, the P
flag is initially set to 0 causing a trap to the not-present exception handler. The
exception handler then increments a counter and sets the P flag to 1, so that on
returning from the handler, the gate descriptor will be valid.

5.8.3.1 IA-32e Mode Call Gates
Call-gate descriptors in 32-bit mode provide a 32-bit offset for the instruction pointer
(EIP); 64-bit extensions double the size of 32-bit mode call gates in order to store
64-bit instruction pointers (RIP). See Figure 5-9:
• The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not

identical to legacy 32-bit mode call gates. The parameter-copy-count field has
been removed.

• Bytes 11:8 hold the upper 32 bits of the target-segment offset in canonical form.
A general-protection exception (#GP) is generated if software attempts to use a
call gate with a target offset that is not in canonical form.

• 16-byte descriptors may reside in the same descriptor table with 16-bit and
32-bit descriptors. A type field, used for consistency checking, is defined in bits
12:8 of the 64-bit descriptor’s highest dword (cleared to zero). A general-
protection exception (#GP) results if an attempt is made to access the upper half
of a 64-bit mode descriptor as a 32-bit mode descriptor.
5-20 Vol. 3A

PROTECTION
• Target code segments referenced by a 64-bit call gate must be 64-bit code
segments (CS.L = 1, CS.D = 0). If not, the reference generates a general-
protection exception, #GP (CS selector).

• Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and
compatibility mode). The legacy 32-bit mode call gate type (0CH) is redefined in
IA-32e mode as a 64-bit call-gate type; no 32-bit call-gate type exists in IA-32e
mode.

• If a far call references a 16-bit call gate type (04H) in IA-32e mode, a general-
protection exception (#GP) is generated.

When a call references a 64-bit mode call gate, actions taken are identical to those
taken in 32-bit mode, with the following exceptions:
• Stack pushes are made in eight-byte increments.
• A 64-bit RIP is pushed onto the stack.
• Parameter copying is not performed.

Use a matching far-return instruction size for correct operation (returns from 64-bit
calls must be performed with a 64-bit operand-size return to process the stack
correctly).

Figure 5-9. Call-Gate Descriptor in IA-32e Mode

31 8 7 0

POffset in Segment 31:16
D
P
L

Type

0
4

31 16 15 0

Segment Selector Offset in Segment 15:00 0

.

0011

P
DPL

Gate Valid
Descriptor Privilege Level

31 0

0
16

31 0

Offset in Segment 63:31 8

0000

0

13 12 11 10 9 8 7

16 15 14 13 12 11

Reserved Reserved
Type
Vol. 3A 5-21

PROTECTION
5.8.4 Accessing a Code Segment Through a Call Gate
To access a call gate, a far pointer to the gate is provided as a target operand in a
CALL or JMP instruction. The segment selector from this pointer identifies the call
gate (see Figure 5-10); the offset from the pointer is required, but not used or
checked by the processor. (The offset can be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the
call gate to locate the segment descriptor for the destination code segment. (This
segment descriptor can be in the GDT or the LDT.) It then combines the base address
from the code-segment descriptor with the offset from the call gate to form the linear
address of the procedure entry point in the code segment.

As shown in Figure 5-11, four different privilege levels are used to check the validity
of a program control transfer through a call gate:
• The CPL (current privilege level).
• The RPL (requestor's privilege level) of the call gate’s selector.
• The DPL (descriptor privilege level) of the call gate descriptor.
• The DPL of the segment descriptor of the destination code segment.

The C flag (conforming) in the segment descriptor for the destination code segment
is also checked.

Figure 5-10. Call-Gate Mechanism

OffsetSegment Selector

Far Pointer to Call Gate

Required but not used by processor

Call-Gate
Descriptor

Code-Segment
Descriptor

Descriptor Table

Offset

Base

Base

Offset

Base

Segment Selector

+

Procedure
Entry Point
5-22 Vol. 3A

PROTECTION
The privilege checking rules are different depending on whether the control transfer
was initiated with a CALL or a JMP instruction, as shown in Table 5-1.

The DPL field of the call-gate descriptor specifies the numerically highest privilege
level from which a calling procedure can access the call gate; that is, to access a call
gate, the CPL of a calling procedure must be equal to or less than the DPL of the call
gate. For example, in Figure 5-15, call gate A has a DPL of 3. So calling procedures at
all CPLs (0 through 3) can access this call gate, which includes calling procedures in
code segments A, B, and C. Call gate B has a DPL of 2, so only calling procedures at
a CPL or 0, 1, or 2 can access call gate B, which includes calling procedures in code

Figure 5-11. Privilege Check for Control Transfer with Call Gate

Table 5-1. Privilege Check Rules for Call Gates

Instruction Privilege Check Rules

CALL CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL ≤ CPL

JMP CPL ≤ call gate DPL; RPL ≤ call gate DPL

Destination conforming code segment DPL ≤ CPL

Destination nonconforming code segment DPL = CPL

CPL

RPL

DPL

DPL

Privilege
Check

Call Gate (Descriptor)

Destination Code-

CS Register

Call-Gate Selector

Segment Descriptor
Vol. 3A 5-23

PROTECTION
segments B and C. The dotted line shows that a calling procedure in code segment A
cannot access call gate B.

The RPL of the segment selector to a call gate must satisfy the same test as the CPL
of the calling procedure; that is, the RPL must be less than or equal to the DPL of the
call gate. In the example in Figure 5-15, a calling procedure in code segment C can
access call gate B using gate selector B2 or B1, but it could not use gate selector B3
to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the
processor then checks the DPL of the code-segment descriptor against the CPL of the
calling procedure. Here, the privilege check rules vary between CALL and JMP
instructions. Only CALL instructions can use call gates to transfer program control to
more privileged (numerically lower privilege level) nonconforming code segments;
that is, to nonconforming code segments with a DPL less than the CPL. A JMP instruc-
tion can use a call gate only to transfer program control to a nonconforming code
segment with a DPL equal to the CPL. CALL and JMP instruction can both transfer
program control to a more privileged conforming code segment; that is, to a
conforming code segment with a DPL less than or equal to the CPL.

If a call is made to a more privileged (numerically lower privilege level) noncon-
forming destination code segment, the CPL is lowered to the DPL of the destination
code segment and a stack switch occurs (see Section 5.8.5, “Stack Switching”). If a
call or jump is made to a more privileged conforming destination code segment, the
CPL is not changed and no stack switch occurs.
5-24 Vol. 3A

PROTECTION
Call gates allow a single code segment to have procedures that can be accessed at
different privilege levels. For example, an operating system located in a code
segment may have some services which are intended to be used by both the oper-
ating system and application software (such as procedures for handling character
I/O). Call gates for these procedures can be set up that allow access at all privilege
levels (0 through 3). More privileged call gates (with DPLs of 0 or 1) can then be set
up for other operating system services that are intended to be used only by the oper-
ating system (such as procedures that initialize device drivers).

5.8.5 Stack Switching
Whenever a call gate is used to transfer program control to a more privileged
nonconforming code segment (that is, when the DPL of the nonconforming destina-
tion code segment is less than the CPL), the processor automatically switches to the
stack for the destination code segment’s privilege level. This stack switching is
carried out to prevent more privileged procedures from crashing due to insufficient
stack space. It also prevents less privileged procedures from interfering (by accident
or intent) with more privileged procedures through a shared stack.

Figure 5-12. Example of Accessing Call Gates At Various Privilege Levels

Code
Segment A

Stack SwitchNo Stack
Switch Occurs Occurs

Lowest Privilege

Highest Privilege

3

2

1

0

Call
Gate A

Code
Segment B

Call
Gate B

Code
Segment C

Code
Segment D

Code
Segment E

Nonconforming
Code Segment

Conforming
Code Segment

Gate Selector A
RPL=3

Gate Selector B1
RPL=2

Gate Selector B2
RPL=1

CPL=3

CPL=2

CPL=1

DPL=3

DPL=2

DPL=0 DPL=0

Gate Selector B3
RPL=3
Vol. 3A 5-25

PROTECTION
Each task must define up to 4 stacks: one for applications code (running at privilege
level 3) and one for each of the privilege levels 2, 1, and 0 that are used. (If only two
privilege levels are used [3 and 0], then only two stacks must be defined.) Each of
these stacks is located in a separate segment and is identified with a segment
selector and an offset into the stack segment (a stack pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the
SS and ESP registers, respectively, when privilege-level-3 code is being executed and
is automatically stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently
running task (see Figure 7-2). Each of these pointers consists of a segment selector
and a stack pointer (loaded into the ESP register). These initial pointers are strictly
read-only values. The processor does not change them while the task is running.
They are used only to create new stacks when calls are made to more privileged
levels (numerically lower privilege levels). These stacks are disposed of when a
return is made from the called procedure. The next time the procedure is called, a
new stack is created using the initial stack pointer. (The TSS does not specify a stack
for privilege level 3 because the processor does not allow a transfer of program
control from a procedure running at a CPL of 0, 1, or 2 to a procedure running at a
CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descrip-
tors for all the privilege levels to be used and for loading initial pointers for these
stacks into the TSS. Each stack must be read/write accessible (as specified in the
type field of its segment descriptor) and must contain enough space (as specified in
the limit field) to hold the following items:
• The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
• The parameters and temporary variables required by the called procedure.
• The EFLAGS register and error code, when implicit calls are made to an exception

or interrupt handler.

The stack will need to require enough space to contain many frames of these items,
because procedures often call other procedures, and an operating system may
support nesting of multiple interrupts. Each stack should be large enough to allow for
the worst case nesting scenario at its privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still
must create at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the
processor performs the following steps to switch stacks and begin execution of the
called procedure at a new privilege level:

1. Uses the DPL of the destination code segment (the new CPL) to select a pointer
to the new stack (segment selector and stack pointer) from the TSS.

2. Reads the segment selector and stack pointer for the stack to be switched to from
the current TSS. Any limit violations detected while reading the stack-segment
selector, stack pointer, or stack-segment descriptor cause an invalid TSS (#TS)
exception to be generated.
5-26 Vol. 3A

PROTECTION
3. Checks the stack-segment descriptor for the proper privileges and type and
generates an invalid TSS (#TS) exception if violations are detected.

4. Temporarily saves the current values of the SS and ESP registers.

5. Loads the segment selector and stack pointer for the new stack in the SS and ESP
registers.

6. Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (see Figure 5-13).

7. Copies the number of parameter specified in the parameter count field of the call
gate from the calling procedure’s stack to the new stack. If the count is 0, no
parameters are copied.

8. Pushes the return instruction pointer (the current contents of the CS and EIP
registers) onto the new stack.

9. Loads the segment selector for the new code segment and the new instruction
pointer from the call gate into the CS and EIP registers, respectively, and begins
execution of the called procedure.

See the description of the CALL instruction in Chapter 3, Instruction Set Reference, in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for a detailed
description of the privilege level checks and other protection checks that the
processor performs on a far call through a call gate.

The parameter count field in a call gate specifies the number of data items (up to 31)
that the processor should copy from the calling procedure’s stack to the stack of the
called procedure. If more than 31 data items need to be passed to the called proce-

Figure 5-13. Stack Switching During an Interprivilege-Level Call

Parameter 1

Parameter 2

Parameter 3

Calling SS

Calling ESP

Parameter 1

Parameter 2

Parameter 3

Calling CS

Calling EIP

Called Procedure’s Stack

ESP

ESP

Calling Procedure’s Stack
Vol. 3A 5-27

PROTECTION
dure, one of the parameters can be a pointer to a data structure, or the saved
contents of the SS and ESP registers may be used to access parameters in the old
stack space. The size of the data items passed to the called procedure depends on
the call gate size, as described in Section 5.8.3, “Call Gates.”

5.8.5.1 Stack Switching in 64-bit Mode
Although protection-check rules for call gates are unchanged from 32-bit mode,
stack-switch changes in 64-bit mode are different.

When stacks are switched as part of a 64-bit mode privilege-level change through a
call gate, a new SS (stack segment) descriptor is not loaded; 64-bit mode only loads
an inner-level RSP from the TSS. The new SS is forced to NULL and the SS selector’s
RPL field is forced to the new CPL. The new SS is set to NULL in order to handle
nested far transfers (CALLF, INTn, interrupts and exceptions). The old SS and RSP
are saved on the new stack.

On a subsequent RETF, the old SS is popped from the stack and loaded into the SS
register. See Table 5-2.

In 64-bit mode, stack operations resulting from a privilege-level-changing far call or
far return are eight-bytes wide and change the RSP by eight. The mode does not
support the automatic parameter-copy feature found in 32-bit mode. The call-gate
count field is ignored. Software can access the old stack, if necessary, by referencing
the old stack-segment selector and stack pointer saved on the new process stack.

In 64-bit mode, RETF is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL< >3, IRET allows SS to be loaded with
a NULL selector. If the called procedure itself is interrupted, the NULL SS is pushed on
the stack frame. On the subsequent RETF, the NULL SS on the stack acts as a flag to
tell the processor not to load a new SS descriptor.

5.8.6 Returning from a Called Procedure
The RET instruction can be used to perform a near return, a far return at the same
privilege level, and a far return to a different privilege level. This instruction is

Table 5-2. 64-Bit-Mode Stack Layout After CALLF with CPL Change
32-bit Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP RSP 0 RIP

< 4 Bytes > < 8 Bytes >
5-28 Vol. 3A

PROTECTION
intended to execute returns from procedures that were called with a CALL instruc-
tion. It does not support returns from a JMP instruction, because the JMP instruction
does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; there-
fore, the processor performs only a limit check. When the processor pops the return
instruction pointer from the stack into the EIP register, it checks that the pointer does
not exceed the limit of the current code segment.

On a far return at the same privilege level, the processor pops both a segment
selector for the code segment being returned to and a return instruction pointer from
the stack. Under normal conditions, these pointers should be valid, because they
were pushed on the stack by the CALL instruction. However, the processor performs
privilege checks to detect situations where the current procedure might have altered
the pointer or failed to maintain the stack properly.

A far return that requires a privilege-level change is only allowed when returning to a
less privileged level (that is, the DPL of the return code segment is numerically
greater than the CPL). The processor uses the RPL field from the CS register value
saved for the calling procedure (see Figure 5-13) to determine if a return to a numer-
ically higher privilege level is required. If the RPL is numerically greater (less privi-
leged) than the CPL, a return across privilege levels occurs.

The processor performs the following steps when performing a far return to a calling
procedure (see Figures 6-2 and 6-4 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an illustration of the stack contents prior to
and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege
level change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack.
(Type and privilege level checks are performed on the code-segment descriptor
and RPL of the code- segment selector.)

3. (If the RET instruction includes a parameter count operand and the return
requires a privilege level change.) Adds the parameter count (in bytes obtained
from the RET instruction) to the current ESP register value (after popping the CS
and EIP values), to step past the parameters on the called procedure’s stack. The
resulting value in the ESP register points to the saved SS and ESP values for the
calling procedure’s stack. (Note that the byte count in the RET instruction must
be chosen to match the parameter count in the call gate that the calling
procedure referenced when it made the original call multiplied by the size of the
parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers
with the saved SS and ESP values and switches back to the calling procedure’s
stack. The SS and ESP values for the called procedure’s stack are discarded. Any
limit violations detected while loading the stack-segment selector or stack
pointer cause a general-protection exception (#GP) to be generated. The new
stack-segment descriptor is also checked for type and privilege violations.
Vol. 3A 5-29

PROTECTION
5. (If the RET instruction includes a parameter count operand.) Adds the parameter
count (in bytes obtained from the RET instruction) to the current ESP register
value, to step past the parameters on the calling procedure’s stack. The resulting
ESP value is not checked against the limit of the stack segment. If the ESP value
is beyond the limit, that fact is not recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS,
ES, FS, and GS segment registers. If any of these registers refer to segments
whose DPL is less than the new CPL (excluding conforming code segments), the
segment register is loaded with a null segment selector.

See the description of the RET instruction in Chapter 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, for a detailed description of
the privilege level checks and other protection checks that the processor performs on
a far return.

5.8.7 Performing Fast Calls to System Procedures with the
SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture
in the Pentium II processors for the purpose of providing a fast (low overhead) mech-
anism for calling operating system or executive procedures. SYSENTER is intended
for use by user code running at privilege level 3 to access operating system or exec-
utive procedures running at privilege level 0. SYSEXIT is intended for use by privilege
level 0 operating system or executive procedures for fast returns to privilege level 3
user code. SYSENTER can be executed from privilege levels 3, 2, 1, or 0; SYSEXIT
can only be executed from privilege level 0.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not
constitute a call/return pair. This is because SYSENTER does not save any state infor-
mation for use by SYSEXIT on a return.

The target instruction and stack pointer for these instructions are not specified
through instruction operands. Instead, they are specified through parameters
entered in MSRs and general-purpose registers.

For SYSENTER, target fields are generated using the following sources:
• Target code segment — Reads this from IA32_SYSENTER_CS.
• Target instruction — Reads this from IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from the IA32_SYSENTER_ESP.

For SYSEXIT, target fields are generated using the following sources:
• Target code segment — Computed by adding 16 to the value in the

IA32_SYSENTER_CS.
• Target instruction — Reads this from EDX.
5-30 Vol. 3A

PROTECTION
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Reads this from ECX.

The SYSENTER and SYSEXIT instructions preform “fast” calls and returns because
they force the processor into a predefined privilege level 0 state when SYSENTER is
executed and into a predefined privilege level 3 state when SYSEXIT is executed. By
forcing predefined and consistent processor states, the number of privilege checks
ordinarily required to perform a far call to another privilege levels are greatly
reduced. Also, by predefining the target context state in MSRs and general-purpose
registers eliminates all memory accesses except when fetching the target code.

Any additional state that needs to be saved to allow a return to the calling procedure
must be saved explicitly by the calling procedure or be predefined through program-
ming conventions.

5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode
For Intel 64 processors, the SYSENTER and SYSEXIT instructions are enhanced to
allow fast system calls from user code running at privilege level 3 (in compatibility
mode or 64-bit mode) to 64-bit executive procedures running at privilege level 0.
IA32_SYSENTER_EIP MSR and IA32_SYSENTER_ESP MSR are expanded to hold
64-bit addresses. If IA-32e mode is inactive, only the lower 32-bit addresses stored
in these MSRs are used. If 64-bit mode is active, addresses stored in
IA32_SYSENTER_EIP and IA32_SYSENTER_ESP must be canonical. Note that, in
64-bit mode, IA32_SYSENTER_CS must not contain a NULL selector.

When SYSENTER transfers control, the following fields are generated and bits set:
• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.
• New CS attributes — CS base = 0, CS limit = FFFFFFFFH.
• Target instruction — Reads 64-bit canonical address from

IA32_SYSENTER_EIP.
• Stack segment — Computed by adding 8 to the value from

IA32_SYSENTER_CS.
• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.
• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

When the SYSEXIT instruction transfers control to 64-bit mode user code using
REX.W, the following fields are generated and bits set:
• Target code segment — Computed by adding 32 to the value in

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 1 (go to 64-bit mode).
• Target instruction — Reads 64-bit canonical address in RDX.
• Stack segment — Computed by adding 40 to the value of IA32_SYSENTER_CS.
• Stack pointer — Update RSP using 64-bit canonical address in RCX.
Vol. 3A 5-31

PROTECTION
When SYSEXIT transfers control to compatibility mode user code when the operand
size attribute is 32 bits, the following fields are generated and bits set:
• Target code segment — Computed by adding 16 to the value in

IA32_SYSENTER_CS.
• New CS attributes — L-bit = 0 (go to compatibility mode).
• Target instruction — Fetch the target instruction from 32-bit address in EDX.
• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.
• Stack pointer — Update ESP from 32-bit address in ECX.

5.8.8 Fast System Calls in 64-bit Mode
The SYSCALL and SYSRET instructions are designed for operating systems that use a
flat memory model (segmentation is not used). The instructions, along with
SYSENTER and SYSEXIT, are suited for IA-32e mode operation. SYSCALL and
SYSRET, however, are not supported in compatibility mode. Use CPUID to check if
SYSCALL and SYSRET are available (CPUID.80000001H.EDX[bit 11] = 1).

SYSCALL is intended for use by user code running at privilege level 3 to access oper-
ating system or executive procedures running at privilege level 0. SYSRET is
intended for use by privilege level 0 operating system or executive procedures for
fast returns to privilege level 3 user code.

Stack pointers for SYSCALL/SYSRET are not specified through model specific regis-
ters. The clearing of bits in RFLAGS is programmable rather than fixed.
SYSCALL/SYSRET save and restore the RFLAGS register.

For SYSCALL, the processor saves RFLAGS into R11 and the RIP of the next instruc-
tion into RCX; it then gets the privilege-level 0 target instruction and stack pointer
from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[47:32].
• Target instruction — Reads a 64-bit canonical address from IA32_LSTAR.
• Stack segment — Computed by adding 8 to the value in IA32_STAR[47:32].
• System flags — The processor sets RFLAGS to the logical-AND of its current

value with the complement of the value in the IA32_FMASK MSR.

When SYSRET transfers control to 64-bit mode user code using REX.W, the processor
gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48] +

16.
• Target instruction — Copies the value in RCX into RIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.
5-32 Vol. 3A

PROTECTION
When SYSRET transfers control to 32-bit mode user code using a 32-bit operand size,
the processor gets the privilege level 3 target instruction and stack pointer from:
• Target code segment — Reads a non-NULL selector from IA32_STAR[63:48].
• Target instruction — Copies the value in ECX into EIP.
• Stack segment — IA32_STAR[63:48] + 8.
• EFLAGS — Loaded from R11.

It is the responsibility of the OS to ensure the descriptors in the GDT/LDT correspond
to the selectors loaded by SYSCALL/SYSRET (consistent with the base, limit, and
attribute values forced by the instructions).

Any address written to IA32_LSTAR is first checked by WRMSR to ensure canonical
form. If an address is not canonical, an exception is generated (#GP).

See Figure 5-14 for the layout of IA32_STAR, IA32_LSTAR and IA32_FMASK.

5.9 PRIVILEGED INSTRUCTIONS
Some of the system instructions (called “privileged instructions”) are protected from
use by application programs. The privileged instructions control system functions
(such as the loading of system registers). They can be executed only when the CPL is
0 (most privileged). If one of these instructions is executed when the CPL is not 0, a

Figure 5-14. MSRs Used by SYSCALL and SYSRET

63 32 31 0

63 0

63 0

Target RIP for 64-bit Mode Calling Program

SYSRET CS and SS SYSCALL CS and SS

48 47

IA32_STAR

IA32_LSTAR

IA32_FMASK

32 31

SYSCALL EFLAGS MaskReserved

Reserved
Vol. 3A 5-33

PROTECTION
general-protection exception (#GP) is generated. The following system instructions
are privileged instructions:
• LGDT — Load GDT register.
• LLDT — Load LDT register.
• LTR — Load task register.
• LIDT — Load IDT register.
• MOV (control registers) — Load and store control registers.
• LMSW — Load machine status word.
• CLTS — Clear task-switched flag in register CR0.
• MOV (debug registers) — Load and store debug registers.
• INVD — Invalidate cache, without writeback.
• WBINVD — Invalidate cache, with writeback.
• INVLPG —Invalidate TLB entry.
• HLT— Halt processor.
• RDMSR — Read Model-Specific Registers.
• WRMSR —Write Model-Specific Registers.
• RDPMC — Read Performance-Monitoring Counter.
• RDTSC — Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of
Intel 64 and IA-32 processors (see Section 19.13, “New Instructions In the Pentium
and Later IA-32 Processors”).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC
and RDTSC instructions, respectively, to be executed at any CPL.

5.10 POINTER VALIDATION
When operating in protected mode, the processor validates all pointers to enforce
protection between segments and maintain isolation between privilege levels.
Pointer validation consists of the following checks:

1. Checking access rights to determine if the segment type is compatible with its
use.

2. Checking read/write rights.

3. Checking if the pointer offset exceeds the segment limit.

4. Checking if the supplier of the pointer is allowed to access the segment.

5. Checking the offset alignment.
5-34 Vol. 3A

PROTECTION
The processor automatically performs first, second, and third checks during instruc-
tion execution. Software must explicitly request the fourth check by issuing an ARPL
instruction. The fifth check (offset alignment) is performed automatically at privilege
level 3 if alignment checking is turned on. Offset alignment does not affect isolation
of privilege levels.

5.10.1 Checking Access Rights (LAR Instruction)
When the processor accesses a segment using a far pointer, it performs an access
rights check on the segment descriptor pointed to by the far pointer. This check is
performed to determine if type and privilege level (DPL) of the segment descriptor
are compatible with the operation to be performed. For example, when making a far
call in protected mode, the segment-descriptor type must be for a conforming or
nonconforming code segment, a call gate, a task gate, or a TSS. Then, if the call is to
a nonconforming code segment, the DPL of the code segment must be equal to the
CPL, and the RPL of the code segment’s segment selector must be less than or equal
to the DPL. If type or privilege level are found to be incompatible, the appropriate
exception is generated.

To prevent type incompatibility exceptions from being generated, software can check
the access rights of a segment descriptor using the LAR (load access rights) instruc-
tion. The LAR instruction specifies the segment selector for the segment descriptor
whose access rights are to be checked and a destination register. The instruction then
performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or
TSS segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the
segment descriptor into the destination register (masked by the value
00FXFF00H, where X indicates that the corresponding 4 bits are undefined) and
sets the ZF flag in the EFLAGS register. If the segment selector is not visible at
the current privilege level or is an invalid type for the LAR instruction, the
instruction does not modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on
the access rights information.
Vol. 3A 5-35

PROTECTION
5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
When the processor accesses any code or data segment it checks the read/write priv-
ileges assigned to the segment to verify that the intended read or write operation is
allowed. Software can check read/write rights using the VERR (verify for reading)
and VERW (verify for writing) instructions. Both these instructions specify the
segment selector for the segment being checked. The instructions then perform the
following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code or data-segment descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector are less than or equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for
the VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible
at the CPL and readable; the VERW sets the ZF flag if the segment is visible and writ-
able. (Code segments are never writable.) The ZF flag is cleared if any of these
checks fail.

5.10.3 Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the
offset is within the limit of the segment. Software can perform this limit check using
the LSL (load segment limit) instruction. Like the LAR instruction, the LSL instruction
specifies the segment selector for the segment descriptor whose limit is to be
checked and a destination register. The instruction then performs the following oper-
ations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within
the descriptor table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, or TSS segment-
descriptor type.

4. If the segment is not a conforming code segment, checks if the segment
descriptor is visible at the CPL (that is, if the CPL and the RPL of the segment
selector less than or equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit
scaled according to the setting of the G flag in the segment descriptor) into the
5-36 Vol. 3A

PROTECTION
destination register and sets the ZF flag in the EFLAGS register. If the segment
selector is not visible at the current privilege level or is an invalid type for the LSL
instruction, the instruction does not modify the destination register and clears
the ZF flag.

Once loaded in the destination register, software can compare the segment limit with
the offset of a pointer.

5.10.4 Checking Caller Access Privileges (ARPL Instruction)
The requestor’s privilege level (RPL) field of a segment selector is intended to carry
the privilege level of a calling procedure (the calling procedure’s CPL) to a called
procedure. The called procedure then uses the RPL to determine if access to a
segment is allowed. The RPL is said to “weaken” the privilege level of the called
procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged appli-
cation programs from accessing data located in more privileged segments. When an
operating-system procedure (the called procedure) receives a segment selector from
an application program (the calling procedure), it sets the segment selector’s RPL to
the privilege level of the calling procedure. Then, when the operating system uses
the segment selector to access its associated segment, the processor performs priv-
ilege checks using the calling procedure’s privilege level (stored in the RPL) rather
than the numerically lower privilege level (the CPL) of the operating-system proce-
dure. The RPL thus insures that the operating system does not access a segment on
behalf of an application program unless that program itself has access to the
segment.

Figure 5-15 shows an example of how the processor uses the RPL field. In this
example, an application program (located in code segment A) possesses a segment
selector (segment selector D1) that points to a privileged data structure (that is, a
data structure located in a data segment D at privilege level 0).

The application program cannot access data segment D, because it does not have
sufficient privilege, but the operating system (located in code segment C) can. So, in
an attempt to access data segment D, the application program executes a call to the
operating system and passes segment selector D1 to the operating system as a
parameter on the stack. Before passing the segment selector, the (well behaved)
application program sets the RPL of the segment selector to its current privilege level
(which in this example is 3). If the operating system attempts to access data
segment D using segment selector D1, the processor compares the CPL (which is
now 0 following the call), the RPL of segment selector D1, and the DPL of data
segment D (which is 0). Since the RPL is greater than the DPL, access to data
segment D is denied. The processor’s protection mechanism thus protects data
segment D from access by the operating system, because application program’s priv-
ilege level (represented by the RPL of segment selector B) is greater than the DPL of
data segment D.
Vol. 3A 5-37

PROTECTION
Now assume that instead of setting the RPL of the segment selector to 3, the appli-
cation program sets the RPL to 0 (segment selector D2). The operating system can
now access data segment D, because its CPL and the RPL of segment selector D2 are
both equal to the DPL of data segment D.

Because the application program is able to change the RPL of a segment selector to
any value, it can potentially use a procedure operating at a numerically lower privi-
lege level to access a protected data structure. This ability to lower the RPL of a
segment selector breaches the processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL
correctly, operating-system procedures (executing at numerically lower privilege-
levels) that receive segment selectors from numerically higher privilege-level proce-
dures need to test the RPL of the segment selector to determine if it is at the appro-
priate level. The ARPL (adjust requested privilege level) instruction is provided for
this purpose. This instruction adjusts the RPL of one segment selector to match that
of another segment selector.

Figure 5-15. Use of RPL to Weaken Privilege Level of Called Procedure

Passed as a
parameter on

the stack.

Access

allowed

Access
allowed

Application Program

Operating
System

Lowest Privilege

Highest Privilege

3

2

1

0

Data
Segment D

not

Segment Sel. D1
RPL=3

Segment Sel. D2
RPL=0

Gate Selector B
RPL=3

Code
Segment A

CPL=3

Code
Segment C

DPL=0

Call
Gate B

DPL=3

DPL=0
5-38 Vol. 3A

PROTECTION
The example in Figure 5-15 demonstrates how the ARPL instruction is intended to be
used. When the operating-system receives segment selector D2 from the application
program, it uses the ARPL instruction to compare the RPL of the segment selector
with the privilege level of the application program (represented by the code-segment
selector pushed onto the stack). If the RPL is less than application program’s privi-
lege level, the ARPL instruction changes the RPL of the segment selector to match the
privilege level of the application program (segment selector D1). Using this instruc-
tion thus prevents a procedure running at a numerically higher privilege level from
accessing numerically lower privilege-level (more privileged) segments by lowering
the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading
the RPL field of the segment selector for the application-program’s code segment.
This segment selector is stored on the stack as part of the call to the operating
system. The operating system can copy the segment selector from the stack into a
register for use as an operand for the ARPL instruction.

5.10.5 Checking Alignment
When the CPL is 3, alignment of memory references can be checked by setting the
AM flag in the CR0 register and the AC flag in the EFLAGS register. Unaligned memory
references generate alignment exceptions (#AC). The processor does not generate
alignment exceptions when operating at privilege level 0, 1, or 2. See Table 6-7 for a
description of the alignment requirements when alignment checking is enabled.

5.11 PAGE-LEVEL PROTECTION
Page-level protection can be used alone or applied to segments. When page-level
protection is used with the flat memory model, it allows supervisor code and data
(the operating system or executive) to be protected from user code and data (appli-
cation programs). It also allows pages containing code to be write protected. When
the segment- and page-level protection are combined, page-level read/write protec-
tion allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory refer-
ence is checked to verify that protection checks are satisfied. All checks are made
before the memory cycle is started, and any violation prevents the cycle from
starting and results in a page-fault exception being generated. Because checks are
performed in parallel with address translation, there is no performance penalty.

The processor performs two page-level protection checks:
• Restriction of addressable domain (supervisor and user modes).
• Page type (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated.
See Chapter 6, “Interrupt 14—Page-Fault Exception (#PF),” for an explanation of the
Vol. 3A 5-39

PROTECTION
page-fault exception mechanism. This chapter describes the protection violations
which lead to page-fault exceptions.

5.11.1 Page-Protection Flags
Protection information for pages is contained in two flags in a paging-structure entry
(see Chapter 4): the read/write flag (bit 1) and the user/supervisor flag (bit 2). The
protection checks use the flags in all paging structures.

5.11.2 Restricting Addressable Domain
The page-level protection mechanism allows restricting access to pages based on
two privilege levels:
• Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or

executive, other system software (such as device drivers), and protected system
data (such as page tables).

• User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the
processor is currently operating at a CPL of 0, 1, or 2, it is in supervisor mode; if it is
operating at a CPL of 3, it is in user mode. When the processor is in supervisor mode,
it can access all pages; when in user mode, it can access only user-level pages. (Note
that the WP flag in control register CR0 modifies the supervisor permissions, as
described in Section 5.11.3, “Page Type.”)

Note that to use the page-level protection mechanism, code and data segments must
be set up for at least two segment-based privilege levels: level 0 for supervisor code
and data segments and level 3 for user code and data segments. (In this model, the
stacks are placed in the data segments.) To minimize the use of segments, a flat
memory model can be used (see Section 3.2.1, “Basic Flat Model”).

Here, the user and supervisor code and data segments all begin at address zero in
the linear address space and overlay each other. With this arrangement, operating-
system code (running at the supervisor level) and application code (running at the
user level) can execute as if there are no segments. Protection between operating-
system and application code and data is provided by the processor’s page-level
protection mechanism.

5.11.3 Page Type
The page-level protection mechanism recognizes two page types:
• Read-only access (R/W flag is 0).
• Read/write access (R/W flag is 1).
5-40 Vol. 3A

PROTECTION
When the processor is in supervisor mode and the WP flag in register CR0 is clear (its
state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is in user mode, it can write only to user-
mode pages that are read/write accessible. User-mode pages which are read/write or
read-only are readable; supervisor-mode pages are neither readable nor writable
from user mode. A page-fault exception is generated on any attempt to violate the
protection rules.

Starting with the P6 family, Intel processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting CR0.WP = 1 enables supervisor-
mode sensitivity to write protected pages. If CR0.WP = 1, read-only pages are not
writable from any privilege level. This supervisor write-protect feature is useful for
implementing a “copy-on-write” strategy used by some operating systems, such as
UNIX*, for task creation (also called forking or spawning). When a new task is
created, it is possible to copy the entire address space of the parent task. This gives
the child task a complete, duplicate set of the parent's segments and pages. An alter-
native copy-on-write strategy saves memory space and time by mapping the child's
segments and pages to the same segments and pages used by the parent task. A
private copy of a page gets created only when one of the tasks writes to the page. By
using the WP flag and marking the shared pages as read-only, the supervisor can
detect an attempt to write to a page, and can copy the page at that time.

5.11.4 Combining Protection of Both Levels of Page Tables
For any one page, the protection attributes of its page-directory entry (first-level
page table) may differ from those of its page-table entry (second-level page table).
The processor checks the protection for a page in both its page-directory and the
page-table entries. Table 5-3 shows the protection provided by the possible combina-
tions of protection attributes when the WP flag is clear.

5.11.5 Overrides to Page Protection
The following types of memory accesses are checked as if they are privilege-level 0
accesses, regardless of the CPL at which the processor is currently operating:
• Access to segment descriptors in the GDT, LDT, or IDT.
• Access to an inner-privilege-level stack during an inter-privilege-level call or a

call to in exception or interrupt handler, when a change of privilege level occurs.

5.12 COMBINING PAGE AND SEGMENT PROTECTION
When paging is enabled, the processor evaluates segment protection first, then
evaluates page protection. If the processor detects a protection violation at either
the segment level or the page level, the memory access is not carried out and an
Vol. 3A 5-41

PROTECTION
exception is generated. If an exception is generated by segmentation, no paging
exception is generated.

Page-level protections cannot be used to override segment-level protection. For
example, a code segment is by definition not writable. If a code segment is paged,
setting the R/W flag for the pages to read-write does not make the pages writable.
Attempts to write into the pages will be blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For
example, if a large read-write data segment is paged, the page-protection mecha-
nism can be used to write-protect individual pages.

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect

Privilege Access Type Privilege Access Type Privilege Access Type

User Read-Only User Read-Only User Read-Only

User Read-Only User Read-Write User Read-Only

User Read-Write User Read-Only User Read-Only

User Read-Write User Read-Write User Read/Write

User Read-Only Supervisor Read-Only Supervisor Read/Write*

User Read-Only Supervisor Read-Write Supervisor Read/Write*

User Read-Write Supervisor Read-Only Supervisor Read/Write*

User Read-Write Supervisor Read-Write Supervisor Read/Write

Supervisor Read-Only User Read-Only Supervisor Read/Write*

Supervisor Read-Only User Read-Write Supervisor Read/Write*

Supervisor Read-Write User Read-Only Supervisor Read/Write*

Supervisor Read-Write User Read-Write Supervisor Read/Write

Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*

Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

NOTE:
* If CR0.WP = 1, access type is determined by the R/W flags of the page-directory and page-table

entries. IF CR0.WP = 0, supervisor privilege permits read-write access.
5-42 Vol. 3A

PROTECTION
5.13 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLE
BIT

In addition to page-level protection offered by the U/S and R/W flags, paging struc-
tures used with PAE paging and IA-32e paging (see Chapter 4) provide the execute-
disable bit. This bit offers additional protection for data pages.

An Intel 64 or IA-32 processor with the execute-disable bit capability can prevent
data pages from being used by malicious software to execute code. This capability is
provided in:
• 32-bit protected mode with PAE enabled.
• IA-32e mode.

While the execute-disable bit capability does not introduce new instructions, it does
require operating systems to use a PAE-enabled environment and establish a page-
granular protection policy for memory pages.

If the execute-disable bit of a memory page is set, that page can be used only as
data. An attempt to execute code from a memory page with the execute-disable bit
set causes a page-fault exception.

The execute-disable capability is supported only with PAE paging and IA-32e paging.
It is not supported with 32-bit paging. Existing page-level protection mechanisms
(see Section 5.11, “Page-Level Protection”) continue to apply to memory pages inde-
pendent of the execute-disable setting.

5.13.1 Detecting and Enabling the Execute-Disable Capability
Software can detect the presence of the execute-disable capability using the CPUID
instruction. CPUID.80000001H:EDX.NX [bit 20] = 1 indicates the capability is avail-
able.

If the capability is available, software can enable it by setting IA32_EFER.NXE[bit 11]
to 1. IA32_EFER is available if CPUID.80000001H.EDX[bit 20 or 29] = 1.

If the execute-disable capability is not available, a write to set IA32_EFER.NXE
produces a #GP exception. See Table 5-4.

Table 5-4. Extended Feature Enable MSR (IA32_EFER)
63:12 11 10 9 8 7:1 0

Reserved Execute-
disable bit
enable (NXE)

IA-32e mode
active (LMA)

Reserve
d

IA-32e mode
enable (LME)

Reserve
d

SysCall enable
(SCE)
Vol. 3A 5-43

PROTECTION
5.13.2 Execute-Disable Page Protection
The execute-disable bit in the paging structures enhances page protection for data
pages. Instructions cannot be fetched from a memory page if IA32_EFER.NXE =1
and the execute-disable bit is set in any of the paging-structure entries used to map
the page. Table 5-5 lists the valid usage of a page in relation to the value of execute-
disable bit (bit 63) of the corresponding entry in each level of the paging structures.
Execute-disable protection can be activated using the execute-disable bit at any level
of the paging structure, irrespective of the corresponding entry in other levels. When
execute-disable protection is not activated, the page can be used as code or data.

In legacy PAE-enabled mode, Table 5-6 and Table 5-7 show the effect of setting the
execute-disable bit for code and data pages.

Table 5-5. IA-32e Mode Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PML4 PDP PDE PTE

Bit 63 = 1 * * * Data

* Bit 63 = 1 * * Data

* * Bit 63 = 1 * Data

* * * Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Bit 63 = 0 Data/Code

NOTES:
* Value not checked.
5-44 Vol. 3A

PROTECTION
5.13.3 Reserved Bit Checking
The processor enforces reserved bit checking in paging data structure entries. The
bits being checked varies with paging mode and may vary with the size of physical
address space.

Table 5-8 shows the reserved bits that are checked when the execute disable bit
capability is enabled (CR4.PAE = 1 and IA32_EFER.NXE = 1). Table 5-8 and Table
show the following paging modes:
• Non-PAE 4-KByte paging: 4-KByte-page only paging (CR4.PAE = 0,

CR4.PSE = 0).
• PSE36: 4-KByte and 4-MByte pages (CR4.PAE = 0, CR4.PSE = 1).
• PAE: 4-KByte and 2-MByte pages (CR4.PAE = 1, CR4.PSE = X).

The reserved bit checking depends on the physical address size supported by the
implementation, which is reported in CPUID.80000008H. See the table note.

Table 5-6. Legacy PAE-Enabled 4-KByte Page Level Protection Matrix
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE PTE

Bit 63 = 1 * Data

* Bit 63 = 1 Data

Bit 63 = 0 Bit 63 = 0 Data/Code

NOTE:
* Value not checked.

Table 5-7. Legacy PAE-Enabled 2-MByte Page Level Protection
with Execute-Disable Bit Capability

Execute Disable Bit Value (Bit 63) Valid Usage

PDE

Bit 63 = 1 Data

Bit 63 = 0 Data/Code
Vol. 3A 5-45

PROTECTION
If execute disable bit capability is not enabled or not available, reserved bit checking
in 64-bit mode includes bit 63 and additional bits. This and reserved bit checking for
legacy 32-bit paging modes are shown in Table 5-10.

Table 5-8. IA-32e Mode Page Level Protection Matrix with Execute-Disable Bit
Capability Enabled

Mode Paging Mode Check Bits

32-bit 4-KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21]

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1] *

PAE - PDE, 2-MByte page Bits [62:MAXPHYADDR] & [20:13] *

PAE - PDE, 4-KByte page Bits [62:MAXPHYADDR] *

PAE - PTE Bits [62:MAXPHYADDR] *

64-bit PML4E Bits [51:MAXPHYADDR] *

PDPTE Bits [51:MAXPHYADDR] *

PDE, 2-MByte page Bits [51:MAXPHYADDR] & [20:13] *

PDE, 4-KByte page Bits [51:MAXPHYADDR] *

PTE Bits [51:MAXPHYADDR] *

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by

CPUID.80000008H:EAX[bits 7-0].
5-46 Vol. 3A

PROTECTION
5.13.4 Exception Handling
When execute disable bit capability is enabled (IA32_EFER.NXE = 1), conditions for
a page fault to occur include the same conditions that apply to an Intel 64 or IA-32
processor without execute disable bit capability plus the following new condition: an
instruction fetch to a linear address that translates to physical address in a memory
page that has the execute-disable bit set.

An Execute Disable Bit page fault can occur at all privilege levels. It can occur on any
instruction fetch, including (but not limited to): near branches, far branches,
CALL/RET/INT/IRET execution, sequential instruction fetches, and task switches. The
execute-disable bit in the page translation mechanism is checked only when:
• IA32_EFER.NXE = 1.
• The instruction translation look-aside buffer (ITLB) is loaded with a page that is

not already present in the ITLB.

Table 5-9. Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled
Mode Paging Mode Check Bits

32-bit KByte paging (non-PAE) No reserved bits checked

PSE36 - PDE, 4-MByte page Bit [21]

PSE36 - PDE, 4-KByte page No reserved bits checked

PSE36 - PTE No reserved bits checked

PAE - PDP table entry Bits [63:MAXPHYADDR] & [8:5] & [2:1]*

PAE - PDE, 2-MByte page Bits [63:MAXPHYADDR] & [20:13]*

PAE - PDE, 4-KByte page Bits [63:MAXPHYADDR]*

PAE - PTE Bits [63:MAXPHYADDR]*

64-bit PML4E Bit [63], bits [51:MAXPHYADDR]*

PDPTE Bit [63], bits [51:MAXPHYADDR]*

PDE, 2-MByte page Bit [63], bits [51:MAXPHYADDR] & [20:13]*

PDE, 4-KByte page Bit [63], bits [51:MAXPHYADDR]*

PTE Bit [63], bits [51:MAXPHYADDR]*

NOTES:
* MAXPHYADDR is the maximum physical address size and is indicated by

CPUID.80000008H:EAX[bits 7-0].
Vol. 3A 5-47

PROTECTION
5-48 Vol. 3A

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode.

Chapter 17, “8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 6.14, “Exception
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere
in the system, the processor, or within the currently executing program or task that
requires the attention of a processor. They typically result in a forced transfer of
execution from the currently running program or task to a special software routine or
task called an interrupt handler or an exception handler. The action taken by a
processor in response to an interrupt or exception is referred to as servicing or
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external
to the processor, such as requests to service peripheral devices. Software can also
generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium
processors also permits a machine-check exception to be generated when internal
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes
execution of the interrupted procedure or task. The resumption of the interrupted
procedure or task happens without loss of program continuity, unless recovery from
an exception was not possible or an interrupt caused the currently running program
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism,
when operating in protected mode. A description of the exceptions and the conditions
that cause them to be generated is given at the end of this chapter.
Vol. 3A 6-1

INTERRUPT AND EXCEPTION HANDLING
6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception
and each interrupt condition requiring special handling by the processor is assigned
a unique identification number, called a vector number. The processor uses the vector
number assigned to an exception or interrupt as an index into the interrupt
descriptor table (IDT). The table provides the entry point to an exception or interrupt
handler (see Section 6.10, “Interrupt Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0
through 31 are reserved by the Intel 64 and IA-32 architectures for architecture-
defined exceptions and interrupts. Not all of the vector numbers in this range have a
currently defined function. The unassigned vector numbers in this range are
reserved. Do not use the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and
are not reserved by the Intel 64 and IA-32 architecture. These interrupts are gener-
ally assigned to external I/O devices to enable those devices to send interrupts to the
processor through one of the external hardware interrupt mechanisms (see Section
6.3, “Sources of Interrupts”).

Table 6-1 shows vector number assignments for architecturally defined exceptions
and for the NMI interrupt. This table gives the exception type (see Section 6.5,
“Exception Classifications”) and indicates whether an error code is saved on the stack
for the exception. The source of each predefined exception and the NMI interrupt is
also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:
• External (hardware generated) interrupts.
• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium
processors are the LINT[1:0] pins, which are connected to the local APIC (see
Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local
vector table (LVT) to be associated with any of the processor’s exception or interrupt
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR
and NMI pins, respectively. Asserting the INTR pin signals the processor that an
external interrupt has occurred. The processor reads from the system bus the inter-
6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
rupt vector number provided by an external interrupt controller, such as an 8259A
(see Section 6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external
interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined
Opcode)

Fault No UD2 instruction or reserved
opcode.1

 7 #NM Device Not Available (No
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Abort Yes
(zero)

Any instruction that can
generate an exception, an NMI,
or an INTR.

 9 Coprocessor Segment
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS
register loads.

13 #GP General Protection Fault Yes Any memory reference and
other protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not
use.)

No

16 #MF x87 FPU Floating-Point
Error (Math Fault)

Fault No x87 FPU floating-point or
WAIT/FWAIT instruction.
Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING
The processor’s local APIC is normally connected to a system-based I/O APIC. Here,
external interrupts received at the I/O APIC’s pins can be directed to the local APIC
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel® Atom™, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors).
The I/O APIC determines the vector number of the interrupt and sends this number
to the local APIC. When a system contains multiple processors, processors can also
send interrupts to one another by means of the system bus (Pentium 4, Intel Core
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically
generated by a system-based interrupt controller (8259A), with the interrupts being
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to
occur. However, these interrupts are not handled by the interrupt and exception
mechanism described in this chapter. These pins include the RESET#, FLUSH#,
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular
processor is implementation dependent. Pin functions are described in the data
books for the individual processors. The SMI# pin is described in Chapter 26,
“System Management.”

17 #AC Alignment Check Fault Yes
(Zero
)

Any data reference in
memory.3

18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.4

19 #XM SIMD Floating-Point
Exception

Fault No SSE/SSE2/SSE3 floating-point
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n
instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family proces-

sors.
5. This exception was introduced in the Pentium III processor.

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)
6-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or
through the local APIC is called a maskable hardware interrupt. Maskable hardware
interrupts that can be delivered through the INTR pin include all IA-32 architecture
defined interrupt vectors from 0 through 255; those that can be delivered through
the local APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be
masked as a group (see Section 6.8.1, “Masking Maskable Hardware Interrupts”).
Note that when interrupts 0 through 15 are delivered through the local APIC, the
APIC indicates the receipt of an illegal vector.

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by
supplying an interrupt vector number as an operand. For example, the INT 35
instruction forces an implicit call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the
processor will not be the same as it would be from an NMI interrupt generated in the
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not
activated.

Interrupts generated in software with the INT n instruction cannot be masked by the
IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:
• Processor-detected program-error exceptions.
• Software-generated exceptions.
• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors
during the execution in an application program or the operating system or executive.
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section
6.5, “Exception Classifications”).
Vol. 3A 6-5

INTERRUPT AND EXCEPTION HANDLING
6.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at
points in the instruction stream. For example, INT 3 causes a breakpoint exception to
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the
exception handler) but does not push an error code on the stack. This is true even if
the associated hardware-generated exception normally produces an error code. The
exception handler will still attempt to pop an error code from the stack while handling
the exception. Because no error code was pushed, the handler will pop off and
discard the EIP instead (in place of the missing error code). This sends the return to
the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus
transactions. These mechanisms are implementation dependent. When a machine-
check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15,
“Machine-Check Architecture,” for more information about the machine-check
mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are
reported and whether the instruction that caused the exception can be restarted
without loss of program or task continuity.
• Faults — A fault is an exception that can generally be corrected and that, once

corrected, allows the program to be restarted with no loss of continuity. When a
fault is reported, the processor restores the machine state to the state prior to
the beginning of execution of the faulting instruction. The return address (saved
contents of the CS and EIP registers) for the fault handler points to the faulting
instruction, rather than to the instruction following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the
execution of the trapping instruction. Traps allow execution of a program or task
to be continued without loss of program continuity. The return address for the
trap handler points to the instruction to be executed after the trapping
instruction.
6-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• Aborts — An abort is an exception that does not always report the precise
location of the instruction causing the exception and does not allow a restart of
the program or task that caused the exception. Aborts are used to report severe
errors, such as hardware errors and inconsistent or illegal values in system
tables.

NOTE
One exception subset normally reported as a fault is not restartable.
Such exceptions result in loss of some processor state. For example,
executing a POPAD instruction where the stack frame crosses over
the end of the stack segment causes a fault to be reported. In this
situation, the exception handler sees that the instruction pointer
(CS:EIP) has been restored as if the POPAD instruction had not been
executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered
programming errors. An application causing this class of exceptions
should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on
an instruction boundary. All interrupts are guaranteed to be taken on an instruction
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor
generates an exception) points to the faulting instruction. So, when a program or task
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example
of this type of fault is a page-fault exception (#PF) that occurs when a program or
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and
resume execution of the program or task by restarting the faulting instruction. To
insure that the restart is handled transparently to the currently executing program or
task, the processor saves the necessary registers and stack pointers to allow a restart
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction
following the trapping instruction. If a trap is detected during an instruction which
transfers execution, the return instruction pointer reflects the transfer. For example,
if a trap is detected while executing a JMP instruction, the return instruction pointer
points to the destination of the JMP instruction, not to the next address past the JMP
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return
instruction pointer points to the instruction following the INTO instruction that tested
Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING
EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow
condition. Upon return from the trap handler, program or task execution continues at
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task.
Abort handlers are designed to collect diagnostic information about the state of the
processor when the abort exception occurred and then shut down the application and
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without
loss of continuity. The return instruction pointer saved for an interrupt points to the
next instruction to be executed at the instruction boundary where the processor took
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is
taken at the end of the current iteration with the registers set to execute the next
iteration.

The ability of a P6 family processor to speculatively execute instructions does not
affect the taking of interrupts by the processor. Interrupts are taken at instruction
boundaries located during the retirement phase of instruction execution; so they are
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying
amounts of prefetching and preliminary decoding. With these processors as well,
exceptions and interrupts are not signaled until actual “in-order” execution of the
instructions. For a given code sample, the signaling of exceptions occurs uniformly
when the code is executed on any family of IA-32 processors (except where new
exceptions or new opcodes have been defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:
• External hardware asserts the NMI pin.
• The processor receives a message on the system bus (Pentium 4, Intel Core Duo,

Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor
handles it immediately by calling the NMI handler pointed to by interrupt vector
number 2. The processor also invokes certain hardware conditions to insure that no
other interrupts, including NMI interrupts, are received until the NMI handler has
completed executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked
by the IF flag in the EFLAGS register.
6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware
can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI interrupt handler is executing, the processor disables additional calls to
the NMI handler until the next IRET instruction is executed. This blocking of subse-
quent NMIs prevents stacking up calls to the NMI handler. It is recommended that the
NMI interrupt handler be accessed through an interrupt gate to disable maskable
hardware interrupts (see Section 6.8.1, “Masking Maskable Hardware Interrupts”). If
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction
issued from the handler generates a general-protection exception (see Section
17.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the
general-protection exception handler is invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of
the processor and of the IF and RF flags in the EFLAGS register, as described in the
following sections.

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt
request; when the IF flag is set, interrupts delivered to the INTR or through the local
APIC pin are processed as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin
or delivery mode NMI messages delivered through the local APIC, nor does it affect
processor generated exceptions. As with the other flags in the EFLAGS register, the
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can
be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate
an interrupt and call the interrupt or exception handler pointed to by the vector
number. So for example, it is possible to invoke the page-fault handler through the
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It
Vol. 3A 6-9

INTERRUPT AND EXCEPTION HANDLING
is an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated
Exceptions”), when an interrupt is generated through the INTR pin to an exception
vector, the processor does not push an error code on the stack, so the exception
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI
(clear interrupt-enable flag) instructions, respectively. These instructions may be
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL.
(The effect of the IOPL on these instructions is modified slightly when the virtual
mode extension is enabled by setting the VME flag in control register CR4: see
Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is
also impacted by the PVI flag: see Section 17.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:
• The PUSHF instruction stores all flags on the stack, where they can be examined

and modified. The POPF instruction can be used to load the modified flags back
into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter
3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, for a detailed description of the operations
these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3,
“System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception
(#DB); when clear, instruction breakpoints will generate debug exceptions. The
primary function of the RF flag is to prevent the processor from going into a debug
exception loop on an instruction-breakpoint. See Section 16.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.
6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into
the SS register but before the ESP register has been loaded, these two parts of the
logical address into the stack space are inconsistent for the duration of the interrupt
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and
single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
All other faults may still be generated. If the LSS instruction is used to modify the
contents of the SS register (which is the recommended method of modifying this
register), this problem does not occur.

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the
processor services them in a predictable order. Table 6-2 shows the priority among
classes of exception and interrupt sources.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING
While priority among these classes listed in Table 6-2 is consistent throughout the
architecture, exceptions within each class are implementation-dependent and may
vary from processor to processor. The processor first services a pending exception or
interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred.

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in
the same priority class.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)
6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor.
To form an index into the IDT, the processor scales the exception or interrupt vector
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than 256 descriptors, because descriptors are required only for the
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize
performance of cache line fills. The limit value is expressed in bytes and is added to
the base address to get the address of the last valid byte. A limit value of 0 results in
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1,
the processor locates the IDT using the IDTR register. This register holds both a
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR
register with the base address and limit held in a memory operand. This instruction
can be executed only when the CPL is 0. It normally is used by the initialization code
of an operating system when creating an IDT. An operating system also may use it to
change from one IDT to another. The SIDT instruction copies the base and limit value
stored in IDTR to memory. This instruction can be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection
exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an
incorrectly configured IDT could result in incomplete interrupt
handling and/or the blocking of interrupt delivery.
IA-32 architecture rules need to be followed for setting up IDTR
base/limit/access fields and each field in the gate descriptors. The
same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT
and accessing the stack.
Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING
6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:
• Task-gate descriptor
• Interrupt-gate descriptor
• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate
descriptors. The format of a task gate used in an IDT is the same as that of a task
gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate Descriptor”). The task
gate contains the segment selector for a TSS for an exception and/or interrupt
handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call
Gates”). They contain a far pointer (segment selector and offset) that the processor
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the
IF flag in the EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or
Interrupt-Handler Procedure”).

Figure 6-1. Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)

Gate for

0

IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8
6-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it
handles calls with a CALL instruction to a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector as an
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL
to a call gate (see Section 5.8.2, “Gate Descriptors,” through Section 5.8.6,

Figure 6-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD
Vol. 3A 6-15

INTERRUPT AND EXCEPTION HANDLING
“Returning from a Called Procedure”). If index points to a task gate, the processor
executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 6-3). The
segment selector for the gate points to a segment descriptor for an executable code
segment in either the GDT or the current LDT. The offset field of the gate descriptor
points to the beginning of the exception- or interrupt-handling procedure.

Figure 6-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset
6-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
When the processor performs a call to the exception- or interrupt-handler procedure:
• If the handler procedure is going to be executed at a numerically lower privilege

level, a stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the
handler are obtained from the TSS for the currently executing task. On this
new stack, the processor pushes the stack segment selector and stack
pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP
registers on the new stack (see Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new
stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the
interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers
on the current stack (see Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current
stack after the EIP value.
Vol. 3A 6-17

INTERRUPT AND EXCEPTION HANDLING
To return from an exception- or interrupt-handler procedure, the handler must use
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction
except that it restores the saved flags into the EFLAGS register. The IOPL field of the
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction
switches back to the interrupted procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures
The privilege-level protection for exception- and interrupt-handler procedures is
similar to that used for ordinary procedure calls when called through a call gate (see
Section 5.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack
6-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The
protection mechanism for exception- and interrupt-handler procedures is different in
the following ways:
• Because interrupt and exception vectors have no RPL, the RPL is not checked on

implicit calls to exception and interrupt handlers.
• The processor checks the DPL of the interrupt or trap gate only if an exception or

interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL
must be less than or equal to the DPL of the gate. This restriction prevents
application programs or procedures running at privilege level 3 from using a
software interrupt to access critical exception handlers, such as the page-fault
handler, providing that those handlers are placed in more privileged code
segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques
can be used to avoid privilege-level violations.
• The exception or interrupt handler can be placed in a conforming code segment.

This technique can be used for handlers that only need to access data available
on the stack (for example, divide error exceptions). If the handler needs data
from a data segment, the data segment needs to be accessible from privilege
level 3, which would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level
0. This handler would always run, regardless of the CPL that the interrupted
program or task is running at.

6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure
When accessing an exception or interrupt handler through either an interrupt gate or
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the
contents of the EFLAGS register on the stack. (On calls to exception and interrupt
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register,
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing
from affecting interrupt response. A subsequent IRET instruction restores the TF
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register
on the stack.

The only difference between an interrupt gate and a trap gate is the way the
processor handles the IF flag in the EFLAGS register. When accessing an exception-
or interrupt-handling procedure through an interrupt gate, the processor clears the
IF flag to prevent other interrupts from interfering with the current interrupt handler.
A subsequent IRET instruction restores the IF flag to its value in the saved contents
Vol. 3A 6-19

INTERRUPT AND EXCEPTION HANDLING
of the EFLAGS register on the stack. Accessing a handler procedure through a trap
gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a
task switch results. Handling an exception or interrupt with a separate task offers
several advantages:
• The entire context of the interrupted program or task is saved automatically.
• A new TSS permits the handler to use a new privilege level 0 stack when handling

the exception or interrupt. If an exception or interrupt occurs when the current
privilege level 0 stack is corrupted, accessing the handler through a task gate can
prevent a system crash by providing the handler with a new privilege level 0
stack.

• The handler can be further isolated from other tasks by giving it a separate
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of
machine state that must be saved on a task switch makes it slower than using an
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A
switch to the handler task is handled in the same manner as an ordinary task switch
(see Section 7.3, “Task Switching”). The link back to the interrupted task is stored in
the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the
processor's interrupt mechanism). The software scheduler needs to accommodate
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes
handling the interrupt and the time it executes the IRET instruction.
This action prevents another interrupt from occurring while the
interrupt task’s TSS is still marked busy, which would cause a
general-protection (#GP) exception.
6-20 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector,
the processor pushes an error code onto the stack of the exception handler (whether
it is a procedure or task). The error code has the format shown in Figure 6-6. The
error code resembles a segment selector; however, instead of a TI flag and RPL field,
the error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception
occurred during delivery of an event external to the program, such as
an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index
portion of the error code refers to a gate descriptor in the IDT; when

Figure 6-5. Interrupt Task Switch

IDT

Task Gate

TSS for Interrupt-

TSS Selector

GDT

TSS Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task
Vol. 3A 6-21

INTERRUPT AND EXCEPTION HANDLING
clear, indicates that the index refers to a descriptor in the GDT or the
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set,
the TI flag indicates that the index portion of the error code refers to
a segment or gate descriptor in the LDT; when clear, it indicates that
the index refers to a descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT
to the segment or gate selector being referenced by the error code. In some cases
the error code is null (all bits are clear except possibly EXT). A null error code indi-
cates that the error was not caused by a reference to a specific segment or that a null
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword
pushes, the upper half of the error code is reserved. Note that the error code is not
popped when the IRET instruction is executed to return from an exception handler, so
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is
normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been
described for non-64-bit modes. The following are the exceptions:
• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to

the SMI handler).
• The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses

8-byte, zero extended stores.

Figure 6-6. Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

6-22 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy
modes, this push is conditional and based on a change in current privilege level
(CPL).

• The new SS is set to NULL if there is a change in CPL.
• IRET behavior changes.
• There is a new interrupt stack-switch mechanism.
• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors
allows an interrupt service routine to be located anywhere in the linear-address
space. See Figure 6-7.

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is
used by the stack switching mechanisms described in Section 6.14.5, “Interrupt
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Figure 6-7. 64-Bit IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

TYPE

Interrupt/Trap Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

45

0 0 0

31 0

Offset 63..32 8

31 0

12

11

IST0 0

2

Reserved

IST Interrupt Stack Table
Vol. 3A 6-23

INTERRUPT AND EXCEPTION HANDLING
ware attempts to reference an interrupt gate with a target RIP that is not in canonical
form.

The target code segment referenced by the interrupt gate must be a 64-bit code
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode
and compatibility mode). Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or
external INTR# signal can push an additional error code place-holder to maintain
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or
exception causes a stack frame to be pushed. This causes the stack frame and
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt
handler is called. The processor can arbitrarily realign the new RSP on interrupts
because the previous (possibly unaligned) RSP is unconditionally saved on the newly
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte
boundary before interrupts are re-enabled. This allows the stack to be formatted for
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a
stack switch or IST, the OS would have presumably put suitably aligned RSP values in
the TSS.
6-24 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.14.3 IRET in IA-32e Mode
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that
forces this requirement. The stack is formatted in such a way that for actions where
IRET is required, the 8-byte IRET operand size works correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an
IRET must pop eight byte items off the stack. This is accomplished by preceding the
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the
address size of the instruction. The SS/ESP/RSP size adjustment is determined by
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only
if there is a CPL change. This allows legacy applications to execute properly in
compatibility mode when using the IRET instruction. 64-bit interrupt service routines
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at CPL = 0. This is
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set
to NULL in order to properly handle returns from subsequent nested far transfers. If
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame.
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor
not to load a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode
The IA-32 architecture provides a mechanism to automatically switch stack frames in
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e
mode, the legacy stack-switch mechanism is modified. When stacks are switched as
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS.
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT,
interrupts and exceptions). The old SS and RSP are saved on the new stack
(Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.
Vol. 3A 6-25

INTERRUPT AND EXCEPTION HANDLING
In summary, a stack switch in IA-32e mode works like the legacy stack switch,
except that a new SS selector is not loaded from the TSS. Instead, the new SS is
forced to NULL.

6.14.5 Interrupt Stack Table
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This
mechanism unconditionally switches stacks when it is enabled. It can be enabled on
an individual interrupt-vector basis using a field in the IDT entry. This means that
some interrupt vectors can use the modified legacy mechanism and others can use
the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up
a known-good stack by accessing the interrupt service routine through a task gate
located in the IDT. However, the legacy task-switch mechanism is not supported in
IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT);
see Figure 6-7. The gate descriptor contains a 3-bit IST index field that provides an
offset into the IST section of the TSS. Using the IST mechanism, the processor loads
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is
zero, the modified legacy stack-switching mechanism described above is used.

Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change

 CS

Error Code

 RFLAGS

 RIP

 SS
 RSP

Stack Usage with
Privilege-Level Change

Handler’s Stack

Stack Pointer After
Transfer to Handler

 CS

Error Code

 EFLAGS

 EIP

 SS
 ESP

Handler’s Stack

Legacy Mode IA-32e Mode

0
+4
+8

+12
+16
+20

0
+8

+16
+24
+32
+40
6-26 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts.
They are arranged in the order of vector numbers. The information contained in
these sections are as follows:
• Exception Class — Indicates whether the exception class is a fault, trap, or

abort type. Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable to interrupts.)

• Description — Gives a general description of the purpose of the exception or
interrupt type. It also describes how the processor handles the exception or
interrupt.

• Exception Error Code — Indicates whether an error code is saved for the
exception. If one is saved, the contents of the error code are described. (This
section is not applicable to interrupts.)

• Saved Instruction Pointer — Describes which instruction the saved (or return)
instruction pointer points to. It also indicates whether the pointer can be used to
restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on
the state of the currently running program or task and the possibilities of
restarting the program or task without loss of continuity.
Vol. 3A 6-27

INTERRUPT AND EXCEPTION HANDLING
Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception
occurs before the faulting instruction is executed.
6-28 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish
between traps or faults by examining the contents of DR6
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected.
Whether the exception is a fault or a trap depends on the condition (see Table 6-3).
See Chapter 16, “Debugging, Profiling Branches and Time-Stamp Counter,” for
detailed information about the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because
the exception occurs before the faulting instruction is executed. The program can
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the
instruction or task switch being executed is allowed to complete before the exception
is generated. However, the new state of the program is not corrupted and execution
of the program can continue reliably.

Table 6-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class

Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/O read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap
Vol. 3A 6-29

INTERRUPT AND EXCEPTION HANDLING
Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC.
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved
contents of CS and EIP registers point to the next instruction to be executed at the
point the interrupt is taken. See Section 6.5, “Exception Classifications,” for more
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the
NMI is generated. A program or task can thus be restarted upon returning from an
interrupt handler without loss of continuity, provided the interrupt handler saves the
state of the processor before handling the interrupt and restores the processor’s
state prior to a return.
6-30 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3
instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging
tool can use a data segment mapped to the same physical address space as the code
segment to place an INT 3 instruction in places where it is desired to call the
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient
to set breakpoints with the debug registers. (See Section 16.3.2, “Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If
more breakpoints are needed beyond what the debug registers allow, the INT 3
instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT n
instruction with an operand of 3. The action of this instruction (INT 3) is slightly
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt
Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the
state of the program is essentially unchanged because the INT 3 instruction does not
affect any register or memory locations. The debugger can thus resume the
suspended program by replacing the INT 3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register.
Upon returning from the debugger, program execution resumes with the replaced
instruction.
Vol. 3A 6-31

INTERRUPT AND EXCEPTION HANDLING
Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS
register to indicate signed overflow and unsigned overflow, respectively. When
performing arithmetic on signed operands, the OF flag can be tested directly or the
INTO instruction can be used. The benefit of using the INTO instruction is that if the
overflow exception is detected, an exception handler can be called automatically to
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state
of the program is essentially unchanged because the INTO instruction does not affect
any register or memory locations. The program can thus resume normal execution
upon returning from the overflow exception handler.
6-32 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction
was executed. The BOUND instruction checks that a signed array index is within the
upper and lower bounds of an array located in memory. If the array index is not
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.
Vol. 3A 6-33

INTERRUPT AND EXCEPTION HANDLING
Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:
• Attempted to execute an invalid or reserved opcode.
• Attempted to execute an instruction with an operand type that is invalid for its

accompanying opcode; for example, the source operand for a LES instruction is
not a memory location.

• Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or
IA-32 processor that does not support the MMX technology or
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate
support for these extensions.

• Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHh, SFENCE,
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM
flag in control register CR0 is set (1).

• Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit
in control register CR4 is clear (0). Note this does not include the following
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHh,
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB,
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB,
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD,
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

• Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or
IA-32 processor that caused a SIMD floating-point exception when the
OSXMMEXCPT bit in control register CR4 is clear (0).

• Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction
pointer will still points at the UD2 instruction.

• Detected a LOCK prefix that precedes an instruction that may not be locked or
one that may be locked but the destination operand is not a memory location.

• Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

• Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result
of executing an invalid instruction; that is, decoding and speculatively attempting to
execute an invalid opcode does not generate this exception. Likewise, in the Pentium
6-34 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
processor and earlier IA-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 6.5,
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32
architectures. These opcodes, even though undefined, do not generate an invalid
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the
invalid instruction is not executed.
Vol. 3A 6-35

INTERRUPT AND EXCEPTION HANDLING
Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description

Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:
• The processor executed an x87 FPU floating-point instruction while the EM flag in

control register CR0 was set (1). See the paragraph below for the special case of
the WAIT/FWAIT instruction.

• The processor executed a WAIT/FWAIT instruction while the MP and TS flags of
register CR0 were set, regardless of the setting of the EM flag.

• The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CR0 was set and the EM flag is
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU
floating-point instruction is encountered, allowing an exception handler to call
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction
is encountered (with the exception of the instructions listed above). The exception
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before
it executes the instruction. See Section 2.5, “Control Registers,” for more information
about the TS flag.

The MP flag in control register CR0 is used along with the TS flag to determine if WAIT
or FWAIT instructions should generate a device-not-available exception. It extends
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP
flag should always be set; for programs running on the Intel486 SX processor, the MP
flag should be clear.

Exception Error Code

None.
6-36 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can
save the context of the x87 FPU, clear the TS flag, and continue execution at the
interrupted floating-point or WAIT/FWAIT instruction.
Vol. 3A 6-37

INTERRUPT AND EXCEPTION HANDLING
Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the
processor divides the exceptions into three classes: benign exceptions, contributory
exceptions, and page faults (see Table 6-4).

Table 6-5 shows the various combinations of exception classes that cause a double
fault to be generated. A double-fault exception falls in the abort class of exceptions.
The program or task cannot be restarted or resumed. The double-fault handler can
be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the
system.

Table 6-4. Interrupt and Exception Classes

Class Vector Number Description

Benign Exceptions and
Interrupts

 1
 2
 3
 4
 5
 6
 7
9
16
17
18

19
All
All

Debug
NMI Interrupt
Breakpoint
Overflow
BOUND Range Exceeded
Invalid Opcode
Device Not Available
Coprocessor Segment Overrun
Floating-Point Error
Alignment Check
Machine Check

SIMD floating-point
INT n
INTR

Contributory Exceptions 0
10
11
12
13

Divide Error
Invalid TSS
Segment Not Present
Stack Fault
General Protection

Page Faults 14 Page Fault
6-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
A segment or page fault may be encountered while prefetching instructions;
however, this behavior is outside the domain of Table 6-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault
handler could still lead to a double-fault sequence.

If another exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The
processor generates a special bus cycle to indicate that it has entered shutdown
mode. Software designers may need to be aware of the response of hardware when
it goes into shutdown mode. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, invoke
reset initialization, generate an INIT initialization, or generate an SMI. If any events
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then
only a hardware reset can restart the processor. Likewise, if the shutdown occurs
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and
then close the application and/or shut down or reset the processor.

Table 6-5. Conditions for Generating a Double Fault

Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Contributory Handle Exceptions
Serially

Generate a Double
Fault

Handle Exceptions
Serially

Page Fault Handle Exceptions
Serially

Generate a Double
Fault

Generate a Double
Fault
Vol. 3A 6-39

INTERRUPT AND EXCEPTION HANDLING
If the double fault occurs when any portion of the exception handling machine state
is corrupted, the handler cannot be invoked and the processor must be reset.
6-40 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor
detected a page or segment violation while transferring the middle portion of an
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU
using the FNINIT instruction.
Vol. 3A 6-41

INTERRUPT AND EXCEPTION HANDLING
Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected
during a task switch or during the execution of instructions that use information from
a TSS. Table 6-6 shows the conditions that cause an invalid TSS exception to be
generated.

Table 6-6. Invalid TSS Conditions
Error Code Index Invalid Condition

TSS segment selector index The TSS segment limit is less than 67H for 32-bit TSS or less than
2CH for 16-bit TSS.

TSS segment selector index During an IRET task switch, the TI flag in the TSS segment selector
indicates the LDT.

TSS segment selector index During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index During an IRET task switch, the busy flag in the TSS descriptor
indicates an inactive task.

TSS segment selector index During an IRET task switch, an attempt to load the backlink limit
faults.

TSS segment selector index During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index During an IRET task switch, the backlink points to a descriptor
which is not a busy TSS.

TSS segment selector index The new TSS descriptor is beyond the GDT limit.

TSS segment selector index The new TSS descriptor is not writable.

TSS segment selector index Stores to the old TSS encounter a fault condition.

TSS segment selector index The old TSS descriptor is not writable for a jump or IRET task
switch.

TSS segment selector index The new TSS backlink is not writable for a call or exception task
switch.

TSS segment selector index The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index The new TSS selector has the TI bit set on an attempt to lock the
new TSS.

TSS segment selector index The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index LDT or LDT not present.
6-42 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Stack segment selector
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector
index

The stack segment selector is NULL.

Stack segment selector
index

The stack segment descriptor is a non-data segment.

Stack segment selector
index

The stack segment is not writable.

Stack segment selector
index

The stack segment DPL != CPL.

Stack segment selector
index

The stack segment selector RPL != CPL.

Code segment selector
index

The code segment selector exceeds descriptor table limit.

Code segment selector
index

The code segment selector is NULL.

Code segment selector
index

The code segment descriptor is not a code segment type.

Code segment selector
index

The nonconforming code segment DPL != CPL.

Code segment selector
index

The conforming code segment DPL is greater than CPL.

Data segment selector index The data segment selector exceeds the descriptor table limit.

Data segment selector index The data segment descriptor is not a readable code or data type.

Data segment selector index The data segment descriptor is a nonconforming code type and
RPL > DPL.

Data segment selector index The data segment descriptor is a nonconforming code type and CPL
> DPL.

TSS segment selector index The TSS segment selector is NULL for LTR.

TSS segment selector index The TSS segment selector has the TI bit set for LTR.

TSS segment selector index The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index The TSS segment descriptor is not an available TSS type.

TSS segment selector index The TSS segment descriptor is an available 286 TSS type in IA-32e
mode.

Table 6-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition
Vol. 3A 6-43

INTERRUPT AND EXCEPTION HANDLING
This exception can generated either in the context of the original task or in the
context of the new task (see Section 7.3, “Task Switching”). Until the processor has
completely verified the presence of the new TSS, the exception is generated in the
context of the original task. Once the existence of the new TSS is verified, the task
switch is considered complete. Any invalid-TSS conditions detected after this point
are handled in the context of the new task. (A task switch is considered complete
when the task register is loaded with the segment selector for the new TSS and, if the
switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state
may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception was caused by an event external to the currently
running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the
saved contents of CS and EIP registers point to the instruction that invoked the task
switch. If the exception condition was detected after the task switch was carried out,
the saved contents of CS and EIP registers point to the first instruction of the new
task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error
condition than causes the fault. See Section 7.3, “Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

TSS segment selector index The TSS segment upper descriptor is not the correct type.

TSS segment selector index The TSS segment descriptor contains a non-canonical base.

TSS segment selector index There is a limit violation in attempting to load SS selector or ESP
from a TSS on a call or exception which changes privilege levels in
legacy mode.

TSS segment selector index There is a limit violation or canonical fault in attempting to load RSP
or IST from a TSS on a call or exception which changes privilege
levels in IA-32e mode.

Table 6-6. Invalid TSS Conditions (Contd.)
Error Code Index Invalid Condition
6-44 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
If an invalid TSS exception occurs during a task switch, it can occur before or after
the commit-to-new-task point. If it occurs before the commit point, no program state
change occurs. If it occurs after the commit point (when the segment descriptor
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it
generates the exception. During a task switch, the processor first loads all the
segment registers with segment selectors from the TSS, then checks their contents
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before
trying to resume the new task; otherwise, general-protection exceptions (#GP) may
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them
from the TSS.
Vol. 3A 6-45

INTERRUPT AND EXCEPTION HANDLING
Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor
can generate this exception during any of the following operations:
• While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-

present segment while loading the SS register causes a stack fault exception
(#SS) to be generated.] This situation can occur while performing a task switch.

• While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an
invalid-TSS exception (#TS) to be generated.

• When executing the LTR instruction and the TSS is marked not present.
• While attempting to use a gate descriptor or TSS that is marked segment-not-

present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement
virtual memory at the segment level. If the exception handler loads the segment and
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception resulted from either:
• an external event (NMI or INTR) that caused an interrupt, which subsequently

referenced a not-present segment
• a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT
entry for an interrupt being serviced references a not-present gate. Such an event
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that
generated the exception. If the exception occurred while loading segment descrip-
6-46 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
tors for the segment selectors in a new TSS, the CS and EIP registers point to the first
instruction in the new task. If the exception occurred while accessing a gate
descriptor, the CS and EIP registers point to the instruction that invoked the access
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS,
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by
simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before
or after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it
occurs before the commit point, no program state change occurs. If it occurs after
the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The segment-not-present exception handler should not rely on being
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information
on how to handle this situation.)
Vol. 3A 6-47

INTERRUPT AND EXCEPTION HANDLING
Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:
• A limit violation is detected during an operation that refers to the SS register.

Operations that can cause a limit violation include stack-oriented instructions
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory
references which implicitly or explicitly use the SS register (for example, MOV
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this
exception when there is not enough stack space for allocating local variables.

• A not-present stack segment is detected when attempting to load the SS register.
This violation can occur during the execution of a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS
instruction, or a MOV or POP instruction to the SS register.

• A canonical violation is detected in 64-bit mode during an operation that
reference memory using the stack pointer register containing a non-canonical
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment
(in the case of a limit violation) or loading the missing stack segment into memory (in
the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software,
recovery is possible by loading the correct canonical value into RSP. Otherwise, a
canonical violation of the address in RSP likely reflects some register corruption in
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new
stack during an inter-privilege-level call, the error code contains a segment selector
for the segment that caused the exception. Here, the exception handler can test the
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a normal limit violation (on a stack segment
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. However, when the exception results from attempting to
load a not-present stack segment during a task switch, the CS and EIP registers point
to the first instruction of the new task.
6-48 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Program State Change

A program-state change does not generally accompany a stack-fault exception,
because the instruction that generated the fault is not executed. Here, the instruction
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task
point (see Section 7.3, “Task Switching”). Here, the processor loads all the state
information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The stack fault handler should thus
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. The exception handler should
check all segment registers before trying to resume the new task; otherwise, general
protection faults may result later under conditions that are more difficult to diagnose.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)
Vol. 3A 6-49

INTERRUPT AND EXCEPTION HANDLING
Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault
exceptions). The following conditions cause general-protection exceptions to be
generated:
• Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS

segments.
• Exceeding the segment limit when referencing a descriptor table (except during a

task switch or a stack switch).
• Transferring execution to a segment that is not executable.
• Writing to a code segment or a read-only data segment.
• Reading from an execute-only code segment.
• Loading the SS register with a segment selector for a read-only segment (unless

the selector comes from a TSS during a task switch, in which case an invalid-TSS
exception occurs).

• Loading the SS, DS, ES, FS, or GS register with a segment selector for a system
segment.

• Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

• Loading the SS register with the segment selector of an executable segment or a
null segment selector.

• Loading the CS register with a segment selector for a data segment or a null
segment selector.

• Accessing memory using the DS, ES, FS, or GS register when it contains a null
segment selector.

• Switching to a busy task during a call or jump to a TSS.
• Using a segment selector on a non-IRET task switch that points to a TSS

descriptor in the current LDT. TSS descriptors can only reside in the GDT. This
condition causes a #TS exception during an IRET task switch.

• Violating any of the privilege rules described in Chapter 5, “Protection.”
• Exceeding the instruction length limit of 15 bytes (this only can occur when

redundant prefixes are placed before an instruction).
• Loading the CR0 register with a set PG flag (paging enabled) and a clear PE flag

(protection disabled).
6-50 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• Loading the CR0 register with a set NW flag and a clear CD flag.
• Referencing an entry in the IDT (following an interrupt or exception) that is not

an interrupt, trap, or task gate.
• Attempting to access an interrupt or exception handler through an interrupt or

trap gate from virtual-8086 mode when the handler’s code segment DPL is
greater than 0.

• Attempting to write a 1 into a reserved bit of CR4.
• Attempting to execute a privileged instruction when the CPL is not equal to 0 (see

Section 5.9, “Privileged Instructions,” for a list of privileged instructions).
• Writing to a reserved bit in an MSR.
• Accessing a gate that contains a null segment selector.
• Executing the INT n instruction when the CPL is greater than the DPL of the

referenced interrupt, trap, or task gate.
• The segment selector in a call, interrupt, or trap gate does not point to a code

segment.
• The segment selector operand in the LLDT instruction is a local type (TI flag is

set) or does not point to a segment descriptor of the LDT type.
• The segment selector operand in the LTR instruction is local or points to a TSS

that is not available.
• The target code-segment selector for a call, jump, or return is null.
• If the PAE and/or PSE flag in control register CR4 is set and the processor detects

any reserved bits in a page-directory-pointer-table entry set to 1. These bits are
checked during a write to control registers CR0, CR3, or CR4 that causes a
reloading of the page-directory-pointer-table entry.

• Attempting to write a non-zero value into the reserved bits of the MXCSR register.
• Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit

memory location that is not aligned on a 16-byte boundary when the instruction
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the
exception occurs while attempting to call an interrupt handler, the interrupted
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault
condition was detected while loading a segment descriptor, the error code contains a
segment selector to or IDT vector number for the descriptor; otherwise, the error
code is 0. The source of the selector in an error code may be any of the following:
• An operand of the instruction.
• A selector from a gate which is the operand of the instruction.
Vol. 3A 6-51

INTERRUPT AND EXCEPTION HANDLING
• A selector from a TSS involved in a task switch.
• IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception
handler can be designed to correct all of the conditions that cause general-protection
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or
after the commit-to-new-task point (see Section 7.3, “Task Switching”). If it occurs
before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The general-protection exception handler should thus not rely on
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
• If the memory address is in a non-canonical form.
• If a segment descriptor memory address is in non-canonical form.
• If the target offset in a destination operand of a call or jmp is in a non-canonical

form.
• If a code segment or 64-bit call gate overlaps non-canonical space.
• If the code segment descriptor pointed to by the selector in the 64-bit gate

doesn't have the L-bit set and the D-bit clear.
• If the EFLAGS.NT bit is set in IRET.
• If the stack segment selector of IRET is null when going back to compatibility

mode.
• If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.
• If a null stack segment selector RPL of IRET is not equal to CPL going back to non-

CPL3 and 64-bit mode.
• If the proposed new code segment descriptor of IRET has both the D-bit and the

L-bit set.
6-52 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• If the segment descriptor pointed to by the segment selector in the destination
operand is a code segment and it has both the D-bit and the L-bit set.

• If the segment descriptor from a 64-bit call gate is in non-canonical space.
• If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit

call-gate.
• If the upper type field of a 64-bit call gate is not 0x0.
• If an attempt is made to load a null selector in the SS register in compatibility

mode.
• If an attempt is made to load null selector in the SS register in CPL3 and 64-bit

mode.
• If an attempt is made to load a null selector in the SS register in non-CPL3 and

64-bit mode where RPL is not equal to CPL.
• If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
• If an attempt is made to set a reserved bit in CR3, CR4 or CR8.
Vol. 3A 6-53

INTERRUPT AND EXCEPTION HANDLING
Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CR0 register is set), the
processor detected one of the following conditions while using the page-translation
mechanism to translate a linear address to a physical address:
• The P (present) flag in a page-directory or page-table entry needed for the

address translation is clear, indicating that a page table or the page containing
the operand is not present in physical memory.

• The procedure does not have sufficient privilege to access the indicated page
(that is, a procedure running in user mode attempts to access a supervisor-mode
page).

• Code running in user mode attempts to write to a read-only page. In the Intel486
and later processors, if the WP flag is set in CR0, the page fault will also be
triggered by code running in supervisor mode that tries to write to a read-only
page.

• An instruction fetch to a linear address that translates to a physical address in a
memory page with the execute-disable bit set (for information about the
execute-disable bit, see Chapter 4, “Paging”).

• One or more reserved bits in page directory entry are set to 1. See description
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the
program or task without any loss of program continuity. It can also restart the
program or task after a privilege violation, but the problem that caused the privilege
violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of
information to aid in diagnosing the exception and recovering from it:
• An error code on the stack. The error code for a page fault has a format different

from that for other exceptions (see Figure 6-9). The error code tells the
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0)
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception
was a read (0) or write (1).
6-54 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
— The U/S flag indicates whether the processor was executing at user mode (1)
or supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the
page directory, when the PSE or PAE flags in control register CR4 are set to 1.
Note:

• The PSE flag is only available in recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

• The PAE flag is only available on recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, and P6 family processors.

• In earlier IA-32 processors, the bit position of the RSVD flag is reserved
and is cleared to 0.

— The I/D flag indicates whether the exception was caused by an instruction
fetch. This flag is reserved and cleared to 0 if CR4.PAE = 0 (32-bit paging is
in use) or IA32_EFER.NXE= 0 (the execute-disable feature is either
unsupported or not enabled). See Section 4.7, “Page-Fault Exceptions,” for
details.

• The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address that generated the exception. The page-fault handler can
use this address to locate the corresponding page directory and page-table
entries. Another page fault can potentially occur during execution of the page-
fault handler; the handler should save the contents of the CR2 register before a

Figure 6-9. Page-Fault Error Code

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.
The access causing the fault originated when the processor
was executing in user mode.

31 0

Reserved

1234

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.

P 0
1

W/R 0
1

U/S 0

RSVD 0
1

1

I/D

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PW
/R

U/S
RSVD
Vol. 3A 6-55

INTERRUPT AND EXCEPTION HANDLING
second page fault can occur.1 If a page fault is caused by a page-level protection
violation, the access flag in the page-directory entry is set when the fault occurs.
The behavior of IA-32 processors regarding the access flag in the corresponding
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. If the page-fault exception occurred during a task switch,
the CS and EIP registers may point to the first instruction of the new task (as
described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception,
because the instruction that causes the exception to be generated is not executed.
After the page-fault exception handler has corrected the violation (for example,
loaded the missing page into memory), execution of the program or task can be
resumed.

When a page-fault exception is generated during a task switch, the program-state
may change, as follows. During a task switch, a page-fault exception can occur
during any of following operations:
• While writing the state of the original task into the TSS of that task.
• While reading the GDT to locate the TSS descriptor of the new task.
• While reading the TSS of the new task.
• While reading segment descriptors associated with segment selectors from the

new task.
• While reading the LDT of the new task to verify the segment registers stored in

the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type
checks) before it generates the exception. The page-fault handler should thus not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change

1. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the
page fault results in a double fault or occurs during the delivery of a double fault.
6-56 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an
explicit stack switch does not cause the processor to use an invalid stack pointer
(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the
segment selector has been loaded into the SS register but before the ESP register
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler
switches to a well defined stack (that is, the handler is a task or a more privileged
procedure). However, if the exception handler is called at the same privilege level
and from the same task, the processor will attempt to use the inconsistent stack
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the
same privilege level as the exception handler should initialize a new stack by using
the LSS instruction rather than a pair of MOV instructions, as described earlier in this
note. When the exception handler is running at privilege level 0 (the normal case),
the problem is limited to procedures or tasks that run at privilege level 0, typically
the kernel of the operating system.
Vol. 3A 6-57

INTERRUPT AND EXCEPTION HANDLING
Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the
register CR0 must be set for an interrupt 16 (floating-point error exception) to be
generated. (See Section 2.5, “Control Registers,” for a detailed description of the NE
flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt
19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of
floating-point error conditions:
• Invalid operation (#I)

— Stack overflow or underflow (#IS)

— Invalid arithmetic operation (#IA)
• Divide-by-zero (#Z)
• Denormalized operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program
execution. The default responses have been designed to provide a reasonable result
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CR0 is set, the x87
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a
floating-point exception (#MF).
6-58 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU
floating-point-error exception handler can determine the error condition that caused
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT
instruction that was about to be executed when the floating-point-error exception
was generated. This is not the faulting instruction in which the error condition was
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “x87 FPU Instruction and Operand (Data) Pointers” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information about information the FPU saves for use in handling
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception
because the handling of the exception is delayed until the next waiting x87 FPU
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87
FPU, however, saves sufficient information about the error condition to allow
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in
front of a dependent instruction to force a pending x87 FPU floating-point exception
to be handled before the dependent instruction is executed. See “x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about synchronization of x87
floating-point-error exceptions.
Vol. 3A 6-59

INTERRUPT AND EXCEPTION HANDLING
Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment
checking was enabled. Alignment checks are only carried out in data (or stack)
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored
at an address that is not an integer multiple of 4. Table 6-7 lists the alignment
requirements various data types recognized by the processor.

Note that the alignment check exception (#AC) is generated only for data types that
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a
16-byte boundary.

To enable alignment checking, the following conditions must be true:
• AM flag in CR0 register is set.

Table 6-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80-
bits)

8

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size

FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.
6-60 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
• AC flag in the EFLAGS register is set.
• The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege
level 3 (user mode). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate alignment-check exceptions, even when
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at
privilege level 3 can generate an alignment-check exception. Although application
programs do not normally store these registers, the fault can be avoided by aligning
the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte
data structure, the first byte of which must be aligned on a 16-byte boundary. If the
alignment-check exception (#AC) is enabled when executing these instructions (and
CPL is 3), a misaligned memory operand can cause either an alignment-check excep-
tion or a general-protection exception (#GP) depending on the processor implemen-
tation (see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and “FXRSTOR-
Restore x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A; see “XSAVE—Save
Processor Extended States” and “XRSTOR—Restore Processor Extended States” in
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads
or stores. The LDDQU instructions loads 128-bit unaligned data.They do not generate
general-protection exceptions (#GP) when operands are not aligned on a 16-byte
boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may
or may not be generated depending on processor implementation when data
addresses are not aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause
alignment-check faults. These instructions are rarely needed by application
programs.

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT; see Section
6.13. EXT is set if the #AC is recognized during delivery of an event other than a soft-
ware interrupt (see “INT n/INTO/INT 3—Call to Interrupt Procedure” in Chapter 3 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.
Vol. 3A 6-61

INTERRUPT AND EXCEPTION HANDLING
Program State Change

A program-state change does not accompany an alignment-check fault, because the
instruction is not executed.
6-62 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor
families, and these implementations may not be compatible with future Intel 64 or
IA-32 processors. (Use the CPUID instruction to determine whether this feature is
present.)

Bus errors detected by external agents are signaled to the processor on dedicated
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family
processors and the BUSCHK# pin on the Pentium processor. When one of these pins
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail
in Chapter 15, “Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended
machine-check state registers are directly associated with the error that caused the
machine-check exception to be generated (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, “IA32_MCG Extended Machine
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the
saved contents of CS and EIP registers are directly associated with the error that
caused the machine-check exception to be generated; if the flag is clear, the saved
instruction pointer may not be associated with the error (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR”).

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register
CR4.
Vol. 3A 6-63

INTERRUPT AND EXCEPTION HANDLING
For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be
collected from the machine-check MSRs, but the program cannot generally be
restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4
is clear), a machine-check exception causes the processor to enter the shutdown
state.
6-64 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular
exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing
an SSE/ SSE2/SSE3 SIMD floating-point instruction:
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for additional information
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the
following things:
• It handles the exception automatically by producing the most reasonable result

and allowing program execution to continue undisturbed. This is the response to
masked exceptions.

• It generates a SIMD floating-point exception, which in turn invokes a software
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit
and mask bit in the MXCSR register. If an exception is masked (the corresponding
mask bit in the MXCSR register is set), the processor takes an appropriate automatic
default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating
system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.
Vol. 3A 6-65

INTERRUPT AND EXCEPTION HANDLING
Note that because SIMD floating-point exceptions are precise and occur immediately,
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction,
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD
floating-point exceptions were masked (causing the corresponding exception flag to
be set) and the SIMD floating-point exception was subsequently unmasked, then no
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands
(made up of two or four sub-operands), multiple SIMD floating-point exception
conditions may be detected. If no more than one exception condition is detected for
one or more sets of sub-operands, the exception flags are set for each exception
condition detected. For example, an invalid exception detected for one sub-operand
will not prevent the reporting of a divide-by-zero exception for another sub-operand.
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences
shown in Table 6-8. This exception precedence sometimes results in the higher
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Exception Error Code

None.

Table 6-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exception2.

4 Denormal operand exception2.

5 Numeric overflow and underflow exceptions possibly in conjunction with the
inexact result exception2.

6 (Lowest) Inexact result exception.

NOTES:
1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over

lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as
well.
6-66 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING
Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction
that was executed when the SIMD floating-point exception was generated. This is the
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception
because the handling of the exception is immediate unless the particular exception is
masked. The available state information is often sufficient to allow recovery from the
error and re-execution of the faulting instruction if needed.
Vol. 3A 6-67

INTERRUPT AND EXCEPTION HANDLING
Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:
• Executed an INT n instruction where the instruction operand is one of the vector

numbers from 32 through 255.
• Responded to an interrupt request at the INTR pin or from the local APIC when

the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the
INT n instruction or instruction following the instruction on which the INTR signal
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n
instruction or the INTR signal. The INT n instruction generates the interrupt within
the instruction stream. When the processor receives an INTR signal, it commits all
state changes for all previous instructions before it responds to the interrupt; so,
program execution can resume upon returning from the interrupt handler.
6-68 Vol. 3A

CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These
facilities are only available when the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on
16-bit tasks and the 16-bit TSS structure, see Section 7.6, “16-Bit Task-State
Segment (TSS).” For information specific to task management in 64-bit mode, see
Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW
A task is a unit of work that a processor can dispatch, execute, and suspend. It can
be used to execute a program, a task or process, an operating-system service utility,
an interrupt or exception handler, or a kernel or executive utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for
dispatching tasks for execution, and for switching from one task to another. When
operating in protected mode, all processor execution takes place from within a task.
Even simple systems must define at least one task. More complex systems can use
the processor’s task management facilities to support multitasking applications.

7.1.1 Task Structure
A task is made up of two parts: a task execution space and a task-state segment
(TSS). The task execution space consists of a code segment, a stack segment, and
one or more data segments (see Figure 7-1). If an operating system or executive
uses the processor’s privilege-level protection mechanism, the task execution space
also provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides
a storage place for task state information. In multitasking systems, the TSS also
provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the
processor for execution, the segment selector, base address, limit, and segment
descriptor attributes for the TSS are loaded into the task register (see Section 2.4.4,
“Task Register (TR)”).

If paging is implemented for the task, the base address of the page directory used by
the task is loaded into control register CR3.
Vol. 3A 7-1

TASK MANAGEMENT
7.1.2 Task State
The following items define the state of the currently executing task:
• The task’s current execution space, defined by the segment selectors in the

segment registers (CS, DS, SS, ES, FS, and GS).
• The state of the general-purpose registers.
• The state of the EFLAGS register.
• The state of the EIP register.
• The state of control register CR3.
• The state of the task register.
• The state of the LDTR register.
• The I/O map base address and I/O map (contained in the TSS).
• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except
the state of the task register. Also, the complete contents of the LDTR register are not
contained in the TSS, only the segment selector for the LDT.

Figure 7-1. Structure of a Task

Code
Segment

Stack
Segment

(Current Priv.

Data
Segment

Stack Seg.
Priv. Level 0

Stack Seg.
Priv. Level 1

Stack
Segment

(Priv. Level 2)

Task-State
Segment

(TSS)

Task Register

CR3

Level)
7-2 Vol. 3A

TASK MANAGEMENT
7.1.3 Executing a Task
Software or the processor can dispatch a task for execution in one of the following
ways:
• A explicit call to a task with the CALL instruction.
• A explicit jump to a task with the JMP instruction.
• An implicit call (by the processor) to an interrupt-handler task.
• An implicit call to an exception-handler task.
• A return (initiated with an IRET instruction) when the NT flag in the EFLAGS

register is set.

All of these methods for dispatching a task identify the task to be dispatched with a
segment selector that points to a task gate or the TSS for the task. When dispatching
a task with a CALL or JMP instruction, the selector in the instruction may select the
TSS directly or a task gate that holds the selector for the TSS. When dispatching a
task to handle an interrupt or exception, the IDT entry for the interrupt or exception
must contain a task gate that holds the selector for the interrupt- or exception-
handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently
running task and the dispatched task. During a task switch, the execution environ-
ment of the currently executing task (called the task’s state or context) is saved in
its TSS and execution of the task is suspended. The context for the dispatched task is
then loaded into the processor and execution of that task begins with the instruction
pointed to by the newly loaded EIP register. If the task has not been run since the
system was last initialized, the EIP will point to the first instruction of the task’s code;
otherwise, it will point to the next instruction after the last instruction that the task
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the
called task), the TSS segment selector for the calling task is stored in the TSS of the
called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here,
the processor performs a task switch to handle the interrupt or exception and auto-
matically switches back to the interrupted task upon returning from the interrupt-
handler task or exception-handler task. This mechanism can also handle interrupts
that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each
task to have a different logical-to-physical address mapping for LDT-based segments.
The page-directory base register (CR3) also is reloaded on a task switch, allowing
each task to have its own set of page tables. These protection facilities help isolate
tasks and prevent them from interfering with one another.

If protection mechanisms are not used, the processor provides no protection
between tasks. This is true even with operating systems that use multiple privilege
levels for protection. A task running at privilege level 3 that uses the same LDT and
Vol. 3A 7-3

TASK MANAGEMENT
page tables as other privilege-level-3 tasks can access code and corrupt data and the
stack of other tasks.

Use of task management facilities for handling multitasking applications is optional.
Multitasking can be handled in software, with each software defined task executed in
the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES
The processor defines five data structures for handling task-related activities:
• Task-state segment (TSS).
• Task-gate descriptor.
• TSS descriptor.
• Task register.
• NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at
least one task, and the segment selector for the TSS must be loaded into the task
register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)
The processor state information needed to restore a task is saved in a system
segment called the task-state segment (TSS). Figure 7-2 shows the format of a TSS
for tasks designed for 32-bit CPUs. The fields of a TSS are divided into two main cate-
gories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6,
“16-Bit Task-State Segment (TSS).” For information about 64-bit mode task struc-
tures, see Section 7.7, “Task Management in 64-bit Mode.”
7-4 Vol. 3A

TASK MANAGEMENT
The processor updates dynamic fields when a task is suspended during a task switch.
The following are dynamic fields:
• General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP,

ESI, and EDI registers prior to the task switch.
• Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS,

and GS registers prior to the task switch.
• EFLAGS register field — State of the EFAGS register prior to the task switch.

Figure 7-2. 32-Bit Task-State Segment (TSS)

031

100

96

92

88

84

80

76

I/O Map Base Address

15

LDT Segment Selector

GS

FS

DS

SS

CS

72

68

64

60

56

52

48

44

40

36

32

28

24

20

SS2

16

12

8

4

0

SS1

SS0

ESP0

Previous Task Link

ESP1

ESP2

CR3 (PDBR)

T

ES

EDI

ESI

EBP

ESP

EBX

EDX

ECX

EAX

EFLAGS

EIP

Reserved bits. Set to 0.

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
Vol. 3A 7-5

TASK MANAGEMENT
• EIP (instruction pointer) field — State of the EIP register prior to the task
switch.

• Previous task link field — Contains the segment selector for the TSS of the
previous task (updated on a task switch that was initiated by a call, interrupt, or
exception). This field (which is sometimes called the back link field) permits a
task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These
fields are set up when a task is created. The following are static fields:
• LDT segment selector field — Contains the segment selector for the task's

LDT.
• CR3 control register field — Contains the base physical address of the page

directory to be used by the task. Control register CR3 is also known as the page-
directory base register (PDBR).

• Privilege level-0, -1, and -2 stack pointer fields — These stack pointers
consist of a logical address made up of the segment selector for the stack
segment (SS0, SS1, and SS2) and an offset into the stack (ESP0, ESP1, and
ESP2). Note that the values in these fields are static for a particular task;
whereas, the SS and ESP values will change if stack switching occurs within the
task.

• T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the
processor to raise a debug exception when a task switch to this task occurs (see
Section 16.3.1.5, “Task-Switch Exception Condition”).

• I/O map base address field — Contains a 16-bit offset from the base of the
TSS to the I/O permission bit map and interrupt redirection bitmap. When
present, these maps are stored in the TSS at higher addresses. The I/O map base
address points to the beginning of the I/O permission bit map and the end of the
interrupt redirection bit map. See Chapter 13, “Input/Output,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for more
information about the I/O permission bit map. See Section 17.3, “Interrupt and
Exception Handling in Virtual-8086 Mode,” for a detailed description of the
interrupt redirection bit map.

If paging is used:
• Avoid placing a page boundary in the part of the TSS that the processor reads

during a task switch (the first 104 bytes). The processor may not correctly
perform address translations if a boundary occurs in this area. During a task
switch, the processor reads and writes into the first 104 bytes of each TSS (using
contiguous physical addresses beginning with the physical address of the first
byte of the TSS). So, after TSS access begins, if part of the 104 bytes is not
physically contiguous, the processor will access incorrect information without
generating a page-fault exception.

• Pages corresponding to the previous task’s TSS, the current task’s TSS, and the
descriptor table entries for each all should be marked as read/write.
7-6 Vol. 3A

TASK MANAGEMENT
• Task switches are carried out faster if the pages containing these structures are
present in memory before the task switch is initiated.

7.2.2 TSS Descriptor
The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3
shows the format of a TSS descriptor. TSS descriptors may only be placed in the GDT;
they cannot be placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indi-
cates the current LDT) causes a general-protection exception (#GP) to be generated
during CALLs and JMPs; it causes an invalid TSS exception (#TS) during IRETs. A
general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is
currently running or suspended. A type field with a value of 1001B indicates an inac-
tive task; a value of 1011B indicates a busy task. Tasks are not recursive. The
processor uses the busy flag to detect an attempt to call a task whose execution has
been interrupted. To insure that there is only one busy flag is associated with a task,
each TSS should have only one TSS descriptor that points to it.

The base, limit, and DPL fields and the granularity and present flags have functions
similar to their use in data-segment descriptors (see Section 3.4.5, “Segment
Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field
must have a value equal to or greater than 67H, one byte less than the minimum size

Figure 7-3. TSS Descriptor

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:16

0
1B01

TSS Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

Vol. 3A 7-7

TASK MANAGEMENT
of a TSS. Attempting to switch to a task whose TSS descriptor has a limit less than
67H generates an invalid-TSS exception (#TS). A larger limit is required if an I/O
permission bit map is included or if the operating system stores additional data. The
processor does not check for a limit greater than 67H on a task switch; however, it
does check when accessing the I/O permission bit map or interrupt redirection bit
map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is
numerically equal to or less than the DPL of the TSS descriptor) can dispatch the task
with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that
only privileged software can perform task switching. However, in multitasking appli-
cations, DPLs for some TSS descriptors may be set to 3 to allow task switching at the
application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode
In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The
format of a 64-bit TSS is described in Section 7.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This
expansion also applies to an LDT descriptor in 64-bit mode. Table 3-2 provides the
encoding information for the segment type field.
7-8 Vol. 3A

TASK MANAGEMENT
7.2.4 Task Register
The task register holds the 16-bit segment selector and the entire segment
descriptor (32-bit base address (64 bits in IA-32e mode), 16-bit segment limit, and
descriptor attributes) for the TSS of the current task (see Figure 2-5). This informa-
tion is copied from the TSS descriptor in the GDT for the current task. Figure 7-5
shows the path the processor uses to access the TSS (using the information in the
task register).

The task register has a visible part (that can be read and changed by software) and
an invisible part (maintained by the processor and is inaccessible by software). The
segment selector in the visible portion points to a TSS descriptor in the GDT. The
processor uses the invisible portion of the task register to cache the segment
descriptor for the TSS. Caching these values in a register makes execution of the task
more efficient. The LTR (load task register) and STR (store task register) instructions
load and read the visible portion of the task register:

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

PBase 31:24 G
D
P
L

Type

0
0

31 16 15 0

Base Address 15:00 Segment Limit 15:00

Base 23:16
A
V
L

Limit
19:16

0

TSS (or LDT) Descriptor

AVL
B
BASE
DPL
G

Available for use by system software
Busy flag
Segment Base Address
Descriptor Privilege Level
Granularity

LIMIT
P
TYPE

Segment Limit
Segment Present
Segment Type

0

4

31 13 12 8 7 0

Reserved

31 0

Base Address 63:32

Reserved0

8

12
Vol. 3A 7-9

TASK MANAGEMENT
The LTR instruction loads a segment selector (source operand) into the task register
that points to a TSS descriptor in the GDT. It then loads the invisible portion of the
task register with information from the TSS descriptor. LTR is a privileged instruction
that may be executed only when the CPL is 0. It’s used during system initialization to
put an initial value in the task register. Afterwards, the contents of the task register
are changed implicitly when a task switch occurs.

The STR (store task register) instruction stores the visible portion of the task register
in a general-purpose register or memory. This instruction can be executed by code
running at any privilege level in order to identify the currently running task. However,
it is normally used only by operating system software.

On power up or reset of the processor, segment selector and base address are set to
the default value of 0; the limit is set to FFFFH.

Figure 7-5. Task Register

Segment LimitSelector

+

GDT

TSS Descriptor

0

Base Address
Task

Invisible PartVisible Part

TSS

Register
7-10 Vol. 3A

TASK MANAGEMENT
7.2.5 Task-Gate Descriptor
A task-gate descriptor provides an indirect, protected reference to a task (see
Figure 7-6). It can be placed in the GDT, an LDT, or the IDT. The TSS segment
selector field in a task-gate descriptor points to a TSS descriptor in the GDT. The RPL
in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task
switch. When a program or procedure makes a call or jump to a task through a task
gate, the CPL and the RPL field of the gate selector pointing to the task gate must be
less than or equal to the DPL of the task-gate descriptor. Note that when a task gate
is used, the DPL of the destination TSS descriptor is not used.

A task can be accessed either through a task-gate descriptor or a TSS descriptor.
Both of these structures satisfy the following needs:
• Need for a task to have only one busy flag — Because the busy flag for a task

is stored in the TSS descriptor, each task should have only one TSS descriptor.
There may, however, be several task gates that reference the same TSS
descriptor.

• Need to provide selective access to tasks — Task gates fill this need, because
they can reside in an LDT and can have a DPL that is different from the TSS
descriptor's DPL. A program or procedure that does not have sufficient privilege
to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0)
may be allowed access to the task through a task gate with a higher DPL. Task
gates give the operating system greater latitude for limiting access to specific
tasks.

• Need for an interrupt or exception to be handled by an independent task
— Task gates may also reside in the IDT, which allows interrupts and exceptions

Figure 7-6. Task-Gate Descriptor

31 16 15 1314 12 11 8 7 0

P
D
P
L

Type

0

31 16 15 0

TSS Segment Selector

1010

DPL
P
TYPE

Descriptor Privilege Level
Segment Present
Segment Type

4

0Reserved

ReservedReserved
Vol. 3A 7-11

TASK MANAGEMENT
to be handled by handler tasks. When an interrupt or exception vector points to
a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task
gate in the IDT can all point to the same task.

7.3 TASK SWITCHING
The processor transfers execution to another task in one of four cases:
• The current program, task, or procedure executes a JMP or CALL instruction to a

TSS descriptor in the GDT.
• The current program, task, or procedure executes a JMP or CALL instruction to a

task-gate descriptor in the GDT or the current LDT.

Figure 7-7. Task Gates Referencing the Same Task

LDT

Task Gate

TSSGDT

TSS Descriptor

IDT

Task Gate

Task Gate
7-12 Vol. 3A

TASK MANAGEMENT
• An interrupt or exception vector points to a task-gate descriptor in the IDT.
• The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mech-
anisms for redirecting a program. The referencing of a TSS descriptor or a task gate
(when calling or jumping to a task) or the state of the NT flag (when executing an
IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the JMP or
CALL instruction, from a task gate, or from the previous task link field (for a task
switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-
access privilege rules apply to JMP and CALL instructions. The CPL of the current
(old) task and the RPL of the segment selector for the new task must be less than
or equal to the DPL of the TSS descriptor or task gate being referenced.
Exceptions, interrupts (except for interrupts generated by the INT n instruction),
and the IRET instruction are permitted to switch tasks regardless of the DPL of
the destination task-gate or TSS descriptor. For interrupts generated by the INT n
instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid
limit (greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy
(IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in
the task switch are paged into system memory.

6. If the task switch was initiated with a JMP or IRET instruction, the processor
clears the busy (B) flag in the current (old) task’s TSS descriptor; if initiated with
a CALL instruction, an exception, or an interrupt: the busy (B) flag is left set.
(See Table 7-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the
NT flag in a temporarily saved image of the EFLAGS register; if initiated with a
CALL or JMP instruction, an exception, or an interrupt, the NT flag is left
unchanged in the saved EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor
finds the base address of the current TSS in the task register and then copies the
states of the following registers into the current TSS: all the general-purpose
registers, segment selectors from the segment registers, the temporarily saved
image of the EFLAGS register, and the instruction pointer register (EIP).

9. If the task switch was initiated with a CALL instruction, an exception, or an
interrupt, the processor will set the NT flag in the EFLAGS loaded from the new
task. If initiated with an IRET instruction or JMP instruction, the NT flag will reflect
the state of NT in the EFLAGS loaded from the new task (see Table 7-2).
Vol. 3A 7-13

TASK MANAGEMENT
10. If the task switch was initiated with a CALL instruction, JMP instruction, an
exception, or an interrupt, the processor sets the busy (B) flag in the new task’s
TSS descriptor; if initiated with an IRET instruction, the busy (B) flag is left set.

11. Loads the task register with the segment selector and descriptor for the new
task's TSS.

12. The TSS state is loaded into the processor. This includes the LDTR register, the
PDBR (control register CR3), the EFLAGS register, the EIP register, the general-
purpose registers, and the segment selectors. A fault during the load of this state
may corrupt architectural state.

13. The descriptors associated with the segment selectors are loaded and qualified.
Any errors associated with this loading and qualification occur in the context of
the new task and may corrupt architectural state.

NOTES
If all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error
occurs in steps 1 through 11, the processor does not complete the
task switch and insures that the processor is returned to its state
prior to the execution of the instruction that initiated the task switch.

If an unrecoverable error occurs in step 12, architectural state may
be corrupted, but an attempt will be made to handle the error in the
prior execution environment. If an unrecoverable error occurs after
the commit point (in step 13), the processor completes the task
switch (without performing additional access and segment avail-
ability checks) and generates the appropriate exception prior to
beginning execution of the new task.

If exceptions occur after the commit point, the exception handler
must finish the task switch itself before allowing the processor to
begin executing the new task. See Chapter 6, “Interrupt 10—Invalid
TSS Exception (#TS),” for more information about the affect of
exceptions on a task when they occur after the commit point of a task
switch.

14. Begins executing the new task. (To an exception handler, the first instruction of
the new task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task
switch occurs. If the task is resumed, execution starts with the instruction pointed to
by the saved EIP value, and the registers are restored to the values they held when
the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege
level from the suspended task. The new task begins executing at the privilege level
specified in the CPL field of the CS register, which is loaded from the TSS. Because
tasks are isolated by their separate address spaces and TSSs and because privilege
7-14 Vol. 3A

TASK MANAGEMENT
rules control access to a TSS, software does not need to perform explicit privilege
checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when
switching tasks. It also shows the exception that is generated for each check if an
error is detected and the segment that the error code references. (The order of the
checks in the table is the order used in the P6 family processors. The exact order is
model specific and may be different for other IA-32 processors.) Exception handlers
designed to handle these exceptions may be subject to recursive calls if they attempt
to reload the segment selector that generated the exception. The cause of the excep-
tion (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1. Exception Conditions Checked During a Task Switch
Condition Checked Exception1 Error Code

Reference2

Segment selector for a TSS descriptor references
the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s TSS

TSS descriptor is present in memory. #NP New Task’s TSS

TSS descriptor is not busy (for task switch initiated
by a call, interrupt, or exception).

#GP (for JMP, CALL,
INT)

Task’s back-link TSS

TSS descriptor is not busy (for task switch initiated
by an IRET instruction).

#TS (for IRET) New Task’s TSS

TSS segment limit greater than or equal to 108 (for
32-bit TSS) or 44 (for 16-bit TSS).

#TS New Task’s TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment

SS segment selector is valid 2. #TS New Stack Segment

Stack segment is present in memory. #SS New Stack Segment

Stack segment DPL matches CPL. #TS New stack segment

LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment

Code segment is present in memory. #NP New Code Segment

Stack segment DPL matches selector RPL. #TS New Stack Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data Segment

DS, ES, FS, and GS segments are readable. #TS New Data Segment
Vol. 3A 7-15

TASK MANAGEMENT
The TS (task switched) flag in the control register CR0 is set every time a task switch
occurs. System software uses the TS flag to coordinate the actions of floating-point
unit when generating floating-point exceptions with the rest of the processor. The TS
flag indicates that the context of the floating-point unit may be different from that of
the current task. See Section 2.5, “Control Registers”, for a detailed description of
the function and use of the TS flag.

7.4 TASK LINKING
The previous task link field of the TSS (sometimes called the “backlink”) and the NT
flag in the EFLAGS register are used to return execution to the previous task.
EFLAGS.NT = 1 indicates that the currently executing task is nested within the
execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the
processor copies the segment selector for the current TSS to the previous task link
field of the TSS for the new task; it then sets EFLAGS.NT = 1. If software uses an
IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1;
it then uses the value in the previous task link field to return to the previous task. See
Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The
previous task link field is not used and EFLAGS.NT = 0. Use a JMP instruction to
dispatch a new task when nesting is not desired.

DS, ES, FS, and GS segments are present in memory. #NP New Data Segment

DS, ES, FS, and GS segment DPL greater than or
equal to CPL (unless these are
conforming segments).

#TS New Data Segment

NOTES:
1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS

exception, and #SS is stack-fault exception.
2. The error code contains an index to the segment descriptor referenced in this column.
3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address

within the table's segment limit, and refers to a compatible type of descriptor (for example, a seg-
ment selector in the CS register only is valid when it points to a code-segment descriptor).

Table 7-1. Exception Conditions Checked During a Task Switch (Contd.)
Condition Checked Exception1 Error Code

Reference2
7-16 Vol. 3A

TASK MANAGEMENT
Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CR0) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is
possible for a program to set the NT flag and execute an IRET instruction. This might
randomly invoke the task specified in the previous link field of the current task's TSS.
To keep such spurious task switches from succeeding, the operating system should
initialize the previous task link field in every TSS that it creates to 0.

Figure 7-8. Nested Tasks

Table 7-2. Effect of a Task Switch on Busy Flag, NT Flag,
Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP
instruction

Effect of CALL
Instruction or

Interrupt

Effect of IRET
Instruction

Busy (B) flag of new
task.

Flag is set. Must have
been clear before.

Flag is set. Must have
been clear before.

No change. Must have
been set.

Busy flag of old task. Flag is cleared. No change. Flag is
currently set.

Flag is cleared.

NT flag of new task. Set to value from TSS
of new task.

Flag is set. Set to value from TSS
of new task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field
of new task.

No change. Loaded with selector
for old task’s TSS.

No change.

Previous task link field
of old task.

No change. No change. No change.

TS flag in control
register CR0.

Flag is set. Flag is set. Flag is set.

Top Level
Task

NT=0

Previous

TSS

Nested
Task

NT=1

TSS

More Deeply
Nested Task

NT=1

TSS

Currently Executing
Task

NT=1

EFLAGS

Task RegisterTask Link
Previous

Task Link
Previous

Task Link
Vol. 3A 7-17

TASK MANAGEMENT
7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), a recursive (or re-entrant) call to the task would cause the current
state of the task to be lost. The busy flag in the TSS segment descriptor is provided
to prevent re-entrant task switching and a subsequent loss of task state information.
The processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task
switch is being generated by a CALL instruction, an interrupt, or an exception),
the busy flag for the current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or
exception), the processor generates a general-protection exception (#GP) if the
busy flag of the new task is already set. If the task switch is initiated with an IRET
instruction, the exception is not raised because the processor expects the busy
flag to be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP
instruction in the task code) or by an IRET instruction in the task code, the
processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching
to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy
flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor
follows a LOCK protocol (on the bus or in the cache) when it sets or clears the busy
flag. This lock keeps two processors from invoking the same task at the same time.
See Section 8.1.2.1, “Automatic Locking,” for more information about setting the
busy flag in a multiprocessor applications.

7.4.2 Modifying Task Linkages
In a uniprocessor system, in situations where it is necessary to remove a task from a
chain of linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task
that suspended the task to be removed). It is assumed that the pre-empting task
is the next task (newer task) in the chain from the task to be removed. Change
the previous task link field to point to the TSS of the next oldest task in the chain
or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed
from the chain. If more than one task is being removed from the chain, the busy
flag for each task being remove must be cleared.

4. Enable interrupts.
7-18 Vol. 3A

TASK MANAGEMENT
In a multiprocessing system, additional synchronization and serialization operations
must be added to this procedure to insure that the TSS and its segment descriptor
are both locked when the previous task link field is changed and the busy flag is
cleared.

7.5 TASK ADDRESS SPACE
The address space for a task consists of the segments that the task can access.
These segments include the code, data, stack, and system segments referenced in
the TSS and any other segments accessed by the task code. The segments are
mapped into the processor’s linear address space, which is in turn mapped into the
processor’s physical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a
task its own LDT allows the task address space to be isolated from other tasks by
placing the segment descriptors for all the segments associated with the task in the
task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient
way to allow specific tasks to communicate with or control each other, without drop-
ping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared
segments accessed through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to
have its own set of page tables for mapping linear addresses to physical addresses.
Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
Tasks can be mapped to the linear address space and physical address space in one
of two ways:
• One linear-to-physical address space mapping is shared among all tasks.

— When paging is not enabled, this is the only choice. Without paging, all linear
addresses map to the same physical addresses. When paging is enabled, this
form of linear-to-physical address space mapping is obtained by using one page
directory for all tasks. The linear address space may exceed the available
physical space if demand-paged virtual memory is supported.

• Each task has its own linear address space that is mapped to the physical
address space. — This form of mapping is accomplished by using a different
page directory for each task. Because the PDBR (control register CR3) is loaded
on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables
Vol. 3A 7-19

TASK MANAGEMENT
and the page tables point to different pages of physical memory, then the tasks do
not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks
must lie in a shared area of the physical space, which is accessible to all tasks. This
mapping is required so that the mapping of TSS addresses does not change while the
processor is reading and updating the TSSs during a task switch. The linear address
space mapped by the GDT also should be mapped to a shared area of the physical
space; otherwise, the purpose of the GDT is defeated. Figure 7-9 shows how the
linear address spaces of two tasks can overlap in the physical space by sharing page
tables.

7.5.2 Task Logical Address Space
To allow the sharing of data among tasks, use the following techniques to create
shared logical-to-physical address-space mappings for data segments:
• Through the segment descriptors in the GDT — All tasks must have access

to the segment descriptors in the GDT. If some segment descriptors in the GDT
point to segments in the linear-address space that are mapped into an area of the
physical-address space common to all tasks, then all tasks can share the data
and code in those segments.

• Through a shared LDT — Two or more tasks can use the same LDT if the LDT
fields in their TSSs point to the same LDT. If some segment descriptors in a

Figure 7-9. Overlapping Linear-to-Physical Mappings

Task A
TSS

PDE

Page Directories

PDE

PTE
PTE
PTE

PTE
PTE

Page Tables Page Frames

Task A

Task A

Shared

Shared

Task B

Task B

Shared PT

PTE
PTE

PDE
PDE

PDBR

PDBR

Task A TSS

Task B TSS
7-20 Vol. 3A

TASK MANAGEMENT
shared LDT point to segments that are mapped to a common area of the physical
address space, the data and code in those segments can be shared among the
tasks that share the LDT. This method of sharing is more selective than sharing
through the GDT, because the sharing can be limited to specific tasks. Other
tasks in the system may have different LDTs that do not give them access to the
shared segments.

• Through segment descriptors in distinct LDTs that are mapped to
common addresses in linear address space — If this common area of the
linear address space is mapped to the same area of the physical address space
for each task, these segment descriptors permit the tasks to share segments.
Such segment descriptors are commonly called aliases. This method of sharing is
even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)
The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in
Intel 286 processors (see Figure 7-10). This format is supported for compatibility
with software written to run on earlier IA-32 processors.

The following information is important to know about the 16-bit TSS.
• Do not use a 16-bit TSS to implement a virtual-8086 task.
• The valid segment limit for a 16-bit TSS is 2CH.
• The 16-bit TSS does not contain a field for the base address of the page directory,

which is loaded into control register CR3. A separate set of page tables for each
task is not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-
table structure for the previous task is used.

• The I/O base address is not included in the 16-bit TSS. None of the functions of
the I/O map are supported.

• When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register
and the EIP register are lost.

• When the general-purpose registers are loaded or saved from a 16-bit TSS, the
upper 16 bits of the registers are modified and not maintained.
Vol. 3A 7-21

TASK MANAGEMENT
7.7 TASK MANAGEMENT IN 64-BIT MODE
In 64-bit mode, task structure and task state are similar to those in protected mode.
However, the task switching mechanism available in protected mode is not supported
in 64-bit mode. Task management and switching must be performed by software.
The processor issues a general-protection exception (#GP) if the following is
attempted in 64-bit mode:
• Control transfer to a TSS or a task gate using JMP, CALL, INTn, or interrupt.
• An IRET with EFLAGS.NT (nested task) set to 1.

Figure 7-10. 16-Bit TSS Format

Task LDT Selector

DS Selector

SS Selector

CS Selector

ES Selector

DI

SI

BP

SP

BX

DX

CX

AX

FLAG Word

IP (Entry Point)

SS2

SP2

SS1

SP1

SS0

SP0

Previous Task Link

15 0

42

40

36

34

32

30

38

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

7-22 Vol. 3A

TASK MANAGEMENT
Although hardware task-switching is not supported in 64-bit mode, a 64-bit task
state segment (TSS) must exist. Figure 7-11 shows the format of a 64-bit TSS. The
TSS holds information important to 64-bit mode and that is not directly related to the
task-switch mechanism. This information includes:
• RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege

levels 0-2.
• ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
• I/O map base address — The 16-bit offset to the I/O permission bit map from

the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e
mode. It must execute the LTR instruction (in 64-bit mode) to load the TR register
with a pointer to the 64-bit TSS responsible for both 64-bit-mode programs and
compatibility-mode programs.
Vol. 3A 7-23

TASK MANAGEMENT
Figure 7-11. 64-Bit TSS Format

031

100

96

92

88

84

80

76

I/O Map Base Address

15

72

68

64

60

56

52

48

44

40

36

32

28

24

20

16

12

8

4

0

RSP0 (lower 32 bits)

RSP1 (lower 32 bits)

RSP2 (lower 32 bits)

Reserved bits. Set to 0.

RSP0 (upper 32 bits)

RSP1 (upper 32 bits)

RSP2 (upper 32 bits)

IST1 (lower 32 bits)

IST1 (upper 32 bits)

IST2 (lower 32 bits)

IST3 (lower 32 bits)

IST4 (lower 32 bits)

IST5 (lower 32 bits)

IST6 (lower 32 bits)

IST7 (lower 32 bits)

IST2 (upper 32 bits)

IST3 (upper 32 bits)

IST4 (upper 32 bits)

IST5 (upper 32 bits)

IST6 (upper 32 bits)

IST7 (upper 32 bits)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved
7-24 Vol. 3A

CHAPTER 8
MULTIPLE-PROCESSOR MANAGEMENT

The Intel 64 and IA-32 architectures provide mechanisms for managing and
improving the performance of multiple processors connected to the same system
bus. These include:
• Bus locking and/or cache coherency management for performing atomic

operations on system memory.
• Serializing instructions. These instructions apply only to the Pentium 4, Intel

Xeon, P6 family, and Pentium processors.
• An advance programmable interrupt controller (APIC) located on the processor

chip (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”).
This feature was introduced by the Pentium processor.

• A second-level cache (level 2, L2). For the Pentium 4, Intel Xeon, and P6 family
processors, the L2 cache is included in the processor package and is tightly
coupled to the processor. For the Pentium and Intel486 processors, pins are
provided to support an external L2 cache.

• A third-level cache (level 3, L3). For Intel Xeon processors, the L3 cache is
included in the processor package and is tightly coupled to the processor.

• Intel Hyper-Threading Technology. This extension to the Intel 64 and IA-32 archi-
tectures enables a single processor core to execute two or more threads concur-
rently (see Section 8.5, “Intel® Hyper-Threading Technology and Intel® Multi-
Core Technology”).

These mechanisms are particularly useful in symmetric-multiprocessing (SMP)
systems. However, they can also be used when an Intel 64 or IA-32 processor and a
special-purpose processor (such as a communications, graphics, or video processor)
share the system bus.

These multiprocessing mechanisms have the following characteristics:
• To maintain system memory coherency — When two or more processors are

attempting simultaneously to access the same address in system memory, some
communication mechanism or memory access protocol must be available to
promote data coherency and, in some instances, to allow one processor to
temporarily lock a memory location.

• To maintain cache consistency — When one processor accesses data cached on
another processor, it must not receive incorrect data. If it modifies data, all other
processors that access that data must receive the modified data.

• To allow predictable ordering of writes to memory — In some circumstances, it is
important that memory writes be observed externally in precisely the same order
as programmed.
Vol. 3A 8-1

MULTIPLE-PROCESSOR MANAGEMENT
• To distribute interrupt handling among a group of processors — When several
processors are operating in a system in parallel, it is useful to have a centralized
mechanism for receiving interrupts and distributing them to available processors
for servicing.

• To increase system performance by exploiting the multi-threaded and multi-
process nature of contemporary operating systems and applications.

The caching mechanism and cache consistency of Intel 64 and IA-32 processors are
discussed in Chapter 11. The APIC architecture is described in Chapter 10. Bus and
memory locking, serializing instructions, memory ordering, and Intel Hyper-
Threading Technology are discussed in the following sections.

8.1 LOCKED ATOMIC OPERATIONS
The 32-bit IA-32 processors support locked atomic operations on locations in system
memory. These operations are typically used to manage shared data structures (such
as semaphores, segment descriptors, system segments, or page tables) in which two
or more processors may try simultaneously to modify the same field or flag. The
processor uses three interdependent mechanisms for carrying out locked atomic
operations:
• Guaranteed atomic operations
• Bus locking, using the LOCK# signal and the LOCK instruction prefix
• Cache coherency protocols that ensure that atomic operations can be carried out

on cached data structures (cache lock); this mechanism is present in the
Pentium 4, Intel Xeon, and P6 family processors

These mechanisms are interdependent in the following ways. Certain basic memory
transactions (such as reading or writing a byte in system memory) are always guar-
anteed to be handled atomically. That is, once started, the processor guarantees that
the operation will be completed before another processor or bus agent is allowed
access to the memory location. The processor also supports bus locking for
performing selected memory operations (such as a read-modify-write operation in a
shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often
cached in a processor’s L1 or L2 caches, atomic operations can often be carried out
inside a processor’s caches without asserting the bus lock. Here the processor’s
cache coherency protocols ensure that other processors that are caching the same
memory locations are managed properly while atomic operations are performed on
cached memory locations.

NOTE
Where there are contested lock accesses, software may need to
implement algorithms that ensure fair access to resources in order to
prevent lock starvation. The hardware provides no resource that
guarantees fairness to participating agents. It is the responsibility of
8-2 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
software to manage the fairness of semaphores and exclusive locking
functions.

The mechanisms for handling locked atomic operations have evolved with the
complexity of IA-32 processors. More recent IA-32 processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) and Intel 64 provide a more refined
locking mechanism than earlier processors. These mechanisms are described in the
following sections.

8.1.1 Guaranteed Atomic Operations
The Intel486 processor (and newer processors since) guarantees that the following
basic memory operations will always be carried out atomically:
• Reading or writing a byte
• Reading or writing a word aligned on a 16-bit boundary
• Reading or writing a doubleword aligned on a 32-bit boundary

The Pentium processor (and newer processors since) guarantees that the following
additional memory operations will always be carried out atomically:
• Reading or writing a quadword aligned on a 64-bit boundary
• 16-bit accesses to uncached memory locations that fit within a 32-bit data bus

The P6 family processors (and newer processors since) guarantee that the following
additional memory operation will always be carried out atomically:
• Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a cache

line

Accesses to cacheable memory that are split across cache lines and page boundaries
are not guaranteed to be atomic by the Intel Core 2 Duo, Intel® Atom™, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors.
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4, Intel Xeon,
and P6 family processors provide bus control signals that permit external memory
subsystems to make split accesses atomic; however, nonaligned data accesses will
seriously impact the performance of the processor and should be avoided.

An x87 instruction or an SSE instructions that accesses data larger than a quadword
may be implemented using multiple memory accesses. If such an instruction stores
to memory, some of the accesses may complete (writing to memory) while another
causes the operation to fault for architectural reasons (e.g. due an page-table entry
that is marked “not present”). In this case, the effects of the completed accesses
may be visible to software even though the overall instruction caused a fault. If TLB
invalidation has been delayed (see Section 4.10.4.4), such page faults may occur
even if all accesses are to the same page.
Vol. 3A 8-3

MULTIPLE-PROCESSOR MANAGEMENT
8.1.2 Bus Locking
Intel 64 and IA-32 processors provide a LOCK# signal that is asserted automatically
during certain critical memory operations to lock the system bus or equivalent link.
While this output signal is asserted, requests from other processors or bus agents for
control of the bus are blocked. Software can specify other occasions when the LOCK
semantics are to be followed by prepending the LOCK prefix to an instruction.

In the case of the Intel386, Intel486, and Pentium processors, explicitly locked
instructions will result in the assertion of the LOCK# signal. It is the responsibility of
the hardware designer to make the LOCK# signal available in system hardware to
control memory accesses among processors.

For the P6 and more recent processor families, if the memory area being accessed is
cached internally in the processor, the LOCK# signal is generally not asserted;
instead, locking is only applied to the processor’s caches (see Section 8.1.4, “Effects
of a LOCK Operation on Internal Processor Caches”).

8.1.2.1 Automatic Locking
The operations on which the processor automatically follows the LOCK semantics are
as follows:
• When executing an XCHG instruction that references memory.
• When setting the B (busy) flag of a TSS descriptor — The processor tests

and sets the busy flag in the type field of the TSS descriptor when switching to a
task. To ensure that two processors do not switch to the same task simulta-
neously, the processor follows the LOCK semantics while testing and setting this
flag.

• When updating segment descriptors — When loading a segment descriptor,
the processor will set the accessed flag in the segment descriptor if the flag is
clear. During this operation, the processor follows the LOCK semantics so that the
descriptor will not be modified by another processor while it is being updated. For
this action to be effective, operating-system procedures that update descriptors
should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is not-present, and specify a value for the type field that
indicates that the descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require
several memory accesses; therefore, locked operations cannot be used.)

— Use a locked operation to modify the access-rights byte to indicate that the
segment descriptor is valid and present.

• The Intel386 processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors only update this flag if it is not already set.
8-4 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• When updating page-directory and page-table entries — When updating
page-directory and page-table entries, the processor uses locked cycles to set
the accessed and dirty flag in the page-directory and page-table entries.

• Acknowledging interrupts — After an interrupt request, an interrupt controller
may use the data bus to send the interrupt vector for the interrupt to the
processor. The processor follows the LOCK semantics during this time to ensure
that no other data appears on the data bus when the interrupt vector is being
transmitted.

8.1.2.2 Software Controlled Bus Locking
To explicitly force the LOCK semantics, software can use the LOCK prefix with the
following instructions when they are used to modify a memory location. An invalid-
opcode exception (#UD) is generated when the LOCK prefix is used with any other
instruction or when no write operation is made to memory (that is, when the destina-
tion operand is in a register).
• The bit test and modify instructions (BTS, BTR, and BTC).
• The exchange instructions (XADD, CMPXCHG, and CMPXCHG8B).
• The LOCK prefix is automatically assumed for XCHG instruction.
• The following single-operand arithmetic and logical instructions: INC, DEC, NOT,

and NEG.
• The following two-operand arithmetic and logical instructions: ADD, ADC, SUB,

SBB, AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may be interpreted by the system as a lock for a larger
memory area.

Software should access semaphores (shared memory used for signalling between
multiple processors) using identical addresses and operand lengths. For example, if
one processor accesses a semaphore using a word access, other processors should
not access the semaphore using a byte access.

NOTE
Do not implement semaphores using the WC memory type. Do not
perform non-temporal stores to a cache line containing a location
used to implement a semaphore.

The integrity of a bus lock is not affected by the alignment of the memory field. The
LOCK semantics are followed for as many bus cycles as necessary to update the
entire operand. However, it is recommend that locked accesses be aligned on their
natural boundaries for better system performance:
• Any boundary for an 8-bit access (locked or otherwise).
• 16-bit boundary for locked word accesses.
Vol. 3A 8-5

MULTIPLE-PROCESSOR MANAGEMENT
• 32-bit boundary for locked doubleword accesses.
• 64-bit boundary for locked quadword accesses.

Locked operations are atomic with respect to all other memory operations and all
externally visible events. Only instruction fetch and page table accesses can pass
locked instructions. Locked instructions can be used to synchronize data written by
one processor and read by another processor.

For the P6 family processors, locked operations serialize all outstanding load and
store operations (that is, wait for them to complete). This rule is also true for the
Pentium 4 and Intel Xeon processors, with one exception. Load operations that refer-
ence weakly ordered memory types (such as the WC memory type) may not be seri-
alized.

Locked instructions should not be used to ensure that data written can be fetched as
instructions.

NOTE
The locked instructions for the current versions of the Pentium 4,
Intel Xeon, P6 family, Pentium, and Intel486 processors allow data
written to be fetched as instructions. However, Intel recommends
that developers who require the use of self-modifying code use a
different synchronizing mechanism, described in the following
sections.

8.1.3 Handling Self- and Cross-Modifying Code
The act of a processor writing data into a currently executing code segment with
the intent of executing that data as code is called self-modifying code. IA-32
processors exhibit model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution pointer the code has been
modified.

As processor microarchitectures become more complex and start to speculatively
execute code ahead of the retirement point (as in P6 and more recent processor
families), the rules regarding which code should execute, pre- or post-modification,
become blurred. To write self-modifying code and ensure that it is compliant with
current and future versions of the IA-32 architectures, use one of the following
coding options:

(* OPTION 1 *)
Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)
Store modified code (as data) into code segment;
Execute a serializing instruction; (* For example, CPUID instruction *)
8-6 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Execute new code;

The use of one of these options is not required for programs intended to run on the
Pentium or Intel486 processors, but are recommended to ensure compatibility with
the P6 and more recent processor families.

Self-modifying code will execute at a lower level of performance than non-self-modi-
fying or normal code. The degree of the performance deterioration will depend upon
the frequency of modification and specific characteristics of the code.

The act of one processor writing data into the currently executing code segment of a
second processor with the intent of having the second processor execute that data as
code is called cross-modifying code. As with self-modifying code, IA-32 processors
exhibit model-specific behavior when executing cross-modifying code, depending
upon how far ahead of the executing processors current execution pointer the code
has been modified.

To write cross-modifying code and ensure that it is compliant with current and future
versions of the IA-32 architecture, the following processor synchronization algorithm
must be implemented:

(* Action of Modifying Processor *)
Memory_Flag ← 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag ← 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag ≠ 1)

Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of this option is not required for programs intended to run on the Intel486
processor, but is recommended to ensure compatibility with the Pentium 4, Intel
Xeon, P6 family, and Pentium processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of perfor-
mance than non-cross-modifying (normal) code, depending upon the frequency of
modification and specific characteristics of the code.

The restrictions on self-modifying code and cross-modifying code also apply to the
Intel 64 architecture.

8.1.4 Effects of a LOCK Operation on Internal Processor Caches
For the Intel486 and Pentium processors, the LOCK# signal is always asserted on the
bus during a LOCK operation, even if the area of memory being locked is cached in
the processor.
Vol. 3A 8-7

MULTIPLE-PROCESSOR MANAGEMENT
For the P6 and more recent processor families, if the area of memory being locked
during a LOCK operation is cached in the processor that is performing the LOCK oper-
ation as write-back memory and is completely contained in a cache line, the
processor may not assert the LOCK# signal on the bus. Instead, it will modify the
memory location internally and allow it’s cache coherency mechanism to ensure that
the operation is carried out atomically. This operation is called “cache locking.” The
cache coherency mechanism automatically prevents two or more processors that
have cached the same area of memory from simultaneously modifying data in that
area.

8.2 MEMORY ORDERING
The term memory ordering refers to the order in which the processor issues reads
(loads) and writes (stores) through the system bus to system memory. The Intel 64
and IA-32 architectures support several memory-ordering models depending on the
implementation of the architecture. For example, the Intel386 processor enforces
program ordering (generally referred to as strong ordering), where reads and
writes are issued on the system bus in the order they occur in the instruction stream
under all circumstances.

To allow performance optimization of instruction execution, the IA-32 architecture
allows departures from strong-ordering model called processor ordering in
Pentium 4, Intel Xeon, and P6 family processors. These processor-ordering varia-
tions (called here the memory-ordering model) allow performance enhancing
operations such as allowing reads to go ahead of buffered writes. The goal of any of
these variations is to increase instruction execution speeds, while maintaining
memory coherency, even in multiple-processor systems.

Section 8.2.1 and Section 8.2.2 describe the memory-ordering implemented by
Intel486, Pentium, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, Intel
Xeon, and P6 family processors. Section 8.2.3 gives examples illustrating the
behavior of the memory-ordering model on IA-32 and Intel-64 processors. Section
8.2.4 considers the special treatment of stores for string operations and Section
8.2.5 discusses how memory-ordering behavior may be modified through the use of
specific instructions.

8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™
Processors

The Pentium and Intel486 processors follow the processor-ordered memory model;
however, they operate as strongly-ordered processors under most circumstances.
Reads and writes always appear in programmed order at the system bus—except for
the following situation where processor ordering is exhibited. Read misses are
permitted to go ahead of buffered writes on the system bus when all the buffered
writes are cache hits and, therefore, are not directed to the same address being
accessed by the read miss.
8-8 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
In the case of I/O operations, both reads and writes always appear in programmed
order.

Software intended to operate correctly in processor-ordered processors (such as the
Pentium 4, Intel Xeon, and P6 family processors) should not depend on the relatively
strong ordering of the Pentium or Intel486 processors. Instead, it should ensure
that accesses to shared variables that are intended to control concurrent execution
among processors are explicitly required to obey program ordering through the use
of appropriate locking or serializing operations (see Section 8.2.5, “Strengthening or
Weakening the Memory-Ordering Model”).

8.2.2 Memory Ordering in P6 and More Recent Processor Families
The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Pentium 4, and P6 family proces-
sors also use a processor-ordered memory-ordering model that can be further
defined as “write ordered with store-buffer forwarding.” This model can be character-
ized as follows.

In a single-processor system for memory regions defined as write-back cacheable,
the memory-ordering model respects the following principles (Note the memory-
ordering principles for single-processor and multiple-processor systems are written
from the perspective of software executing on the processor, where the term
“processor” refers to a logical processor. For example, a physical processor
supporting multiple cores and/or HyperThreading Technology is treated as a multi-
processor systems.):
• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Writes to memory are not reordered with other writes, with the following

exceptions:

— writes executed with the CLFLUSH instruction;

— streaming stores (writes) executed with the non-temporal move instructions
(MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD); and

— string operations (see Section 8.2.4.1).
• Reads may be reordered with older writes to different locations but not with older

writes to the same location.
• Reads or writes cannot be reordered with I/O instructions, locked instructions, or

serializing instructions.
• Reads cannot pass earlier LFENCE and MFENCE instructions.
• Writes cannot pass earlier LFENCE, SFENCE, and MFENCE instructions.
• LFENCE instructions cannot pass earlier reads.
• SFENCE instructions cannot pass earlier writes.
• MFENCE instructions cannot pass earlier reads or writes.
Vol. 3A 8-9

MULTIPLE-PROCESSOR MANAGEMENT
In a multiple-processor system, the following ordering principles apply:
• Individual processors use the same ordering principles as in a single-processor

system.
• Writes by a single processor are observed in the same order by all processors.
• Writes from an individual processor are NOT ordered with respect to the writes

from other processors.
• Memory ordering obeys causality (memory ordering respects transitive

visibility).
• Any two stores are seen in a consistent order by processors other than those

performing the stores
• Locked instructions have a total order.

See the example in Figure 8-1. Consider three processors in a system and each
processor performs three writes, one to each of three defined locations (A, B, and C).
Individually, the processors perform the writes in the same program order, but
because of bus arbitration and other memory access mechanisms, the order that the
three processors write the individual memory locations can differ each time the
respective code sequences are executed on the processors. The final values in loca-
tion A, B, and C would possibly vary on each execution of the write sequence.

The processor-ordering model described in this section is virtually identical to that
used by the Pentium and Intel486 processors. The only enhancements in the Pentium
4, Intel Xeon, and P6 family processors are:
• Added support for speculative reads, while still adhering to the ordering

principles above.
• Store-buffer forwarding, when a read passes a write to the same memory

location.
• Out of order store from long string store and string move operations (see Section

8.2.4, “Out-of-Order Stores and Fast-String Operation,” below).
8-10 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
NOTE
In P6 processor family, store-buffer forwarding to reads of WC memory from
streaming stores to the same address does not occur due to errata.

8.2.3 Examples Illustrating the Memory-Ordering Principles
This section provides a set of examples that illustrate the behavior of the memory-
ordering principles introduced in Section 8.2.2. They are designed to give software
writers an understanding of how memory ordering may affect the results of different
sequences of instructions.

These examples are limited to accesses to memory regions defined as write-back
cacheable (WB). (Section 8.2.3.1 describes other limitations on the generality of the
examples.) The reader should understand that they describe only software-visible
behavior. A logical processor may reorder two accesses even if one of examples indi-
cates that they may not be reordered. Such an example states only that software
cannot detect that such a reordering occurred. Similarly, a logical processor may
execute a memory access more than once as long as the behavior visible to software
is consistent with a single execution of the memory access.

Figure 8-1. Example of Write Ordering in Multiple-Processor Systems

Processor #1 Processor #2 Processor #3

Write A.3
Write B.3
Write C.3

Write A.1
Write B.1
Write A.2
Write A.3
Write C.1
Write B.2
Write C.2
Write B.3
Write C.3

Order of Writes From Individual Processors

Write A.2
Write B.2
Write C.2

Write A.1
Write B.1
Write C.1

Writes from all
processors are
not guaranteed
to occur in a
particular order.

Each processor
is guaranteed to
perform writes in
program order.

Writes are in order
with respect to
individual processes.

Example of order of actual writes
from all processors to memory
Vol. 3A 8-11

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.1 Assumptions, Terminology, and Notation
As noted above, the examples in this section are limited to accesses to memory
regions defined as write-back cacheable (WB). They apply only to ordinary loads
stores and to locked read-modify-write instructions. They do not necessarily apply to
any of the following: out-of-order stores for string instructions (see Section 8.2.4);
accesses with a non-temporal hint; reads from memory by the processor as part of
address translation (e.g., page walks); and updates to segmentation and paging
structures by the processor (e.g., to update “accessed” bits).

The principles underlying the examples in this section apply to individual memory
accesses and to locked read-modify-write instructions. The Intel-64 memory-
ordering model guarantees that, for each of the following memory-access instruc-
tions, the constituent memory operation appears to execute as a single memory
access:
• Instructions that read or write a single byte.
• Instructions that read or write a word (2 bytes) whose address is aligned on a 2

byte boundary.
• Instructions that read or write a doubleword (4 bytes) whose address is aligned

on a 4 byte boundary.
• Instructions that read or write a quadword (8 bytes) whose address is aligned on

an 8 byte boundary.

Any locked instruction (either the XCHG instruction or another read-modify-write
instruction with a LOCK prefix) appears to execute as an indivisible and uninterrupt-
ible sequence of load(s) followed by store(s) regardless of alignment.

Other instructions may be implemented with multiple memory accesses. From a
memory-ordering point of view, there are no guarantees regarding the relative order
in which the constituent memory accesses are made. There is also no guarantee that
the constituent operations of a store are executed in the same order as the constit-
uent operations of a load.

Section 8.2.3.2 through Section 8.2.3.7 give examples using the MOV instruction.
The principles that underlie these examples apply to load and store accesses in
general and to other instructions that load from or store to memory. Section 8.2.3.8
and Section 8.2.3.9 give examples using the XCHG instruction. The principles that
underlie these examples apply to other locked read-modify-write instructions.

This section uses the term “processor” is to refer to a logical processor. The examples
are written using Intel-64 assembly-language syntax and use the following nota-
tional conventions:
• Arguments beginning with an “r”, such as r1 or r2 refer to registers (e.g., EAX)

visible only to the processor being considered.
• Memory locations are denoted with x, y, z.
• Stores are written as mov [_x], val, which implies that val is being stored into

the memory location x.
8-12 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• Loads are written as mov r, [_x], which implies that the contents of the memory
location x are being loaded into the register r.

As noted earlier, the examples refer only to software visible behavior. When the
succeeding sections make statement such as “the two stores are reordered,” the
implication is only that “the two stores appear to be reordered from the point of view
of software.”

8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
The Intel-64 memory-ordering model allows neither loads nor stores to be reordered
with the same kind of operation. That is, it ensures that loads are seen in program
order and that stores are seen in program order. This is illustrated by the following
example:

The disallowed return values could be exhibited only if processor 0’s two stores are
reordered (with the two loads occurring between them) or if processor 1’s two loads
are reordered (with the two stores occurring between them).

If r1 = 1, the store to y occurs before the load from y. Because the Intel-64 memory-
ordering model does not allow stores to be reordered, the earlier store to x occurs
before the load from y. Because the Intel-64 memory-ordering model does not allow
loads to be reordered, the store to x also occurs before the later load from x. This
r2 = 1.

8.2.3.3 Stores Are Not Reordered With Earlier Loads
The Intel-64 memory-ordering model ensures that a store by a processor may not
occur before a previous load by the same processor. This is illustrated by the
following example:

Example 8-1. Stores Are Not Reordered with Other Stores
Processor 0 Processor 1

mov [_x], 1 mov r1, [_y]

mov [_y], 1 mov r2, [_x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Example 8-2. Stores Are Not Reordered with Older Loads
Processor 0 Processor 1

mov r1, [_x] mov r2, [_y]

mov [_y], 1 mov [_x], 1

Initially x = y = 0

r1 = 1 and r2 = 1 is not allowed
Vol. 3A 8-13

MULTIPLE-PROCESSOR MANAGEMENT
Assume r1 = 1.
• Because r1 = 1, processor 1’s store to x occurs before processor 0’s load from x.
• Because the Intel-64 memory-ordering model prevents each store from being

reordered with the earlier load by the same processor, processor 1’s load from y
occurs before its store to x.

• Similarly, processor 0’s load from x occurs before its store to y.
• Thus, processor 1’s load from y occurs before processor 0’s store to y, implying

r2 = 0.

8.2.3.4 Loads May Be Reordered with Earlier Stores to Different
Locations

The Intel-64 memory-ordering model allows a load to be reordered with an earlier
store to a different location. However, loads are not reordered with stores to the
same location.

The fact that a load may be reordered with an earlier store to a different location is
illustrated by the following example:

At each processor, the load and the store are to different locations and hence may be
reordered. Any interleaving of the operations is thus allowed. One such interleaving
has the two loads occurring before the two stores. This would result in each load
returning value 0.

The fact that a load may not be reordered with an earlier store to the same location
is illustrated by the following example:

The Intel-64 memory-ordering model does not allow the load to be reordered with
the earlier store because the accesses are to the same location. Therefore, r1 = 1
must hold.

Example 8-3. Loads May be Reordered with Older Stores
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_y] mov r2, [_x]

Initially x = y = 0

r1 = 0 and r2 = 0 is allowed

Example 8-4. Loads Are not Reordered with Older Stores to the Same Location
Processor 0

mov [_x], 1

mov r1, [_x]

Initially x = 0

r1 = 0 is not allowed
8-14 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.5 Intra-Processor Forwarding Is Allowed
The memory-ordering model allows concurrent stores by two processors to be seen
in different orders by those two processors; specifically, each processor may perceive
its own store occurring before that of the other. This is illustrated by the following
example:

The memory-ordering model imposes no constraints on the order in which the two
stores appear to execute by the two processors. This fact allows processor 0 to see
its store before seeing processor 1's, while processor 1 sees its store before seeing
processor 0's. (Each processor is self consistent.) This allows r2 = 0 and r4 = 0.

In practice, the reordering in this example can arise as a result of store-buffer
forwarding. While a store is temporarily held in a processor's store buffer, it can
satisfy the processor's own loads but is not visible to (and cannot satisfy) loads by
other processors.

8.2.3.6 Stores Are Transitively Visible
The memory-ordering model ensures transitive visibility of stores; stores that are
causally related appear to all processors to occur in an order consistent with the
causality relation. This is illustrated by the following example:

Assume that r1 = 1 and r2 = 1.
• Because r1 = 1, processor 0’s store occurs before processor 1’s load.
• Because the memory-ordering model prevents a store from being reordered with

an earlier load (see Section 8.2.3.3), processor 1’s load occurs before its store.
Thus, processor 0’s store causally precedes processor 1’s store.

Example 8-5. Intra-Processor Forwarding is Allowed
Processor 0 Processor 1

mov [_x], 1 mov [_y], 1

mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y = 0

r2 = 0 and r4 = 0 is allowed

Example 8-6. Stores Are Transitively Visible
Processor 0 Processor 1 Processor 2

mov [_x], 1 mov r1, [_x]

mov [_y], 1 mov r2, [_y]

mov r3, [_x]

Initially x = y = 0

r1 = 1, r2 = 1, r3 = 0 is not allowed
Vol. 3A 8-15

MULTIPLE-PROCESSOR MANAGEMENT
• Because processor 0’s store causally precedes processor 1’s store, the memory-
ordering model ensures that processor 0’s store appears to occur before
processor 1’s store from the point of view of all processors.

• Because r2 = 1, processor 1’s store occurs before processor 2’s load.
• Because the Intel-64 memory-ordering model prevents loads from being

reordered (see Section 8.2.3.2), processor 2’s load occur in order.
• The above items imply that processor 0’s store to x occurs before processor 2’s

load from x. This implies that r3 = 1.

8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
As noted in Section 8.2.3.5, the memory-ordering model allows stores by two
processors to be seen in different orders by those two processors. However, any two
stores must appear to execute in the same order to all processors other than those
performing the stores. This is illustrated by the following example:

By the principles discussed in Section 8.2.3.2,
• processor 2’s first and second load cannot be reordered,
• processor 3’s first and second load cannot be reordered.
• If r1 = 1 and r2 = 0, processor 0’s store appears to precede processor 1’s store

with respect to processor 2.
• Similarly, r3 = 1 and r4 = 0 imply that processor 1’s store appears to precede

processor 0’s store with respect to processor 1.

Because the memory-ordering model ensures that any two stores appear to execute
in the same order to all processors (other than those performing the stores), this set
of return values is not allowed

Example 8-7. Stores Are Seen in a Consistent Order by Other Processors
Processor 0 Processor 1 Processor 2 Processor 3

mov [_x], 1 mov [_y], 1 mov r1, [_x] mov r3, [_y]

mov r2, [_y] mov r4, [_x]

Initially x = y =0

r1 = 1, r2 = 0, r3 = 1, r4 = 0 is not allowed
8-16 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.3.8 Locked Instructions Have a Total Order
The memory-ordering model ensures that all processors agree on a single execution
order of all locked instructions, including those that are larger than 8 bytes or are not
naturally aligned. This is illustrated by the following example:

Processor 2 and processor 3 must agree on the order of the two executions of XCHG.
Without loss of generality, suppose that processor 0’s XCHG occurs first.
• If r5 = 1, processor 1’s XCHG into y occurs before processor 3’s load from y.
• Because the Intel-64 memory-ordering model prevents loads from being

reordered (see Section 8.2.3.2), processor 3’s loads occur in order and,
therefore, processor 1’s XCHG occurs before processor 3’s load from x.

• Since processor 0’s XCHG into x occurs before processor 1’s XCHG (by
assumption), it occurs before processor 3’s load from x. Thus, r6 = 1.

A similar argument (referring instead to processor 2’s loads) applies if processor 1’s
XCHG occurs before processor 0’s XCHG.

8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions
The memory-ordering model prevents loads and stores from being reordered with
locked instructions that execute earlier or later. The examples in this section illustrate
only cases in which a locked instruction is executed before a load or a store. The
reader should note that reordering is prevented also if the locked instruction is
executed after a load or a store.

The first example illustrates that loads may not be reordered with earlier locked
instructions:

Example 8-8. Locked Instructions Have a Total Order
Processor 0 Processor 1 Processor 2 Processor 3

xchg [_x], r1 xchg [_y], r2

mov r3, [_x] mov r5, [_y]

mov r4, [_y] mov r6, [_x]

Initially r1 = r2 = 1, x = y = 0

r3 = 1, r4 = 0, r5 = 1, r6 = 0 is not allowed

Example 8-9. Loads Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 xchg [_y], r3

mov r2, [_y] mov r4, [_x]

Initially x = y = 0, r1 = r3 = 1

r2 = 0 and r4 = 0 is not allowed
Vol. 3A 8-17

MULTIPLE-PROCESSOR MANAGEMENT
As explained in Section 8.2.3.8, there is a total order of the executions of locked
instructions. Without loss of generality, suppose that processor 0’s XCHG occurs first.

Because the Intel-64 memory-ordering model prevents processor 1’s load from
being reordered with its earlier XCHG, processor 0’s XCHG occurs before
processor 1’s load. This implies r4 = 1.

A similar argument (referring instead to processor 2’s accesses) applies if
processor 1’s XCHG occurs before processor 0’s XCHG.

The second example illustrates that a store may not be reordered with an earlier
locked instruction:

Assume r2 = 1.
• Because r2 = 1, processor 0’s store to y occurs before processor 1’s load from y.
• Because the memory-ordering model prevents a store from being reordered with

an earlier locked instruction, processor 0’s XCHG into x occurs before its store to
y. Thus, processor 0’s XCHG into x occurs before processor 1’s load from y.

• Because the memory-ordering model prevents loads from being reordered (see
Section 8.2.3.2), processor 1’s loads occur in order and, therefore, processor 1’s
XCHG into x occurs before processor 1’s load from x. Thus, r3 = 1.

8.2.4 Out-of-Order Stores and Fast-String Operation
The Intel Core 2 Duo, Intel Core, Pentium 4, and P6 family processors modify the
processors operation during the string store operations (initiated with the MOVS and
STOS instructions) to maximize performance. This optimized operation (called fast-
string operation) is used if certain initial conditions are met (see below). With fast-
string operation, the processor operates on (from an external perspective) the string
in a cache line by cache line mode. This results in the processor looping on issuing a
cache-line read for the source address and an invalidation on the external bus for the
destination address, knowing that all bytes in the destination cache line will be modi-
fied, for the length of the string. With fast-string operation, interrupts are accepted
by the processor only on cache line boundaries. It is possible that, with fast-string
operation, the destination line invalidations (and therefore stores) will be issued on
the external bus out of order.

Code dependent upon sequential store ordering should not use string operations for
the entire data structure to be stored. Data and semaphores should be separated.
Order-dependent code should write to a discrete semaphore variable after any string
operations to allow correctly ordered data to be seen by all processors.

Example 8-10. Stores Are not Reordered with Locks
Processor 0 Processor 1

xchg [_x], r1 mov r2, [_y]

mov [_y], 1 mov r3, [_x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed
8-18 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Initial conditions for fast-string operation are implementation specific. Example
conditions include:
• EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-

byte aligned for the Pentium 4 processor.
• String operation must be performed in ascending address order.
• The initial operation counter (ECX) must be equal to or greater than 64.
• Source and destination must not overlap by less than a cache line (64 bytes, for

Intel Core 2 Duo, Intel Core, Pentium M, and Pentium 4 processors; 32 bytes P6
family and Pentium processors).

• The memory type for both source and destination addresses must be either WB
or WC.

NOTE
Initial conditions for fast-string operation in future Intel 64 or IA-32
processor families may differ from above.

Software can disable fast-string operation by clearing the fast-string-enable bit (bit
0) of IA32_MISC_ENABLE MSR. However, Intel recommends that system software
always enable fast-string operation.

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some
processors may further enhance the operation of the REP MOVSB and REP STOSB
instructions. A processors supports these enhancements if
CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1.

8.2.4.1 Memory-Ordering Model for String Operations on Write-back (WB)
Memory

This section deals with the memory-ordering model for string operations on write-
back (WB) memory for the Intel 64 architecture.

The memory-ordering model respects the follow principles:

1. Stores within a single string operation may be executed out of order.

2. Stores from separate string operations (for example, stores from consecutive
string operations) do not execute out of order. All the stores from an earlier string
operation will complete before any store from a later string operation.

3. String operations are not reordered with other store operations.

Fast string operations (e.g. string operations initiated with the MOVS/STOS instruc-
tions and the REP prefix) may be interrupted by exceptions or interrupts. The inter-
rupts are precise but may be delayed - for example, the interruptions may be taken
at cache line boundaries, after every few iterations of the loop, or after operating on
every few bytes. Different implementations may choose different options, or may
even choose not to delay interrupt handling, so software should not rely on the delay.
When the interrupt/trap handler is reached, the source/destination registers point to
Vol. 3A 8-19

MULTIPLE-PROCESSOR MANAGEMENT
the next string element to be operated on, while the EIP stored in the stack points to
the string instruction, and the ECX register has the value it held following the last
successful iteration. The return from that trap/interrupt handler should cause the
string instruction to be resumed from the point where it was interrupted.

The string operation memory-ordering principles, (item 2 and 3 above) should be
interpreted by taking the incorruptibility of fast string operations into account. For
example, if a fast string operation gets interrupted after k iterations, then stores
performed by the interrupt handler will become visible after the fast string stores
from iteration 0 to k, and before the fast string stores from the (k+1)th iteration
onward.

Stores within a single string operation may execute out of order (item 1 above) only
if fast string operation is enabled. Fast string operations are enabled/disabled
through the IA32_MISC_ENABLE model specific register.

8.2.4.2 Examples Illustrating Memory-Ordering Principles for String
Operations

The following examples uses the same notation and convention as described in
Section 8.2.3.1.

In Example 8-11, processor 0 does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. Since each operation
stores a doubleword (4 bytes), the operation is repeated 128 times (value in ECX).
The block of memory initially contained 0. Processor 1 is reading two memory loca-
tions that are part of the memory block being updated by processor 0, i.e, reading
locations in the range _x to (_x+511).

It is possible for processor 1 to perceive that the repeated string stores in processor
0 are happening out of order. Assume that fast string operations are enabled on
processor 0.

In Example 8-12, processor 0 does two separate rounds of rep stosd operation of 128
doubleword stores, writing the value 1 (value in EAX) into the first block of 512 bytes
from location _x (kept in ES:EDI) in ascending order. It then writes 1 into a second
block of memory from (_x+512) to (_x+1023). All of the memory locations initially

Example 8-11. Stores Within a String Operation May be Reordered
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 511[_x]= 0, _x <= _y < _z < _x+512

r1 = 1 and r2 = 0 is allowed
8-20 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
contain 0. The block of memory initially contained 0. Processor 1 performs two load
operations from the two blocks of memory.

It is not possible in the above example for processor 1 to perceive any of the stores
from the later string operation (to the second 512 block) in processor 0 before seeing
the stores from the earlier string operation to the first 512 block.

The above example assumes that writes to the second block (_x+512 to _x+1023)
does not get executed while processor 0’s string operation to the first block has been
interrupted. If the string operation to the first block by processor 0 is interrupted,
and a write to the second memory block is executed by the interrupt handler, then
that change in the second memory block will be visible before the string operation to
the first memory block resumes.

In Example 8-13, processor 0 does one round of (128 iterations) doubleword string
store operation via rep:stosd, writing the value 1 (value in EAX) into a block of 512
bytes from location _x (kept in ES:EDI) in ascending order. It then writes to a second
memory location outside the memory block of the previous string operation.
Processor 1 performs two read operations, the first read is from an address outside
the 512-byte block but to be updated by processor 0, the second ready is from inside
the block of memory of string operation.

Example 8-12. Stores Across String Operations Are not Reordered
Processor 0 Processor 1

rep:stosd [_x]

mov r1, [_z]

mov ecx, $128

mov r2, [_y]

rep:stosd 512[_x]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_x] to 1023[_x]= 0, _x <= _y < _x+512 < _z < _x+1024

r1 = 1 and r2 = 0 is not allowed

Example 8-13. String Operations Are not Reordered with later Stores
Processor 0 Processor 1

rep:stosd [_x] mov r1, [_z]

mov [_z], $1 mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
Vol. 3A 8-21

MULTIPLE-PROCESSOR MANAGEMENT
Processor 1 cannot perceive the later store by processor 0 until it sees all the stores
from the string operation. Example 8-13 assumes that processor 0’s store to [_z] is
not executed while the string operation has been interrupted. If the string operation
is interrupted and the store to [_z] by processor 0 is executed by the interrupt
handler, then changes to [_z] will become visible before the string operation
resumes.

Example 8-14 illustrates the visibility principle when a string operation is interrupted.

In Example 8-14, processor 0 started a string operation to write to a memory block
of 512 bytes starting at address _x. Processor 0 got interrupted after k iterations of
store operations. The address _y has not yet been updated by processor 0 when
processor 0 got interrupted. The interrupt handler that took control on processor 0
writes to the address _z. Processor 1 may see the store to _z from the interrupt
handler, before seeing the remaining stores to the 512-byte memory block that are
executed when the string operation resumes.

Example 8-15 illustrates the ordering of string operations with earlier stores. No
store from a string operation can be visible before all prior stores are visible.

Example 8-14. Interrupted String Operation
Processor 0 Processor 1

rep:stosd [_x] // interrupted before es:edi reach
_y

mov r1, [_z]

mov [_z], $1 // interrupt handler mov r2, [_y]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is allowed

Example 8-15. String Operations Are not Reordered with Earlier Stores
Processor 0 Processor 1

mov [_z], $1 mov r1, [_y]

rep:stosd [_x] mov r2, [_z]

Initially on processor 0: EAX = 1, ECX=128, ES:EDI =_x

Initially [_y] = [_z] = 0, [_x] to 511[_x]= 0, _x <= _y < _x+512, _z is a separate memory location

r1 = 1 and r2 = 0 is not allowed
8-22 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.2.5 Strengthening or Weakening the Memory-Ordering Model
The Intel 64 and IA-32 architectures provide several mechanisms for strengthening
or weakening the memory-ordering model to handle special programming situations.
These mechanisms include:
• The I/O instructions, locking instructions, the LOCK prefix, and serializing

instructions force stronger ordering on the processor.
• The SFENCE instruction (introduced to the IA-32 architecture in the Pentium III

processor) and the LFENCE and MFENCE instructions (introduced in the Pentium
4 processor) provide memory-ordering and serialization capabilities for specific
types of memory operations.

• The memory type range registers (MTRRs) can be used to strengthen or weaken
memory ordering for specific area of physical memory (see Section 11.11,
“Memory Type Range Registers (MTRRs)”). MTRRs are available only in the
Pentium 4, Intel Xeon, and P6 family processors.

• The page attribute table (PAT) can be used to strengthen memory ordering for a
specific page or group of pages (see Section 11.12, “Page Attribute Table (PAT)”).
The PAT is available only in the Pentium 4, Intel Xeon, and Pentium III processors.

These mechanisms can be used as follows:

Memory mapped devices and other I/O devices on the bus are often sensitive to the
order of writes to their I/O buffers. I/O instructions can be used to (the IN and OUT
instructions) impose strong write ordering on such accesses as follows. Prior to
executing an I/O instruction, the processor waits for all previous instructions in the
program to complete and for all buffered writes to drain to memory. Only instruction
fetch and page tables walks can pass I/O instructions. Execution of subsequent
instructions do not begin until the processor determines that the I/O instruction has
been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a
strong memory-ordering model. Here, a program can use a locking instruction such
as the XCHG instruction or the LOCK prefix to ensure that a read-modify-write oper-
ation on memory is carried out atomically. Locking operations typically operate like
I/O operations in that they wait for all previous instructions to complete and for all
buffered writes to drain to memory (see Section 8.1.2, “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (see
Section 8.3). These instructions are typically used at critical procedure or task
boundaries to force completion of all previous instructions before a jump to a new
section of code or a context switch occurs. Like the I/O and locking instructions, the
processor waits until all previous instructions have been completed and all buffered
writes have been drained to memory before executing the serializing instruction.

The SFENCE, LFENCE, and MFENCE instructions provide a performance-efficient way
of ensuring load and store memory ordering between routines that produce weakly-
ordered results and routines that consume that data. The functions of these instruc-
tions are as follows:
Vol. 3A 8-23

MULTIPLE-PROCESSOR MANAGEMENT
• SFENCE — Serializes all store (write) operations that occurred prior to the
SFENCE instruction in the program instruction stream, but does not affect load
operations.

• LFENCE — Serializes all load (read) operations that occurred prior to the LFENCE
instruction in the program instruction stream, but does not affect store
operations.1

• MFENCE — Serializes all store and load operations that occurred prior to the
MFENCE instruction in the program instruction stream.

Note that the SFENCE, LFENCE, and MFENCE instructions provide a more efficient
method of controlling memory ordering than the CPUID instruction.

The MTRRs were introduced in the P6 family processors to define the cache charac-
teristics for specified areas of physical memory. The following are two examples of
how memory types set up with MTRRs can be used strengthen or weaken memory
ordering for the Pentium 4, Intel Xeon, and P6 family processors:
• The strong uncached (UC) memory type forces a strong-ordering model on

memory accesses. Here, all reads and writes to the UC memory region appear on
the bus and out-of-order or speculative accesses are not performed. This
memory type can be applied to an address range dedicated to memory mapped
I/O devices to force strong memory ordering.

• For areas of memory where weak ordering is acceptable, the write back (WB)
memory type can be chosen. Here, reads can be performed speculatively and
writes can be buffered and combined. For this type of memory, cache locking is
performed on atomic (locked) operations that do not split across cache lines,
which helps to reduce the performance penalty associated with the use of the
typical synchronization instructions, such as XCHG, that lock the bus during the
entire read-modify-write operation. With the WB memory type, the XCHG
instruction locks the cache instead of the bus if the memory access is contained
within a cache line.

The PAT was introduced in the Pentium III processor to enhance the caching charac-
teristics that can be assigned to pages or groups of pages. The PAT mechanism typi-
cally used to strengthen caching characteristics at the page level with respect to the
caching characteristics established by the MTRRs. Table 11-7 shows the interaction of
the PAT with the MTRRs.

Intel recommends that software written to run on Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium 4, Intel Xeon, and P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The Intel Core 2 Duo, Intel
Atom, Intel Core Duo, Pentium 4, Intel Xeon, and P6 family processors do not imple-

1. Specifically, LFENCE does not execute until all prior instructions have completed locally, and no
later instruction begins execution until LFENCE completes. As a result, an instruction that loads
from memory and that precedes an LFENCE receives data from memory prior to completion of
the LFENCE. An LFENCE that follows an instruction that stores to memory might complete before
the data being stored have become globally visible. Instructions following an LFENCE may be
fetched from memory before the LFENCE, but they will not execute until the LFENCE completes.
8-24 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
ment a strong memory-ordering model, except when using the UC memory type.
Despite the fact that Pentium 4, Intel Xeon, and P6 family processors support
processor ordering, Intel does not guarantee that future processors will support this
model. To make software portable to future processors, it is recommended that oper-
ating systems provide critical region and resource control constructs and API’s (appli-
cation program interfaces) based on I/O, locking, and/or serializing instructions be
used to synchronize access to shared areas of memory in multiple-processor
systems. Also, software should not depend on processor ordering in situations where
the system hardware does not support this memory-ordering model.

8.3 SERIALIZING INSTRUCTIONS
The Intel 64 and IA-32 architectures define several serializing instructions. These
instructions force the processor to complete all modifications to flags, registers, and
memory by previous instructions and to drain all buffered writes to memory before
the next instruction is fetched and executed. For example, when a MOV to control
register instruction is used to load a new value into control register CR0 to enable
protected mode, the processor must perform a serializing operation before it enters
protected mode. This serializing operation ensures that all operations that were
started while the processor was in real-address mode are completed before the
switch to protected mode is made.

The concept of serializing instructions was introduced into the IA-32 architecture
with the Pentium processor to support parallel instruction execution. Serializing
instructions have no meaning for the Intel486 and earlier processors that do not
implement parallel instruction execution.

It is important to note that executing of serializing instructions on P6 and more
recent processor families constrain speculative execution because the results of
speculatively executed instructions are discarded. The following instructions are seri-
alizing instructions:
• Privileged serializing instructions — INVD, INVEPT, INVLPG, INVVPID, LGDT,

LIDT, LLDT, LTR, MOV (to control register, with the exception of MOV CR82), MOV
(to debug register), WBINVD, and WRMSR3.

• Non-privileged serializing instructions — CPUID, IRET, and RSM.

When the processor serializes instruction execution, it ensures that all pending
memory transactions are completed (including writes stored in its store buffer)
before it executes the next instruction. Nothing can pass a serializing instruction and
a serializing instruction cannot pass any other instruction (read, write, instruction
fetch, or I/O). For example, CPUID can be executed at any privilege level to serialize

2. MOV CR8 is not defined architecturally as a serializing instruction.

3. WRMSR to the IA32_TSC_DEADLINE MSR (MSR index 6E0H) and the X2APIC MSRs (MSR indices
802H to 83FH) are not serializing.
Vol. 3A 8-25

MULTIPLE-PROCESSOR MANAGEMENT
instruction execution with no effect on program flow, except that the EAX, EBX, ECX,
and EDX registers are modified.

The following instructions are memory-ordering instructions, not serializing instruc-
tions. These drain the data memory subsystem. They do not serialize the instruction
execution stream:4

• Non-privileged memory-ordering instructions — SFENCE, LFENCE, and
MFENCE.

The SFENCE, LFENCE, and MFENCE instructions provide more granularity in control-
ling the serialization of memory loads and stores (see Section 8.2.5, “Strengthening
or Weakening the Memory-Ordering Model”).

The following additional information is worth noting regarding serializing instruc-
tions:
• The processor does not writeback the contents of modified data in its data cache

to external memory when it serializes instruction execution. Software can force
modified data to be written back by executing the WBINVD instruction, which is a
serializing instruction. The amount of time or cycles for WBINVD to complete will
vary due to the size of different cache hierarchies and other factors. As a conse-
quence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

• When an instruction is executed that enables or disables paging (that is, changes
the PG flag in control register CR0), the instruction should be followed by a jump
instruction. The target instruction of the jump instruction is fetched with the new
setting of the PG flag (that is, paging is enabled or disabled), but the jump
instruction itself is fetched with the previous setting. The Pentium 4, Intel Xeon,
and P6 family processors do not require the jump operation following the move to
register CR0 (because any use of the MOV instruction in a Pentium 4, Intel Xeon,
or P6 family processor to write to CR0 is completely serializing). However, to
maintain backwards and forward compatibility with code written to run on other
IA-32 processors, it is recommended that the jump operation be performed.

• Whenever an instruction is executed to change the contents of CR3 while paging
is enabled, the next instruction is fetched using the translation tables that
correspond to the new value of CR3. Therefore the next instruction and the
sequentially following instructions should have a mapping based upon the new
value of CR3. (Global entries in the TLBs are not invalidated, see Section 4.10.4,
“Invalidation of TLBs and Paging-Structure Caches.”)

• The Pentium processor and more recent processor families use branch-prediction
techniques to improve performance by prefetching the destination of a branch
instruction before the branch instruction is executed. Consequently, instruction
execution is not deterministically serialized when a branch instruction is
executed.

4. LFENCE does provide some guarantees on instruction ordering. It does not execute until all prior
instructions have completed locally, and no later instruction begins execution until LFENCE com-
pletes.
8-26 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.4 MULTIPLE-PROCESSOR (MP) INITIALIZATION
The IA-32 architecture (beginning with the P6 family processors) defines a multiple-
processor (MP) initialization protocol called the Multiprocessor Specification Version
1.4. This specification defines the boot protocol to be used by IA-32 processors in
multiple-processor systems. (Here, multiple processors is defined as two or more
processors.) The MP initialization protocol has the following important features:
• It supports controlled booting of multiple processors without requiring dedicated

system hardware.
• It allows hardware to initiate the booting of a system without the need for a

dedicated signal or a predefined boot processor.
• It allows all IA-32 processors to be booted in the same manner, including those

supporting Intel Hyper-Threading Technology.
• The MP initialization protocol also applies to MP systems using Intel 64

processors.

The mechanism for carrying out the MP initialization protocol differs depending on
the IA-32 processor family, as follows:
• For P6 family processors — The selection of the BSP and APs (see Section

8.4.1, “BSP and AP Processors”) is handled through arbitration on the APIC bus,
using BIPI and FIPI messages. See Appendix C, “MP Initialization For P6 Family
Processors,” for a complete discussion of MP initialization for P6 family
processors.

• Intel Xeon processors with family, model, and stepping IDs up to F09H —
The selection of the BSP and APs (see Section 8.4.1, “BSP and AP Processors”) is
handled through arbitration on the system bus, using BIPI and FIPI messages
(see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors”).

• Intel Xeon processors with family, model, and stepping IDs of F0AH and
beyond, 6E0H and beyond, 6F0H and beyond — The selection of the BSP and
APs is handled through a special system bus cycle, without using BIPI and FIPI
message arbitration (see Section 8.4.3, “MP Initialization Protocol Algorithm for
Intel Xeon Processors”).

The family, model, and stepping ID for a processor is given in the EAX register when
the CPUID instruction is executed with a value of 1 in the EAX register.

8.4.1 BSP and AP Processors
The MP initialization protocol defines two classes of processors: the bootstrap
processor (BSP) and the application processors (APs). Following a power-up or
RESET of an MP system, system hardware dynamically selects one of the processors
on the system bus as the BSP. The remaining processors are designated as APs.
Vol. 3A 8-27

MULTIPLE-PROCESSOR MANAGEMENT
As part of the BSP selection mechanism, the BSP flag is set in the IA32_APIC_BASE
MSR (see Figure 10-5) of the BSP, indicating that it is the BSP. This flag is cleared for
all other processors.

The BSP executes the BIOS’s boot-strap code to configure the APIC environment,
sets up system-wide data structures, and starts and initializes the APs. When the BSP
and APs are initialized, the BSP then begins executing the operating-system initial-
ization code.

Following a power-up or reset, the APs complete a minimal self-configuration, then
wait for a startup signal (a SIPI message) from the BSP processor. Upon receiving a
SIPI message, an AP executes the BIOS AP configuration code, which ends with the
AP being placed in halt state.

For Intel 64 and IA-32 processors supporting Intel Hyper-Threading Technology, the
MP initialization protocol treats each of the logical processors on the system bus or
coherent link domain as a separate processor (with a unique APIC ID). During boot-
up, one of the logical processors is selected as the BSP and the remainder of the
logical processors are designated as APs.

8.4.2 MP Initialization Protocol Requirements and Restrictions
The MP initialization protocol imposes the following requirements and restrictions on
the system:
• The MP protocol is executed only after a power-up or RESET. If the MP protocol

has completed and a BSP is chosen, subsequent INITs (either to a specific
processor or system wide) do not cause the MP protocol to be repeated. Instead,
each logical processor examines its BSP flag (in the IA32_APIC_BASE MSR) to
determine whether it should execute the BIOS boot-strap code (if it is the BSP) or
enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

8.4.3 MP Initialization Protocol Algorithm for
Intel Xeon Processors

Following a power-up or RESET of an MP system, the processors in the system
execute the MP initialization protocol algorithm to initialize each of the logical proces-
sors on the system bus or coherent link domain. In the course of executing this algo-
rithm, the following boot-up and initialization operations are carried out:

1. Each logical processor is assigned a unique APIC ID, based on system topology.
The unique ID is a 32-bit value if the processor supports CPUID leaf 0BH,
otherwise the unique ID is an 8-bit value. (see Section 8.4.5, “Identifying Logical
8-28 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Processors in an MP System”). This ID is written into the local APIC ID register for
each processor.

2. Each logical processor is assigned a unique arbitration priority based on its
APIC ID.

3. Each logical processor executes its internal BIST simultaneously with the other
logical processors on the system bus.

4. Upon completion of the BIST, the logical processors use a hardware-defined
selection mechanism to select the BSP and the APs from the available logical
processors on the system bus. The BSP selection mechanism differs depending
on the family, model, and stepping IDs of the processors, as follows:

— Family, model, and stepping IDs of F0AH and onwards:

• The logical processors begin monitoring the BNR# signal, which is
toggling. When the BNR# pin stops toggling, each processor attempts to
issue a NOP special cycle on the system bus.

• The logical processor with the highest arbitration priority succeeds in
issuing a NOP special cycle and is nominated the BSP. This processor sets
the BSP flag in its IA32_APIC_BASE MSR, then fetches and begins
executing BIOS boot-strap code, beginning at the reset vector (physical
address FFFF FFF0H).

• The remaining logical processors (that failed in issuing a NOP special
cycle) are designated as APs. They leave their BSP flags in the clear state
and enter a “wait-for-SIPI state.”

— Family, model, and stepping IDs up to F09H:

• Each processor broadcasts a BIPI to “all including self.” The first processor
that broadcasts a BIPI (and thus receives its own BIPI vector), selects
itself as the BSP and sets the BSP flag in its IA32_APIC_BASE MSR. (See
Appendix C.1, “Overview of the MP Initialization Process For P6 Family
Processors,” for a description of the BIPI, FIPI, and SIPI messages.)

• The remainder of the processors (which were not selected as the BSP) are
designated as APs. They leave their BSP flags in the clear state and enter
a “wait-for-SIPI state.”

• The newly established BSP broadcasts an FIPI message to “all including
self,” which the BSP and APs treat as an end of MP initialization signal.
Only the processor with its BSP flag set responds to the FIPI message. It
responds by fetching and executing the BIOS boot-strap code, beginning
at the reset vector (physical address FFFF FFF0H).

5. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

6. At the end of the boot-strap procedure, the BSP sets a processor counter to 1,
then broadcasts a SIPI message to all the APs in the system. Here, the SIPI
Vol. 3A 8-29

MULTIPLE-PROCESSOR MANAGEMENT
message contains a vector to the BIOS AP initialization code (at 000VV000H,
where VV is the vector contained in the SIPI message).

7. The first action of the AP initialization code is to set up a race (among the APs) to
a BIOS initialization semaphore. The first AP to the semaphore begins executing
the initialization code. (See Section 8.4.4, “MP Initialization Example,” for
semaphore implementation details.) As part of the AP initialization procedure,
the AP adds its APIC ID number to the ACPI and MP tables as appropriate and
increments the processor counter by 1. At the completion of the initialization
procedure, the AP executes a CLI instruction and halts itself.

8. When each of the APs has gained access to the semaphore and executed the AP
initialization code, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

9. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

The following section gives an example (with code) of the MP initialization protocol
for multiple Intel Xeon processors operating in an MP configuration.

Appendix B, “Model-Specific Registers (MSRs),” describes how to program the
LINT[0:1] pins of the processor’s local APICs after an MP configuration has been
completed.

8.4.4 MP Initialization Example
The following example illustrates the use of the MP initialization protocol used to
initialize processors in an MP system after the BSP and APs have been established.
The code runs on Intel 64 or IA-32 processors that use a protocol. This includes P6
Family processors, Pentium 4 processors, Intel Core Duo, Intel Core 2 Duo and Intel
Xeon processors.

The following constants and data definitions are used in the accompanying
code examples. They are based on the addresses of the APIC registers defined in
Table 10-1.

ICR_LOW EQU 0FEE00300H
SVR EQU 0FEE000F0H
APIC_ID EQU 0FEE00020H
LVT3 EQU 0FEE00370H
APIC_ENABLED EQU 0100H
BOOT_ID DD ?
COUNT EQU 00H
VACANT EQU 00H
8-30 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.4.4.1 Typical BSP Initialization Sequence
After the BSP and APs have been selected (by means of a hardware protocol, see
Section 8.4.3, “MP Initialization Protocol Algorithm for Intel Xeon Processors”), the
BSP begins executing BIOS boot-strap code (POST) at the normal IA-32 architecture
starting address (FFFF FFF0H). The boot-strap code typically performs the following
operations:

1. Initializes memory.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs.

4. Enables the caches.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the BSP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Loads start-up code for the AP to execute into a 4-KByte page in the lower 1
MByte of memory.

8. Switches to protected mode and ensures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

9. Determine the BSP’s APIC ID from the local APIC ID register (default is 0), the
code snippet below is an example that applies to logical processors in a system
whose local APIC units operate in xAPIC mode that APIC registers are accessed
using memory mapped interface:

MOV ESI, APIC_ID; Address of local APIC ID register
MOV EAX, [ESI];
AND EAX, 0FF000000H; Zero out all other bits except APIC ID
MOV BOOT_ID, EAX; Save in memory

Saves the APIC ID in the ACPI and MP tables and optionally in the system config-
uration space in RAM.

10. Converts the base address of the 4-KByte page for the AP’s bootup code into 8-bit
vector. The 8-bit vector defines the address of a 4-KByte page in the real-address
mode address space (1-MByte space). For example, a vector of 0BDH specifies a
start-up memory address of 000BD000H.

11. Enables the local APIC by setting bit 8 of the APIC spurious vector register (SVR).

MOV ESI, SVR; Address of SVR
MOV EAX, [ESI];
OR EAX, APIC_ENABLED; Set bit 8 to enable (0 on reset)
MOV [ESI], EAX;
Vol. 3A 8-31

MULTIPLE-PROCESSOR MANAGEMENT
12. Sets up the LVT error handling entry by establishing an 8-bit vector for the APIC
error handler.

MOV ESI, LVT3;
MOV EAX, [ESI];
AND EAX, FFFFFF00H; Clear out previous vector.
OR EAX, 000000xxH; xx is the 8-bit vector the APIC error handler.
MOV [ESI], EAX;

13. Initializes the Lock Semaphore variable VACANT to 00H. The APs use this
semaphore to determine the order in which they execute BIOS AP initialization
code.

14. Performs the following operation to set up the BSP to detect the presence of APs
in the system and the number of processors:

— Sets the value of the COUNT variable to 1.

— Starts a timer (set for an approximate interval of 100 milliseconds). In the AP
BIOS initialization code, the AP will increment the COUNT variable to indicate
its presence. When the timer expires, the BSP checks the value of the COUNT
variable. If the timer expires and the COUNT variable has not been incre-
mented, no APs are present or some error has occurred.

15. Broadcasts an INIT-SIPI-SIPI IPI sequence to the APs to wake them up and
initialize them:

MOV ESI, ICR_LOW; Load address of ICR low dword into ESI.
MOV EAX, 000C4500H; Load ICR encoding for broadcast INIT IPI
; to all APs into EAX.
MOV [ESI], EAX; Broadcast INIT IPI to all APs
; 10-millisecond delay loop.
MOV EAX, 000C46XXH; Load ICR encoding for broadcast SIPI IP
; to all APs into EAX, where xx is the vector computed in step 10.
MOV [ESI], EAX; Broadcast SIPI IPI to all APs
; 200-microsecond delay loop
MOV [ESI], EAX; Broadcast second SIPI IPI to all APs
; 200-microsecond delay loop

Step 15:
MOV EAX, 000C46XXH; Load ICR encoding from broadcast SIPI IP
; to all APs into EAX where xx is the vector computed in step 8.

16. Waits for the timer interrupt.

17. Reads and evaluates the COUNT variable and establishes a processor count.

18. If necessary, reconfigures the APIC and continues with the remaining system
diagnostics as appropriate.
8-32 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.4.4.2 Typical AP Initialization Sequence
When an AP receives the SIPI, it begins executing BIOS AP initialization code at the
vector encoded in the SIPI. The AP initialization code typically performs the following
operations:

1. Waits on the BIOS initialization Lock Semaphore. When control of the semaphore
is attained, initialization continues.

2. Loads the microcode update into the processor.

3. Initializes the MTRRs (using the same mapping that was used for the BSP).

4. Enables the cache.

5. Executes the CPUID instruction with a value of 0H in the EAX register, then reads
the EBX, ECX, and EDX registers to determine if the AP is “GenuineIntel.”

6. Executes the CPUID instruction with a value of 1H in the EAX register, then saves
the values in the EAX, ECX, and EDX registers in a system configuration space in
RAM for use later.

7. Switches to protected mode and ensures that the APIC address space is mapped
to the strong uncacheable (UC) memory type.

8. Determines the AP’s APIC ID from the local APIC ID register, and adds it to the MP
and ACPI tables and optionally to the system configuration space in RAM.

9. Initializes and configures the local APIC by setting bit 8 in the SVR register and
setting up the LVT3 (error LVT) for error handling (as described in steps 9 and 10
in Section 8.4.4.1, “Typical BSP Initialization Sequence”).

10. Configures the APs SMI execution environment. (Each AP and the BSP must have
a different SMBASE address.)

11. Increments the COUNT variable by 1.

12. Releases the semaphore.

13. Executes the CLI and HLT instructions.

14. Waits for an INIT IPI.

8.4.5 Identifying Logical Processors in an MP System
After the BIOS has completed the MP initialization protocol, each logical processor
can be uniquely identified by its local APIC ID. Software can access these APIC IDs in
either of the following ways:
• Read APIC ID for a local APIC — Code running on a logical processor can read

APIC ID in one of two ways depending on the local APIC unit is operating in
x2APIC mode (see Intel® 64 Architecture x2APIC Specification)or in xAPIC
mode:

— If the local APIC unit supports x2APIC and is operating in x2APIC mode, 32-
bit APIC ID can be read by executing a RDMSR instruction to read the
Vol. 3A 8-33

MULTIPLE-PROCESSOR MANAGEMENT
processor’s x2APIC ID register. This method is equivalent to executing CPUID
leaf 0BH described below.

— If the local APIC unit is operating in xAPIC mode, 8-bit APIC ID can be read by
executing a MOV instruction to read the processor’s local APIC ID register
(see Section 10.4.6, “Local APIC ID”). This is the ID to use for directing
physical destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS
creates an ACPI table and an MP table. These tables are defined in the Multipro-
cessor Specification Version 1.4 and provide software with a list of the processors
in the system and their local APIC IDs. The format of the ACPI table is derived
from the ACPI specification, which is an industry standard power management
and platform configuration specification for MP systems.

• Read Initial APIC ID (If the process does not support CPUID leaf 0BH) — An
APIC ID is assigned to a logical processor during power up. This is the initial APIC
ID reported by CPUID.1:EBX[31:24] and may be different from the current value
read from the local APIC. The initial APIC ID can be used to determine the
topological relationship between logical processors for multi-processor systems
that do not support CPUID leaf 0BH.
Bits in the 8-bit initial APIC ID can be interpreted using several bit masks. Each
bit mask can be used to extract an identifier to represent a hierarchical level of
the multi-threading resource topology in an MP system (See Section 8.9.1,
“Hierarchical Mapping of Shared Resources”). The initial APIC ID may consist of
up to four bit-fields. In a non-clustered MP system, the field consists of up to
three bit fields.

• Read 32-bit APIC ID from CPUID leaf 0BH (If the processor supports CPUID
leaf 0BH) — A unique APIC ID is assigned to a logical processor during power up.
This APIC ID is reported by CPUID.0BH:EDX[31:0] as a 32-bit value. Use the 32-
bit APIC ID and CPUID leaf 0BH to determine the topological relationship between
logical processors if the processor supports CPUID leaf 0BH.
Bits in the 32-bit x2APIC ID can be extracted into sub-fields using CPUID leaf 0BH
parameters. (See Section 8.9.1, “Hierarchical Mapping of Shared Resources”).

Figure 8-2 shows two examples of APIC ID bit fields in earlier single-core processors.
In single-core Intel Xeon processors, the APIC ID assigned to a logical processor
during power-up and initialization is 8 bits. Bits 2:1 form a 2-bit physical package
identifier (which can also be thought of as a socket identifier). In systems that
configure physical processors in clusters, bits 4:3 form a 2-bit cluster ID. Bit 0 is used
in the Intel Xeon processor MP to identify the two logical processors within the
package (see Section 8.9.3, “Hierarchical ID of Logical Processors in an MP System”).
For Intel Xeon processors that do not support Intel Hyper-Threading Technology, bit
0 is always set to 0; for Intel Xeon processors supporting Intel Hyper-Threading
Technology, bit 0 performs the same function as it does for Intel Xeon processor MP.

For more recent multi-core processors, see Section 8.9.1, “Hierarchical Mapping of
Shared Resources” for a complete description of the topological relationships
8-34 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
between logical processors and bit field locations within an initial APIC ID across Intel
64 and IA-32 processor families.

Note the number of bit fields and the width of bit-fields are dependent on processor
and platform hardware capabilities. Software should determine these at runtime.
When initial APIC IDs are assigned to logical processors, the value of APIC ID
assigned to a logical processor will respect the bit-field boundaries corresponding
core, physical package, etc. Additional examples of the bit fields in the initial APIC ID
of multi-threading capable systems are shown in Section 8.9.

For P6 family processors, the APIC ID that is assigned to a processor during power-
up and initialization is 4 bits (see Figure 8-2). Here, bits 0 and 1 form a 2-bit
processor (or socket) identifier and bits 2 and 3 form a 2-bit cluster ID.

8.5 INTEL® HYPER-THREADING TECHNOLOGY AND
INTEL® MULTI-CORE TECHNOLOGY

Intel Hyper-Threading Technology and Intel multi-core technology are extensions to
Intel 64 and IA-32 architectures that enable a single physical processor to execute
two or more separate code streams (called threads) concurrently. In Intel Hyper-
Threading Technology, a single processor core provides two logical processors that
share execution resources (see Section 8.7, “Intel® Hyper-Threading Technology
Architecture”). In Intel multi-core technology, a physical processor package provides

Figure 8-2. Interpretation of APIC ID in Early MP Systems

0

Processor ID

17 4 3 2

Cluster

Reserved

0

Processor ID

17 4 3 25

Cluster

Reserved

APIC ID Format for Intel Xeon Processors that

APIC ID Format for P6 Family Processors

0

do not Support Intel Hyper-Threading Technology
Vol. 3A 8-35

MULTIPLE-PROCESSOR MANAGEMENT
two or more processor cores. Both configurations require chipsets and a BIOS that
support the technologies.

Software should not rely on processor names to determine whether a processor
supports Intel Hyper-Threading Technology or Intel multi-core technology. Use the
CPUID instruction to determine processor capability (see Section 8.6.2, “Initializing
Multi-Core Processors”).

8.6 DETECTING HARDWARE MULTI-THREADING
SUPPORT AND TOPOLOGY

Use the CPUID instruction to detect the presence of hardware multi-threading
support in a physical processor. Hardware multi-threading can support several vari-
eties of multigrade and/or Intel Hyper-Threading Technology. CPUID instruction
provides several sets of parameter information to aid software enumerating topology
information. The relevant topology enumeration parameters provided by CPUID
include:
• Hardware Multi-Threading feature flag (CPUID.1:EDX[28] = 1) —

Indicates when set that the physical package is capable of supporting Intel
Hyper-Threading Technology and/or multiple cores.

• Processor topology enumeration parameters for 8-bit APIC ID:

— Addressable IDs for Logical processors in the same Package
(CPUID.1:EBX[23:16]) — Indicates the maximum number of addressable
ID for logical processors in a physical package. Within a physical package,
there may be addressable IDs that are not occupied by any logical
processors. This parameter does not represents the hardware capability of
the physical processor.5

• Addressable IDs for processor cores in the same Package6
(CPUID.(EAX=4, ECX=07):EAX[31:26] + 1 = Y) — Indicates the maximum
number of addressable IDs attributable to processor cores (Y) in the physical
package.

• Extended Processor Topology Enumeration parameters for 32-bit APIC
ID: Intel 64 processors supporting CPUID leaf 0BH will assign unique APIC IDs to
each logical processor in the system. CPUID leaf 0BH reports the 32-bit APIC ID

5. Operating system and BIOS may implement features that reduce the number of logical proces-
sors available in a platform to applications at runtime to less than the number of physical pack-
ages times the number of hardware-capable logical processors per package.

6. Software must check CPUID for its support of leaf 4 when implementing support for multi-core. If
CPUID leaf 4 is not available at runtime, software should handle the situation as if there is only
one core per package.

7. Maximum number of cores in the physical package must be queried by executing CPUID with
EAX=4 and a valid ECX input value. Valid ECX input values start from 0.
8-36 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
and provide topology enumeration parameters. See CPUID instruction reference
pages in Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The CPUID feature flag may indicate support for hardware multi-threading when only
one logical processor available in the package. In this case, the decimal value repre-
sented by bits 16 through 23 in the EBX register will have a value of 1.

Software should note that the number of logical processors enabled by system soft-
ware may be less than the value of “Addressable IDs for Logical processors”. Simi-
larly, the number of cores enabled by system software may be less than the value of
“Addressable IDs for processor cores”.

Software can detect the availability of the CPUID extended topology enumeration leaf
(0BH) by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed
to next step,

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.

If both of the above conditions are true, extended topology enumeration leaf is avail-
able. Note the presence of CPUID leaf 0BH in a processor does not guarantee support
that the local APIC supports x2APIC. If CPUID.(EAX=0BH, ECX=0H):EBX returns
zero and maximum input value for basic CPUID information is greater than 0BH, then
CPUID.0BH leaf is not supported on that processor.

8.6.1 Initializing Processors
Supporting Hyper-Threading Technology

The initialization process for an MP system that contains processors supporting Intel
Hyper-Threading Technology is the same as for conventional MP systems (see
Section 8.4, “Multiple-Processor (MP) Initialization”). One logical processor in the
system is selected as the BSP and other processors (or logical processors) are desig-
nated as APs. The initialization process is identical to that described in Section 8.4.3,
“MP Initialization Protocol Algorithm for Intel Xeon Processors,” and Section 8.4.4,
“MP Initialization Example.”

During initialization, each logical processor is assigned an APIC ID that is stored in
the local APIC ID register for each logical processor. If two or more processors
supporting Intel Hyper-Threading Technology are present, each logical processor on
the system bus is assigned a unique ID (see Section 8.9.3, “Hierarchical ID of Logical
Processors in an MP System”). Once logical processors have APIC IDs, software
communicates with them by sending APIC IPI messages.
Vol. 3A 8-37

MULTIPLE-PROCESSOR MANAGEMENT
8.6.2 Initializing Multi-Core Processors
The initialization process for an MP system that contains multi-core Intel 64 or IA-32
processors is the same as for conventional MP systems (see Section 8.4, “Multiple-
Processor (MP) Initialization”). A logical processor in one core is selected as the BSP;
other logical processors are designated as APs.

During initialization, each logical processor is assigned an APIC ID. Once logical
processors have APIC IDs, software may communicate with them by sending APIC
IPI messages.

8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32
Processor Supporting Hardware Multi-Threading

Upon completing the operating system boot-up procedure, the bootstrap processor
(BSP) executes operating system code. Other logical processors are placed in the
halt state. To execute a code stream (thread) on a halted logical processor, the oper-
ating system issues an interprocessor interrupt (IPI) addressed to the halted logical
processor. In response to the IPI, the processor wakes up and begins executing the
thread identified by the interrupt vector received as part of the IPI.

To manage execution of multiple threads on logical processors, an operating system
can use conventional symmetric multiprocessing (SMP) techniques. For example, the
operating-system can use a time-slice or load balancing mechanism to periodically
interrupt each of the active logical processors. Upon interrupting a logical processor,
the operating system checks its run queue for a thread waiting to be executed and
dispatches the thread to the interrupted logical processor.

8.6.4 Handling Interrupts on an IA-32 Processor Supporting
Hardware Multi-Threading

Interrupts are handled on processors supporting Intel Hyper-Threading Technology
as they are on conventional MP systems. External interrupts are received by the I/O
APIC, which distributes them as interrupt messages to specific logical processors
(see Figure 8-3).

Logical processors can also send IPIs to other logical processors by writing to the ICR
register of its local APIC (see Section 10.6, “Issuing Interprocessor Interrupts”). This
also applies to dual-core processors.
8-38 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.7 INTEL® HYPER-THREADING TECHNOLOGY
ARCHITECTURE

Figure 8-4 shows a generalized view of an Intel processor supporting Intel Hyper-
Threading Technology, using the original Intel Xeon processor MP as an example.
This implementation of the Intel Hyper-Threading Technology consists of two logical
processors (each represented by a separate architectural state) which share the
processor’s execution engine and the bus interface. Each logical processor also has
its own advanced programmable interrupt controller (APIC).

Figure 8-3. Local APICs and I/O APIC in MP System Supporting Intel HT Technology

I/O APIC External
Interrupts

System Chip Set

Bridge

PCI

Interrupt Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages

Local APIC

Logical
Processor 0

Local APIC

Logical
Processor 1

Hyper-Threading Technology
Intel Processor with Intel

Bus Interface

Processor Core

IPIs
Interrupt
Messages
Vol. 3A 8-39

MULTIPLE-PROCESSOR MANAGEMENT
8.7.1 State of the Logical Processors
The following features are part of the architectural state of logical processors within
Intel 64 or IA-32 processors supporting Intel Hyper-Threading Technology. The
features can be subdivided into three groups:
• Duplicated for each logical processor
• Shared by logical processors in a physical processor
• Shared or duplicated, depending on the implementation

The following features are duplicated for each logical processor:
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP)
• Segment registers (CS, DS, SS, ES, FS, and GS)
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical

processor point to the instruction stream for the thread being executed by the
logical processor.

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)
• XMM registers (XMM0 through XMM7) and the MXCSR register
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task

register)

Figure 8-4. IA-32 Processor with Two Logical Processors Supporting Intel HT
Technology

Logical
Processor 0
Architectural

State

Bus Interface

Local APICLocal APIC

Logical
Processor 1
Architectural

State

Execution Engine

System Bus
8-40 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs
• Machine check global status (IA32_MCG_STATUS) and machine check capability

(IA32_MCG_CAP) MSRs
• Thermal clock modulation and ACPI Power management control MSRs
• Time stamp counter MSRs
• Most of the other MSR registers, including the page attribute table (PAT). See the

exceptions below.
• Local APIC registers.
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15),

control register, IA32_EFER on Intel 64 processors.

The following features are shared by logical processors:
• Memory type range registers (MTRRs)

Whether the following features are shared or duplicated is implementation-specific:
• IA32_MISC_ENABLE MSR (MSR address 1A0H)
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and

IA32_MCG_CAP MSRs)
• Performance monitoring control and counter MSRs

8.7.2 APIC Functionality
When a processor supporting Intel Hyper-Threading Technology support is initialized,
each logical processor is assigned a local APIC ID (see Table 10-1). The local APIC ID
serves as an ID for the logical processor and is stored in the logical processor’s APIC
ID register. If two or more processors supporting Intel Hyper-Threading Technology
are present in a dual processor (DP) or MP system, each logical processor on the
system bus is assigned a unique local APIC ID (see Section 8.9.3, “Hierarchical ID of
Logical Processors in an MP System”).

Software communicates with local processors using the APIC’s interprocessor inter-
rupt (IPI) messaging facility. Setup and programming for APICs is identical in proces-
sors that support and do not support Intel Hyper-Threading Technology. See Chapter
10, “Advanced Programmable Interrupt Controller (APIC),” for a detailed discussion.

8.7.3 Memory Type Range Registers (MTRR)
MTRRs in a processor supporting Intel Hyper-Threading Technology are shared by
logical processors. When one logical processor updates the setting of the MTRRs,
settings are automatically shared with the other logical processors in the same phys-
ical package.

The architectures require that all MP systems based on Intel 64 and IA-32 processors
(this includes logical processors) must use an identical MTRR memory map. This
Vol. 3A 8-41

MULTIPLE-PROCESSOR MANAGEMENT
gives software a consistent view of memory, independent of the processor on which
it is running. See Section 11.11, “Memory Type Range Registers (MTRRs),” for infor-
mation on setting up MTRRs.

8.7.4 Page Attribute Table (PAT)
Each logical processor has its own PAT MSR (IA32_PAT). However, as described in
Section 11.12, “Page Attribute Table (PAT),” the PAT MSR settings must be the same
for all processors in a system, including the logical processors.

8.7.5 Machine Check Architecture
In the Intel HT Technology context as implemented by processors based on Intel
NetBurst® microarchitecture, all of the machine check architecture (MCA) MSRs
(except for the IA32_MCG_STATUS and IA32_MCG_CAP MSRs) are duplicated for
each logical processor. This permits logical processors to initialize, configure, query,
and handle machine-check exceptions simultaneously within the same physical
processor. The design is compatible with machine check exception handlers that
follow the guidelines given in Chapter 15, “Machine-Check Architecture.”

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its
machine check in progress bit field (MCIP) can be used to detect recursion on the
part of MCA handlers. In addition, the MSR allows each logical processor to deter-
mine that a machine-check exception is in progress independent of the actions of
another logical processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with
respect to shared hardware resources, both logical processors are notified of
machine check errors that occur within a given physical processor. If machine-check
exceptions are enabled when a fatal error is reported, all the logical processors within
a physical package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the shutdown
state and assert the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4
should be set for each logical processor.

On Intel Atom family processors that support Intel Hyper-Threading Technology, the
MCA facilities are shared between all logical processors on the same processor core.

8.7.6 Debug Registers and Extensions
Each logical processor has its own set of debug registers (DR0, DR1, DR2, DR3, DR6,
DR7) and its own debug control MSR. These can be set to control and record debug
information for each logical processor independently. Each logical processor also has
its own last branch records (LBR) stack.
8-42 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.7.7 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between the
logical processors within a processor core for processors based on Intel NetBurst
microarchitecture. As a result, software must manage the use of these resources.
The performance counter interrupts, events, and precise event monitoring support
can be set up and allocated on a per thread (per logical processor) basis.

See Section 30.10, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst® Microarchitecture,” for a discussion of perfor-
mance monitoring in the Intel Xeon processor MP.

In Intel Atom processor family that support Intel Hyper-Threading Technology, the
performance counters (general-purpose and fixed-function counters) and their
companion control MSRs are duplicated for each logical processor.

8.7.8 IA32_MISC_ENABLE MSR
The IA32_MISC_ENABLE MSR (MSR address 1A0H) is generally shared between the
logical processors in a processor core supporting Intel Hyper-Threading Technology.
However, some bit fields within IA32_MISC_ENABLE MSR may be duplicated per
logical processor. The partition of shared or duplicated bit fields within
IA32_MISC_ENABLE is implementation dependent. Software should program dupli-
cated fields carefully on all logical processors in the system to ensure consistent
behavior.

8.7.9 Memory Ordering
The logical processors in an Intel 64 or IA-32 processor supporting Intel Hyper-
Threading Technology obey the same rules for memory ordering as Intel 64 or IA-32
processors without Intel HT Technology (see Section 8.2, “Memory Ordering”). Each
logical processor uses a processor-ordered memory model that can be further
defined as “write-ordered with store buffer forwarding.” All mechanisms for strength-
ening or weakening the memory-ordering model to handle special programming situ-
ations apply to each logical processor.

8.7.10 Serializing Instructions
As a general rule, when a logical processor in a processor supporting Intel Hyper-
Threading Technology executes a serializing instruction, only that logical processor is
affected by the operation. An exception to this rule is the execution of the WBINVD,
INVD, and WRMSR instructions; and the MOV CR instruction when the state of the CD
flag in control register CR0 is modified. Here, both logical processors are serialized.
Vol. 3A 8-43

MULTIPLE-PROCESSOR MANAGEMENT
8.7.11 MICROCODE UPDATE Resources
In an Intel processor supporting Intel Hyper-Threading Technology, the microcode
update facilities are shared between the logical processors; either logical processor
can initiate an update. Each logical processor has its own BIOS signature MSR
(IA32_BIOS_SIGN_ID at MSR address 8BH). When a logical processor performs an
update for the physical processor, the IA32_BIOS_SIGN_ID MSRs for resident logical
processors are updated with identical information. If logical processors initiate an
update simultaneously, the processor core provides the necessary synchronization
needed to ensure that only one update is performed at a time.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors
in the same core. All other processors support logical processors
initiating an update simultaneously. Intel recommends a common
approach that the microcode loader use the sequential technique
described in Section 9.11.6.3.

8.7.12 Self Modifying Code
Intel processors supporting Intel Hyper-Threading Technology support self-modifying
code, where data writes modify instructions cached or currently in flight. They also
support cross-modifying code, where on an MP system writes generated by one
processor modify instructions cached or currently in flight on another. See Section
8.1.3, “Handling Self- and Cross-Modifying Code,” for a description of the require-
ments for self- and cross-modifying code in an IA-32 processor.

8.7.13 Implementation-Specific Intel HT Technology Facilities
The following non-architectural facilities are implementation-specific in IA-32 proces-
sors supporting Intel Hyper-Threading Technology:
• Caches
• Translation lookaside buffers (TLBs)
• Thermal monitoring facilities

The Intel Xeon processor MP implementation is described in the following sections.

8.7.13.1 Processor Caches
For processors supporting Intel Hyper-Threading Technology, the caches are shared.
Any cache manipulation instruction that is executed on one logical processor has a
global effect on the cache hierarchy of the physical processor. Note the following:
8-44 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
• WBINVD instruction — The entire cache hierarchy is invalidated after modified
data is written back to memory. All logical processors are stopped from executing
until after the write-back and invalidate operation is completed. A special bus
cycle is sent to all caching agents. The amount of time or cycles for WBINVD to
complete will vary due to the size of different cache hierarchies and other factors.
As a consequence, the use of the WBINVD instruction can have an impact on
interrupt/event response time.

• INVD instruction — The entire cache hierarchy is invalidated without writing
back modified data to memory. All logical processors are stopped from executing
until after the invalidate operation is completed. A special bus cycle is sent to all
caching agents.

• CLFLUSH instruction — The specified cache line is invalidated from the cache
hierarchy after any modified data is written back to memory and a bus cycle is
sent to all caching agents, regardless of which logical processor caused the cache
line to be filled.

• CD flag in control register CR0 — Each logical processor has its own CR0
control register, and thus its own CD flag in CR0. The CD flags for the two logical
processors are ORed together, such that when any logical processor sets its CD
flag, the entire cache is nominally disabled.

8.7.13.2 Processor Translation Lookaside Buffers (TLBs)
In processors supporting Intel Hyper-Threading Technology, data cache TLBs are
shared. The instruction cache TLB may be duplicated or shared in each logical
processor, depending on implementation specifics of different processor families.

Entries in the TLBs are tagged with an ID that indicates the logical processor that
initiated the translation. This tag applies even for translations that are marked global
using the page-global feature for memory paging. See Section 4.10, “Caching Trans-
lation Information,” for information about global translations.

When a logical processor performs a TLB invalidation operation, only the TLB entries
that are tagged for that logical processor are guaranteed to be flushed. This protocol
applies to all TLB invalidation operations, including writes to control registers CR3
and CR4 and uses of the INVLPG instruction.

8.7.13.3 Thermal Monitor
In a processor that supports Intel Hyper-Threading Technology, logical processors
share the catastrophic shutdown detector and the automatic thermal monitoring
mechanism (see Section 14.5, “Thermal Monitoring and Protection”). Sharing results
in the following behavior:
• If the processor’s core temperature rises above the preset catastrophic shutdown

temperature, the processor core halts execution, which causes both logical
processors to stop execution.
Vol. 3A 8-45

MULTIPLE-PROCESSOR MANAGEMENT
• When the processor’s core temperature rises above the preset automatic thermal
monitor trip temperature, the clock speed of the processor core is automatically
modulated, which effects the execution speed of both logical processors.

For software controlled clock modulation, each logical processor has its own
IA32_CLOCK_MODULATION MSR, allowing clock modulation to be enabled or
disabled on a logical processor basis. Typically, if software controlled clock modula-
tion is going to be used, the feature must be enabled for all the logical processors
within a physical processor and the modulation duty cycle must be set to the same
value for each logical processor. If the duty cycle values differ between the logical
processors, the processor clock will be modulated at the highest duty cycle selected.

8.7.13.4 External Signal Compatibility
This section describes the constraints on external signals received through the pins
of a processor supporting Intel Hyper-Threading Technology and how these signals
are shared between its logical processors.
• STPCLK# — A single STPCLK# pin is provided on the physical package of the

Intel Xeon processor MP. External control logic uses this pin for power
management within the system. When the STPCLK# signal is asserted, the
processor core transitions to the stop-grant state, where instruction execution is
halted but the processor core continues to respond to snoop transactions.
Regardless of whether the logical processors are active or halted when the
STPCLK# signal is asserted, execution is stopped on both logical processors and
neither will respond to interrupts.

In MP systems, the STPCLK# pins on all physical processors are generally tied
together. As a result this signal affects all the logical processors within the system
simultaneously.

• LINT0 and LINT1 pins — A processor supporting Intel Hyper-Threading
Technology has only one set of LINT0 and LINT1 pins, which are shared between
the logical processors. When one of these pins is asserted, both logical
processors respond unless the pin has been masked in the APIC local vector
tables for one or both of the logical processors.

Typically in MP systems, the LINT0 and LINT1 pins are not used to deliver
interrupts to the logical processors. Instead all interrupts are delivered to the
local processors through the I/O APIC.

• A20M# pin — On an IA-32 processor, the A20M# pin is typically provided for
compatibility with the Intel 286 processor. Asserting this pin causes bit 20 of the
physical address to be masked (forced to zero) for all external bus memory
accesses. Processors supporting Intel Hyper-Threading Technology provide one
A20M# pin, which affects the operation of both logical processors within the
physical processor.
8-46 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
The functionality of A20M# is used primarily by older operating systems and not
used by modern operating systems. On newer Intel 64 processors, A20M# may
be absent.

8.8 MULTI-CORE ARCHITECTURE
This section describes the architecture of Intel 64 and IA-32 processors supporting
dual-core and quad-core technology. The discussion is applicable to the Intel Pentium
processor Extreme Edition, Pentium D, Intel Core Duo, Intel Core 2 Duo, Dual-core
Intel Xeon processor, Intel Core 2 Quad processors, and quad-core Intel Xeon
processors. Features vary across different microarchitectures and are detectable
using CPUID.

In general, each processor core has dedicated microarchitectural resources identical
to a single-processor implementation of the underlying microarchitecture without
hardware multi-threading capability. Each logical processor in a dual-core processor
(whether supporting Intel Hyper-Threading Technology or not) has its own APIC
functionality, PAT, machine check architecture, debug registers and extensions. Each
logical processor handles serialization instructions or self-modifying code on its own.
Memory order is handled the same way as in Intel Hyper-Threading Technology.

The topology of the cache hierarchy (with respect to whether a given cache level is
shared by one or more processor cores or by all logical processors in the physical
package) depends on the processor implementation. Software must use the deter-
ministic cache parameter leaf of CPUID instruction to discover the cache-sharing
topology between the logical processors in a multi-threading environment.

8.8.1 Logical Processor Support
The topological composition of processor cores and logical processors in a multi-core
processor can be discovered using CPUID. Within each processor core, one or more
logical processors may be available.

System software must follow the requirement MP initialization sequences (see
Section 8.4, “Multiple-Processor (MP) Initialization”) to recognize and enable logical
processors. At runtime, software can enumerate those logical processors enabled by
system software to identify the topological relationships between these logical
processors. (See Section 8.9.5, “Identifying Topological Relationships in a MP
System”).

8.8.2 Memory Type Range Registers (MTRR)
MTRR is shared between two logical processors sharing a processor core if the phys-
ical processor supports Intel Hyper-Threading Technology. MTRR is not shared
between logical processors located in different cores or different physical packages.
Vol. 3A 8-47

MULTIPLE-PROCESSOR MANAGEMENT
The Intel 64 and IA-32 architectures require that all logical processors in an MP
system use an identical MTRR memory map. This gives software a consistent view of
memory, independent of the processor on which it is running.

See Section 11.11, “Memory Type Range Registers (MTRRs).”

8.8.3 Performance Monitoring Counters
Performance counters and their companion control MSRs are shared between two
logical processors sharing a processor core if the processor core supports Intel
Hyper-Threading Technology and is based on Intel NetBurst microarchitecture. They
are not shared between logical processors in different cores or different physical
packages. As a result, software must manage the use of these resources, based on
the topology of performance monitoring resources. Performance counter interrupts,
events, and precise event monitoring support can be set up and allocated on a per
thread (per logical processor) basis.

See Section 30.10, “Performance Monitoring and Intel Hyper-Threading Technology
in Processors Based on Intel NetBurst® Microarchitecture.”

8.8.4 IA32_MISC_ENABLE MSR
Some bit fields in IA32_MISC_ENABLE MSR (MSR address 1A0H) may be shared
between two logical processors sharing a processor core, or may be shared between
different cores in a physical processor. See Appendix B, “Model-Specific Registers
(MSRs)”.

8.8.5 MICROCODE UPDATE Resources
Microcode update facilities are shared between two logical processors sharing a
processor core if the physical package supports Intel Hyper-Threading Technology.
They are not shared between logical processors in different cores or different phys-
ical packages. Either logical processor that has access to the microcode update
facility can initiate an update.

Each logical processor has its own BIOS signature MSR (IA32_BIOS_SIGN_ID at MSR
address 8BH). When a logical processor performs an update for the physical
processor, the IA32_BIOS_SIGN_ID MSRs for resident logical processors are
updated with identical information.

NOTE
Some processors (prior to the introduction of Intel 64 Architecture
and based on Intel NetBurst microarchitecture) do not support simul-
taneous loading of microcode update to the sibling logical processors
in the same core. All other processors support logical processors
initiating an update simultaneously. Intel recommends a common
8-48 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
approach that the microcode loader use the sequential technique
described in Section 9.11.6.3.

8.9 PROGRAMMING CONSIDERATIONS FOR HARDWARE
MULTI-THREADING CAPABLE PROCESSORS

In a multi-threading environment, there may be certain hardware resources that are
physically shared at some level of the hardware topology. In the multi-processor
systems, typically bus and memory sub-systems are physically shared between
multiple sockets. Within a hardware multi-threading capable processors, certain
resources are provided for each processor core, while other resources may be
provided for each logical processors (see Section 8.7, “Intel® Hyper-Threading Tech-
nology Architecture,” and Section 8.8, “Multi-Core Architecture”).

From a software programming perspective, control transfer of processor operation is
managed at the granularity of logical processor (operating systems dispatch a
runnable task by allocating an available logical processor on the platform). To
manage the topology of shared resources in a multi-threading environment, it may
be useful for software to understand and manage resources that are shared by more
than one logical processors.

8.9.1 Hierarchical Mapping of Shared Resources
The APIC_ID value associated with each logical processor in a multi-processor
system is unique (see Section 8.6, “Detecting Hardware Multi-Threading Support and
Topology”). This 8-bit or 32-bit value can be decomposed into sub-fields, where each
sub-field corresponds a hierarchical level of the topological mapping of hardware
resources.

The decomposition of an APIC_ID may consist of several sub fields representing the
topology within a physical processor package, the higher-order bits of an APIC ID
may also be used by cluster vendors to represent the topology of cluster nodes of
each coherent multiprocessor systems. If the processor does not support CPUID leaf
0BH, the 8-bit initial APIC ID can represent 4 levels of hierarchy:
• Cluster — Some multi-threading environments consists of multiple clusters of

multi-processor systems. The CLUSTER_ID sub-field is usually supported by
vendor firmware to distinguish different clusters. For non-clustered systems,
CLUSTER_ID is usually 0 and system topology is reduced to three levels of
hierarchy.

• Package — A multi-processor system consists of two or more sockets, each
mates with a physical processor package. The PACKAGE_ID sub-field distin-
guishes different physical packages within a cluster.
Vol. 3A 8-49

MULTIPLE-PROCESSOR MANAGEMENT
• Core — A physical processor package consists of one or more processor cores.
The CORE_ID sub-field distinguishes processor cores in a package. For a single-
core processor, the width of this bit field is 0.

• SMT — A processor core provides one or more logical processors sharing
execution resources. The SMT_ID sub-field distinguishes logical processors in a
core. The width of this bit field is non-zero if a processor core provides more than
one logical processors.

SMT and CORE sub-fields are bit-wise contiguous in the APIC_ID field (see
Figure 8-5).

If the processor supports CPUID leaf 0BH, the 32-bit APIC ID can represent cluster
plus several levels of topology within the physical processor package. The exact
number of hierarchical levels within a physical processor package must be enumer-
ated through CPUID leaf 0BH. Common processor families may employ topology
similar to that represented by 8-bit Initial APIC ID. In general, CPUID leaf 0BH can
support topology enumeration algorithm that decompose a 32-bit APIC ID into more
than four sub-fields (see Figure 8-6).

The width of each sub-field depends on hardware and software configurations. Field
widths can be determined at runtime using the algorithm discussed below (Example
8-16 through Example 8-20).

Figure 7-6 depicts the relationships of three of the hierarchical sub-fields in a hypo-
thetical MP system. The value of valid APIC_IDs need not be contiguous across
package boundary or core boundaries.

Figure 8-5. Generalized Four level Interpretation of the APIC ID

0

Package ID

SMT ID

X

Cluster ID

Reserved

Core ID

X=31 if x2APIC is supported

Otherwise X= 7
8-50 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf
CPUID leaf 0BH provides enumeration parameters for software to identify each hier-
archy of the processor topology in a deterministic manner. Each hierarchical level of
the topology starting from the SMT level is represented numerically by a sub-leaf
index within the CPUID 0BH leaf. Each level of the topology is mapped to a sub-field
in the APIC ID, following the general relationship depicted in Figure 8-6. This mech-
anism allows software to query the exact number of levels within a physical
processor package and the bit-width of each sub-field of x2APIC ID directly. For
example,
• Starting from sub-leaf index 0 and incrementing ECX until CPUID.(EAX=0BH,

ECX=N):ECX[15:8] returns an invalid “level type“ encoding. The number of
levels within the physical processor package is “N“ (excluding PACKAGE). Using
Figure 8-6 as an example, CPUID.(EAX=0BH, ECX=3):ECX[15:8] will report
00H, indicating sub leaf 03H is invalid. This is also depicted by a pseudo code
example:

Example 8-16. Number of Levels Below the Physical Processor Package

Byte type = 1;
s = 0;
While (type) {

EAX = 0BH; // query each sub leaf of CPUID leaf 0BH
ECX = s;
CPUID;
type = ECX[15:8]; // examine level type encoding
s ++;

Figure 8-6. Conceptual Five-level Topology and 32-bit APIC ID Composition

0

Package ID

R ID

31

Cluster ID

Reserved

Q ID

SMT ID

RSMT

Q

Package

Physical Processor Topology 32-bit APIC ID Composition
Vol. 3A 8-51

MULTIPLE-PROCESSOR MANAGEMENT
}
N = ECX[7:0];

• Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract
the SMT sub-field of x2APIC ID. If EAX = 0BH, and ECX =0 is specified as input
when executing CPUID, CPUID.(EAX=0BH, ECX=0):EAX[4:0] reports a value (a
right-shift count) that allow software to extract part of x2APIC ID to distinguish
the next higher topological entities above the SMT level. This value also
corresponds to the bit-width of the sub-field of x2APIC ID corresponding the
hierarchical level with sub-leaf index 0.

• For each subsequent higher sub-leaf index m, CPUID.(EAX=0BH,
ECX=m):EAX[4:0] reports the right-shift count that will allow software to extract
part of x2APIC ID to distinguish higher-level topological entities. This means the
right-shift value at of sub-leaf m, corresponds to the least significant (m+1)
subfields of the 32-bit x2APIC ID.

Example 8-17. BitWidth Determination of x2APIC ID Subfields

For m = 0, m < N, m ++;
{ cumulative_width[m] = CPUID.(EAX=0BH, ECX= m): EAX[4:0]; }
BitWidth[0] = cumulative_width[0];
For m = 1, m < N, m ++;

BitWidth[m] = cumulative_width[m] - cumulative_width[m-1];

Currently, only the following encoding of hierarchical level type are defined: 0
(invalid), 1 (SMT), and 2 (core). Software must not assume any “level type“ encoding
value to be related to any sub-leaf index, except sub-leaf 0.

Example 8-16 and Example 8-17 represent the general technique for using CPUID
leaf 0BH to enumerate processor topology of more than two levels of hierarchy inside
a physical package. Most processor families to date requires only “SMT” and “CORE”
levels within a physical package. The examples in later sections will focus on these
three-level topology only.

8.9.3 Hierarchical ID of Logical Processors in an MP System
For Intel 64 and IA-32 processors, system hardware establishes an 8-bit initial APIC
ID (or 32-bit APIC ID if the processor supports CPUID leaf 0BH) that is unique for
each logical processor following power-up or RESET (see Section 8.6.1). Each logical
processor on the system is allocated an initial APIC ID. BIOS may implement features
that tell the OS to support less than the total number of logical processors on the
system bus. Those logical processors that are not available to applications at runtime
are halted during the OS boot process. As a result, the number valid local APIC_IDs
that can be queried by affinitizing-current-thread-context (See Example 8-22) is
limited to the number of logical processors enabled at runtime by the OS boot
process.
8-52 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Table 8-1 shows an example of the 8-bit APIC IDs that are initially reported for logical
processors in a system with four Intel Xeon MP processors that support Intel Hyper-
Threading Technology (a total of 8 logical processors, each physical package has two
processor cores and supports Intel Hyper-Threading Technology). Of the two logical
processors within a Intel Xeon processor MP, logical processor 0 is designated the
primary logical processor and logical processor 1 as the secondary logical processor.

Figure 8-7. Topological Relationships between Hierarchical IDs in a Hypothetical MP
Platform

Table 8-1. Initial APIC IDs for the Logical Processors in a System that has Four Intel
Xeon MP Processors Supporting Intel Hyper-Threading Technology1

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 1H 0H 0H

3H 1H 0H 1H

4H 2H 0H 0H

5H 2H 0H 1H

6H 3H 0H 0H

7H 3H 0H 1H

NOTE:
1. Because information on the number of processor cores in a physical package was not available

in early single-core processors supporting Intel Hyper-Threading Technology, the core ID can be
treated as 0.

Package 0

Core 0

T0 T1

Core1

T0 T1

Package 1

Core 0

T0 T1

Core1

T0 T1 SMT_ID

Core ID

Package ID
Vol. 3A 8-53

MULTIPLE-PROCESSOR MANAGEMENT
Table 8-2 shows the initial APIC IDs for a hypothetical situation with a dual processor
system. Each physical package providing two processor cores, and each processor
core also supporting Intel Hyper-Threading Technology.

8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID
Table 8-3 shows an example of possible x2APIC ID assignments for a dual processor
system that support x2APIC. Each physical package providing four processor cores,
and each processor core also supporting Intel Hyper-Threading Technology. Note that
the x2APIC ID need not be contiguous in the system.

Table 8-2. Initial APIC IDs for the Logical Processors in a System that has Two
Physical Processors Supporting Dual-Core and Intel Hyper-Threading Technology

Initial APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 1H 0H 0H

5H 1H 0H 1H

6H 1H 1H 0H

7H 1H 1H 1H

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMT ID

0H 0H 0H 0H

1H 0H 0H 1H

2H 0H 1H 0H

3H 0H 1H 1H

4H 0H 2H 0H

5H 0H 2H 1H

6H 0H 3H 0H

7H 0H 3H 1H

10H 1H 0H 0H

11H 1H 0H 1H

12H 1H 1H 0H
8-54 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.9.4 Algorithm for Three-Level Mappings of APIC_ID
Software can gather the initial APIC_IDs for each logical processor supported by the
operating system at runtime8 and extract identifiers corresponding to the three
levels of sharing topology (package, core, and SMT). The three-level algorithms
below focus on a non-clustered MP system for simplicity. They do not assume APIC
IDs are contiguous or that all logical processors on the platform are enabled.

Intel supports multi-threading systems where all physical processors report identical
values in CPUID leaf 0BH, CPUID.1:EBX[23:16]), CPUID.49:EAX[31:26], and
CPUID.410:EAX[25:14]. The algorithms below assume the target system has
symmetry across physical package boundaries with respect to the number of logical
processors per package, number of cores per package, and cache topology within a
package.

The extraction algorithm (for three-level mappings from an APIC ID) uses the
general procedure depicted in Example 8-18, and is supplemented by more detailed
descriptions on the derivation of topology enumeration parameters for extraction bit
masks:

1. Detect hardware multi-threading support in the processor.

2. Derive a set of bit masks that can extract the sub ID of each hierarchical level of
the topology. The algorithm to derive extraction bit masks for
SMT_ID/CORE_ID/PACKAGE_ID differs based on APIC ID is 32-bit (see step 3
below) or 8-bit (see step 4 below):

13H 1H 1H 1H

14H 1H 2H 0H

15H 1H 2H 1H

16H 1H 3H 0H

17H 1H 3H 1H

8. As noted in Section 8.6 and Section 8.9.3, the number of logical processors supported by the OS
at runtime may be less than the total number logical processors available in the platform hard-
ware.

9. Maximum number of addressable ID for processor cores in a physical processor is obtained by
executing CPUID with EAX=4 and a valid ECX index, The ECX index start at 0.

10. Maximum number addressable ID for processor cores sharing the target cache level is obtained
by executing CPUID with EAX = 4 and the ECX index corresponding to the target cache level.

Table 8-3. Example of Possible x2APIC ID Assignment in a System that has Two
Physical Processors Supporting x2APIC and Intel Hyper-Threading Technology

x2APIC ID Package ID Core ID SMT ID
Vol. 3A 8-55

MULTIPLE-PROCESSOR MANAGEMENT
3. If the processor supports CPUID leaf 0BH, each APIC ID contains a 32-bit value,
the topology enumeration parameters needed to derive three-level extraction bit
masks are:

a. Query the right-shift value for the SMT level of the topology using CPUID leaf
0BH with ECX =0H as input. The number of bits to shift-right on x2APIC ID
(EAX[4:0]) can distinguish different higher-level entities above SMT (e.g.
processor cores) in the same physical package. This is also the width of the
bit mask to extract the SMT_ID.

b. Query CPUID leaf 0BH for the amount of bit shift to distinguish next higher-
level entities (e.g. physical processor packages) in the system. This describes
an explicit three-level-topology situation for commonly available processors.
Consult Example 8-17 to adapt to situations beyond three-level topology of a
physical processor. The width of the extraction bit mask can be used to derive
the cumulative extraction bitmask to extract the sub IDs of logical processors
(including different processor cores) in the same physical package. The
extraction bit mask to distinguish merely different processor cores can be
derived by xor’ing the SMT extraction bit mask from the cumulative
extraction bit mask.

c. Query the 32-bit x2APIC ID for the logical processor where the current thread
is executing.

d. Derive the extraction bit masks corresponding to SMT_ID, CORE_ID, and
PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 32-bit x2APIC ID to extract sub-field
IDs.

4. If the processor does not support CPUID leaf 0BH, each initial APIC ID contains
an 8-bit value, the topology enumeration parameters needed to derive extraction
bit masks are:

a. Query the size of address space for sub IDs that can accommodate logical
processors in a physical processor package. This size parameters
(CPUID.1:EBX[23:16]) can be used to derive the width of an extraction
bitmask to enumerate the sub IDs of different logical processors in the same
physical package.

b. Query the size of address space for sub IDs that can accommodate processor
cores in a physical processor package. This size parameters can be used to
derive the width of an extraction bitmask to enumerate the sub IDs of
processor cores in the same physical package.

c. Query the 8-bit initial APIC ID for the logical processor where the current
thread is executing.

d. Derive the extraction bit masks using respective address sizes corresponding
to SMT_ID, CORE_ID, and PACKAGE_ID, starting from SMT_ID.

e. Apply each extraction bit mask to the 8-bit initial APIC ID to extract sub-field
IDs.
8-56 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Example 8-18. Support Routines for Detecting Hardware Multi-Threading and Identifying the
Relationships Between Package, Core and Logical Processors

1. Detect support for Hardware Multi-Threading Support in a processor.

// Returns a non-zero value if CPUID reports the presence of hardware multi-threading
// support in the physical package where the current logical processor is located.
// This does not guarantee BIOS or OS will enable all logical processors in the physical
// package and make them available to applications.
// Returns zero if hardware multi-threading is not present.

#define HWMT_BIT 0x10000000

unsigned int HWMTSupported(void)
{

 // ensure cpuid instruction is supported
execute cpuid with eax = 0 to get vendor string
execute cpuid with eax = 1 to get feature flag and signature

// Check to see if this a Genuine Intel Processor

if (vendor string EQ GenuineIntel) {
return (feature_flag_edx & HWMT_BIT); // bit 28

}
return 0;

}

Example 8-19. Support Routines for Identifying Package, Core and Logical Processors from
32-bit x2APIC ID

a. Derive the extraction bitmask for logical processors in a processor core and
associated mask offset for different cores.

int DeriveSMT_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;
If (returned level type encoding in ECX[15:8] does not match SMT) return -1;
Mask_SMT_shift = EAX[4:0]; // # bits shift right of APIC ID to distinguish different cores
SMT_MASK = ~((-1) << Mask_SMT_shift); // shift left to derive extraction bitmask for SMT_ID
return 0;

}

b. Derive the extraction bitmask for processor cores in a physical processor package
and associated mask offset for different packages.
Vol. 3A 8-57

MULTIPLE-PROCESSOR MANAGEMENT
int DeriveCore_Mask_Offsets (void)
{

if (!HWMTSupported()) return -1;
execute cpuid with eax = 11, ECX = 0;

while(ECX[15:8]) { // level type encoding is valid
If (returned level type encoding in ECX[15:8] matches CORE) {

Mask_Core_shift = EAX[4:0]; // needed to distinguish different physical packages
COREPlusSMT_MASK = ~((-1) << Mask_Core_shift);
CORE_MASK = COREPlusSMT_MASK ^ SMT_MASK;
PACKAGE_MASK = (-1) << Mask_Core_shift;
return 0

}
ECX ++;
execute cpuid with eax = 11;

}
return -1;

}

c. Query the x2APIC ID of a logical processor.

APIC_IDs for each logical processor.

unsigned char Getx2APIC_ID (void)
{

unsigned reg_edx = 0;
execute cpuid with eax = 11, ECX = 0
store returned value of edx
return (unsigned) (reg_edx) ;

}

Example 8-20. Support Routines for Identifying Package, Core and Logical Processors from 8-
bit Initial APIC ID

a. Find the size of address space for logical processors in a physical processor
package.

#define NUM_LOGICAL_BITS 0x00FF0000
// Use the mask above and CPUID.1.EBX[23:16] to obtain the max number of addressable IDs
// for logical processors in a physical package,

//Returns the size of address space of logical processors in a physical processor package;
// Software should not assume the value to be a power of 2.
8-58 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
unsigned char MaxLPIDsPerPackage(void)
{

if (!HWMTSupported()) return 1;
execute cpuid with eax = 1

store returned value of ebx
return (unsigned char) ((reg_ebx & NUM_LOGICAL_BITS) >> 16);

}

b. Find the size of address space for processor cores in a physical processor package.

// Returns the max number of addressable IDs for processor cores in a physical processor package;
// Software should not assume cpuid reports this value to be a power of 2.

unsigned MaxCoreIDsPerPackage(void)
{

if (!HWMTSupported()) return (unsigned char) 1;
if cpuid supports leaf number 4
{ // we can retrieve multi-core topology info using leaf 4

execute cpuid with eax = 4, ecx = 0
store returned value of eax
return (unsigned) ((reg_eax >> 26) +1);

}
else // must be a single-core processor
return 1;

}

c. Query the initial APIC ID of a logical processor.

#define INITIAL_APIC_ID_BITS 0xFF000000 // CPUID.1.EBX[31:24] initial APIC ID

// Returns the 8-bit unique initial APIC ID for the processor running the code.
// Software can use OS services to affinitize the current thread to each logical processor
// available under the OS to gather the initial APIC_IDs for each logical processor.

unsigned GetInitAPIC_ID (void)
{

unsigned int reg_ebx = 0;
execute cpuid with eax = 1
store returned value of ebx
return (unsigned) ((reg_ebx & INITIAL_APIC_ID_BITS) >> 24;

}

d. Find the width of an extraction bitmask from the maximum count of the bit-field
(address size).
Vol. 3A 8-59

MULTIPLE-PROCESSOR MANAGEMENT
// Returns the mask bit width of a bit field from the maximum count that bit field can represent.
// This algorithm does not assume ‘address size’ to have a value equal to power of 2.
// Address size for SMT_ID can be calculated from MaxLPIDsPerPackage()/MaxCoreIDsPerPackage()
// Then use the routine below to derive the corresponding width of SMT extraction bitmask
// Address size for CORE_ID is MaxCoreIDsPerPackage(),
// Derive the bitwidth for CORE extraction mask similarly

unsigned FindMaskWidth(Unsigned Max_Count)
{unsigned int mask_width, cnt = Max_Count;

__asm {
mov eax, cnt
mov ecx, 0
mov mask_width, ecx
dec eax
bsr cx, ax
jz next
inc cx
mov mask_width, ecx
next:
mov eax, mask_width

}
return mask_width;

}

e. Extract a sub ID from an 8-bit full ID, using address size of the sub ID and shift
count.

// The routine below can extract SMT_ID, CORE_ID, and PACKAGE_ID respectively from the init
APIC_ID
// To extract SMT_ID, MaxSubIDvalue is set to the address size of SMT_ID, Shift_Count = 0
// To extract CORE_ID, MaxSubIDvalue is the address size of CORE_ID, Shift_Count is width of SMT
extraction bitmask.
// Returns the value of the sub ID, this is not a zero-based value

Unsigned char GetSubID(unsigned char Full_ID, unsigned char MaxSubIDvalue, unsigned char
Shift_Count)
{

MaskWidth = FindMaskWidth(MaxSubIDValue);
MaskBits = ((uchar) (0xff << Shift_Count)) ^ ((uchar) (0xff << Shift_Count + MaskWidth)) ;
SubID = Full_ID & MaskBits;
Return SubID;

}

8-60 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
Software must not assume local APIC_ID values in an MP system are consecutive.
Non-consecutive local APIC_IDs may be the result of hardware configurations or
debug features implemented in the BIOS or OS.

An identifier for each hierarchical level can be extracted from an 8-bit APIC_ID using
the support routines illustrated in Example 8-20. The appropriate bit mask and shift
value to construct the appropriate bit mask for each level must be determined
dynamically at runtime.

8.9.5 Identifying Topological Relationships in a MP System
To detect the number of physical packages, processor cores, or other topological
relationships in a MP system, the following procedures are recommended:
• Extract the three-level identifiers from the APIC ID of each logical processor

enabled by system software. The sequence is as follows (See the pseudo code
shown in Example 8-21 and support routines shown in Example 8-18):

• The extraction start from the right-most bit field, corresponding to
SMT_ID, the innermost hierarchy in a three-level topology (See Figure
8-7). For the right-most bit field, the shift value of the working mask is
zero. The width of the bit field is determined dynamically using the
maximum number of logical processor per core, which can be derived
from information provided from CPUID.

• To extract the next bit-field, the shift value of the working mask is
determined from the width of the bit mask of the previous step. The width
of the bit field is determined dynamically using the maximum number of
cores per package.

• To extract the remaining bit-field, the shift value of the working mask is
determined from the maximum number of logical processor per package.
So the remaining bits in the APIC ID (excluding those bits already
extracted in the two previous steps) are extracted as the third identifier.
This applies to a non-clustered MP system, or if there is no need to
distinguish between PACKAGE_ID and CLUSTER_ID.

If there is need to distinguish between PACKAGE_ID and CLUSTER_ID,
PACKAGE_ID can be extracted using an algorithm similar to the
extraction of CORE_ID, assuming the number of physical packages in
each node of a clustered system is symmetric.

• Assemble the three-level identifiers of SMT_ID, CORE_ID, PACKAGE_IDs into
arrays for each enabled logical processor. This is shown in Example 8-22a.

• To detect the number of physical packages: use PACKAGE_ID to identify those
logical processors that reside in the same physical package. This is shown in
Example 8-22b. This example also depicts a technique to construct a mask to
represent the logical processors that reside in the same package.

• To detect the number of processor cores: use CORE_ID to identify those logical
processors that reside in the same core. This is shown in Example 8-22. This
Vol. 3A 8-61

MULTIPLE-PROCESSOR MANAGEMENT
example also depicts a technique to construct a mask to represent the logical
processors that reside in the same core.

In Example 8-21, the numerical ID value can be obtained from the value extracted
with the mask by shifting it right by shift count. Algorithms below do not shift the
value. The assumption is that the SubID values can be compared for equivalence
without the need to shift.

Example 8-21. Pseudo Code Depicting Three-level Extraction Algorithm

For Each local_APIC_ID{
// Calculate SMT_MASK, the bit mask pattern to extract SMT_ID,
// SMT_MASK is determined using topology enumertaion parameters
// from CPUID leaf 0BH (Example 8-19);
// otherwise, SMT_MASK is determined using CPUID leaf 01H and leaf 04H (Example 8-20).
// This algorithm assumes there is symmetry across core boundary, i.e. each core within a
// package has the same number of logical processors
// SMT_ID always starts from bit 0, corresponding to the right-most bit-field
SMT_ID = APIC_ID & SMT_MASK;

// Extract CORE_ID:
// CORE_MASK is determined in Example 8-19 or Example 8-20
CORE_ID = (APIC_ID & CORE_MASK) ;

// Extract PACKAGE_ID:
// Assume single cluster.
// Shift out the mask width for maximum logical processors per package
// PACKAGE_MASK is determined in Example 8-19 or Example 8-20
PACKAGE_ID = (APIC_ID & PACKAGE_MASK) ;

}

Example 8-22. Compute the Number of Packages, Cores, and Processor Relationships in a MP
System

a) Assemble lists of PACKAGE_ID, CORE_ID, and SMT_ID of each enabled logical processors

//The BIOS and/or OS may limit the number of logical processors available to applications
// after system boot. The below algorithm will compute topology for the processors visible
// to the thread that is computing it.

// Extract the 3-levels of IDs on every processor
// SystemAffinity is a bitmask of all the processors started by the OS. Use OS specific APIs to
// obtain it.
// ThreadAffinityMask is used to affinitize the topology enumeration thread to each processor
8-62 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
using OS specific APIs.
// Allocate per processor arrays to store the Package_ID, Core_ID and SMT_ID for every started
// processor.

ThreadAffinityMask = 1;
 ProcessorNum = 0;

while (ThreadAffinityMask != 0 && ThreadAffinityMask <= SystemAffinity) {
// Check to make sure we can utilize this processor first.
if (ThreadAffinityMask & SystemAffinity){

Set thread to run on the processor specified in ThreadAffinityMask
Wait if necessary and ensure thread is running on specified processor

APIC_ID = GetAPIC_ID(); // 32 bit ID in Example 8-19 or 8-bit ID in Example
8-20

Extract the Package_ID, Core_ID and SMT_ID as explained in three level extraction
algorithm of Example 8-21

PackageID[ProcessorNUM] = PACKAGE_ID;
CoreID[ProcessorNum] = CORE_ID;
SmtID[ProcessorNum] = SMT_ID;
ProcessorNum++;

}
ThreadAffinityMask <<= 1;

}
NumStartedLPs = ProcessorNum;

b) Using the list of PACKAGE_ID to count the number of physical packages in a MP system and
construct, for each package, a multi-bit mask corresponding to those logical processors residing in
the same package.

// Compute the number of packages by counting the number of processors
// with unique PACKAGE_IDs in the PackageID array.
// Compute the mask of processors in each package.

PackageIDBucket is an array of unique PACKAGE_ID values. Allocate an array of
NumStartedLPs count of entries in this array.
PackageProcessorMask is a corresponding array of the bit mask of processors belonging to
the same package, these are processors with the same PACKAGE_ID
The algorithm below assumes there is symmetry across package boundary if more than
one socket is populated in an MP system.
// Bucket Package IDs and compute processor mask for every package.

PackageNum = 1;
PackageIDBucket[0] = PackageID[0];
ProcessorMask = 1;
Vol. 3A 8-63

MULTIPLE-PROCESSOR MANAGEMENT
PackageProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < PackageNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If (PackageID[ProcessorNum] = PackageIDBucket[i]) {

PackageProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}
}
if (i =PackageNum) {

//PACKAGE_ID did not match any bucket, start new bucket
PackageIDBucket[i] = PackageID[ProcessorNum];
PackageProcessorMask[i] = ProcessorMask;
PackageNum++;

}
}
// PackageNum has the number of Packages started in OS
// PackageProcessorMask[] array has the processor set of each package

c) Using the list of CORE_ID to count the number of cores in a MP system and construct, for each
core, a multi-bit mask corresponding to those logical processors residing in the same core.

Processors in the same core can be determined by bucketing the processors with the same
PACKAGE_ID and CORE_ID. Note that code below can BIT OR the values of PACKGE and CORE ID
because they have not been shifted right.
The algorithm below assumes there is symmetry across package boundary if more than one socket
is populated in an MP system.

//Bucketing PACKAGE and CORE IDs and computing processor mask for every core
CoreNum = 1;
CoreIDBucket[0] = PackageID[0] | CoreID[0];
ProcessorMask = 1;
CoreProcessorMask[0] = ProcessorMask;
For (ProcessorNum = 1; ProcessorNum < NumStartedLPs; ProcessorNum++) {

ProcessorMask << = 1;
For (i=0; i < CoreNum; i++) {

// we may be comparing bit-fields of logical processors residing in different
// packages, the code below assume package symmetry
If ((PackageID[ProcessorNum] | CoreID[ProcessorNum]) = CoreIDBucket[i]) {

CoreProcessorMask[i] |= ProcessorMask;
Break; // found in existing bucket, skip to next iteration

}

8-64 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
}
if (i = CoreNum) {

//Did not match any bucket, start new bucket
CoreIDBucket[i] = PackageID[ProcessorNum] | CoreID[ProcessorNum];
CoreProcessorMask[i] = ProcessorMask;
CoreNum++;

}
}
// CoreNum has the number of cores started in the OS
// CoreProcessorMask[] array has the processor set of each core

Other processor relationships such as processor mask of sibling cores can be
computed from set operations of the PackageProcessorMask[] and CoreProcessor-
Mask[].

The algorithm shown above can be adapted to work with earlier generations of
single-core IA-32 processors that support Intel Hyper-Threading Technology and in
situations that the deterministic cache parameter leaf is not supported (provided
CPUID supports initial APIC ID). A reference code example is available (see Intel® 64
Architecture Processor Topology Enumeration).

8.10 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS
When a logical processor in an MP system (including multi-core processor or proces-
sors supporting Intel Hyper-Threading Technology) is idle (no work to do) or blocked
(on a lock or semaphore), additional management of the core execution engine
resource can be accomplished by using the HLT (halt), PAUSE, or the
MONITOR/MWAIT instructions.

8.10.1 HLT Instruction
The HLT instruction stops the execution of the logical processor on which it is
executed and places it in a halted state until further notice (see the description of the
HLT instruction in Chapter 3 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A). When a logical processor is halted, active logical
processors continue to have full access to the shared resources within the physical
package. Here shared resources that were being used by the halted logical processor
become available to active logical processors, allowing them to execute at greater
efficiency. When the halted logical processor resumes execution, shared resources
are again shared among all active logical processors. (See Section 8.10.6.3, “Halt
Idle Logical Processors,” for more information about using the HLT instruction with
processors supporting Intel Hyper-Threading Technology.)
Vol. 3A 8-65

MULTIPLE-PROCESSOR MANAGEMENT
8.10.2 PAUSE Instruction
The PAUSE instruction can improves the performance of processors supporting Intel
Hyper-Threading Technology when executing “spin-wait loops” and other routines
where one thread is accessing a shared lock or semaphore in a tight polling loop.
When executing a spin-wait loop, the processor can suffer a severe performance
penalty when exiting the loop because it detects a possible memory order violation
and flushes the core processor’s pipeline. The PAUSE instruction provides a hint to
the processor that the code sequence is a spin-wait loop. The processor uses this hint
to avoid the memory order violation and prevent the pipeline flush. In addition, the
PAUSE instruction de-pipelines the spin-wait loop to prevent it from consuming
execution resources excessively and consume power needlessly. (See Section
8.10.6.1, “Use the PAUSE Instruction in Spin-Wait Loops,” for more information
about using the PAUSE instruction with IA-32 processors supporting Intel Hyper-
Threading Technology.)

8.10.3 Detecting Support MONITOR/MWAIT Instruction
Streaming SIMD Extensions 3 introduced two instructions (MONITOR and MWAIT) to
help multithreaded software improve thread synchronization. In the initial imple-
mentation, MONITOR and MWAIT are available to software at ring 0. The instructions
are conditionally available at levels greater than 0. Use the following steps to detect
the availability of MONITOR and MWAIT:
• Use CPUID to query the MONITOR bit (CPUID.1.ECX[3] = 1).
• If CPUID indicates support, execute MONITOR inside a TRY/EXCEPT exception

handler and trap for an exception. If an exception occurs, MONITOR and MWAIT
are not supported at a privilege level greater than 0. See Example 8-23.

Example 8-23. Verifying MONITOR/MWAIT Support

boolean MONITOR_MWAIT_works = TRUE;
try {

_asm {
xor ecx, ecx
xor edx, edx
mov eax, MemArea
monitor
}

 // Use monitor
} except (UNWIND) {
 // if we get here, MONITOR/MWAIT is not supported

MONITOR_MWAIT_works = FALSE;
}

8-66 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
8.10.4 MONITOR/MWAIT Instruction
Operating systems usually implement idle loops to handle thread synchronization. In
a typical idle-loop scenario, there could be several “busy loops” and they would use a
set of memory locations. An impacted processor waits in a loop and poll a memory
location to determine if there is available work to execute. The posting of work is
typically a write to memory (the work-queue of the waiting processor). The time for
initiating a work request and getting it scheduled is on the order of a few bus cycles.

From a resource sharing perspective (logical processors sharing execution
resources), use of the HLT instruction in an OS idle loop is desirable but has implica-
tions. Executing the HLT instruction on a idle logical processor puts the targeted
processor in a non-execution state. This requires another processor (when posting
work for the halted logical processor) to wake up the halted processor using an inter-
processor interrupt. The posting and servicing of such an interrupt introduces a delay
in the servicing of new work requests.

In a shared memory configuration, exits from busy loops usually occur because of a
state change applicable to a specific memory location; such a change tends to be
triggered by writes to the memory location by another agent (typically a processor).

MONITOR/MWAIT complement the use of HLT and PAUSE to allow for efficient parti-
tioning and un-partitioning of shared resources among logical processors sharing
physical resources. MONITOR sets up an effective address range that is monitored for
write-to-memory activities; MWAIT places the processor in an optimized state (this
may vary between different implementations) until a write to the monitored address
range occurs.

In the initial implementation of MONITOR and MWAIT, they are available at CPL = 0
only.

Both instructions rely on the state of the processor’s monitor hardware. The monitor
hardware can be either armed (by executing the MONITOR instruction) or triggered
(due to a variety of events, including a store to the monitored memory region). If
upon execution of MWAIT, monitor hardware is in a triggered state: MWAIT behaves
as a NOP and execution continues at the next instruction in the execution stream.
The state of monitor hardware is not architecturally visible except through the
behavior of MWAIT.

Multiple events other than a write to the triggering address range can cause a
processor that executed MWAIT to wake up. These include events that would lead to
voluntary or involuntary context switches, such as:
• External interrupts, including NMI, SMI, INIT, BINIT, MCERR, A20M#
• Faults, Aborts (including Machine Check)
• Architectural TLB invalidations including writes to CR0, CR3, CR4 and certain MSR

writes; execution of LMSW (occurring prior to issuing MWAIT but after setting the
monitor)

• Voluntary transitions due to fast system call and far calls (occurring prior to
issuing MWAIT but after setting the monitor)
Vol. 3A 8-67

MULTIPLE-PROCESSOR MANAGEMENT
Power management related events (such as Thermal Monitor 2 or chipset driven
STPCLK# assertion) will not cause the monitor event pending flag to be cleared.
Faults will not cause the monitor event pending flag to be cleared.

Software should not allow for voluntary context switches in between
MONITOR/MWAIT in the instruction flow. Note that execution of MWAIT does not re-
arm the monitor hardware. This means that MONITOR/MWAIT need to be executed in
a loop. Also note that exits from the MWAIT state could be due to a condition other
than a write to the triggering address; software should explicitly check the triggering
data location to determine if the write occurred. Software should also check the value
of the triggering address following the execution of the monitor instruction (and prior
to the execution of the MWAIT instruction). This check is to identify any writes to the
triggering address that occurred during the course of MONITOR execution.

The address range provided to the MONITOR instruction must be of write-back
caching type. Only write-back memory type stores to the monitored address range
will trigger the monitor hardware. If the address range is not in memory of write-
back type, the address monitor hardware may not be set up properly or the monitor
hardware may not be armed. Software is also responsible for ensuring that
• Writes that are not intended to cause the exit of a busy loop do not write to a

location within the address region being monitored by the monitor hardware,
• Writes intended to cause the exit of a busy loop are written to locations within the

monitored address region.

Not doing so will lead to more false wakeups (an exit from the MWAIT state not due
to a write to the intended data location). These have negative performance implica-
tions. It might be necessary for software to use padding to prevent false wakeups.
CPUID provides a mechanism for determining the size data locations for monitoring
as well as a mechanism for determining the size of a the pad.

8.10.5 Monitor/Mwait Address Range Determination
To use the MONITOR/MWAIT instructions, software should know the length of the
region monitored by the MONITOR/MWAIT instructions and the size of the coherence
line size for cache-snoop traffic in a multiprocessor system. This information can be
queried using the CPUID monitor leaf function (EAX = 05H). You will need the
smallest and largest monitor line size:
• To avoid missed wake-ups: make sure that the data structure used to monitor

writes fits within the smallest monitor line-size. Otherwise, the processor may
not wake up after a write intended to trigger an exit from MWAIT.

• To avoid false wake-ups; use the largest monitor line size to pad the data
structure used to monitor writes. Software must make sure that beyond the data
structure, no unrelated data variable exists in the triggering area for MWAIT. A
pad may be needed to avoid this situation.

These above two values bear no relationship to cache line size in the system and soft-
ware should not make any assumptions to that effect. Within a single-cluster system,
8-68 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
the two parameters should default to be the same (the size of the monitor triggering
area is the same as the system coherence line size).

Based on the monitor line sizes returned by the CPUID, the OS should dynamically
allocate structures with appropriate padding. If static data structures must be used
by an OS, attempt to adapt the data structure and use a dynamically allocated data
buffer for thread synchronization. When the latter technique is not possible, consider
not using MONITOR/MWAIT when using static data structures.

To set up the data structure correctly for MONITOR/MWAIT on multi-clustered
systems: interaction between processors, chipsets, and the BIOS is required (system
coherence line size may depend on the chipset used in the system; the size could be
different from the processor’s monitor triggering area). The BIOS is responsible to
set the correct value for system coherence line size using the
IA32_MONITOR_FILTER_LINE_SIZE MSR. Depending on the relative magnitude of
the size of the monitor triggering area versus the value written into the
IA32_MONITOR_FILTER_LINE_SIZE MSR, the smaller of the parameters will be
reported as the Smallest Monitor Line Size. The larger of the parameters will be
reported as the Largest Monitor Line Size.

8.10.6 Required Operating System Support
This section describes changes that must be made to an operating system to run on
processors supporting Intel Hyper-Threading Technology. It also describes optimiza-
tions that can help an operating system make more efficient use of the logical
processors sharing execution resources. The required changes and suggested opti-
mizations are representative of the types of modifications that appear in Windows*
XP and Linux* kernel 2.4.0 operating systems for Intel processors supporting Intel
Hyper-Threading Technology. Additional optimizations for processors supporting
Intel Hyper-Threading Technology are described in the Intel® 64 and IA-32 Architec-
tures Optimization Reference Manual.

8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops
Intel recommends that a PAUSE instruction be placed in all spin-wait loops that run
on Intel processors supporting Intel Hyper-Threading Technology and multi-core
processors.

Software routines that use spin-wait loops include multiprocessor synchronization
primitives (spin-locks, semaphores, and mutex variables) and idle loops. Such
routines keep the processor core busy executing a load-compare-branch loop while a
thread waits for a resource to become available. Including a PAUSE instruction in such
a loop greatly improves efficiency (see Section 8.10.2, “PAUSE Instruction”). The
following routine gives an example of a spin-wait loop that uses a PAUSE instruction:

Spin_Lock:
CMP lockvar, 0 ;Check if lock is free
Vol. 3A 8-69

MULTIPLE-PROCESSOR MANAGEMENT
JE Get_Lock
PAUSE ;Short delay
JMP Spin_Lock

Get_Lock:
MOV EAX, 1
XCHG EAX, lockvar ;Try to get lock
CMP EAX, 0 ;Test if successful
JNE Spin_Lock

Critical_Section:
<critical section code>
MOV lockvar, 0
...

Continue:

The spin-wait loop above uses a “test, test-and-set” technique for determining the
availability of the synchronization variable. This technique is recommended when
writing spin-wait loops.

In IA-32 processor generations earlier than the Pentium 4 processor, the PAUSE
instruction is treated as a NOP instruction.

8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops
An operating system may implement different handlers for different idle states. A
typical OS idle loop on an ACPI-compatible OS is shown in Example 8-24:

Example 8-24. A Typical OS Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} ELSE {

// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1 handler
// shown below
}

}
}

8-70 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
// C1 handler uses a Halt instruction
VOID C1Handler()
{ STI

HLT
}

The MONITOR and MWAIT instructions may be considered for use in the C0 idle state loops, if
MONITOR and MWAIT are supported.

Example 8-25. An OS Idle Loop with MONITOR/MWAIT in the C0 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.

WHILE (1) {
IF (WorkQueue) THEN {

// Schedule work at WorkQueue.
} ELSE {

// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated.

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
MONITOR WorkQueue // Setup of eax with WorkQueue

// LinearAddress,
// ECX, EDX = 0

IF (WorkQueue != 0) THEN {
MWAIT

}

}
}

}
// C1 handler uses a Halt instruction.

VOID C1Handler()
{ STI

HLT
Vol. 3A 8-71

MULTIPLE-PROCESSOR MANAGEMENT
}

8.10.6.3 Halt Idle Logical Processors
If one of two logical processors is idle or in a spin-wait loop of long duration, explicitly
halt that processor by means of a HLT instruction.

In an MP system, operating systems can place idle processors into a loop that contin-
uously checks the run queue for runnable software tasks. Logical processors that
execute idle loops consume a significant amount of core’s execution resources that
might otherwise be used by the other logical processors in the physical package. For
this reason, halting idle logical processors optimizes the performance.11 If all logical
processors within a physical package are halted, the processor will enter a power-
saving state.

8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops
An operating system may also consider replacing HLT with MONITOR/MWAIT in its C1
idle loop. An example is shown in Example 8-26:

Example 8-26. An OS Idle Loop with MONITOR/MWAIT in the C1 Idle Loop

// WorkQueue is a memory location indicating there is a thread
// ready to run. A non-zero value for WorkQueue is assumed to
// indicate the presence of work to be scheduled on the processor.
// The following example assumes that the necessary padding has been
// added surrounding WorkQueue to eliminate false wakeups
// The idle loop is entered with interrupts disabled.
WHILE (1) {

IF (WorkQueue) THEN {
// Schedule work at WorkQueue

} ELSE {
// No work to do - wait in appropriate C-state handler depending
// on Idle time accumulated

IF (IdleTime >= IdleTimeThreshhold) THEN {
// Call appropriate C1, C2, C3 state handler, C1
// handler shown below
}

}
}
// C1 handler uses a Halt instruction
VOID C1Handler()

11. Excessive transitions into and out of the HALT state could also incur performance penalties.
Operating systems should evaluate the performance trade-offs for their operating system.
8-72 Vol. 3A

MULTIPLE-PROCESSOR MANAGEMENT
{
MONITOR WorkQueue // Setup of eax with WorkQueue LinearAddress,

// ECX, EDX = 0
IF (WorkQueue != 0) THEN {

STI
MWAIT // EAX, ECX = 0

}

}

8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing
Execution Resources

Because the logical processors, the order in which threads are dispatched to logical
processors for execution can affect the overall efficiency of a system. The following
guidelines are recommended for scheduling threads for execution.
• Dispatch threads to one logical processor per processor core before dispatching

threads to the other logical processor sharing execution resources in the same
processor core.

• In an MP system with two or more physical packages, distribute threads out over
all the physical processors, rather than concentrate them in one or two physical
processors.

• Use processor affinity to assign a thread to a specific processor core or package,
depending on the cache-sharing topology. The practice increases the chance that
the processor’s caches will contain some of the thread’s code and data when it is
dispatched for execution after being suspended.

8.10.6.6 Eliminate Execution-Based Timing Loops
Intel discourages the use of timing loops that depend on a processor’s execution
speed to measure time. There are several reasons:
• Timing loops cause problems when they are calibrated on a IA-32 processor

running at one clock speed and then executed on a processor running at another
clock speed.

• Routines for calibrating execution-based timing loops produce unpredictable
results when run on an IA-32 processor supporting Intel Hyper-Threading
Technology. This is due to the sharing of execution resources between the logical
processors within a physical package.

To avoid the problems described, timing loop routines must use a timing mechanism
for the loop that does not depend on the execution speed of the logical processors in
the system. The following sources are generally available:
• A high resolution system timer (for example, an Intel 8254).
Vol. 3A 8-73

MULTIPLE-PROCESSOR MANAGEMENT
• A high resolution timer within the processor (such as, the local APIC timer or the
time-stamp counter).

For additional information, see the Intel® 64 and IA-32 Architectures Optimization
Reference Manual.

8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of
Memory

When software uses locks or semaphores to synchronize processes, threads, or other
code sections; Intel recommends that only one lock or semaphore be present within
a cache line (or 128 byte sector, if 128-byte sector is supported). In processors based
on Intel NetBurst microarchitecture (which support 128-byte sector consisting of two
cache lines), following this recommendation means that each lock or semaphore
should be contained in a 128-byte block of memory that begins on a 128-byte
boundary. The practice minimizes the bus traffic required to service locks.
8-74 Vol. 3A

CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions
and for initializing the processor. The subjects covered include: processor initializa-
tion, x87 FPU initialization, processor configuration, feature determination, mode
switching, the MSRs (in the Pentium, P6 family, Pentium 4, and Intel Xeon proces-
sors), and the MTRRs (in the P6 family, Pentium 4, and Intel Xeon processors).

9.1 INITIALIZATION OVERVIEW
Following power-up or an assertion of the RESET# pin, each processor on the system
bus performs a hardware initialization of the processor (known as a hardware reset)
and an optional built-in self-test (BIST). A hardware reset sets each processor’s
registers to a known state and places the processor in real-address mode. It also
invalidates the internal caches, translation lookaside buffers (TLBs) and the branch
target buffer (BTB). At this point, the action taken depends on the processor family:
• Pentium 4 and Intel Xeon processors — All the processors on the system bus

(including a single processor in a uniprocessor system) execute the multiple
processor (MP) initialization protocol. The processor that is selected through this
protocol as the bootstrap processor (BSP) then immediately starts executing
software-initialization code in the current code segment beginning at the offset in
the EIP register. The application (non-BSP) processors (APs) go into a Wait For
Startup IPI (SIPI) state while the BSP is executing initialization code. See Section
8.4, “Multiple-Processor (MP) Initialization,” for more details. Note that in a
uniprocessor system, the single Pentium 4 or Intel Xeon processor automatically
becomes the BSP.

• P6 family processors — The action taken is the same as for the Pentium 4 and
Intel Xeon processors (as described in the previous paragraph).

• Pentium processors — In either a single- or dual- processor system, a single
Pentium processor is always pre-designated as the primary processor. Following
a reset, the primary processor behaves as follows in both single- and dual-
processor systems. Using the dual-processor (DP) ready initialization protocol,
the primary processor immediately starts executing software-initialization code
in the current code segment beginning at the offset in the EIP register. The
secondary processor (if there is one) goes into a halt state.

• Intel486 processor — The primary processor (or single processor in a unipro-
cessor system) immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. (The Intel486
does not automatically execute a DP or MP initialization protocol to determine
which processor is the primary processor.)
Vol. 3A 9-1

PROCESSOR MANAGEMENT AND INITIALIZATION
The software-initialization code performs all system-specific initialization of the BSP
or primary processor and the system logic.

At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each
AP (or secondary) processor to enable those processors to execute self-configuration
code.

When all processors are initialized, configured, and synchronized, the BSP or primary
processor begins executing an initial operating-system or executive task.

The x87 FPU is also initialized to a known state during hardware reset. x87 FPU soft-
ware initialization code can then be executed to perform operations such as setting
the precision of the x87 FPU and the exception masks. No special initialization of the
x87 FPU is required to switch operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware
reset. The major difference is that during an INIT, the internal caches, MSRs, MTRRs,
and x87 FPU state are left unchanged (although, the TLBs and BTB are invalidated as
with a hardware reset). An INIT provides a method for switching from protected to
real-address mode while maintaining the contents of the internal caches.

9.1.1 Processor State After Reset
Table 9-1 shows the state of the flags and other registers following power-up for the
Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state of control
register CR0 is 60000010H (see Figure 9-1). This places the processor is in real-
address mode with paging disabled.

9.1.2 Processor Built-In Self-Test (BIST)
Hardware may request that the BIST be performed at power-up. The EAX register is
cleared (0H) if the processor passes the BIST. A nonzero value in the EAX register
after the BIST indicates that a processor fault was detected. If the BIST is not
requested, the contents of the EAX register after a hardware reset is 0H.

The overhead for performing a BIST varies between processor families. For example,
the BIST takes approximately 30 million processor clock periods to execute on the
Pentium 4 processor. This clock count is model-specific; Intel reserves the right to
change the number of periods for any Intel 64 or IA-32 processor, without notification.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor

EFLAGS1 00000002H 00000002H 00000002H

EIP 0000FFF0H 0000FFF0H 0000FFF0H

CR0 60000010H2 60000010H2 60000010H2
9-2 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
CR2, CR3, CR4 00000000H 00000000H 00000000H

CS Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = F000H
Base = FFFF0000H
Limit = FFFFH
AR = Present, R/W,
Accessed

SS, DS, ES, FS, GS Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W,
Accessed

EDX 00000FxxH 000n06xxH3 000005xxH

EAX 04 04 04

EBX, ECX, ESI, EDI,
EBP, ESP

00000000H 00000000H 00000000H

ST0 through ST75 Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

x87 FPU Control
Word5

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

x87 FPU Status
Word5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Tag
Word5

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

Pwr up or Reset: 5555H
FINIT/FNINIT: FFFFH

x87 FPU Data
Operand and CS
Seg. Selectors5

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

x87 FPU Data
Operand and Inst.
Pointers5

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

Pwr up or Reset:
 00000000H
FINIT/FNINIT: 00000000H

MM0 through
MM75

Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium II and Pentium III
Processors Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

Pentium with MMX
Technology Only—
Pwr up or Reset:
 0000000000000000H
INIT or FINIT/FNINIT:
 Unchanged

XMM0 through
XMM7

Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

Pentium III processor Only—
Pwr up or Reset:
 0000000000000000H
INIT: Unchanged

NA

MXCSR Pwr up or Reset: 1F80H
INIT: Unchanged

Pentium III processor only-
Pwr up or Reset: 1F80H
INIT: Unchanged

NA

GDTR, IDTR Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor
Vol. 3A 9-3

PROCESSOR MANAGEMENT AND INITIALIZATION
LDTR, Task
Register

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

Selector = 0000H
Base = 00000000H
Limit = FFFFH
AR = Present, R/W

DR0, DR1, DR2,
DR3

00000000H 00000000H 00000000H

DR6 FFFF0FF0H FFFF0FF0H FFFF0FF0H

DR7 00000400H 00000400H 00000400H

Time-Stamp
Counter

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Perf. Counters and
Event Select

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

Power up or Reset: 0H
INIT: Unchanged

All Other MSRs Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Data and Code
Cache, TLBs

Invalid Invalid Invalid

Fixed MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Variable MTRRs Pwr up or Reset: Disabled
INIT: Unchanged

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
 Undefined
INIT: Unchanged

Pwr up or Reset:
 Undefined
INIT: Unchanged

Not Implemented

APIC Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

NOTES:
1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software

should not depend on the states of any of these bits.
2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.
3. Where “n” is the Extended Model Value for the respective processor.
4. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST

cannot be invoked during an INIT.)
5. The state of the x87 FPU and MMX registers is not changed by the execution of an INIT.

Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT (Contd.)

Register Pentium 4 and Intel
Xeon Processor

P6 Family Processor Pentium Processor
9-4 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.1.3 Model and Stepping Information
Following a hardware reset, the EDX register contains component identification and
revision information (see Figure 9-2). For example, the model, family, and processor
type returned for the first processor in the Intel Pentium 4 family is as follows: model
(0000B), family (1111B), and processor type (00B).

The stepping ID field contains a unique identifier for the processor’s stepping ID or
revision level. The extended family and extended model fields were added to the
IA-32 architecture in the Pentium 4 processors.

Figure 9-1. Contents of CR0 Register after Reset

Figure 9-2. Version Information in the EDX Register after Reset

External x87 FPU error reporting: 0
(Not used): 1
No task switch: 0
x87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

31 19 16 15 0

P
E

1234561718282930

M
P

E
M1N

E
T
S

P
G

C
D

N
W

W
P

A
M

Paging disabled: 0

Alignment check disabled: 0

Caching disabled: 1
Not write-through disabled: 1

Write-protect disabled: 0

Reserved Reserved

31 12 11 8 7 4 3 0

EDX

Family (1111B for the Pentium 4 Processor Family)
Model (Beginning with 0000B)

1314

Processor Type

ModelFamily
Stepping

ID

15

Model
ExtendedExtended

Family

1619202324

Reserved
Vol. 3A 9-5

PROCESSOR MANAGEMENT AND INITIALIZATION
9.1.4 First Instruction Executed
The first instruction that is fetched and executed following a hardware reset is
located at physical address FFFFFFF0H. This address is 16 bytes below the
processor’s uppermost physical address. The EPROM containing the software-
initialization code must be located at this address.

The address FFFFFFF0H is beyond the 1-MByte addressable range of the processor
while in real-address mode. The processor is initialized to this starting address as
follows. The CS register has two parts: the visible segment selector part and the
hidden base address part. In real-address mode, the base address is normally
formed by shifting the 16-bit segment selector value 4 bits to the left to produce a
20-bit base address. However, during a hardware reset, the segment selector in the
CS register is loaded with F000H and the base address is loaded with FFFF0000H. The
starting address is thus formed by adding the base address to the value in the EIP
register (that is, FFFF0000 + FFF0H = FFFFFFF0H).

The first time the CS register is loaded with a new value after a hardware reset, the
processor will follow the normal rule for address translation in real-address mode
(that is, [CS base address = CS segment selector * 16]). To insure that the base
address in the CS register remains unchanged until the EPROM based software-
initialization code is completed, the code must not contain a far jump or far call or
allow an interrupt to occur (which would cause the CS selector value to be changed).

9.2 X87 FPU INITIALIZATION
Software-initialization code can determine the whether the processor contains an
x87 FPU by using the CPUID instruction. The code must then initialize the x87 FPU
and set flags in control register CR0 to reflect the state of the x87 FPU environment.

A hardware reset places the x87 FPU in the state shown in Table 9-1. This state is
different from the state the x87 FPU is placed in following the execution of an FINIT
or FNINIT instruction (also shown in Table 9-1). If the x87 FPU is to be used, the soft-
ware-initialization code should execute an FINIT/FNINIT instruction following a hard-
ware reset. These instructions, tag all data registers as empty, clear all the exception
masks, set the TOP-of-stack value to 0, and select the default rounding and precision
controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed.

9.2.1 Configuring the x87 FPU Environment
Initialization code must load the appropriate values into the MP, EM, and NE flags of
control register CR0. These bits are cleared on hardware reset of the processor.
Figure 9-2 shows the suggested settings for these flags, depending on the IA-32
processor being initialized. Initialization code can test for the type of processor
present before setting or clearing these flags.
9-6 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The EM flag determines whether floating-point instructions are executed by the x87
FPU (EM is cleared) or a device-not-available exception (#NM) is generated for all
floating-point instructions so that an exception handler can emulate the floating-
point operation (EM = 1). Ordinarily, the EM flag is cleared when an x87 FPU or math
coprocessor is present and set if they are not present. If the EM flag is set and no x87
FPU, math coprocessor, or floating-point emulator is present, the processor will hang
when a floating-point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the
TS flag. If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS
flag; if the MP flag is set, they will generate a device-not-available exception (#NM)
if the TS flag is set. Generally, the MP flag should be set for processors with an inte-
grated x87 FPU and clear for processors without an integrated x87 FPU and without a
math coprocessor present. However, an operating system can choose to save the
floating-point context at every context switch, in which case there would be no need
to set the MP bit.

Table 2-1 shows the actions taken for floating-point and WAIT/FWAIT instructions
based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by
generating a floating-point error exception internally (NE is set, native mode) or
through an external interrupt (NE is cleared). In systems where an external interrupt
controller is used to invoke numeric exception handlers (such as MS-DOS-based
systems), the NE bit should be cleared.

9.2.2 Setting the Processor for x87 FPU Software Emulation
Setting the EM flag causes the processor to generate a device-not-available excep-
tion (#NM) and trap to a software exception handler whenever it encounters a
floating-point instruction. (Table 9-2 shows when it is appropriate to use this flag.)
Setting this flag has two functions:

Table 9-2. Recommended Settings of EM and MP Flags on IA-32 Processors

EM MP NE IA-32 processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.

0 1 1 or 0* Pentium 4, Intel Xeon, P6 family, Pentium, Intel486™ DX, and
Intel 487 SX processors, and Intel386 DX and Intel386 SX
processors when a companion math coprocessor is present.

0 1 1 or 0* More recent Intel 64 or IA-32 processors

NOTE:
* The setting of the NE flag depends on the operating system being used.
Vol. 3A 9-7

PROCESSOR MANAGEMENT AND INITIALIZATION
• It allows x87 FPU code to run on an IA-32 processor that has neither an
integrated x87 FPU nor is connected to an external math coprocessor, by using a
floating-point emulator.

• It allows floating-point code to be executed using a special or nonstandard
floating-point emulator, selected for a particular application, regardless of
whether an x87 FPU or math coprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CR0
should be set as shown in Table 9-3.

Regardless of the value of the EM bit, the Intel486 SX processor generates a device-
not-available exception (#NM) upon encountering any floating-point instruction.

9.3 CACHE ENABLING
IA-32 processors (beginning with the Intel486 processor) and Intel 64 processors
contain internal instruction and data caches. These caches are enabled by clearing
the CD and NW flags in control register CR0. (They are set during a hardware reset.)
Because all internal cache lines are invalid following reset initialization, it is not
necessary to invalidate the cache before enabling caching. Any external caches may
require initialization and invalidation using a system-specific initialization and invali-
dation code sequence.

Depending on the hardware and operating system or executive requirements, addi-
tional configuration of the processor’s caching facilities will probably be required.
Beginning with the Intel486 processor, page-level caching can be controlled with the
PCD and PWT flags in page-directory and page-table entries. Beginning with the P6
family processors, the memory type range registers (MTRRs) control the caching
characteristics of the regions of physical memory. (For the Intel486 and Pentium
processors, external hardware can be used to control the caching characteristics of
regions of physical memory.) See Chapter 11, “Memory Cache Control,” for detailed
information on configuration of the caching facilities in the Pentium 4, Intel Xeon, and
P6 family processors and system memory.

Table 9-3. Software Emulation Settings of EM, MP, and NE Flags

CR0 Bit Value

EM 1

MP 0

NE 1
9-8 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.4 MODEL-SPECIFIC REGISTERS (MSRS)
Most IA-32 processors (starting from Pentium processors) and Intel 64 processors
contain a model-specific registers (MSRs). A given MSR may not be supported across
all families and models for Intel 64 and IA-32 processors. Some MSRs are designated
as architectural to simplify software programming; a feature introduced by an archi-
tectural MSR is expected to be supported in future processors. Non-architectural
MSRs are not guaranteed to be supported or to have the same functions on future
processors.

MSRs that provide control for a number of hardware and software-related features,
include:
• Performance-monitoring counters (see Chapter 20, “Introduction to Virtual-

Machine Extensions”).
• Debug extensions (see Chapter 20, “Introduction to Virtual-Machine Exten-

sions.”).
• Machine-check exception capability and its accompanying machine-check archi-

tecture (see Chapter 15, “Machine-Check Architecture”).
• MTRRs (see Section 11.11, “Memory Type Range Registers (MTRRs)”).
• Thermal and power management.
• Instruction-specific support (for example: SYSENTER, SYSEXIT, SWAPGS, etc.).
• Processor feature/mode support (for example: IA32_EFER,

IA32_FEATURE_CONTROL).

The MSRs can be read and written to using the RDMSR and WRMSR instructions,
respectively.

When performing software initialization of an IA-32 or Intel 64 processor, many of
the MSRs will need to be initialized to set up things like performance-monitoring
events, run-time machine checks, and memory types for physical memory.

Lists of available performance-monitoring events are given in Appendix A, “Perfor-
mance Monitoring Events”, and lists of available MSRs are given in Appendix B,
“Model-Specific Registers (MSRs)” The references earlier in this section show where
the functions of the various groups of MSRs are described in this manual.

9.5 MEMORY TYPE RANGE REGISTERS (MTRRS)
Memory type range registers (MTRRs) were introduced into the IA-32 architecture
with the Pentium Pro processor. They allow the type of caching (or no caching) to be
specified in system memory for selected physical address ranges. They allow
memory accesses to be optimized for various types of memory such as RAM, ROM,
frame buffer memory, and memory-mapped I/O devices.

In general, initializing the MTRRs is normally handled by the software initialization
code or BIOS and is not an operating system or executive function. At the very least,
Vol. 3A 9-9

PROCESSOR MANAGEMENT AND INITIALIZATION
all the MTRRs must be cleared to 0, which selects the uncached (UC) memory type.
See Section 11.11, “Memory Type Range Registers (MTRRs),” for detailed informa-
tion on the MTRRs.

9.6 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS
For processors that contain SSE/SSE2/SSE3/SSSE3 extensions, steps must be taken
when initializing the processor to allow execution of these instructions.

1. Check the CPUID feature flags for the presence of the SSE/SSE2/SSE3/SSSE3
extensions (respectively: EDX bits 25 and 26, ECX bit 0 and 9) and support for
the FXSAVE and FXRSTOR instructions (EDX bit 24). Also check for support for
the CLFLUSH instruction (EDX bit 19). The CPUID feature flags are loaded in the
EDX and ECX registers when the CPUID instruction is executed with a 1 in the
EAX register.

2. Set the OSFXSR flag (bit 9 in control register CR4) to indicate that the operating
system supports saving and restoring the SSE/SSE2/SSE3/SSSE3 execution
environment (XXM and MXCSR registers) with the FXSAVE and FXRSTOR instruc-
tions, respectively. See Section 2.5, “Control Registers,” for a description of the
OSFXSR flag.

3. Set the OSXMMEXCPT flag (bit 10 in control register CR4) to indicate that the
operating system supports the handling of SSE/SSE2/SSE3 SIMD floating-point
exceptions (#XF). See Section 2.5, “Control Registers,” for a description of the
OSXMMEXCPT flag.

4. Set the mask bits and flags in the MXCSR register according to the mode of
operation desired for SSE/SSE2/SSE3 SIMD floating-point instructions. See
“MXCSR Control and Status Register” in Chapter 10, “Programming with
Streaming SIMD Extensions (SSE),” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for a detailed description of the bits and
flags in the MXCSR register.

9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS
MODE OPERATION

Following a hardware reset (either through a power-up or the assertion of the
RESET# pin) the processor is placed in real-address mode and begins executing soft-
ware initialization code from physical address FFFFFFF0H. Software initialization code
must first set up the necessary data structures for handling basic system functions,
such as a real-mode IDT for handling interrupts and exceptions. If the processor is to
remain in real-address mode, software must then load additional operating-system
or executive code modules and data structures to allow reliable execution of applica-
tion programs in real-address mode.

If the processor is going to operate in protected mode, software must load the neces-
sary data structures to operate in protected mode and then switch to protected
9-10 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
mode. The protected-mode data structures that must be loaded are described in
Section 9.8, “Software Initialization for Protected-Mode Operation.”

9.7.1 Real-Address Mode IDT
In real-address mode, the only system data structure that must be loaded into
memory is the IDT (also called the “interrupt vector table”). By default, the address
of the base of the IDT is physical address 0H. This address can be changed by using
the LIDT instruction to change the base address value in the IDTR. Software initial-
ization code needs to load interrupt- and exception-handler pointers into the IDT
before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM
or RAM; however, the code must be located within the 1-MByte addressable range of
the processor in real-address mode. If the handler code is to be stored in RAM, it
must be loaded along with the IDT.

9.7.2 NMI Interrupt Handling
The NMI interrupt is always enabled (except when multiple NMIs are nested). If the
IDT and the NMI interrupt handler need to be loaded into RAM, there will be a period
of time following hardware reset when an NMI interrupt cannot be handled. During
this time, hardware must provide a mechanism to prevent an NMI interrupt from
halting code execution until the IDT and the necessary NMI handler software is
loaded. Here are two examples of how NMIs can be handled during the initial states
of processor initialization:
• A simple IDT and NMI interrupt handler can be provided in EPROM. This allows an

NMI interrupt to be handled immediately after reset initialization.
• The system hardware can provide a mechanism to enable and disable NMIs by

passing the NMI# signal through an AND gate controlled by a flag in an I/O port.
Hardware can clear the flag when the processor is reset, and software can set the
flag when it is ready to handle NMI interrupts.

9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this
point in the initialization process, some basic data structures and code modules must
be loaded into physical memory to support further initialization of the processor, as
described in Section 9.7, “Software Initialization for Real-Address Mode Operation.”
Before the processor can be switched to protected mode, the software initialization
code must load a minimum number of protected mode data structures and code
Vol. 3A 9-11

PROCESSOR MANAGEMENT AND INITIALIZATION
modules into memory to support reliable operation of the processor in protected
mode. These data structures include the following:
• A IDT.
• A GDT.
• A TSS.
• (Optional) An LDT.
• If paging is to be used, at least one page directory and one page table.
• A code segment that contains the code to be executed when the processor

switches to protected mode.
• One or more code modules that contain the necessary interrupt and exception

handlers.

Software initialization code must also initialize the following system registers before
the processor can be switched to protected mode:
• The GDTR.
• (Optional.) The IDTR. This register can also be initialized immediately after

switching to protected mode, prior to enabling interrupts.
• Control registers CR1 through CR4.
• (Pentium 4, Intel Xeon, and P6 family processors only.) The memory type range

registers (MTRRs).

With these data structures, code modules, and system registers initialized, the
processor can be switched to protected mode by loading control register CR0 with a
value that sets the PE flag (bit 0).

9.8.1 Protected-Mode System Data Structures
The contents of the protected-mode system data structures loaded into memory
during software initialization, depend largely on the type of memory management
the protected-mode operating-system or executive is going to support: flat, flat with
paging, segmented, or segmented with paging.

To implement a flat memory model without paging, software initialization code must
at a minimum load a GDT with one code and one data-segment descriptor. A null
descriptor in the first GDT entry is also required. The stack can be placed in a normal
read/write data segment, so no dedicated descriptor for the stack is required. A flat
memory model with paging also requires a page directory and at least one page table
(unless all pages are 4 MBytes in which case only a page directory is required). See
Section 9.8.3, “Initializing Paging.”

Before the GDT can be used, the base address and limit for the GDT must be loaded
into the GDTR register using an LGDT instruction.

A multi-segmented model may require additional segments for the operating system,
as well as segments and LDTs for each application program. LDTs require segment
9-12 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
descriptors in the GDT. Some operating systems allocate new segments and LDTs as
they are needed. This provides maximum flexibility for handling a dynamic program-
ming environment. However, many operating systems use a single LDT for all tasks,
allocating GDT entries in advance. An embedded system, such as a process
controller, might pre-allocate a fixed number of segments and LDTs for a fixed
number of application programs. This would be a simple and efficient way to struc-
ture the software environment of a real-time system.

9.8.2 Initializing Protected-Mode Exceptions and Interrupts
Software initialization code must at a minimum load a protected-mode IDT with gate
descriptor for each exception vector that the processor can generate. If interrupt or
trap gates are used, the gate descriptors can all point to the same code segment,
which contains the necessary exception handlers. If task gates are used, one TSS
and accompanying code, data, and task segments are required for each exception
handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in
the IDT for one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded
into the IDTR register using an LIDT instruction. This operation is typically carried out
immediately after switching to protected mode.

9.8.3 Initializing Paging
Paging is controlled by the PG flag in control register CR0. When this flag is clear (its
state following a hardware reset), the paging mechanism is turned off; when it is set,
paging is enabled. Before setting the PG flag, the following data structures and regis-
ters must be initialized:
• Software must load at least one page directory and one page table into physical

memory. The page table can be eliminated if the page directory contains a
directory entry pointing to itself (here, the page directory and page table reside
in the same page), or if only 4-MByte pages are used.

• Control register CR3 (also called the PDBR register) is loaded with the physical
base address of the page directory.

• (Optional) Software may provide one set of code and data descriptors in the GDT
or in an LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is
switched to protected mode at the same time by loading control register CR0 with an
image in which the PG and PE flags are set. (Paging cannot be enabled before the
processor is switched to protected mode.)
Vol. 3A 9-13

PROCESSOR MANAGEMENT AND INITIALIZATION
9.8.4 Initializing Multitasking
If the multitasking mechanism is not going to be used and changes between privilege
levels are not allowed, it is not necessary load a TSS into memory or to initialize the
task register.

If the multitasking mechanism is going to be used and/or changes between privilege
levels are allowed, software initialization code must load at least one TSS and an
accompanying TSS descriptor. (A TSS is required to change privilege levels because
pointers to the privileged-level 0, 1, and 2 stack segments and the stack pointers for
these stacks are obtained from the TSS.) TSS descriptors must not be marked as
busy when they are created; they should be marked busy by the processor only as a
side-effect of performing a task switch. As with descriptors for LDTs, TSS descriptors
reside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used
to load a segment selector for a TSS descriptor into the task register. This instruction
marks the TSS descriptor as busy, but does not perform a task switch. The processor
can, however, use the TSS to locate pointers to privilege-level 0, 1, and 2 stacks. The
segment selector for the TSS must be loaded before software performs its first task
switch in protected mode, because a task switch copies the current task state into
the TSS.

After the LTR instruction has been executed, further operations on the task register
are performed by task switching. As with other segments and LDTs, TSSs and TSS
descriptors can be either pre-allocated or allocated as needed.

9.8.5 Initializing IA-32e Mode
On Intel 64 processors, the IA32_EFER MSR is cleared on system reset. The oper-
ating system must be in protected mode with paging enabled before attempting to
initialize IA-32e mode. IA-32e mode operation also requires physical-address exten-
sions with four levels of enhanced paging structures (see Section 4.5, “IA-32e
Paging”).

Operating systems should follow this sequence to initialize IA-32e mode:

1. Starting from protected mode, disable paging by setting CR0.PG = 0. Use the
MOV CR0 instruction to disable paging (the instruction must be located in an
identity-mapped page).

2. Enable physical-address extensions (PAE) by setting CR4.PAE = 1. Failure to
enable PAE will result in a #GP fault when an attempt is made to initialize IA-32e
mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4).

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the
IA32_EFER.LMA bit to 1. The MOV CR0 instruction that enables paging and the
9-14 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
following instructions must be located in an identity-mapped page (until such
time that a branch to non-identity mapped pages can be effected).

64-bit mode paging tables must be located in the first 4 GBytes of physical-address
space prior to activating IA-32e mode. This is necessary because the MOV CR3
instruction used to initialize the page-directory base must be executed in legacy
mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging).
Because MOV CR3 is executed in protected mode, only the lower 32 bits of the
register are written, limiting the table location to the low 4 GBytes of memory. Soft-
ware can relocate the page tables anywhere in physical memory after IA-32e mode
is activated.

The processor performs 64-bit mode consistency checks whenever software
attempts to modify any of the enable bits directly involved in activating IA-32e mode
(IA32_EFER.LME, CR0.PG, and CR4.PAE). It will generate a general protection fault
(#GP) if consistency checks fail. 64-bit mode consistency checks ensure that the
processor does not enter an undefined mode or state with unpredictable behavior.

64-bit mode consistency checks fail in the following circumstances:
• An attempt is made to enable or disable IA-32e mode while paging is enabled.
• IA-32e mode is enabled and an attempt is made to enable paging prior to

enabling physical-address extensions (PAE).
• IA-32e mode is active and an attempt is made to disable physical-address

extensions (PAE).
• If the current CS has the L-bit set on an attempt to activate IA-32e mode.
• If the TR contains a 16-bit TSS.

9.8.5.1 IA-32e Mode System Data Structures
After activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR,
IDTR, TR) continue to reference legacy protected-mode descriptor tables. Tables
referenced by the descriptors all reside in the lower 4 GBytes of linear-address space.
After activating IA-32e mode, 64-bit operating-systems should use the LGDT, LLDT,
LIDT, and LTR instructions to load the system-descriptor-table registers with refer-
ences to 64-bit descriptor tables.

9.8.5.2 IA-32e Mode Interrupts and Exceptions
Software must not allow exceptions or interrupts to occur between the time IA-32e
mode is activated and the update of the interrupt-descriptor-table register (IDTR)
that establishes references to a 64-bit interrupt-descriptor table (IDT). This is
because the IDT remains in legacy form immediately after IA-32e mode is activated.

If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit inter-
rupt gate will be referenced and interpreted as a 64-bit interrupt gate with unpredict-
able results. External interrupts can be disabled by using the CLI instruction.

Non-maskable interrupts (NMI) must be disabled using external hardware.
Vol. 3A 9-15

PROCESSOR MANAGEMENT AND INITIALIZATION
9.8.5.3 64-bit Mode and Compatibility Mode Operation
IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Figure 3-8)
to control the operating modes after IA-32e mode is initialized. If CS.L = 1 and CS.D =
0, the processor is running in 64-bit mode. With this encoding, the default operand
size is 32 bits and default address size is 64 bits. Using instruction prefixes, operand
size can be changed to 64 bits or 16 bits; address size can be changed to 32 bits.

When IA-32e mode is active and CS.L = 0, the processor operates in compatibility
mode. In this mode, CS.D controls default operand and address sizes exactly as it
does in the IA-32 architecture. Setting CS.D = 1 specifies default operand and
address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size
as 16 bits (the CS.L = 1, CS.D = 1 bit combination is reserved).

Compatibility mode execution is selected on a code-segment basis. This mode allows
legacy applications to coexist with 64-bit applications running in 64-bit mode. An
operating system running in IA-32e mode can execute existing 16-bit and 32-bit
applications by clearing their code-segment descriptor’s CS.L bit to 0.

In compatibility mode, the following system-level mechanisms continue to operate
using the IA-32e-mode architectural semantics:
• Linear-to-physical address translation uses the 64-bit mode extended page-

translation mechanism.
• Interrupts and exceptions are handled using the 64-bit mode mechanisms.
• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using

the IA-32e mode mechanisms.

9.8.5.4 Switching Out of IA-32e Mode Operation
To return from IA-32e mode to paged-protected mode operation. Operating systems
must use the following sequence:

1. Switch to compatibility mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set
IA32_EFER.LMA = 0. The MOV CR0 instruction used to disable paging and
subsequent instructions must be located in an identity-mapped page.

3. Load CR3 with the physical base address of the legacy page-table-directory base
address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. A branch instruction must follow the MOV CR0 that enables paging. Both the MOV
CR0 and the branch instruction must be located in an identity-mapped page.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
9-16 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

9.9 MODE SWITCHING
To use the processor in protected mode after hardware or software reset, a mode
switch must be performed from real-address mode. Once in protected mode, soft-
ware generally does not need to return to real-address mode. To run software written
to run in real-address mode (8086 mode), it is generally more convenient to run the
software in virtual-8086 mode, than to switch back to real-address mode.

9.9.1 Switching to Protected Mode
Before switching to protected mode from real mode, a minimum set of system data
structures and code modules must be loaded into memory, as described in Section
9.8, “Software Initialization for Protected-Mode Operation.” Once these tables are
created, software initialization code can switch into protected mode.

Protected mode is entered by executing a MOV CR0 instruction that sets the PE flag
in the CR0 register. (In the same instruction, the PG flag in register CR0 can be set to
enable paging.) Execution in protected mode begins with a CPL of 0.

Intel 64 and IA-32 processors have slightly different requirements for switching to
protected mode. To insure upwards and downwards code compatibility with Intel 64
and IA-32 processors, we recommend that you follow these steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that
no exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of
the GDT.

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag)
in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in
the instruction stream.)

5. The JMP or CALL instruction immediately after the MOV CR0 instruction changes
the flow of execution and serializes the processor.

6. If paging is enabled, the code for the MOV CR0 instruction and the JMP or CALL
instruction must come from a page that is identity mapped (that is, the linear
address before the jump is the same as the physical address after paging and
protected mode is enabled). The target instruction for the JMP or CALL instruction
does not need to be identity mapped.
Vol. 3A 9-17

PROCESSOR MANAGEMENT AND INITIALIZATION
7. If a local descriptor table is going to be used, execute the LLDT instruction to load
the segment selector for the LDT in the LDTR register.

8. Execute the LTR instruction to load the task register with a segment selector to
the initial protected-mode task or to a writable area of memory that can be used
to store TSS information on a task switch.

9. After entering protected mode, the segment registers continue to hold the
contents they had in real-address mode. The JMP or CALL instruction in step 4
resets the CS register. Perform one of the following operations to update the
contents of the remaining segment registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS
registers are not going to be used, load them with a null selector.

— Perform a JMP or CALL instruction to a new task, which automatically resets
the values of the segment registers and branches to a new code segment.

10. Execute the LIDT instruction to load the IDTR register with the address and limit
of the protected-mode IDT.

11. Execute the STI instruction to enable maskable hardware interrupts and perform
the necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above.
Failures will be readily seen in some situations, such as when instructions that refer-
ence memory are inserted between steps 3 and 4 while in system management
mode.

9.9.2 Switching Back to Real-Address Mode
The processor switches from protected mode back to real-address mode if software
clears the PE bit in the CR0 register with a MOV CR0 instruction. A procedure that re-
enters real-address mode should perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to
physical addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.

— Clear the PG bit in the CR0 register.

— Move 0H into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes
(FFFFH). This operation loads the CS register with the segment limit required in
real-address mode.
9-18 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor
containing the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (0FFFFH)

— Byte granular (G = 0)

— Expand up (E = 0)

— Writable (W = 1)

— Present (P = 1)

— Base = any value
The segment registers must be loaded with non-null segment selectors or the
segment registers will be unusable in real-address mode. Note that if the
segment registers are not reloaded, execution continues using the descriptor
attributes loaded during protected mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is
within the 1-MByte real-address mode address range.

6. Clear the PE flag in the CR0 register to switch to real-address mode.

7. Execute a far JMP instruction to jump to a real-address mode program. This
operation flushes the instruction queue and loads the appropriate base-address
value in the CS register.

8. Load the SS, DS, ES, FS, and GS registers as needed by the real-address mode
code. If any of the registers are not going to be used in real-address mode, write
0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform
the necessary hardware operation to enable NMI interrupts.

NOTE
All the code that is executed in steps 1 through 9 must be in a single
page and the linear addresses in that page must be identity mapped
to physical addresses.

9.10 INITIALIZATION AND MODE SWITCHING EXAMPLE
This section provides an initialization and mode switching example that can be incor-
porated into an application. This code was originally written to initialize the Intel386
processor, but it will execute successfully on the Pentium 4, Intel Xeon, P6 family,
Pentium, and Intel486 processors. The code in this example is intended to reside in
EPROM and to run following a hardware reset of the processor. The function of the
code is to do the following:
• Establish a basic real-address mode operating environment.
• Load the necessary protected-mode system data structures into RAM.
Vol. 3A 9-19

PROCESSOR MANAGEMENT AND INITIALIZATION
• Load the system registers with the necessary pointers to the data structures and
the appropriate flag settings for protected-mode operation.

• Switch the processor to protected mode.

Figure 9-3 shows the physical memory layout for the processor following a hardware
reset and the starting point of this example. The EPROM that contains the initializa-
tion code resides at the upper end of the processor’s physical memory address range,
starting at address FFFFFFFFH and going down from there. The address of the first
instruction to be executed is at FFFFFFF0H, the default starting address for the
processor following a hardware reset.

The main steps carried out in this example are summarized in Table 9-4. The source
listing for the example (with the filename STARTUP.ASM) is given in Example 9-1.
The line numbers given in Table 9-4 refer to the source listing.

The following are some additional notes concerning this example:
• When the processor is switched into protected mode, the original code segment

base-address value of FFFF0000H (located in the hidden part of the CS register)
is retained and execution continues from the current offset in the EIP register.
The processor will thus continue to execute code in the EPROM until a far jump or
call is made to a new code segment, at which time, the base address in the CS
register will be changed.

• Maskable hardware interrupts are disabled after a hardware reset and should
remain disabled until the necessary interrupt handlers have been installed. The
NMI interrupt is not disabled following a reset. The NMI# pin must thus be
inhibited from being asserted until an NMI handler has been loaded and made
available to the processor.

• The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to
address 0 and a limit of 4 GBytes. When the DS and ES registers are loaded with
this descriptor, the temporary GDT is no longer needed and can be replaced by
the application GDT.

• This code loads one TSS and no LDTs. If more TSSs exist in the application, they
must be loaded into RAM. If there are LDTs they may be loaded as well.
9-20 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-3. Processor State After Reset

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM Line
Numbers

Description

From To

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
0 - null
1 - R/W data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CR0 with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the
entire physical memory space

0

FFFF FFFFH
After Reset

[CS.BASE+EIP] FFFF FFF0H

EIP = 0000 FFF0H

[SP, DS, SS, ES]

FFFF 0000H

64K EPROM

CS.BASE = FFFF 0000H
DS.BASE = 0H
ES.BASE = 0H
SS.BASE = 0H
ESP = 0H
Vol. 3A 9-21

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.1 Assembler Usage
In this example, the Intel assembler ASM386 and build tools BLD386 are used to
assemble and build the initialization code module. The following assumptions are
used when using the Intel ASM386 and BLD386 tools.
• The ASM386 will generate the right operand size opcodes according to the code-

segment attribute. The attribute is assigned either by the ASM386 invocation
controls or in the code-segment definition.

• If a code segment that is going to run in real-address mode is defined, it must be
set to a USE 16 attribute. If a 32-bit operand is used in an instruction in this code
segment (for example, MOV EAX, EBX), the assembler automatically generates
an operand prefix for the instruction that forces the processor to execute a 32-bit
operation, even though its default code-segment attribute is 16-bit.

• Intel's ASM386 assembler allows specific use of the 16- or 32-bit instructions, for
example, LGDTW, LGDTD, IRETD. If the generic instruction LGDT is used, the
default- segment attribute will be used to generate the right opcode.

188 195 Perform specific board initialization that is imposed by the new
protected mode

196 218 Copy the application's GDT from ROM into RAM

220 238 Copy the application's IDT from ROM into RAM

241 243 Load application's GDTR

244 245 Load application's IDTR

247 261 Copy the application's TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT
alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application's TSS

288 288 Push CS value found in the application's TSS

289 289 Push EIP value found in the application's TSS

290 293 Load DS, ES with the value found in the application's TSS

296 296 Perform IRET; pop the above values and enter the application code

Table 9-4. Main Initialization Steps in STARTUP.ASM Source Listing (Contd.)

STARTUP.ASM Line
Numbers

Description

From To
9-22 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.2 STARTUP.ASM Listing
Example 9-1 provides high-level sample code designed to move the processor into
protected mode. This listing does not include any opcode and offset information.

Example 9-1. STARTUP.ASM

MS-DOS* 5.0(045-N) 386(TM) MACRO ASSEMBLER STARTUP 09:44:51 08/19/92
PAGE 1

MS-DOS 5.0(045-N) 386(TM) MACRO ASSEMBLER V4.0, ASSEMBLY OF MODULE
STARTUP

OBJECT MODULE PLACED IN startup.obj

ASSEMBLER INVOKED BY: f:\386tools\ASM386.EXE startup.a58 pw (132)

LINE SOURCE

 1 NAME STARTUP

 2

 3 ;;

 4 ;

 5 ; ASSUMPTIONS:

 6 ;

 7 ; 1. The bottom 64K of memory is ram, and can be used for

 8 ; scratch space by this module.

 9 ;

 10 ; 2. The system has sufficient free usable ram to copy the

 11 ; initial GDT, IDT, and TSS

 12 ;

 13 ;;

 14

 15 ; configuration data - must match with build definition

 16

 17 CS_BASE EQU 0FFFF0000H

 18

 19 ; CS_BASE is the linear address of the segment STARTUP_CODE

 20 ; - this is specified in the build language file

 21

 22 RAM_START EQU 400H

 23

 24 ; RAM_START is the start of free, usable ram in the linear

 25 ; memory space. The GDT, IDT, and initial TSS will be

 26 ; copied above this space, and a small data segment will be

 27 ; discarded at this linear address. The 32-bit word at
Vol. 3A 9-23

PROCESSOR MANAGEMENT AND INITIALIZATION
 28 ; RAM_START will contain the linear address of the first

 29 ; free byte above the copied tables - this may be useful if

 30 ; a memory manager is used.

 31

 32 TSS_INDEX EQU 10

 33

 34 ; TSS_INDEX is the index of the TSS of the first task to

 35 ; run after startup

 36

 37

 38 ;;

 39

 40 ; ------------------------- STRUCTURES and EQU ---------------

 41 ; structures for system data

 42

 43 ; TSS structure

 44 TASK_STATE STRUC

 45 link DW ?

 46 link_h DW ?

 47 ESP0 DD ?

 48 SS0 DW ?

 49 SS0_h DW ?

 50 ESP1 DD ?

 51 SS1 DW ?

 52 SS1_h DW ?

 53 ESP2 DD ?

 54 SS2 DW ?

 55 SS2_h DW ?

 56 CR3_reg DD ?

 57 EIP_reg DD ?

 58 EFLAGS_regDD ?

 59 EAX_reg DD ?

 60 ECX_reg DD ?

 61 EDX_reg DD ?

 62 EBX_reg DD ?

 63 ESP_reg DD ?

 64 EBP_reg DD ?

 65 ESI_reg DD ?

 66 EDI_reg DD ?

 67 ES_reg DW ?

 68 ES_h DW ?

 69 CS_reg DW ?

 70 CS_h DW ?
9-24 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 71 SS_reg DW ?

 72 SS_h DW ?

 73 DS_reg DW ?

 74 DS_h DW ?

 75 FS_reg DW ?

 76 FS_h DW ?

 77 GS_reg DW ?

 78 GS_h DW ?

 79 LDT_reg DW ?

 80 LDT_h DW ?

 81 TRAP_reg DW ?

 82 IO_map_baseDW ?

 83 TASK_STATE ENDS

 84

 85 ; basic structure of a descriptor

 86 DESC STRUC

 87 lim_0_15 DW ?

 88 bas_0_15 DW ?

 89 bas_16_23DB ?

 90 access DB ?

 91 gran DB ?

 92 bas_24_31DB ?

 93 DESC ENDS

 94

 95 ; structure for use with LGDT and LIDT instructions

 96 TABLE_REG STRUC

 97 table_limDW ?

 98 table_linearDD ?

 99 TABLE_REG ENDS

 100

 101 ; offset of GDT and IDT descriptors in builder generated GDT

 102 GDT_DESC_OFF EQU 1*SIZE(DESC)

 103 IDT_DESC_OFF EQU 2*SIZE(DESC)

 104

 105 ; equates for building temporary GDT in RAM

 106 LINEAR_SEL EQU 1*SIZE (DESC)

 107 LINEAR_PROTO_LO EQU 00000FFFFH ; LINEAR_ALIAS

 108 LINEAR_PROTO_HI EQU 000CF9200H

 109

 110 ; Protection Enable Bit in CR0

 111 PE_BIT EQU 1B

 112

 113 ; --
Vol. 3A 9-25

PROCESSOR MANAGEMENT AND INITIALIZATION
 114

 115 ; ------------------------- DATA SEGMENT----------------------

 116

 117 ; Initially, this data segment starts at linear 0, according

 118 ; to the processor’s power-up state.

 119

 120 STARTUP_DATA SEGMENT RW

 121

 122 free_mem_linear_base LABEL DWORD

 123 TEMP_GDT LABEL BYTE ; must be first in segment

 124 TEMP_GDT_NULL_DESC DESC <>

 125 TEMP_GDT_LINEAR_DESC DESC <>

 126

 127 ; scratch areas for LGDT and LIDT instructions

 128 TEMP_GDT_SCRATCH TABLE_REG <>

 129 APP_GDT_RAM TABLE_REG <>

 130 APP_IDT_RAM TABLE_REG <>

 131 ; align end_data

 132 fill DW ?

 133

 134 ; last thing in this segment - should be on a dword boundary

 135 end_data LABEL BYTE

 136

 137 STARTUP_DATA ENDS

 138 ; --

 139

 140

 141 ; ------------------------- CODE SEGMENT----------------------

 142 STARTUP_CODE SEGMENT ER PUBLIC USE16

 143

 144 ; filled in by builder

 145 PUBLIC GDT_EPROM

 146 GDT_EPROM TABLE_REG <>

 147

 148 ; filled in by builder

 149 PUBLIC IDT_EPROM

 150 IDT_EPROM TABLE_REG <>

 151

 152 ; entry point into startup code - the bootstrap will vector

 153 ; here with a near JMP generated by the builder. This

 154 ; label must be in the top 64K of linear memory.

 155

 156 PUBLIC STARTUP

 157 STARTUP:

 158
9-26 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 159 ; DS,ES address the bottom 64K of flat linear memory

 160 ASSUME DS:STARTUP_DATA, ES:STARTUP_DATA

 161 ; See Figure 9-4

 162 ; load GDTR with temporary GDT

 163 LEA EBX,TEMP_GDT ; build the TEMP_GDT in low ram,

 164 MOV DWORD PTR [EBX],0 ; where we can address

 165 MOV DWORD PTR [EBX]+4,0

 166 MOV DWORD PTR [EBX]+8, LINEAR_PROTO_LO

 167 MOV DWORD PTR [EBX]+12, LINEAR_PROTO_HI

 168 MOV TEMP_GDT_scratch.table_linear,EBX

 169 MOV TEMP_GDT_scratch.table_lim,15

 170

 171 DB 66H; execute a 32 bit LGDT

 172 LGDT TEMP_GDT_scratch

 173

 174 ; enter protected mode

 175 MOV EBX,CR0

 176 OR EBX,PE_BIT

 177 MOV CR0,EBX

 178

 179 ; clear prefetch queue

 180 JMP CLEAR_LABEL

 181 CLEAR_LABEL:

 182

 183 ; make DS and ES address 4G of linear memory

 184 MOV CX,LINEAR_SEL

 185 MOV DS,CX

 186 MOV ES,CX

 187

 188 ; do board specific initialization

 189 ;

 190 ;

 191 ;

 192 ;

 193

 194

 195 ; See Figure 9-5

 196 ; copy EPROM GDT to ram at:

 197 ; RAM_START + size (STARTUP_DATA)

 198 MOV EAX,RAM_START

 199 ADD EAX,OFFSET (end_data)

 200 MOV EBX,RAM_START
Vol. 3A 9-27

PROCESSOR MANAGEMENT AND INITIALIZATION
 201 MOV ECX, CS_BASE

 202 ADD ECX, OFFSET (GDT_EPROM)

 203 MOV ESI, [ECX].table_linear

 204 MOV EDI,EAX

 205 MOVZX ECX, [ECX].table_lim

 206 MOV APP_GDT_ram[EBX].table_lim,CX

 207 INC ECX

 208 MOV EDX,EAX

 209 MOV APP_GDT_ram[EBX].table_linear,EAX

 210 ADD EAX,ECX

 211 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 212

 213 ; fixup GDT base in descriptor

 214 MOV ECX,EDX

 215 MOV [EDX].bas_0_15+GDT_DESC_OFF,CX

 216 ROR ECX,16

 217 MOV [EDX].bas_16_23+GDT_DESC_OFF,CL

 218 MOV [EDX].bas_24_31+GDT_DESC_OFF,CH

 219

 220 ; copy EPROM IDT to ram at:

 221 ; RAM_START+size(STARTUP_DATA)+SIZE (EPROM GDT)

 222 MOV ECX, CS_BASE

 223 ADD ECX, OFFSET (IDT_EPROM)

 224 MOV ESI, [ECX].table_linear

 225 MOV EDI,EAX

 226 MOVZX ECX, [ECX].table_lim

 227 MOV APP_IDT_ram[EBX].table_lim,CX

 228 INC ECX

 229 MOV APP_IDT_ram[EBX].table_linear,EAX

 230 MOV EBX,EAX

 231 ADD EAX,ECX

 232 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 233

 234 ; fixup IDT pointer in GDT

 235 MOV [EDX].bas_0_15+IDT_DESC_OFF,BX

 236 ROR EBX,16

 237 MOV [EDX].bas_16_23+IDT_DESC_OFF,BL

 238 MOV [EDX].bas_24_31+IDT_DESC_OFF,BH

 239

 240 ; load GDTR and IDTR

 241 MOV EBX,RAM_START

 242 DB 66H ; execute a 32 bit LGDT

 243 LGDT APP_GDT_ram[EBX]

 244 DB 66H ; execute a 32 bit LIDT

 245 LIDT APP_IDT_ram[EBX]
9-28 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
 246

 247 ; move the TSS

 248 MOV EDI,EAX

 249 MOV EBX,TSS_INDEX*SIZE(DESC)

 250 MOV ECX,GDT_DESC_OFF ;build linear address for TSS

 251 MOV GS,CX

 252 MOV DH,GS:[EBX].bas_24_31

 253 MOV DL,GS:[EBX].bas_16_23

 254 ROL EDX,16

 255 MOV DX,GS:[EBX].bas_0_15

 256 MOV ESI,EDX

 257 LSL ECX,EBX

 258 INC ECX

 259 MOV EDX,EAX

 260 ADD EAX,ECX

 261 REP MOVS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]

 262

 263 ; fixup TSS pointer

 264 MOV GS:[EBX].bas_0_15,DX

 265 ROL EDX,16

 266 MOV GS:[EBX].bas_24_31,DH

 267 MOV GS:[EBX].bas_16_23,DL

 268 ROL EDX,16

 269 ;save start of free ram at linear location RAMSTART

 270 MOV free_mem_linear_base+RAM_START,EAX

 271

 272 ;assume no LDT used in the initial task - if necessary,

 273 ;code to move the LDT could be added, and should resemble

 274 ;that used to move the TSS

 275

 276 ; load task register

 277 LTR BX ; No task switch, only descriptor loading

 278 ; See Figure 9-6

 279 ; load minimal set of registers necessary to simulate task

 280 ; switch

 281

 282

 283 MOV AX,[EDX].SS_reg ; start loading registers

 284 MOV EDI,[EDX].ESP_reg

 285 MOV SS,AX

 286 MOV ESP,EDI ; stack now valid

 287 PUSH DWORD PTR [EDX].EFLAGS_reg

 288 PUSH DWORD PTR [EDX].CS_reg
Vol. 3A 9-29

PROCESSOR MANAGEMENT AND INITIALIZATION
 289 PUSH DWORD PTR [EDX].EIP_reg

 290 MOV AX,[EDX].DS_reg

 291 MOV BX,[EDX].ES_reg

 292 MOV DS,AX ; DS and ES no longer linear memory

 293 MOV ES,BX

294

 295 ; simulate far jump to initial task

 296 IRETD

 297

 298 STARTUP_CODE ENDS

*** WARNING #377 IN 298, (PASS 2) SEGMENT CONTAINS PRIVILEGED
INSTRUCTION(S)

 299

 300 END STARTUP, DS:STARTUP_DATA, SS:STARTUP_DATA

 301

 302

ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.
9-30 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-4. Constructing Temporary GDT and Switching to Protected Mode (Lines
162-172 of List File)

FFFF FFFFH

Base=0, Limit=4G

START: [CS.BASE+EIP]

TEMP_GDT

• Jump near start

FFFF 0000H

• Construct TEMP_GDT
• LGDT
• Move to protected mode

DS, ES = GDT[1] 4 GB

0
GDT [1]
GDT [0]

GDT_SCRATCH
Base
Limit
Vol. 3A 9-31

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-5. Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of List
File)

FFFF FFFFH

GDT RAM

• Move the GDT, IDT, TSS

• Fix Aliases

• LTR

0

RAM_START

TSS
IDT
GDT

TSS RAM
IDT RAM

from ROM to RAM
9-32 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.10.3 MAIN.ASM Source Code
The file MAIN.ASM shown in Example 9-2 defines the data and stack segments for
this application and can be substituted with the main module task written in a high-
level language that is invoked by the IRET instruction executed by STARTUP.ASM.

Example 9-2. MAIN.ASM

NAME main_module
data SEGMENT RW

dw 1000 dup(?)
DATA ENDS

stack stackseg 800

Figure 9-6. Task Switching (Lines 282-296 of List File)

GDT RAM
RAM_START

TSS RAM
IDT RAM

GDT Alias
IDT Alias

DS

EIP
EFLAGS

CS
SS

0

ES

ESP

•

•
•

•
•
•

SS = TSS.SS
ESP = TSS.ESP
PUSH TSS.EFLAG
PUSH TSS.CS
PUSH TSS.EIP
ES = TSS.ES
DS = TSS.DS
IRET

GDT
Vol. 3A 9-33

PROCESSOR MANAGEMENT AND INITIALIZATION
CODE SEGMENT ER use32 PUBLIC
main_start:

nop
nop
nop

CODE ENDS

END main_start, ds:data, ss:stack

9.10.4 Supporting Files
The batch file shown in Example 9-3 can be used to assemble the source code files
STARTUP.ASM and MAIN.ASM and build the final application.

Example 9-3. Batch File to Assemble and Build the Application

ASM386 STARTUP.ASM

ASM386 MAIN.ASM

BLD386 STARTUP.OBJ, MAIN.OBJ buildfile(EPROM.BLD) bootstrap(STARTUP)
Bootload

BLD386 performs several operations in this example:

It allocates physical memory location to segments and tables.

It generates tables using the build file and the input files.

It links object files and resolves references.

It generates a boot-loadable file to be programmed into the EPROM.

Example 9-4 shows the build file used as an input to BLD386 to perform the above
functions.

Example 9-4. Build File

INIT_BLD_EXAMPLE;

SEGMENT

 *SEGMENTS(DPL = 0)

 , startup.startup_code(BASE = 0FFFF0000H)

 ;

TASK

 BOOT_TASK(OBJECT = startup, INITIAL,DPL = 0,

NOT INTENABLED)

, PROTECTED_MODE_TASK(OBJECT = main_module,DPL = 0,

NOT INTENABLED)

 ;
9-34 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
TABLE

 GDT (

 LOCATION = GDT_EPROM

 , ENTRY = (

 10: PROTECTED_MODE_TASK

 , startup.startup_code

 , startup.startup_data

 , main_module.data

 , main_module.code

 , main_module.stack

)

),

 IDT (

 LOCATION = IDT_EPROM

);

MEMORY

 (

 RESERVE = (0..3FFFH

-- Area for the GDT, IDT, TSS copied from ROM

 , 60000H..0FFFEFFFFH)

 , RANGE = (ROM_AREA = ROM (0FFFF0000H..0FFFFFFFFH))

-- Eprom size 64K

 , RANGE = (RAM_AREA = RAM (4000H..05FFFFH))

);

END

Table 9-5 shows the relationship of each build item with an ASM source file.

Table 9-5. Relationship Between BLD Item and ASM Source File

Item ASM386 and
Startup.A58

BLD386 Controls
and BLD file

Effect

Bootstrap public startup
startup:

bootstrap
start(startup)

Near jump at 0FFFFFFF0H
to start.

GDT location public GDT_EPROM
GDT_EPROM TABLE_REG <>

TABLE
GDT(location = GDT_EPROM)

The location of the GDT
will be programmed into
the GDT_EPROM location.

IDT location public IDT_EPROM
IDT_EPROM TABLE_REG <>

TABLE
IDT(location = IDT_EPROM

The location of the IDT
will be programmed into
the IDT_EPROM location.
Vol. 3A 9-35

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11 MICROCODE UPDATE FACILITIES
The Pentium 4, Intel Xeon, and P6 family processors have the capability to correct
errata by loading an Intel-supplied data block into the processor. The data block is
called a microcode update. This section describes the mechanisms the BIOS needs to
provide in order to use this feature during system initialization. It also describes a
specification that permits the incorporation of future updates into a system BIOS.

Intel considers the release of a microcode update for a silicon revision to be the
equivalent of a processor stepping and completes a full-stepping level validation for
releases of microcode updates.

A microcode update is used to correct errata in the processor. The BIOS, which has
an update loader, is responsible for loading the update on processors during system
initialization (Figure 9-7). There are two steps to this process: the first is to incorpo-
rate the necessary update data blocks into the BIOS; the second is to load update
data blocks into the processor.

RAM start RAM_START equ 400H memory (reserve = (0..3FFFH)) RAM_START is used as
the ram destination for
moving the tables. It must
be excluded from the
application's segment
area.

Location of the
application TSS
in the GDT

TSS_INDEX EQU 10 TABLE GDT(
ENTRY = (10:
PROTECTED_MODE_
TASK))

Put the descriptor of the
application TSS in GDT
entry 10.

EPROM size
and location

size and location of the
initialization code

SEGMENT startup.code (base =
0FFFF0000H) ...memory
(RANGE(
ROM_AREA = ROM(x..y))

Initialization code size
must be less than 64K
and resides at upper most
64K of the 4-GByte
memory space.

Table 9-5. Relationship Between BLD Item and ASM Source File (Contd.)

Item ASM386 and
Startup.A58

BLD386 Controls
and BLD file

Effect
9-36 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.1 Microcode Update
A microcode update consists of an Intel-supplied binary that contains a descriptive
header and data. No executable code resides within the update. Each microcode
update is tailored for a specific list of processor signatures. A mismatch of the
processor’s signature with the signature contained in the update will result in a
failure to load. A processor signature includes the extended family, extended model,
type, family, model, and stepping of the processor (starting with processor family
0fH, model 03H, a given microcode update may be associated with one of multiple
processor signatures; see Section 9.11.2 for detail).

Microcode updates are composed of a multi-byte header, followed by encrypted data
and then by an optional extended signature table. Table 9-6 provides a definition of
the fields; Table 9-7 shows the format of an update.

The header is 48 bytes. The first 4 bytes of the header contain the header version.
The update header and its reserved fields are interpreted by software based upon the
header version. An encoding scheme guards against tampering and provides a
means for determining the authenticity of any given update. For microcode updates
with a data size field equal to 00000000H, the size of the microcode update is 2048
bytes. The first 48 bytes contain the microcode update header. The remaining 2000
bytes contain encrypted data.

For microcode updates with a data size not equal to 00000000H, the total size field
specifies the size of the microcode update. The first 48 bytes contain the microcode
update header. The second part of the microcode update is the encrypted data. The
data size field of the microcode update header specifies the encrypted data size, its
value must be a multiple of the size of DWORD. The total size field of the microcode
update header specifies the encrypted data size plus the header size; its value must
be in multiples of 1024 bytes (1 KBytes). The optional extended signature table if
implemented follows the encrypted data, and its size is calculated by (Total Size –
(Data Size + 48)).

Figure 9-7. Applying Microcode Updates

CPU

BIOS

Update
BlocksNew Update

Update
Loader
Vol. 3A 9-37

PROCESSOR MANAGEMENT AND INITIALIZATION
NOTE
The optional extended signature table is supported starting with
processor family 0FH, model 03H.

.
Table 9-6. Microcode Update Field Definitions

Field Name Offset
(bytes)

Length
(bytes)

Description

Header Version 0 4 Version number of the update header.

Update Revision 4 4 Unique version number for the update, the basis for the
update signature provided by the processor to indicate
the current update functioning within the processor.
Used by the BIOS to authenticate the update and verify
that the processor loads successfully. The value in this
field cannot be used for processor stepping identification
alone. This is a signed 32-bit number.

Date 8 4 Date of the update creation in binary format: mmddyyyy
(e.g. 07/18/98 is 07181998H).

Processor
Signature

12 4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and stepping
of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Checksum 16 4 Checksum of Update Data and Header. Used to verify the
integrity of the update header and data. Checksum is
correct when the summation of all the DWORDs (including
the extended Processor Signature Table) that comprise
the microcode update result in 00000000H.

Loader Revision 20 4 Version number of the loader program needed to
correctly load this update. The initial version is
00000001H.

Processor Flags 24 4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an update
is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Data Size 28 4 Specifies the size of the encrypted data in bytes, and
must be a multiple of DWORDs. If this value is
00000000H, then the microcode update encrypted data
is 2000 bytes (or 500 DWORDs).

Total Size 32 4 Specifies the total size of the microcode update in bytes.
It is the summation of the header size, the encrypted
data size and the size of the optional extended signature
table. This value is always a multiple of 1024.
9-38 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Reserved 36 12 Reserved fields for future expansion

Update Data 48 Data Size or
2000

Update data

Extended Signature
Count

Data Size +
48

4 Specifies the number of extended signature structures
(Processor Signature[n], processor flags[n] and
checksum[n]) that exist in this microcode update.

Extended
Checksum

Data Size +
52

4 Checksum of update extended processor signature table.
Used to verify the integrity of the extended processor
signature table. Checksum is correct when the
summation of the DWORDs that comprise the extended
processor signature table results in 00000000H.

Reserved Data Size +
56

12 Reserved fields

Processor
Signature[n]

Data Size +
68 + (n * 12)

4 Extended family, extended model, type, family, model,
and stepping of processor that requires this particular
update revision (e.g., 00000650H). Each microcode
update is designed specifically for a given extended
family, extended model, type, family, model, and stepping
of the processor.

The BIOS uses the processor signature field in
conjunction with the CPUID instruction to determine
whether or not an update is appropriate to load on a
processor. The information encoded within this field
exactly corresponds to the bit representations returned
by the CPUID instruction.

Processor Flags[n] Data Size +
72 + (n * 12)

4 Platform type information is encoded in the lower 8 bits
of this 4-byte field. Each bit represents a particular
platform type for a given CPUID. The BIOS uses the
processor flags field in conjunction with the platform Id
bits in MSR (17H) to determine whether or not an update
is appropriate to load on a processor. Multiple bits may be
set representing support for multiple platform IDs.

Checksum[n] Data Size +
76 + (n * 12)

4 Used by utility software to decompose a microcode
update into multiple microcode updates where each of
the new updates is constructed without the optional
Extended Processor Signature Table.

To calculate the Checksum, substitute the Primary
Processor Signature entry and the Processor Flags entry
with the corresponding Extended Patch entry. Delete the
Extended Processor Signature Table entries. The
Checksum is correct when the summation of all DWORDs
that comprise the created Extended Processor Patch
results in 00000000H.

Table 9-6. Microcode Update Field Definitions (Contd.)

Field Name Offset
(bytes)

Length
(bytes)

Description
Vol. 3A 9-39

PROCESSOR MANAGEMENT AND INITIALIZATION
Table 9-7. Microcode Update Format
31 24 16 8 0 Bytes

Header Version 0

Update Revision 4

Month: 8 Day: 8 Year: 16 8

Processor Signature (CPUID) 12

Res: 4

Extended

Fam
ily: 8

Extended
M

ode: 4

Reserved: 2

Type: 2

Fam
ily: 4

M
odel: 4

Stepping: 4

Checksum 16

Loader Revision 20

Processor Flags 24

Reserved (24 bits)

P7 P6 P5 P4 P3 P2 P1 P0

Data Size 28

Total Size 32

Reserved (12 Bytes) 36

Update Data (Data Size bytes, or 2000 Bytes if Data Size = 00000000H) 48

Extended Signature Count ‘n’ Data Size
+ 48

Extended Processor Signature Table Checksum Data Size
+ 52

Reserved (12 Bytes) Data Size
+ 56

Processor Signature[n] Data Size
+ 68 +
(n * 12)

Processor Flags[n] Data Size
+ 72 +
(n * 12)

Checksum[n] Data Size
+ 76 +
(n * 12)
9-40 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.2 Optional Extended Signature Table
The extended signature table is a structure that may be appended to the end of the
encrypted data when the encrypted data only supports a single processor signature
(optional case). The extended signature table will always be present when the
encrypted data supports multiple processor steppings and/or models (required
case).

The extended signature table consists of a 20-byte extended signature header struc-
ture, which contains the extended signature count, the extended processor signature
table checksum, and 12 reserved bytes (Table 9-8). Following the extended signa-
ture header structure, the extended signature table contains 0-to-n extended
processor signature structures.

Each processor signature structure consist of the processor signature, processor
flags, and a checksum (Table 9-9).

The extended signature count in the extended signature header structure indicates
the number of processor signature structures that exist in the extended signature
table.

The extended processor signature table checksum is a checksum of all DWORDs that
comprise the extended signature table. That includes the extended signature count,
extended processor signature table checksum, 12 reserved bytes and the n
processor signature structures. A valid extended signature table exists when the
result of a DWORD checksum is 00000000H.

9.11.3 Processor Identification
Each microcode update is designed to for a specific processor or set of processors. To
determine the correct microcode update to load, software must ensure that one of
the processor signatures embedded in the microcode update matches the 32-bit
processor signature returned by the CPUID instruction when executed by the target
processor with EAX = 1. Attempting to load a microcode update that does not match

Table 9-8. Extended Processor Signature Table Header Structure

Extended Signature Count ‘n’ Data Size + 48
Extended Processor Signature Table Checksum Data Size + 52
Reserved (12 Bytes) Data Size + 56

Table 9-9. Processor Signature Structure

Processor Signature[n] Data Size + 68 + (n * 12)
Processor Flags[n] Data Size + 72 + (n * 12)
Checksum[n] Data Size + 76 + (n * 12)
Vol. 3A 9-41

PROCESSOR MANAGEMENT AND INITIALIZATION
a processor signature embedded in the microcode update with the processor signa-
ture returned by CPUID will cause the BIOS to reject the update.

Example 9-5 shows how to check for a valid processor signature match between the
processor and microcode update.

Example 9-5. Pseudo Code to Validate the Processor Signature

ProcessorSignature ← CPUID(1):EAX

If (Update.HeaderVersion = 00000001h)
{

// first check the ProcessorSignature field
If (ProcessorSignature = Update.ProcessorSignature)

Success

// if extended signature is present
Else If (Update.TotalSize > (Update.DataSize + 48))
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[0].
//

For (N ← 0; ((N < Update.ExtendedSignatureCount) AND
 (ProcessorSignature != Update.ProcessorSignature[N])); N++);

// if the loops ended when the iteration count is
// less than the number of processor signatures in
// the table, we have a match

If (N < Update.ExtendedSignatureCount)
Success

Else
Fail

}
Else

Fail
Else

Fail

9.11.4 Platform Identification
In addition to verifying the processor signature, the intended processor platform type
must be determined to properly target the microcode update. The intended
processor platform type is determined by reading the IA32_PLATFORM_ID register,
(MSR 17H). This 64-bit register must be read using the RDMSR instruction.
9-42 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The three platform ID bits, when read as a binary coded decimal (BCD) number, indi-
cate the bit position in the microcode update header’s processor flags field associated
with the installed processor. The processor flags in the 48-byte header and the
processor flags field associated with the extended processor signature structures
may have multiple bits set. Each set bit represents a different platform ID that the
update supports.

Register Name: IA32_PLATFORM_ID
MSR Address: 017H
Access: Read Only

IA32_PLATFORM_ID is a 64-bit register accessed only when referenced as a Qword through a
RDMSR instruction.

To validate the platform information, software may implement an algorithm similar to
the algorithms in Example 9-6.

Example 9-6. Pseudo Code Example of Processor Flags Test

Flag ← 1 << IA32_PLATFORM_ID[52:50]

If (Update.HeaderVersion = 00000001h)
{

If (Update.ProcessorFlags & Flag)
{

Load Update

Table 9-10. Processor Flags

Bit Descriptions
63:53 Reserved
52:50 Platform Id Bits (RO). The field gives information concerning the intended platform for

the processor. See also Table 9-7.

52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

49:0 Reserved
Vol. 3A 9-43

PROCESSOR MANAGEMENT AND INITIALIZATION
}
Else
{

//
// Assume the Data Size has been used to calculate the
// location of Update.ProcessorSignature[N] and a match
// on Update.ProcessorSignature[N] has already succeeded
//

If (Update.ProcessorFlags[n] & Flag)
{

Load Update
}

}
}

9.11.5 Microcode Update Checksum
Each microcode update contains a DWORD checksum located in the update header. It
is software’s responsibility to ensure that a microcode update is not corrupt. To check
for a corrupt microcode update, software must perform a unsigned DWORD (32-bit)
checksum of the microcode update. Even though some fields are signed, the
checksum procedure treats all DWORDs as unsigned. Microcode updates with a
header version equal to 00000001H must sum all DWORDs that comprise the micro-
code update. A valid checksum check will yield a value of 00000000H. Any other
value indicates the microcode update is corrupt and should not be loaded.

The checksum algorithm shown by the pseudo code in Example 9-7 treats the micro-
code update as an array of unsigned DWORDs. If the data size DWORD field at byte
offset 32 equals 00000000H, the size of the encrypted data is 2000 bytes, resulting
in 500 DWORDs. Otherwise the microcode update size in DWORDs = (Total Size / 4),
where the total size is a multiple of 1024 bytes (1 KBytes).

Example 9-7. Pseudo Code Example of Checksum Test

N ← 512

If (Update.DataSize != 00000000H)
N ← Update.TotalSize / 4

ChkSum ← 0
For (I ← 0; I < N; I++)
{

ChkSum ← ChkSum + MicrocodeUpdate[I]
}

9-44 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
If (ChkSum = 00000000H)
Success

Else
Fail

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS
to ensure proper loading. The update loader described contains the minimal instruc-
tions needed to load an update. The specific instruction sequence that is required to
load an update is dependent upon the loader revision field contained within the
update header. This revision is expected to change infrequently (potentially, only
when new processor models are introduced).

Example 9-8 below represents the update loader with a loader revision of
00000001H. Note that the microcode update must be aligned on a 16-byte boundary
and the size of the microcode update must be 1-KByte granular.

Example 9-8. Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode
update (header and data) embedded within the code segment of the BIOS. It also
assumes that the processor is operating in real mode. The data may reside anywhere
in memory, aligned on a 16-byte boundary, that is accessible by the processor within
its current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the
following must be true:
• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear

address. In protected mode, EAX contains the full 32-bit linear address of the
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear
address. In protected mode, EDX equals zero.
Vol. 3A 9-45

PROCESSOR MANAGEMENT AND INITIALIZATION
• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:
• If the update is loaded while the processor is in real mode, then the update data

may not cross a segment boundary.
• If the update is loaded while the processor is in real mode, then the update data

may not exceed a segment limit.
• If paging is enabled, pages that are currently present must map the update data.
• The microcode update data requires a 16-byte boundary alignment.

9.11.6.1 Hard Resets in Update Loading
The effects of a loaded update are cleared from the processor upon a hard reset.
Therefore, each time a hard reset is asserted during the BIOS POST, the update must
be reloaded on all processors that observed the reset. The effects of a loaded update
are, however, maintained across a processor INIT. There are no side effects caused
by loading an update into a processor multiple times.

9.11.6.2 Update in a Multiprocessor System
A multiprocessor (MP) system requires loading each processor with update data
appropriate for its CPUID and platform ID bits. The BIOS is responsible for ensuring
that this requirement is met and that the loader is located in a module executed by
all processors in the system. If a system design permits multiple steppings of
Pentium 4, Intel Xeon, and P6 family processors to exist concurrently; then the BIOS
must verify individual processors against the update header information to ensure
appropriate loading. Given these considerations, it is most practical to load the
update during MP initialization.

9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology
Intel Hyper-Threading Technology has implications on the loading of the microcode
update. The update must be loaded for each core in a physical processor. Thus, for a
processor supporting Intel Hyper-Threading Technology, only one logical processor
per core is required to load the microcode update. Each individual logical processor
can independently load the update. However, MP initialization must provide some
mechanism (e.g. a software semaphore) to force serialization of microcode update
loads and to prevent simultaneous load attempts to the same core.

9.11.6.4 Update in a System Supporting Dual-Core Technology
Dual-core technology has implications on the loading of the microcode update. The
microcode update facility is not shared between processor cores in the same physical
package. The update must be loaded for each core in a physical processor.
9-46 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
If processor core supports Intel Hyper-Threading Technology, the guideline described
in Section 9.11.6.3 also applies.

9.11.6.5 Update Loader Enhancements
The update loader presented in Section 9.11.6, “Microcode Update Loader,” is a
minimal implementation that can be enhanced to provide additional functionality.
Potential enhancements are described below:
• BIOS can incorporate multiple updates to support multiple steppings of the

Pentium 4, Intel Xeon, and P6 family processors. This feature provides for
operating in a mixed stepping environment on an MP system and enables a user
to upgrade to a later version of the processor. In this case, modify the loader to
check the CPUID and platform ID bits of the processor that it is running on
against the available headers before loading a particular update. The number of
updates is only limited by available BIOS space.

• A loader can load the update and test the processor to determine if the update
was loaded correctly. See Section 9.11.7, “Update Signature and Verification.”

• A loader can verify the integrity of the update data by performing a checksum on
the double words of the update summing to zero. See Section 9.11.5, “Microcode
Update Checksum.”

• A loader can provide power-on messages indicating successful loading of an
update.

9.11.7 Update Signature and Verification
The Pentium 4, Intel Xeon, and P6 family processors provide capabilities to verify the
authenticity of a particular update and to identify the current update revision. This
section describes the model-specific extensions of processors that support this
feature. The update verification method below assumes that the BIOS will only verify
an update that is more recent than the revision currently loaded in the processor.

CPUID returns a value in a model specific register in addition to its usual register
return values. The semantics of CPUID cause it to deposit an update ID value in the
64-bit model-specific register at address 08BH (IA32_BIOS_SIGN_ID). If no update
is present in the processor, the value in the MSR remains unmodified. The BIOS must
pre-load a zero into the MSR before executing CPUID. If a read of the MSR at 8BH still
returns zero after executing CPUID, this indicates that no update is present.

The update ID value returned in the EDX register after RDMSR executes indicates the
revision of the update loaded in the processor. This value, in combination with the
CPUID value returned in the EAX register, uniquely identifies a particular update. The
signature ID can be directly compared with the update revision field in a microcode
update header for verification of a correct load. No consecutive updates released for
a given stepping of a processor may share the same signature. The processor signa-
ture returned by CPUID differentiates updates for different steppings.
Vol. 3A 9-47

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.7.1 Determining the Signature
An update that is successfully loaded into the processor provides a signature that
matches the update revision of the currently functioning revision. This signature is
available any time after the actual update has been loaded. Requesting the signature
does not have a negative impact upon a loaded update.

The procedure for determining this signature shown in Example 9-9.

Example 9-9. Assembly Code to Retrieve the Update Revision

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

XOR EAX, EAX ;clear EAX

XOR EDX, EDX ;clear EDX

WRMSR ;Load 0 to MSR at 8BH

MOV EAX, 1

cpuid

MOV ECX, 08BH ;IA32_BIOS_SIGN_ID

rdmsr ;Read Model Specific Register

If there is an update active in the processor, its revision is returned in the EDX
register after the RDMSR instruction executes.

IA32_BIOS_SIGN_ID Microcode Update Signature Register
MSR Address: 08BH Accessed as a Qword
Default Value: XXXX XXXX XXXX XXXXh
Access: Read/Write

The IA32_BIOS_SIGN_ID register is used to report the microcode update signature
when CPUID executes. The signature is returned in the upper DWORD (Table 9-11).

9.11.7.2 Authenticating the Update
An update may be authenticated by the BIOS using the signature primitive,
described above, and the algorithm in Example 9-10.

Table 9-11. Microcode Update Signature
Bit Description

63:32 Microcode update signature. This field contains the signature of the currently loaded
microcode update when read following the execution of the CPUID instruction, function
1. It is required that this register field be pre-loaded with zero prior to executing the
CPUID, function 1. If the field remains equal to zero, then there is no microcode update
loaded. Another non-zero value will be the signature.

31:0 Reserved.
9-48 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Example 9-10. Pseudo Code to Authenticate the Update

Z ← Obtain Update Revision from the Update Header to be authenticated;
X ← Obtain Current Update Signature from MSR 8BH;

If (Z > X)
{

Load Update that is to be authenticated;
Y ← Obtain New Signature from MSR 8BH;

If (Z = Y)
Success

Else
Fail

}
Else

Fail

Example 9-10 requires that the BIOS only authenticate updates that contain a
numerically larger revision than the currently loaded revision, where Current Signa-
ture (X) < New Update Revision (Z). A processor with no loaded update is considered
to have a revision equal to zero.

This authentication procedure relies upon the decoding provided by the processor to
verify an update from a potentially hostile source. As an example, this mechanism in
conjunction with other safeguards provides security for dynamically incorporating
field updates into the BIOS.

9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor
Microcode Update Specifications

This section describes the interface that an application can use to dynamically inte-
grate processor-specific updates into the system BIOS. In this discussion, the appli-
cation is referred to as the calling program or caller.

The real mode INT15 call specification described here is an Intel extension to an OEM
BIOS. This extension allows an application to read and modify the contents of the
microcode update data in NVRAM. The update loader, which is part of the system
BIOS, cannot be updated by the interface. All of the functions defined in the specifi-
cation must be implemented for a system to be considered compliant with the speci-
fication. The INT15 functions are accessible only from real mode.

9.11.8.1 Responsibilities of the BIOS
If a BIOS passes the presence test (INT 15H, AX = 0D042H, BL = 0H), it must imple-
ment all of the sub-functions defined in the INT 15H, AX = 0D042H specification.
Vol. 3A 9-49

PROCESSOR MANAGEMENT AND INITIALIZATION
There are no optional functions. BIOS must load the appropriate update for each
processor during system initialization.

A Header Version of an update block containing the value 0FFFFFFFFH indicates that
the update block is unused and available for storing a new update.

The BIOS is responsible for providing a region of non-volatile storage (NVRAM) for
each potential processor stepping within a system. This storage unit consists of one
or more update blocks. An update block is a contiguous 2048-byte block of memory.
The BIOS for a single processor system need only provide update blocks to store one
microcode update. If the BIOS for a multiple processor system is intended to support
mixed processor steppings, then the BIOS needs to provide enough update blocks to
store each unique microcode update or for each processor socket on the OEM’s
system board.

The BIOS is responsible for managing the NVRAM update blocks. This includes
garbage collection, such as removing microcode updates that exist in NVRAM for
which a corresponding processor does not exist in the system. This specification only
provides the mechanism for ensuring security, the uniqueness of an entry, and that
stale entries are not loaded. The actual update block management is implementation
specific on a per-BIOS basis.

As an example, the BIOS may use update blocks sequentially in ascending order with
CPU signatures sorted versus the first available block. In addition, garbage collection
may be implemented as a setup option to clear all NVRAM slots or as BIOS code that
searches and eliminates unused entries during boot.

NOTES
For IA-32 processors starting with family 0FH and model 03H and
Intel 64 processors, the microcode update may be as large as 16
KBytes. Thus, BIOS must allocate 8 update blocks for each microcode
update. In a MP system, a common microcode update may be
sufficient for each socket in the system.
For IA-32 processors earlier than family 0FH and model 03H, the
microcode update is 2 KBytes. An MP-capable BIOS that supports
multiple steppings must allocate a block for each socket in the system.
A single-processor BIOS that supports variable-sized microcode
update and fixed-sized microcode update must allocate one 16-KByte
region and a second region of at least 2 KBytes.

The following algorithm (Example 9-11) describes the steps performed during BIOS
initialization used to load the updates into the processor(s). The algorithm assumes:
• The BIOS ensures that no update contained within NVRAM has a header version

or loader version that does not match one currently supported by the BIOS.
• The update contains a correct checksum.
• The BIOS ensures that (at most) one update exists for each processor stepping.
• Older update revisions are not allowed to overwrite more recent ones.
9-50 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
These requirements are checked by the BIOS during the execution of the write
update function of this interface. The BIOS sequentially scans through all of the
update blocks in NVRAM starting with index 0. The BIOS scans until it finds an update
where the processor fields in the header match the processor signature (extended
family, extended model, type, family, model, and stepping) as well as the platform
bits of the current processor.

Example 9-11. Pseudo Code, Checks Required Prior to Loading an Update

For each processor in the system
{

Determine the Processor Signature via CPUID function 1;
Determine the Platform Bits ← 1 << IA32_PLATFORM_ID[52:50];

For (I ← UpdateBlock 0, I < NumOfBlocks; I++)
{

If (Update.Header_Version = 0x00000001)
{

If ((Update.ProcessorSignature = Processor Signature) &&
 (Update.ProcessorFlags & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update was correctly loaded into the processor
Go on to next processor

Break;
}
Else If (Update.TotalSize > (Update.DataSize + 48))
{

N ← 0
While (N < Update.ExtendedSignatureCount)
{

If ((Update.ProcessorSignature[N] =
 Processor Signature) &&
 (Update.ProcessorFlags[N] & Platform Bits))

{
Load Update.UpdateData into the Processor;
Verify update correctly loaded into the processor
Go on to next processor

Break;
}
N ← N + 1

}
I ← I + (Update.TotalSize / 2048)
If ((Update.TotalSize MOD 2048) = 0)

I ← I + 1
}

}

Vol. 3A 9-51

PROCESSOR MANAGEMENT AND INITIALIZATION
}
}

NOTES
The platform Id bits in IA32_PLATFORM_ID are encoded as a three-
bit binary coded decimal field. The platform bits in the microcode
update header are individually bit encoded. The algorithm must do a
translation from one format to the other prior to doing a check.

When performing the INT 15H, 0D042H functions, the BIOS must assume that the
caller has no knowledge of platform specific requirements. It is the responsibility of
BIOS calls to manage all chipset and platform specific prerequisites for managing the
NVRAM device. When writing the update data using the Write Update sub-function,
the BIOS must maintain implementation specific data requirements (such as the
update of NVRAM checksum). The BIOS should also attempt to verify the success of
write operations on the storage device used to record the update.

9.11.8.2 Responsibilities of the Calling Program
This section of the document lists the responsibilities of a calling program using the
interface specifications to load microcode update(s) into BIOS NVRAM.
• The calling program should call the INT 15H, 0D042H functions from a pure real

mode program and should be executing on a system that is running in pure real
mode.

• The caller should issue the presence test function (sub function 0) and verify the
signature and return codes of that function.

• It is important that the calling program provides the required scratch RAM buffers
for the BIOS and the proper stack size as specified in the interface definition.

• The calling program should read any update data that already exists in the BIOS
in order to make decisions about the appropriateness of loading the update. The
BIOS must refuse to overwrite a newer update with an older version. The update
header contains information about version and processor specifics for the calling
program to make an intelligent decision about loading.

• There can be no ambiguous updates. The BIOS must refuse to allow multiple
updates for the same CPU to exist at the same time; it also must refuse to load
updates for processors that don’t exist on the system.

• The calling application should implement a verify function that is run after the
update write function successfully completes. This function reads back the
update and verifies that the BIOS returned an image identical to the one that was
written.

Example 9-12 represents a calling program.
9-52 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Example 9-12. INT 15 DO42 Calling Program Pseudo-code

//
// We must be in real mode
//
If the system is not in Real mode exit
//
// Detect presence of Genuine Intel processor(s) that can be updated
// using(CPUID)
//
If no Intel processors exist that can be updated exit
//
// Detect the presence of the Intel microcode update extensions
//
If the BIOS fails the PresenceTestexit
//
// If the APIC is enabled, see if any other processors are out there
//
Read IA32_APICBASE
If APIC enabled
{

Send Broadcast Message to all processors except self via APIC
Have all processors execute CPUID, record the Processor Signature
(i.e.,Extended Family, Extended Model, Type, Family, Model,

Stepping)
Have all processors read IA32_PLATFORM_ID[52:50], record Platform
 Id Bits

If current processor cannot be updated
exit

}
//
// Determine the number of unique update blocks needed for this system
//
NumBlocks = 0
For each processor
{

If ((this is a unique processor stepping) AND
(we have a unique update in the database for this processor))

{
Checksum the update from the database;
If Checksum fails

exit
NumBlocks ← NumBlocks + size of microcode update / 2048

}
}

//
Vol. 3A 9-53

PROCESSOR MANAGEMENT AND INITIALIZATION
// Do we have enough update slots for all CPUs?
//
If there are more blocks required to support the unique processor
steppings than update blocks provided by the BIOS exit
//
// Do we need any update blocks at all? If not, we are done
//
If (NumBlocks = 0)

exit
//
// Record updates for processors in NVRAM.
//
For (I=0; I<NumBlocks; I++)
{

//
// Load each Update
//
Issue the WriteUpdate function

If (STORAGE_FULL) returned
{

Display Error -- BIOS is not managing NVRAM appropriately
exit

}

If (INVALID_REVISION) returned
{

Display Message: More recent update already loaded in NVRAM for
 this stepping
continue

}

If any other error returned
{

Display Diagnostic
exit

}

//
// Verify the update was loaded correctly
//
Issue the ReadUpdate function

If an error occurred
{

Display Diagnostic
exit
9-54 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
}
//
// Compare the Update read to that written
//
If (Update read != Update written)
{

Display Diagnostic
exit

}

I ← I + (size of microcode update / 2048)
}
//
// Enable Update Loading, and inform user
//
Issue the Update Control function with Task = Enable.

9.11.8.3 Microcode Update Functions
Table 9-12 defines current Pentium 4, Intel Xeon, and P6 family processor microcode
update functions.

9.11.8.4 INT 15H-based Interface
Intel recommends that a BIOS interface be provided that allows additional microcode
updates to be added to system flash. The INT15H interface is the Intel-defined
method for doing this.

The program that calls this interface is responsible for providing three 64-kilobyte
RAM areas for BIOS use during calls to the read and write functions. These RAM
scratch pads can be used by the BIOS for any purpose, but only for the duration of
the function call. The calling routine places real mode segments pointing to the RAM
blocks in the CX, DX and SI registers. Calls to functions in this interface must be
made with a minimum of 32 kilobytes of stack available to the BIOS.

Table 9-12. Microcode Update Functions
Microcode Update
Function

Function
Number

Description Required/Optional

Presence test 00H Returns information about the
supported functions.

Required

Write update data 01H Writes one of the update data areas
(slots).

Required

Update control 02H Globally controls the loading of updates. Required

Read update data 03H Reads one of the update data areas
(slots).

Required
Vol. 3A 9-55

PROCESSOR MANAGEMENT AND INITIALIZATION
In general, each function returns with CF cleared and AH contains the returned
status. The general return codes and other constant definitions are listed in Section
9.11.8.9, “Return Codes.”

The OEM error field (AL) is provided for the OEM to return additional error informa-
tion specific to the platform. If the BIOS provides no additional information about the
error, OEM error must be set to SUCCESS. The OEM error field is undefined if AH
contains either SUCCESS (00H) or NOT_IMPLEMENTED (86H). In all other cases, it
must be set with either SUCCESS or a value meaningful to the OEM.

The following sections describe functions provided by the INT15H-based interface.

9.11.8.5 Function 00H—Presence Test
This function verifies that the BIOS has implemented required microcode update
functions. Table 9-13 lists the parameters and return codes for the function.

In order to assure that the BIOS function is present, the caller must verify the carry
flag, the return code, and the 64-bit signature. The update count reflects the number
of 2048-byte blocks available for storage within one non-volatile RAM.

The loader version number refers to the revision of the update loader program that is
included in the system BIOS image.

Table 9-13. Parameters for the Presence Test

Input

AX Function Code 0D042H

BL Sub-function 00H - Presence test

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid

AH Return Code

AL OEM Error Additional OEM information.

EBX Signature Part 1 'INTE' - Part one of the signature

ECX Signature Part 2 'LPEP'- Part two of the signature

EDX Loader Version Version number of the microcode update loader

SI Update Count Number of 2048 update blocks in NVRAM the BIOS
allocated to storing microcode updates

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.
9-56 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.8.6 Function 01H—Write Microcode Update Data
This function integrates a new microcode update into the BIOS storage device. Table
9-14 lists the parameters and return codes for the function.

Table 9-14. Parameters for the Write Update Data Function

Input

AX Function Code 0D042H

BL Sub-function 01H - Write update

ES:DI Update Address Real Mode pointer to the Intel Update structure. This
buffer is 2048 bytes in length if the processor supports
only fixed-size microcode update or...

Real Mode pointer to the Intel Update structure. This
buffer is 64 KBytes in length if the processor supports a
variable-size microcode update.

CX Scratch Pad1 Real mode segment address of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment address of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment address of 64 KBytes of RAM block

SS:SP Stack pointer 32 KBytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH Contains status

Carry Clear - All return values valid

AH Return Code Status of the call

AL OEM Error Additional OEM information

Return Codes (see Table 9-18 for code definitions

SUCCESS The function completed successfully.

NOT_IMPLEMENTED The function is not implemented.

WRITE_FAILURE A failure occurred because of the inability to write the
storage device.

ERASE_FAILURE A failure occurred because of the inability to erase the
storage device.

READ_FAILURE A failure occurred because of the inability to read the
storage device.

STORAGE_FULL The BIOS non-volatile storage area is unable to
accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system.
Vol. 3A 9-57

PROCESSOR MANAGEMENT AND INITIALIZATION
Description

The BIOS is responsible for selecting an appropriate update block in the non-volatile
storage for storing the new update. This BIOS is also responsible for ensuring the
integrity of the information provided by the caller, including authenticating the
proposed update before incorporating it into storage.

Before writing the update block into NVRAM, the BIOS should ensure that the update
structure meets the following criteria in the following order:

1. The update header version should be equal to an update header version
recognized by the BIOS.

2. The update loader version in the update header should be equal to the update
loader version contained within the BIOS image.

3. The update block must checksum. This checksum is computed as a 32-bit
summation of all double words in the structure, including the header, data, and
processor signature table.

The BIOS selects update block(s) in non-volatile storage for storing the candidate
update. The BIOS can select any available update block as long as it guarantees that
only a single update exists for any given processor stepping in non-volatile storage.
If the update block selected already contains an update, the following additional
criteria apply to overwrite it:
• The processor signature in the proposed update must be equal to the processor

signature in the header of the current update in NVRAM (Processor Signature +
platform ID bits).

• The update revision in the proposed update should be greater than the update
revision in the header of the current update in NVRAM.

If no unused update blocks are available and the above criteria are not met, the BIOS
can overwrite update block(s) for a processor stepping that is no longer present in
the system. This can be done by scanning the update blocks and comparing the
processor steppings, identified in the MP Specification table, to the processor step-
pings that currently exist in the system.

CPU_NOT_PRESENT The processor stepping does not currently exist in the
system.

INVALID_HEADER The update header contains a header or loader version
that is not recognized by the BIOS.

INVALID_HEADER_CS The update does not checksum correctly.

SECURITY_FAILURE The processor rejected the update.

INVALID_REVISION The same or more recent revision of the update exists in
the storage device.

Table 9-14. Parameters for the Write Update Data Function (Contd.)

Input
9-58 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Finally, before storing the proposed update in NVRAM, the BIOS must verify the
authenticity of the update via the mechanism described in Section 9.11.6, “Micro-
code Update Loader.” This includes loading the update into the current processor,
executing the CPUID instruction, reading MSR 08Bh, and comparing a calculated
value with the update revision in the proposed update header for equality.

When performing the write update function, the BIOS must record the entire update,
including the header, the update data, and the extended processor signature table (if
applicable). When writing an update, the original contents may be overwritten,
assuming the above criteria have been met. It is the responsibility of the BIOS to
ensure that more recent updates are not overwritten through the use of this BIOS
call, and that only a single update exists within the NVRAM for any processor step-
ping and platform ID.

Figure 9-8 and Figure 9-9 show the process the BIOS follows to choose an update
block and ensure the integrity of the data when it stores the new microcode update.
Vol. 3A 9-59

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-8. Microcode Update Write Operation Flow [1]

1

Valid Update
Header Version?

Loader Revision Match
BIOS’s Loader?

Does Update Match A
CPU in The System

Write Microcode Update

Does Update
Checksum Correctly?

Yes

Yes

Yes

No
Return

CPU_NOT_PRESENT

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER

No
Return

INVALID_HEADER_CS
9-60 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Figure 9-9. Microcode Update Write Operation Flow [2]

Return
INVALID_REVISION

Yes

1

Update Revision Newer
Than NVRAM Update?

Update Pass
Authenticity Test?

Return
SECURITY_FAILURE

Yes

Update NMRAM Record

Return
SUCCESS

Update Matching CPU
Already In NVRAM?

Space Available in
NVRAM?

Yes

No

Return
STORAGE_FULL

Replacement
policy implemented?

No

No

NoYes Yes
Vol. 3A 9-61

PROCESSOR MANAGEMENT AND INITIALIZATION
9.11.8.7 Function 02H—Microcode Update Control
This function enables loading of binary updates into the processor. Table 9-15 lists
the parameters and return codes for the function.

This control is provided on a global basis for all updates and processors. The caller
can determine the current status of update loading (enabled or disabled) without
changing the state. The function does not allow the caller to disable loading of binary
updates, as this poses a security risk.

The caller specifies the requested operation by placing one of the values from Table
9-16 in the BH register. After successfully completing this function, the BL register
contains either the enable or the disable designator. Note that if the function fails, the
update status return value is undefined.

Table 9-15. Parameters for the Control Update Sub-function

Input

AX Function Code 0D042H

BL Sub-function 02H - Control update

BH Task See the description below.

CX Scratch Pad1 Real mode segment of 64 KBytes of RAM block

DX Scratch Pad2 Real mode segment of 64 KBytes of RAM block

SI Scratch Pad3 Real mode segment of 64 KBytes of RAM block

SS:SP Stack pointer 32 kilobytes of stack minimum

Output

CF Carry Flag Carry Set - Failure - AH contains status

Carry Clear - All return values valid.

AH Return Code Status of the call

AL OEM Error Additional OEM Information.

BL Update Status Either enable or disable indicator

Return Codes (see Table 9-18 for code definitions)

SUCCESS Function completed successfully.

READ_FAILURE A failure occurred because of the inability to read the
storage device.
9-62 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
The READ_FAILURE error code returned by this function has meaning only if the
control function is implemented in the BIOS NVRAM. The state of this feature
(enabled/disabled) can also be implemented using CMOS RAM bits where READ
failure errors cannot occur.

9.11.8.8 Function 03H—Read Microcode Update Data
This function reads a currently installed microcode update from the BIOS storage into
a caller-provided RAM buffer. Table 9-17 lists the parameters and return codes.

Table 9-16. Mnemonic Values
Mnemonic Value Meaning

Enable 1 Enable the Update loading at initialization time.

Query 2 Determine the current state of the update control without
changing its status.

Table 9-17. Parameters for the Read Microcode Update Data Function
Input

AX Function Code 0D042H

BL Sub-function 03H - Read Update

ES:DI Buffer Address Real Mode pointer to the Intel Update
structure that will be written with the
binary data

ECX Scratch Pad1 Real Mode Segment address of 64
KBytes of RAM Block (lower 16 bits)

ECX Scratch Pad2 Real Mode Segment address of 64
KBytes of RAM Block (upper 16 bits)

DX Scratch Pad3 Real Mode Segment address of 64
KBytes of RAM Block

SS:SP Stack pointer 32 KBytes of Stack Minimum

SI Update Number This is the index number of the update
block to be read. This value is zero based
and must be less than the update count
returned from the presence test
function.

Output

CF Carry Flag Carry Set - Failure - AH contains Status

Carry Clear - All return
values are valid.

AH Return Code Status of the Call
Vol. 3A 9-63

PROCESSOR MANAGEMENT AND INITIALIZATION
The read function enables the caller to read any microcode update data that already
exists in a BIOS and make decisions about the addition of new updates. As a result
of a successful call, the BIOS copies the microcode update into the location pointed
to by ES:DI, with the contents of all Update block(s) that are used to store the spec-
ified microcode update.

If the specified block is not a header block, but does contain valid data from a micro-
code update that spans multiple update blocks, then the BIOS must return Failure
with the NOT_EMPTY error code in AH.

An update block is considered unused and available for storing a new update if its
Header Version contains the value 0FFFFFFFFH after return from this function call.
The actual implementation of NVRAM storage management is not specified here and
is BIOS dependent. As an example, the actual data value used to represent an
empty block by the BIOS may be zero, rather than 0FFFFFFFFH. The BIOS is respon-
sible for translating this information into the header provided by this function.

9.11.8.9 Return Codes
After the call has been made, the return codes listed in Table 9-18 are available in the
AH register.

AL OEM Error Additional OEM Information

Return Codes (see Table 9-18 for code definitions)

SUCCESS The function completed successfully.

READ_FAILURE There was a failure because of the
inability to read the storage device.

UPDATE_NUM_INVALID Update number exceeds the maximum
number of update blocks implemented
by the BIOS.

NOT_EMPTY The specified update block is a
subsequent block in use to store a valid
microcode update that spans multiple
blocks.

The specified block is not a header block
and is not empty.

Table 9-17. Parameters for the Read Microcode Update Data Function (Contd.)
9-64 Vol. 3A

PROCESSOR MANAGEMENT AND INITIALIZATION
Table 9-18. Return Code Definitions

Return Code Value Description

SUCCESS 00H The function completed successfully.

NOT_IMPLEMENTED 86H The function is not implemented.

ERASE_FAILURE 90H A failure because of the inability to erase the storage
device.

WRITE_FAILURE 91H A failure because of the inability to write the storage
device.

READ_FAILURE 92H A failure because of the inability to read the storage
device.

STORAGE_FULL 93H The BIOS non-volatile storage area is unable to
accommodate the update because all available update
blocks are filled with updates that are needed for
processors in the system.

CPU_NOT_PRESENT 94H The processor stepping does not currently exist in the
system.

INVALID_HEADER 95H The update header contains a header or loader version
that is not recognized by the BIOS.

INVALID_HEADER_CS 96H The update does not checksum correctly.

SECURITY_FAILURE 97H The update was rejected by the processor.

INVALID_REVISION 98H The same or more recent revision of the update exists
in the storage device.

UPDATE_NUM_INVALID 99H The update number exceeds the maximum number of
update blocks implemented by the BIOS.

NOT_EMPTY 9AH The specified update block is a subsequent block in use
to store a valid microcode update that spans multiple
blocks.

The specified block is not a header block and is not
empty.
Vol. 3A 9-65

PROCESSOR MANAGEMENT AND INITIALIZATION
9-66 Vol. 3A

CHAPTER 10
ADVANCED PROGRAMMABLE

INTERRUPT CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following
sections as the local APIC, was introduced into the IA-32 processors with the Pentium
processor (see Section 19.27, “Advanced Programmable Interrupt Controller
(APIC)”) and is included in the P6 family, Pentium 4, Intel Xeon processors, and other
more recent Intel 64 and IA-32 processor families (see Section 10.4.2, “Presence of
the Local APIC”). The local APIC performs two primary functions for the processor:
• It receives interrupts from the processor’s interrupt pins, from internal sources

and from an external I/O APIC (or other external interrupt controller). It sends
these to the processor core for handling.

• In multiple processor (MP) systems, it sends and receives interprocessor
interrupt (IPI) messages to and from other logical processors on the system bus.
IPI messages can be used to distribute interrupts among the processors in the
system or to execute system wide functions (such as, booting up processors or
distributing work among a group of processors).

The external I/O APIC is part of Intel’s system chip set. Its primary function is to
receive external interrupt events from the system and its associated I/O devices and
relay them to the local APIC as interrupt messages. In MP systems, the I/O APIC also
provides a mechanism for distributing external interrupts to the local APICs of
selected processors or groups of processors on the system bus.

This chapter provides a description of the local APIC and its programming interface.
It also provides an overview of the interface between the local APIC and the I/O
APIC. Contact Intel for detailed information about the I/O APIC.

When a local APIC has sent an interrupt to its processor core for handling, the
processor uses the interrupt and exception handling mechanism described in Chapter
6, “Interrupt and Exception Handling.” See Section 6.1, “Interrupt and Exception
Overview,” for an introduction to interrupt and exception handling.

10.1 LOCAL AND I/O APIC OVERVIEW
Each local APIC consists of a set of APIC registers (see Table 10-1) and associated
hardware that control the delivery of interrupts to the processor core and the gener-
ation of IPI messages. The APIC registers are memory mapped and can be read and
written to using the MOV instruction.

Local APICs can receive interrupts from the following sources:
• Locally connected I/O devices — These interrupts originate as an edge or

level asserted by an I/O device that is connected directly to the processor’s local
Vol. 3A 10-1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
interrupt pins (LINT0 and LINT1). The I/O devices may also be connected to an
8259-type interrupt controller that is in turn connected to the processor through
one of the local interrupt pins.

• Externally connected I/O devices — These interrupts originate as an edge or
level asserted by an I/O device that is connected to the interrupt input pins of an
I/O APIC. Interrupts are sent as I/O interrupt messages from the I/O APIC to one
or more of the processors in the system.

• Inter-processor interrupts (IPIs) — An Intel 64 or IA-32 processor can use
the IPI mechanism to interrupt another processor or group of processors on the
system bus. IPIs are used for software self-interrupts, interrupt forwarding, or
preemptive scheduling.

• APIC timer generated interrupts — The local APIC timer can be programmed
to send a local interrupt to its associated processor when a programmed count is
reached (see Section 10.5.4, “APIC Timer”).

• Performance monitoring counter interrupts — P6 family, Pentium 4, and
Intel Xeon processors provide the ability to send an interrupt to its associated
processor when a performance-monitoring counter overflows (see Section
30.9.5.8, “Generating an Interrupt on Overflow”).

• Thermal Sensor interrupts — Pentium 4 and Intel Xeon processors provide the
ability to send an interrupt to themselves when the internal thermal sensor has
been tripped (see Section 14.5.2, “Thermal Monitor”).

• APIC internal error interrupts — When an error condition is recognized within
the local APIC (such as an attempt to access an unimplemented register), the
APIC can be programmed to send an interrupt to its associated processor (see
Section 10.5.3, “Error Handling”).

Of these interrupt sources: the processor’s LINT0 and LINT1 pins, the APIC timer, the
performance-monitoring counters, the thermal sensor, and the internal APIC error
detector are referred to as local interrupt sources. Upon receiving a signal from a
local interrupt source, the local APIC delivers the interrupt to the processor core
using an interrupt delivery protocol that has been set up through a group of APIC
registers called the local vector table or LVT (see Section 10.5.1, “Local Vector
Table”). A separate entry is provided in the local vector table for each local interrupt
source, which allows a specific interrupt delivery protocol to be set up for each
source. For example, if the LINT1 pin is going to be used as an NMI pin, the LINT1
entry in the local vector table can be set up to deliver an interrupt with vector number
2 (NMI interrupt) to the processor core.

The local APIC handles interrupts from the other two interrupt sources (externally
connected I/O devices and IPIs) through its IPI message handling facilities.

A processor can generate IPIs by programming the interrupt command register (ICR)
in its local APIC (see Section 10.6.1, “Interrupt Command Register (ICR)”). The act
of writing to the ICR causes an IPI message to be generated and issued on the
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for
Pentium and P6 family processors). See Section 10.2, “System Bus Vs. APIC Bus.”
10-2 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
IPIs can be sent to other processors in the system or to the originating processor
(self-interrupts). When the target processor receives an IPI message, its local APIC
handles the message automatically (using information included in the message such
as vector number and trigger mode). See Section 10.6, “Issuing Interprocessor
Interrupts,” for a detailed explanation of the local APIC’s IPI message delivery and
acceptance mechanism.

The local APIC can also receive interrupts from externally connected devices through
the I/O APIC (see Figure 10-1). The I/O APIC is responsible for receiving interrupts
generated by system hardware and I/O devices and forwarding them to the local
APIC as interrupt messages.

Individual pins on the I/O APIC can be programmed to generate a specific interrupt
vector when asserted. The I/O APIC also has a “virtual wire mode” that allows it to
communicate with a standard 8259A-style external interrupt controller. Note that the
local APIC can be disabled (see Section 10.4.3, “Enabling or Disabling the Local
APIC”). This allows an associated processor core to receive interrupts directly from
an 8259A interrupt controller.

Both the local APIC and the I/O APIC are designed to operate in MP systems (see
Figures 10-2 and 10-3). Each local APIC handles interrupts from the I/O APIC, IPIs
from processors on the system bus, and self-generated interrupts. Interrupts can

Figure 10-1. Relationship of Local APIC and I/O APIC In Single-Processor Systems

I/O APIC External
Interrupts

System Chip Set

System Bus

Processor Core

Local APIC

Pentium 4 and

Local
Interrupts

Bridge

PCI

Intel Xeon Processors

I/O APIC External
Interrupts

System Chip Set

3-Wire APIC Bus

Processor Core

Local APIC

Pentium and P6

Local
Interrupts

Family Processors

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages
Vol. 3A 10-3

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
also be delivered to the individual processors through the local interrupt pins;
however, this mechanism is commonly not used in MP systems.

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in
Multiple-Processor Systems

Figure 10-3. Local APICs and I/O APIC When P6 Family Processors Are Used in
Multiple-Processor Systems

I/O APIC External
Interrupts

System Chip Set

Processor System Bus

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

CPU

Local APIC

Processor #3

Bridge

PCI

IPIs IPIs IPIs

Interrupt
Messages

IPIsInterrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

CPU

Local APIC

Processor #2

CPU

Local APIC

Processor #3

CPU

Local APIC

Processor #1

Interrupt
Messages

I/O APICExternal
Interrupts

System Chip Set

3-wire APIC Bus

CPU

Local APIC

Processor #4

IPIsIPIsIPIsIPIs Interrupt
Messages

Interrupt
Messages

Interrupt
Messages

Interrupt
Messages
10-4 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The IPI mechanism is typically used in MP systems to send fixed interrupts (inter-
rupts for a specific vector number) and special-purpose interrupts to processors on
the system bus. For example, a local APIC can use an IPI to forward a fixed interrupt
to another processor for servicing. Special-purpose IPIs (including NMI, INIT, SMI
and SIPI IPIs) allow one or more processors on the system bus to perform system-
wide boot-up and control functions.

The following sections focus on the local APIC and its implementation in the
Pentium 4, Intel Xeon, and P6 family processors. In these sections, the terms “local
APIC” and “I/O APIC” refer to local and I/O APICs used with the P6 family processors
and to local and I/O xAPICs used with the Pentium 4 and Intel Xeon processors (see
Section 10.3, “The Intel® 82489DX External APIC, The APIC, the xAPIC, AND THE
X2APIC”).

10.2 SYSTEM BUS VS. APIC BUS
For the P6 family and Pentium processors, the I/O APIC and local APICs communicate
through the 3-wire inter-APIC bus (see Figure 10-3). Local APICs also use the APIC
bus to send and receive IPIs. The APIC bus and its messages are invisible to software
and are not classed as architectural.

Beginning with the Pentium 4 and Intel Xeon processors, the I/O APIC and local
APICs (using the xAPIC architecture) communicate through the system bus (see
Figure 10-2). The I/O APIC sends interrupt requests to the processors on the system
bus through bridge hardware that is part of the Intel chip set. The bridge hardware
generates the interrupt messages that go to the local APICs. IPIs between local
APICs are transmitted directly on the system bus.

10.3 THE INTEL® 82489DX EXTERNAL APIC,
THE APIC, THE XAPIC, AND THE X2APIC

The local APIC in the P6 family and Pentium processors is an architectural subset of
the Intel® 82489DX external APIC. See Section 19.27.1, “Software Visible Differ-
ences Between the Local APIC and the 82489DX.”
The APIC architecture used in the Pentium 4 and Intel Xeon processors (called the
xAPIC architecture) is an extension of the APIC architecture found in the P6 family
processors. The primary difference between the APIC and xAPIC architectures is that
with the xAPIC architecture, the local APICs and the I/O APIC communicate through
the system bus. With the APIC architecture, they communication through the APIC
bus (see Section 10.2, “System Bus Vs. APIC Bus”). Also, some APIC architectural
features have been extended and/or modified in the xAPIC architecture. These
extensions and modifications are described in Section 10.4 through Section 10.10.

The basic operating mode of the xAPIC is xAPIC mode. The x2APIC architecture is
an extension of the xAPIC architecture, primarily to increase processor address-
Vol. 3A 10-5

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
ability. The x2APIC architecture provides backward compatibility to the xAPIC archi-
tecture and forward extendability for future Intel platform innovations. These
extensions and modifications are supported by a new mode of execution (x2APIC
mode) are detailed in Section 10.12.

10.4 LOCAL APIC
The following sections describe the architecture of the local APIC and how to detect
it, identify it, and determine its status. Descriptions of how to program the local APIC
are given in Section 10.5.1, “Local Vector Table,” and Section 10.6.1, “Interrupt
Command Register (ICR).”

10.4.1 The Local APIC Block Diagram
Figure 10-4 gives a functional block diagram for the local APIC. Software interacts
with the local APIC by reading and writing its registers. APIC registers are memory-
mapped to a 4-KByte region of the processor’s physical address space with an initial
starting address of FEE00000H. For correct APIC operation, this address space must
be mapped to an area of memory that has been designated as strong uncacheable
(UC). See Section 11.3, “Methods of Caching Available.”

In MP system configurations, the APIC registers for Intel 64 or IA-32 processors on
the system bus are initially mapped to the same 4-KByte region of the physical
address space. Software has the option of changing initial mapping to a different
4-KByte region for all the local APICs or of mapping the APIC registers for each local
APIC to its own 4-KByte region. Section 10.4.5, “Relocating the Local APIC Regis-
ters,” describes how to relocate the base address for APIC registers.

On processors supporting x2APIC architecture (indicated by CPUID.01H:ECX[21] =
1), the local APIC supports operation both in xAPIC mode and (if enabled by soft-
ware) in x2APIC mode. x2APIC mode provides extended processor addressability
(see Section 10.12).

NOTE
For P6 family, Pentium 4, and Intel Xeon processors, the APIC
handles all memory accesses to addresses within the 4-KByte APIC
register space internally and no external bus cycles are produced. For
the Pentium processors with an on-chip APIC, bus cycles are
produced for accesses to the APIC register space. Thus, for software
intended to run on Pentium processors, system software should
explicitly not map the APIC register space to regular system memory.
Doing so can result in an invalid opcode exception (#UD) being
generated or unpredictable execution.
10-6 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-4. Local APIC Structure

Current Count
Register

Initial Count
Register

Divide Configuration
Register

Version Register

Error Status
Register

In-Service Register (ISR)

Vector
Decode

Interrupt Command
Register (ICR)

Acceptance
Logic

Vec[3:0]
& TMR Bit

Register
Select

INIT
NMI
SMI

Protocol
Translation Logic

Dest. Mode
& Vector

Processor System Bus3

APIC ID
Register

Logical Destination
Register

Destination Format
Register

Timer

Local
Interrupts 0,1

Performance
Monitoring Counters1

Error

Timer

Local Vector Table

DATA/ADDR

Prioritizer

Task Priority Register

EOI Register

INTR

EXTINT

INTA

LINT0/1

1. Introduced in P6 family processors.

Thermal Sensor2

2. Introduced in the Pentium 4 and Intel Xeon processors.

Perf. Mon.

Thermal

(Internal
Interrupt)

Sensor
(Internal
Interrupt)

Spurious Vector
Register

Local
Interrupts

3. Three-wire APIC bus in P6 family and Pentium processors.

To
CPU
Core

From
CPU
Core

Interrupt Request Register (IRR)

Trigger Mode Register (TMR)

To
CPU
Core

Processor Priority
Register

4. Not implemented in Pentium 4 and Intel Xeon processors.

Arb. ID
Register4
Vol. 3A 10-7

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Table 10-1 shows how the APIC registers are mapped into the 4-KByte APIC register
space. Registers are 32 bits, 64 bits, or 256 bits in width; all are aligned on 128-bit
boundaries. All 32-bit registers should be accessed using 128-bit aligned 32-bit loads
or stores. Some processors may support loads and stores of less than 32 bits to some
of the APIC registers. This is model specific behavior and is not guaranteed to work
on all processors. Any FP/MMX/SSE access to an APIC register, or any access that
touches bytes 4 through 15 of an APIC register may cause undefined behavior and
must not be executed. This undefined behavior could include hangs, incorrect results
or unexpected exceptions, including machine checks, and may vary between imple-
mentations. Wider registers (64-bit or 256-bit) must be accessed using multiple 32-
bit loads or stores, with all accesses being 128-bit aligned.

The local APIC registers listed in Table 10-1 are not MSRs. The only MSR associated
with the programming of the local APIC is the IA32_APIC_BASE MSR (see Section
10.4.3, “Enabling or Disabling the Local APIC”).

NOTE
In processors based on Intel microarchitecture code name Nehalem
the Local APIC ID Register is no longer Read/Write; it is Read Only.

Table 10-1 Local APIC Register Address Map

Address Register Name Software
Read/Write

FEE0 0000H Reserved

FEE0 0010H Reserved

FEE0 0020H Local APIC ID Register Read/Write.

FEE0 0030H Local APIC Version Register Read Only.

FEE0 0040H Reserved

FEE0 0050H Reserved

FEE0 0060H Reserved

FEE0 0070H Reserved

FEE0 0080H Task Priority Register (TPR) Read/Write.

FEE0 0090H Arbitration Priority Register1 (APR) Read Only.

FEE0 00A0H Processor Priority Register (PPR) Read Only.

FEE0 00B0H EOI Register Write Only.

FEE0 00C0H Remote Read Register1 (RRD) Read Only

FEE0 00D0H Logical Destination Register Read/Write.

FEE0 00E0H Destination Format Register Read/Write (see
Section 10.6.2.2).
10-8 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
FEE0 00F0H Spurious Interrupt Vector Register Read/Write (see
Section 10.9.

FEE0 0100H In-Service Register (ISR); bits 31:0 Read Only.

FEE0 0110H In-Service Register (ISR); bits 63:32 Read Only.

FEE0 0120H In-Service Register (ISR); bits 95:64 Read Only.

FEE0 0130H In-Service Register (ISR); bits 127:96 Read Only.

FEE0 0140H In-Service Register (ISR); bits 159:128 Read Only.

FEE0 0150H In-Service Register (ISR); bits 191:160 Read Only.

FEE0 0160H In-Service Register (ISR); bits 223:192 Read Only.

FEE0 0170H In-Service Register (ISR); bits 255:224 Read Only.

FEE0 0180H Trigger Mode Register (TMR); bits 31:0 Read Only.

FEE0 0190H Trigger Mode Register (TMR); bits 63:32 Read Only.

FEE0 01A0H Trigger Mode Register (TMR); bits 95:64 Read Only.

FEE0 01B0H Trigger Mode Register (TMR); bits 127:96 Read Only.

FEE0 01C0H Trigger Mode Register (TMR); bits 159:128 Read Only.

FEE0 01D0H Trigger Mode Register (TMR); bits 191:160 Read Only.

FEE0 01E0H Trigger Mode Register (TMR); bits 223:192 Read Only.

FEE0 01F0H Trigger Mode Register (TMR); bits 255:224 Read Only.

FEE0 0200H Interrupt Request Register (IRR); bits 31:0 Read Only.

FEE0 0210H Interrupt Request Register (IRR); bits 63:32 Read Only.

FEE0 0220H Interrupt Request Register (IRR); bits 95:64 Read Only.

FEE0 0230H Interrupt Request Register (IRR); bits 127:96 Read Only.

FEE0 0240H Interrupt Request Register (IRR); bits 159:128 Read Only.

FEE0 0250H Interrupt Request Register (IRR); bits 191:160 Read Only.

FEE0 0260H Interrupt Request Register (IRR); bits 223:192 Read Only.

FEE0 0270H Interrupt Request Register (IRR); bits 255:224 Read Only.

FEE0 0280H Error Status Register Read Only.

FEE0 0290H through
FEE0 02E0H

Reserved

FEE0 02F0H LVT CMCI Register Read/Write.

FEE0 0300H Interrupt Command Register (ICR); bits 0-31 Read/Write.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software
Read/Write
Vol. 3A 10-9

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.4.2 Presence of the Local APIC
Beginning with the P6 family processors, the presence or absence of an on-chip local
APIC can be detected using the CPUID instruction. When the CPUID instruction is
executed with a source operand of 1 in the EAX register, bit 9 of the CPUID feature
flags returned in the EDX register indicates the presence (set) or absence (clear) of a
local APIC.

10.4.3 Enabling or Disabling the Local APIC
The local APIC can be enabled or disabled in either of two ways:

FEE0 0310H Interrupt Command Register (ICR); bits 32-63 Read/Write.

FEE0 0320H LVT Timer Register Read/Write.

FEE0 0330H LVT Thermal Sensor Register2 Read/Write.

FEE0 0340H LVT Performance Monitoring Counters
Register3

Read/Write.

FEE0 0350H LVT LINT0 Register Read/Write.

FEE0 0360H LVT LINT1 Register Read/Write.

FEE0 0370H LVT Error Register Read/Write.

FEE0 0380H Initial Count Register (for Timer) Read/Write.

FEE0 0390H Current Count Register (for Timer) Read Only.

FEE0 03A0H through
FEE0 03D0H

Reserved

FEE0 03E0H Divide Configuration Register (for Timer) Read/Write.

FEE0 03F0H Reserved

NOTES:
1. Not supported in the Pentium 4 and Intel Xeon processors. The Illegal Register Access bit (7) of

the ESR will not be set when writing to these registers.
2. Introduced in the Pentium 4 and Intel Xeon processors. This APIC register and its associated

function are implementation dependent and may not be present in future IA-32 or Intel 64 pro-
cessors.

3. Introduced in the Pentium Pro processor. This APIC register and its associated function are
implementation dependent and may not be present in future IA-32 or Intel 64 processors.

Table 10-1 Local APIC Register Address Map (Contd.)

Address Register Name Software
Read/Write
10-10 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
1. Using the APIC global enable/disable flag in the IA32_APIC_BASE MSR (MSR
address 1BH; see Figure 10-5):

— When IA32_APIC_BASE[11] is 0, the processor is functionally equivalent to
an IA-32 processor without an on-chip APIC. The CPUID feature flag for the
APIC (see Section 10.4.2, “Presence of the Local APIC”) is also set to 0.

— When IA32_APIC_BASE[11] is set to 0, processor APICs based on the 3-wire
APIC bus cannot be generally re-enabled until a system hardware reset. The
3-wire bus loses track of arbitration that would be necessary for complete re-
enabling. Certain APIC functionality can be enabled (for example:
performance and thermal monitoring interrupt generation).

— For processors that use Front Side Bus (FSB) delivery of interrupts, software
may disable or enable the APIC by setting and resetting
IA32_APIC_BASE[11]. A hardware reset is not required to re-start APIC
functionality, if software guarantees no interrupt will be sent to the APIC as
IA32_APIC_BASE[11] is cleared.

— When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC may be
lost and the APIC may return to the state described in Section 10.4.7.1,
“Local APIC State After Power-Up or Reset.”

2. Using the APIC software enable/disable flag in the spurious-interrupt vector
register (see Figure 10-23):

— If IA32_APIC_BASE[11] is 1, software can temporarily disable a local APIC at
any time by clearing the APIC software enable/disable flag in the spurious-
interrupt vector register (see Figure 10-23). The state of the local APIC when
in this software-disabled state is described in Section 10.4.7.2, “Local APIC
State After It Has Been Software Disabled.”

— When the local APIC is in the software-disabled state, it can be re-enabled at
any time by setting the APIC software enable/disable flag to 1.

For the Pentium processor, the APICEN pin (which is shared with the PICD1 pin) is
used during power-up or reset to disable the local APIC.

Note that each entry in the LVT has a mask bit that can be used to inhibit interrupts
from being delivered to the processor from selected local interrupt sources (the
LINT0 and LINT1 pins, the APIC timer, the performance-monitoring counters, the
thermal sensor, and/or the internal APIC error detector).

10.4.4 Local APIC Status and Location
The status and location of the local APIC are contained in the IA32_APIC_BASE MSR
(see Figure 10-5). MSR bit functions are described below:
• BSP flag, bit 8 ⎯ Indicates if the processor is the bootstrap processor (BSP).

See Section 8.4, “Multiple-Processor (MP) Initialization.” Following a power-up or
reset, this flag is set to 1 for the processor selected as the BSP and set to 0 for the
remaining processors (APs).
Vol. 3A 10-11

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• APIC Global Enable flag, bit 11 ⎯ Enables or disables the local APIC (see
Section 10.4.3, “Enabling or Disabling the Local APIC”). This flag is available in
the Pentium 4, Intel Xeon, and P6 family processors. It is not guaranteed to be
available or available at the same location in future Intel 64 or IA-32 processors.

• APIC Base field, bits 12 through 35 ⎯ Specifies the base address of the APIC
registers. This 24-bit value is extended by 12 bits at the low end to form the base
address. This automatically aligns the address on a 4-KByte boundary. Following
a power-up or reset, the field is set to FEE0 0000H.

• Bits 0 through 7, bits 9 and 10, and bits MAXPHYADDR1 through 63 in the
IA32_APIC_BASE MSR are reserved.

10.4.5 Relocating the Local APIC Registers
The Pentium 4, Intel Xeon, and P6 family processors permit the starting address of
the APIC registers to be relocated from FEE00000H to another physical address by
modifying the value in the 24-bit base address field of the IA32_APIC_BASE MSR.
This extension of the APIC architecture is provided to help resolve conflicts with
memory maps of existing systems and to allow individual processors in an MP system
to map their APIC registers to different locations in physical memory.

10.4.6 Local APIC ID
At power up, system hardware assigns a unique APIC ID to each local APIC on the
system bus (for Pentium 4 and Intel Xeon processors) or on the APIC bus (for P6
family and Pentium processors). The hardware assigned APIC ID is based on system
topology and includes encoding for socket position and cluster information (see
Figure 8-2).

In MP systems, the local APIC ID is also used as a processor ID by the BIOS and the
operating system. Some processors permit software to modify the APIC ID. However,
the ability of software to modify the APIC ID is processor model specific. Because of

1. The MAXPHYADDR is 36 bits for processors that do not support CPUID leaf 80000008H, or indi-
cated by CPUID.80000008H:EAX[bits 7:0] for processors that support CPUID leaf 80000008H.

Figure 10-5. IA32_APIC_BASE MSR (APIC_BASE_MSR in P6 Family)

BSP—Processor is BSP

APIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

MAXPHYADDR

APIC BaseReserved
10-12 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
this, operating system software should avoid writing to the local APIC ID register. The
value returned by bits 31-24 of the EBX register (when the CPUID instruction is
executed with a source operand value of 1 in the EAX register) is always the Initial
APIC ID (determined by the platform initialization). This is true even if software has
changed the value in the Local APIC ID register.

The processor receives the hardware assigned APIC ID (or Initial APIC ID) by
sampling pins A11# and A12# and pins BR0# through BR3# (for the Pentium 4, Intel
Xeon, and P6 family processors) and pins BE0# through BE3# (for the Pentium
processor). The APIC ID latched from these pins is stored in the APIC ID field of the
local APIC ID register (see Figure 10-6), and is used as the Initial APIC ID for the
processor.

For the P6 family and Pentium processors, the local APIC ID field in the local APIC ID
register is 4 bits. Encodings 0H through EH can be used to uniquely identify 15
different processors connected to the APIC bus. For the Pentium 4 and Intel Xeon
processors, the xAPIC specification extends the local APIC ID field to 8 bits. These
can be used to identify up to 255 processors in the system.

10.4.7 Local APIC State
The following sections describe the state of the local APIC and its registers following
a power-up or reset, after the local APIC has been software disabled, following an
INIT reset, and following an INIT-deassert message.

Figure 10-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID

Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

MSR Address: 802H

31 0

x2APIC ID

x2APIC Mode
Vol. 3A 10-13

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
x2APIC will introduce 32-bit ID; see Section 10.12.

10.4.7.1 Local APIC State After Power-Up or Reset
Following a power-up or reset of the processor, the state of local APIC and its regis-
ters are as follows:
• The following registers are reset to all 0s:

• IRR, ISR, TMR, ICR, LDR, and TPR

• Timer initial count and timer current count registers

• Divide configuration register
• The DFR register is reset to all 1s.
• The LVT register is reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The local APIC ID register is set to a unique APIC ID. (Pentium and P6 family

processors only). The Arb ID register is set to the value in the APIC ID register.
• The spurious-interrupt vector register is initialized to 000000FFH. By setting bit 8

to 0, software disables the local APIC.
• If the processor is the only processor in the system or it is the BSP in an MP

system (see Section 8.4.1, “BSP and AP Processors”); the local APIC will respond
normally to INIT and NMI messages, to INIT# signals and to STPCLK# signals. If
the processor is in an MP system and has been designated as an AP; the local
APIC will respond the same as for the BSP. In addition, it will respond to SIPI
messages. For P6 family processors only, an AP will not respond to a STPCLK#
signal.

10.4.7.2 Local APIC State After It Has Been Software Disabled
When the APIC software enable/disable flag in the spurious interrupt vector register
has been explicitly cleared (as opposed to being cleared during a power up or reset),
the local APIC is temporarily disabled (see Section 10.4.3, “Enabling or Disabling the
Local APIC”). The operation and response of a local APIC while in this software-
disabled state is as follows:
• The local APIC will respond normally to INIT, NMI, SMI, and SIPI messages.
• Pending interrupts in the IRR and ISR registers are held and require masking or

handling by the CPU.
• The local APIC can still issue IPIs. It is software’s responsibility to avoid issuing

IPIs through the IPI mechanism and the ICR register if sending interrupts
through this mechanism is not desired.

• The reception or transmission of any IPIs that are in progress when the local APIC
is disabled are completed before the local APIC enters the software-disabled
state.
10-14 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• The mask bits for all the LVT entries are set. Attempts to reset these bits will be
ignored.

• (For Pentium and P6 family processors) The local APIC continues to listen to all
bus messages in order to keep its arbitration ID synchronized with the rest of the
system.

10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
An INIT reset of the processor can be initiated in either of two ways:
• By asserting the processor’s INIT# pin.
• By sending the processor an INIT IPI (an IPI with the delivery mode set to INIT).

Upon receiving an INIT through either of these mechanisms, the processor responds
by beginning the initialization process of the processor core and the local APIC. The
state of the local APIC following an INIT reset is the same as it is after a power-up or
hardware reset, except that the APIC ID and arbitration ID registers are not affected.
This state is also referred to at the “wait-for-SIPI” state (see also: Section 8.4.2, “MP
Initialization Protocol Requirements and Restrictions”).

10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI
Only the Pentium and P6 family processors support the INIT-deassert IPI. An INIT-
disassert IPI has no affect on the state of the APIC, other than to reload the arbitra-
tion ID register with the value in the APIC ID register.

10.4.8 Local APIC Version Register
The local APIC contains a hardwired version register. Software can use this register to
identify the APIC version (see Figure 10-7). In addition, the register specifies the
number of entries in the local vector table (LVT) for a specific implementation.

The fields in the local APIC version register are as follows:
Version The version numbers of the local APIC:

1XH Local APIC. For Pentium 4 and Intel Xeon
processors, 14H is returned.

0XH 82489DX external APIC.

20H - FFH Reserved.
Max LVT Entry Shows the number of LVT entries minus 1. For the Pentium 4 and

Intel Xeon processors (which have 6 LVT entries), the value
returned in the Max LVT field is 5; for the P6 family processors
(which have 5 LVT entries), the value returned is 4; for the
Pentium processor (which has 4 LVT entries), the value returned
is 3.
Vol. 3A 10-15

1

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Suppress EOI-broadcasts
Indicates whether software can inhibit the broadcast of EOI
message by setting bit 12 of the Spurious Interrupt Vector
Register; see Section 10.8.5 and Section 10.9.

10.5 HANDLING LOCAL INTERRUPTS
The following sections describe facilities that are provided in the local APIC for
handling local interrupts. These include: the processor’s LINT0 and LINT1 pins, the
APIC timer, the performance-monitoring counters, the thermal sensor, and the
internal APIC error detector. Local interrupt handling facilities include: the LVT, the
error status register (ESR), the divide configuration register (DCR), and the initial
count and current count registers.

10.5.1 Local Vector Table
The local vector table (LVT) allows software to specify the manner in which the local
interrupts are delivered to the processor core. It consists of the following 32-bit APIC
registers (see Figure 10-8), one for each local interrupt:
• LVT CMCI Register (FEE0 02F0H) — Specifies interrupt delivery when an

overflow condition of corrected machine check error count reaching a threshold
value occurred in a machine check bank supporting CMCI (see Section 15.5.1,
“CMCI Local APIC Interface”).

• LVT Timer Register (FEE0 0320H) — Specifies interrupt delivery when the
APIC timer signals an interrupt (see Section 10.5.4, “APIC Timer”).

• LVT Thermal Monitor Register (FEE0 0330H) — Specifies interrupt delivery
when the thermal sensor generates an interrupt (see Section 14.5.2, “Thermal
Monitor”). This LVT entry is implementation specific, not architectural. If imple-
mented, it will always be at base address FEE0 0330H.

Figure 10-7. Local APIC Version Register

31 0

Reserved

7823 15

Support for EOI-broadcast suppression

16

Reserved

25 24

VersionMax LVT Entry

Value after reset: 00BN 00VVH
V = Version, N = # of LVT entries minus 1,

Address: FEE0 0030H
B = 1 if EOI-broadcast suppression supported
0-16 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• LVT Performance Counter Register (FEE0 0340H) — Specifies interrupt
delivery when a performance counter generates an interrupt on overflow (see
Section 30.9.5.8, “Generating an Interrupt on Overflow”). This LVT entry is
implementation specific, not architectural. If implemented, it is not guaranteed
to be at base address FEE0 0340H.

• LVT LINT0 Register (FEE0 0350H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT0 pin.

• LVT LINT1 Register (FEE0 0360H) — Specifies interrupt delivery when an
interrupt is signaled at the LINT1 pin.

• LVT Error Register (FEE0 0370H) — Specifies interrupt delivery when the
APIC detects an internal error (see Section 10.5.3, “Error Handling”).

The LVT performance counter register and its associated interrupt were introduced in
the P6 processors and are also present in the Pentium 4 and Intel Xeon processors.
The LVT thermal monitor register and its associated interrupt were introduced in the
Pentium 4 and Intel Xeon processors. The LVT CMCI register and its associated inter-
rupt were introduced in the Intel Xeon 5500 processors.

As shown in Figures 10-8, some of these fields and flags are not available (and
reserved) for some entries.

The setup information that can be specified in the registers of the LVT table is as
follows:
Vector Interrupt vector number.
Delivery Mode Specifies the type of interrupt to be sent to the processor. Some

delivery modes will only operate as intended when used in
conjunction with a specific trigger mode. The allowable delivery
modes are as follows:

000 (Fixed) Delivers the interrupt specified in the vector
field.

010 (SMI) Delivers an SMI interrupt to the processor
core through the processor’s local SMI signal
path. When using this delivery mode, the
vector field should be set to 00H for future
compatibility.

100 (NMI) Delivers an NMI interrupt to the processor.
The vector information is ignored.

101 (INIT) Delivers an INIT request to the processor
core, which causes the processor to perform
an INIT. When using this delivery mode, the
vector field should be set to 00H for future
compatibility. Not supported for the LVT
CMCI register, the LVT thermal monitor reg-
ister, or the LVT performance counter regis-
ter.
Vol. 3A 10-17

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-8. Local Vector Table (LVT)

31 07

Vector

Timer Mode
00: One-shot
01: Periodic

1215161718

Delivery Mode
000: Fixed

100: NMI

Mask†

0: Not Masked
1: Masked

Address: FEE0 0350H

Value After Reset: 0001 0000H

Reserved
12131516

Vector

31 07810

Address: FEE0 0360H
Address: FEE0 0370H

Vector

Vector

Error

LINT1

LINT0

Value after Reset: 0001 0000H
Address: FEE0 0320H

111: ExtlNT

All other combinations
are reserved

Interrupt Input
Pin Polarity

Trigger Mode
0: Edge
1: Level

Remote
IRR

Delivery Status
0: Idle
1: Send Pending

Timer

13 11 8

11

14

17

Address: FEE0 0340H

Performance
Vector

Thermal
Vector

Mon. Counters

Sensor

Address: FEE0 0330H
† (Pentium 4 and Intel Xeon processors.) When a

performance monitoring counters interrupt is generated,
the mask bit for its associated LVT entry is set.

010: SMI

101: INIT

19

10: TSC-Deadline

VectorCMCI

Address: FEE0 02F0H
10-18 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
110 Reserved; not supported for any LVT regis-
ter.

111 (ExtINT) Causes the processor to respond to the in-
terrupt as if the interrupt originated in an
externally connected (8259A-compatible)
interrupt controller. A special INTA bus cycle
corresponding to ExtINT, is routed to the ex-
ternal controller. The external controller is
expected to supply the vector information.
The APIC architecture supports only one Ex-
tINT source in a system, usually contained in
the compatibility bridge. Not supported for
the LVT CMCI register, the LVT thermal mon-
itor register, or the LVT performance counter
register.

Delivery Status (Read Only)
Indicates the interrupt delivery status, as follows:

0 (Idle) There is currently no activity for this inter-
rupt source, or the previous interrupt from
this source was delivered to the processor
core and accepted.

1 (Send Pending)
Indicates that an interrupt from this source
has been delivered to the processor core but
has not yet been accepted (see Section
10.5.5, “Local Interrupt Acceptance”).

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0)
active high or (1) active low.

Remote IRR Flag (Read Only)
For fixed mode, level-triggered interrupts; this flag is set when
the local APIC accepts the interrupt for servicing and is reset
when an EOI command is received from the processor. The
meaning of this flag is undefined for edge-triggered interrupts
and other delivery modes.

Trigger Mode Selects the trigger mode for the local LINT0 and LINT1 pins: (0)
edge sensitive and (1) level sensitive. This flag is only used
when the delivery mode is Fixed. When the delivery mode is
NMI, SMI, or INIT, the trigger mode is always edge sensitive.
When the delivery mode is ExtINT, the trigger mode is always
level sensitive. The timer and error interrupts are always treated
as edge sensitive.
If the local APIC is not used in conjunction with an I/O APIC and
fixed delivery mode is selected; the Pentium 4, Intel Xeon, and
Vol. 3A 10-19

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
P6 family processors will always use level-sensitive triggering,
regardless if edge-sensitive triggering is selected.

Mask Interrupt mask: (0) enables reception of the interrupt and (1)
inhibits reception of the interrupt. When the local APIC handles
a performance-monitoring counters interrupt, it automatically
sets the mask flag in the LVT performance counter register. This
flag is set to 1 on reset. It can be cleared only by software.

Timer Mode Bits 18:17 selects the timer mode (see Section 10.5.4):
(00b) one-shot mode using a count-down value,
(01b) periodic mode reloading a count-down value,
(10b) TSC-Deadline mode using absolute target value in
IA32_TSC_DEADLINE MSR (see Section 10.5.4.1),
(11b) is reserved.

10.5.2 Valid Interrupt Vectors
The Intel 64 and IA-32 architectures define 256 vector numbers, ranging from 0
through 255 (see Section 6.2, “Exception and Interrupt Vectors”). Local and I/O
APICs support 240 of these vectors (in the range of 16 to 255) as valid interrupts.

When an interrupt vector in the range of 0 to 15 is sent or received through the local
APIC, the APIC indicates an illegal vector in its Error Status Register (see Section
10.5.3, “Error Handling”). The Intel 64 and IA-32 architectures reserve vectors 16
through 31 for predefined interrupts, exceptions, and Intel-reserved encodings (see
Table 6-1). However, the local APIC does not treat vectors in this range as illegal.

When an illegal vector value (0 to 15) is written to an LVT entry and the delivery
mode is Fixed (bits 8-11 equal 0), the APIC may signal an illegal vector error, without
regard to whether the mask bit is set or whether an interrupt is actually seen on the
input.

10.5.3 Error Handling
The local APIC records errors detected during interrupt handling in the error status
register (ESR). The format of the ESR is given in Figure 10-9; it contains the
following flags:
• Bit 0: Send Checksum Error.

Set when the local APIC detects a checksum error for a message that it sent on
the APIC bus. Used only on P6 family and Pentium processors.

• Bit 1: Receive Checksum Error.
Set when the local APIC detects a checksum error for a message that it received
on the APIC bus. Used only on P6 family and Pentium processors.
10-20 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• Bit 2: Send Accept Error.
Set when the local APIC detects that a message it sent was not accepted by any
APIC on the APIC bus. Used only on P6 family and Pentium processors.

• Bit 3: Receive Accept Error.
Set when the local APIC detects that the message it received was not accepted by
any APIC on the APIC bus, including itself. Used only on P6 family and Pentium
processors.

• Bit 4: Redirectable IPI.
Set when the local APIC detects an attempt to send an IPI with the lowest-priority
delivery mode and the local APIC does not support the sending of such IPIs. This
bit is used on some Intel Core and Intel Xeon processors. As noted in Section
10.6.2, the ability of a processor to send a lowest-priority IPI is model-specific
and should be avoided.

• Bit 5: Send Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in the
message that it is sending. This occurs as the result of a write to the ICR (in both
xAPIC and x2APIC modes) or to SELF IPI register (x2APIC mode only) with an
illegal vector.
If the local APIC does not support the sending of lowest-priority IPIs and software
writes the ICR to send a lowest-priority IPI with an illegal vector, the local APIC

Figure 10-9. Error Status Register (ESR)

Address: FEE0 0280H
Value after reset: 0H

31 0

Reserved

78 123456

Illegal Register Address1

Received Illegal Vector
Send Illegal Vector
Redirectable IPI2

Receive Accept Error3

Send Accept Error3

Receive Checksum Error3

Send Checksum Error3

2. Used only by some Intel Core and Intel Xeon processors;
reserved on other processors.

1. Used only by Intel Core, Pentium 4, Intel Xeon, and P6 family
processors; reserved on the Pentium processor.

NOTES:

3. Used only by the P6 family and Pentium processors;
reserved on Intel Core, Pentium 4 and Intel Xeon processors.
Vol. 3A 10-21

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
sets only the “redirectible IPI” error bit. The interrupt is not processed and hence
the “Send Illegal Vector” bit is not set in the ESR.

• Bit 6: Receive Illegal Vector.
Set when the local APIC detects an illegal vector (one in the range 0 to 15) in an
interrupt message it receives or in an interrupt generated locally from the local
vector table or via a self IPI. Such interrupts are not be delivered to the
processor; the local APIC will never set an IRR bit in the range 0 to 15.

• Bit 7: Illegal Register Address
Set when the local APIC is in xAPIC mode and software attempts to access a
register that is reserved in the processor's local-APIC register-address space; see
Table 10-1. (The local-APIC register-address space comprises the 4 KBytes at the
physical address specified in the IA32_APIC_BASE MSR.) Used only on Intel
Core, Intel Atom™, Pentium 4, Intel Xeon, and P6 family processors.
In x2APIC mode, software accesses the APIC registers using the RDMSR and
WRMSR instructions. Use of one of these instructions to access a reserved
register cause a general-protection exception (see Section 10.12.1.3). They do
not set the “Illegal Register Access” bit in the ESR.

The ESR is a write/read register. Before attempt to read from the ESR, software
should first write to it. (The value written does not affect the values read subse-
quently; only zero may be written in x2APIC mode.) This write clears any previously
logged errors and updates the ESR with any errors detected since the last write to the
ESR.

The LVT Error Register (see Section 10.5.1) allows specification of the vector of the
interrupt to be delivered to the processor core when APIC error is detected. The
register also provides a means of masking an APIC-error interrupt. This masking only
prevents delivery of APIC-error interrupts; the APIC continues to record errors in the
ESR.

10.5.4 APIC Timer
The local APIC unit contains a 32-bit programmable timer that is available to soft-
ware to time events or operations. This timer is set up by programming four regis-
ters: the divide configuration register (see Figure 10-10), the initial-count and
current-count registers (see Figure 10-11), and the LVT timer register (see
Figure 10-8).

If CPUID.06H:EAX.ARAT[bit 2] = 1, the processor’s APIC timer runs at a constant
rate regardless of P-state transitions and it continues to run at the same rate in deep
C-states.

If CPUID.06H:EAX.ARAT[bit 2] = 0 or if CPUID 06H is not supported, the APIC timer
may temporarily stop while the processor is in deep C-states or during transitions
caused by Enhanced Intel SpeedStep® Technology.

The time base for the timer is derived from the processor’s bus clock, divided by the
value specified in the divide configuration register.
10-22 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The timer can be configured through the timer LVT entry for one-shot or periodic
operation. In one-shot mode, the timer is started by programming its initial-count
register. The initial count value is then copied into the current-count register and
count-down begins. After the timer reaches zero, an timer interrupt is generated and
the timer remains at its 0 value until reprogrammed.

In periodic mode, the current-count register is automatically reloaded from the
initial-count register when the count reaches 0 and a timer interrupt is generated,
and the count-down is repeated. If during the count-down process the initial-count
register is set, counting will restart, using the new initial-count value. The initial-
count register is a read-write register; the current-count register is read only.

A write of 0 to the initial-count register effectively stops the local APIC timer, in both
one-shot and periodic mode.

The LVT timer register determines the vector number that is delivered to the
processor with the timer interrupt that is generated when the timer count reaches
zero. The mask flag in the LVT timer register can be used to mask the timer interrupt.

Figure 10-10. Divide Configuration Register

Figure 10-11. Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved

1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H
Vol. 3A 10-23

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.5.4.1 TSC-Deadline Mode
The mode of operation of the local-APIC timer is determined by the LVT Timer
Register. Specifically, if CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, the mode is
determined by bit 17 of the register; if CPUID.01H:ECX.TSC_Deadline[bit 24] = 1,
the mode is determined by bits 18:17. See Figure 10-8. (If
CPUID.01H:ECX.TSC_Deadline[bit 24] = 0, bit 18 of the register is reserved.) A write
to the LVT Timer Register that changes the timer mode disarms the local APIC timer.
The supported timer modes are given in Table 10-2. The three modes of the local
APIC timer are mutually exclusive.

The TSC-deadline mode allows software to use local APIC timer to single interrupt at
an absolute time. In TSC-deadline mode, writes to the initial-count register are
ignored; and current-count register always reads 0. Instead, timer behavior is
controlled using the IA32_TSC_DEADLINE MSR.

The IA32_TSC_DEADLINE MSR (MSR address 6E0H) is a per-logical processor MSR
that specifies the time at which a timer interrupt should occur. Writing a non-zero 64-
bit value into IA32_TSC_DEADLINE arms the timer. An interrupt is generated when
the logical processor’s time-stamp counter equals or exceeds the target value in the
IA32_TSC_DEADLINE MSR.2 When the timer generates an interrupt, it disarms itself
and clears the IA32_TSC_DEADLINE MSR. Thus, each write to the
IA32_TSC_DEADLINE MSR generates at most one timer interrupt.

In TSC-deadline mode, writing 0 to the IA32_TSC_DEADLINE MSR disarms the local-
APIC timer. Transitioning between TSC-deadline mode and other timer modes also
disarms the timer.

The hardware reset value of the IA32_TSC_DEADLINE MSR is 0. In other timer
modes (LVT bit 18 = 0), the IA32_TSC_DEADLINE MSR reads zero and writes are
ignored.

Table 10-2. Local APIC Timer Modes

LVT Bits [18:17] Timer Mode

00b One-shot mode, program count-down value in an initial-count
register. See Section 10.5.4

01b Periodic mode, program interval value in an initial-count register. See
Section 10.5.4

10b TSC-Deadline mode, program target value in IA32_TSC_DEADLINE
MSR.

11b Reserved

2. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter;
see Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
10-24 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Software can configure the TSC-deadline timer to deliver a single interrupt using the
following algorithm:

1. Detect support for TSC-deadline mode by verifying CPUID.1:ECX.24 = 1.

2. Select the TSC-deadline mode by programming bits 18:17 of the LVT Timer
register with 10b.

3. Program the IA32_TSC_DEADLINE MSR with the target TSC value at which the
timer interrupt is desired. This causes the processor to arm the timer.

4. The processor generates a timer interrupt when the value of time-stamp counter
is greater than or equal to that of IA32_TSC_DEADLINE. It then disarms the
timer and clear the IA32_TSC_DEADLINE MSR. (Both the time-stamp counter
and the IA32_TSC_DEADLINE MSR are 64-bit unsigned integers.)

5. Software can re-arm the timer by repeating step 3.

The following are usage guidelines for TSC-deadline mode:
• Writes to the IA32_TSC_DEADLINE MSR are not serialized. Therefore, system

software should not use WRMSR to the IA32_TSC_DEADLINE MSR as a serializing
instruction. Read and write accesses to the IA32_TSC_DEADLINE and other MSR
registers will occur in program order.

• Software can disarm the timer at any time by writing 0 to the
IA32_TSC_DEADLINE MSR.

• If timer is armed, software can change the deadline (forward or backward) by
writing a new value to the IA32_TSC_DEADLINE MSR.

• If software disarms the timer or postpones the deadline, race conditions may
result in the delivery of a spurious timer interrupt. Software is expected to detect
such spurious interrupts by checking the current value of the time-stamp counter
to confirm that the interrupt was desired.3

• In xAPIC mode (in which the local-APIC registers are memory-mapped), software
must serialize between the memory-mapped write to the LVT entry and the
WRMSR to IA32_TSC_DEADLINE. In x2APIC mode, no serialization is required
between the two writes (by WRMSR) to the LVT and IA32_TSC_DEADLINE MSRs.

The following is a sample algorithm for serializing writes in xAPIC mode:

1. Memory-mapped write to LVT Timer Register, setting bits 18:17 to 10b.

2. WRMSR to the IA32_TSC_DEADLINE MSR a value much larger than current time-
stamp counter.

3. If RDMSR of the IA32_TSC_DEADLINE MSR returns zero, go to step 2.

3. If the logical processor is in VMX non-root operation, a read of the time-stamp counter (using
either RDMSR, RDTSC, or RDTSCP) may not return the actual value of the time-stamp counter;
see Chapter 22 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B. It is the responsibility of software operating in VMX root operation to coordinate the virtual-
ization of the time-stamp counter and the IA32_TSC_DEADLINE MSR.
Vol. 3A 10-25

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
4. WRMSR to the IA32_TSC_DEADLINE MSR the desired deadline.

10.5.5 Local Interrupt Acceptance
When a local interrupt is sent to the processor core, it is subject to the acceptance
criteria specified in the interrupt acceptance flow chart in Figure 10-17. If the inter-
rupt is accepted, it is logged into the IRR register and handled by the processor
according to its priority (see Section 10.8.4, “Interrupt Acceptance for Fixed Inter-
rupts”). If the interrupt is not accepted, it is sent back to the local APIC and retried.

10.6 ISSUING INTERPROCESSOR INTERRUPTS
The following sections describe the local APIC facilities that are provided for issuing
interprocessor interrupts (IPIs) from software. The primary local APIC facility for
issuing IPIs is the interrupt command register (ICR). The ICR can be used for the
following functions:
• To send an interrupt to another processor.
• To allow a processor to forward an interrupt that it received but did not service to

another processor for servicing.
• To direct the processor to interrupt itself (perform a self interrupt).
• To deliver special IPIs, such as the start-up IPI (SIPI) message, to other

processors.

Interrupts generated with this facility are delivered to the other processors in the
system through the system bus (for Pentium 4 and Intel Xeon processors) or the
APIC bus (for P6 family and Pentium processors). The ability for a processor to send
a lowest priority IPI is model specific and should be avoided by BIOS and operating
system software.

10.6.1 Interrupt Command Register (ICR)
The interrupt command register (ICR) is a 64-bit4 local APIC register (see
Figure 10-12) that allows software running on the processor to specify and send
interprocessor interrupts (IPIs) to other processors in the system.

To send an IPI, software must set up the ICR to indicate the type of IPI message to
be sent and the destination processor or processors. (All fields of the ICR are read-
write by software with the exception of the delivery status field, which is read-only.)
The act of writing to the low doubleword of the ICR causes the IPI to be sent.

4. In XAPIC mode the ICR is addressed as two 32-bit registers, ICR_LOW (FFE0 0300H) and
ICR_HIGH (FFE0 0310H).
10-26 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The ICR consists of the following fields.
Vector The vector number of the interrupt being sent.
Delivery Mode Specifies the type of IPI to be sent. This field is also know as the

IPI message type field.

000 (Fixed) Delivers the interrupt specified in the vector
field to the target processor or processors.

001 (Lowest Priority)
Same as fixed mode, except that the inter-
rupt is delivered to the processor executing
at the lowest priority among the set of pro-
cessors specified in the destination field. The

Figure 10-12. Interrupt Command Register (ICR)

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Lowest Priority1

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

ReservedDestination Field

56

Address: FEE0 0300H (0 - 31)

Value after Reset: 0H

Reserved

20

55

FEE0 0310H (32 - 63)

 NOTE:
1. The ability of a processor to send Lowest Priority IPI is model specific.
Vol. 3A 10-27

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
ability for a processor to send a lowest prior-
ity IPI is model specific and should be avoid-
ed by BIOS and operating system software.

010 (SMI) Delivers an SMI interrupt to the target pro-
cessor or processors. The vector field must
be programmed to 00H for future compati-
bility.

011 (Reserved)

100 (NMI) Delivers an NMI interrupt to the target pro-
cessor or processors. The vector information
is ignored.

101 (INIT) Delivers an INIT request to the target pro-
cessor or processors, which causes them to
perform an INIT. As a result of this IPI mes-
sage, all the target processors perform an
INIT. The vector field must be programmed
to 00H for future compatibility.

101 (INIT Level De-assert)
(Not supported in the Pentium 4 and Intel
Xeon processors.) Sends a synchronization
message to all the local APICs in the system
to set their arbitration IDs (stored in their
Arb ID registers) to the values of their APIC
IDs (see Section 10.7, “System and APIC
Bus Arbitration”). For this delivery mode,
the level flag must be set to 0 and trigger
mode flag to 1. This IPI is sent to all proces-
sors, regardless of the value in the destina-
tion field or the destination shorthand field;
however, software should specify the “all in-
cluding self” shorthand.

110 (Start-Up)
Sends a special “start-up” IPI (called a SIPI)
to the target processor or processors. The
vector typically points to a start-up routine
that is part of the BIOS boot-strap code (see
Section 8.4, “Multiple-Processor (MP) Initial-
ization”). IPIs sent with this delivery mode
are not automatically retried if the source
APIC is unable to deliver it. It is up to the
software to determine if the SIPI was not
successfully delivered and to reissue the
SIPI if necessary.
10-28 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Destination Mode Selects either physical (0) or logical (1) destination mode (see
Section 10.6.2, “Determining IPI Destination”).

Delivery Status (Read Only)
Indicates the IPI delivery status, as follows:

0 (Idle) Indicates that this local APIC has completed
sending any previous IPIs.

1 (Send Pending)
Indicates that this local APIC has not com-
pleted sending the last IPI.

Level For the INIT level de-assert delivery mode this flag must be set
to 0; for all other delivery modes it must be set to 1. (This flag
has no meaning in Pentium 4 and Intel Xeon processors, and will
always be issued as a 1.)

Trigger Mode Selects the trigger mode when using the INIT level de-assert
delivery mode: edge (0) or level (1). It is ignored for all other
delivery modes. (This flag has no meaning in Pentium 4 and
Intel Xeon processors, and will always be issued as a 0.)

Destination Shorthand
Indicates whether a shorthand notation is used to specify the
destination of the interrupt and, if so, which shorthand is used.
Destination shorthands are used in place of the 8-bit destination
field, and can be sent by software using a single write to the low
doubleword of the ICR. Shorthands are defined for the following
cases: software self interrupt, IPIs to all processors in the
system including the sender, IPIs to all processors in the system
excluding the sender.

00: (No Shorthand)
The destination is specified in the destination
field.

01: (Self) The issuing APIC is the one and only destina-
tion of the IPI. This destination shorthand al-
lows software to interrupt the processor on
which it is executing. An APIC implementa-
tion is free to deliver the self-interrupt mes-
sage internally or to issue the message to
the bus and “snoop” it as with any other IPI
message.

10: (All Including Self)
The IPI is sent to all processors in the system
including the processor sending the IPI. The
APIC will broadcast an IPI message with the
destination field set to FH for Pentium and P6
family processors and to FFH for Pentium 4
and Intel Xeon processors.
Vol. 3A 10-29

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
11: (All Excluding Self)
The IPI is sent to all processors in a system
with the exception of the processor sending
the IPI. The APIC broadcasts a message with
the physical destination mode and destina-
tion field set to 0xFH for Pentium and P6
family processors and to 0xFFH for Pentium
4 and Intel Xeon processors. Support for this
destination shorthand in conjunction with
the lowest-priority delivery mode is model
specific. For Pentium 4 and Intel Xeon pro-
cessors, when this shorthand is used togeth-
er with lowest priority delivery mode, the IPI
may be redirected back to the issuing pro-
cessor.

Destination Specifies the target processor or processors. This field is only
used when the destination shorthand field is set to 00B. If the
destination mode is set to physical, then bits 56 through 59
contain the APIC ID of the target processor for Pentium and P6
family processors and bits 56 through 63 contain the APIC ID of
the target processor the for Pentium 4 and Intel Xeon proces-
sors. If the destination mode is set to logical, the interpretation
of the 8-bit destination field depends on the settings of the DFR
and LDR registers of the local APICs in all the processors in the
system (see Section 10.6.2, “Determining IPI Destination”).

Not all combinations of options for the ICR are valid. Table 10-3 shows the valid
combinations for the fields in the ICR for the Pentium 4 and Intel Xeon processors;
Table 10-4 shows the valid combinations for the fields in the ICR for the P6 family
processors. Also note that the lower half of the ICR may not be preserved over tran-
sitions to the deepest C-States.

ICR operation in x2APIC mode is discussed in Section 10.12.9.

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode

Destination
Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Invalid2 Level All Modes Physical or Logical

Self Valid Edge Fixed X3

Self Invalid2 Level Fixed X

Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Including Self Valid Edge Fixed X
10-30 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
All Including Self Invalid2 Level Fixed X

All Including Self Invalid X Lowest Priority, NMI, INIT, SMI, Start-
Up

X

All Excluding
Self

Valid Edge Fixed, Lowest Priority1,4, NMI, INIT,
SMI, Start-Up

X

All Excluding
Self

Invalid2 Level FIxed, Lowest Priority4, NMI, INIT,
SMI, Start-Up

X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. For these interrupts, if the trigger mode bit is 1 (Level), the local xAPIC will override the bit set-

ting and issue the interrupt as an edge triggered interrupt.
3. X means the setting is ignored.
4. When using the “lowest priority” delivery mode and the “all excluding self” destination, the IPI

can be redirected back to the issuing APIC, which is essentially the same as the “all including
self” destination mode.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode

No Shorthand Valid Edge All Modes1 Physical or Logical

No Shorthand Valid2 Level Fixed, Lowest Priority1, NMI Physical or Logical

No Shorthand Valid3 Level INIT Physical or Logical

Self Valid Edge Fixed X4

Self 1 Level Fixed X

Self Invalid5 X Lowest Priority, NMI, INIT,
SMI, Start-Up

X

All including Self Valid Edge Fixed X

All including Self Valid2 Level Fixed X

All including Self Invalid5 X Lowest Priority, NMI, INIT,
SMI, Start-Up

X

All excluding Self Valid Edge All Modes1 X

All excluding Self Valid2 Level Fixed, Lowest Priority1, NMI X

All excluding Self Invalid5 Level SMI, Start-Up X

Table 10-3 Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local xAPIC Interrupt Command Register (Contd.)

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode

Destination
Mode
Vol. 3A 10-31

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.6.2 Determining IPI Destination
The destination of an IPI can be one, all, or a subset (group) of the processors on the
system bus. The sender of the IPI specifies the destination of an IPI with the
following APIC registers and fields within the registers:
• ICR Register — The following fields in the ICR register are used to specify the

destination of an IPI:

— Destination Mode — Selects one of two destination modes (physical or
logical).

— Destination Field — In physical destination mode, used to specify the APIC
ID of the destination processor; in logical destination mode, used to specify a
message destination address (MDA) that can be used to select specific
processors in clusters.

— Destination Shorthand — A quick method of specifying all processors, all
excluding self, or self as the destination.

— Delivery mode, Lowest Priority — Architecturally specifies that a lowest-
priority arbitration mechanism be used to select a destination processor from
a specified group of processors. The ability of a processor to send a lowest
priority IPI is model specific and should be avoided by BIOS and operating
system software.

• Local destination register (LDR) — Used in conjunction with the logical
destination mode and MDAs to select the destination processors.

• Destination format register (DFR) — Used in conjunction with the logical
destination mode and MDAs to select the destination processors.

All excluding Self Valid3 Level INIT X

X Invalid5 Level SMI, Start-Up X

NOTES:
1. The ability of a processor to send a lowest priority IPI is model specific.
2. Treated as edge triggered if level bit is set to 1, otherwise ignored.
3. Treated as edge triggered when Level bit is set to 1; treated as “INIT Level Deassert” message

when level bit is set to 0 (deassert). Only INIT level deassert messages are allowed to have the
level bit set to 0. For all other messages the level bit must be set to 1.

4. X means the setting is ignored.
5. The behavior of the APIC is undefined.

Table 10-4 Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Register (Contd.)

Destination
Shorthand

Valid/
Invalid

Trigger
Mode Delivery Mode Destination Mode
10-32 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
How the ICR, LDR, and DFR are used to select an IPI destination depends on the
destination mode used: physical, logical, broadcast/self, or lowest-priority delivery
mode. These destination modes are described in the following sections.

Determination of IPI destinations in x2APIC mode is discussed in Section 10.12.10.

10.6.2.1 Physical Destination Mode
In physical destination mode, the destination processor is specified by its local APIC
ID (see Section 10.4.6, “Local APIC ID”). For Pentium 4 and Intel Xeon processors,
either a single destination (local APIC IDs 00H through FEH) or a broadcast to all
APICs (the APIC ID is FFH) may be specified in physical destination mode.

A broadcast IPI (bits 28-31 of the MDA are 1's) or I/O subsystem initiated interrupt
with lowest priority delivery mode is not supported in physical destination mode and
must not be configured by software. Also, for any non-broadcast IPI or I/O
subsystem initiated interrupt with lowest priority delivery mode, software must
ensure that APICs defined in the interrupt address are present and enabled to receive
interrupts.

For the P6 family and Pentium processors, a single destination is specified in physical
destination mode with a local APIC ID of 0H through 0EH, allowing up to 15 local
APICs to be addressed on the APIC bus. A broadcast to all local APICs is specified with
0FH.

NOTE
The number of local APICs that can be addressed on the system bus
may be restricted by hardware.

10.6.2.2 Logical Destination Mode
In logical destination mode, IPI destination is specified using an 8-bit message desti-
nation address (MDA), which is entered in the destination field of the ICR. Upon
receiving an IPI message that was sent using logical destination mode, a local APIC
compares the MDA in the message with the values in its LDR and DFR to determine if
it should accept and handle the IPI. For both configurations of logical destination
mode, when combined with lowest priority delivery mode, software is responsible for
ensuring that all of the local APICs included in or addressed by the IPI or I/O
subsystem interrupt are present and enabled to receive the interrupt.

Figure 10-13 shows the layout of the logical destination register (LDR). The 8-bit
logical APIC ID field in this register is used to create an identifier that can be
compared with the MDA.

NOTE
The logical APIC ID should not be confused with the local APIC ID that
is contained in the local APIC ID register.
Vol. 3A 10-33

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Figure 10-14 shows the layout of the destination format register (DFR). The 4-bit
model field in this register selects one of two models (flat or cluster) that can be used
to interpret the MDA when using logical destination mode.

The interpretation of MDA for the two models is described in the following para-
graphs.

1. Flat Model — This model is selected by programming DFR bits 28 through 31 to
1111. Here, a unique logical APIC ID can be established for up to 8 local APICs by
setting a different bit in the logical APIC ID field of the LDR for each local APIC. A
group of local APICs can then be selected by setting one or more bits in the MDA.
Each local APIC performs a bit-wise AND of the MDA and its logical APIC ID. If a
true condition is detected, the local APIC accepts the IPI message. A broadcast to
all APICs is achieved by setting the MDA to 1s.

2. Cluster Model — This model is selected by programming DFR bits 28 through 31
to 0000. This model supports two basic destination schemes: flat cluster and
hierarchical cluster.
The flat cluster destination model is only supported for P6 family and Pentium
processors. Using this model, all APICs are assumed to be connected through the
APIC bus. Bits 60 through 63 of the MDA contains the encoded address of the
destination cluster and bits 56 through 59 identify up to four local APICs within
the cluster (each bit is assigned to one local APIC in the cluster, as in the flat
connection model). To identify one or more local APICs, bits 60 through 63 of the

Figure 10-13. Logical Destination Register (LDR)

Figure 10-14. Destination Format Register (DFR)

31 02324

ReservedLogical APIC ID

Address: 0FEE0 00D0H
Value after reset: 0000 0000H

31 0

Model

28

Reserved (All 1s)

Address: 0FEE0 00E0H
Value after reset: FFFF FFFFH

Flat model: 1111B
Cluster model: 0000B
10-34 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
MDA are compared with bits 28 through 31 of the LDR to determine if a local APIC
is part of the cluster. Bits 56 through 59 of the MDA are compared with Bits 24
through 27 of the LDR to identify a local APICs within the cluster.
Sets of processors within a cluster can be specified by writing the target cluster
address in bits 60 through 63 of the MDA and setting selected bits in bits 56
through 59 of the MDA, corresponding to the chosen members of the cluster. In
this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
local APICs can be specified in the message. For the P6 and Pentium processor’s
local APICs, however, the APIC arbitration ID supports only 15 APIC agents.
Therefore, the total number of processors and their local APICs supported in
this mode is limited to 15. Broadcast to all local APICs is achieved by setting all
destination bits to one. This guarantees a match on all clusters and selects all
APICs in each cluster. A broadcast IPI or I/O subsystem broadcast interrupt with
lowest priority delivery mode is not supported in cluster mode and must not be
configured by software.
The hierarchical cluster destination model can be used with Pentium 4, Intel
Xeon, P6 family, or Pentium processors. With this model, a hierarchical network
can be created by connecting different flat clusters via independent system or
APIC buses. This scheme requires a cluster manager within each cluster, which is
responsible for handling message passing between system or APIC buses. One
cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents,
can form a network of up to 60 APIC agents. Note that hierarchical APIC networks
requires a special cluster manager device, which is not part of the local or the I/O
APIC units.

NOTES
All processors that have their APIC software enabled (using the
spurious vector enable/disable bit) must have their DFRs (Desti-
nation Format Registers) programmed identically.
The default mode for DFR is flat mode. If you are using cluster mode,
DFRs must be programmed before the APIC is software enabled.
Since some chipsets do not accurately track a system view of the
logical mode, program DFRs as soon as possible after starting the
processor.

10.6.2.3 Broadcast/Self Delivery Mode
The destination shorthand field of the ICR allows the delivery mode to be by-passed
in favor of broadcasting the IPI to all the processors on the system bus and/or back
to itself (see Section 10.6.1, “Interrupt Command Register (ICR)”). Three destina-
tion shorthands are supported: self, all excluding self, and all including self. The
destination mode is ignored when a destination shorthand is used.
Vol. 3A 10-35

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.6.2.4 Lowest Priority Delivery Mode
With lowest priority delivery mode, the ICR is programmed to send an IPI to several
processors on the system bus, using the logical or shorthand destination mechanism
for selecting the processor. The selected processors then arbitrate with one another
over the system bus or the APIC bus, with the lowest-priority processor accepting the
IPI.

For systems based on the Intel Xeon processor, the chipset bus controller accepts
messages from the I/O APIC agents in the system and directs interrupts to the
processors on the system bus. When using the lowest priority delivery mode, the
chipset chooses a target processor to receive the interrupt out of the set of possible
targets. The Pentium 4 processor provides a special bus cycle on the system bus that
informs the chipset of the current task priority for each logical processor in the
system. The chipset saves this information and uses it to choose the lowest priority
processor when an interrupt is received.

For systems based on P6 family processors, the processor priority used in lowest-
priority arbitration is contained in the arbitration priority register (APR) in each local
APIC. Figure 10-15 shows the layout of the APR.

The APR value is computed as follows:

IF (TPR[7:4] ≥ IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN

APR[7:0] ← TPR[7:0]
ELSE

APR[7:4] ← max(TPR[7:4] AND ISRV[7:4], IRRV[7:4])
APR[3:0] ← 0.

Here, the TPR value is the task priority value in the TPR (see Figure 10-18), the IRRV
value is the vector number for the highest priority bit that is set in the IRR (see
Figure 10-20) or 00H (if no IRR bit is set), and the ISRV value is the vector number
for the highest priority bit that is set in the ISR (see Figure 10-20). Following arbitra-
tion among the destination processors, the processor with the lowest value in its APR
handles the IPI and the other processors ignore it.

Figure 10-15. Arbitration Priority Register (APR)

31 078

Reserved

Address: FEE0 0090H
Value after reset: 0H

Arbitration Priority Sub-Class

Arbitration Priority

4 3
10-36 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
(P6 family and Pentium processors.) For these processors, if a focus processor
exists, it may accept the interrupt, regardless of its priority. A processor is said to be
the focus of an interrupt if it is currently servicing that interrupt or if it has a pending
request for that interrupt. For Intel Xeon processors, the concept of a focus processor
is not supported.

In operating systems that use the lowest priority delivery mode but do not update
the TPR, the TPR information saved in the chipset will potentially cause the interrupt
to be always delivered to the same processor from the logical set. This behavior is
functionally backward compatible with the P6 family processor but may result in
unexpected performance implications.

10.6.3 IPI Delivery and Acceptance
When the low double-word of the ICR is written to, the local APIC creates an IPI
message from the information contained in the ICR and sends the message out on
the system bus (Pentium 4 and Intel Xeon processors) or the APIC bus (P6 family and
Pentium processors). The manner in which these IPIs are handled after being issues
in described in Section 10.8, “Handling Interrupts.”

10.7 SYSTEM AND APIC BUS ARBITRATION
When several local APICs and the I/O APIC are sending IPI and interrupt messages
on the system bus (or APIC bus), the order in which the messages are sent and
handled is determined through bus arbitration.

For the Pentium 4 and Intel Xeon processors, the local and I/O APICs use the arbitra-
tion mechanism defined for the system bus to determine the order in which IPIs are
handled. This mechanism is non-architectural and cannot be controlled by software.

For the P6 family and Pentium processors, the local and I/O APICs use an APIC-based
arbitration mechanism to determine the order in which IPIs are handled. Here, each
local APIC is given an arbitration priority of from 0 to 15, which the I/O APIC uses
during arbitration to determine which local APIC should be given access to the APIC
bus. The local APIC with the highest arbitration priority always wins bus access. Upon
completion of an arbitration round, the winning local APIC lowers its arbitration
priority to 0 and the losing local APICs each raise theirs by 1.

The current arbitration priority for a local APIC is stored in a 4-bit, software-trans-
parent arbitration ID (Arb ID) register. During reset, this register is initialized to the
APIC ID number (stored in the local APIC ID register). The INIT level-deassert IPI,
which is issued with and ICR command, can be used to resynchronize the arbitration
priorities of the local APICs by resetting Arb ID register of each agent to its current
APIC ID value. (The Pentium 4 and Intel Xeon processors do not implement the Arb
ID register.)

Section 10.10, “APIC Bus Message Passing Mechanism and Protocol (P6 Family,
Pentium Processors),” describes the APIC bus arbitration protocols and bus message
Vol. 3A 10-37

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
formats, while Section 10.6.1, “Interrupt Command Register (ICR),” describes the
INIT level de-assert IPI message.

Note that except for the SIPI IPI (see Section 10.6.1, “Interrupt Command Register
(ICR)”), all bus messages that fail to be delivered to their specified destination or
destinations are automatically retried. Software should avoid situations in which IPIs
are sent to disabled or nonexistent local APICs, causing the messages to be resent
repeatedly.

10.8 HANDLING INTERRUPTS
When a local APIC receives an interrupt from a local source, an interrupt message
from an I/O APIC, or and IPI, the manner in which it handles the message depends
on processor implementation, as described in the following sections.

10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon
Processors

With the Pentium 4 and Intel Xeon processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows:

1. It determines if it is the specified destination or not (see Figure 10-16). If it is the
specified destination, it accepts the message; if it is not, it discards the message.

2. If the local APIC determines that it is the designated destination for the interrupt
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or SIPI, the interrupt is
sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt
but the interrupt request is not one of the interrupts given in step 2, the local
APIC sets the appropriate bit in the IRR.

4. When interrupts are pending in the IRR and ISR register, the local APIC
dispatches them to the processor one at a time, based on their priority and the

Figure 10-16. Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and
Intel Xeon Processors)

Wait to Receive
Bus Message

Belong to
Destination?Discard

Message

No Accept
Message

Yes
10-38 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
current task and processor priorities in the TPR and PPR (see Section 10.8.3.1,
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling,
the completion of the handler routine is indicated with an instruction in the
instruction handler code that writes to the end-of-interrupt (EOI) register in the
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The
act of writing to the EOI register causes the local APIC to delete the interrupt
from its ISR queue and (for level-triggered interrupts) send a message on the
bus indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT,
ExtINT, or SIPI.)

10.8.2 Interrupt Handling with the P6 Family and Pentium
Processors

With the P6 family and Pentium processors, the local APIC handles the local inter-
rupts, interrupt messages, and IPIs it receives as follows (see Figure 10-17).
Vol. 3A 10-39

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
1. (IPIs only) It examines the IPI message to determines if it is the specified
destination for the IPI as described in Section 10.6.2, “Determining IPI Desti-
nation.” If it is the specified destination, it continues its acceptance procedure; if
it is not the destination, it discards the IPI message. When the message specifies
lowest-priority delivery mode, the local APIC will arbitrate with the other
processors that were designated on recipients of the IPI message (see Section
10.6.2.4, “Lowest Priority Delivery Mode”).

2. If the local APIC determines that it is the designated destination for the interrupt
and if the interrupt request is an NMI, SMI, INIT, ExtINT, or INIT-deassert

Figure 10-17. Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium Processors)

Wait to Receive
Bus Message

Belong
to

Destination?

Is it
NMI/SMI/INIT

/ExtINT?

Delivery

Am I
Focus?

Other
Focus?

Is Interrupt Slot
Available?

Is Status a
Retry?

Discard
Message

Accept
Message

Yes

Yes

Accept
Message

Is Interrupt
Slot Avail-

able?
Arbitrate

Yes

Am I Winner? Accept
Message

YesNo

Set Status
to Retry

No

No

Yes

Set Status
to Retry

No

Discard
Message

No

Accept
Message

Yes

Lowes
PriorityFixed

Yes No

No

Yes

No

P6 Family
Processor Specific

10-40 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
interrupt, or one of the MP protocol IPI messages (BIPI, FIPI, and SIPI), the
interrupt is sent directly to the processor core for handling.

3. If the local APIC determines that it is the designated destination for the interrupt
but the interrupt request is not one of the interrupts given in step 2, the local
APIC looks for an open slot in one of its two pending interrupt queues contained
in the IRR and ISR registers (see Figure 10-20). If a slot is available (see Section
10.8.4, “Interrupt Acceptance for Fixed Interrupts”), places the interrupt in the
slot. If a slot is not available, it rejects the interrupt request and sends it back to
the sender with a retry message.

4. When interrupts are pending in the IRR and ISR register, the local APIC
dispatches them to the processor one at a time, based on their priority and the
current task and processor priorities in the TPR and PPR (see Section 10.8.3.1,
“Task and Processor Priorities”).

5. When a fixed interrupt has been dispatched to the processor core for handling,
the completion of the handler routine is indicated with an instruction in the
instruction handler code that writes to the end-of-interrupt (EOI) register in the
local APIC (see Section 10.8.5, “Signaling Interrupt Servicing Completion”). The
act of writing to the EOI register causes the local APIC to delete the interrupt
from its queue and (for level-triggered interrupts) send a message on the bus
indicating that the interrupt handling has been completed. (A write to the EOI
register must not be included in the handler routine for an NMI, SMI, INIT,
ExtINT, or SIPI.)

The following sections describe the acceptance of interrupts and their handling by the
local APIC and processor in greater detail.

10.8.3 Interrupt, Task, and Processor Priority
For interrupts that are delivered to the processor through the local APIC, each inter-
rupt has an implied priority based on its vector number. The local APIC uses this
priority to determine when to service the interrupt relative to the other activities of
the processor, including the servicing of other interrupts.

For interrupt vectors in the range of 16 to 255, the interrupt priority is determined
using the following relationship:

priority = vector / 16

Here the quotient is rounded down to the nearest integer value to determine the
priority, with 1 being the lowest priority and 15 is the highest. Because vectors 0
through 31 are reserved for dedicated uses by the Intel 64 and IA-32 architectures,
the priorities of user defined interrupts range from 2 to 15.

Each interrupt priority level (sometimes interpreted by software as an interrupt
priority class) encompasses 16 vectors. Prioritizing interrupts within a priority level is
determined by the vector number. The higher the vector number, the higher the
priority within that priority level. In determining the priority of a vector and ranking
Vol. 3A 10-41

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
of vectors within a priority group, the vector number is often divided into two parts,
with the high 4 bits of the vector indicating its priority and the low 4 bit indicating its
ranking within the priority group.

10.8.3.1 Task and Processor Priorities
The local APIC also defines a task priority and a processor priority that it uses in
determining the order in which interrupts should be handled. The task priority is a
software selected value between 0 and 15 (see Figure 10-18) that is written into the
task priority register (TPR). The TPR is a read/write register.

NOTE
In this discussion, the term “task” refers to a software defined task,
process, thread, program, or routine that is dispatched to run on the
processor by the operating system. It does not refer to an IA-32
architecture defined task as described in Chapter 7, “Task
Management.”

The task priority allows software to set a priority threshold for interrupting the
processor. The processor will service only those interrupts that have a priority higher
than that specified in the TPR. If software sets the task priority in the TPR to 0, the
processor will handle all interrupts; it is it set to 15, all interrupts are inhibited from
being handled, except those delivered with the NMI, SMI, INIT, ExtINT, INIT-deas-
sert, and start-up delivery mode. This mechanism enables the operating system to
temporarily block specific interrupts (generally low priority interrupts) from
disturbing high-priority work that the processor is doing.

Note that the task priority is also used to determine the arbitration priority of the
local processor (see Section 10.6.2.4, “Lowest Priority Delivery Mode”).

The processor priority is set by the processor, also to value between 0 and 15 (see
Figure 10-19) that is written into the processor priority register (PPR). The PPR is a
read only register. The processor priority represents the current priority at which the
processor is executing. It is used to determine whether a pending interrupt can be
dispensed to the processor.

Figure 10-18. Task Priority Register (TPR)

31 078

Reserved

Address: FEE0 0080H
Value after reset: 0H

Task Priority Sub-Class

Task Priority

4 3
10-42 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Its value in the PPR is computed as follows:

IF TPR[7:4] ≥ ISRV[7:4]
THEN

PPR[7:0] ← TPR[7:0]
ELSE

PPR[7:4] ← ISRV[7:4]
PPR[3:0] ← 0

Here, the ISRV value is the vector number of the highest priority ISR bit that is set,
or 00H if no ISR bit is set. Essentially, the processor priority is set to either to the
highest priority pending interrupt in the ISR or to the current task priority, whichever
is higher.

10.8.4 Interrupt Acceptance for Fixed Interrupts
The local APIC queues the fixed interrupts that it accepts in one of two interrupt
pending registers: the interrupt request register (IRR) or in-service register (ISR).
These two 256-bit read-only registers are shown in Figure 10-20. The 256 bits in
these registers represent the 256 possible vectors; vectors 0 through 15 are
reserved by the APIC (see also: Section 10.5.2, “Valid Interrupt Vectors”).

NOTE
All interrupts with an NMI, SMI, INIT, ExtINT, start-up, or INIT-
deassert delivery mode bypass the IRR and ISR registers and are
sent directly to the processor core for servicing.

The IRR contains the active interrupt requests that have been accepted, but not yet
dispatched to the processor for servicing. When the local APIC accepts an interrupt,
it sets the bit in the IRR that corresponds the vector of the accepted interrupt. When
the processor core is ready to handle the next interrupt, the local APIC clears the
highest priority IRR bit that is set and sets the corresponding ISR bit. The vector for
the highest priority bit set in the ISR is then dispatched to the processor core for
servicing.

Figure 10-19. Processor Priority Register (PPR)

31 078

Reserved

Address: FEE0 00A0H
Value after reset: 0H

Processor Priority Sub-Class

Processor Priority

4 3
Vol. 3A 10-43

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
While the processor is servicing the highest priority interrupt, the local APIC can send
additional fixed interrupts by setting bits in the IRR. When the interrupt service
routine issues a write to the EOI register (see Section 10.8.5, “Signaling Interrupt
Servicing Completion”), the local APIC responds by clearing the highest priority ISR
bit that is set. It then repeats the process of clearing the highest priority bit in the IRR
and setting the corresponding bit in the ISR. The processor core then begins
executing the service routing for the highest priority bit set in the ISR.

If more than one interrupt is generated with the same vector number, the local APIC
can set the bit for the vector both in the IRR and the ISR. This means that for the
Pentium 4 and Intel Xeon processors, the IRR and ISR can queue two interrupts for
each interrupt vector: one in the IRR and one in the ISR. Any additional interrupts
issued for the same interrupt vector are collapsed into the single bit in the IRR.

For the P6 family and Pentium processors, the IRR and ISR registers can queue no
more than two interrupts per priority level, and will reject other interrupts that are
received within the same priority level.

If the local APIC receives an interrupt with a priority higher than that of the interrupt
currently in serviced, and interrupts are enabled in the processor core, the local APIC
dispatches the higher priority interrupt to the processor immediately (without
waiting for a write to the EOI register). The currently executing interrupt handler is
then interrupted so the higher-priority interrupt can be handled. When the handling
of the higher-priority interrupt has been completed, the servicing of the interrupted
interrupt is resumed.

The trigger mode register (TMR) indicates the trigger mode of the interrupt (see
Figure 10-20). Upon acceptance of an interrupt into the IRR, the corresponding TMR
bit is cleared for edge-triggered interrupts and set for level-triggered interrupts. If a
TMR bit is set when an EOI cycle for its corresponding interrupt vector is generated,
an EOI message is sent to all I/O APICs.

Figure 10-20. IRR, ISR and TMR Registers

255 0

Reserved

Addresses: IRR FEE0 0200H - FEE0 0270H

Value after reset: 0H

16 15

IRR

Reserved ISR

Reserved TMR

ISR FEE0 0100H - FEE0 0170H
TMR FEE0 0180H - FEE0 01F0H
10-44 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.8.5 Signaling Interrupt Servicing Completion
For all interrupts except those delivered with the NMI, SMI, INIT, ExtINT, the start-
up, or INIT-Deassert delivery mode, the interrupt handler must include a write to the
end-of-interrupt (EOI) register (see Figure 10-21). This write must occur at the end
of the handler routine, sometime before the IRET instruction. This action indicates
that the servicing of the current interrupt is complete and the local APIC can issue the
next interrupt from the ISR.

Upon receiving an EOI, the APIC clears the highest priority bit in the ISR and
dispatches the next highest priority interrupt to the processor. If the terminated
interrupt was a level-triggered interrupt, the local APIC also sends an end-of-inter-
rupt message to all I/O APICs.
System software may prefer to direct EOIs to specific I/O APICs rather than having
the local APIC send end-of-interrupt messages to all I/O APICs.

Software can inhibit the broadcast of EOI message by setting bit 12 of the Spurious
Interrupt Vector Register (see Section 10.9). If this bit is set, a broadcast EOI is not
generated on an EOI cycle even if the associated TMR bit indicates that the current
interrupt was level-triggered. The default value for the bit is 0, indicating that EOI
broadcasts are performed.

Bit 12 of the Spurious Interrupt Vector Register is reserved to 0 if the processor does
not support suppression of EOI broadcasts. Support for EOI-broadcast suppression is
reported in bit 24 in the Local APIC Version Register (see Section 10.4.8); the feature
is supported if that bit is set to 1. When supported, the feature is available in both
xAPIC mode and x2APIC mode.

System software desiring to perform directed EOIs for level-triggered interrupts
should set bit 12 of the Spurious Interrupt Vector Register and follow each the EOI to
the local xAPIC for a level triggered interrupt with a directed EOI to the I/O APIC
generating the interrupt (this is done by writing to the I/O APIC’s EOI register).
System software performing directed EOIs must retain a mapping associating level-
triggered interrupts with the I/O APICs in the system.

Figure 10-21. EOI Register

31 0

Address: 0FEE0 00B0H
Value after reset: 0H
Vol. 3A 10-45

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.8.6 Task Priority in IA-32e Mode
In IA-32e mode, operating systems can manage the 16 priority classes of external
interrupts (see Section 10.8.3, “Interrupt, Task, and Processor Priority”) explicitly
using the task priority register (TPR). Operating systems can use the TPR to tempo-
rarily block specific (low-priority) interrupts from interrupting a high-priority task.
This is done by loading TPR with a value corresponding to the highest-priority inter-
rupt that is to be blocked. For example:
• Loading the TPR with a value of 8 (01000B) blocks all interrupts with a priority of

8 or less while allowing all interrupts with a priority of nine or more to be
recognized.

• Loading the TPR with zero enables all external interrupts.
• Loading the TPR with 0F (01111B) disables all external interrupts.

The TPR (shown in Figure 10-18) is cleared to 0 on reset. In 64-bit mode, software
can read and write the TPR using an alternate interface, MOV CR8 instruction. The
new priority level is established when the MOV CR8 instruction completes execution.
Software does not need to force serialization after loading the TPR using MOV CR8.

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at
privilege level greater than 0 cannot read or write the TPR. An attempt to do so
causes a general-protection exception. The TPR is abstracted from the interrupt
controller (IC), which prioritizes and manages external interrupt delivery to the
processor. The IC can be an external device, such as an APIC or 8259. Typically, the
IC provides a priority mechanism similar or identical to the TPR. The IC, however, is
considered implementation-dependent with the under-lying priority mechanisms
subject to change. CR8, by contrast, is part of the Intel 64 architecture. Software can
depend on this definition remaining unchanged.

Figure 10-22 shows the layout of CR8; only the low four bits are used. The remaining
60 bits are reserved and must be written with zeros. Failure to do this causes a
general-protection exception.

10.8.6.1 Interaction of Task Priorities between CR8 and APIC
The first implementation of Intel 64 architecture includes a local advanced program-
mable interrupt controller (APIC) that is similar to the APIC used with previous IA-32
processors. Some aspects of the local APIC affect the operation of the architecturally
defined task priority register and the programming interface using CR8.

Figure 10-22. CR8 Register

63 0

Value after reset: 0H

34

Reserved
10-46 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Notable CR8 and APIC interactions are:
• The processor powers up with the local APIC enabled.
• The APIC must be enabled for CR8 to function as the TPR. Writes to CR8 are

reflected into the APIC Task Priority Register.
• APIC.TPR[bits 7:4] = CR8[bits 3:0], APIC.TPR[bits 3:0] = 0. A read of CR8

returns a 64-bit value which is the value of TPR[bits 7:4], zero extended to 64
bits.

There are no ordering mechanisms between direct updates of the APIC.TPR and CR8.
Operating software should implement either direct APIC TPR updates or CR8 style
TPR updates but not mix them. Software can use a serializing instruction (for
example, CPUID) to serialize updates between MOV CR8 and stores to the APIC.

10.9 SPURIOUS INTERRUPT
A special situation may occur when a processor raises its task priority to be greater
than or equal to the level of the interrupt for which the processor INTR signal is
currently being asserted. If at the time the INTA cycle is issued, the interrupt that
was to be dispensed has become masked (programmed by software), the local APIC
will deliver a spurious-interrupt vector. Dispensing the spurious-interrupt vector does
not affect the ISR, so the handler for this vector should return without an EOI.

The vector number for the spurious-interrupt vector is specified in the spurious-inter-
rupt vector register (see Figure 10-23). The functions of the fields in this register are
as follows:
Spurious Vector Determines the vector number to be delivered to the processor

when the local APIC generates a spurious vector.
(Pentium 4 and Intel Xeon processors.) Bits 0 through 7 of the
this field are programmable by software.
(P6 family and Pentium processors). Bits 4 through 7 of the this
field are programmable by software, and bits 0 through 3 are
hardwired to logical ones. Software writes to bits 0 through 3
have no effect.

APIC Software Enable/Disable
Allows software to temporarily enable (1) or disable (0) the local
APIC (see Section 10.4.3, “Enabling or Disabling the Local
APIC”).

Focus Processor Checking
Determines if focus processor checking is enabled (0) or
disabled (1) when using the lowest-priority delivery mode. In
Pentium 4 and Intel Xeon processors, this bit is reserved and
should be cleared to 0.

Suppress EOI Broadcasts
Vol. 3A 10-47

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Determines whether an EOI for a level-triggered interrupt
causes EOI messages to be broadcast to the I/O APICs (0) or not
(1). See Section 10.8.5. The default value for this bit is 0, indi-
cating that EOI broadcasts are performed. This bit is reserved to
0 if the processor does not support EOI-broadcast suppression.

NOTE
Do not program an LVT or IOAPIC RTE with a spurious vector even if
you set the mask bit. A spurious vector ISR does not do an EOI. If for
some reason an interrupt is generated by an LVT or RTE entry, the bit
in the in-service register will be left set for the spurious vector. This
will mask all interrupts at the same or lower priority

10.10 APIC BUS MESSAGE PASSING MECHANISM AND
PROTOCOL (P6 FAMILY, PENTIUM PROCESSORS)

The Pentium 4 and Intel Xeon processors pass messages among the local and I/O
APICs on the system bus, using the system bus message passing mechanism and
protocol.

Figure 10-23. Spurious-Interrupt Vector Register (SVR)

31 0

Reserved

7

Focus Processor Checking2

APIC Software Enable/Disable

8910

0: APIC Disabled
1: APIC Enabled

Spurious Vector3

Address: FEE0 00F0H
Value after reset: 0000 00FFH

0: Enabled
1: Disabled

1. Not supported on all processors.
2. Not supported in Pentium 4 and Intel Xeon processors.
3. For the P6 family and Pentium processors, bits 0 through 3

are always 0.

1112

EOI-Broadcast Suppression1

0: Enabled
1: Disabled
10-48 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
The P6 family and Pentium processors, pass messages among the local and I/O
APICs on the serial APIC bus, as follows. Because only one message can be sent at a
time on the APIC bus, the I/O APIC and local APICs employ a “rotating priority” arbi-
tration protocol to gain permission to send a message on the APIC bus. One or more
APICs may start sending their messages simultaneously. At the beginning of every
message, each APIC presents the type of the message it is sending and its current
arbitration priority on the APIC bus. This information is used for arbitration. After
each arbitration cycle (within an arbitration round), only the potential winners keep
driving the bus. By the time all arbitration cycles are completed, there will be only
one APIC left driving the bus. Once a winner is selected, it is granted exclusive use of
the bus, and will continue driving the bus to send its actual message.

After each successfully transmitted message, all APICs increase their arbitration
priority by 1. The previous winner (that is, the one that has just successfully trans-
mitted its message) assumes a priority of 0 (lowest). An agent whose arbitration
priority was 15 (highest) during arbitration, but did not send a message, adopts the
previous winner’s arbitration priority, increments by 1.

Note that the arbitration protocol described above is slightly different if one of the
APICs issues a special End-Of-Interrupt (EOI). This high-priority message is granted
the bus regardless of its sender’s arbitration priority, unless more than one APIC
issues an EOI message simultaneously. In the latter case, the APICs sending the EOI
messages arbitrate using their arbitration priorities.

If the APICs are set up to use “lowest priority” arbitration (see Section 10.6.2.4,
“Lowest Priority Delivery Mode”) and multiple APICs are currently executing at the
lowest priority (the value in the APR register), the arbitration priorities (unique
values in the Arb ID register) are used to break ties. All 8 bits of the APR are used for
the lowest priority arbitration.

10.10.1 Bus Message Formats
See Appendix F, “APIC Bus Message Formats,” for a description of bus message
formats used to transmit messages on the serial APIC bus.

10.11 MESSAGE SIGNALLED INTERRUPTS
The PCI Local Bus Specification, Rev 2.2 (www.pcisig.com) introduces the concept of
message signalled interrupts. As the specification indicates:

“Message signalled interrupts (MSI) is an optional feature that
enables PCI devices to request service by writing a system-specified
message to a system-specified address (PCI DWORD memory write
transaction). The transaction address specifies the message
destination while the transaction data specifies the message. System
software is expected to initialize the message destination and
Vol. 3A 10-49

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
message during device configuration, allocating one or more non-
shared messages to each MSI capable function.”

The capabilities mechanism provided by the PCI Local Bus Specification is used to
identify and configure MSI capable PCI devices. Among other fields, this structure
contains a Message Data Register and a Message Address Register. To request
service, the PCI device function writes the contents of the Message Data Register to
the address contained in the Message Address Register (and the Message Upper
Address register for 64-bit message addresses).

Section 10.11.1 and Section 10.11.2 provide layout details for the Message Address
Register and the Message Data Register. The operation issued by the device is a PCI
write command to the Message Address Register with the Message Data Register
contents. The operation follows semantic rules as defined for PCI write operations
and is a DWORD operation.

10.11.1 Message Address Register Format
The format of the Message Address Register (lower 32-bits) is shown in
Figure 10-24.

Fields in the Message Address Register are as follows:

1. Bits 31-20 — These bits contain a fixed value for interrupt messages (0FEEH).
This value locates interrupts at the 1-MByte area with a base address of 4G –
18M. All accesses to this region are directed as interrupt messages. Care must to
be taken to ensure that no other device claims the region as I/O space.

2. Destination ID — This field contains an 8-bit destination ID. It identifies the
message’s target processor(s). The destination ID corresponds to bits 63:56 of
the I/O APIC Redirection Table Entry if the IOAPIC is used to dispatch the
interrupt to the processor(s).

3. Redirection hint indication (RH) — This bit indicates whether the message
should be directed to the processor with the lowest interrupt priority among
processors that can receive the interrupt.

• When RH is 0, the interrupt is directed to the processor listed in the
Destination ID field.

Figure 10-24. Layout of the MSI Message Address Register

31 20 19 12 11 4 3 2 1 0

0FEEH Destination ID Reserved RH DM XX
10-50 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
• When RH is 1 and the physical destination mode is used, the Destination
ID field must not be set to 0xFF; it must point to a processor that is
present and enabled to receive the interrupt.

• When RH is 1 and the logical destination mode is active in a system using
a flat addressing model, the Destination ID field must be set so that bits
set to 1 identify processors that are present and enabled to receive the
interrupt.

• If RH is set to 1 and the logical destination mode is active in a system
using cluster addressing model, then Destination ID field must not be set
to 0xFF; the processors identified with this field must be present and
enabled to receive the interrupt.

4. Destination mode (DM) — This bit indicates whether the Destination ID field
should be interpreted as logical or physical APIC ID for delivery of the lowest
priority interrupt. If RH is 1 and DM is 0, the Destination ID field is in physical
destination mode and only the processor in the system that has the matching
APIC ID is considered for delivery of that interrupt (this means no re-direction).
If RH is 1 and DM is 1, the Destination ID Field is interpreted as in logical
destination mode and the redirection is limited to only those processors that are
part of the logical group of processors based on the processor’s logical APIC ID
and the Destination ID field in the message. The logical group of processors
consists of those identified by matching the 8-bit Destination ID with the logical
destination identified by the Destination Format Register and the Logical
Destination Register in each local APIC. The details are similar to those described
in Section 10.6.2, “Determining IPI Destination.” If RH is 0, then the DM bit is
ignored and the message is sent ahead independent of whether the physical or
logical destination mode is used.

10.11.2 Message Data Register Format
The layout of the Message Data Register is shown in Figure 10-25.

Reserved fields are not assumed to be any value. Software must preserve their
contents on writes. Other fields in the Message Data Register are described below.

1. Vector — This 8-bit field contains the interrupt vector associated with the
message. Values range from 010H to 0FEH. Software must guarantee that the
field is not programmed with vector 00H to 0FH.

2. Delivery Mode — This 3-bit field specifies how the interrupt receipt is handled.
Delivery Modes operate only in conjunction with specified Trigger Modes. Correct
Trigger Modes must be guaranteed by software. Restrictions are indicated below:

a. 000B (Fixed Mode) — Deliver the signal to all the agents listed in the
destination. The Trigger Mode for fixed delivery mode can be edge or level.
Vol. 3A 10-51

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
b. 001B (Lowest Priority) — Deliver the signal to the agent that is executing
at the lowest priority of all agents listed in the destination field. The trigger
mode can be edge or level.

c. 010B (System Management Interrupt or SMI) — The delivery mode is
edge only. For systems that rely on SMI semantics, the vector field is ignored
but must be programmed to all zeroes for future compatibility.

d. 100B (NMI) — Deliver the signal to all the agents listed in the destination
field. The vector information is ignored. NMI is an edge triggered interrupt
regardless of the Trigger Mode Setting.

e. 101B (INIT) — Deliver this signal to all the agents listed in the destination
field. The vector information is ignored. INIT is an edge triggered interrupt
regardless of the Trigger Mode Setting.

f. 111B (ExtINT) — Deliver the signal to the INTR signal of all agents in the
destination field (as an interrupt that originated from an 8259A compatible
interrupt controller). The vector is supplied by the INTA cycle issued by the
activation of the ExtINT. ExtINT is an edge triggered interrupt.

Figure 10-25. Layout of the MSI Message Data Register

Reserved

Reserved Reserved Vector

Delivery Mode

001 - Lowest Priority
010 - SMI
011 - Reserved

101 - INIT
110 - Reserved
111 - ExtINT

Trigger Mode
0 - Edge
1 - Level

Level for Trigger Mode = 0
X - Don’t care

Level for Trigger Mode = 1
0 - Deassert
1 - Assert

000 - Fixed

100 - NMI

31 16 15 14 13 11 10 8 7 0

63 32
10-52 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
3. Level — Edge triggered interrupt messages are always interpreted as assert
messages. For edge triggered interrupts this field is not used. For level triggered
interrupts, this bit reflects the state of the interrupt input.

4. Trigger Mode — This field indicates the signal type that will trigger a message.

a. 0 — Indicates edge sensitive.

b. 1 — Indicates level sensitive.

10.12 EXTENDED XAPIC (X2APIC)
The x2APIC architecture extends the xAPIC architecture (described in Section 9.4) in
a backward compatible manner and provides forward extendability for future Intel
platform innovations. Specifically, the x2APIC architecture does the following:
• Retains all key elements of compatibility to the xAPIC architecture:

— delivery modes,

— interrupt and processor priorities,

— interrupt sources,

— interrupt destination types;
• Provides extensions to scale processor addressability for both the logical and

physical destination modes;
• Adds new features to enhance performance of interrupt delivery;
• Reduces complexity of logical destination mode interrupt delivery on link based

platform architectures.
• Uses MSR programming interface to access APIC registers in x2APIC mode

instead of memory-mapped interfaces. Memory-mapped interface is supported
when operating in xAPIC mode.

10.12.1 Detecting and Enabling x2APIC Mode
Processor support for x2APIC mode can be detected by executing CPUID with EAX=1
and then checking ECX, bit 21 ECX. If CPUID.(EAX=1):ECX.21 is set , the processor
supports the x2APIC capability and can be placed into the x2APIC mode.

System software can place the local APIC in the x2APIC mode by setting the x2APIC
mode enable bit (bit 10) in the IA32_APIC_BASE MSR at MSR address 01BH. The
layout for the IA32_APIC_BASE MSR is shown in Figure 10-26.
Table 10-5, “x2APIC operating mode configurations” describe the possible combina-
tions of the enable bit (EN - bit 11) and the extended mode bit (EXTD - bit 10) in the
IA32_APIC_BASE MSR.
Vol. 3A 10-53

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
Once the local APIC has been switched to x2APIC mode (EN = 1, EXTD = 1),
switching back to xAPIC mode would require system software to disable the local
APIC unit. Specifically, attempting to write a value to the IA32_APIC_BASE MSR that
has (EN= 1, EXTD = 0) when the local APIC is enabled and in x2APIC mode causes a
general-protection exception. Once bit 10 in IA32_APIC_BASE MSR is set, the only
way to leave x2APIC mode using IA32_APIC_BASE would require a WRMSR to set
both bit 11 and bit 10 to zero. Section 10.12.5, “x2APIC State Transitions” provides a
detailed state diagram for the state transitions allowed for the local APIC.

10.12.1.1 Instructions to Access APIC Registers
In x2APIC mode, system software uses RDMSR and WRMSR to access the APIC regis-
ters. The MSR addresses for accessing the x2APIC registers are architecturally
defined and specified in Section 10.12.1.2, “x2APIC Register Address Space”.
Executing the RDMSR instruction with APIC register address specified in ECX returns
the content of bits 0 through 31 of the APIC registers in EAX. Bits 32 through 63 are
returned in register EDX - these bits are reserved if the APIC register being read is a
32-bit register. Similarly executing the WRMSR instruction with the APIC register
address in ECX, writes bits 0 to 31 of register EAX to bits 0 to 31 of the specified APIC
register. If the register is a 64-bit register then bits 0 to 31 of register EDX are written
to bits 32 to 63 of the APIC register. The Interrupt Command Register is the only APIC

Figure 10-26. IA32_APIC_BASE MSR Supporting x2APIC

Table 10-5. x2APIC Operating Mode Configurations

xAPIC global enable
(IA32_APIC_BASE[11])

x2APIC enable
(IA32_APIC_BASE[10]) Description

0 0 local APIC is disabled

0 1 Invalid

1 0 local APIC is enabled in xAPIC mode

1 1 local APIC is enabled in x2APIC mode

BSP—Processor is BSP

EN—xAPIC global enable/disable
APIC Base—Base physical address

63 071011 8912

Reserved

36 35

APIC BaseReserved

EXTD—Enable x2APIC mode
10-54 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
register that is implemented as a 64-bit MSR. The semantics of handling reserved
bits are defined in Section 10.12.1.3, “Reserved Bit Checking”.

10.12.1.2 x2APIC Register Address Space
The MSR address range 800H through BFFH is architecturally reserved and dedicated
for accessing APIC registers in x2APIC mode. Table 10-6 lists the APIC registers that
are available in x2APIC mode. When appropriate, the table also gives the offset at
which each register is available on the page referenced by IA32_APIC_BASE[35:12]
in xAPIC mode.
There is a one-to-one mapping between the x2APIC MSRs and the legacy xAPIC
register offsets with the following exceptions:
• The Destination Format Register (DFR): The DFR, supported at offset 0E0H in

xAPIC mode, is not supported in x2APIC mode. There is no MSR with address
80EH.

• The Interrupt Command Register (ICR): The two 32-bit registers in xAPIC mode
(at offsets 300H and 310H) are merged into a single 64-bit MSR in x2APIC mode
(with MSR address 830H). There is no MSR with address 831H.

• The SELF IPI register. This register is available only in x2APIC mode at address
83FH. In xAPIC mode, there is no register defined at offset 3F0H.

Addresses in the range 800H–BFFH that are not listed in Table 10-6 (including 80EH
and 831H) are reserved. Executions of RDMSR and WRMSR that attempt to access
such addresses cause general-protection exceptions.
The MSR address space is compressed to allow for future growth. Every 32 bit
register on a 128-bit boundary in the legacy MMIO space is mapped to a single MSR
in the local x2APIC MSR address space. The upper 32-bits of all x2APIC MSRs (except
for the ICR) are reserved.

Table 10-6. Local APIC Register Address Map Supported by x2APIC

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments

 802H 020H Local APIC ID register Read-only1 See Section 10.12.5.1 for
initial values.

803H 030H Local APIC Version
register

Read-only Same version used in
xAPIC mode and x2APIC
mode.

808H 080H Task Priority Register
(TPR)

Read/write Bits 31:8 are reserved.2

80AH 0A0H Processor Priority
Register (PPR)

Read-only
Vol. 3A 10-55

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
80BH 0B0H EOI register Write-
only3

WRMSR of a non-zero
value causes #GP(0).

80DH 0D0H Logical Destination
Register (LDR)

Read-only Read/write in xAPIC
mode.

80FH 0F0H Spurious Interrupt
Vector Register (SVR)

Read/write See Section 10.9 for
reserved bits.

810H 100H In-Service Register
(ISR); bits 31:0

Read-only

811H 110H ISR bits 63:32 Read-only

812H 120H ISR bits 95:64 Read-only

813H 130H ISR bits 127:96 Read-only

814H 140H ISR bits 159:128 Read-only

815H 150H ISR bits 191:160 Read-only

816H 160H ISR bits 223:192 Read-only

817H 170H ISR bits 255:224 Read-only

818H 180H Trigger Mode Register
(TMR); bits 31:0

Read-only

819H 190H TMR bits 63:32 Read-only

81AH 1A0H TMR bits 95:64 Read-only

81BH 1B0H TMR bits 127:96 Read-only

81CH 1C0H TMR bits 159:128 Read-only

81DH 1D0H TMR bits 191:160 Read-only

81EH 1E0H TMR bits 223:192 Read-only

81FH 1F0H TMR bits 255:224 Read-only

820H 200H Interrupt Request
Register (IRR); bits
31:0

Read-only

821H 210H IRR bits 63:32 Read-only

822H 220H IRR bits 95:64 Read-only

823H 230H IRR bits 127:96 Read-only

824H 240H IRR bits 159:128 Read-only

825H 250H IRR bits 191:160 Read-only

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments
10-56 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
826H 260H IRR bits 223:192 Read-only

827H 270H IRR bits 255:224 Read-only

828H 280H Error Status Register
(ESR)

Read/write WRMSR of a non-zero
value causes #GP(0). See
Section 10.5.3.

82FH 2F0H LVT CMCI register Read/write See Figure 10-8 for
reserved bits.

830H4 300H and
310H

Interrupt Command
Register (ICR)

Read/write See Figure 10-28 for
reserved bits

832H 320H LVT Timer register Read/write See Figure 10-8 for
reserved bits.

833H 330H LVT Thermal Sensor
register

Read/write See Figure 10-8 for
reserved bits.

834H 340H LVT Performance
Monitoring register

Read/write See Figure 10-8 for
reserved bits.

835H 350H LVT LINT0 register Read/write See Figure 10-8 for
reserved bits.

836H 360H LVT LINT1 register Read/write See Figure 10-8 for
reserved bits.

837H 370H LVT Error register Read/write See Figure 10-8 for
reserved bits.

838H 380H Initial Count register
(for Timer)

Read/write

839H 390H Current Count
register (for Timer)

Read-only

83EH 3E0H Divide Configuration
Register (DCR; for
Timer)

Read/write See Figure 10-10 for
reserved bits.

83FH Not available SELF IPI5 Write-only Available only in x2APIC
mode.

NOTES:
1. WRMSR causes #GP(0) for read-only registers.
2. WRMSR causes #GP(0) for attempts to set a reserved bit to 1 in a read/write register (including

bits 63:32 of each register).
3. RDMSR causes #GP(0) for write-only registers.

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address
(x2APIC mode)

MMIO Offset
(xAPIC mode)

Register Name
MSR R/W
Semantics

Comments
Vol. 3A 10-57

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.1.3 Reserved Bit Checking
Section 10.12.1.2 and Table 10-6 specifies the reserved bit definitions for the APIC
registers in x2APIC mode. Non-zero writes (by WRMSR instruction) to reserved bits
to these registers will raise a general protection fault exception while reads return
zeros (RsvdZ semantics).
In x2APIC mode, the local APIC ID register is increased to 32 bits wide. This enables
232–1 processors to be addressable in physical destination mode. This 32-bit value is
referred to as “x2APIC ID”. A processor implementation may choose to support less
than 32 bits in its hardware. System software should be agnostic to the actual
number of bits that are implemented. All non-implemented bits will return zeros on
reads by software.
The APIC ID value of FFFF_FFFFH and the highest value corresponding to the imple-
mented bit-width of the local APIC ID register in the system are reserved and cannot
be assigned to any logical processor.

In x2APIC mode, the local APIC ID register is a read-only register to system software
and will be initialized by hardware. It is accessed via the RDMSR instruction reading
the MSR at address 0802H.
Each logical processor in the system (including clusters with a communication fabric)
must be configured with an unique x2APIC ID to avoid collisions of x2APIC IDs. On
DP and high-end MP processors targeted to specific market segments and depending
on the system configuration, it is possible that logical processors in different and “un-
connected” clusters power up initialized with overlapping x2APIC IDs. In these
configurations, a model-specific means may be provided in those product segments
to enable BIOS and/or platform firmware to re-configure the x2APIC IDs in some
clusters to provide for unique and non-overlapping system wide IDs before config-
uring the disconnected components into a single system.

10.12.2 x2APIC Register Availability
The local APIC registers can be accessed via the MSR interface only when the local
APIC has been switched to the x2APIC mode as described in Section 10.12.1.
Accessing any APIC register in the MSR address range 0800H through 0BFFH via
RDMSR or WRMSR when the local APIC is not in x2APIC mode causes a general-
protection exception. In x2APIC mode, the memory mapped interface is not available
and any access to the MMIO interface will behave similar to that of a legacy xAPIC in
globally disabled state. Table 10-7 provides the interactions between the legacy &
extended modes and the legacy and register interfaces.

4. MSR 831H is reserved; read/write operations cause general-protection exceptions. The contents
of the APIC register at MMIO offset 310H are accessible in x2APIC mode through the MSR at
address 830H.

5. SELF IPI register is supported only in x2APIC mode.
10-58 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.3 MSR Access in x2APIC Mode
To allow for efficient access to the APIC registers in x2APIC mode, the serializing
semantics of WRMSR are relaxed when writing to the APIC registers. Thus, system
software should not use “WRMSR to APIC registers in x2APIC mode” as a serializing
instruction. Read and write accesses to the APIC registers will occur in program
order. A WRMSR to an APIC register may complete before all preceding stores are
globally visible; software can prevent this by inserting a serializing instruction, an
SFENCE, or an MFENCE before the WRMSR.

The RDMSR instruction is not serializing and this behavior is unchanged when
reading APIC registers in x2APIC mode. System software accessing the APIC regis-
ters using the RDMSR instruction should not expect a serializing behavior. (Note: The
MMIO-based xAPIC interface is mapped by system software as an un-cached region.
Consequently, read/writes to the xAPIC-MMIO interface have serializing semantics in
the xAPIC mode.)

10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
The VMX architecture allows a VMM to specify lists of MSRs to be loaded or stored on
VMX transitions using the VMX-transition MSR areas (see VM-exit MSR-store address
field, VM-exit MSR-load address filed, and VM-entry MSR-load address field in Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3B).
The X2APIC MSRs cannot to be loaded and stored on VMX transitions. A VMX transi-
tion fails if the VMM has specified that the transition should access any MSRs in the
address range from 0000_0800H to 0000_08FFH (the range used for accessing the
X2APIC registers). Specifically, processing of an 128-bit entry in any of the VMX-
transition MSR areas fails if bits 31:0 of that entry (represented as ENTRY_LOW_DW)
satisfies the expression: “ENTRY_LOW_DW & FFFFF800H = 00000800H”. Such a
failure causes an associated VM entry to fail (by reloading host state) and causes an
associated VM exit to lead to VMX abort.

Table 10-7. MSR/MMIO Interface of a Local x2APIC in Different Modes of Operation

MMIO Interface MSR Interface

xAPIC mode Available General-protection
exception

x2APIC mode Behavior identical to xAPIC in globally
disabled state

Available
Vol. 3A 10-59

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.5 x2APIC State Transitions
This section provides a detailed description of the x2APIC states of a local x2APIC
unit, transitions between these states as well as interactions of these states with INIT
and reset.

10.12.5.1 x2APIC States
The valid states for a local x2APIC unit is listed in Table 10-5:
• APIC disabled: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=0
• xAPIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0
• x2APIC mode: IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=1
• Invalid: IA32_APIC_BASE[EN]=0 and IA32_APIC_BASE[EXTD]=1
The state corresponding to EXTD=1 and EN=0 is not valid and it is not possible to get
into this state. An execution of WRMSR to the IA32_APIC_BASE_MSR that attempts
a transition from a valid state to this invalid state causes a general-protection excep-
tion. Figure 10-27 shows the comprehensive state transition diagram for a local
x2APIC unit.
On coming out of reset, the local APIC unit is enabled and is in the xAPIC mode:
IA32_APIC_BASE[EN]=1 and IA32_APIC_BASE[EXTD]=0. The APIC registers are
initialized as:
• The local APIC ID is initialized by hardware with a 32 bit ID (x2APIC ID). The

lowest 8 bits of the x2APIC ID is the legacy local xAPIC ID, and is stored in the
upper 8 bits of the APIC register for access in xAPIC mode.

• The following APIC registers are reset to all zeros for those fields that are defined
in the xAPIC mode:

— IRR, ISR, TMR, ICR, LDR, TPR, Divide Configuration Register (See Chapter 8
of “Intel® 64 and IA-32 Architectures Software Developer’s Manual“, Vol. 3B
for details of individual APIC registers),

— Timer initial count and timer current count registers,
• The LVT registers are reset to 0s except for the mask bits; these are set to 1s.
• The local APIC version register is not affected.
• The Spurious Interrupt Vector Register is initialized to 000000FFH.
• The DFR (available only in xAPIC mode) is reset to all 1s.
• SELF IPI register is reset to zero.
10-60 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
x2APIC After Reset
The valid transitions from the xAPIC mode state are:
• to the x2APIC mode by setting EXT to 1 (resulting EN=1, EXTD= 1). The physical

x2APIC ID (see Figure 10-6) is preserved across this transition and the logical
x2APIC ID (see Figure 10-29) is initialized by hardware during this transition as
documented in Section 10.12.10.2. The state of the extended fields in other APIC
registers, which was not initialized at reset, is not architecturally defined across
this transition and system software should explicitly initialize those program-
mable APIC registers.

• to the disabled state by setting EN to 0 (resulting EN=0, EXTD= 0).
The result of an INIT in the xAPIC state places the APIC in the state with EN= 1,
EXTD= 0. The state of the local APIC ID register is preserved (the 8-bit xAPIC ID is in
the upper 8 bits of the APIC ID register). All the other APIC registers are initialized as
a result of INIT.
A reset in this state places the APIC in the state with EN= 1, EXTD= 0. The state of
the local APIC ID register is initialized as described in Section 10.12.5.1. All the other
APIC registers are initialized described in Section 10.12.5.1.

Figure 10-27. Local x2APIC State Transitions with IA32_APIC_BASE, INIT, and Reset

xAPIC Mode

EN =1 Illegal
Transition

Init

EN=1, Extd=1

Extended

Invalid
State

Mode

Reset

Extd = 1

Illegal
Transition

EN = 0

EN = 0 Illegal
TransitionExtd = 0

Illegal
Transition

Extd = 0

EN=1, Extd=0

EN = 0

Extd = 1

Reset

Reset

Init

Init

Disabled
EN = 0
Extd = 0

Extd = 1

EN = 0
Vol. 3A 10-61

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
x2APIC Transitions From x2APIC Mode
From the x2APIC mode, the only valid x2APIC transition using IA32_APIC_BASE is to
the state where the x2APIC is disabled by setting EN to 0 and EXTD to 0. The x2APIC
ID (32 bits) and the legacy local xAPIC ID (8 bits) are preserved across this transi-
tion. A transition from the x2APIC mode to xAPIC mode is not valid, and the corre-
sponding WRMSR to the IA32_APIC_BASE MSR causes a general-protection
exception.
A reset in this state places the x2APIC in xAPIC mode. All APIC registers (including
the local APIC ID register) are initialized as described in Section 10.12.5.1.
An INIT in this state keeps the x2APIC in the x2APIC mode. The state of the local
APIC ID register is preserved (all 32 bits). However, all the other APIC registers are
initialized as a result of the INIT transition.

x2APIC Transitions From Disabled Mode
From the disabled state, the only valid x2APIC transition using IA32_APIC_BASE is to
the xAPIC mode (EN= 1, EXTD = 0). Thus the only means to transition from x2APIC
mode to xAPIC mode is a two-step process:
• first transition from x2APIC mode to local APIC disabled mode (EN= 0, EXTD =

0),
• followed by another transition from disabled mode to xAPIC mode (EN= 1,

EXTD= 0).
Consequently, all the APIC register states in the x2APIC, except for the x2APIC ID
(32 bits), are not preserved across mode transitions.
A reset in the disabled state places the x2APIC in the xAPIC mode. All APIC registers
(including the local APIC ID register) are initialized as described in Section 10.12.5.1.
An INIT in the disabled state keeps the x2APIC in the disabled state.

State Changes From xAPIC Mode to x2APIC Mode
After APIC register states have been initialized by software in xAPIC mode, a transi-
tion from xAPIC mode to x2APIC mode does not affect most of the APIC register
states, except the following:
• The Logical Destination Register is not preserved.
• Any APIC ID value written to the memory-mapped local APIC ID register is not

preserved.
• The high half of the Interrupt Command Register is not preserved.
10-62 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
10.12.6 Routing of Device Interrupts in x2APIC Mode
The x2APIC architecture is intended to work with all existing IOxAPIC units as well as
all PCI and PCI Express (PCIe) devices that support the capability for message-
signaled interrupts (MSI). Support for x2APIC modifies only the following:
• the local APIC units;
• the interconnects joining IOxAPIC units to the local APIC units; and
• the interconnects joining MSI-capable PCI and PCIe devices to the local APIC

units.

No modifications are required to MSI-capable PCI and PCIe devices. Similarly, no
modifications are required to IOxAPIC units. This made possible through use of the
interrupt-remapping architecture specified in the Intel® Virtualization Technology for
Directed I/O, Revision 1.3 for the routing of interrupts from MSI-capable devices to
local APIC units operating in x2APIC mode.

10.12.7 Initialization by System Software
Routing of device interrupts to local APIC units operating in x2APIC mode requires
use of the interrupt-remapping architecture specified in the Intel® Virtualization
Technology for Directed I/O, Revision 1.3. Because of this, BIOS must enumerate
support for and software must enable this interrupt remapping with Extended Inter-
rupt Mode Enabled before it enabling x2APIC mode in the local APIC units.

The ACPI interfaces for the x2APIC are described in Section 5.2, “ACPI System
Description Tables,” of the Advanced Configuration and Power Interface Specifica-
tion, Revision 4.0a (http://www.acpi.info/spec.htm). The default behavior for BIOS
is to pass the control to the operating system with the local x2APICs in xAPIC mode
if all APIC IDs reported by CPUID.0BH:EDX are less than 255, and in x2APIC mode if
there are any logical processor reporting an APIC ID of 255 or greater.

10.12.8 CPUID Extensions And Topology Enumeration
For Intel 64 and IA-32 processors that support x2APIC, a value of 1 reported by
CPUID.01H:ECX[21] indicates that the processor supports x2APIC and the extended
topology enumeration leaf (CPUID.0BH).
The extended topology enumeration leaf can be accessed by executing CPUID with
EAX = 0BH. Processors that do not support x2APIC may support CPUID leaf 0BH.
Software can detect the availability of the extended topology enumeration leaf (0BH)
by performing two steps:
• Check maximum input value for basic CPUID information by executing CPUID

with EAX= 0. If CPUID.0H:EAX is greater than or equal or 11 (0BH), then proceed
to next step

• Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero.
Vol. 3A 10-63

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
If both of the above conditions are true, extended topology enumeration leaf is avail-
able. If available, the extended topology enumeration leaf is the preferred mecha-
nism for enumerating topology. The presence of CPUID leaf 0BH in a processor does
not guarantee support for x2APIC. If CPUID.EAX=0BH, ECX=0H:EBX returns zero
and maximum input value for basic CPUID information is greater than 0BH, then
CPUID.0BH leaf is not supported on that processor.
The extended topology enumeration leaf is intended to assist software with enumer-
ating processor topology on systems that requires 32-bit x2APIC IDs to address indi-
vidual logical processors. Details of CPUID leaf 0BH can be found in the reference
pages of CPUID in Chapter 3 of Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.
Processor topology enumeration algorithm for processors supporting the extended
topology enumeration leaf of CPUID and processors that do not support CPUID leaf
0BH are treated in Section 8.9.4, “Algorithm for Three-Level Mappings of APIC_ID”.

10.12.8.1 Consistency of APIC IDs and CPUID
The consistency of physical x2APIC ID in MSR 802H in x2APIC mode and the 32-bit
value returned in CPUID.0BH:EDX is facilitated by processor hardware.
CPUID.0BH:EDX will report the full 32 bit ID, in xAPIC and x2APIC mode. This allows
BIOS to determine if a system has processors with IDs exceeding the 8-bit initial
APIC ID limit (CPUID.01H:EBX[31:24]). Initial APIC ID (CPUID.01H:EBX[31:24]) is
always equal to CPUID.0BH:EDX[7:0].
If the values of CPUID.0BH:EDX reported by all logical processors in a system are
less than 255, BIOS can transfer control to OS in xAPIC mode.
If the values of CPUID.0BH:EDX reported by some logical processors in a system are
greater or equal than 255, BIOS must support two options to hand off to OS:
• If BIOS enables logical processors with x2APIC IDs greater than 255, then it

should enable X2APIC in Boot Strap Processor (BSP) and all Application
Processors (AP) before passing control to the OS. Application requiring processor
topology information must use OS provided services based on x2APIC IDs or
CPUID.0BH leaf.

• If a BIOS transfers control to OS in xAPIC mode, then the BIOS must ensure that
only logical processors with CPUID.0BH.EDX value less than 255 are enabled.
BIOS initialization on all logical processors with CPUID.0B.EDX values greater
than or equal to 255 must (a) disable APIC and execute CLI in each logical
processor, and (b) leave these logical processor in the lowest power state so that
these processors do not respond to INIT IPI during OS boot. The BSP and all the
enabled logical processor operate in xAPIC mode after BIOS passed control to
OS. Application requiring processor topology information can use OS provided
legacy services based on 8-bit initial APIC IDs or legacy topology information
from CPUID.01H and CPUID 04H leaves. Even if the BIOS passes control in xAPIC
mode, an OS can switch the processors to x2APIC mode later. BIOS SMM handler
10-64 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
should always read the APIC_BASE_MSR, determine the APIC mode and use the
corresponding access method.

10.12.9 ICR Operation in x2APIC Mode
In x2APIC mode, the layout of the Interrupt Command Register is shown in Figure
10-12. The lower 32 bits of ICR in x2APIC mode is identical to the lower half of the
ICR in xAPIC mode, except the Delivery Status bit is removed since it is not needed
in x2APIC mode. The destination ID field is expanded to 32 bits in x2APIC mode.

To send an IPI using the ICR, software must set up the ICR to indicate the type of IPI
message to be sent and the destination processor or processors. Self IPIs can also be
sent using the SELF IPI register (see Section 10.12.11).

Figure 10-28. Interrupt Command Register (ICR) in x2APIC Mode

31 0

Reserved

7

Vector

Destination Shorthand

810

Delivery Mode
000: Fixed
001: Reserved

00: No Shorthand
01: Self

111213141516171819

10: All Including Self
11: All Excluding Self

010: SMI
011: Reserved
100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

63 32

Destination Field

Address: 830H (63 - 0)

Value after Reset: 0H

Reserved

20

Vol. 3A 10-65

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
A single MSR write to the Interrupt Command Register is required for dispatching an
interrupt in x2APIC mode. With the removal of the Delivery Status bit, system soft-
ware no longer has a reason to read the ICR. It remains readable only to aid in
debugging; however, software should not assume the value returned by reading the
ICR is the last written value.
A destination ID value of FFFF_FFFFH is used for broadcast of interrupts in both
logical destination and physical destination modes.

10.12.10 Determining IPI Destination in x2APIC Mode

10.12.10.1 Logical Destination Mode in x2APIC Mode
In x2APIC mode, the Logical Destination Register (LDR) is increased to 32 bits wide.
It is a read-only register to system software. This 32-bit value is referred to as
“logical x2APIC ID”. System software accesses this register via the RDMSR instruc-
tion reading the MSR at address 80DH. Figure 10-29 provides the layout of the
Logical Destination Register in x2APIC mode.

In the xAPIC mode, the Destination Format Register (DFR) through MMIO interface
determines the choice of a flat logical mode or a clustered logical mode. Flat logical
mode is not supported in the x2APIC mode. Hence the Destination Format Register
(DFR) is eliminated in x2APIC mode.
The 32-bit logical x2APIC ID field of LDR is partitioned into two sub-fields:
• Cluster ID (LDR[31:16]): is the address of the destination cluster
• Logical ID (LDR[15:0]): defines a logical ID of the individual local x2APIC within

the cluster specified by LDR[31:16].
This layout enables 2^16-1 clusters each with up to 16 unique logical IDs - effec-
tively providing an addressability of ((2^20) - 16) processors in logical destination
mode.
It is likely that processor implementations may choose to support less than 16 bits of
the cluster ID or less than 16-bits of the Logical ID in the Logical Destination Register.

Figure 10-29. Logical Destination Register in x2APIC Mode

MSR Address: 80DH

31 0

Logical x2APIC ID
10-66 Vol. 3A

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
However system software should be agnostic to the number of bits implemented in
the cluster ID and logical ID sub-fields. The x2APIC hardware initialization will ensure
that the appropriately initialized logical x2APIC IDs are available to system software
and reads of non-implemented bits return zero. This is a read-only register that soft-
ware must read to determine the logical x2APIC ID of the processor. Specifically,
software can apply a 16-bit mask to the lowest 16 bits of the logical x2APIC ID to
identify the logical address of a processor within a cluster without needing to know
the number of implemented bits in cluster ID and Logical ID sub-fields. Similarly,
software can create a message destination address for cluster model, by bit-Oring
the Logical X2APIC ID (31:0) of processors that have matching Cluster ID(31:16).
To enable cluster ID assignment in a fashion that matches the system topology char-
acteristics and to enable efficient routing of logical mode lowest priority device inter-
rupts in link based platform interconnects, the LDR are initialized by hardware based
on the value of x2APIC ID upon x2APIC state transitions. Details of this initialization
are provided in Section 10.12.10.2.

10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID
In x2APIC mode, the 32-bit logical x2APIC ID, which can be read from LDR, is derived
from the 32-bit local x2APIC ID. Specifically, the 16-bit logical ID sub-field is derived
by shifting 1 by the lowest 4 bits of the x2APIC ID, i.e. Logical ID = 1 «
x2APIC ID[3:0]. The remaining bits of the x2APIC ID then form the cluster ID portion
of the logical x2APIC ID:

Logical x2APIC ID = [(x2APIC ID[19:4] « 16) | (1 « x2APIC ID[3:0])]

The use of the lowest 4 bits in the x2APIC ID implies that at least 16 APIC IDs are
reserved for logical processors within a socket in multi-socket configurations. If more
than 16 APIC IDS are reserved for logical processors in a socket/package then
multiple cluster IDs can exist within the package.
The LDR initialization occurs whenever the x2APIC mode is enabled (see Section
10.12.5).

10.12.11 SELF IPI Register
SELF IPIs are used extensively by some system software. The x2APIC architecture
introduces a new register interface. This new register is dedicated to the purpose of
sending self-IPIs with the intent of enabling a highly optimized path for sending self-
IPIs.

Figure 10-30 provides the layout of the SELF IPI register. System software only spec-
ifies the vector associated with the interrupt to be sent. The semantics of sending a
self-IPI via the SELF IPI register are identical to sending a self targeted edge trig-
gered fixed interrupt with the specified vector. Specifically the semantics are identical
to the following settings for an inter-processor interrupt sent via the ICR - Destina-
Vol. 3A 10-67

ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
tion Shorthand (ICR[19:18] = 01 (Self)), Trigger Mode (ICR[15] = 0 (Edge)),
Delivery Mode (ICR[10:8] = 000 (Fixed)), Vector (ICR[7:0] = Vector).

The SELF IPI register is a write-only register. A RDMSR instruction with address of the
SELF IPI register causes a general-protection exception.
The handling and prioritization of a self-IPI sent via the SELF IPI register is architec-
turally identical to that for an IPI sent via the ICR from a legacy xAPIC unit. Specifi-
cally the state of the interrupt would be tracked via the Interrupt Request Register
(IRR) and In Service Register (ISR) and Trigger Mode Register (TMR) as if it were
received from the system bus. Also sending the IPI via the Self Interrupt Register
ensures that interrupt is delivered to the processor core. Specifically completion of
the WRMSR instruction to the SELF IPI register implies that the interrupt has been
logged into the IRR. As expected for edge triggered interrupts, depending on the
processor priority and readiness to accept interrupts, it is possible that interrupts
sent via the SELF IPI register or via the ICR with identical vectors can be combined.

Figure 10-30. SELF IPI register

MSR Address: 083FH

31 8 7 0

Reserved Vector
10-68 Vol. 3A

CHAPTER 11
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs,
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory
type range registers (MTRRs) introduced in the P6 family processors and how they
are used to control caching of physical memory locations.

11.1 INTERNAL CACHES, TLBS, AND BUFFERS
The Intel 64 and IA-32 architectures support cache, translation look aside buffers
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 11-1 shows the arrangement of caches, TLBs, and the store
buffer for the Pentium 4 and Intel Xeon processors.) Table 11-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. The sizes and characteristics of these units are machine
specific and may change in future versions of the processor. The CPUID
instruction returns the sizes and characteristics of the caches and buffers for the
processor on which the instruction is executed. See “CPUID—CPU Identification” in
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

Figure 11-1. Cache Structure of the Pentium 4 and Intel Xeon Processors

Trace CacheInstruction Decoder

Bus Interface Unit

System Bus

Data Cache
Unit (L1)

 (External)

Physical
Memory

Store Buffer

Data TLBs

L2 Cache

Instruction
TLBs

L3 Cache†

† Intel Xeon processors only
Vol. 3A 11-1

MEMORY CACHE CONTROL
Figure 11-2 shows the cache arrangement of Intel Core i7 processor.

Figure 11-2. Cache Structure of the Intel Core i7 Processors

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache1 • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst®
microarchitecture): 12 Kμops, 8-way set associative.

• Intel Core i7, Intel Core 2 Duo, Intel® Atom™, Intel Core Duo, Intel Core
Solo, Pentium M processor: not implemented.

• P6 family and Pentium processors: not implemented.

L1 Instruction Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): not implemented.

• Intel Core i7 processor: 32-KByte, 4-way set associative.
• Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M

processor: 32-KByte, 8-way set associative.
• P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,

32-byte cache line size; 2-way set associative for earlier Pentium
processors.

Instruction Decoder and front end

Out-of-Order Engine

Chipset

Data Cache
Unit (L1)

Instruction
Cache

STLBData TLB

L2 Cache

ITLB

L3 Cache

IMC

QPI
11-2 Vol. 3A

MEMORY CACHE CONTROL
L1 Data Cache • Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line
size.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line
size.

• Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache
line size.

• Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 16-KByte, 4-way set associative, 32-byte cache
line size; 8-KBytes, 2-way set associative for earlier P6 family
processors.

• Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache • Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in
quadcore processors), 16-way set associative, 64-byte cache line size.

• Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBx2 in
quadcore processors), 24-way set associative, 64-byte cache line size.

• Intel Core i7, i5, i3 processors: 256KBbyte, 8-way set associative,
64-byte cache line size.

• Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache
line size.

• Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set
associative, 64-byte cache line size

• Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.

• Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte
cache line size.

• P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

• Pentium processor (external optional): System specific, typically 256- or
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache • Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way
set associative, 64-byte cache line size, 128-byte sector size.

• Intel Core i7 processor, Intel Xeon processor 5500: Up to 8MByte, 16-
way set associative, 64-byte cache line size.

• Intel Xeon processor 5600: Up to 12MByte, 64-byte cache line size.
• Intel Xeon processor 7500: Up to 24MByte, 64-byte cache line size.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
Vol. 3A 11-3

MEMORY CACHE CONTROL
Instruction TLB
(4-KByte Pages)

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 128 entries, 4-way set associative.

• Intel Atom processors: 32-entries, fully associative.
• Intel Core i7, i5, i3 processors: 64-entries per thread (128-entries per

core), 4-way set associative.
• Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M

processor: 128 entries, 4-way set associative.
• P6 family processors: 32 entries, 4-way set associative.
• Pentium processor: 32 entries, 4-way set associative; fully set

associative for Pentium processors with MMX technology.

Data TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 64-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 256 entries, 4

ways.
• Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative;

64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully
associative.

• Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 64 entry, fully set associative, shared with large page
DTLB.

• Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128
entries, 4-way set associative.

• Pentium and P6 family processors: 64 entries, 4-way set associative;
fully set, associative for Pentium processors with MMX technology.

Instruction TLB
(Large Pages)

• Intel Core i7, i5, i3 processors: 7-entries per thread, fully associative.
• Intel Core 2 Duo processors: 4 entries, 4 ways.
• Pentium 4 and Intel Xeon processors: large pages are fragmented.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully

associative.
• P6 family processors: 2 entries, fully associative.
• Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

• Intel Core i7, i5, i3 processors, DTLB0: 32-entries, 4-way set associative.
• Intel Core 2 Duo processors: DTLB0, 16 entries, DTLB1, 32 entries, 4

ways.
• Intel Atom processors: 8 entries, 4-way set associative.
• Pentium 4 and Intel Xeon processors: 64 entries, fully set associative;

shared with small page data TLBs.
• Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully

associative.
• P6 family processors: 8 entries, 4-way set associative.
• Pentium processor: 8 entries, 4-way set associative; uses same TLB as

used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

• Intel Core i7, i5, i3 processor, STLB: 512-entries, 4-way set associative.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
11-4 Vol. 3A

MEMORY CACHE CONTROL
Intel 64 and IA-32 processors may implement four types of caches: the trace cache,
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See
Figure 11-1. Cache availability is described below:
• Intel Core i7, i5, i3 processor Family and Intel Xeon processor Family

based on Intel® microarchitecture code name Nehalem and Intel®
microarchitecture code name Westmere — The L1 cache is divided into two
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction
cache. Each processor core has its own L1 and L2. The L3 cache is an inclusive,
unified data and instruction cache, shared by all processor cores inside a physical
package. No trace cache is implemented.

• Intel® Core™ 2 processor family and Intel® Xeon® processor family
based on Intel® Core™ microarchitecture — The L1 cache is divided into two
sections: one section is dedicated to caching instructions (pre-decoded instruc-
tions) and the other caches data. The L2 cache is a unified data and instruction
cache located on the processor chip; it is shared between two processor cores in
a dual-core processor implementation. Quad-core processors have two L2, each
shared by two processor cores. No trace cache is implemented.

• Intel® Atom™ processor — The L1 cache is divided into two sections: one
section is dedicated to caching instructions (pre-decoded instructions) and the
other caches data. The L2 cache is a unified data and instruction cache is located
on the processor chip. No trace cache is implemented.

• Intel® Core™ Solo and Intel® Core™ Duo processors — The L1 cache is
divided into two sections: one section is dedicated to caching instructions (pre-
decoded instructions) and the other caches data. The L2 cache is a unified data
and instruction cache located on the processor chip. It is shared between two

Store Buffer • Intel Core i7, i5, i3 processors: 32entries.
• Intel Core 2 Duo processors: 20 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 24 entries.
• Pentium M processor: 16 entries.
• P6 family processors: 12 entries.
• Pentium processor: 2 buffers, 1 entry each (Pentium processors with

MMX technology have 4 buffers for 4 entries).

Write Combining
(WC) Buffer

• Intel Core 2 Duo processors: 8 entries.
• Intel Atom processors: 8 entries, used for both WC and store buffers.
• Pentium 4 and Intel Xeon processors: 6 or 8 entries.
• Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
• P6 family processors: 4 entries.

NOTES:
1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Table 11-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics
Vol. 3A 11-5

MEMORY CACHE CONTROL
processor cores in a dual-core processor implementation. No trace cache is
implemented.

• Pentium® 4 and Intel® Xeon® processors Based on Intel NetBurst®
microarchitecture — The trace cache caches decoded instructions (μops) from
the instruction decoder and the L1 cache contains data. The L2 and L3 caches are
unified data and instruction caches located on the processor chip. Dualcore
processors have two L2, one in each processor core. Note that the L3 cache is
only implemented on some Intel Xeon processors.

• P6 family processors — The L1 cache is divided into two sections: one
dedicated to caching instructions (pre-decoded instructions) and the other to
caching data. The L2 cache is a unified data and instruction cache located on the
processor chip. P6 family processors do not implement a trace cache.

• Pentium® processors — The L1 cache has the same structure as on P6 family
processors. There is no trace cache. The L2 cache is a unified data and instruction
cache external to the processor chip on earlier Pentium processors and
implemented on the processor chip in later Pentium processors. For Pentium
processors where the L2 cache is external to the processor, access to the cache is
through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M proces-
sors, the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64
bytes wide. The processor always reads a cache line from system memory beginning
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6
least-significant bits clear.) A cache line can be filled from memory with a 8-transfer
burst transaction. The caches do not support partially-filled cache lines, so caching
even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide,
with cache line reads from system memory beginning on a 32-byte boundary (5
least-significant bits of a memory address clear.) A cache line can be filled from
memory with a 4-transfer burst transaction. Partially-filled cache lines are not
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available
in all execution modes: protected mode, system management mode (SMM), and
real-address mode. The L1,L2, and L3 caches are also available in all execution
modes; however, use of them must be handled carefully in SMM (see Section 26.4.2,
“SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They
speed up memory accesses when paging is enabled by reducing the number of
memory accesses that are required to read the page tables stored in system
memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages,
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte, 4-MByte or
1-GByte pages), and data TLBs for large pages. The TLBs are normally active only in
protected mode with paging enabled. When paging is disabled or the processor is in
11-6 Vol. 3A

MEMORY CACHE CONTROL
real-address mode, the TLBs maintain their contents until explicitly or implicitly
flushed (see Section 11.9, “Invalidating the Translation Lookaside Buffers (TLBs)”).

Processors based on Intel Core microarchitectures implement one level of instruction
TLB and two levels of data TLB. Intel Core i7 processor provides a second-level
unified TLB.

The store buffer is associated with the processors instruction execution units. It
allows writes to system memory and/or the internal caches to be saved and in some
cases combined to optimize the processor’s bus accesses. The store buffer is always
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled,
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in
optimizing software performance. For example, knowledge of cache dimensions and
replacement algorithms gives an indication of how large of a data structure can be
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor
provides privileged cache control instructions for use in flushing caches and forcing
memory ordering.

The Pentium III, Pentium 4, and Intel Xeon processors introduced several instructions
that software can use to improve the performance of the L1, L2, and L3 caches,
including the PREFETCHh and CLFLUSH instructions and the non-temporal move
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of
these instructions are discussed in Section 11.5.5, “Cache Management Instruc-
tions.”

11.2 CACHING TERMINOLOGY
IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 11.4, “Cache
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3,
or all). This operation is called a cache line fill. If the memory location containing
that operand is still cached the next time the processor attempts to access the
operand, the processor can read the operand from the cache instead of going back to
memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it
first checks if a cache line for that memory location exists in the cache. If a valid
cache line does exist, the processor (depending on the write policy currently in force)
can write the operand into the cache instead of writing it out to system memory. This
operation is called a write hit. If a write misses the cache (that is, a valid cache line
Vol. 3A 11-7

MEMORY CACHE CONTROL
is not present for area of memory being written to), the processor performs a cache
line fill, write allocation. Then it writes the operand into the cache line and
(depending on the write policy currently in force) can also write it out to memory. If
the operand is to be written out to memory, it is written first into the store buffer, and
then written from the store buffer to memory when the system bus is available.
(Note that for the Pentium processor, write misses do not result in a cache line fill;
they always result in a write to memory. For this processor, only read misses result in
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486
processor) and Intel 64 processors have the ability to snoop other processor’s
accesses to system memory and to their internal caches. They use this snooping
ability to keep their internal caches consistent both with system memory and with
the caches in other processors on the bus. For example, in the Pentium and P6 family
processors, if through snooping one processor detects that another processor
intends to write to a memory location that it currently has cached in shared state,
the snooping processor will invalidate its cache line forcing it to perform a cache line
fill the next time it accesses the same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping)
that another processor is trying to access a memory location that it has modified in
its cache, but has not yet written back to system memory, the snooping processor
will signal the other processor (by means of the HITM# signal) that the cache line is
held in modified state and will preform an implicit write-back of the modified data.
The implicit write-back is transferred directly to the initial requesting processor and
snooped by the memory controller to assure that system memory has been updated.
Here, the processor with the valid data may pass the data to the other processors
without actually writing it to system memory; however, it is the responsibility of the
memory controller to snoop this operation and update memory.

11.3 METHODS OF CACHING AVAILABLE
The processor allows any area of system memory to be cached in the L1, L2, and L3
caches. In individual pages or regions of system memory, it allows the type of
caching (also called memory type) to be specified (see Section 11.5). Memory types
currently defined for the Intel 64 and IA-32 architectures are (see Table 11-2):
• Strong Uncacheable (UC) —System memory locations are not cached. All

reads and writes appear on the system bus and are executed in program order
without reordering. No speculative memory accesses, page-table walks, or
prefetches of speculated branch targets are made. This type of cache-control is
useful for memory-mapped I/O devices. When used with normal RAM, it greatly
reduces processor performance.

NOTE
The behavior of FP and SSE/SSE2 operations on operands in UC
memory is implementation dependent. In some implementations,
11-8 Vol. 3A

MEMORY CACHE CONTROL
accesses to UC memory may occur more than once. To ensure
predictable behavior, use loads and stores of general purpose
registers to access UC memory that may have read or write side
effects.

• Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC)
memory type, except that this memory type can be overridden by programming
the MTRRs for the WC memory type. This memory type is available in processor
families starting from the Pentium III processors and can only be selected through
the PAT.

• Write Combining (WC) — System memory locations are not cached (as with
uncacheable memory) and coherency is not enforced by the processor’s bus
coherency protocol. Speculative reads are allowed. Writes may be delayed and
combined in the write combining buffer (WC buffer) to reduce memory accesses.
If the WC buffer is partially filled, the writes may be delayed until the next
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction,
CPUID execution, a read or write to uncached memory, an interrupt occurrence,
or a LOCK instruction execution. This type of cache-control is appropriate for
video frame buffers, where the order of writes is unimportant as long as the
writes update memory so they can be seen on the graphics display. See Section
11.3.1, “Buffering of Write Combining Memory Locations,” for more information
about caching the WC memory type. This memory type is available in the
Pentium Pro and Pentium II processors by programming the MTRRs; or in
processor families starting from the Pentium III processors by programming the
MTRRs or by selecting it through the PAT.

Table 11-2. Memory Types and Their Properties

Memory Type and
Mnemonic

Cacheable Writeback
Cacheable

Allows
Speculative
Reads

Memory Ordering Model

Strong Uncacheable
(UC)

No No No Strong Ordering

Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can
be overridden by WC in MTRRs.

Write Combining (WC) No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.

Write Through (WT) Yes No Yes Speculative Processor Ordering.

Write Back (WB) Yes Yes Yes Speculative Processor Ordering.

Write Protected (WP) Yes for
reads; no for
writes

No Yes Speculative Processor Ordering.
Available by programming
MTRRs.
Vol. 3A 11-9

MEMORY CACHE CONTROL
• Write-through (WT) — Writes and reads to and from system memory are
cached. Reads come from cache lines on cache hits; read misses cause cache
fills. Speculative reads are allowed. All writes are written to a cache line (when
possible) and through to system memory. When writing through to memory,
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for
frame buffers or when there are devices on the system bus that access system
memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

• Write-back (WB) — Writes and reads to and from system memory are cached.
Reads come from cache lines on cache hits; read misses cause cache fills.
Speculative reads are allowed. Write misses cause cache line fills (in processor
families starting with the P6 family processors), and writes are performed
entirely in the cache, when possible. Write combining is allowed. The write-back
memory type reduces bus traffic by eliminating many unnecessary writes to
system memory. Writes to a cache line are not immediately forwarded to system
memory; instead, they are accumulated in the cache. The modified cache lines
are written to system memory later, when a write-back operation is performed.
Write-back operations are triggered when cache lines need to be deallocated,
such as when new cache lines are being allocated in a cache that is already full.
They also are triggered by the mechanisms used to maintain cache consistency.
This type of cache-control provides the best performance, but it requires that all
devices that access system memory on the system bus be able to snoop memory
accesses to insure system memory and cache coherency.

• Write protected (WP) — Reads come from cache lines when possible, and read
misses cause cache fills. Writes are propagated to the system bus and cause
corresponding cache lines on all processors on the bus to be invalidated.
Speculative reads are allowed. This memory type is available in processor
families starting from the P6 family processors by programming the MTRRs (see
Table 11-6).

Table 11-3 shows which of these caching methods are available in the Pentium, P6
Family, Pentium 4, and Intel Xeon processors.

Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium M, Pentium 4
and Intel Xeon Processors

P6 Family
Processors

Pentium
Processor

Strong Uncacheable (UC) Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes
11-10 Vol. 3A

MEMORY CACHE CONTROL
11.3.1 Buffering of Write Combining Memory Locations
Writes to the WC memory type are not cached in the typical sense of the word
cached. They are retained in an internal write combining buffer (WC buffer) that is
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer
is not snooped and thus does not provide data coherency. Buffering of writes to WC
memory is done to allow software a small window of time to supply more modified
data to the WC buffer while remaining as non-intrusive to software as possible. The
buffering of writes to WC memory also causes data to be collapsed; that is, multiple
writes to the same memory location will leave the last data written in the location and
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel
Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon proces-
sors; the WC buffer is made up of several 64-byte WC buffers. For the P6 family
processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC
buffers one at a time. When one or more WC buffers has been filled, the processor
has the option of evicting the buffers to system memory. The protocol for evicting the
WC buffers is implementation dependent and should not be relied on by software for
system memory coherency. When using the WC memory type, software must be
sensitive to the fact that the writing of data to system memory is being delayed and
must deliberately empty the WC buffers when system memory coherency is
required.

Once the processor has started to evict data from the WC buffer into system
memory, it will make a bus-transaction style decision based on how much of the
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the
processor will execute a burst-write transaction on the bus. This results in all 32
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor)
being transmitted on the data bus in a single burst transaction. If one or more of the
WC buffer’s bytes are invalid (for example, have not been written by software), the
processor will transmit the data to memory using “partial write” transactions (one
chunk at a time, where a “chunk” is 8 bytes).

Write Protected (WP) Yes Yes No

NOTE:
* Introduced in the Pentium III processor; not available in the Pentium Pro or Pentium II processors

Table 11-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Atom, Intel
Core Duo, Pentium M, Pentium 4
and Intel Xeon Processors

P6 Family
Processors

Pentium
Processor
Vol. 3A 11-11

MEMORY CACHE CONTROL
This will result in a maximum of 4 partial write transactions (for P6 family processors)
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one
WC buffer of data sent to memory.

The WC memory type is weakly ordered by definition. Once the eviction of a WC
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus
before the partial write for chunk 1 or vice versa).

The only elements of WC propagation to the system bus that are guaranteed are
those provided by transaction atomicity. For example, with a P6 family processor, a
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated
simultaneously. Likewise, for more recent processors starting with those based on
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a
single burst transactions, using any chunk order within a transaction. For partial
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

11.3.2 Choosing a Memory Type
The simplest system memory model does not use memory-mapped I/O with read or
write side effects, does not include a frame buffer, and uses the write-back memory
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/O, and
should always use strong uncacheable memory for memory-mapped I/O with read
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt
writes desirable, because those writes cannot be observed at the other port until they
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that
contains pixel values displayed on a screen. Frame buffer memory is typically large (a
few megabytes) and is usually written more than it is read by the processor. Using
strong uncacheable memory for a frame buffer generates very large amounts of bus
traffic, because operations on the entire buffer are implemented using partial writes
rather than line writes. Using write-through memory for a frame buffer can displace
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data
cache. Therefore, systems should use write-combining memory for frame buffers
whenever possible.
11-12 Vol. 3A

MEMORY CACHE CONTROL
Software can use page-level cache control, to assign appropriate effective memory
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not
access the structure again until the structure is rewritten by another agent. Such a
large data structure should be marked as uncacheable, or reading it will evict cached
lines that the processor will be referencing again.

A similar example would be a write-only data structure that is written to (to export
the data to another agent), but never read by software. Such a structure can be
marked as uncacheable, because software never reads the values that it writes
(though as uncacheable memory, it will be written using partial writes, while as
write-back memory, it will be written using line writes, which may not occur until the
other agent reads the structure and triggers implicit write-backs).

On the Pentium III, Pentium 4, and more recent processors, new instructions are
provided that give software greater control over the caching, prefetching, and the
write-back characteristics of data. These instructions allow software to use weakly
ordered or processor ordered memory types to improve processor performance, but
when necessary to force strong ordering on memory reads and/or writes. They also
allow software greater control over the caching of data. For a description of these
instructions and there intended use, see Section 11.5.5, “Cache Management
Instructions.”

11.3.3 Code Fetches in Uncacheable Memory
Programs may execute code from uncacheable (UC) memory, but the implications
are different from accessing data in UC memory. When doing code fetches, the
processor never transitions from cacheable code to UC code speculatively. It also
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an
instruction once. It may decode consecutive UC instructions in a cacheline without
fetching between each instruction. It may also fetch additional cachelines from the
same or a consecutive 4-KByte page in order to decode one non-speculative UC
instruction (this can be true even when the instruction is contained fully in one line).

Because of the above and because cacheline sizes may change in future processors,
software should avoid placing memory-mapped I/O with read side effects in the
same page or in a subsequent page used to execute UC code.

11.4 CACHE CONTROL PROTOCOL
The following section describes the cache control protocol currently defined for the
Intel 64 and IA-32 architectures.

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive,
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per
Vol. 3A 11-13

MEMORY CACHE CONTROL
cache line. Each line can be marked as being in one of the states defined in Table
11-4. In general, the operation of the MESI protocol is transparent to programs.

The L1 instruction cache in P6 family processors implements only the “SI” part of the
MESI protocol, because the instruction cache is not writable. The instruction cache
monitors changes in the data cache to maintain consistency between the caches
when instructions are modified. See Section 11.6, “Self-Modifying Code,” for more
information on the implications of caching instructions.

11.5 CACHE CONTROL
The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling
the caching of data and instructions and for controlling the ordering of reads and
writes between the processor, the caches, and memory. These mechanisms can be
divided into two groups:
• Cache control registers and bits — The Intel 64 and IA-32 architectures

define several dedicated registers and various bits within control registers and
page- and directory-table entries that control the caching system memory
locations in the L1, L2, and L3 caches. These mechanisms control the caching of
virtual memory pages and of regions of physical memory.

• Cache control and memory ordering instructions — The Intel 64 and IA-32
architectures provide several instructions that control the caching of data, the
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control
memory coherency for specific locations in memory, and to force strong memory
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.

Table 11-4. MESI Cache Line States

Cache Line State M (Modified) E (Exclusive) S (Shared) I (Invalid)

This cache line is valid? Yes Yes Yes No

The memory copy is… Out of date Valid Valid —

Copies exist in caches
of other processors?

No No Maybe Maybe

A write to this line … Does not go to
the system bus.

Does not go to
the system bus.

Causes the
processor to gain
exclusive
ownership of the
line.

Goes directly to
the system bus.
11-14 Vol. 3A

MEMORY CACHE CONTROL
11.5.1 Cache Control Registers and Bits
Figure 11-3 depicts cache-control mechanisms in IA-32 processors. Other than for
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers
and bits for use in enabling or restricting caching to various pages or regions in
memory:
• CD flag, bit 30 of control register CR0 — Controls caching of system memory

locations (see Section 2.5, “Control Registers”). If the CD flag is clear, caching is
enabled for the whole of system memory, but may be restricted for individual
pages or regions of memory by other cache-control mechanisms. When the CD
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for
the P6 and more recent processor families and prevented for the Pentium
processor (see note below). With the CD flag set, however, the caches will still
respond to snoop traffic. Caches should be explicitly flushed to insure memory
coherency. For highest processor performance, both the CD and the NW flags in
control register CR0 should be cleared. Table 11-5 shows the interaction of the
CD and NW flags.
The effect of setting the CD flag is somewhat different for processor families
starting with P6 family than the Pentium processor (see Table 11-5). To insure
memory coherency after the CD flag is set, the caches should be explicitly
flushed (see Section 11.5.3, “Preventing Caching”). Setting the CD flag for the
P6 and more recent processor families modify cache line fill and update
behaviour. Also, setting the CD flag on these processors do not force strict
ordering of memory accesses unless the MTRRs are disabled and/or all memory
is referenced as uncached (see Section 8.2.5, “Strengthening or Weakening the
Memory-Ordering Model”).
Vol. 3A 11-15

MEMORY CACHE CONTROL
Figure 11-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32
Processors

Page-Directory or
Page-Table Entry

TLBs

MTRRs3

Physical Memory

0

FFFFFFFFH2

control overall caching
of system memory

CD and NW Flags PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

MTRRs control caching
of selected regions of
physical memory

P
C
D

CR3

Control caching of
page directory

P
W
T

C
D

CR0

N
W

Store Buffer

P
C
D

P
W
T

G1

CR4

Enables global pages

P
G
E

designated with G flag

1. G flag only available in P6 and later processor families

3. MTRRs available only in P6 and later processor families;
 similar control available in Pentium processor with the KEN#
 and WB/WT# pins.

2. The maximum physical address size is reported by CPUID leaf
function 80000008H. The maximum physical address size of

PAT4

PAT controls caching
of virtual memory
pages

4. PAT available only in Pentium III and later processor families.

P4

A
T

FFFFFFFFFH applies only If 36-bit physical addressing is used.

5. L3 in processors based on Intel NetBurst microarchitecture can
be disabled using IA32_MISC_ENABLE MSR.
11-16 Vol. 3A

MEMORY CACHE CONTROL
Table 11-5. Cache Operating Modes

CD NW Caching and Read/Write Policy L1 L2/L31

0 0 Normal Cache Mode. Highest performance cache operation.

• Read hits access the cache; read misses may cause replacement.
• Write hits update the cache.
• Only writes to shared lines and write misses update system

memory.

Yes
Yes
Yes

Yes
Yes
Yes

• Write misses cause cache line fills.
• Write hits can change shared lines to modified under control of

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write misses do not cause cache line

fills.

Yes
Yes

Yes

Yes

• (Pentium processor only.) Write hits can change shared lines to
exclusive under control of WB/WT#.

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes
Yes

0 1 Invalid setting.

Generates a general-protection exception (#GP) with an error code
of 0.

NA NA

1 0 No-fill Cache Mode. Memory coherency is maintained.3

• (Pentium 4 and later processor families.) State of processor after
a power up or reset.

• Read hits access the cache; read misses do not cause
replacement (see Pentium 4 and Intel Xeon processors reference
below).

• Write hits update the cache.
• Only writes to shared lines and write misses update system

memory.

Yes

Yes

Yes
Yes

Yes

Yes

Yes
Yes

• Write misses access memory.
• Write hits can change shared lines to exclusive under control of

the MTRRs and with associated read invalidation cycle.
• (Pentium processor only.) Write hits can change shared lines to

exclusive under control of the WB/WT#.

Yes
Yes

Yes

Yes
Yes

1 0 • (P6 and later processor families only.) Strict memory ordering is
not enforced unless the MTRRs are disabled and/or all memory is
referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model”).

• Invalidation is allowed.
• External snoop traffic is supported.

Yes

Yes
Yes

Yes

Yes
Yes
Vol. 3A 11-17

MEMORY CACHE CONTROL
• NW flag, bit 29 of control register CR0 — Controls the write policy for system
memory locations (see Section 2.5, “Control Registers”). If the NW and CD flags
are clear, write-back is enabled for the whole of system memory, but may be
restricted for individual pages or regions of memory by other cache-control
mechanisms. Table 11-5 shows how the other combinations of CD and NW flags
affects caching.

NOTES
For the Pentium 4 and Intel Xeon processors, the NW flag is a don’t
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.
For Intel Atom processors, the NW flag is a don’t care flag; that is,
when the CD flag is set, the processor disables caching, regardless of
the setting of the NW flag.
For the Pentium processor, when the L1 cache is disabled (the CD and
NW flags in control register CR0 are set), external snoops are
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems.
When snoops are inhibited, address parity is not checked and
APCHK# is not asserted for a corrupt address; however, when snoops
are accepted, address parity is checked and APCHK# is asserted for

1 1 Memory coherency is not maintained.2, 3

• (P6 family and Pentium processors.) State of the processor after
a power up or reset.

• Read hits access the cache; read misses do not cause
replacement.

• Write hits update the cache and change exclusive lines to
modified.

Yes

Yes

Yes

Yes

Yes

Yes

• Shared lines remain shared after write hit.
• Write misses access memory.
• Invalidation is inhibited when snooping; but is allowed with INVD

and WBINVD instructions.
• External snoop traffic is supported.

Yes
Yes
Yes

No

Yes
Yes
Yes

Yes

NOTES:
1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-

sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and
NW bits to 1 selects the no-fill cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

Table 11-5. Cache Operating Modes

CD NW Caching and Read/Write Policy L1 L2/L31
11-18 Vol. 3A

MEMORY CACHE CONTROL
corrupt addresses.

• PCD and PWT flags in paging-structure entries — Control the memory type
used to access paging structures and pages (see Section 4.9, “Paging and
Memory Typing”).

• PCD and PWT flags in control register CR3 — Control the memory type used
to access the first paging structure of the current paging-structure hierarchy (see
Section 4.9, “Paging and Memory Typing”).

• G (global) flag in the page-directory and page-table entries (introduced
to the IA-32 architecture in the P6 family processors) — Controls the
flushing of TLB entries for individual pages. See Section 4.10, “Caching
Translation Information,” for more information about this flag.

• PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 4.10, “Caching Translation
Information,” for more information about this flag.

• Memory type range registers (MTRRs) (introduced in P6 family
processors) — Control the type of caching used in specific regions of physical
memory. Any of the caching types described in Section 11.3, “Methods of Caching
Available,” can be selected. See Section 11.11, “Memory Type Range Registers
(MTRRs),” for a detailed description of the MTRRs.

• Page Attribute Table (PAT) MSR (introduced in the Pentium III processor)
— Extends the memory typing capabilities of the processor to permit memory
types to be assigned on a page-by-page basis (see Section 11.12, “Page Attribute
Table (PAT)”).

• Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLE MSR
(Available only in processors based on Intel NetBurst microarchitecture)
— Allows the L3 cache to be disabled and enabled, independently of the L1 and
L2 caches.

• KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to
control the caching method used for specific areas of memory. They perform
similar (but not identical) functions to the MTRRs in the P6 family processors.

• PCD and PWT pins (Pentium processor) — These pins (which are associated
with the PCD and PWT flags in control register CR3 and in the page-directory and
page-table entries) permit caching in an external L2 cache to be controlled on a
page-by-page basis, consistent with the control exercised on the L1 cache of
these processors. The P6 and more recent processor families do not provide
these pins because the L2 cache in internal to the chip package.

11.5.2 Precedence of Cache Controls
The cache control flags and MTRRs operate hierarchically for restricting caching. That
is, if the CD flag is set, caching is prevented globally (see Table 11-5). If the CD flag
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict
Vol. 3A 11-19

MEMORY CACHE CONTROL
caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region
of system memory uncacheable, a page-level caching control cannot be used to
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncacheable, an MTRR cannot be used to
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy
takes precedence. The write-combining policy (which can only be assigned through
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is
being used to select memory types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. Using IA32_MISC_ENALBES[bit
6] takes precedence over the CD flag, MTRRs, and PAT for the L3 cache in those
processors. That is, when the third-level cache disable flag is set (cache disabled),
the other cache controls have no affect on the L3 cache; when the flag is clear
(enabled), the cache controls have the same affect on the L3 cache as they have on
the L1 and L2 caches.

IA32_MISC_ENALBES[bit 6] is not supported in Intel Core i7 processors, nor proces-
sors based on Intel Core, and Intel Atom microarchitectures.

11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in
the page-table or page-directory entry for the page. Table 11-6 describes the
mapping of MTRR memory types and page-level caching attributes to effective
memory types, when normal caching is in effect (the CD and NW flags in control
register CR0 are clear). Combinations that appear in gray are implementation-
defined for the Pentium Pro and Pentium II processors. System designers are encour-
aged to avoid these implementation-defined combinations.

Table 11-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors

MTRR Memory Type1 PCD Value PWT Value Effective Memory Type

UC X X UC

WC 0 0 WC

0 1 WC

1 0 WC

1 1 UC
11-20 Vol. 3A

MEMORY CACHE CONTROL
When normal caching is in effect, the effective memory type shown in Table 11-6 is
determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective
memory type is identical to the MTRR-defined memory type.

2. If the PCD flag is set, then the effective memory type is UC.

3. If the PCD flag is clear and the PWT flag is set, the effective memory type is WT
for the WB memory type and the MTRR-defined memory type for all other
memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specific for
the WP and WC memory types and architecturally-defined for the WB, WT, and
UC memory types.

11.5.2.2 Selecting Memory Types for Pentium III and More Recent
Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M,
Pentium 4, Intel Xeon, and Pentium III processors use the PAT to select effective
page-level memory types. Here, a memory type for a page is selected by the MTRRs
and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a
page-table or page-directory entry (see Section 11.12.3, “Selecting a Memory Type
from the PAT”). Table 11-7 describes the mapping of MTRR memory types and PAT
entry types to effective memory types, when normal caching is in effect (the CD and

WT 0 X WT

1 X UC

WP 0 0 WP

0 1 WP

1 0 WC

1 1 UC

WB 0 0 WB

0 1 WT

1 X UC

NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium III proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.

Table 11-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors (Contd.)
Vol. 3A 11-21

MEMORY CACHE CONTROL
NW flags in control register CR0 are clear).

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent
Processor Families

MTRR Memory Type PAT Entry Value Effective Memory Type

UC UC UC1

UC- UC1

WC WC

WT UC1

WB UC1

WP UC1

WC UC UC2

UC- WC

WC WC

WT UC2,3

WB WC

WP UC2,3

WT UC UC2

UC- UC2

WC WC

WT WT

WB WT

WP WP3
11-22 Vol. 3A

MEMORY CACHE CONTROL
11.5.2.3 Writing Values Across Pages with Different Memory Types
If two adjoining pages in memory have different memory types, and a word or longer
operand is written to a memory location that crosses the page boundary between
those two pages, the operand might be written to memory twice. This action does not
present a problem for writes to actual memory; however, if a device is mapped the
memory space assigned to the pages, the device might malfunction.

WB UC UC2

UC- UC2

WC WC

WT WT

WB WB

WP WP

WP UC UC2

UC- WC3

WC WC

WT WT3

WB WP

WP WP

NOTES:
1. The UC attribute comes from the MTRRs and the processors are not required to snoop their

caches since the data could never have been cached. This attribute is preferred for performance
reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required
to check their caches because the data may be cached due to page aliasing, which is not recom-
mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32
Architectures Software Developer’s Manual. However, all processors that support both the PAT
and the MTRRs determine the effective page-level memory types for these combinations as
given.

Table 11-7. Effective Page-Level Memory Types for Pentium III and More Recent
Processor Families (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type
Vol. 3A 11-23

MEMORY CACHE CONTROL
11.5.3 Preventing Caching
To disable the L1, L2, and L3 caches after they have been enabled and have received
cache fills, perform the following steps:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and
the NW flag to 0.

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached or set all MTRRs
for the uncached memory type (see the discussion of the discussion of the TYPE
field and the E flag in Section 11.11.2.1, “IA32_MTRR_DEF_TYPE MSR”).

The caches must be flushed (step 2) after the CD flag is set to insure system memory
coherency. If the caches are not flushed, cache hits on reads will still occur and data
will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct require-
ments: (i) discontinue new data replacing existing data in the cache (ii) ensure data
already in the cache are evicted to memory, (iii) ensure subsequent memory refer-
ences observe UC memory type semantics. Different processor implementation of
caching control hardware may allow some variation of software implementation of
these three requirements. See note below.

NOTES
Setting the CD flag in control register CR0 modifies the processor’s
caching behaviour as indicated in Table 11-5, but setting the CD flag
alone may not be sufficient across all processor families to force the
effective memory type for all physical memory to be UC nor does it
force strict memory ordering, due to hardware implementation
variations across different processor families. To force the UC
memory type and strict memory ordering on all of physical memory,
it is sufficient to either program the MTRRs for all physical memory to
be UC memory type or disable all MTRRs.
For the Pentium 4 and Intel Xeon processors, after the sequence of
steps given above has been executed, the cache lines containing the
code between the end of the WBINVD instruction and before the
MTRRS have actually been disabled may be retained in the cache
hierarchy. Here, to remove code from the cache completely, a second
WBINVD instruction must be executed after the MTRRs have been
disabled.
For Intel Atom processors, setting the CD flag forces all physical
memory to observe UC semantics (without requiring memory type of
physical memory to be set explicitly). Consequently, software does
not need to issue a second WBINVD as some other processor
generations might require.
11-24 Vol. 3A

MEMORY CACHE CONTROL
11.5.4 Disabling and Enabling the L3 Cache
On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache disable
flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache to be disabled and
enabled, independently of the L1 and L2 caches. Prior to using this control to disable
or enable the L3 cache, software should disable and flush all the processor caches, as
described earlier in Section 11.5.3, “Preventing Caching,” to prevent of loss of infor-
mation stored in the L3 cache. After the L3 cache has been disabled or enabled,
caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLE[bit 6], the
procedure described in Section 11.5.3, “Preventing Caching,” apply to the entire
cache hierarchy.

11.5.5 Cache Management Instructions
The Intel 64 and IA-32 architectures provide several instructions for managing the
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh
and CLFLUSH instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2,
and L3 caches. The INVD instruction invalidates all internal cache entries, then
generates a special-function bus cycle that indicates that external caches also should
be invalidated. The INVD instruction should be used with care. It does not force a
write-back of modified cache lines; therefore, data stored in the caches and not
written back to system memory will be lost. Unless there is a specific requirement or
benefit to invalidating the caches without writing back the modified lines (such as,
during testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches,
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache
coherency with main memory is maintained regardless of the write policy in effect
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors)
special-function bus cycles to indicate to external cache controllers that write-back of
modified data followed by invalidation of external caches should occur. The amount of
time or cycles for WBINVD to complete will vary due to the size of different cache
hierarchies and other factors. As a consequence, the use of the WBINVD instruction
can have an impact on interrupt/event response time.

The PREFETCHh instructions allow a program to suggest to the processor that a
cache line from a specified location in system memory be prefetched into the cache
hierarchy (see Section 11.8, “Explicit Caching”).
Vol. 3A 11-25

MEMORY CACHE CONTROL
The CLFLUSH instruction allow selected cache lines to be flushed from memory. This
instruction give a program the ability to explicitly free up cache space, when it is
known that cached section of system memory will not be accessed in the near future.

The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD) allow data to be moved from the processor’s registers directly into
system memory without being also written into the L1, L2, and/or L3 caches. These
instructions can be used to prevent cache pollution when operating on data that is
going to be modified only once before being stored back into system memory. These
instructions operate on data in the general-purpose, MMX, and XMM registers.

11.5.6 L1 Data Cache Context Mode
L1 data cache context mode is a feature of processors based on the Intel NetBurst
microarchitecture that support Intel Hyper-Threading Technology. When
CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context
mode using the L1 data cache context mode flag (IA32_MISC_ENABLE[bit 24]).
Selectable modes are adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

11.5.6.1 Adaptive Mode
Adaptive mode facilitates L1 data cache sharing between logical processors. When
running in adaptive mode, the L1 data cache is shared across logical processors in
the same core if:
• CR3 control registers for logical processors sharing the cache are identical.
• The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the
logical processors use different paging modes, processors compete for cache
resources. This reduces the effective size of the cache for each logical processor.
Aliasing of the cache is not allowed (which prevents data thrashing).

11.5.6.2 Shared Mode
In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason,
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based
11-26 Vol. 3A

MEMORY CACHE CONTROL
on the Intel NetBurst microarchitecture that support Intel Hyper-Threading Tech-
nology.

11.6 SELF-MODIFYING CODE
A write to a memory location in a code segment that is currently cached in the
processor causes the associated cache line (or lines) to be invalidated. This check is
based on the physical address of the instruction. In addition, the P6 family and
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a
snoop of an instruction in a code segment, where the target instruction is already
decoded and resident in the trace cache, invalidates the entire trace cache. The latter
behavior means that programs that self-modify code can cause severe degradation
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems
among IA-32 processors. Applications that include self-modifying code use the same
linear address for modifying and fetching the instruction. Systems software, such as
a debugger, that might possibly modify an instruction using a different linear address
than that used to fetch the instruction, will execute a serializing operation, such as a
CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 8.1.3,
“Handling Self- and Cross-Modifying Code,” for more information about the use of
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both
the cache and memory, but if the instruction was prefetched before the write, the old
version of the instruction could be the one executed. To prevent the old instruction
from being executed, flush the instruction prefetch unit by coding a jump instruction
immediately after any write that modifies an instruction.

11.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable,
although the element may never have been accessed in the normal von Neumann
sequence. Implicit caching occurs on the P6 and more recent processor families due
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor
systems, since software running on these processor families also has not been able
to deterministically predict the behavior of instruction prefetch.
Vol. 3A 11-27

MEMORY CACHE CONTROL
To avoid problems related to implicit caching, the operating system must explicitly
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.

The code in Example 11-1 shows the effect of implicit caching on page-table entries.
The linear address F000H points to physical location B000H (the page-table entry for
F000H contains the value B000H), and the page-table entry for linear address F000
is PTE_F000.

Example 11-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB
mov CR3, EAX; by copying CR3 to itself
mov PTE_F000, A000H; Change F000H to point to A000H
mov EBX, [F000H];

Because of speculative execution in the P6 and more recent processor families, the
last MOV instruction performed would place the value at physical location B000H into
EBX, rather than the value at the new physical address A000H. This situation is
remedied by placing a TLB invalidation between the load and the store.

11.8 EXPLICIT CACHING
The Pentium III processor introduced four new instructions, the PREFETCHh instruc-
tions, that provide software with explicit control over the caching of data. These
instructions provide “hints” to the processor that the data requested by a PREFETCHh
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow
selection of the cache level into which data will be read.

The PREFETCHh instructions can help reduce the long latency typically associated
with reading data from memory and thus help prevent processor “stalls.” However,
these instructions should be used judiciously. Overuse can lead to resource conflicts
and hence reduce the performance of an application. Also, these instructions should
only be used to prefetch data from memory; they should not be used to prefetch
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “Optimizing Cache Usage,” in the Intel® 64 and IA-32 Archi-
tectures Optimization Reference Manual.
11-28 Vol. 3A

MEMORY CACHE CONTROL
11.9 INVALIDATING THE TRANSLATION LOOKASIDE
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware
to invalidate the TLBs either explicitly or as a side effect of another operation. Most
details are given in Section 4.10.4, “Invalidation of TLBs and Paging-Structure
Caches.” In addition, the following operations invalidate all TLB entries, irrespective
of the setting of the G flag:
• Asserting or de-asserting the FLUSH# pin.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a

WRMSR instruction).
• Writing to control register CR0 to modify the PG or PE flag.
• (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4

to modify the PSE, PGE, or PAE flag.
• Writing to control register CR4 to change the PCIDE flag from 1 to 0.

See Section 4.10, “Caching Translation Information,” for additional information about
the TLBs.

11.10 STORE BUFFER
Intel 64 and IA-32 processors temporarily store each write (store) to memory in a
store buffer. The store buffer improves processor performance by allowing the
processor to continue executing instructions without having to wait until a write to
memory and/or to a cache is complete. It also allows writes to be delayed for more
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in
systems that use multiple processors. The processor ensures that write operations
are always carried out in program order. It also insures that the contents of the store
buffer are always drained to memory in the following situations:
• When an exception or interrupt is generated.
• (P6 and more recent processor families only) When a serializing instruction is

executed.
• When an I/O instruction is executed.
• When a LOCK operation is performed.
• (P6 and more recent processor families only) When a BINIT operation is

performed.
• (Pentium III, and more recent processor families only) When using an SFENCE

instruction to order stores.
Vol. 3A 11-29

MEMORY CACHE CONTROL
• (Pentium 4 and more recent processor families only) When using an MFENCE
instruction to order stores.

The discussion of write ordering in Section 8.2, “Memory Ordering,” gives a detailed
description of the operation of the store buffer.

11.11 MEMORY TYPE RANGE REGISTERS (MTRRS)
The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the
memory types (see Section 11.3, “Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations
for different types of memory such as RAM, ROM, frame-buffer memory, and
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical
memory, and it defines a set of model-specific registers (MSRs) for specifying the
type of memory that is contained in each range. Table 11-8 shows the memory types
that can be specified and their properties; Figure 11-4 shows the mapping of physical
memory with MTRRs. See Section 11.3, “Methods of Caching Available,” for a more
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the
fixed and variable MTRRs, which in effect makes all of physical memory uncacheable.
Initialization software should then set the MTRRs to a specific, system-defined
memory map. Typically, the BIOS (basic input/output system) software configures
the MTRRs. The operating system or executive is then free to modify the memory
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent
family, each processor MUST use the identical MTRR memory map so that software
will have a consistent view of memory.

NOTE
In multiple processor systems, the operating system must maintain
MTRR consistency between all the processors in the system (that is,
all processors must use the same MTRR values). The P6 and more
recent processor families provide no hardware support for
maintaining this consistency.

Table 11-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) 00H
11-30 Vol. 3A

MEMORY CACHE CONTROL
Write Combining (WC) 01H

Reserved* 02H

Reserved* 03H

Write-through (WT) 04H

Write-protected (WP) 05H

Writeback (WB) 06H

Reserved* 7H through FFH

NOTE:

* Use of these encodings results in a general-protection exception (#GP).

Figure 11-4. Mapping Physical Memory With MTRRs

Table 11-8. Memory Types That Can Be Encoded in MTRRs (Contd.)

0

FFFFFFFFH

80000H

BFFFFH
C0000H

FFFFFH
100000H

7FFFFH

512 KBytes

256 KBytes

256 KBytes

8 fixed ranges

16 fixed ranges

64 fixed ranges

Variable ranges

(64-KBytes each)

(16 KBytes each)

(4 KBytes each)

(from 4 KBytes to
maximum size of

Address ranges not

Physical Memory

mapped by an MTRR
are set to a default type

physical memory)
Vol. 3A 11-31

MEMORY CACHE CONTROL
11.11.1 MTRR Feature Identification
The availability of the MTRR feature is model-specific. Software can determine if
MTRRs are supported on a processor by executing the CPUID instruction and reading
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a
read-only MSR that can be read with the RDMSR instruction. Figure 11-5 shows the
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this
register are as follows:
• VCNT (variable range registers count) field, bits 0 through 7 — Indicates

the number of variable ranges implemented on the processor.
• FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs

(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are
supported when set; no fixed range registers are supported when clear.

• WC (write combining) flag, bit 10 — The write-combining (WC) memory type
is supported when set; the WC type is not supported when clear.

• SMRR (System-Management Range Register) flag, bit 11 — The system-
management range register (SMRR) interface is supported when bit 11 is set; the
SMRR interface is not supported when clear.

Bit 9 and bits 12 through 63 in the IA32_MTRRCAP MSR are reserved. If software
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP)
is generated.

Software must read IA32_MTRRCAP VCNT field to determine the number of variable
MTRRs and query other feature bits in IA32_MTRRCAP to determine additional capa-
bilities that are supported in a processor. For example, some processors may report
a value of ‘8’ in the VCNT field, other processors may report VCNT with different
values.

Figure 11-5. IA32_MTRRCAP Register

VCNT — Number of variable range registers
FIX — Fixed range registers supported
WC — Write-combining memory type supported

63 0

Reserved W
C

71011

VCNT
F
I
X

89

Reserved

SMRR — SMRR interface supported
11-32 Vol. 3A

MEMORY CACHE CONTROL
11.11.2 Setting Memory Ranges with MTRRs
The memory ranges and the types of memory specified in each range are set by three
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and
the variable range MTRRs. These registers can be read and written to using the
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates
the availability of these registers on the processor (see Section 11.11.1, “MTRR
Feature Identification”).

11.11.2.1 IA32_MTRR_DEF_TYPE MSR
The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family
processors) sets the default properties of the regions of physical memory that are not
encompassed by MTRRs. The functions of the flags and field in this register are as
follows:
• Type field, bits 0 through 7 — Indicates the default memory type used for

those physical memory address ranges that do not have a memory type specified
for them by an MTRR (see Table 11-8 for the encoding of this field). The legal
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated.
Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the UC type to
nonexistent memory locations, it can either be specified as the default type in the
Type field or be explicitly assigned with the fixed and variable MTRRs.

• FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled
when set; fixed-range MTRRs are disabled when clear. When the fixed-range
MTRRs are enabled, they take priority over the variable-range MTRRs when
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the
fixed-range MTRRs.

• E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are
disabled when clear, and the UC memory type is applied to all of physical

Figure 11-6. IA32_MTRR_DEF_TYPE MSR

Type — Default memory type

FE — Fixed-range MTRRs enable/disable
E — MTRR enable/disable

63 0

Reserved F
E

71011

Type

8912

E

Reserved
Vol. 3A 11-33

MEMORY CACHE CONTROL
memory. When this flag is set, the FE flag can disable the fixed-range MTRRs;
when the flag is clear, the FE flag has no affect. When the E flag is set, the type
specified in the default memory type field is used for areas of memory not
already mapped by either a fixed or variable MTRR.

Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are
reserved; the processor generates a general-protection exception (#GP) if software
attempts to write nonzero values to them.

11.11.2.2 Fixed Range MTRRs
The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each.
Each of these registers is divided into 8-bit fields that are used to specify the memory
type for each of the sub-ranges the register controls:
• Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range

from 0H to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.
• Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000

— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

• Registers IA32_MTRR_FIX4K_C0000 through
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from
C0000H to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8
ranges per register.

Table 11-9 shows the relationship between the fixed physical-address ranges and the
corresponding fields of the fixed-range MTRRs; Table 11-8 shows memory type
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

11.11.2.3 Variable Range MTRRs
The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the
memory type for m variable-size address ranges, using a pair of MTRRs for each
range. The number m of ranges supported is given in bits 7:0 of the IA32_MTRRCAP
MSR (see Figure 11-5 in Section 11.11.1).

The first entry in each pair (IA32_MTRR_PHYSBASEn) defines the base address and
memory type for the range; the second entry (IA32_MTRR_PHYSMASKn) contains a
mask used to determine the address range. The “n” suffix is in the range 0 through
m–1 and identifies a specific register pair.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.
11-34 Vol. 3A

MEMORY CACHE CONTROL
Figure 11-7 shows flags and fields in these registers. The functions of these flags and
fields are:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base

address of the address range. This 24-bit value, in the case where MAXPHYADDR
is 36 bits, is extended by 12 bits at the low end to form the base address (this
automatically aligns the address on a 4-KByte boundary).

• PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24
bits if the maximum physical address size is 36 bits, 28 bits if the maximum
physical address size is 40 bits). The mask determines the range of the region
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

Table 11-9. Address Mapping for Fixed-Range MTRRs
Address Range (hexadecimal) MTRR

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF

IA32_MTRR_
FIX64K_00000

9C000
9FFFF

98000-
98FFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF

IA32_MTRR_
FIX16K_80000

BC000
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF

IA32_MTRR_
FIX16K_A0000

C7000
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF

IA32_MTRR_
FIX4K_C0000

CF000
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

IA32_MTRR_
FIX4K_C8000

D7000
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

IA32_MTRR_
FIX4K_D0000

DF000
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

IA32_MTRR_
FIX4K_D8000

E7000
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

IA32_MTRR_
FIX4K_E0000

EF000
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

IA32_MTRR_
FIX4K_E8000

F7000
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

IA32_MTRR_
FIX4K_F0000

FF000
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

IA32_MTRR_
FIX4K_F8000
Vol. 3A 11-35

MEMORY CACHE CONTROL
— The width of the PhysMask field depends on the maximum physical address
size supported by the processor.

CPUID.80000008H reports the maximum physical address size supported by
the processor. If CPUID.80000008H is not available, software may assume
that the processor supports a 36-bit physical address size (then PhysMask is
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKn are reserved).
See the Note below.

• V (valid) flag, bit 11 — Enables the register pair when set; disables register
pair when clear.

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers
are reserved; the processor generates a general-protection exception (#GP) if soft-
ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the
area not mapped by the mask value is set to the default memory type. Intel does not
encourage the use of “discontinuous” ranges because they could require physical
memory to be present throughout the entire 4-GByte physical memory map. If
memory is not provided, the behaviour is undefined.

Figure 11-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range
Register Pair

V — Valid
PhysMask — Sets range mask

IA32_MTRR_PHYSMASKn Register

63 0

Reserved

101112

V Reserved

MAXPHYADDR

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_MTRR_PHYSBASEn Register

63 0

Reserved

1112

Type

MAXPHYADDR

PhysBase

78

Reserved

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and
bits 63:36 are reserved.
11-36 Vol. 3A

MEMORY CACHE CONTROL
NOTE
It is possible for software to parse the memory descriptions that
BIOS provides by using the ACPI/INT15 e820 interface mechanism.
This information then can be used to determine how MTRRs are
initialized (for example: allowing the BIOS to define valid memory
ranges and the maximum memory range supported by the platform,
including the processor).

See Section 11.11.4.1, “MTRR Precedences,” for information on overlapping variable
MTRR ranges.

11.11.2.4 System-Management Range Register Interface
If IA32_MTRRCAP[bit 11] is set, the processor supports the SMRR interface to
restrict access to a specified memory address range used by system-management
mode (SMM) software (see Section 26.4.2.1). If the SMRR interface is supported,
SMM software is strongly encouraged to use it to protect the SMI code and data
stored by SMI handler in the SMRAM region.

The system-management range registers consist of a pair of MSRs (see Figure 11-8).
The IA32_SMRR_PHYSBASE MSR defines the base address for the SMRAM memory
range and the memory type used to access it in SMM. The IA32_SMRR_PHYSMASK
MSR contains a valid bit and a mask that determines the SMRAM address range
protected by the SMRR interface. These MSRs may be written only in SMM; an
attempt to write them outside of SMM causes a general-protection exception.1

Figure 11-8 shows flags and fields in these registers. The functions of these flags and
fields are the following:
• Type field, bits 0 through 7 — Specifies the memory type for the range (see

Table 11-8 for the encoding of this field).
• PhysBase field, bits 12 through 31 — Specifies the base address of the

address range. The address must be less than 4 GBytes and is automatically
aligned on a 4-KByte boundary.

• PhysMask field, bits 12 through 31 — Specifies a mask that determines the
range of the region being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For
more information: see Section 11.11.3, “Example Base and Mask Calcula-
tions.”

• V (valid) flag, bit 11 — Enables the register pair when set; disables register
pair when clear.

1. For some processor models, these MSRs can be accessed by RDMSR and WRMSR only if the
SMRR interface has been enabled in the IA32_FEATURE_CONTROL MSR. See Appendix B.
Vol. 3A 11-37

MEMORY CACHE CONTROL
Before attempting to access these SMRR registers, software must test bit 11 in the
IA32_MTRRCAP register. If SMRR is not supported, reads from or writes to registers
cause general-protection exceptions.

When the valid flag in the IA32_SMRR_PHYSMASK MSR is 1, accesses to the specified
address range are treated as follows:
• If the logical processor is in SMM, accesses uses the memory type in the

IA32_SMRR_PHYSBASE MSR.
• If the logical processor is not in SMM, write accesses are ignored and read

accesses return a fixed value for each byte. The uncacheable memory type (UC)
is used in this case.

The above items apply even if the address range specified overlaps with a range
specified by the MTRRs.

11.11.3 Example Base and Mask Calculations
The examples in this section apply to processors that support a maximum physical
address size of 36 bits. The base and mask values entered in variable-range MTRR
pairs are 24-bit values that the processor extends to 36-bits.

For example, to enter a base address of 2 MBytes (200000H) in the
IA32_MTRR_PHYSBASE3 register, the 12 least-significant bits are truncated and the
value 000200H is entered in the PhysBase field. The same operation must be
performed on mask values. For example, to map the address range from 200000H to

Figure 11-8. IA32_SMRR_PHYSBASE and IA32_SMRR_PHYSMASK SMRR Pair

V — Valid
PhysMask — Sets range mask

IA32_SMRR_PHYSMASK Register

63 0

Reserved

101112

V Reserved

31

PhysMask

Type — Memory type for range
PhysBase — Base address of range

IA32_SMRR_PHYSBASE Register

63 0

Reserved

1112

Type

31

PhysBase

78

Reserved
11-38 Vol. 3A

MEMORY CACHE CONTROL
3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFE00000H is required. Again, the
12 least-significant bits of this mask value are truncated, so that the value entered in
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFE00H. This mask is chosen so
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask
value, it will return the same value as when the base address is AND’d with the mask
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base
value of 000400H is entered in the PhysBase field and a mask value of FFFC00H is
entered in the PhysMask field.

Example 11-2. Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system
has the following characteristics:
• 96 MBytes of system memory is mapped as write-back memory (WB) for highest

system performance.
• A custom 4-MByte I/O card is mapped to uncached memory (UC) at a base

address of 64 MBytes. This restriction forces the 96 MBytes of system memory to
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a
4-MByte hole for the I/O card.

• An 8-MByte graphics card is mapped to write-combining memory (WC) beginning
at address A0000000H.

• The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical
address space for this system configuration.

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 000F FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 000F FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 000F FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 000F FFF0 0800H
Caches 15-16 MByte as UC cache type.
Vol. 3A 11-39

MEMORY CACHE CONTROL
IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 000F FF80 0800H
Caches A0000000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the
ranges are mapped to WB and UC memory types) to minimize the number of MTRR
registers that are required to configure the memory environment. This setup also
fulfills the requirement that two register pairs are left for operating system usage.

11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical
address size, software should query CPUID.80000008H to determine the maximum
physical address. See the example.

Example 11-3. Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation,
Example 11-2 should be modified as follows:

IA32_MTRR_PHYSBASE0 = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASK0 = 0000 00FF FC00 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 00FF FE00 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK2 = 0000 00FF FFC0 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 00FF FFC0 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 0000H
IA32_MTRR_PHYSMASK4 = 0000 00FF FFF0 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASE5 = 0000 0000 A000 0001H
IA32_MTRR_PHYSMASK5 = 0000 00FF FF80 0800H
Caches A0000000-A0800000 as WC type.
11-40 Vol. 3A

MEMORY CACHE CONTROL
11.11.4 Range Size and Alignment Requirement
A range that is to be mapped to a variable-range MTRR must meet the following
“power of 2” size and alignment rules:

1. The minimum range size is 4 KBytes and the base address of the range must be
on at least a 4-KByte boundary.

2. For ranges greater than 4 KBytes, each range must be of length 2n and its base
address must be aligned on a 2n boundary, where n is a value equal to or greater
than 12. The base-address alignment value cannot be less than its length. For
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be
aligned on at least an 8-KByte boundary.

11.11.4.1 MTRR Precedences
If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE
MSR), then all memory accesses are of the UC memory type. If the MTRRs are
enabled, then the memory type used for a memory access is determined as follows:

1. If the physical address falls within the first 1 MByte of physical memory and
fixed MTRRs are enabled, the processor uses the memory type stored for the
appropriate fixed-range MTRR.

2. Otherwise, the processor attempts to match the physical address with a memory
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type
stored in the IA32_MTRR_PHYSBASEn register for that range.

— If two or more variable memory ranges match and the memory types are
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT
and WB, the WT memory type is used.

— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default
memory type.

11.11.5 MTRR Initialization
On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable
all MTRRs. All other bits in the MTRRs are undefined.

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all
fixed-range and variable-range MTRR register fields to 0. Software can then initialize
Vol. 3A 11-41

MEMORY CACHE CONTROL
the MTRRs according to known types of memory, including memory on devices that it
auto-configures. Initialization is expected to occur prior to booting the operating
system.

See Section 11.11.8, “MTRR Considerations in MP Systems,” for information on
initializing MTRRs in MP (multiple-processor) systems.

11.11.6 Remapping Memory Types
A system designer may re-map memory types to tune performance or because a
future processor may not implement all memory types supported by the Pentium 4,
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a
weaker memory ordering model. For example, the uncacheable type cannot be
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining
type.

2. A memory type that does not delay writes should not be mapped into a memory
type that does delay writes, because applications of such a memory type may
rely on its write-through behavior. Accordingly, the write-back type cannot be
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by
a subsequent read, such as the write-protected type, can only be mapped to
another type with the same behaviour (and there are no others for the
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how
a memory type is used, allowing additional mappings. For example, write-through
memory with no associated write side effects can be mapped into write-back
memory.

11.11.7 MTRR Maintenance Programming Interface
The operating system maintains the MTRRs after booting and sets up or changes the
memory types for memory-mapped devices. The operating system should provide a
driver and application programming interface (API) to access and set the MTRRs. The
function calls MemTypeGet() and MemTypeSet() define this interface.

11.11.7.1 MemTypeGet() Function
The MemTypeGet() function returns the memory type of the physical memory range
specified by the parameters base and size. The base address is the starting physical
address and the size is the number of bytes for the memory range. The function
11-42 Vol. 3A

MEMORY CACHE CONTROL
automatically aligns the base address and size to 4-KByte boundaries. Pseudocode
for the MemTypeGet() function is given in Example 11-4.

Example 11-4. MemTypeGet() Pseudocode

#define MIXED_TYPES -1 /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN

Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;
FI;
IF MTRRdefType.E = 0

THEN return UC;
FI;
FirstType ¨ Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 11-5. */
FOR each additional 4-KByte range specified in SIZE

NextType ¨ Get4KMemType (4KByteRange);
IF NextType ¼ FirstType

THEN return MixedTypes;
FI;

ROF;
return FirstType;

ELSE return UNSUPPORTED;
FI;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the
MTRRs are not enabled, then the UC memory type is returned. If more than one
memory type corresponds to the specified range, a status of MIXED_TYPES is
returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 11-5 obtains the
memory type for a single 4-KByte range at a given physical address. The sample
code determines whether an PHY_ADDRESS falls within a fixed range by comparing
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to
BFFFFH (16-KByte regions), and C0000H to FFFFFH (4-KByte regions). If an address
falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.
Vol. 3A 11-43

MEMORY CACHE CONTROL
Example 11-5. Get4KMemType() Pseudocode

IF IA32_MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */

THEN IF PHY_ADDRESS is within a fixed range

return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT

IF IA32_MTRR_PHYSMASK.V = 0
THEN continue;

FI;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =

(IA32_MTRR_PHYSBASE.Base
AND IA32_MTRR_PHYSMASK.Mask)

THEN
return IA32_MTRR_PHYSBASE.Type;

FI;
ROF;
return MTRRdefType.Type;

11.11.7.2 MemTypeSet() Function
The MemTypeSet() function in Example 11-6 sets a MTRR for the physical memory
range specified by the parameters base and size to the type specified by type. The
base address and size are multiples of 4 KBytes and the size is not 0.

Example 11-6. MemTypeSet Pseudocode

IF CPU_FEATURES.MTRR (* processor supports MTRRs *)

THEN

IF BASE and SIZE are not 4-KByte aligned or size is 0

THEN return INVALID;

FI;

IF (BASE + SIZE) wrap 4-GByte address space

THEN return INVALID;

FI;

IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors

THEN return UNSUPPORTED;

FI;

IF TYPE is WC and not supported

THEN return UNSUPPORTED;

FI;

IF IA32_MTRRCAP.FIX is set AND range can be mapped using a

fixed-range MTRR
11-44 Vol. 3A

MEMORY CACHE CONTROL
THEN

pre_mtrr_change();

update affected MTRR;

post_mtrr_change();

FI;

ELSE (* try to map using a variable MTRR pair *)

IF IA32_MTRRCAP.VCNT = 0

THEN return UNSUPPORTED;

FI;

IF conflicts with current variable ranges

THEN return RANGE_OVERLAP;

FI;

IF no MTRRs available

THEN return VAR_NOT_AVAILABLE;

FI;

IF BASE and SIZE do not meet the power of 2 requirements for

variable MTRRs

THEN return INVALID_VAR_REQUEST;

FI;

pre_mtrr_change();

Update affected MTRRs;

post_mtrr_change();

FI;

pre_mtrr_change()

BEGIN

disable interrupts;

Save current value of CR4;

disable and flush caches;

flush TLBs;

disable MTRRs;

IF multiprocessing

THEN maintain consistency through IPIs;

FI;

END

post_mtrr_change()

BEGIN

flush caches and TLBs;

enable MTRRs;

enable caches;

restore value of CR4;

enable interrupts;
Vol. 3A 11-45

MEMORY CACHE CONTROL
END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them
and determining whether the physical address in question matches any of the current
ranges. During this scan, the algorithm can detect whether any current variable
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to
avoid executing code with a partially valid MTRR setup. The algorithm disables
caching by setting the CD flag and clearing the NW flag in control register CR0. The
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if
PGE was already set) or by updating control register CR3 (if PGE was already clear).
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the
MTRRs and again invalidates the caches and TLBs. This second invalidation is
required because of the processor's aggressive prefetch of both instructions and
data. The algorithm restores interrupts and re-enables caching by setting the CD
flag.

An operating system can batch multiple MTRR updates so that only a single pair of
cache invalidations occur.

11.11.8 MTRR Considerations in MP Systems
In MP (multiple-processor) systems, the operating systems must maintain MTRR
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and
P6 family processors provide no hardware support to maintain this consistency. In
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it
must load the MTRRs of the boot processor while the E flag in register MTRRdefType
is 0. The operating system then directs other processors to load their MTRRs with the
same memory map. After all the processors have loaded their MTRRs, the operating
system signals them to enable their MTRRs. Barrier synchronization is used to
prevent further memory accesses until all processors indicate that the MTRRs are
enabled. This synchronization is likely to be a shoot-down style algorithm, with
shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system
to repeat the loading and enabling process to maintain consistency, using the
following procedure:

1. Broadcast to all processors to execute the following code sequence.

2. Disable interrupts.

3. Wait for all processors to reach this point.
11-46 Vol. 3A

MEMORY CACHE CONTROL
4. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the
NW flag to 0.)

5. Flush all caches using the WBINVD instructions. Note on a processor that
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

6. If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

7. If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV
from control register CR3 to another register and then a MOV from that register
back to CR3.

8. Disable all range registers (by clearing the E flag in register MTRRdefType). If
only variable ranges are being modified, software may clear the valid bits for the
affected register pairs instead.

9. Update the MTRRs.

10. Enable all range registers (by setting the E flag in register MTRRdefType). If only
variable-range registers were modified and their individual valid bits were
cleared, then set the valid bits for the affected ranges instead.

11. Flush all caches and all TLBs a second time. (The TLB flush is required for
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family
processors, but it may be needed in future systems.)

12. Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in
control register CR0 to 0.)

13. Set PGE flag in control register CR4, if cleared in Step 6 (above).

14. Wait for all processors to reach this point.

15. Enable interrupts.

11.11.9 Large Page Size Considerations
The MTRRs provide memory typing for a limited number of regions that have a
4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a
given page is cached in the processor’s TLBs. When using large pages (2 MBytes,
4 MBytes, or 1 GBytes), a single page-table entry covers multiple 4-KByte granules,
each with a single memory type. Because the memory type for a large page is cached
in the TLB, the processor can behave in an undefined manner if a large page is
mapped to a region of memory that MTRRs have mapped with multiple memory
types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges
within a large page are of the same type. If a large page maps to a region of memory
containing different MTRR-defined memory types, the PCD and PWT flags in the
page-table entry should be set for the most conservative memory type for that
range. For example, a large page used for memory mapped I/O and regular memory
Vol. 3A 11-47

MEMORY CACHE CONTROL
is mapped as UC memory. Alternatively, the operating system can map the region
using multiple 4-KByte pages each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory
type implies that large pages with different memory types may suffer a performance
penalty, since they must be marked with the lowest common denominator memory
type. The same consideration apply to 1 GByte pages, each of which may consist of
multiple 2-Mbyte ranges.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or
P6 family processor detects a large page overlapping the first 1 MByte of this
memory range with a memory type that conflicts with the fixed MTRRs. Here, the
processor maps the memory range as multiple 4-KByte pages within the TLB. This
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for
regions of memory at addresses greater than or equal to 4 MBytes.

11.12 PAGE ATTRIBUTE TABLE (PAT)
The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to
allow memory types to be assigned to regions of physical memory based on linear
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs
allow mapping of memory types to regions of the physical address space, where the
PAT allows mapping of memory types to pages within the linear address space. The
MTRRs are useful for statically describing memory types for physical ranges, and are
typically set up by the system BIOS. The PAT extends the functions of the PCD and
PWT bits in page tables to allow all five of the memory types that can be assigned
with the MTRRs (plus one additional memory type) to also be assigned dynamically
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium III processor. It is also
available in the Pentium 4 and Intel Xeon processors.

11.12.1 Detecting Support for the PAT Feature
An operating system or executive can detect the availability of the PAT by executing
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is
supported, the operating system or executive can use the IA32_PAT MSR to program
the PAT. When memory types have been assigned to entries in the PAT, software can
then use of the PAT-index bit (PAT) in the page-table and page-directory entries
along with the PCD and PWT bits to assign memory types from the PAT to individual
pages.
11-48 Vol. 3A

MEMORY CACHE CONTROL
Note that there is no separate flag or control bit in any of the control registers that
enables the PAT. The PAT is always enabled on all processors that support it, and the
table lookup always occurs whenever paging is enabled, in all paging modes.

11.12.2 IA32_PAT MSR
The IA32_PAT MSR is located at MSR address 277H (see to Appendix B, “Model-
Specific Registers (MSRs),” and this address will remain at the same address on
future IA-32 processors that support the PAT feature. Figure 11-9. shows the format
of the 64-bit IA32_PAT MSR.

The IA32_PAT MSR contains eight page attribute fields: PA0 through PA7. The three
low-order bits of each field are used to specify a memory type. The five high-order
bits of each field are reserved, and must be set to all 0s. Each of the eight page
attribute fields can contain any of the memory type encodings specified in Table
11-10.

Note that for the P6 family processors, the IA32_PAT MSR is named the PAT MSR.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

Reserved PA3 Reserved PA2 Reserved PA1 Reserved PA0

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32

Reserved PA7 Reserved PA6 Reserved PA5 Reserved PA4

Figure 11-9. IA32_PAT MSR

Table 11-10. Memory Types That Can Be Encoded With PAT

Encoding Mnemonic

00H Uncacheable (UC)

01H Write Combining (WC)

02H Reserved*

03H Reserved*

04H Write Through (WT)

05H Write Protected (WP)

06H Write Back (WB)

07H Uncached (UC-)

08H - FFH Reserved*
Vol. 3A 11-49

MEMORY CACHE CONTROL
11.12.3 Selecting a Memory Type from the PAT
To select a memory type for a page from the PAT, a 3-bit index made up of the PAT,
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the
page. Table 11-11 shows the possible encodings of the PAT, PCD, and PWT bits and
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries
that point to 4-KByte pages and bit 12 in paging-structure entries that point to larger
pages. The PCD and PWT bits are bits 4 and 3, respectively, in paging-structure
entries that point to pages of any size.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the
region of physical memory in which the page is mapped to determine the effective
memory type for the page, as shown in Table 11-7.

11.12.4 Programming the PAT
Table 11-12 shows the default setting for each PAT entry following a power up or
reset of the processor. The setting remain unchanged following a soft reset (INIT
reset).

NOTE:
* Using these encodings will result in a general-protection exception (#GP).

Table 11-11. Selection of PAT Entries with PAT, PCD, and PWT Flags
PAT PCD PWT PAT Entry

0 0 0 PAT0

0 0 1 PAT1

0 1 0 PAT2

0 1 1 PAT3

1 0 0 PAT4

1 0 1 PAT5

1 1 0 PAT6

1 1 1 PAT7

Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset

PAT Entry Memory Type Following Power-up or Reset

PAT0 WB

PAT1 WT

PAT2 UC-

PAT3 UC

Table 11-10. Memory Types That Can Be Encoded With PAT
11-50 Vol. 3A

MEMORY CACHE CONTROL
The values in all the entries of the PAT can be changed by writing to the IA32_PAT
MSR using the WRMSR instruction. The IA32_PAT MSR is read and write accessible
(use of the RDMSR and WRMSR instructions, respectively) to software operating at a
CPL of 0. Table 11-10 shows the allowable encoding of the entries in the PAT.
Attempting to write an undefined memory type encoding into the PAT causes a
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in
a manner that maintains the consistency of the processor caches and translation
lookaside buffers (TLB). This is accomplished by following the procedure as specified
in Section 11.11.8, “MTRR Considerations in MP Systems,” for changing the value of
an MTRR in a multiple processor system. It requires a specific sequence of operations
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it
is possible to have a single physical page mapped to two or more different linear
addresses, each with different memory types. Intel does not support this practice
because it may lead to undefined operations that can result in a system failure. In
particular, a WC page must never be aliased to a cacheable page because WC writes
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to
a WC page, an operating system can avoid this type of aliasing by doing the
following:

1. Remove the previous mapping to a cacheable memory type in the page tables;
that is, make them not present.

2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously.
Note on processors that support self-snooping, CPUID feature flag bit 27, this
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages)
and enable page size extensions must carefully scrutinize the use of the PAT index bit
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7)
corresponds to the page size bit in a page-directory entry. Therefore, the operating
system can only use PAT entries PA0 through PA3 when setting the caching type for

PAT4 WB

PAT5 WT

PAT6 UC-

PAT7 UC

Table 11-12. Memory Type Setting of PAT Entries Following a Power-up or Reset
Vol. 3A 11-51

MEMORY CACHE CONTROL
a page table that is also used as a page directory. If the operating system attempts
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care
should be taken in selecting the encodings for entries in the PAT (see Section
11.12.5, “PAT Compatibility with Earlier IA-32 Processors”).

11.12.5 PAT Compatibility with Earlier IA-32 Processors
For IA-32 processors that support the PAT, the IA32_PAT MSR is always active. That
is, the PCD and PWT bits in page-table entries and in page-directory entries (that
point to pages) are always select a memory type for a page indirectly by selecting an
entry in the PAT. They never select the memory type for a page directly as they do in
earlier IA-32 processors that do not implement the PAT (see Table 11-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or
reset (see Table 11-12), these first four entries are encoded to select the same
memory types as the PCD and PWT bits would normally select directly in an IA-32
processor that does not implement the PAT. So, if encodings of the first four entries
in the PAT are left unchanged following a power-up or reset, code written to run on
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32
processors that do implement the PAT.
11-52 Vol. 3A

CHAPTER 12
INTEL® MMX™ TECHNOLOGY SYSTEM

PROGRAMMING

This chapter describes those features of the Intel® MMX™ technology that must be
considered when designing or enhancing an operating system to support MMX tech-
nology. It covers MMX instruction set emulation, the MMX state, aliasing of MMX
registers, saving MMX state, task and context switching considerations, exception
handling, and debugging.

12.1 EMULATION OF THE MMX INSTRUCTION SET
The IA-32 or Intel 64 architecture does not support emulation of the MMX instruc-
tions, as it does for x87 FPU instructions. The EM flag in control register CR0
(provided to invoke emulation of x87 FPU instructions) cannot be used for MMX
instruction emulation. If an MMX instruction is executed when the EM flag is set, an
invalid opcode exception (UD#) is generated. Table 12-1 shows the interaction of the
EM, MP, and TS flags in control register CR0 when executing MMX instructions.

12.2 THE MMX STATE AND MMX REGISTER ALIASING
The MMX state consists of eight 64-bit registers (MM0 through MM7). These registers
are aliased to the low 64-bits (bits 0 through 63) of floating-point registers R0
through R7 (see Figure 12-1). Note that the MMX registers are mapped to the phys-
ical locations of the floating-point registers (R0 through R7), not to the relative loca-
tions of the registers in the floating-point register stack (ST0 through ST7). As a

Table 12-1. Action Taken By MMX Instructions
for Different Combinations of EM, MP and TS

CR0 Flags

EM MP* TS Action

0 1 0 Execute.

0 1 1 #NM exception.

1 1 0 #UD exception.

1 1 1 #UD exception.

NOTE:
* For processors that support the MMX instructions, the MP flag should be set.
Vol. 3A 12-1

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
result, the MMX register mapping is fixed and is not affected by value in the Top Of
Stack (TOS) field in the floating-point status word (bits 11 through 13).

When a value is written into an MMX register using an MMX instruction, the value also
appears in the corresponding floating-point register in bits 0 through 63. Likewise,
when a floating-point value written into a floating-point register by a x87 FPU, the
low 64 bits of that value also appears in a the corresponding MMX register.

The execution of MMX instructions have several side effects on the x87 FPU state
contained in the floating-point registers, the x87 FPU tag word, and the x87 FPU
status word. These side effects are as follows:
• When an MMX instruction writes a value into an MMX register, at the same time,

bits 64 through 79 of the corresponding floating-point register are set to all 1s.
• When an MMX instruction (other than the EMMS instruction) is executed, each of

the tag fields in the x87 FPU tag word is set to 00B (valid). (See also Section
12.2.1, “Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87
FPU Tag Word.”)

Figure 12-1. Mapping of MMX Registers to Floating-Point Registers

079

R7

R6

R5

R4

R3

R2

R1

R0

Floating-Point Registers
64 63

x87 FPU Status Register
1113

x87 FPU Tag

MMX Registers
TOS

Register

0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

63

TOS = 0

00

00

00

00

00

00

00

00

000
12-2 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• When the EMMS instruction is executed, each tag field in the x87 FPU tag word is
set to 11B (empty).

• Each time an MMX instruction is executed, the TOS value is set to 000B.

Execution of MMX instructions does not affect the other bits in the x87 FPU status
word (bits 0 through 10 and bits 14 and 15) or the contents of the other x87 FPU
registers that comprise the x87 FPU state (the x87 FPU control word, instruction
pointer, data pointer, or opcode registers).

Table 12-2 summarizes the effects of the MMX instructions on the x87 FPU state.

12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR
Instructions on the x87 FPU Tag Word

Table 12-3 summarizes the effect of MMX and x87 FPU instructions and the FXSAVE
and FXRSTOR instructions on the tags in the x87 FPU tag word and the corresponding
tags in an image of the tag word stored in memory.

The values in the fields of the x87 FPU tag word do not affect the contents of the MMX
registers or the execution of MMX instructions. However, the MMX instructions do
modify the contents of the x87 FPU tag word, as is described in Section 12.2, “The
MMX State and MMX Register Aliasing.” These modifications may affect the operation
of the x87 FPU when executing x87 FPU instructions, if the x87 FPU state is not
initialized or restored prior to beginning x87 FPU instruction execution.

Note that the FSAVE, FXSAVE, and FSTENV instructions (which save x87 FPU state
information) read the x87 FPU tag register and contents of each of the floating-point
registers, determine the actual tag values for each register (empty, nonzero, zero, or
special), and store the updated tag word in memory. After executing these instruc-
tions, all the tags in the x87 FPU tag word are set to empty (11B). Likewise, the
EMMS instruction clears MMX state from the MMX/floating-point registers by setting
all the tags in the x87 FPU tag word to 11B.

Table 12-2. Effects of MMX Instructions on x87 FPU State

MMX
Instruction
Type

x87 FPU Tag
Word

TOS Field of
x87 FPU
Status
Word

Other x87
FPU Registers

Bits 64
Through 79 of
x87 FPU Data
Registers

Bits 0
Through 63 of
x87 FPU Data
Registers

Read from
MMX register

All tags set
to 00B (Valid)

000B Unchanged Unchanged Unchanged

Write to MMX
register

All tags set
to 00B (Valid)

000B Unchanged Set to all 1s Overwritten
with MMX data

EMMS All fields set
to 11B
(Empty)

000B Unchanged Unchanged Unchanged
Vol. 3A 12-3

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
12.3 SAVING AND RESTORING THE MMX STATE AND
REGISTERS

Because the MMX registers are aliased to the x87 FPU data registers, the MMX state
can be saved to memory and restored from memory as follows:
• Execute an FSAVE, FNSAVE, or FXSAVE instruction to save the MMX state to

memory. (The FXSAVE instruction also saves the state of the XMM and MXCSR
registers.)

• Execute an FRSTOR or FXRSTOR instruction to restore the MMX state from
memory. (The FXRSTOR instruction also restores the state of the XMM and
MXCSR registers.)

The save and restore methods described above are required for operating systems
(see Section 12.4, “Saving MMX State on Task or Context Switches”). Applications
can in some cases save and restore only the MMX registers in the following way:

Table 12-3. Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions on the
x87 FPU Tag Word

Instruction
Type

Instruction x87 FPU Tag Word Image of x87 FPU Tag Word
Stored in Memory

MMX All (except EMMS) All tags are set to 00B (valid). Not affected.

MMX EMMS All tags are set to 11B
(empty).

Not affected.

x87 FPU All (except FSAVE,
FSTENV, FRSTOR,
FLDENV)

Tag for modified floating-
point register is set to 00B or
11B.

Not affected.

x87 FPU and
FXSAVE

FSAVE, FSTENV,
FXSAVE

Tags and register values are
read and interpreted; then all
tags are set to 11B.

Tags are set according to the
actual values in the floating-
point registers; that is, empty
registers are marked 11B and
valid registers are marked
00B (nonzero), 01B (zero), or
10B (special).

x87 FPU and
FXRSTOR

FRSTOR, FLDENV,
FXRSTOR

All tags marked 11B in
memory are set to 11B; all
other tags are set according
to the value in the
corresponding floating-point
register: 00B (nonzero), 01B
(zero), or 10B (special).

Tags are read and
interpreted, but not modified.
12-4 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• Execute eight MOVQ instructions to save the contents of the MMX0 through
MMX7 registers to memory. An EMMS instruction may then (optionally) be
executed to clear the MMX state in the x87 FPU.

• Execute eight MOVQ instructions to read the saved contents of MMX registers
from memory into the MMX0 through MMX7 registers.

NOTE
The IA-32 architecture does not support scanning the x87 FPU tag
word and then only saving valid entries.

12.4 SAVING MMX STATE ON TASK OR CONTEXT
SWITCHES

When switching from one task or context to another, it is often necessary to save the
MMX state. As a general rule, if the existing task switching code for an operating
system includes facilities for saving the state of the x87 FPU, these facilities can also
be relied upon to save the MMX state, without rewriting the task switch code. This
reliance is possible because the MMX state is aliased to the x87 FPU state (see
Section 12.2, “The MMX State and MMX Register Aliasing”).

With the introduction of the FXSAVE and FXRSTOR instructions and of
SSE/SSE2/SSE3/SSSE3 extensions, it is possible (and more efficient) to create state
saving facilities in the operating system or executive that save the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3 state in one operation. Section 13.5, “Designing
OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches,” describes how to
design such facilities. The techniques describes in this section can be adapted to
saving only the MMX and x87 FPU state if needed.

12.5 EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING
MMX INSTRUCTIONS

MMX instructions do not generate x87 FPU floating-point exceptions, nor do they
affect the processor’s status flags in the EFLAGS register or the x87 FPU status word.
The following exceptions can be generated during the execution of an MMX instruc-
tion:
• Exceptions during memory accesses:

— Stack-segment fault (#SS).

— General protection (#GP).

— Page fault (#PF).

— Alignment check (#AC), if alignment checking is enabled.
Vol. 3A 12-5

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
• System exceptions:

— Invalid Opcode (#UD), if the EM flag in control register CR0 is set when an
MMX instruction is executed (see Section 12.1, “Emulation of the MMX
Instruction Set”).

— Device not available (#NM), if an MMX instruction is executed when the TS
flag in control register CR0 is set. (See Section 13.5.1, “Using the TS Flag to
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4
State.”)

• Floating-point error (#MF). (See Section 12.5.1, “Effect of MMX Instructions on
Pending x87 Floating-Point Exceptions.”)

• Other exceptions can occur indirectly due to the faulty execution of the exception
handlers for the above exceptions.

12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point
Exceptions

If an x87 FPU floating-point exception is pending and the processor encounters an
MMX instruction, the processor generates a x87 FPU floating-point error (#MF) prior
to executing the MMX instruction, to allow the pending exception to be handled by
the x87 FPU floating-point error exception handler. While this exception handler is
executing, the x87 FPU state is maintained and is visible to the handler. Upon
returning from the exception handler, the MMX instruction is executed, which will
alter the x87 FPU state, as described in Section 12.2, “The MMX State and MMX
Register Aliasing.”

12.6 DEBUGGING MMX CODE
The debug facilities operate in the same manner when executing MMX instructions as
when executing other IA-32 or Intel 64 architecture instructions.

To correctly interpret the contents of the MMX or x87 FPU registers from the
FSAVE/FNSAVE or FXSAVE image in memory, a debugger needs to take account of
the relationship between the x87 FPU register’s logical locations relative to TOS and
the MMX register’s physical locations.

In the x87 FPU context, STn refers to an x87 FPU register at location n relative to the
TOS. However, the tags in the x87 FPU tag word are associated with the physical
locations of the x87 FPU registers (R0 through R7). The MMX registers always refer
to the physical locations of the registers (with MM0 through MM7 being mapped to R0
through R7). Figure 12-2 shows this relationship. Here, the inner circle refers to the
physical location of the x87 FPU and MMX registers. The outer circle refers to the x87
FPU registers’s relative location to the current TOS.

When the TOS equals 0 (case A in Figure 12-2), ST0 points to the physical location
R0 on the floating-point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.
12-6 Vol. 3A

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
When the TOS equals 2 (case B in Figure 12-2), ST0 points to the physical location
R2. MM0 maps to ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

Figure 12-2. Mapping of MMX Registers to x87 FPU Data Register Stack

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST1

ST2

ST7

ST0 ST6

ST7

ST1

TOSTOS

x87 FPU “push” x87 FPU “pop” x87 FPU “push”

x87 FPU “pop”

Case A: TOS=0 Case B: TOS=2

MM0

MM1

MM2

MM3

MM4

MM5

MM6

MM7

ST0

Outer circle = x87 FPU data register’s logical location relative to TOS
Inner circle = x87 FPU tags = MMX register’s location = FP registers’s physical location

(R0)

(R2)(R2)

(R0)
Vol. 3A 12-7

INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
12-8 Vol. 3A

CHAPTER 13
SYSTEM PROGRAMMING FOR INSTRUCTION SET

EXTENSIONS AND PROCESSOR EXTENDED STATES

This chapter describes system programming features for instruction set extensions
operating on the processor state extension known as the SSE state (XMM registers,
MXCSR) and for processor extended states. Instruction set extensions operating on
the SSE state include the streaming SIMD extensions (SSE), streaming SIMD exten-
sions 2 (SSE2), streaming SIMD extensions 3 (SSE3), Supplemental SSE3 (SSSE3),
and SSE4.

Sections 13.1 through 13.5 cover system programming requirements to enable
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, providing operating system or executive
support for the SSE/SSE2/SSE3/SSSE3/SSE4 extensions, SIMD floating-point
exceptions, exception handling, and task (context) switching.

Operating system support for SSE state, once implemented using FXSAVE/FXRSTOR,
provides a limited degree of forward support for subsequent instruction set exten-
sions operating on the same known set of processor state. Processor extended states
refer to an extension in Intel 64 architecture that will allow system executives to
implement support for multiple processor state extensions that may be introduced
over time without requiring the system executive to be modified each time a new
processor state extension is introduced.

Managing processor extended states requires the following aspects:
• using instructions like XSAVE, XRSTOR, to save/restore state information to a

memory region consistent with the processor state extensions supported in
hardware,

• using CPUID enumeration features to query the set of extended processor states
supported by the processor,

• using XSETBV instruction to enable individual processor state extensions,
• maintaining various system programming resources.

System programming for managing processor extended states is described in the
sections starting 13.6.

13.1 PROVIDING OPERATING SYSTEM SUPPORT FOR
SSE/SSE2/SSE3/SSSE3/SSE4 EXTENSIONS

To use SSE/SSE2/SSE3/SSSE3/SSE4 extensions, the operating system or executive
must provide support for initializing the processor to use these extensions, for
handling the FXSAVE and FXRSTOR state saving instructions, and for handling SIMD
floating-point exceptions. The following sections provide system programming
Vol. 3A 13-1

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
guidelines for this support. Because SSE/SSE2/SSE3/SSSE3/SSE4 extensions share
the same state, experience the same sets of non-numerical and numerical exception
behavior, these guidelines that apply to SSE also apply to other sets of SIMD exten-
sions that operate on the same processor state and subject to the same sets of of
non-numerical and numerical exception behavior.

Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2),” and Chapter
12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, discuss support for
SSE/SSE2/SSE3/SSSE3/SSE4 from an applications point of view program.

13.1.1 Adding Support to an Operating System for
SSE/SSE2/SSE3/SSSE3/SSE4 Extensions

The following guidelines describe functions that an operating system or executive
must perform to support SSE/SSE2/SSE3/SSSE3/SSE4 extensions:

1. Check that the processor supports the SSE/SSE2/SSE3/SSSE3/SSE4 extensions.

2. Check that the processor supports the FXSAVE and FXRSTOR instructions.

3. Provide an initialization for the SSE, SSE2 SSE3, SSSE3 and SSE4 states.

4. Provide support for the FXSAVE and FXRSTOR instructions.

5. Provide support (if necessary) in non-numeric exception handlers for exceptions
generated by the SSE, SSE2, SSE3 and SSE4 instructions.

6. Provide an exception handler for the SIMD floating-point exception (#XM).

The following sections describe how to implement each of these guidelines.

13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension
Support

If the processor attempts to execute an unsupported SSE/SSE2/SSE3/SSSE3/SSE4
instruction, the processor generates an invalid-opcode exception (#UD).

Before an operating system or executive attempts to use
SSE/SSE2/SSE3/SSSE3/SSE4 extensions, it should check that support is present.
Make sure:
• CPUID.1:EDX.SSE[bit 25] = 1
• CPUID.1:EDX.SSE2[bit 26] = 1
• CPUID.1:ECX.SSE3[bit 0] = 1
• CPUID.1:ECX.SSSE3[bit 9] = 1
• CPUID.1:ECX.SSE4_1[bit 19] = 1
• CPUID.1:ECX.SSE4_2[bit 20] = 1
13-2 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
To use POPCNT instruction, software must check CPUID.1:ECX.POPCNT[bit 23] = 1

13.1.3 Checking for Support for the FXSAVE and FXRSTOR
Instructions

A separate check must be made to insure that the processor supports FXSAVE and
FXRSTOR. Make sure:
• CPUID.1:EDX.FXSR[bit 24] = 1

13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
The operating system or executive should carry out the following steps to set up
SSE/SSE2/SSE3/SSSE3/SSE4 extensions for use by application programs:

1. Set CR4.OSFXSR[bit 9] = 1. Setting this flag assumes that the operating system
provides facilities for saving and restoring SSE/SSE2/SSE3/SSSE3/SSE4 states
using FXSAVE and FXRSTOR instructions. These instructions are commonly used
to save the SSE/SSE2/SSE3/SSSE3/SSE4 state during task switches and when
invoking the SIMD floating-point exception (#XM) handler (see Section 13.4,
“Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches,”
and Section 13.1.6, “Providing an Handler for the SIMD Floating-Point Exception
(#XM),” respectively).

If the processor does not support the FXSAVE and FXRSTOR instructions,
attempting to set the OSFXSR flag will cause an exception (#GP) to be
generated.

2. Set CR4.OSXMMEXCPT[bit 10] = 1. Setting this flag assumes that the operating
system provides an SIMD floating-point exception (#XM) handler (see Section
13.1.6, “Providing an Handler for the SIMD Floating-Point Exception (#XM)”).

NOTE
The OSFXSR and OSXMMEXCPT bits in control register CR4 must be
set by the operating system. The processor has no other way of
detecting operating-system support for the FXSAVE and FXRSTOR
instructions or for handling SIMD floating-point exceptions.

3. Clear CR0.EM[bit 2] = 0. This action disables emulation of the x87 FPU, which is
required when executing SSE/SSE2/SSE3/SSSE3/SSE4 instructions (see Section
2.5, “Control Registers”).

4. Set CR0.MP[bit 1] = 1. This setting is the required setting for Intel 64 and IA-32
processors that support the SSE/SSE2/SSE3/SSSE3/SSE4 extensions (see
Section 9.2.1, “Configuring the x87 FPU Environment”).

Table 13-1 and Table 13-2 show the actions of the processor when an
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed, depending on the:
Vol. 3A 13-3

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
• OSFXSR and OSXMMEXCPT flags in control register CR4
• SSE/SSE2/SSE3/SSSE3/SSE4 feature flags returned by CPUID
• EM, MP, and TS flags in control register CR0

Table 13-1. Action Taken for Combinations of OSFXSR, OSXMMEXCPT, SSE, SSE2,
SSE3, EM, MP, and TS1

CR4 CPUID CR0 Flags

OSFXSR OSXMMEXCPT SSE,
SSE2,
SSE32

SSE4_13

EM MP 4 TS Action

0 X5 X X 1 X #UD exception.

1 X 0 X 1 X #UD exception.

1 X 1 1 1 X #UD exception.

1 0 1 0 1 0 Execute instruction; #UD exception
if unmasked SIMD floating-point
exception is detected.

1 1 1 0 1 0 Execute instruction; #XM exception
if unmasked SIMD floating-point
exception is detected.

1 X 1 0 1 1 #NM exception.

NOTES:
1. For execution of any SSE/SSE2/SSE3 instruction except the PAUSE, PREFETCHh, SFENCE,

LFENCE, MFENCE, MOVNTI, and CLFLUSH instructions.
2. Exception conditions due to CR4.OSFXSR or CR4.OSXMMEXCPT do not apply to FISTTP.
3. Only applies to DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
4. For processors that support the MMX instructions, the MP flag should be set.
5. X — Don’t care.
13-4 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
The SIMD floating-point exception mask bits (bits 7 through 12), the flush-to-zero
flag (bit 15), the denormals-are-zero flag (bit 6), and the rounding control field (bits
13 and 14) in the MXCSR register should be left in their default values of 0. This
permits the application to determine how these features are to be used.

13.1.5 Providing Non-Numeric Exception Handlers for Exceptions
Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions

SSE/SSE2/SSE3/SSSE3/SSE4 instructions can generate the same type of memory
access exceptions (such as, page fault, segment not present, and limit violations)
and other non-numeric exceptions as other Intel 64 and IA-32 architecture instruc-
tions generate.

Ordinarily, existing exception handlers can handle these and other non-numeric
exceptions without code modification. However, depending on the mechanisms used
in existing exception handlers, some modifications might need to be made.

The SSE/SSE2/SSE3/SSSE3/SSE4 extensions can generate the non-numeric excep-
tions listed below:
• Memory Access Exceptions:

— Invalid opcode (#UD).

— Stack-segment fault (#SS).

— General protection (#GP). Executing most SSE/SSE2/SSE3 instructions with
an unaligned 128-bit memory reference generates a general-protection
exception. (The MOVUPS and MOVUPD instructions allow unaligned a loads or
stores of 128-bit memory locations, without generating a general-protection
exception.) A 128-bit reference within the stack segment that is not aligned

Table 13-2. Action Taken for Combinations of OSFXSR, SSSE3, SSE4, EM, and TS

CR4 CPUID CR0 Flags

OSFXSR SSSE3
SSE4_1*
SSE4_2**

EM TS Action

0 X*** X X #UD exception.

1 0 X X #UD exception.

1 1 1 X #UD exception.

1 1 0 1 #NM exception.

NOTES:
* Applies to SSE4_1 instructions except DPPS, DPPD, ROUNDPS, ROUNDPD, ROUNDSS, ROUNDSD.
** Applies to SSE4_2 instructions except CRC32 and POPCNT.
***X — Don’t care.
Vol. 3A 13-5

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
to a 16-byte boundary will also generate a general-protection exception,
instead a stack-segment fault exception (#SS).

— Page fault (#PF).

— Alignment check (#AC). When enabled, this type of alignment check
operates on operands that are less than 128-bits in size: 16-bit, 32-bit, and
64-bit. To enable the generation of alignment check exceptions, do the
following:

• Set the AM flag (bit 18 of control register CR0)

• Set the AC flag (bit 18 of the EFLAGS register)

• CPL must be 3

If alignment check exceptions are enabled, 16-bit, 32-bit, and 64-bit
misalignment will be detected for the MOVUPD and MOVUPS instructions;
detection of 128-bit misalignment is not guaranteed and may vary with
implementation.

• System Exceptions:

— Invalid-opcode exception (#UD). This exception is generated when executing
SSE/SSE2/SSE3/SSSE3 instructions under the following conditions:

• SSE/SSE2/SSE3/SSSE3/SSE4_1/SSE4_2 feature flags returned by
CPUID are set to 0. This condition does not affect the CLFLUSH
instruction, nor POPCNT.

• The CLFSH feature flag returned by the CPUID instruction is set to 0. This
exception condition only pertains to the execution of the CLFLUSH
instruction.

• The POPCNT feature flag returned by the CPUID instruction is set to 0.
This exception condition only pertains to the execution of the POPCNT
instruction.

• The EM flag (bit 2) in control register CR0 is set to 1, regardless of the
value of TS flag (bit 3) of CR0. This condition does not affect the PAUSE,
PREFETCHh, MOVNTI, SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and
POPCNT instructions.

• The OSFXSR flag (bit 9) in control register CR4 is set to 0. This condition
does not affect the PSHUFW, MOVNTQ, MOVNTI, PAUSE, PREFETCHh,
SFENCE, LFENCE, MFENCE, CLFLUSH, CRC32 and POPCNT instructions.

• Executing a instruction that causes a SIMD floating-point exception when
the OSXMMEXCPT flag (bit 10) in control register CR4 is set to 0. See
Section 13.5.1, “Using the TS Flag to Control the Saving of the x87 FPU,
MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State.”

— Device not available (#NM). This exception is generated by executing a
SSE/SSE2/SSE3/SSSE3/SSE4 instruction when the TS flag (bit 3) of CR0 is
set to 1.
13-6 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
Other exceptions can occur indirectly due to faulty execution of the above
exceptions.

13.1.6 Providing an Handler for the SIMD Floating-Point Exception
(#XM)

SSE/SSE2/SSE3/SSSE3/SSE4 instructions do not generate numeric exceptions on
packed integer operations. They can generate the following numeric (SIMD floating-
point) exceptions on packed and scalar single-precision and double-precision
floating-point operations.
• Invalid operation (#I)
• Divide-by-zero (#Z)
• Denormal operand (#D)
• Numeric overflow (#O)
• Numeric underflow (#U)
• Inexact result (Precision) (#P)

These SIMD floating-point exceptions (with the exception of the denormal operand
exception) are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic
and represent the same conditions that cause x87 FPU floating-point error excep-
tions (#MF) to be generated for x87 FPU instructions.

Each of these exceptions can be masked, in which case the processor returns a
reasonable result to the destination operand without invoking an exception handler.
However, if any of these exceptions are left unmasked, detection of the exception
condition results in a SIMD floating-point exception (#XM) being generated. See
Chapter 6, “Interrupt 19—SIMD Floating-Point Exception (#XM).”

To handle unmasked SIMD floating-point exceptions, the operating system or execu-
tive must provide an exception handler. The section titled “SSE and SSE2 SIMD
Floating-Point Exceptions” in Chapter 11, “Programming with Streaming SIMD
Extensions 2 (SSE2),” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, describes the SIMD floating-point exception classes and gives
suggestions for writing an exception handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point
exceptions (#XM), the OSXMMEXCPT flag (bit 10) must be set in control register
CR0.

13.1.6.1 Numeric Error flag and IGNNE#
SSE/SSE2/SSE3/SSE4 extensions ignore the NE flag in control register CR0 (that is,
treats it as if it were always set) and the IGNNE# pin. When an unmasked SIMD
floating-point exception is detected, it is always reported by generating a SIMD
floating-point exception (#XM).
Vol. 3A 13-7

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
13.2 EMULATION OF SSE/SSE2/SSE3/SSSE3/SSE4
EXTENSIONS

The Intel 64 and IA-32 architecture does not support emulation of the
SSE/SSE2/SSE3/SSSE3/SSE4 instructions, as they do for x87 FPU instructions.

The EM flag in control register CR0 (provided to invoke emulation of x87 FPU instruc-
tions) cannot be used to invoke emulation of SSE/SSE2/SSE3/SSSE3/SSE4 instruc-
tions. If an SSE/SSE2/SSE3/SSSE3/SSE4 instruction is executed when CR0.EM = 1,
an invalid opcode exception (#UD) is generated. See Table 13-1.

13.3 SAVING AND RESTORING THE
SSE/SSE2/SSE3/SSSE3/SSE4 STATE

The SSE/SSE2/SSE3/SSSE3/SSE4 state consists of the state of the XMM and MXCSR
registers. The recommended method for saving and restoring this state follows:
• Execute an FXSAVE instruction to save the state of the XMM and MXCSR registers

to memory.
• Execute an FXRSTOR instruction to restore the state of the XMM and MXCSR

registers from the image saved in memory by the FXSAVE instruction.

This save and restore method is required for all operating systems. See Section 13.5,
“Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and
SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches.”

In some cases, applications can only save the XMM and MXCSR registers in the
following way:
• Execute MOVDQ instructions to save the contents of each XMM registers to

memory.
• Execute a STMXCSR instruction to save the state of the MXCSR register to

memory.

In some cases, applications can only restore the XMM and MXCSR registers in the
following way:
• Execute MOVDQ instructions to read the saved contents of each XMM registers

from memory to XMM registers.
• Execute a LDMXCSR instruction to restore the state of the MXCSR register from

memory.
13-8 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.4 SAVING THE SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON
TASK OR CONTEXT SWITCHES

When switching from one task or context to another, it is often necessary to save the
SSE/SSE2/SSE3/SSSE3/SSE4 state. FXSAVE and FXRSTOR instructions provide a
simple method for saving and restoring this state. See Section 13.3, “Saving and
Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State.” These instructions offer the
added benefit of saving x87 FPU and MMX state as well.

Guidelines for writing such procedures are in Section 13.5, “Designing OS Facilities
for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state
on Task or Context Switches.”

13.5 DESIGNING OS FACILITIES FOR AUTOMATICALLY
SAVING X87 FPU, MMX, AND
SSE/SSE2/SSE3/SSSE3/SSE4 STATE ON TASK OR
CONTEXT SWITCHES

The x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state consist of the state of the x87
FPU, MMX, XMM, and MXCSR registers. The FXSAVE and FXRSTOR instructions
provide a fast method for saving ad restoring this state. If task or context switching
facilities are already implemented in an operating system or executive and they use
FSAVE/FNSAVE and FRSTOR to save the x87 FPU and MMX state, these facilities can
be extended to save and restore SSE/SSE2/SSE3/SSSE3/SSE4 state by substituting
FXSAVE/FXRSTOR for FSAVE/FNSAVE and FRSTOR.

Where task or content switching facilities must be written from scratch, several
approaches can be taken for using the FXSAVE and FXRSTOR instructions to save and
restore x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state:
• The operating system can require applications that are intended be run as tasks

take responsibility for saving the state of the x87 FPU, MMX, XMM, and MXCSR
registers prior to a task suspension during a task switch and for restoring the
registers when the task is resumed. This approach is appropriate for cooperative
multitasking operating systems, where the application has control over (or is able
to determine) when a task switch is about to occur and can save state prior to the
task switch.

• The operating system can take the responsibility for automatically saving the x87
FPU, MMX, XMM, and MXCSR registers as part of the task switch process (using
an FXSAVE instruction) and automatically restoring the state of the registers
when a suspended task is resumed (using an FXRSTOR instruction). Here, the
x87 FPU/MMX/SSE/SSE2/SSE3/SSE4 state must be saved as part of the task
state. This approach is appropriate for preemptive multitasking operating
systems, where the application cannot know when it is going to be preempted
and cannot prepare in advance for task switching. Here, the operating system is
Vol. 3A 13-9

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
responsible for saving and restoring the task and the x87
FPU/MMX/SSE/SSE2/SSE3 state when necessary.

• The operating system can take the responsibility for saving the x87 FPU, MMX,
XMM, and MXCSR registers as part of the task switch process, but delay the
saving of the MMX and x87 FPU state until an x87 FPU, MMX, or
SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed by the new task.
Using this approach, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state is
saved only if an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction needs
to be executed in the new task. (See Section 13.5.1, “Using the TS Flag to
Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4
State,” for more information.)

13.5.1 Using the TS Flag to Control the Saving of the
x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

Saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state using FXSAVE requires
processor overhead. If the new task does not access x87 FPU, MMX, XMM, and
MXCSR registers, avoid overhead by not automatically saving the state on a task
switch.

The TS flag in control register CR0 is provided to allow the operating system to delay
saving the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state until an instruction
that actually accesses this state is encountered in a new task. When the TS flag is
set, the processor monitors the instruction stream for an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction. When the processor detects
one of these instructions, it raises a device-not-available exception (#NM) prior to
executing the instruction. The device-not-available exception handler can then be
used to save the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the previous
task (using an FXSAVE instruction) and load the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for the current task (using an
FXRSTOR instruction). If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the device-not-available excep-
tion will not be raised and a task state will not be saved unnecessarily.

NOTE
The CRC32 and POPCNT instructions do not operate on the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. They operate on the
general-purpose registers and are not involved in the OS’s lazy
FXSAVE/FXRSTOR technique.

The TS flag can be set either explicitly (by executing a MOV instruction to control
register CR0) or implicitly (using the IA-32 architecture’s native task switching mech-
anism). When the native task switching mechanism is used, the processor automati-
cally sets the TS flag on a task switch. After the device-not-available handler has
saved the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state, it should execute the
CLTS instruction to clear the TS flag.
13-10 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
Figure 13-1 gives an example of an operating system that implements x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state saving using the TS flag. In this
example, task A is the currently running task and task B is the new task. The oper-
ating system maintains a save area for the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state for each task and defines a variable
(x87_MMX_SSE_SSE2_SSE3_StateOwner) that indicates the task that “owns” the
state. In this example, task A is the current owner.

On a task switch, the operating system task switching code must execute the
following pseudo-code to set the TS flag according to the current owner of the x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 state. If the new task (task B in this
example) is not the current owner of this state, the TS flag is set to 1; otherwise, it is
set to 0.

IF Task_Being_Switched_To ≠ x87FPU_MMX_XMM_MXCSR_StateOwner
 THEN
 CR0.TS ← 1;
 ELSE
 CR0.TS ← 0;
FI;

If a new task attempts to access an x87 FPU, MMX, XMM, or MXCSR register while the
TS flag is set to 1, a device-not-available exception (#NM) is generated. The device-
not-available exception handler executes the following pseudo-code.

FXSAVE “To x87FPU/MMX/XMM/MXCSR State Save Area for Current
x87FPU_MMX_XMM_MXCSR_StateOwner”;

Figure 13-1. Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3
State During an Operating-System Controlled Task Switch

Task A Task B

Application

Operating System

Task A

Operating System
Task Switching Code

Device-Not-Available
Exception Handler

Owner of x87 FPU,

CR0.TS=1 and x87 FPU
MMX, SSEx
Instruction is encountered

MMX, XMM,

x87 FPU/MMX/

State Save Area
XMM/MXCSR

Task B
x87 FPU/MMX/

State Save Area
XMM/MXCSR

Saves Task A
x87 FPU/MMX/
XMM/MXCSR State

Loads Task B
x87 FPU/MMX/
XMM/MXCSR State

MXCSR State
Vol. 3A 13-11

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
FXRSTOR “x87FPU/MMX/XMM/MXCSR State From Current Task’s
x87FPU/MMX/XMM/MXCSR State Save Area”;

x87FPU_MMX_XMM_MXCSR_StateOwner ← Current_Task;
CR0.TS ← 0;

This exception handler code performs the following tasks:
• Saves the x87 FPU, MMX, XMM, or MXCSR registers in the state save area for the

current owner of the x87 FPU/MMX/XMM/MXCSR state.
• Restores the x87 FPU, MMX, XMM, or MXCSR registers from the new task’s save

area for the x87 FPU/MMX/XMM/MXCSR state.
• Updates the current x87 FPU/MMX/XMM/MXCSR state owner to be the current

task.
• Clears the TS flag.

13.6 XSAVE/XRSTOR AND PROCESSOR EXTENDED STATE
MANAGEMENT

The features associated with managing processor extended states include
• An extensible data layout for existing and future processor state extensions. The

layout of the XSAVE/XRSTOR area extends from the 512-byte FXSAVE/FXRSTOR
layout to provide compatibility and migration path from managing the legacy
FXSAVE/FXRSTOR area. Specifically, the XSAVE/XRSTOR area layout consists of:

— The FXSAVE/FXRSTOR area (512 bytes, the layout is identical to the
FXSAVE/FXRSTOR area),

— The XSAVE header area (64 bytes),

— A finite set of save areas, each corresponding to a processor extended state
(see Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, XSAVE instruction). The number of save areas, the offset and the
size of each save area is enumerated by CPUID leaf function 0DH.

• CPUID Enhancement: CPUID instruction provides information on

— CPUID.01H.ECX.XSAVE[bit 26]. A feature flag indicating the processor’s
support of XSAVE/XRSTOR architecture extensions

— CPUID.01H.ECX.OSXSAVE[bit 27]. A feature flag indicating whether OS has
enabled extensible state management and communicating that the OS
supports processor extended state management.

— CPUID leaf function 0DH enumerates the list of processor states (including
legacy x87 FPU, SSE states and processor extended states), the offset and
size of individual save area for each processor extended state.

• Control register enhancement and dedicated register for enabling each processor
extended state: CR4. OSXSAVE[bit 18] and XCR0 are described in Chapter 2,
13-12 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
“System Architecture Overview”. XCR0 can be read at all privilege levels but
written only at ring 0.

• Instructions to manage XCR0 and the XSAVE/XRSTOR area (see Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B):

— XGETBV: reads XCR0.

— XSETBV: writes to XCR0, ring 0 only.

— XRSTOR: restores from memory the processor states specified by a bit vector
mask specified in EDX:EAX.

— XSAVE: saves the current processor states to memory according to a bit
vector mask in EDX:EAX.

13.6.1 XSAVE Header
The header section includes a “XSTATE_BV“ bit vector field. If the value of a bit in
HEADER.XSTATE_BV is 1, it indicates that the corresponding processor extended
state was written to the respective save area in memory by the XSAVE instruction.

If software modifies the save area image of a particular processor state component
directly, it is responsible to update the corresponding bit in HEADER.XSTATE_BV to 1.
Otherwise, directly modified state information in a save area image may be ignored
by XRSTOR.

The order of bit vectors in XSTATE_BV matches those of XCR0. Although XCR0 has
only two bits initially defined for state management, the general relationship
between the value of XSTATE_BV and the corresponding processor state in the
XSAVE/XRSTOR layout is depicted in Figure 13-2.
Vol. 3A 13-13

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The XSAVE header is 64 bytes in length and must be aligned on 64 byte boundary.
Therefore, the XSAVE/XRSTOR region must be aligned on 64-byte boundary. The
format of the header is as follows (see Table 13-3):

The value of each bit in HEADER.XSTATE_BV may affect the action performed by
XRSTOR, depending on the logical value of the respective bits in XCR0, the restore bit
mask (EDX:EAX input to XRSTOR), and HEADER.XSTATE_BV. When an XRSTOR
instruction is executed with a restore bit mask selecting the i’th bit vector (and the
corresponding XCR0 bit is enabled), a value of "1" in the corresponding bit of

Figure 13-2. Future Layout of XSAVE/XRSTOR Area and XSTATE_BV with Five Sets
of Processor State Extensions

Table 13-3. XSAVE Header Format

15:8 7:0 Byte Offset

Reserved (Must be zero) XSTATE_BV 0

Reserved Reserved (Must be zero) 16

Reserved Reserved 32

Reserved Reserved 48

..................................

XState_BV

E
xtensions 2

X87 FPU State

Save Area

0124 3

FXSAVE

63

SSE State
FXRSTOR

XState_BV, .. Header

Ext_SaveArea2

.........................

E
xten

sions 4

Ext_SaveArea3

1111 0

Bit Position

E
xtensions 3

Updated

Not updated

Updated Ext_SaveArea4
13-14 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
HEADER.XSTATE_BV causes the processor state to be updated with contents of the
save area read from the memory image. A value of "0" in HEADER.XSTATE_BV
causes the processor state to be initialized by hardware supplied values instead of
from memory (See the operation detail of XRSTOR in Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B).

The save area image corresponding to a bit with "0" value in HEADER.XSTATE_BV
may or may not contain the correct state information. XRSTOR will ensure the
register state for a component is properly initialized regardless of the value of the
save area when the component header bit is zero.

13.7 INTEROPERABILITY OF XSAVE/XRSTOR AND
FXSAVE/FXRSTOR

FXSAVE instruction writes x87 FPU and SSE state information to a 512-byte FXSAVE,
FXRSTOR save area. FXRSTOR restores the processor’s x87 FPU and SSE states from
FXSAVE/FXRSTOR save area image. XSAVE/XRSTOR instructions support x87 FPU
and SSE states using the same layout as the FXSAVE/FXRSTOR area to provide
interoperability of FXSAVE versus XSAVE, and FXRSTOR versus XRSTOR.
XSAVE/XRSTOR provides the additional flexibility for system software to manage SSE
state independent of x87 FPU states. Thus system software that had been using
FXSAVE/FXRSTOR to manage x87 FPU and SSE states can transition to
XSAVE/XRSTOR to manage x87 FPU, SSE and other processor extended states in a
systematic and forward-looking manner.

It is also possible for system software to adopt an alternate approach of using
FXSAVE/FXRSTOR for x87 and SSE state management, and implementing forward
processor extended state management using XSAVE/XRSTOR. In this case, system
software must specify the bit vector mask in EDX:EAX appropriately when executing
XSAVE/XRSTOR instructions.

For instance, when using the XSAVE instruction, the OS can supply a bit vector in
EDX:EAX with the two least significant bits corresponding to x87 FPU and SSE state
equal to 0. Then, the XSAVE instruction will not write the processor’s x87 FPU and
SSE state into memory. Similarly for the XRSTOR instruction a bit vector mask in
EDX:EAX with the least two significant bit equal to 0 will cause the XRSTOR instruc-
tion to not restore nor initialize the processor’s x87 FPU and SSE state.

The processor’s action as a result of executing XRSTOR, on the x87 FPU state,
MXCSR, and XMM registers, are listed in Table 13-4 (Both bit 1 and bit 0 of XCR0 are
presumed to be 1). The x87 FPU or XMM registers may be initialized by the processor
(See XRSTOR operation in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B). When the MXCSR register is updated from memory, reserved
bit checking is enforced. The saving/restoring of MXCSR is bound to the SSE state,
independent of the x87 FPU state. The action of XSAVE is listed in Table 13-5.
Vol. 3A 13-15

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
XSAVE, XRSTOR instructions operating on FP or SSE state will cause a #NM Device
Not Available) exception, if CR0.TS is set. Using this feature, system software can
implement the “lazy restore” technique of managing x87 FPU/SSE state using either
FXSAVE/FXRSTOR or XSAVE/XRSTOR. It can be accomplished even with the inter-
mixing of FXSAVE and XSAVE instructions.

Table 13-4. XRSTOR Action on MXCSR, x87 FPU, XMM Register

EDX:EAX XSTATE_BV MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X X None None None

0 1 X 0 None None Init by processor

0 1 X 1 None None Load

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load

Table 13-5. XSAVE Action on MXCSR, x87 FPU, XMM Register

EDX:EAX XCR01

NOTES:
1. Attempts to set XCR0[0] to 0 cause #GP.

MXCSR XMM Registers x87 FPU State

Bit 1 Bit 0 Bit 1 Bit 0

0 0 X 1 None None None

0 1 X 1 None None Store

1 0 0 1 None None None

1 0 1 1 Store Store None

1 1 0 1 None None Store

1 1 1 1 Store Store Store
13-16 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.8 DETECTION, ENUMERATION, ENABLING PROCESSOR
EXTENDED STATE SUPPORT

An OS can determine if the XSAVE/XRSTOR/XGETBV/XSETBV instructions and XCR0
are available in the processor by checking the value of CPUID.1.ECX.XSAVE to be 1.
The OS must set CR4.OSXSAVE to 1 to enable the new instructions. The OS uses
XSETBV to enable the processor state component (setting the corresponding bit in
XCR0 to 1) that it will manage using XSAVE/XRSTOR. Bit 0 of XCR0 must be set to 1.
The value of CR4.OSXSAVE is reflected in CPUID.01H:ECX.OSXSAVE (bit 27) to
communicate the setting to non-privileged software.

The bits that must be enabled in XCR0 and the size of the memory region needed to
save processor extended state information must be enumerated by CPUID leaf 0DH
with ECX = 0 as input. However, the recommended usage by system software to use
XSAVE/XSAVEOPT/XRSTOR is to:
• Use mask (EDX:EAX) with all bits set to 1.
• Alternately use the master bit vector mask EDX:EAX reported by

CPUID.(EAX=0D, ECX=0H). This provides a more constrained list of features
than using all 1's in the mask.

In either case, system software is required to allocate a memory buffer according to
the size reported by CPUID.(EAX=0DH, ECX=0H):ECX. The value reported by
CPUID.(EAX=0DH, ECX=0H):ECX always includes the size of the header. Clear the
entire buffer prior to being used by XSAVE.

Figure 13-3. OS Enabling of Processor Extended State Support

Check

HW support XSAVE, XRSTOR, XSETBV, XFEM

CPUID.1H:ECX.XSAVE?

Enumerate
Extended state features
Buffer size requirement

Set valid bits in
XCR0 via XSETBVSet CR4.OSXSAVE

 to 1

Clear buffer to 0

XSETBV enabled
Vol. 3A 13-17

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The advantage of using a mask value of all-bits-set-to-1 for XSAVE/XRSTOR is that it
can simplify system software’s support for processor extended state management,
when multiple generations of hardware may support different number of processor
extended states as reported by CPUID. However, there may be additional implemen-
tation requirement of software modification that may arise due to a particular system
software or specific details introduced by a new processor extended state.

13.8.1 Application Programming Model and Processor Extended
States

New instruction set extensions may be introduced over time and operating on a
processor extended state that must be enabled in XCR0. The general application
programming model for using such instruction set extensions are:
• Check if OS has enabled processor extended state management. If

CPUID.01H:ECX.OSXSAVE is 1, the OS has enabled the
XSAVE/XRSTOR/XSETBV/XGETBV instructions and XCR0, and it has indicated
support for the processor extended state management.
Applications do not need to check the value of CPUID.01H:ECX.XSAVE because
“CPUID.01H:ECX.OSXSAVE = 1” implies OS has successfully verified
CPUID.01H:ECX.XSAVE = 1. CPUID.01H:ECX.OSXSAVE reflects the value of
CR4.OSXSAVE, and this bit cannot be set to 1 unless CPUID.01H:ECX.XSAVE = 1.

• Check whether the processor extended state component associated with a given
instruction set extension is enabled by the OS. The bits of EDX:EAX returned by
XGETBV as 1 indicate which processor extended state components have been
enabled by OS. Note, the CR4.OSFXSR is not used by OS to enable instruction
extensions requiring processor extended state support.

• Check the target instruction set extension is supported in the processor. Each
new instruction set extension is expected to provide a feature flag in CPUID when
it is introduced.
13-18 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
If all three requirements are met, applications can use the target new instruction set
extensions. If any of the above requirements are not met, an attempt to execute an
instruction operating on a processor extended state corresponding to bit offset
higher than 1 in XCR0 will cause a #UD exception.

Newer instruction extensions operating on SSE state, but not on any processor
extended states corresponding bits in XCR0 with an offset higher than 1, follow the
programming model described by Section 13.1 through Section 13.5. XCR0 is not
required to enable OS support for SSE state management, but CR4.OSFXSR is
required.

13.9 INTEL ADVANCED VECTOR EXTENSIONS (INTEL AVX)
AND YMM STATE

Intel AVX instructions comprises of 256-bit and 128-bit instructions that operates on
YMM states. The following sections describes system software support requirements
for 256-bit YMM states.

For processors that support YMM states, the YMM state exists in all operating modes.
However, the available instruction interfaces to access YMM states may vary in
different modes. XSAVE/XRSTOR and XSAVEOPT instructions can operate in all oper-
ating modes.

Figure 13-4. Application Detection of New Instruction Extensions and Processor
Extended State

Implied HW support for

Check enabled state in

XCR0 via XGETBV

Check feature flag
for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes
Vol. 3A 13-19

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
13.10 YMM STATE MANAGEMENT
Operating systems must use the XSAVE/XRSTOR (and optionally XSAVEOPT) instruc-
tions for YMM state management. The XSAVE/XRSTOR/XSAVEOPT instructions also
provide flexible and efficient interface to manage XMM/MXCSR states and x87 FPU
states in conjunction with newer processor extended states like YMM states.
An OS must enable its YMM state management to support AVX and any 256-bit
extensions that operate on YMM registers. Otherwise, an attempt to execute an
instruction in AVX extensions (including an enhanced 128-bit SIMD instructions using
VEX encoding) will cause a #UD exception.

13.10.1 Detection of YMM State Support
Detection of hardware support for new processor extended state is provided by the
main CPUID leaf function 0DH with index ECX = 0. Specifically, the return value in
EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware
support of processor state components, beginning with bit 0 of EAX corresponding to
x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE state (XMM
registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM
states.

13.10.2 Enabling of YMM State
An OS can enable YMM state support with the following steps:

• Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBV instructions and
XCR0 by checking CPUID.1.ECX.XSAVE[bit 26]=1.

• Verify the processor supports YMM state (i.e. bit 2 of XCR0 is valid) by checking
CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should also verify
CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit 1]=1, because the lower 128-bits of an
YMM register are aliased to an XMM register.

The OS must determine the buffer size requirement for the XSAVE area that will
be used by XSAVE/XRSTOR (see CPUID instruction in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

• Set CR4.OSXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBV instructions
to write/read XCR0.

• Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the
processor state components that the OS wishes to manage using XSAVE/XRSTOR
instruction. To enable x87 FPU, SSE and YMM state management using
XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of
XCR0 is listed in Table 13-6).
13-20 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing
XSETBV. An attempt to execute XSETBV with EDX:EAX[2:1] = 10B causes a
#GP(0) exception.

13.10.3 Enabling of SIMD Floating-Exception Support
AVX instructions may generate SIMD floating-point exceptions. An OS must enable
SIMD floating-point exception support by setting CR4.OSXMMEXCPT[bit 10]=1.
The effect of CR4 setting that affects AVX enabling is listed in Table 13-7

13.10.4 The Layout of XSAVE Area
The OS must determine the buffer size requirement by querying CPUID with
EAX=0DH, ECX=0. If the OS wishes to enable all processor extended state compo-

Table 13-6. XCR0 and Processor State Components

Bit Meaning

0 - x87
If set, the processor supports x87 FPU state management
via XSAVE/XRSTOR. This bit must be 1 if
CPUID.01H:ECX.XSAVE[26] = 1.

1 - SSE
If set, the processor supports SSE state (XMM and MXCSR)
management via XSAVE/XRSTOR. This bit must be set to
‘1’ to enable AVX.

2 - YMM
If set, the processor supports YMM state (upper 128 bits
of YMM registers) management via XSAVE. This bit must
be set to ‘1’ to enable AVX.

63:3 Reserved; must be 0.

Table 13-7. CR4 bits for AVX New Instructions technology support

Bit Meaning

CR4.OSXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruc-
tion to access XCR0, XSAVE/XRSTOR to manage proces-
sor extended state. Must be set to ‘1’ to enable AVX.

CR4.OSXMMEXCPT[bit 10] Must be set to 1 to enable SIMD floating-point exceptions.
This applies to AVX operating on YMM states, and legacy
128-bit SIMD floating-point instructions operating on
XMM states.

CR4.OSFXSR[bit 9] Ignored by AVX instructions operating on YMM states.
Must be set to 1 to enable SIMD instructions operating on
XMM state.
Vol. 3A 13-21

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
nents in XCR0, it can allocate the buffer size according to CPUID.(EAX=0DH,
ECX=0):ECX.
After the memory buffer for XSAVE is allocated, the entire buffer must to cleared to
zero prior to use by XSAVE.
For processors that support SSE and YMM states, the XSAVE area layout is listed in
Table 13-8. The register fields of the first 512 byte of the XSAVE area are identical to
those of the FXSAVE/FXRSTOR area.

The format of the header is as follows (see Table 13-9):

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM
registers, it is shown in Table 13-10.

Table 13-8. Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64

Ext_Save_Area_2
(YMM)

CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

Table 13-9. XSAVE Header Format

15:8 7:0 Byte Offset
from Header

Byte Offset
from XSAVE

Area

Reserved (Must be zero) XSTATE_BV 0 512

Reserved Reserved (Must be zero) 16 528

Reserved Reserved 32 544

Reserved Reserved 48 560
13-22 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and
YMM registers, are listed in Table 13-4 (Both bit 1 and bit 2 of XCR0 are presumed to
be 1). The XMM registers may be initialized by the processor (See XRSTOR operation
in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).
When the MXCSR register is updated from memory, reserved bit checking is
enforced. The saving/restoring of MXCSR is bound to both the SSE state and YMM
state. MXCSR save/restore will not be bound to any future states.

Table 13-10. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)

31 16 15 0

Byte Offset
from

YMM_Save_Are
a

Byte Offset from
XSAVE Area

YMM1[255:128] YMM0[255:128] 0 576

YMM3[255:128] YMM2[255:128] 32 608

YMM5[255:128] YMM4[255:128] 64 640

YMM7[255:128] YMM6[255:128] 96 672

YMM9[255:128] YMM8[255:128] 128 704

YMM11[255:128] YMM10[255:128] 160 736

YMM13[255:128] YMM12[255:128] 192 768

YMM15[255:128] YMM14[255:128] 224 800

Table 13-11. XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV
MXCSR

YMM_H
Registers

XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 0 Load/Check None Init by processor

0 1 X 1 Load/Check None Load

1 0 0 X Load/Check Init by processor None

1 0 1 X Load/Check Load None

1 1 0 0 Load/Check Init by processor Init by processor

1 1 0 1 Load/Check Init by processor Load

1 1 1 0 Load/Check Load Init by processor

1 1 1 1 Load/Check Load Load
Vol. 3A 13-23

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
The processor supplied init values for each processor state component used by
XRSTOR is listed in Table 13-12.

The action of XSAVE is listed in Table 13-13.

13.10.6 Processor Extended State Save Optimization and XSAVEOPT
The XSAVEOPT instruction paired with XRSTOR is designed to provide a high perfor-
mance method for system software to perform state save and restore.
A processor may indicate its support for the XSAVEOPT instruction if
CPUID.(EAX=0DH, ECX=1):EAX.XSAVEOPT[Bit 0] = 1. The functionality of

Table 13-12. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values

x87 FPU State
FCW ← 037FH; FTW ← 0FFFFH; FSW ← 0H; FPU CS ← 0H;
FPU DS ← 0H; FPU IP ← 0H; FPU DP ← 0; ST0-ST7 ← 0;

SSE State1

NOTES:
1. MXCSR state is not updated by processor supplied values. MXCSR state can only

be updated by XRSTOR from state information stored in XSAVE/XRSTOR area.

If 64-bit Mode: XMM0-XMM15 ← 0H;
Else XMM0-XMM7 ← 0H

YMM State1 If 64-bit Mode: YMM0_H-YMM15_H ← 0H;
Else YMM0_H-YMM7_H ← 0H

Table 13-13. XSAVE Action on MXCSR, XMM, YMM Register

EDX:EAX XCR0
MXCSR

YMM_H
Registers XMM Registers

Bit 2 Bit 1 Bit 2 Bit 1

0 0 X X None None None

0 1 X 1 Store None Store

0 1 X 0 None None None

1 0 0 X None None None

1 0 1 1 Store Store None

1 1 0 0 None None None

1 1 0 1 Store None Store

1 1 1 1 Store Store Store
13-24 Vol. 3A

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND
XSAVEOPT is similar to XSAVE. Software can use XSAVEOPT/XRSTOR in a pair-wise
manner similar to XSAVE/XRSTOR to save and restore processor extended states.
The syntax and operands for XSAVEOPT instructions are identical to XSAVE, i.e. the
mask operand in EDX:EAX specifies the subset of enabled features to be saved.
Note that software using XSAVEOPT must observe the same restrictions as XSAVE
while allocating a new save area. i.e., the header area must be initialized to zeroes.
The first 64-bits in the save image header starting at offset 512 are referred to as
XHEADER.BV. However, the instruction differs from XSAVE in several important
aspects:

1. If a component state in the processor specified by the save mask corresponds to
an INIT state, the instruction may clear the corresponding bit in XHEADER.BV,
but may not write out the state (unlike the XSAVE instruction, which always
writes out the state).

2. If the processor determines that the component state specified by the save mask
hasn't been modified since the last XRSTOR, the instruction may not write out the
state to the save area.

3. A implication of this optimization is that software which needs to examine the
saved image must first check the XHEADER.BV to see if any bits are clear. If the
header bit is clear, it means that the state is INIT and the saved memory image
may not correspond to the actual processor state.

4. The performance of XSAVEOPT will always be better than or at least equal to that
of XSAVE.

13.10.6.1 XSAVEOPT Usage Guidelines
When using the XSAVEOPT facility, software must be aware of the guidelines outlined
in Chapter 4, “XSAVEOPT—Save Processor Extended States Optimized” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
Vol. 3A 13-25

SYSTEM PROGRAMMING FOR INSTRUCTION SET EXTENSIONS AND PROCESSOR
13-26 Vol. 3A

CHAPTER 14
POWER AND THERMAL MANAGEMENT

This chapter describes facilities of Intel 64 and IA-32 architecture used for power
management and thermal monitoring.

14.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY
Enhanced Intel SpeedStep® Technology was introduced in the Pentium M processor;
it is available in Pentium 4, Intel Xeon, Intel® Core™ Solo, Intel® Core™ Duo, Intel®
Atom™ and Intel® Core™2 Duo processors. The technology manages processor
power consumption using performance state transitions. These states are defined as
discrete operating points associated with different frequencies.

Enhanced Intel SpeedStep Technology differs from previous generations of Intel
SpeedStep Technology in two ways:
• Centralization of the control mechanism and software interface in the processor

by using model-specific registers.
• Reduced hardware overhead; this permits more frequent performance state

transitions.

Previous generations of the Intel SpeedStep Technology require processors to be a
deep sleep state, holding off bus master transfers for the duration of a performance
state transition. Performance state transitions under the Enhanced Intel SpeedStep
Technology are discrete transitions to a new target frequency.

Support is indicated by CPUID, using ECX feature bit 07. Enhanced Intel SpeedStep
Technology is enabled by setting IA32_MISC_ENABLE MSR, bit 16. On reset, bit 16 of
IA32_MISC_ENABLE MSR is cleared.

14.1.1 Software Interface For Initiating Performance State
Transitions

State transitions are initiated by writing a 16-bit value to the IA32_PERF_CTL
register, see Figure 14-2. If a transition is already in progress, transition to a new
value will subsequently take effect.

Reads of IA32_PERF_CTL determine the last targeted operating point. The current
operating point can be read from IA32_PERF_STATUS. IA32_PERF_STATUS is
updated dynamically.

The 16-bit encoding that defines valid operating points is model-specific. Applications
and performance tools are not expected to use either IA32_PERF_CTL or
IA32_PERF_STATUS and should treat both as reserved. Performance monitoring
Vol. 3A 14-1

POWER AND THERMAL MANAGEMENT
tools can access model-specific events and report the occurrences of state
transitions.

14.2 P-STATE HARDWARE COORDINATION
The Advanced Configuration and Power Interface (ACPI) defines performance states
(P-state) that are used facilitate system software’s ability to manage processor
power consumption. Different P-state correspond to different performance levels
that are applied while the processor is actively executing instructions. Enhanced Intel
SpeedStep Technology supports P-state by providing software interfaces that control
the operating frequency and voltage of a processor.

With multiple processor cores residing in the same physical package, hardware
dependencies may exist for a subset of logical processors on a platform. These
dependencies may impose requirements that impact coordination of P-state transi-
tions. As a result, multi-core processors may require an OS to provide additional soft-
ware support for coordinating P-state transitions for those subsets of logical
processors.

A BIOS (following ACPI 3.0 specification) can choose to expose P-state as dependent
and hardware-coordinated to OS power management (OSPM) policy. To support
OSPMs, multi-core processors must have additional built-in support for P-state hard-
ware coordination and feedback.

Intel 64 and IA-32 processors with dependent P-state amongst a subset of logical
processors permit hardware coordination of P-state and provide a hardware-coordi-
nation feedback mechanism using IA32_MPERF MSR and IA32_APERF MSR. See
Figure 14-1 for an overview of the two 64-bit MSRs and the bullets below for a
detailed description:

• Use CPUID to check the P-State hardware coordination feedback capability bit.
CPUID.06H.ECX[Bit 0] = 1 indicates IA32_MPERF MSR and IA32_APERF MSR are
present.

• IA32_MPERF MSR (0xE7) increments in proportion to a fixed frequency, which is
configured when the processor is booted.

Figure 14-1. IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination

63 0

IA32_MPERF (Addr: E7H)

630

IA32_APERF (Addr: E8H)
14-2 Vol. 3A

POWER AND THERMAL MANAGEMENT
• IA32_APERF MSR (0xE8) increments in proportion to actual performance, while
accounting for hardware coordination of P-state and TM1/TM2; or software
initiated throttling.

• The MSRs are per logical processor; they measure performance only when the
targeted processor is in the C0 state.

• Only the IA32_APERF/IA32_MPERF ratio is architecturally defined; software
should not attach meaning to the content of the individual of IA32_APERF or
IA32_MPERF MSRs.

• When either MSR overflows, both MSRs are reset to zero and continue to
increment.

• Both MSRs are full 64-bits counters. Each MSR can be written to independently.
However, software should follow the guidelines illustrated in Example 14-1.

If P-states are exposed by the BIOS as hardware coordinated, software is expected
to confirm processor support for P-state hardware coordination feedback and use the
feedback mechanism to make P-state decisions. The OSPM is expected to either save
away the current MSR values (for determination of the delta of the counter ratio at a
later time) or reset both MSRs (execute WRMSR with 0 to these MSRs individually) at
the start of the time window used for making the P-state decision. When not reset-
ting the values, overflow of the MSRs can be detected by checking whether the new
values read are less than the previously saved values.

Example 14-1 demonstrates steps for using the hardware feedback mechanism
provided by IA32_APERF MSR and IA32_MPERF MSR to determine a target P-state.

Example 14-1. Determine Target P-state From Hardware Coordinated Feedback

DWORD PercentBusy; // Percentage of processor time not idle.
// Measure “PercentBusy“ during previous sampling window.
// Typically, “PercentBusy“ is measure over a time scale suitable for
// power management decisions
//
// RDMSR of MCNT and ACNT should be performed without delay.
// Software needs to exercise care to avoid delays between
// the two RDMSRs (for example, interrupts).
MCNT = RDMSR(IA32_MPERF);
ACNT = RDMSR(IA32_APERF);

// PercentPerformance indicates the percentage of the processor
// that is in use. The calculation is based on the PercentBusy,
// that is the percentage of processor time not idle and the P-state
// hardware coordinated feedback using the ACNT/MCNT ratio.
// Note that both values need to be calculated over the same
// time window.

PercentPerformance = PercentBusy * (ACNT/MCNT);
Vol. 3A 14-3

POWER AND THERMAL MANAGEMENT
// This example does not cover the additional logic or algorithms
// necessary to coordinate multiple logical processors to a target P-state.

TargetPstate = FindPstate(PercentPerformance);

if (TargetPstate != currentPstate) {
SetPState(TargetPstate);

}
// WRMSR of MCNT and ACNT should be performed without delay.

 // Software needs to exercise care to avoid delays between
 // the two WRMSRs (for example, interrupts).
 WRMSR(IA32_MPERF, 0);
 WRMSR(IA32_APERF, 0);

14.3 SYSTEM SOFTWARE CONSIDERATIONS AND
OPPORTUNISTIC PROCESSOR PERFORMANCE
OPERATION

An Intel 64 processor may support a form of processor operation that takes advan-
tage of design headroom to opportunistically increase performance. In Intel Core i7
processors, Intel Turbo Boost Technology can convert thermal headroom into higher
performance across multi-threaded and single-threaded workloads. In Intel Core 2
processors, Intel Dynamic Acceleration can convert thermal headroom into higher
performance if only one thread is active.

14.3.1 Intel Dynamic Acceleration
Intel Core 2 Duo processor T 7700 introduces Intel Dynamic Acceleration (IDA). IDA
takes advantage of thermal design headroom and opportunistically allows a single
core to operate at a higher performance level when the operating system requests
increased performance.

14.3.2 System Software Interfaces for Opportunistic Processor
Performance Operation

Opportunistic processor operation, applicable to Intel Dynamic Acceleration and Intel
Turbo Boost Technology, has the following characteristics:
• A transition from a normal state of operation (e.g. IDA/Turbo mode disengaged)

to a target state is not guaranteed, but may occur opportunistically after the
14-4 Vol. 3A

POWER AND THERMAL MANAGEMENT
corresponding enable mechanism is activated, the headroom is available and
certain criteria are met.

• The opportunistic processor performance operation is generally transparent to
most application software.

• System software (BIOS and Operating system) must be aware of hardware
support for opportunistic processor performance operation and may need to
temporarily disengage opportunistic processor performance operation when it
requires more predictable processor operation.

• When opportunistic processor performance operation is engaged, the OS should
use hardware coordination feedback mechanisms to prevent un-intended policy
effects if it is activated during inappropriate situations.

14.3.2.1 Discover Hardware Support and Enabling of Opportunistic
Processor Operation

If an Intel 64 processor has hardware support for opportunistic processor perfor-
mance operation, the power-on default state of IA32_MISC_ENABLE[38] indicates
the presence of such hardware support. For Intel 64 processors that support oppor-
tunistic processor performance operation, the default value is 1, indicating its pres-
ence. For processors that do not support opportunistic processor performance
operation, the default value is 0. The power-on default value of
IA32_MISC_ENABLE[38] allows BIOS to detect the presence of hardware support of
opportunistic processor performance operation.

IA32_MISC_ENABLE[38] is shared across all logical processors in a physical
package. It is written by BIOS during platform initiation to enable/disable opportu-
nistic processor operation in conjunction of OS power management capabilities, see
Section 14.3.2.2. BIOS can set IA32_MISC_ENABLE[38] with 1 to disable opportu-
nistic processor performance operation; it must clear the default value of
IA32_MISC_ENABLE[38] to 0 to enable opportunistic processor performance opera-
tion. OS and applications must use CPUID leaf 06H if it needs to detect processors
that has opportunistic processor operation enabled.

When CPUID is executed with EAX = 06H on input, Bit 1 of EAX in Leaf 06H (i.e.
CPUID.06H:EAX[1]) indicates opportunistic processor performance operation, such
as IDA, has been enabled by BIOS.

Opportunistic processor performance operation can be disabled by setting bit 38 of
IA32_MISC_ENABLE. This mechanism is intended for BIOS only. If
IA32_MISC_ENABLE[38] is set, CPUID.06H:EAX[1] will return 0.

14.3.2.2 OS Control of Opportunistic Processor Performance Operation
There may be phases of software execution in which system software cannot tolerate
the non-deterministic aspects of opportunistic processor performance operation. For
example, when calibrating a real-time workload to make a CPU reservation request
Vol. 3A 14-5

POWER AND THERMAL MANAGEMENT
to the OS, it may be undesirable to allow the possibility of the processor delivering
increased performance that cannot be sustained after the calibration phase.

System software can temporarily disengage opportunistic processor performance
operation by setting bit 32 of the IA32_PERF_CTL MSR (0199H), using a read-
modify-write sequence on the MSR. The opportunistic processor performance opera-
tion can be re-engaged by clearing bit 32 in IA32_PERF_CTL MSR, using a read-
modify-write sequence. The DISENAGE bit in IA32_PERF_CTL is not reflected in bit
32 of the IA32_PERF_STATUS MSR (0198H), and it is not shared between logical
processors in a physical package. In order for OS to engage IDA/Turbo mode, the
BIOS must
• enable opportunistic processor performance operation, as described in Section

14.3.2.1,
• expose the operating points associated with IDA/Turbo mode to the OS.

14.3.2.3 Required Changes to OS Power Management P-state Policy
Intel Dynamic Acceleration (IDA) and Intel Turbo Boost Technology can provide
opportunistic performance greater than the performance level corresponding to the
maximum qualified frequency of the processor (see CPUID’s brand string informa-
tion). System software can use a pair of MSRs to observe performance feedback.
Software must query for the presence of IA32_APERF and IA32_MPERF (see Section
14.2). The ratio between IA32_APERF and IA32_MPERF is architecturally defined and
a value greater than unity indicates performance increase occurred during the obser-
vation period due to IDA. Without incorporating such performance feedback, the
target P-state evaluation algorithm can result in a non-optimal P-state target.

There are other scenarios under which OS power management may want to disable
IDA, some of these are listed below:
• When engaging ACPI defined passive thermal management, it may be more

effective to disable IDA for the duration of passive thermal management.
• When the user has indicated a policy preference of power savings over perfor-

mance, OS power management may want to disable IDA while that policy is in
effect.

Figure 14-2. IA32_PERF_CTL Register

63 0

Reserved

16

EIST Transition Target

153233 31

IDA/Turbo DISENGAGE
14-6 Vol. 3A

POWER AND THERMAL MANAGEMENT
14.3.2.4 Application Awareness of Opportunistic Processor Operation
(Optional)

There may be situations that an end user or application software wishes to be aware
of turbo mode activity. It is possible for an application-level utility to periodically
check the occurrences of opportunistic processor operation. The basic elements of an
algorithm is described below, using the characteristics of Intel Turbo Boost Tech-
nology as example.

Using an OS-provided timer service, application software can periodically calculate
the ratio between unhalted-core-clockticks (UCC) relative to the unhalted-reference-
clockticks (URC) on each logical processor to determine if that logical processor had
been requested by OS to run at some frequency higher than the invariant TSC
frequency, or the OS has determined system-level demand has reduced sufficiently
to put that logical processor into a lower-performance p-state or even lower-activity
state.

If an application software have access to information of the base operating ratio
between the invariant TSC frequency and the base clock (133.33 MHz), it can convert
the sampled ratio into a dynamic frequency estimate for each prior sampling period.
The base operating ratio can be read from MSR_PLATFORM_INFO[15:8].

The periodic sampling technique is depicted in Figure 14-3 and described below:

• The sampling period chosen by the application (to program an OS timer service)
should be sufficiently large to avoid excessive polling overhead to other applica-
tions or tasks managed by the OS.

Figure 14-3. Periodic Query of Activity Ratio of Opportunistic Processor Operation

LP 2
LP 1

n-1 n+3Sample period

LP 0

n+2n n+1

UCCn, 0

URCn, 0

FixedCtr1

FixedCtr2

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

LP 2
LP 1

LP 0

UCCn+1, 0

URCn+1, 0

UCCn+2, 0

URCn+2, 0

UCCn+3, 0

URCn+3, 0

Logical Processor i Turbo Activity Ratio = (UCCn+1, i - UCCn, i) / (URCn+1, i - URCn, i)

Unhalted core clockticks

Unhalted reference
clockticks

.....
Vol. 3A 14-7

POWER AND THERMAL MANAGEMENT
• When the OS timer service transfers control, the application can use RDPMC
(with ECX = 4000_0001H) to read IA32_PERF_FIXED_CTR1 (MSR address 30AH)
to record the unhalted core clocktick (UCC) value; followed by RDPMC
(ECX=4000_0002H) to read IA32_PERF_FIXED_CTR2 (MSR address 30BH) to
record the unhalted reference clocktick (URC) value. This pair of values is needed
for each logical processor for each sampling period.

• The application can calculate the Turbo activity ratio based on the difference of
UCC between each sample period, over the difference of URC difference. The
effective frequency of each sample period of the logical processor, i, can be
estimated by:
(UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i)* Base_operating_ratio* 133.33MHz

It is possible that the OS had requested a lower-performance P-state during a
sampling period. Thus the ratio (UCCn+1, i - UCC n, i)/(URCn+1, i - URC n, i) can reflect
the average of Turbo activity (driving the ratio above unity) and some lower P-state
transitions (causing the ratio to be < 1).

It is also possible that the OS might requested C-state transitions when the demand
is low. The above ratio generally does not account for cycles any logical processor
was idle. On Intel Core i7 processors, an application can make use of the time stamp
counter (IA-32_TSC) running at a constant frequency (i.e. Base_operating_ratio*
133.33MHz) during C-states. Thus software can calculate ratios that can indicate
fractions of sample period spent in the C0 state, using the unhalted reference clock-
ticks and the invariant TSC. Note the estimate of fraction spent in C0 may be affected
by SMM handler if the system software makes use of the “FREEZE_WHILE_SMM_EN“
capability to freeze performance counter values while the SMM handler is servicing
an SMI (see Chapter 20, “Introduction to Virtual-Machine Extensions”).

14.3.3 Intel Turbo Boost Technology
Intel Turbo Boost Technology is supported in Intel Core i7 processors and Intel Xeon
processors based on Intel® microarchitecture code name Nehalem. It uses the same
principle of leveraging thermal headroom to dynamically increase processor perfor-
mance for single-threaded and multi-threaded/multi-tasking environment. The
programming interface described in Section 14.3.2 also applies to Intel Turbo Boost
Technology.

14.3.4 Performance and Energy Bias Hint support
Intel 64 processors may support additional software hint to guide the hardware
heuristic of power management features to favor increasing dynamic performance or
conserve energy consumption.

Software can detect processor's capability to support performance-energy bias pref-
erence hint by examining bit 3 of ECX in CPUID leaf 6. The processor supports this
14-8 Vol. 3A

POWER AND THERMAL MANAGEMENT
capability if CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H).

Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS MSR with a
value from 0 - 15. The values represent a sliding scale, where a value of 0 (the
default reset value) corresponds to a hint preference for highest performance and a
value of 15 corresponds to the maximum energy savings. A value of 7 roughly trans-
lates into a hint to balance performance with energy consumption

The layout of IA32_ENERGY_PERF_BIAS is shown in Figure 14-4. The scope of
IA32_ENERGY_PERF_BIAS is per logical processor, which means that each of the
logical processors in the package can be programmed with a different value. This
may be especially important in virtualization scenarios, where the performance /
energy requirements of one logical processor may differ from the other. Conflicting
"hints" from various logical processors at higher hierarchy level will be resolved in
favor of performance over energy savings.

Software can use whatever criteria it sees fit to program the MSR with the appro-
priate value. However, the value only serves as a hint to the hardware and the actual
impact on performance and energy savings is model specific.

14.4 MWAIT EXTENSIONS FOR ADVANCED POWER
MANAGEMENT

IA-32 processors may support a number of C-states1 that reduce power consumption
for inactive states. Intel Core Solo and Intel Core Duo processors support both
deeper C-state and MWAIT extensions that can be used by OS to implement power
management policy.

Figure 14-4. IA32_ENERGY_PERF_BIAS Register

1. The processor-specific C-states defined in MWAIT extensions can map to ACPI defined C-state
types (C0, C1, C2, C3). The mapping relationship depends on the definition of a C-state by proces-
sor implementation and is exposed to OSPM by the BIOS using the ACPI defined _CST table.

63 0

Reserved

Energy Policy Preference Hint

4 3
Vol. 3A 14-9

POWER AND THERMAL MANAGEMENT
Software should use CPUID to discover if a target processor supports the enumera-
tion of MWAIT extensions. If CPUID.05H.ECX[Bit 0] = 1, the target processor
supports MWAIT extensions and their enumeration (see Chapter 3, “Instruction Set
Reference, A-M,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A).

If CPUID.05H.ECX[Bit 1] = 1, the target processor supports using interrupts as
break-events for MWAIT, even when interrupts are disabled. Use this feature to
measure C-state residency as follows:
• Software can write to bit 0 in the MWAIT Extensions register (ECX) when issuing

an MWAIT to enter into a processor-specific C-state or sub C-state.
• When a processor comes out of an inactive C-state or sub C-state, software can

read a timestamp before an interrupt service routine (ISR) is potentially
executed.

CPUID.05H.EDX allows software to enumerate processor-specific C-states and sub
C-states available for use with MWAIT extensions. IA-32 processors may support
more than one C-state of a given C-state type. These are called sub C-states. Numer-
ically higher C-state have higher power savings and latency (upon entering and
exiting) than lower-numbered C-state.

At CPL = 0, system software can specify desired C-state and sub C-state by using the
MWAIT hints register (EAX). Processors will not go to C-state and sub C-state deeper
than what is specified by the hint register. If CPL > 0 and if MONITOR/MWAIT is
supported at CPL > 0, the processor will only enter C1-state (regardless of the
C-state request in the hints register).

Executing MWAIT generates an exception on processors operating at a privilege level
where MONITOR/MWAIT are not supported.

NOTE
If MWAIT is used to enter a C-state (including sub C-state) that is
numerically higher than C1, a store to the address range armed by
MONITOR instruction will cause the processor to exit MWAIT if the
store was originated by other processor agents. A store from non-
processor agent may not cause the processor to exit MWAIT.

14.5 THERMAL MONITORING AND PROTECTION
The IA-32 architecture provides the following mechanisms for monitoring tempera-
ture and controlling thermal power:

1. The catastrophic shutdown detector forces processor execution to stop if the
processor’s core temperature rises above a preset limit.

2. Automatic and adaptive thermal monitoring mechanisms force the
processor to reduce it’s power consumption in order to operate within predeter-
mined temperature limits.
14-10 Vol. 3A

POWER AND THERMAL MANAGEMENT
3. The software controlled clock modulation mechanism permits operating
systems to implement power management policies that reduce power
consumption; this is in addition to the reduction offered by automatic thermal
monitoring mechanisms.

4. On-die digital thermal sensor and interrupt mechanisms permit the OS to
manage thermal conditions natively without relying on BIOS or other system
board components.

The first mechanism is not visible to software. The other three mechanisms are
visible to software using processor feature information returned by executing CPUID
with EAX = 1.

The second mechanism includes:
• Automatic thermal monitoring provides two modes of operation. One mode

modulates the clock duty cycle; the second mode changes the processor’s
frequency. Both modes are used to control the core temperature of the processor.

• Adaptive thermal monitoring can provide flexible thermal management on
processors made of multiple cores.

The third mechanism modulates the clock duty cycle of the processor. As shown in
Figure 14-5, the phrase ‘duty cycle’ does not refer to the actual duty cycle of the
clock signal. Instead it refers to the time period during which the clock signal is
allowed to drive the processor chip. By using the stop clock mechanism to control
how often the processor is clocked, processor power consumption can be modulated.

For previous automatic thermal monitoring mechanisms, software controlled mecha-
nisms that changed processor operating parameters to impact changes in thermal
conditions. Software did not have native access to the native thermal condition of the
processor; nor could software alter the trigger condition that initiated software
program control.

The fourth mechanism (listed above) provides access to an on-die digital thermal
sensor using a model-specific register and uses an interrupt mechanism to alert soft-
ware to initiate digital thermal monitoring.

Figure 14-5. Processor Modulation Through Stop-Clock Mechanism

Clock Applied to Processor

Stop-Clock Duty Cycle

25% Duty Cycle (example only)
Vol. 3A 14-11

POWER AND THERMAL MANAGEMENT
14.5.1 Catastrophic Shutdown Detector
P6 family processors introduced a thermal sensor that acts as a catastrophic shut-
down detector. This catastrophic shutdown detector was also implemented in
Pentium 4, Intel Xeon and Pentium M processors. It is always enabled. When
processor core temperature reaches a factory preset level, the sensor trips and
processor execution is halted until after the next reset cycle.

14.5.2 Thermal Monitor
Pentium 4, Intel Xeon and Pentium M processors introduced a second temperature
sensor that is factory-calibrated to trip when the processor’s core temperature
crosses a level corresponding to the recommended thermal design envelop. The trip-
temperature of the second sensor is calibrated below the temperature assigned to
the catastrophic shutdown detector.

14.5.2.1 Thermal Monitor 1
The Pentium 4 processor uses the second temperature sensor in conjunction with a
mechanism called Thermal Monitor 1 (TM1) to control the core temperature of the
processor. TM1 controls the processor’s temperature by modulating the duty cycle of
the processor clock. Modulation of duty cycles is processor model specific. Note that
the processors STPCLK# pin is not used here; the stop-clock circuitry is controlled
internally.

Support for TM1 is indicated by CPUID.1:EDX.TM[bit 29] = 1.

TM1 is enabled by setting the thermal-monitor enable flag (bit 3) in
IA32_MISC_ENABLE [see Appendix B, “Model-Specific Registers (MSRs)”]. Following
a power-up or reset, the flag is cleared, disabling TM1. BIOS is required to enable
only one automatic thermal monitoring modes. Operating systems and applications
must not disable the operation of these mechanisms.

14.5.2.2 Thermal Monitor 2
An additional automatic thermal protection mechanism, called Thermal Monitor 2
(TM2), was introduced in the Intel Pentium M processor and also incorporated in
newer models of the Pentium 4 processor family. Intel Core Duo and Solo processors,
and Intel Core 2 Duo processor family all support TM1 and TM2. TM2 controls the
core temperature of the processor by reducing the operating frequency and voltage
of the processor and offers a higher performance level for a given level of power
reduction than TM1.

TM2 is triggered by the same temperature sensor as TM1. The mechanism to enable
TM2 may be implemented differently across various IA-32 processor families with
different CPUID signatures in the family encoding value, but will be uniform within an
IA-32 processor family.
14-12 Vol. 3A

POWER AND THERMAL MANAGEMENT
Support for TM2 is indicated by CPUID.1:ECX.TM2[bit 8] = 1.

14.5.2.3 Two Methods for Enabling TM2
On processors with CPUID family/model/stepping signature encoded as 0x69n or
0x6Dn (early Pentium M processors), TM2 is enabled if the TM_SELECT flag (bit 16)
of the MSR_THERM2_CTL register is set to 1 (Figure 14-6) and bit 3 of the
IA32_MISC_ENABLE register is set to 1.

Following a power-up or reset, the TM_SELECT flag may be cleared. BIOS is required
to enable either TM1 or TM2. Operating systems and applications must not disable
mechanisms that enable TM1 or TM2. If bit 3 of the IA32_MISC_ENABLE register is
set and TM_SELECT flag of the MSR_THERM2_CTL register is cleared, TM1 is
enabled.

On processors introduced after the Pentium 4 processor (this includes most Pentium
M processors), the method used to enable TM2 is different. TM2 is enable by setting
bit 13 of IA32_MISC_ENABLE register to 1. This applies to Intel Core Duo, Core Solo,
and Intel Core 2 processor family.

The target operating frequency and voltage for the TM2 transition after TM2 is trig-
gered is specified by the value written to MSR_THERM2_CTL, bits 15:0 (Figure 14-7).
Following a power-up or reset, BIOS is required to enable at least one of these two
thermal monitoring mechanisms. If both TM1 and TM2 are supported, BIOS may
choose to enable TM2 instead of TM1. Operating systems and applications must not
disable the mechanisms that enable TM1or TM2; and they must not alter the value in
bits 15:0 of the MSR_THERM2_CTL register.

Figure 14-6. MSR_THERM2_CTL Register On Processors with CPUID
Family/Model/Stepping Signature Encoded as 0x69n or 0x6Dn

TM_SELECT

Reserved

31 0

Reserved

16
Vol. 3A 14-13

POWER AND THERMAL MANAGEMENT
14.5.2.4 Performance State Transitions and Thermal Monitoring
If the thermal control circuitry (TCC) for thermal monitor (TM1/TM2) is active, writes
to the IA32_PERF_CTL will effect a new target operating point as follows:
• If TM1 is enabled and the TCC is engaged, the performance state transition can

commence before the TCC is disengaged.
• If TM2 is enabled and the TCC is engaged, the performance state transition

specified by a write to the IA32_PERF_CTL will commence after the TCC has
disengaged.

14.5.2.5 Thermal Status Information
The status of the temperature sensor that triggers the thermal monitor (TM1/TM2) is
indicated through the thermal status flag and thermal status log flag in the
IA32_THERM_STATUS MSR (see Figure 14-8).

The functions of these flags are:
• Thermal Status flag, bit 0 — When set, indicates that the processor core

temperature is currently at the trip temperature of the thermal monitor and that
the processor power consumption is being reduced via either TM1 or TM2,
depending on which is enabled. When clear, the flag indicates that the core
temperature is below the thermal monitor trip temperature. This flag is read only.

• Thermal Status Log flag, bit 1 — When set, indicates that the thermal sensor
has tripped since the last power-up or reset or since the last time that software
cleared this flag. This flag is a sticky bit; once set it remains set until cleared by
software or until a power-up or reset of the processor. The default state is clear.

Figure 14-7. MSR_THERM2_CTL Register for Supporting TM2

63 0

Reserved

15

TM2 Transition Target
14-14 Vol. 3A

POWER AND THERMAL MANAGEMENT
After the second temperature sensor has been tripped, the thermal monitor
(TM1/TM2) will remain engaged for a minimum time period (on the order of 1 ms).
The thermal monitor will remain engaged until the processor core temperature drops
below the preset trip temperature of the temperature sensor, taking hysteresis into
account.

While the processor is in a stop-clock state, interrupts will be blocked from inter-
rupting the processor. This holding off of interrupts increases the interrupt latency,
but does not cause interrupts to be lost. Outstanding interrupts remain pending until
clock modulation is complete.

The thermal monitor can be programmed to generate an interrupt to the processor
when the thermal sensor is tripped. The delivery mode, mask and vector for this
interrupt can be programmed through the thermal entry in the local APIC’s LVT (see
Section 10.5.1, “Local Vector Table”). The low-temperature interrupt enable and
high-temperature interrupt enable flags in the IA32_THERM_INTERRUPT MSR (see
Figure 14-9) control when the interrupt is generated; that is, on a transition from a
temperature below the trip point to above and/or vice-versa.

• High-Temperature Interrupt Enable flag, bit 0 — Enables an interrupt to be
generated on the transition from a low-temperature to a high-temperature when
set; disables the interrupt when clear.(R/W).

• Low-Temperature Interrupt Enable flag, bit 1 — Enables an interrupt to be
generated on the transition from a high-temperature to a low-temperature when
set; disables the interrupt when clear.

The thermal monitor interrupt can be masked by the thermal LVT entry. After a
power-up or reset, the low-temperature interrupt enable and high-temperature

Figure 14-8. IA32_THERM_STATUS MSR

Figure 14-9. IA32_THERM_INTERRUPT MSR

63 0

Reserved

12

Thermal Status
Thermal Status Log

63 0

Reserved

12

High-Temperature Interrupt Enable
Low-Temperature Interrupt Enable
Vol. 3A 14-15

POWER AND THERMAL MANAGEMENT
interrupt enable flags in the IA32_THERM_INTERRUPT MSR are cleared (interrupts
are disabled) and the thermal LVT entry is set to mask interrupts. This interrupt
should be handled either by the operating system or system management mode
(SMM) code.

Note that the operation of the thermal monitoring mechanism has no effect upon the
clock rate of the processor's internal high-resolution timer (time stamp counter).

14.5.2.6 Adaptive Thermal Monitor
The Intel Core 2 Duo processor family supports enhanced thermal management
mechanism, referred to as Adaptive Thermal Monitor (Adaptive TM).

Unlike TM2, Adaptive TM is not limited to one TM2 transition target. During a thermal
trip event, Adaptive TM (if enabled) selects an optimal target operating point based
on whether or not the current operating point has effectively cooled the processor.

Similar to TM2, Adaptive TM is enable by BIOS. The BIOS is required to test the TM1
and TM2 feature flags and enable all available thermal control mechanisms (including
Adaptive TM) at platform initiation.

Adaptive TM is available only to a subset of processors that support TM2.

In each chip-multiprocessing (CMP) silicon die, each core has a unique thermal
sensor that triggers independently. These thermal sensor can trigger TM1 or TM2
transitions in the same manner as described in Section 14.5.2.1 and Section
14.5.2.2. The trip point of the thermal sensor is not programmable by software since
it is set during the fabrication of the processor.

Each thermal sensor in a processor core may be triggered independently to engage
thermal management features. In Adaptive TM, both cores will transition to a lower
frequency and/or lower voltage level if one sensor is triggered.

Triggering of this sensor is visible to software via the thermal interrupt LVT entry in
the local APIC of a given core.

14.5.3 Software Controlled Clock Modulation
Pentium 4, Intel Xeon and Pentium M processors also support software-controlled
clock modulation. This provides a means for operating systems to implement a power
management policy to reduce the power consumption of the processor. Here, the
stop-clock duty cycle is controlled by software through the
IA32_CLOCK_MODULATION MSR (see Figure 14-10).
14-16 Vol. 3A

POWER AND THERMAL MANAGEMENT
The IA32_CLOCK_MODULATION MSR contains the following flag and field used to
enable software-controlled clock modulation and to select the clock modulation duty
cycle:
• On-Demand Clock Modulation Enable, bit 4 — Enables on-demand software

controlled clock modulation when set; disables software-controlled clock
modulation when clear.

• On-Demand Clock Modulation Duty Cycle, bits 1 through 3 — Selects the
on-demand clock modulation duty cycle (see Table 14-1). This field is only active
when the on-demand clock modulation enable flag is set.

Note that the on-demand clock modulation mechanism (like the thermal monitor)
controls the processor’s stop-clock circuitry internally to modulate the clock signal.
The STPCLK# pin is not used in this mechanism.

The on-demand clock modulation mechanism can be used to control processor power
consumption. Power management software can write to the
IA32_CLOCK_MODULATION MSR to enable clock modulation and to select a modula-
tion duty cycle. If on-demand clock modulation and TM1 are both enabled and the
thermal status of the processor is hot (bit 0 of the IA32_THERM_STATUS MSR is set),

Figure 14-10. IA32_CLOCK_MODULATION MSR

Table 14-1. On-Demand Clock Modulation Duty Cycle Field Encoding

Duty Cycle Field Encoding Duty Cycle

000B Reserved

001B 12.5% (Default)

010B 25.0%

011B 37.5%

100B 50.0%

101B 63.5%

110B 75%

111B 87.5%

63 0

Reserved

13

On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
Vol. 3A 14-17

POWER AND THERMAL MANAGEMENT
clock modulation at the duty cycle specified by TM1 takes precedence, regardless of
the setting of the on-demand clock modulation duty cycle.

For Hyper-Threading Technology enabled processors, the
IA32_CLOCK_MODULATION register is duplicated for each logical processor. In order
for the On-demand clock modulation feature to work properly, the feature must be
enabled on all the logical processors within a physical processor. If the programmed
duty cycle is not identical for all the logical processors, the processor clock will modu-
late to the highest duty cycle programmed.

For the P6 family processors, on-demand clock modulation was implemented
through the chipset, which controlled clock modulation through the processor’s
STPCLK# pin.

14.5.3.1 Extension of Software Controlled Clock Modulation
Extension of the software controlled clock modulation facility supports on-demand
clock modulation duty cycle with 4-bit dynamic range (increased from 3-bit range).
Granularity of clock modulation duty cycle is increased to 6.25% (compared to
12.5%).

Four bit dynamic range control is provided by using bit 0 in conjunction with bits 3:1
of the IA32_CLOCK_MODULATION MSR (see Figure 14-11).

Extension to software controlled clock modulation is supported only if
CPUID.06H:EAX[Bit 5] = 1. If CPUID.06H:EAX[Bit 5] = 0, then bit 0 of
IA32_CLOCK_MODULATION is reserved.

14.5.4 Detection of Thermal Monitor and Software Controlled
Clock Modulation Facilities

The ACPI flag (bit 22) of the CPUID feature flags indicates the presence of the
IA32_THERM_STATUS, IA32_THERM_INTERRUPT, IA32_CLOCK_MODULATION
MSRs, and the xAPIC thermal LVT entry.

The TM1 flag (bit 29) of the CPUID feature flags indicates the presence of the auto-
matic thermal monitoring facilities that modulate clock duty cycles.

Figure 14-11. IA32_CLOCK_MODULATION MSR with Clock Modulation Extension

63 0

Reserved

3

Extended On-Demand Clock Modulation Duty Cycle
On-Demand Clock Modulation Enable

45

Reserved
14-18 Vol. 3A

POWER AND THERMAL MANAGEMENT
14.5.4.1 Detection of Software Controlled Clock Modulation Extension
Processor’s support of software controlled clock modulation extension is indicated by
CPUID.06H:EAX[Bit 5] = 1.

14.5.5 On Die Digital Thermal Sensors
On die digital thermal sensor can be read using an MSR (no I/O interface). In Intel
Core Duo processors, each core has a unique digital sensor whose temperature is
accessible using an MSR. The digital thermal sensor is the preferred method for
reading the die temperature because (a) it is located closer to the hottest portions of
the die, (b) it enables software to accurately track the die temperature and the
potential activation of thermal throttling.

14.5.5.1 Digital Thermal Sensor Enumeration
The processor supports a digital thermal sensor if CPUID.06H.EAX[0] = 1. If the
processor supports digital thermal sensor, EBX[bits 3:0] determine the number of
thermal thresholds that are available for use.

Software sets thermal thresholds by using the IA32_THERM_INTERRUPT MSR. Soft-
ware reads output of the digital thermal sensor using the IA32_THERM_STATUS
MSR.

14.5.5.2 Reading the Digital Sensor
Unlike traditional analog thermal devices, the output of the digital thermal sensor is
a temperature relative to the maximum supported operating temperature of the
processor.

Temperature measurements returned by digital thermal sensors are always at or
below TCC activation temperature. Critical temperature conditions are detected
using the “Critical Temperature Status” bit. When this bit is set, the processor is
operating at a critical temperature and immediate shutdown of the system should
occur. Once the “Critical Temperature Status” bit is set, reliable operation is not guar-
anteed.

See Figure 14-12 for the layout of IA32_THERM_STATUS MSR. Bit fields include:
• Thermal Status (bit 0, RO) — This bit indicates whether the digital thermal

sensor high-temperature output signal (PROCHOT#) is currently active. Bit 0 = 1
indicates the feature is active. This bit may not be written by software; it reflects
the state of the digital thermal sensor.

• Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that indicates the
history of the thermal sensor high temperature output signal (PROCHOT#).
Bit 1 = 1 if PROCHOT# has been asserted since a previous RESET or the last time
software cleared the bit. Software may clear this bit by writing a zero.
Vol. 3A 14-19

POWER AND THERMAL MANAGEMENT
• PROCHOT# or FORCEPR# Event (bit 2, RO) — Indicates whether PROCHOT#
or FORCEPR# is being asserted by another agent on the platform.

• PROCHOT# or FORCEPR# Log (bit 3, R/WC0) — Sticky bit that indicates
whether PROCHOT# or FORCEPR# has been asserted by another agent on the
platform since the last clearing of this bit or a reset. If bit 3 = 1, PROCHOT# or
FORCEPR# has been externally asserted. Software may clear this bit by writing a
zero. External PROCHOT# assertions are only acknowledged if the Bidirectional
Prochot feature is enabled.

• Critical Temperature Status (bit 4, RO) — Indicates whether the critical
temperature detector output signal is currently active. If bit 4 = 1, the critical
temperature detector output signal is currently active.

• Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates whether
the critical temperature detector output signal has been asserted since the last
clearing of this bit or reset. If bit 5 = 1, the output signal has been asserted.
Software may clear this bit by writing a zero.

• Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the actual
temperature is currently higher than or equal to the value set in Thermal
Threshold #1. If bit 6 = 0, the actual temperature is lower. If bit 6 = 1, the
actual temperature is greater than or equal to TT#1. Quantitative information of
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that indicates
whether the Thermal Threshold #1 has been reached since the last clearing of

Figure 14-12. IA32_THERM_STATUS Register

63 0

Reserved

15

Reading Valid

1234581016222327

Resolution in Deg. Celsius
Digital Readout

Thermal Threshold #2 Log
Thermal Threshold #2 Status
Thermal Threshold #1 Log
Thermal Threshold #1 Status
Critical Temperature Log

6793132

Critical Temperature Status
PROCHOT# or FORCEPR# Log
PROCHOT# or FORCEPR# Event
Thermal Status Log
Thermal Status

11

Power Limit Notification Log
Power Limit Notification Status
14-20 Vol. 3A

POWER AND THERMAL MANAGEMENT
this bit or a reset. If bit 7 = 1, the Threshold #1 has been reached. Software may
clear this bit by writing a zero.

• Thermal Threshold #2 Status (bit 8, RO) — Indicates whether actual
temperature is currently higher than or equal to the value set in Thermal
Threshold #2. If bit 8 = 0, the actual temperature is lower. If bit 8 = 1, the
actual temperature is greater than or equal to TT#2. Quantitative information of
actual temperature can be inferred from Digital Readout, bits 22:16.

• Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that indicates
whether the Thermal Threshold #2 has been reached since the last clearing of
this bit or a reset. If bit 9 = 1, the Thermal Threshold #2 has been reached.
Software may clear this bit by writing a zero.

• Power Limitation Status (bit 10, RO) — Indicates whether the processor is
currently operating below OS-requested P-state (specified in IA32_PERF_CTL) or
OS-requested clock modulation duty cycle (specified in
IA32_CLOCK_MODULATION). This field is supported only if CPUID.06H:EAX[bit
4] = 1. Package level power limit notification can be delivered independently to
IA32_PACKAGE_THERM_STATUS MSR.

• Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates the
processor went below OS-requested P-state or OS-requested clock modulation
duty cycle since the last clearing of this or RESET. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification is indicated
independently in IA32_PACKAGE_THERM_STATUS MSR.

• Digital Readout (bits 22:16, RO) — Digital temperature reading in 1 degree
Celsius relative to the TCC activation temperature.
0: TCC Activation temperature,
1: (TCC Activation - 1) , etc. See the processor’s data sheet for details regarding
TCC activation.
A lower reading in the Digital Readout field (bits 22:16) indicates a higher actual
temperature.

• Resolution in Degrees Celsius (bits 30:27, RO) — Specifies the resolution
(or tolerance) of the digital thermal sensor. The value is in degrees Celsius. It is
recommended that new threshold values be offset from the current temperature
by at least the resolution + 1 in order to avoid hysteresis of interrupt generation.

• Reading Valid (bit 31, RO) — Indicates if the digital readout in bits 22:16 is
valid. The readout is valid if bit 31 = 1.

Changes to temperature can be detected using two thresholds (see Figure 14-13);
one is set above and the other below the current temperature. These thresholds have
the capability of generating interrupts using the core's local APIC which software
must then service. Note that the local APIC entries used by these thresholds are also
used by the Intel® Thermal Monitor; it is up to software to determine the source of a
specific interrupt.
Vol. 3A 14-21

POWER AND THERMAL MANAGEMENT
See Figure 14-13 for the layout of IA32_THERM_INTERRUPT MSR. Bit fields include:
• High-Temperature Interrupt Enable (bit 0, R/W) — This bit allows the BIOS

to enable the generation of an interrupt on the transition from low-temperature
to a high-temperature threshold. Bit 0 = 0 (default) disables interrupts;
bit 0 = 1 enables interrupts.

• Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows the BIOS
to enable the generation of an interrupt on the transition from high-temperature
to a low-temperature (TCC de-activation). Bit 1 = 0 (default) disables interrupts;
bit 1 = 1 enables interrupts.

• PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the BIOS or OS
to enable the generation of an interrupt when PROCHOT# has been asserted by
another agent on the platform and the Bidirectional Prochot feature is enabled.
Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the interrupt.

• FORCEPR# Interrupt Enable (bit 3, R/W) — This bit allows the BIOS or OS to
enable the generation of an interrupt when FORCEPR# has been asserted by
another agent on the platform. Bit 3 = 0 disables the interrupt; bit 3 = 1 enables
the interrupt.

• Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the
generation of an interrupt when the Critical Temperature Detector has detected a
critical thermal condition. The recommended response to this condition is a
system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1 enables the
interrupt.

• Threshold #1 Value (bits 14:8, R/W) — A temperature threshold, encoded
relative to the TCC Activation temperature (using the same format as the Digital
Readout). This threshold is compared against the Digital Readout and is used to

Figure 14-13. IA32_THERM_INTERRUPT Register

63 0

Reserved

15

Threshold #2 Interrupt Enable

1234581416222324

Threshold #2 Value
Threshold #1 Interrupt Enable
Threshold #1 Value
Overheat Interrupt Enable
FORCPR# Interrupt Enable
PROCHOT# Interrupt Enable
Low Temp. Interrupt Enable
High Temp. Interrupt Enable

25

Power Limit Notification Enable
14-22 Vol. 3A

POWER AND THERMAL MANAGEMENT
generate the Thermal Threshold #1 Status and Log bits as well as the Threshold
#1 thermal interrupt delivery.

• Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the generation of
an interrupt when the actual temperature crosses the Threshold #1 setting in any
direction. Bit 15 = 0 enables the interrupt; bit 15 = 1 disables the interrupt.

• Threshold #2 Value (bits 22:16, R/W) —A temperature threshold, encoded
relative to the TCC Activation temperature (using the same format as the Digital
Readout). This threshold is compared against the Digital Readout and is used to
generate the Thermal Threshold #2 Status and Log bits as well as the Threshold
#2 thermal interrupt delivery.

• Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the generation of
an interrupt when the actual temperature crosses the Threshold #2 setting in any
direction. Bit 23 = 0 enables the interrupt; bit 23 = 1 disables the interrupt.

• Power Limit Notification Enable (bit 24, R/W) — Enables the generation of
power notification events when the processor went below OS-requested P-state
or OS-requested clock modulation duty cycle. This field is supported only if
CPUID.06H:EAX[bit 4] = 1. Package level power limit notification can be enabled
independently by IA32_PACKAGE_THERM_INTERRUPT MSR.

14.5.6 Power Limit Notification
Platform firmware may be capable of specifying a power limit to restrict power deliv-
ered to a platform component, such as a physical processor package. This constraint
imposed by platform firmware may occasionally cause the processor to operate
below OS-requested P or T-state. A power limit notification event can be delivered
using the existing thermal LVT entry in the local APIC.

Software can enumerate the presence of the processor’s support for power limit noti-
fication by verifying CPUID.06H:EAX[bit 4] = 1.

If CPUID.06H:EAX[bit 4] = 1, then IA32_THERM_INTERRUPT and
IA32_THERM_STATUS provides the following facility to manage power limit notifica-
tion:
• Bits 10 and 11 in IA32_THERM_STATUS informs software of the occurrence of

processor operating below OS-requested P-state or clock modulation duty cycle
setting (see Figure 14-12).

• Bit 24 in IA32_THERM_INTERRUPT enables the local APIC to deliver a thermal
event when the processor went below OS-requested P-state or clock modulation
duty cycle setting (see Figure 14-13).

14.6 PACKAGE LEVEL THERMAL MANAGEMENT
The thermal management facilities like IA32_THERM_INTERRUPT and
IA32_THERM_STATUS are often implemented with a processor core granularity. To
Vol. 3A 14-23

POWER AND THERMAL MANAGEMENT
facilitate software manage thermal events from a package level granularity, two
architectural MSR is provided for package level thermal management. The
IA32_PACKAGE_THERM_STATUS and IA32_PACKAGE_THERM_INTERRUPT MSRs
use similar interfaces as IA32_THERM_STATUS and IA32_THERM_INTERRUPT, but
are shared in each physical processor package.

Software can enumerate the presence of the processor’s support for package level
thermal management facility (IA32_PACKAGE_THERM_STATUS and
IA32_PACKAGE_THERM_INTERRUPT) by verifying CPUID.06H:EAX[bit 6] = 1.

The layout of IA32_PACKAGE_THERM_STATUS MSR is shown in Figure 14-14.

• Package Thermal Status (bit 0, RO) — This bit indicates whether the digital
thermal sensor high-temperature output signal (PROCHOT#) for the package is
currently active. Bit 0 = 1 indicates the feature is active. This bit may not be
written by software; it reflects the state of the digital thermal sensor.

• Package Thermal Status Log (bit 1, R/WC0) — This is a sticky bit that
indicates the history of the thermal sensor high temperature output signal
(PROCHOT#) of the package. Bit 1 = 1 if package PROCHOT# has been asserted
since a previous RESET or the last time software cleared the bit. Software may
clear this bit by writing a zero.

• Package PROCHOT# Event (bit 2, RO) — Indicates whether package
PROCHOT# is being asserted by another agent on the platform.

Figure 14-14. IA32_PACKAGE_THERM_STATUS Register

63 0

Reserved

15 1234581016222327

PKG Digital Readout

PKG Thermal Threshold #2 Log
PKG Thermal Threshold #2 Status
PKG Thermal Threshold #1 Log
PKG Thermal Threshold #1 Status
PKG Critical Temperature Log

6793132

PKG Critical Temperature Status
PKG PROCHOT# or FORCEPR# Log
PKG PROCHOT# or FORCEPR# Event
PKG Thermal Status Log
PKG Thermal Status

11

PKG Power Limit Notification Log
PKG Power Limit Notification Status
14-24 Vol. 3A

POWER AND THERMAL MANAGEMENT
• Package PROCHOT# Log (bit 3, R/WC0) — Sticky bit that indicates whether
package PROCHOT# has been asserted by another agent on the platform since
the last clearing of this bit or a reset. If bit 3 = 1, package PROCHOT# has been
externally asserted. Software may clear this bit by writing a zero.

• Package Critical Temperature Status (bit 4, RO) — Indicates whether the
package critical temperature detector output signal is currently active. If
bit 4 = 1, the package critical temperature detector output signal is currently
active.

• Package Critical Temperature Log (bit 5, R/WC0) — Sticky bit that indicates
whether the package critical temperature detector output signal has been
asserted since the last clearing of this bit or reset. If bit 5 = 1, the output signal
has been asserted. Software may clear this bit by writing a zero.

• Package Thermal Threshold #1 Status (bit 6, RO) — Indicates whether the
actual package temperature is currently higher than or equal to the value set in
Package Thermal Threshold #1. If bit 6 = 0, the actual temperature is lower. If
bit 6 = 1, the actual temperature is greater than or equal to PTT#1. Quantitative
information of actual package temperature can be inferred from Package Digital
Readout, bits 22:16.

• Package Thermal Threshold #1 Log (bit 7, R/WC0) — Sticky bit that
indicates whether the Package Thermal Threshold #1 has been reached since the
last clearing of this bit or a reset. If bit 7 = 1, the Package Threshold #1 has been
reached. Software may clear this bit by writing a zero.

• Package Thermal Threshold #2 Status (bit 8, RO) — Indicates whether
actual package temperature is currently higher than or equal to the value set in
Package Thermal Threshold #2. If bit 8 = 0, the actual temperature is lower. If
bit 8 = 1, the actual temperature is greater than or equal to PTT#2. Quantitative
information of actual temperature can be inferred from Package Digital Readout,
bits 22:16.

• Package Thermal Threshold #2 Log (bit 9, R/WC0) — Sticky bit that
indicates whether the Package Thermal Threshold #2 has been reached since the
last clearing of this bit or a reset. If bit 9 = 1, the Package Thermal Threshold #2
has been reached. Software may clear this bit by writing a zero.

• Package Power Limitation Status (bit 10, RO) — Indicates package power
limit is forcing one ore more processors to operate below OS-requested P-state.
Note that package power limit violation may be caused by processor cores or by
devices residing in the uncore. Software can examine IA32_THERM_STATUS to
determine if the cause originates from a processor core (see Figure 14-12).

• Package Power Notification Log (bit 11, R/WCO) — Sticky bit that indicates
any processor in the package went below OS-requested P-state or OS-requested
clock modulation duty cycle since the last clearing of this or RESET.

• Package Digital Readout (bits 22:16, RO) — Package digital temperature
reading in 1 degree Celsius relative to the package TCC activation temperature.
0: Package TCC Activation temperature,
Vol. 3A 14-25

POWER AND THERMAL MANAGEMENT
1: (PTCC Activation - 1) , etc. See the processor’s data sheet for details regarding
PTCC activation.
A lower reading in the Package Digital Readout field (bits 22:16) indicates a
higher actual temperature.

The layout of IA32_PACKAGE_THERM_INTERRUPT MSR is shown in Figure 14-15.

• Package High-Temperature Interrupt Enable (bit 0, R/W) — This bit
allows the BIOS to enable the generation of an interrupt on the transition from
low-temperature to a package high-temperature threshold. Bit 0 = 0 (default)
disables interrupts; bit 0 = 1 enables interrupts.

• Package Low-Temperature Interrupt Enable (bit 1, R/W) — This bit allows
the BIOS to enable the generation of an interrupt on the transition from high-
temperature to a low-temperature (TCC de-activation). Bit 1 = 0 (default)
disables interrupts; bit 1 = 1 enables interrupts.

• Package PROCHOT# Interrupt Enable (bit 2, R/W) — This bit allows the
BIOS or OS to enable the generation of an interrupt when Package PROCHOT#
has been asserted by another agent on the platform and the Bidirectional Prochot
feature is enabled. Bit 2 = 0 disables the interrupt; bit 2 = 1 enables the
interrupt.

• Package Critical Temperature Interrupt Enable (bit 4, R/W) — Enables the
generation of an interrupt when the Package Critical Temperature Detector has
detected a critical thermal condition. The recommended response to this
condition is a system shutdown. Bit 4 = 0 disables the interrupt; bit 4 = 1
enables the interrupt.

• Package Threshold #1 Value (bits 14:8, R/W) — A temperature threshold,
encoded relative to the Package TCC Activation temperature (using the same
format as the Digital Readout). This threshold is compared against the Package

Figure 14-15. IA32_PACKAGE_THERM_INTERRUPT Register

63 0

Reserved

15

Pkg Threshold #2 Interrupt Enable

1234581416222324

Pkg Threshold #2 Value
Pkg Threshold #1 Interrupt Enable
Pkg Threshold #1 Value
Pkg Overheat Interrupt Enable
Pkg PROCHOT# Interrupt Enable
Pkg Low Temp. Interrupt Enable
Pkg High Temp. Interrupt Enable

25

Pkg Power Limit Notification Enable
14-26 Vol. 3A

POWER AND THERMAL MANAGEMENT
Digital Readout and is used to generate the Package Thermal Threshold #1
Status and Log bits as well as the Package Threshold #1 thermal interrupt
delivery.

• Package Threshold #1 Interrupt Enable (bit 15, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #1 setting in any direction. Bit 15 = 0 enables the interrupt; bit 15 =
1 disables the interrupt.

• Package Threshold #2 Value (bits 22:16, R/W) —A temperature threshold,
encoded relative to the PTCC Activation temperature (using the same format as
the Package Digital Readout). This threshold is compared against the Package
Digital Readout and is used to generate the Package Thermal Threshold #2
Status and Log bits as well as the Package Threshold #2 thermal interrupt
delivery.

• Package Threshold #2 Interrupt Enable (bit 23, R/W) — Enables the
generation of an interrupt when the actual temperature crosses the Package
Threshold #2 setting in any direction. Bit 23 = 0 enables the interrupt; bit 23 =
1 disables the interrupt.

• Package Power Limit Notification Enable (bit 24, R/W) — Enables the
generation of package power notification events.

14.6.1 Support for Passive and Active cooling
Passive and active cooling may be controlled by the OS power management agent
through ACPI control methods. On platforms providing package level thermal
management facility described in the previous section, it is recommended that active
cooling (FAN control) should be driven by measuring the package temperature using
the IA32_PACKAGE_THERM_INTERRUPT MSR.

Passive cooling (frequency throttling) should be driven by measuring (a) the core
and package temperatures, or (b) only the package temperature. If measured
package temperature led the power management agent to choose which core to
execute passive cooling, then all cores need to execute passive cooling. Core temper-
ature is measured using the IA32_THERMAL_STATUS and
IA32_THERMAL_INTERRUPT MSRs. The exact implementation details depend on the
platform firmware and possible solutions include defining two different thermal zones
(one for core temperature and passive cooling and the other for package tempera-
ture and active cooling).

14.7 PLATFORM SPECIFIC POWER MANAGEMENT
SUPPORT

This section covers power management interfaces that are not architectural but
addresses the power management needs of several platform specific components.
Vol. 3A 14-27

POWER AND THERMAL MANAGEMENT
Specifically, RAPL (Running Average Power Limit) interfaces provide mechanisms to
enforce power consumption limit. Power limiting usages have specific usages in client
and server platforms.

For client platform power limit control and for server platforms used in a data center,
the following power and thermal related usages are desirable:
• Platform Thermal Management: Robust mechanisms to manage component,

platform, and group-level thermals, either proactively or reactively (e.g., in
response to a platform-level thermal trip point).

• Platform Power Limiting: More deterministic control over the system's power
consumption, for example to meet battery life targets on rack- or container-level
power consumption goals within a datacenter.

• Power/Performance Budgeting: Efficient means to control the power consumed
(and therefore the sustained performance delivered) within and across
platforms.

The server and client usage models are addressed by RAPL interfaces, which exposes
multiple domains of power rationing within each processor socket. Generally, these
RAPL domains may be viewed to include hierarchically:
• Package domain is the processor die.
• Memory domain include the directly-attached DRAM; additional power plane may

constitutes a separate domain.

In order to manage the power consumed across multiple sockets via RAPL, individual
limits must be programmed for each processor complex. Programming specific RAPL
domain across multiple sockets is not supported.

14.7.1 RAPL Interfaces
RAPL interfaces consist of non-architectural MSRs. Each RAPL domain supports the
following set of capabilities, some of which are optional as stated below.
• Power limit - MSR interfaces to specify power limit, time window; lock bit, clamp

bit etc.
• Energy Status - Power metering interface providing energy consumption infor-

mation.
• Perf Status (Optional) - Interface providing information on the performance

effects (regression) due to power limits. It is defined as a duration metric that
measures the power limit effect in the respective domain. The meaning of
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of
parameters for a given domain, minimum power, maximum power etc.

• Policy (Optional) - 4-bit priority information which is a hint to hardware for
dividing budget between sub-domains in a parent domain.
14-28 Vol. 3A

POWER AND THERMAL MANAGEMENT
Each of the above capabilities requires specific units in order to describe them. Power
is expressed in Watts, Time is expressed in Seconds and Energy is expressed in
Joules. Scaling factors are supplied to each unit to make the information presented
meaningful in a finite number of bits. Units for power, energy and time are exposed
in the read-only MSR_RAPL_POWER_UNIT MSR.

MSR_RAPL_POWER_UNIT (Figure 14-16) provides the following information across
all RAPL domains:
• Power Units (bits 3:0): Power related information (in Watts) is based on the

multiplier, 1/ 2^PU; where PU is an unsigned integer represented by bits 3:0.
Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bit 12:8): Energy related information (in Joules) is based
on the multiplier, 1/2^ESU; where ESU is an unsigned integer represented by
bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-
Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the
multiplier, 1/ 2^TU; where TU is an unsigned integer represented by bits 19:16.
Default value is 1010b, indicating time unit is in 976 micro-seconds increment.

14.7.2 RAPL Domains and Platform Specificity
The specific RAPL domains available in a platform varies across product segments.
Platforms targeting client segment support the following RAPL domain hierarchy:
• Package
• Two power planes: PP0 and PP1 (PP1 may reflect to uncore devices)

Platforms targeting server segment support the following RAPL domain hierarchy:
• Package
• Power plane: PP0
• DRAM

Figure 14-16. MSR_RAPL_POWER_UNIT Register

63 0

Reserved

13 347812151920

Time units
Energy status units
Power units

16
Vol. 3A 14-29

POWER AND THERMAL MANAGEMENT
Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs.
Table 14-2 lists the RAPL MSR interfaces available for each RAPL domain. The power
limit MSR of each RAPL domain is located at offset 0 relative to an MSR base address
which is non-architectural (see Appendix B). The energy status MSR of each domain
is located at offset 1 relative to the MSR base address of respective domain.

The presence of the optional MSR interfaces (the three right-most columns of Table
14-2) may be model-specific. See Appendix B for detail.

14.7.3 Package RAPL Domain
The MSR interfaces defined for the package RAPL domain are:
• MSR_PKG_POWER_LIMIT allows software to set power limits for the package and

measurement attributes associated with each limit,
• MSR_PKG_ENERGY_STATUS reports measured actual energy usage,
• MSR_PKG_POWER_INFO reports the package power range information for RAPL

usage.

MSR_PKG_RAPL_PERF_STATUS can report the performance impact of power
limiting, but its availability may be model-specific.

Table 14-2. RAPL MSR Interfaces and RAPL Domains

 Domain Power Limit
(Offset 0)

 Energy Status
(Offset 1)

 Policy
(Offset 2)

 Perf Status
(Offset 3)

 Power Info
(Offset 4)

PKG MSR_PKG_PO
WER_LIMIT

MSR_PKG_ENER
GY_STATUS

RESERVED MSR_PKG_RAPL_
PERF_STATUS

MSR_PKG_PO
WER_INFO

DRAM MSR_DRAM_
POWER_LIMIT

MSR_DRAM_EN
ERGY_STATUS

RESERVED MSR_DRAM_RAPL
_PERF_STATUS

MSR_DRAM_P
OWER_INFO

PP0 MSR_PP0_PO
WER_LIMIT

MSR_PP0_ENER
GY_STATUS

MSR_PP0_P
OLICY

RESERVED RESERVED

PP1 MSR_PP1_PO
WER_LIMIT

MSR_PP1_ENER
GY_STATUS

MSR_PP1_P
OLICY

RESERVED RESERVED
14-30 Vol. 3A

POWER AND THERMAL MANAGEMENT
MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the
package domain. Power limitation is defined in terms of average power usage
(Watts) over a time window specified in MSR_PKG_POWER_LIMIT. Two power limits
can be specified, corresponding to time windows of different sizes. Each power limit
provides independent clamping control that would permit the processor cores to go
below OS-requested state to meet the power limits. A lock mechanism allow the soft-
ware agent to enforce power limit settings. Once the lock bit is set, the power limit
settings are static and un-modifiable until next RESET.

The bit fields of MSR_PKG_POWER_LIMIT (Figure 14-17) are:
• Package Power Limit #1(bits 14:0): Sets the average power usage limit of the

package domain corresponding to time window # 1. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #1 (bits 16): Allow going below OS-requested

P/T state setting during time window specified by bits 23:17.
• Time Window for Power Limit #1 (bits 23:17): Indicates the length of time

window over which the power limit #1 The numeric value encoded by bits 23:17
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Package Power Limit #2(bits 46:32): Sets the average power usage limit of
the package domain corresponding to time window # 2. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #2(bit 47): 0 = disabled; 1 = enabled.
• Package Clamping Limitation #2 (bits 48): Allow going below OS-requested

P/T state setting during time window specified by bits 23:17.

Figure 14-17. MSR_PKG_POWER_LIMIT Register

63

Enable limit #1
Pkg clamping limit #1
Enable limit #2
Pkg clamping limit #2

31 24 23 15 0

Pkg Power Limit #1

48 47 3262 56 55 49 46 14
L
O
C

Pkg Power Limit #2

1617

K

Time window
Power Limit #2

Time window
Power Limit #1
Vol. 3A 14-31

POWER AND THERMAL MANAGEMENT
• Time Window for Power Limit #2 (bits 55:49): Indicates the length of time
window over which the power limit #2 The numeric value encoded by bits 23:17
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT. This field
may have a hard-coded value in hardware and ignores values written by
software.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for
the package domain. This MSR is updated every ~1msec. It has a wraparound time
of around 60 secs when power consumption is high, and may be longer otherwise.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range
information for RAPL usage. This MSR provides maximum/minimum values (derived
from electrical specification), thermal specification power of the package domain. It
also provides the largest possible time window for software to program the RAPL
interface.

Figure 14-18. MSR_PKG_ENERGY_STATUS MSR

Figure 14-19. MSR_PKG_POWER_INFO Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power
14-32 Vol. 3A

POWER AND THERMAL MANAGEMENT
• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent
of thermal specification power of the package domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the package domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the package domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 46:32): The unsigned integer value is the
equivalent of largest acceptable value to program the time window of
MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is
defined as going below the OS-requested P-state or T-state. It has a wrap-around
time of many hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer
value represents the cumulative time (since the last time this register is cleared)
that the package has throttled. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

14.7.4 PP0/PP1 RAPL Domains
The MSR interfaces defined for the PP0 and PP1 domains are identical in layout.
Generally, PP0 refers to the processor cores. The availability of PP1 RAPL domain
interface is platform-specific. For a client platform, PP1 domain refers to the power
plane of a specific device in the uncore. For server platforms, PP1 domain is not
supported, but its PP0 domain supports the MSR_PP0_PERF_STATUS interface.
• MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow software to set power

limits for the respective power plane domain.

Figure 14-20. MSR_PKG_PERF_STATUS MSR

63 0

Reserved

Accumulated pkg throttled time

3132

Reserved
Vol. 3A 14-33

POWER AND THERMAL MANAGEMENT
• MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS report actual energy
usage on a power plane.

• MSR_PP0_POLICY/MSR_PP1_POLICY allow software to adjust balance for
respective power plane.

MSR_PP0_PERF_STATUS can report the performance impact of power limiting, but it
is not available in client platform.

MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allows a software agent to define
power limitation for the respective power plane domain. A lock mechanism in each
power plane domain allow the software agent to enforce power limit settings inde-
pendently. Once a lock bit is set, the power limit settings in that power plane are
static and un-modifiable until next RESET.

The bit fields of MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT (Figure 14-21)
are:
• Power Limit (bits 14:0): Sets the average power usage limit of the respective

power plane domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Enable Power Limit (bit 15): 0 = disabled; 1 = enabled.
• Clamping Limitation (bits 16): Allow going below OS-requested P/T state

setting during time window specified by bits 23:17.
• Time Window for Power Limit (bits 23:17): Indicates the length of time

window over which the power limit #1 The numeric value encoded by bits 23:17
is represented by the product of 2^Y *F; where F is a single-digit decimal
floating-point value between 1.0 and 1.3 with the fraction digit represented by
bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit of this
field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

Figure 14-21. MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT Register

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
14-34 Vol. 3A

POWER AND THERMAL MANAGEMENT
MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS is a read-only MSR. It
reports the actual energy use for the respective power plane domain. This MSR is
updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each
power plane by providing inputs to the power budgeting management algorithm. On
the platform that supports PP0 (IA cores) and PP1 (uncore graphic device), the
default value give priority to the non-IA power plane. These MSRs enable the PCU to
balance power consumption between the IA cores and uncore graphic device.

• Priority Level (bits 4:0): Priority level input to the PCU for respective power
plane. PP0 covers the IA processor cores, PP1 covers the uncore graphic device.
The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the
PP0 domain was throttled due to the power limits. This MSR is supported only in
server platform. Throttling in this context is defined as going below the OS-requested
P-state or T-state.

Figure 14-22. MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS MSR

Figure 14-23. MSR_PP0_POLICY/MSR_PP1_POLICY Register

63 0

Reserved

Total Energy Consumed

3132

Reserved

63 4 0

Priority Level

5

Vol. 3A 14-35

POWER AND THERMAL MANAGEMENT
• Accumulated PP0 Throttled Time (bits 31:0): The unsigned integer value
represents the cumulative time (since the last time this register is cleared) that
the PP0 domain has throttled. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

14.7.5 DRAM RAPL Domain
The MSR interfaces defined for the DRAM domain is supported only in the server plat-
form. The MSR interfaces are:
• MSR_DRAM_POWER_LIMIT allows software to set power limits for the DRAM

domain and measurement attributes associated with each limit,
• MSR_DRAM_ENERGY_STATUS reports measured actual energy usage,
• MSR_DRAM_POWER_INFO reports the DRAM domain power range information

for RAPL usage.
• MSR_DRAM_RAPL_PERF_STATUS can report the performance impact of power

limiting.

Figure 14-24. MSR_PP0_PERF_STATUS MSR

Figure 14-25. MSR_DRAM_POWER_LIMIT Register

63 0

Reserved

Accumulated PP0 throttled time

3132

Reserved

63

Enable limit
Clamping limit

30 24 23 15 0

Power Limit

3132 14
L
O
C

1617

K

Time window
Power Limit
14-36 Vol. 3A

POWER AND THERMAL MANAGEMENT
MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the
DRAM domain. Power limitation is defined in terms of average power usage (Watts)
over a time window specified in MSR_DRAM_POWER_LIMIT. A power limit can be
specified along with a time window. A lock mechanism allow the software agent to
enforce power limit settings. Once the lock bit is set, the power limit settings are
static and un-modifiable until next RESET.

The bit fields of MSR_DRAM_POWER_LIMIT (Figure 14-17) are:
• DRAM Power Limit #1(bits 14:0): Sets the average power usage limit of the

DRAM domain corresponding to time window # 1. The unit of this field is specified
by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit #1(bit 15): 0 = disabled; 1 = enabled.
• Time Window for Power Limit (bits 23:17): Indicates the length of time

window over which the power limit The numeric value encoded by bits 23:17 is
represented by the product of 2^Y *F; where F is a single-digit decimal floating-
point value between 1.0 and 1.3 with the fraction digit represented by bits 23:22,
Y is an unsigned integer represented by bits 21:17. The unit of this field is
specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock (bits 63): If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use
for the DRAM domain. This MSR is updated every ~1msec.

• Total Energy Consumed (bits 31:0): The unsigned integer value represents
the total amount of energy consumed since that last time this register is cleared.
The unit of this field is specified by the “Energy Status Units” field of
MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range
information for RAPL usage. This MSR provides maximum/minimum values (derived
from electrical specification), thermal specification power of the DRAM domain. It

Figure 14-26. MSR_DRAM_ENERGY_STATUS MSR

63 0

Reserved

Total Energy Consumed

3132

Reserved
Vol. 3A 14-37

POWER AND THERMAL MANAGEMENT
also provides the largest possible time window for software to program the RAPL
interface.

• Thermal Spec Power (bits 14:0): The unsigned integer value is the equivalent
of thermal specification power of the DRAM domain. The unit of this field is
specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power (bits 30:16): The unsigned integer value is the equivalent of
minimum power derived from electrical spec of the DRAM domain. The unit of this
field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Power (bits 46:32): The unsigned integer value is the equivalent of
maximum power derived from the electrical spec of the DRAM domain. The unit
of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Maximum Time Window (bits 46:32): The unsigned integer value is the
equivalent of largest acceptable value to program the time window of
MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time Units”
field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the
package was throttled due to the RAPL power limits. Throttling in this context is
defined as going below the OS-requested P-state or T-state. It has a wrap-around
time of many hours. The availability of this MSR is platform specific (see Appendix B).

• Accumulated Package Throttled Time (bits 31:0): The unsigned integer
value represents the cumulative time (since the last time this register is cleared)

Figure 14-27. MSR_DRAM_POWER_INFO Register

Figure 14-28. MSR_DRAM_PERF_STATUS MSR

63 31 30 15 0

Thermal Spec Power

48 47 3254 53 46 14

Maximum Power

16

Maximum Time window Minimum Power

63 0

Reserved

Accumulated DRAM throttled time

3132

Reserved
14-38 Vol. 3A

POWER AND THERMAL MANAGEMENT
that the DRAM domain has throttled. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.
Vol. 3A 14-39

POWER AND THERMAL MANAGEMENT
14-40 Vol. 3A

CHAPTER 15
MACHINE-CHECK ARCHITECTURE

This chapter describes the machine-check architecture and machine-check exception
mechanism found in the Pentium 4, Intel Xeon, and P6 family processors. See
Chapter 6, “Interrupt 18—Machine-Check Exception (#MC),” for more information on
machine-check exceptions. A brief description of the Pentium processor’s machine
check capability is also given.
Additionally, a signaling mechanism for software to respond to hardware corrected
machine check error is covered.

15.1 MACHINE-CHECK ARCHITECTURE
The Pentium 4, Intel Xeon, and P6 family processors implement a machine-check
architecture that provides a mechanism for detecting and reporting hardware
(machine) errors, such as: system bus errors, ECC errors, parity errors, cache
errors, and TLB errors. It consists of a set of model-specific registers (MSRs) that are
used to set up machine checking and additional banks of MSRs used for recording
errors that are detected.
The processor signals the detection of an uncorrected machine-check error by gener-
ating a machine-check exception (#MC), which is an abort class exception. The
implementation of the machine-check architecture does not ordinarily permit the
processor to be restarted reliably after generating a machine-check exception.
However, the machine-check-exception handler can collect information about the
machine-check error from the machine-check MSRs.
Starting with 45nm Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH (see CPUID instruction in Chapter 3,
“Instruction Set Reference, A-M” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A), the processor can report information on corrected
machine-check errors and deliver a programmable interrupt for software to respond
to MC errors, referred to as corrected machine-check error interrupt (CMCI). See
Section 15.5 for detail.
Intel 64 processors supporting machine-check architecture and CMCI may also
support an additional enhancement, namely, support for software recovery from
certain uncorrected recoverable machine check errors. See Section 15.6 for detail.

15.2 COMPATIBILITY WITH PENTIUM PROCESSOR
The Pentium 4, Intel Xeon, and P6 family processors support and extend the
machine-check exception mechanism introduced in the Pentium processor. The
Pentium processor reports the following machine-check errors:
Vol. 3A 15-1

MACHINE-CHECK ARCHITECTURE
• data parity errors during read cycles
• unsuccessful completion of a bus cycle
The above errors are reported using the P5_MC_TYPE and P5_MC_ADDR MSRs
(implementation specific for the Pentium processor). Use the RDMSR instruction to
read these MSRs. See Appendix B, “Model-Specific Registers (MSRs),” for the
addresses.
The machine-check error reporting mechanism that Pentium processors use is
similar to that used in Pentium 4, Intel Xeon, and P6 family processors. When an
error is detected, it is recorded in P5_MC_TYPE and P5_MC_ADDR; the processor
then generates a machine-check exception (#MC).
See Section 15.3.3, “Mapping of the Pentium Processor Machine-Check Errors to the
Machine-Check Architecture,” and Section 15.10.2, “Pentium Processor Machine-
Check Exception Handling,” for information on compatibility between machine-check
code written to run on the Pentium processors and code written to run on P6 family
processors.

15.3 MACHINE-CHECK MSRS
Machine check MSRs in the Pentium 4, Intel Xeon, and P6 family processors consist
of a set of global control and status registers and several error-reporting register
banks. See Figure 15-1.

Figure 15-1. Machine-Check MSRs

0

63 0

63

IA32_MCG_CAP MSR

IA32_MCG_STATUS MSR

Error-Reporting Bank Registers

0

63 0

63

IA32_MCi_CTL MSR

IA32_MCi_STATUS MSR

0

63 0

63

IA32_MCi_ADDR MSR

IA32_MCi_MISC MSR

Global Control MSRs
(One Set for Each Hardware Unit)

063

IA32_MCG_CTL MSR

063

IA32_MCi_CTL2 MSR
15-2 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Each error-reporting bank is associated with a specific hardware unit (or group of
hardware units) in the processor. Use RDMSR and WRMSR to read and to write these
registers.

15.3.1 Machine-Check Global Control MSRs
The machine-check global control MSRs include the IA32_MCG_CAP,
IA32_MCG_STATUS, and IA32_MCG_CTL. See Appendix B, “Model-Specific Registers
(MSRs),” for the addresses of these registers.

15.3.1.1 IA32_MCG_CAP MSR
The IA32_MCG_CAP MSR is a read-only register that provides information about the
machine-check architecture of the processor. Figure 15-2 shows the structure of the
register in Pentium 4, Intel Xeon, and P6 family processors.

Where:
• Count field, bits 7:0 — Indicates the number of hardware unit error-reporting

banks available in a particular processor implementation.
• MCG_CTL_P (control MSR present) flag, bit 8 — Indicates that the processor

implements the IA32_MCG_CTL MSR when set; this register is absent when clear.
• MCG_EXT_P (extended MSRs present) flag, bit 9 — Indicates that the

processor implements the extended machine-check state registers found starting
at MSR address 180H; these registers are absent when clear.

• MCG_CMCI_P (Corrected MC error counting/signaling extension
present) flag, bit 10 — Indicates (when set) that extended state and
associated MSRs necessary to support the reporting of an interrupt on a

Figure 15-2. IA32_MCG_CAP Register

MCG_TES_P[11]
MCG_EXT_CNT[23:16]

63 9

Reserved

101112

MCG_CMCI_P[10]

08 7

Count

MCG_EXT_P[9]

15162324

MCG_CTL_P[8]

MCG_SER_P[24]

25
Vol. 3A 15-3

MACHINE-CHECK ARCHITECTURE
corrected MC error event and/or count threshold of corrected MC errors, is
present. When this bit is set, it does not imply this feature is supported across all
banks. Software should check the availability of the necessary logic on a bank by
bank basis when using this signaling capability (i.e. bit 30 settable in individual
IA32_MCi_CTL2 register).

• MCG_TES_P (threshold-based error status present) flag, bit 11 —
Indicates (when set) that bits 56:53 of the IA32_MCi_STATUS MSR are part of
the architectural space. Bits 56:55 are reserved, and bits 54:53 are used to
report threshold-based error status. Note that when MCG_TES_P is not set, bits
56:53 of the IA32_MCi_STATUS MSR are model-specific.

• MCG_EXT_CNT, bits 23:16 — Indicates the number of extended machine-
check state registers present. This field is meaningful only when the MCG_EXT_P
flag is set.

• MCG_SER_P (software error recovery support present) flag, bit 24—
Indicates (when set) that the processor supports software error recovery (see
Section 15.6), and IA32_MCi_STATUS MSR bits 56:55 are used to report the
signaling of uncorrected recoverable errors and whether software must take
recovery actions for uncorrected errors. Note that when MCG_TES_P is not set,
bits 56:53 of the IA32_MCi_STATUS MSR are model-specific. If MCG_TES_P is set
but MCG_SER_P is not set, bits 56:55 are reserved.

The effect of writing to the IA32_MCG_CAP MSR is undefined.

15.3.1.2 IA32_MCG_STATUS MSR
The IA32_MCG_STATUS MSR describes the current state of the processor after a
machine-check exception has occurred (see Figure 15-3).

Where:
• RIPV (restart IP valid) flag, bit 0 — Indicates (when set) that program

execution can be restarted reliably at the instruction pointed to by the instruction
pointer pushed on the stack when the machine-check exception is generated.

Figure 15-3. IA32_MCG_STATUS Register

EIPV—Error IP valid flag
MCIP—Machine check in progress flag

63 0

Reserved

123
E
I
P
V

M
C
I
P

R
I
P
V

RIPV—Restart IP valid flag
15-4 Vol. 3A

MACHINE-CHECK ARCHITECTURE
When clear, the program cannot be reliably restarted at the pushed instruction
pointer.

• EIPV (error IP valid) flag, bit 1 — Indicates (when set) that the instruction
pointed to by the instruction pointer pushed onto the stack when the machine-
check exception is generated is directly associated with the error. When this flag
is cleared, the instruction pointed to may not be associated with the error.

• MCIP (machine check in progress) flag, bit 2 — Indicates (when set) that a
machine-check exception was generated. Software can set or clear this flag. The
occurrence of a second Machine-Check Event while MCIP is set will cause the
processor to enter a shutdown state. For information on processor behavior in
the shutdown state, please refer to the description in Chapter 6, “Interrupt and
Exception Handling”: “Interrupt 8—Double Fault Exception (#DF)”.

Bits 63:03 in IA32_MCG_STATUS are reserved.

15.3.1.3 IA32_MCG_CTL MSR
The IA32_MCG_CTL MSR is present if the capability flag MCG_CTL_P is set in the
IA32_MCG_CAP MSR.
IA32_MCG_CTL controls the reporting of machine-check exceptions. If present,
writing 1s to this register enables machine-check features and writing all 0s disables
machine-check features. All other values are undefined and/or implementation
specific.

15.3.2 Error-Reporting Register Banks
Each error-reporting register bank can contain the IA32_MCi_CTL,
IA32_MCi_STATUS, IA32_MCi_ADDR, and IA32_MCi_MISC MSRs. The number of
reporting banks is indicated by bits [7:0] of IA32_MCG_CAP MSR (address 0179H).
The first error-reporting register (IA32_MC0_CTL) always starts at address 400H.
See Appendix B, “Model-Specific Registers (MSRs),” for addresses of the error-
reporting registers in the Pentium 4 and Intel Xeon processors; and for addresses of
the error-reporting registers P6 family processors.

15.3.2.1 IA32_MCi_CTL MSRs
The IA32_MCi_CTL MSR controls error reporting for errors produced by a particular
hardware unit (or group of hardware units). Each of the 64 flags (EEj) represents a
potential error. Setting an EEj flag enables reporting of the associated error and
clearing it disables reporting of the error. The processor does not write changes to
bits that are not implemented. Figure 15-4 shows the bit fields of IA32_MCi_CTL.
Vol. 3A 15-5

MACHINE-CHECK ARCHITECTURE
NOTE
For P6 family processors, processors based on Intel Core microarchi-
tecture (excluding those on which on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH and onward): the operating
system or executive software must not modify the contents of the
IA32_MC0_CTL MSR. This MSR is internally aliased to the
EBL_CR_POWERON MSR and controls platform-specific error
handling features. System specific firmware (the BIOS) is responsible
for the appropriate initialization of the IA32_MC0_CTL MSR. P6 family
processors only allow the writing of all 1s or all 0s to the
IA32_MCi_CTL MSR.

15.3.2.2 IA32_MCi_STATUS MSRS
Each IA32_MCi_STATUS MSR contains information related to a machine-check error
if its VAL (valid) flag is set (see Figure 15-5). Software is responsible for clearing
IA32_MCi_STATUS MSRs by explicitly writing 0s to them; writing 1s to them causes
a general-protection exception.

NOTE
Figure 15-5 depicts the IA32_MCi_STATUS MSR when
IA32_MCG_CAP[24] = 1, IA32_MCG_CAP[11] = 1 and
IA32_MCG_CAP[10] = 1. When IA32_MCG_CAP[24] = 0 and
IA32_MCG_CAP[11] = 1, bits 56:55 is reserved and bits 54:53 for
threshold-based error reporting. When IA32_MCG_CAP[11] = 0, bits
56:53 are part of the “Other Information” field. The use of bits 54:53
for threshold-based error reporting began with Intel Core Duo
processors, and is currently used for cache memory. See Section
15.4, “Enhanced Cache Error reporting,” for more information. When
IA32_MCG_CAP[10] = 0, bits 52:38 are part of the “Other Infor-
mation” field. The use of bits 52:38 for corrected MC error count is
introduced with Intel 64 processor on which CPUID reports
DisplayFamily_DisplayModel as 06H_1AH.

Where:

Figure 15-4. IA32_MCi_CTL Register

EEj—Error reporting enable flag

63 0123
E
E
0
1

E
E
0
2

E
E
0
0

E
E
6
1

E
E
6
2

E
E
6
3

62 61

.

 (where j is 00 through 63)
15-6 Vol. 3A

MACHINE-CHECK ARCHITECTURE
• MCA (machine-check architecture) error code field, bits 15:0 — Specifies
the machine-check architecture-defined error code for the machine-check error
condition detected. The machine-check architecture-defined error codes are
guaranteed to be the same for all IA-32 processors that implement the machine-
check architecture. See Section 15.9, “Interpreting the MCA Error Codes,” and
Appendix E, “Interpreting Machine-Check Error Codes”, for information on
machine-check error codes.

• Model-specific error code field, bits 31:16 — Specifies the model-specific
error code that uniquely identifies the machine-check error condition detected.
The model-specific error codes may differ among IA-32 processors for the same
machine-check error condition. See Appendix E, “Interpreting Machine-Check
Error Codes”for information on model-specific error codes.

• Reserved, Error Status, and Other Information fields, bits 56:32 —

• Bits 37:32 always contain “Other Information” that is implementation-
specific and is not part of the machine-check architecture. Software that
is intended to be portable among IA-32 processors should not rely on
these values.

• If IA32_MCG_CAP[10] is 0, bits 52:38 also contain “Other Information”
(in the same sense as bits 37:32).

• If IA32_MCG_CAP[10] is 1, bits 52:38 are architectural (not model-
specific). In this case, bits 52:38 reports the value of a 15 bit counter that
increments each time a corrected error is observed by the MCA recording

Figure 15-5. IA32_MCi_STATUS Register

63

Threshold-based error status (54:53)*
AR — Recovery action required for UCR error (55)**
S — Signaling an uncorrected recoverable (UCR) error (56)**
PCC — Processor context corrupted (57)

37 32 31 16 0

P
C

AE

ADDRV — MCi_ADDR register valid (58)
MISCV — MCi_MISC register valid (59)
EN — Error reporting enabled (60)
UC — Uncorrected error (61)
OVER — Error overflow (62)
VAL — MCi_STATUS register valid (63)

C

MCA Error Code
U S

R
Other MSCOD Model

54 53 3862 61 60 59 58 57 56 55 52 15

V
A
L

O
V
E
R

C N Specific Error CodeInfo
Corrected Error
Count

* When IA32_MCG_CAP[11] (MCG_TES_P) is not set, these bits are model-specific
 (part of “Other Information”).

** When IA32_MCG_CAP[11] or IA32_MCG_CAP[24] are not set, these bits are reserved, or
 model-specific (part of “Other Information”).
Vol. 3A 15-7

MACHINE-CHECK ARCHITECTURE
bank. This count value will continue to increment until cleared by
software. The most significant bit, 52, is a sticky count overflow bit.

• If IA32_MCG_CAP[11] is 0, bits 56:53 also contain “Other Information”
(in the same sense).

• If IA32_MCG_CAP[11] is 1, bits 56:53 are architectural (not model-
specific). In this case, bits 56:53 have the following functionality:

• If IA32_MCG_CAP[24] is 0, bits 56:55 are reserved.

• If IA32_MCG_CAP[24] is 1, bits 56:55 are defined as follows:

• S (Signaling) flag, bit 56 - Signals the reporting of UCR errors in this
MC bank. See Section 15.6.2 for additional detail.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA
error code specific recovery action must be performed by system
software at the time this error was signaled. See Section 15.6.2 for
additional detail.

• If the UC bit (Figure 15-5) is 1, bits 54:53 are undefined.

• If the UC bit (Figure 15-5) is 0, bits 54:53 indicate the status of the
hardware structure that reported the threshold-based error. See
Table 15-1.

• PCC (processor context corrupt) flag, bit 57 — Indicates (when set) that the
state of the processor might have been corrupted by the error condition detected
and that reliable restarting of the processor may not be possible. When clear, this
flag indicates that the error did not affect the processor’s state. Software
restarting might be possible.

• ADDRV (IA32_MCi_ADDR register valid) flag, bit 58 — Indicates (when set)
that the IA32_MCi_ADDR register contains the address where the error occurred
(see Section 15.3.2.3, “IA32_MCi_ADDR MSRs”). When clear, this flag indicates
that the IA32_MCi_ADDR register is either not implemented or does not contain

Table 15-1. Bits 54:53 in IA32_MCi_STATUS MSRs
when IA32_MCG_CAP[11] = 1 and UC = 0

Bits 54:53 Meaning

00 No tracking - No hardware status tracking is provided for the structure reporting this
event.

01 Green - Status tracking is provided for the structure posting the event; the current
status is green (below threshold). For more information, see Section 15.4, “Enhanced
Cache Error reporting”.

10 Yellow - Status tracking is provided for the structure posting the event; the current
status is yellow (above threshold). For more information, see Section 15.4, “Enhanced
Cache Error reporting”.

11 Reserved
15-8 Vol. 3A

MACHINE-CHECK ARCHITECTURE
the address where the error occurred. Do not read these registers if they are not
implemented in the processor.

• MISCV (IA32_MCi_MISC register valid) flag, bit 59 — Indicates (when set)
that the IA32_MCi_MISC register contains additional information regarding the
error. When clear, this flag indicates that the IA32_MCi_MISC register is either
not implemented or does not contain additional information regarding the error.
Do not read these registers if they are not implemented in the processor.

• EN (error enabled) flag, bit 60 — Indicates (when set) that the error was
enabled by the associated EEj bit of the IA32_MCi_CTL register.

• UC (error uncorrected) flag, bit 61 — Indicates (when set) that the processor
did not or was not able to correct the error condition. When clear, this flag
indicates that the processor was able to correct the error condition.

• OVER (machine check overflow) flag, bit 62 — Indicates (when set) that a
machine-check error occurred while the results of a previous error were still in
the error-reporting register bank (that is, the VAL bit was already set in the
IA32_MCi_STATUS register). The processor sets the OVER flag and software is
responsible for clearing it. In general, enabled errors are written over disabled
errors, and uncorrected errors are written over corrected errors. Uncorrected
errors are not written over previous valid uncorrected errors. For more infor-
mation, see Section 15.3.2.2.1, “Overwrite Rules for Machine Check Overflow”.

• VAL (IA32_MCi_STATUS register valid) flag, bit 63 — Indicates (when set)
that the information within the IA32_MCi_STATUS register is valid. When this flag
is set, the processor follows the rules given for the OVER flag in the
IA32_MCi_STATUS register when overwriting previously valid entries. The
processor sets the VAL flag and software is responsible for clearing it.

15.3.2.2.1 Overwrite Rules for Machine Check Overflow

Table 15-2 shows the overwrite rules for how to treat a second event if the cache has
already posted an event to the MC bank – that is, what to do if the valid bit for an MC
bank already is set to 1. When more than one structure posts events in a given bank,
these rules specify whether a new event will overwrite a previous posting or not.
These rules define a priority for uncorrected (highest priority), yellow, and
green/unmonitored (lowest priority) status.
In Table 15-2, the values in the two left-most columns are
IA32_MCi_STATUS[54:53].

Table 15-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

00/green 00/green 0 00/green second

00/green yellow 0 yellow second error

yellow 00/green 0 yellow first error

yellow yellow 0 yellow either
Vol. 3A 15-9

MACHINE-CHECK ARCHITECTURE
If a second event overwrites a previously posted event, the information (as guarded
by individual valid bits) in the MCi bank is entirely from the second event. Similarly,
if a first event is retained, all of the information previously posted for that event is
retained. In either case, the OVER bit (MCi_Status[62]) will be set to indicate an
overflow.
After software polls a posting and clears the register, the valid bit is no longer set and
therefore the meaning of the rest of the bits, including the yellow/green/00 status
field in bits 54:53, is undefined. The yellow/green indication will only be posted for
events associated with monitored structures – otherwise the unmonitored (00) code
will be posted in MCi_Status[54:53].

15.3.2.3 IA32_MCi_ADDR MSRs
The IA32_MCi_ADDR MSR contains the address of the code or data memory location
that produced the machine-check error if the ADDRV flag in the IA32_MCi_STATUS
register is set (see Section 15-6, “IA32_MCi_ADDR MSR”). The IA32_MCi_ADDR
register is either not implemented or contains no address if the ADDRV flag in the
IA32_MCi_STATUS register is clear. When not implemented in the processor, all reads
and writes to this MSR will cause a general protection exception.
The address returned is an offset into a segment, linear address, or physical address.
This depends on the error encountered. When these registers are implemented,
these registers can be cleared by explicitly writing 0s to these registers. Writing 1s to
these registers will cause a general-protection exception. See Figure 15-6.

00/green/yellow UC 1 undefined second

UC 00/green/yellow 1 undefined first

Figure 15-6. IA32_MCi_ADDR MSR

Table 15-2. Overwrite Rules for Enabled Errors
First Event Second Event UC bit Color MCA Info

Address

63 0

Reserved

3536

Address*

63 0

Processor Without Support For Intel 64 Architecture

Processor With Support for Intel 64 Architecture

* Useful bits in this field depend on the address methodology in use when the

the register state is saved.
15-10 Vol. 3A

MACHINE-CHECK ARCHITECTURE
15.3.2.4 IA32_MCi_MISC MSRs
The IA32_MCi_MISC MSR contains additional information describing the machine-
check error if the MISCV flag in the IA32_MCi_STATUS register is set. The
IA32_MCi_MISC_MSR is either not implemented or does not contain additional infor-
mation if the MISCV flag in the IA32_MCi_STATUS register is clear.
When not implemented in the processor, all reads and writes to this MSR will cause a
general protection exception. When implemented in a processor, these registers can
be cleared by explicitly writing all 0s to them; writing 1s to them causes a general-
protection exception to be generated. This register is not implemented in any of the
error-reporting register banks for the P6 family processors.
If both MISCV and IA32_MCG_CAP[24] are set, the IA32_MCi_MISC_MSR is defined
according to Figure 15-7 to support software recovery of uncorrected errors (see
Section 15.6):

• Recoverable Address LSB (bits 5:0): The lowest valid recoverable address bit.
Indicates the position of the least significant bit (LSB) of the recoverable error
address. For example, if the processor logs bits [43:9] of the address, the LSB
sub-field in IA32_MCi_MISC is 01001b (9 decimal). For this example, bits [8:0]
of the recoverable error address in IA32_MCi_ADDR should be ignored.

• Address Mode (bits 8:6): Address mode for the address logged in
IA32_MCi_ADDR. The supported address modes are given in Table 15-3.

Figure 15-7. UCR Support in IA32_MCi_MISC Register

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

000 Segment Offset

001 Linear Address

010 Physical Address

011 Memory Address

Address Mode

63 0

Model Specific Information

6 5

Recoverable Address LSB

89
Vol. 3A 15-11

MACHINE-CHECK ARCHITECTURE
• Model Specific Information (bits 63:9): Not architecturally defined.

15.3.2.5 IA32_MCi_CTL2 MSRs
The IA32_MCi_CTL2 MSR provides the programming interface to use corrected MC
error signaling capability that is indicated by IA32_MCG_CAP[10] = 1. Software must
check for the presence of IA32_MCi_CTL2 on a per-bank basis.
When IA32_MCG_CAP[10] = 1, the IA32_MCi_CTL2 MSR for each bank exists, i.e.
reads and writes to these MSR are supported. However, signaling interface for
corrected MC errors may not be supported in all banks.
The layout of IA32_MCi_CTL2 is shown in Figure 15-8:

• Corrected error count threshold, bits 14:0 — Software must initialize this
field. The value is compared with the corrected error count field in
IA32_MCi_STATUS, bits 38 through 52. An overflow event is signaled to the CMCI
LVT entry (see Table 10-1) in the APIC when the count value equals the threshold
value. The new LVT entry in the APIC is at 02F0H offset from the APIC_BASE. If
CMCI interface is not supported for a particular bank (but IA32_MCG_CAP[10] =
1), this field will always read 0.

• CMCI_EN-Corrected error interrupt enable/disable/indicator, bits 30 —
Software sets this bit to enable the generation of corrected machine-check error
interrupt (CMCI). If CMCI interface is not supported for a particular bank (but
IA32_MCG_CAP[10] = 1), this bit is writeable but will always return 0 for that
bank. This bit also indicates CMCI is supported or not supported in the corre-
sponding bank. See Section 15.5 for details of software detection of CMCI facility.

100 to 110 Reserved

111 Generic

Figure 15-8. IA32_MCi_CTL2 Register

Table 15-3. Address Mode in IA32_MCi_MISC[8:6]
IA32_MCi_MISC[8:6] Encoding Definition

CMCI_EN—Enable/disable CMCI

63 15

Reserved

29

Corrected error count threshold

01431 30

Reserved
15-12 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Some microarchitectural sub-systems that are the source of corrected MC errors may
be shared by more than one logical processors. Consequently, the facilities for
reporting MC errors and controlling mechanisms may be shared by more than one
logical processors. For example, the IA32_MCi_CTL2 MSR is shared between logical
processors sharing a processor core. Software is responsible to program
IA32_MCi_CTL2 MSR in a consistent manner with CMCI delivery and usage.
After processor reset, IA32_MCi_CTL2 MSRs are zero’ed.

15.3.2.6 IA32_MCG Extended Machine Check State MSRs
The Pentium 4 and Intel Xeon processors implement a variable number of extended
machine-check state MSRs. The MCG_EXT_P flag in the IA32_MCG_CAP MSR indi-
cates the presence of these extended registers, and the MCG_EXT_CNT field indi-
cates the number of these registers actually implemented. See Section 15.3.1.1,
“IA32_MCG_CAP MSR.” Also see Table 15-4.

Table 15-4. Extended Machine Check State MSRs
in Processors Without Support for Intel 64 Architecture

MSR Address Description

IA32_MCG_EAX 180H Contains state of the EAX register at the time of the machine-
check error.

IA32_MCG_EBX 181H Contains state of the EBX register at the time of the machine-
check error.

IA32_MCG_ECX 182H Contains state of the ECX register at the time of the machine-
check error.

IA32_MCG_EDX 183H Contains state of the EDX register at the time of the machine-
check error.

IA32_MCG_ESI 184H Contains state of the ESI register at the time of the machine-
check error.

IA32_MCG_EDI 185H Contains state of the EDI register at the time of the machine-
check error.

IA32_MCG_EBP 186H Contains state of the EBP register at the time of the machine-
check error.

IA32_MCG_ESP 187H Contains state of the ESP register at the time of the machine-
check error.

IA32_MCG_EFLAGS 188H Contains state of the EFLAGS register at the time of the
machine-check error.

IA32_MCG_EIP 189H Contains state of the EIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred
during DS normal operation.
Vol. 3A 15-13

MACHINE-CHECK ARCHITECTURE
In processors with support for Intel 64 architecture, 64-bit machine check state
MSRs are aliased to the legacy MSRs. In addition, there may be registers beyond
IA32_MCG_MISC. These may include up to five reserved MSRs
(IA32_MCG_RESERVED[1:5]) and save-state MSRs for registers introduced in 64-bit
mode. See Table 15-5.

Table 15-5. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture

MSR Address Description

IA32_MCG_RAX 180H Contains state of the RAX register at the time of the machine-
check error.

IA32_MCG_RBX 181H Contains state of the RBX register at the time of the machine-
check error.

IA32_MCG_RCX 182H Contains state of the RCX register at the time of the machine-
check error.

IA32_MCG_RDX 183H Contains state of the RDX register at the time of the machine-
check error.

IA32_MCG_RSI 184H Contains state of the RSI register at the time of the machine-
check error.

IA32_MCG_RDI 185H Contains state of the RDI register at the time of the machine-
check error.

IA32_MCG_RBP 186H Contains state of the RBP register at the time of the machine-
check error.

IA32_MCG_RSP 187H Contains state of the RSP register at the time of the machine-
check error.

IA32_MCG_RFLAGS 188H Contains state of the RFLAGS register at the time of the
machine-check error.

IA32_MCG_RIP 189H Contains state of the RIP register at the time of the machine-
check error.

IA32_MCG_MISC 18AH When set, indicates that a page assist or page fault occurred
during DS normal operation.

IA32_MCG_
RSERVED[1:5]

18BH-
18FH

These registers, if present, are reserved.

IA32_MCG_R8 190H Contains state of the R8 register at the time of the machine-
check error.

IA32_MCG_R9 191H Contains state of the R9 register at the time of the machine-
check error.

IA32_MCG_R10 192H Contains state of the R10 register at the time of the machine-
check error.
15-14 Vol. 3A

MACHINE-CHECK ARCHITECTURE
When a machine-check error is detected on a Pentium 4 or Intel Xeon processor, the
processor saves the state of the general-purpose registers, the R/EFLAGS register,
and the R/EIP in these extended machine-check state MSRs. This information can be
used by a debugger to analyze the error.
These registers are read/write to zero registers. This means software can read them;
but if software writes to them, only all zeros is allowed. If software attempts to write
a non-zero value into one of these registers, a general-protection (#GP) exception is
generated. These registers are cleared on a hardware reset (power-up or RESET),
but maintain their contents following a soft reset (INIT reset).

15.3.3 Mapping of the Pentium Processor Machine-Check Errors
to the Machine-Check Architecture

The Pentium processor reports machine-check errors using two registers:
P5_MC_TYPE and P5_MC_ADDR. The Pentium 4, Intel Xeon, and P6 family proces-
sors map these registers to the IA32_MCi_STATUS and IA32_MCi_ADDR in the error-
reporting register bank. This bank reports on the same type of external bus errors
reported in P5_MC_TYPE and P5_MC_ADDR.
The information in these registers can then be accessed in two ways:
• By reading the IA32_MCi_STATUS and IA32_MCi_ADDR registers as part of a

general machine-check exception handler written for Pentium 4 and P6 family
processors.

• By reading the P5_MC_TYPE and P5_MC_ADDR registers using the RDMSR
instruction.

The second capability permits a machine-check exception handler written to run on a
Pentium processor to be run on a Pentium 4, Intel Xeon, or P6 family processor. There
is a limitation in that information returned by the Pentium 4, Intel Xeon, and P6
family processors is encoded differently than information returned by the Pentium

IA32_MCG_R11 193H Contains state of the R11 register at the time of the machine-
check error.

IA32_MCG_R12 194H Contains state of the R12 register at the time of the machine-
check error.

IA32_MCG_R13 195H Contains state of the R13 register at the time of the machine-
check error.

IA32_MCG_R14 196H Contains state of the R14 register at the time of the machine-
check error.

IA32_MCG_R15 197H Contains state of the R15 register at the time of the machine-
check error.

Table 15-5. Extended Machine Check State MSRs
In Processors With Support For Intel 64 Architecture (Contd.)

MSR Address Description
Vol. 3A 15-15

MACHINE-CHECK ARCHITECTURE
processor. To run a Pentium processor machine-check exception handler on a
Pentium 4, Intel Xeon, or P6 family processor; the handler must be written to inter-
pret P5_MC_TYPE encodings correctly.

15.4 ENHANCED CACHE ERROR REPORTING
Starting with Intel Core Duo processors, cache error reporting was enhanced. In
earlier Intel processors, cache status was based on the number of correction events
that occurred in a cache. In the new paradigm, called “threshold-based error status”,
cache status is based on the number of lines (ECC blocks) in a cache that incur
repeated corrections. The threshold is chosen by Intel, based on various factors. If a
processor supports threshold-based error status, it sets IA32_MCG_CAP[11]
(MCG_TES_P) to 1; if not, to 0.
A processor that supports enhanced cache error reporting contains hardware that
tracks the operating status of certain caches and provides an indicator of their
“health”. The hardware reports a “green” status when the number of lines that incur
repeated corrections is at or below a pre-defined threshold, and a “yellow” status
when the number of affected lines exceeds the threshold. Yellow status means that
the cache reporting the event is operating correctly, but you should schedule the
system for servicing within a few weeks.
Intel recommends that you rely on this mechanism for structures supported by
threshold-base error reporting.
The CPU/system/platform response to a yellow event should be less severe than its
response to an uncorrected error. An uncorrected error means that a serious error
has actually occurred, whereas the yellow condition is a warning that the number of
affected lines has exceeded the threshold but is not, in itself, a serious event: the
error was corrected and system state was not compromised.
The green/yellow status indicator is not a foolproof early warning for an uncorrected
error resulting from the failure of two bits in the same ECC block. Such a failure can
occur and cause an uncorrected error before the yellow threshold is reached.
However, the chance of an uncorrected error increases as the number of affected
lines increases.

15.5 CORRECTED MACHINE CHECK ERROR INTERRUPT
Corrected machine-check error interrupt (CMCI) is an architectural enhancement to
the machine-check architecture. It provides capabilities beyond those of threshold-
based error reporting (Section 15.4). With threshold-based error reporting, software
is limited to use periodic polling to query the status of hardware corrected MC errors.
CMCI provides a signaling mechanism to deliver a local interrupt based on threshold
values that software can program using the IA32_MCi_CTL2 MSRs.
15-16 Vol. 3A

MACHINE-CHECK ARCHITECTURE
CMCI is disabled by default. System software is required to enable CMCI for each
IA32_MCi bank that support the reporting of hardware corrected errors if
IA32_MCG_CAP[10] = 1.
System software use IA32_MCi_CTL2 MSR to enable/disable the CMCI capability for
each bank and program threshold values into IA32_MCi_CTL2 MSR. CMCI is not
affected by the CR4.MCE bit, and it is not affected by the IA32_MCi_CTL MSR’s.
To detect the existence of thresholding for a given bank, software writes only bits
14:0 with the threshold value. If the bits persist, then thresholding is available (and
CMCI is available). If the bits are all 0's, then no thresholding exists. To detect that
CMCI signaling exists, software writes a 1 to bit 30 of the MCi_CTL2 register. Upon
subsequent read, If Bit 30 = 0, no CMCI is available for this bank. If Bit 30 = 1, then
CMCI is available and enabled.

15.5.1 CMCI Local APIC Interface
The operation of CMCI is depicted in Figure 15-9.

CMCI interrupt delivery is configured by writing to the LVT CMCI register entry in the
local APIC register space at default address of APIC_BASE + 2F0H. A CMCI interrupt
can be delivered to more than one logical processors if multiple logical processors are
affected by the associated MC errors. For example, if a corrected bit error in a cache
shared by two logical processors caused a CMCI, the interrupt will be delivered to
both logical processors sharing that microarchitectural sub-system. Similarly,
package level errors may cause CMCI to be delivered to all logical processors within
the package. However, system level errors will not be handled by CMCI.
See Section 10.5.1, “Local Vector Table” for details regarding the LVT CMCI register.

Figure 15-9. CMCI Behavior

Error threshold

63 0

MCi_CTL2

3031

Error count

53 0

Software write 1 to enable

Count overflow threshold -> CMCI LVT in local APIC

29 14

37

MCi_STATUS

3852

?=
APIC_BASE + 2F0H
Vol. 3A 15-17

MACHINE-CHECK ARCHITECTURE
15.5.2 System Software Recommendation for Managing CMCI and
Machine Check Resources

System software must enable and manage CMCI, set up interrupt handlers to service
CMCI interrupts delivered to affected logical processors, program CMCI LVT entry,
and query machine check banks that are shared by more than one logical processors.
This section describes techniques system software can implement to manage CMCI
initialization, service CMCI interrupts in a efficient manner to minimize contentions to
access shared MSR resources.

15.5.2.1 CMCI Initialization
Although a CMCI interrupt may be delivered to more than one logical processors
depending on the nature of the corrected MC error, only one instance of the interrupt
service routine needs to perform the necessary service and make queries to the
machine-check banks. The following steps describes a technique that limits the
amount of work the system has to do in response to a CMCI.
• To provide maximum flexibility, system software should define per-thread data

structure for each logical processor to allow equal-opportunity and efficient
response to interrupt delivery. Specifically, the per-thread data structure should
include a set of per-bank fields to track which machine check bank it needs to
access in response to a delivered CMCI interrupt. The number of banks that
needs to be tracked is determined by IA32_MCG_CAP[7:0].

• Initialization of per-thread data structure. The initialization of per-thread data
structure must be done serially on each logical processor in the system. The
sequencing order to start the per-thread initialization between different logical
processor is arbitrary. But it must observe the following specific detail to satisfy
the shared nature of specific MSR resources:

a. Each thread initializes its data structure to indicate that it does not own any
MC bank registers.

b. Each thread examines IA32_MCi_CTL2[30] indicator for each bank to
determine if another thread has already claimed ownership of that bank.

• If IA32_MCi_CTL2[30] had been set by another thread. This thread can
not own bank i and should proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 0, proceed to step c.

c. Check whether writing a 1 into IA32_MCi_CTL2[30] can return with 1 on a
subsequent read to determine this bank can support CMCI.

• If IA32_MCi_CTL2[30] = 0, this bank does not support CMCI. This thread
can not own bank i and should proceed to step b. and examine the next
machine check bank until all of the machine check banks are exhausted.

• If IA32_MCi_CTL2[30] = 1, modify the per-thread data structure to
indicate this thread claims ownership to the MC bank; proceed to initialize
15-18 Vol. 3A

MACHINE-CHECK ARCHITECTURE
the error threshold count (bits 15:0) of that bank as described in Chapter
15, “CMCI Threshold Management”. Then proceed to step b. and examine
the next machine check bank until all of the machine check banks are
exhausted.

• After the thread has examined all of the machine check banks, it sees if it owns
any MC banks to service CMCI. If any bank has been claimed by this thread:

— Ensure that the CMCI interrupt handler has been set up as described in
Chapter 15, “CMCI Interrupt Handler”.

— Initialize the CMCI LVT entry, as described in Section 15.5.1, “CMCI Local
APIC Interface”.

— Log and clear all of IA32_MCi_Status registers for the banks that this thread
owns. This will allow new errors to be logged.

15.5.2.2 CMCI Threshold Management
The Corrected MC error threshold field, IA32_MCi_CTL2[15:0], is architecturally
defined. Specifically, all these bits are writable by software, but different processor
implementations may choose to implement less than 15 bits as threshold for the
overflow comparison with IA32_MCi_STATUS[52:38]. The following describes tech-
niques that software can manage CMCI threshold to be compatible with changes in
implementation characteristics:
• Software can set the initial threshold value to 1 by writing 1 to

IA32_MCi_CTL2[15:0]. This will cause overflow condition on every corrected MC
error and generates a CMCI interrupt.

• To increase the threshold and reduce the frequency of CMCI servicing:

a. Find the maximum threshold value a given processor implementation
supports. The steps are:

• Write 7FFFH to IA32_MCi_CTL2[15:0],

• Read back IA32_MCi_CTL2[15:0], the lower 15 bits (14:0) is the
maximum threshold supported by the processor.

b. Increase the threshold to a value below the maximum value discovered using
step a.

15.5.2.3 CMCI Interrupt Handler
The following describes techniques system software may consider to implement a
CMCI service routine:
• The service routine examines its private per-thread data structure to check which

set of MC banks it has ownership. If the thread does not have ownership of a
given MC bank, proceed to the next MC bank. Ownership is determined at initial-
ization time which is described in Section [Cross Reference to 14.5.2.1].

• If the thread had claimed ownership to an MC bank,
Vol. 3A 15-19

MACHINE-CHECK ARCHITECTURE
— Check for valid MC errors by testing IA32_MCi_STATUS.VALID[63],

• Log MC errors,

• Clear the MSRs of this MC bank.

— If no valid error, proceed to next MC bank.
• When all MC banks have been processed, exit service routine and return to

original program execution.
This technique will allow each logical processors to handle corrected MC errors inde-
pendently and requires no synchronization to access shared MSR resources.

15.6 RECOVERY OF UNCORRECTED RECOVERABLE (UCR)
ERRORS

Recovery of uncorrected recoverable machine check errors is an enhancement in
machine-check architecture. The first processor that supports this feature is 45nm
Intel 64 processor on which CPUID reports DisplayFamily_DisplayModel as 06H_2EH
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). This allow
system software to perform recovery action on certain class of uncorrected errors
and continue execution.

15.6.1 Detection of Software Error Recovery Support
Software must use bit 24 of IA32_MCG_CAP (MCG_SER_P) to detect the presence of
software error recovery support (see Figure 15-2). When IA32_MCG_CAP[24] is set,
this indicates that the processor supports software error recovery. When this bit is
clear, this indicates that there is no support for error recovery from the processor and
the primary responsibility of the machine check handler is logging the machine check
error information and shutting down the system.
The new class of architectural MCA errors from which system software can attempt
recovery is called Uncorrected Recoverable (UCR) Errors. UCR errors are uncorrected
errors that have been detected and signaled but have not corrupted the processor
context. For certain UCR errors, this means that once system software has
performed a certain recovery action, it is possible to continue execution on this
processor. UCR error reporting provides an error containment mechanism for data
poisoning. The machine check handler will use the error log information from the
error reporting registers to analyze and implement specific error recovery actions for
UCR errors.
15-20 Vol. 3A

MACHINE-CHECK ARCHITECTURE
15.6.2 UCR Error Reporting and Logging
IA32_MCi_STATUS MSR is used for reporting UCR errors and existing corrected or
uncorrected errors. The definitions of IA32_MCi_STATUS, including bit fields to iden-
tify UCR errors, is shown in Figure 15-5. UCR errors can be signaled through either
the corrected machine check interrupt (CMCI) or machine check exception (MCE)
path depending on the type of the UCR error.
When IA32_MCG_CAP[24] is set, a UCR error is indicated by the following bit settings
in the IA32_MCi_STATUS register:
• Valid (bit 63) = 1
• UC (bit 61) = 1
• PCC (bit 57) = 0
Additional information from the IA32_MCi_MISC and the IA32_MCi_ADDR registers
for the UCR error are available when the ADDRV and the MISCV flags in the
IA32_MCi_STATUS register are set (see Section 15.3.2.4). The MCA error code field
of the IA32_MCi_STATUS register indicates the type of UCR error. System software
can interpret the MCA error code field to analyze and identify the necessary recovery
action for the given UCR error.
In addition, the IA32_MCi_STATUS register bit fields, bits 56:55, are defined (see
Figure 15-5) to provide additional information to help system software to properly
identify the necessary recovery action for the UCR error:
• S (Signaling) flag, bit 56 - Indicates (when set) that a machine check exception

was generated for the UCR error reported in this MC bank and system software
needs to check the AR flag and the MCA error code fields in the
IA32_MCi_STATUS register to identify the necessary recovery action for this
error. When the S flag in the IA32_MCi_STATUS register is clear, this UCR error
was not signaled via a machine check exception and instead was reported as a
corrected machine check (CMC). System software is not required to take any
recovery action when the S flag in the IA32_MCi_STATUS register is clear.

• AR (Action Required) flag, bit 55 - Indicates (when set) that MCA error code
specific recovery action must be performed by system software at the time this
error was signaled. This recovery action must be completed successfully before
any additional work is scheduled for this processor When the RIPV flag in the
IA32_MCG_STATUS is clear, an alternative execution stream needs to be
provided; when the MCA error code specific recovery specific recovery action
cannot be successfully completed, system software must shut down the system.
When the AR flag in the IA32_MCi_STATUS register is clear, system software may
still take MCA error code specific recovery action but this is optional; system
software can safely resume program execution at the instruction pointer saved
on the stack from the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.

Both the S and the AR flags in the IA32_MCi_STATUS register are defined to be sticky
bits, which mean that once set, the processor does not clear them. Only software and
Vol. 3A 15-21

MACHINE-CHECK ARCHITECTURE
good power-on reset can clear the S and the AR-flags. Both the S and the AR flags
are only set when the processor reports the UCR errors (MCG_CAP[24] is set).

15.6.3 UCR Error Classification
With the S and AR flag encoding in the IA32_MCi_STATUS register, UCR errors can be
classified as:
• Uncorrected no action required (UCNA) - is a UCR error that is not signaled via a

machine check exception and, instead, is reported to system software as a
corrected machine check error. UCNA errors indicate that some data in the
system is corrupted, but the data has not been consumed and the processor
state is valid and you may continue execution on this processor. UCNA errors
require no action from system software to continue execution. A UNCA error is
indicated with UC=1, PCC=0, S=0 and AR=0 in the IA32_MCi_STATUS register.

• Software recoverable action optional (SRAO) - a UCR error is signaled via a
machine check exception and a system software recovery action is optional and
not required to continue execution from this machine check exception. SRAO
errors indicate that some data in the system is corrupt, but the data has not been
consumed and the processor state is valid. SRAO errors provide the additional
error information for system software to perform a recovery action. An SRAO
error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=0 in the
IA32_MCi_STATUS register. Recovery actions for SRAO errors are MCA error code
specific. The MISCV and the ADDRV flags in the IA32_MCi_STATUS register are
set when the additional error information is available from the IA32_MCi_MISC
and the IA32_MCi_ADDR registers. System software needs to inspect the MCA
error code fields in the IA32_MCi_STATUS register to identify the specific
recovery action for a given SRAO error. If MISCV and ADDRV are not set, it is
recommended that no system software error recovery be performed however,
you can resume execution.

• Software recoverable action required (SRAR) - a UCR error that requires system
software to take a recovery action on this processor before scheduling another
stream of execution on this processor. SRAR errors indicate that the error was
detected and raised at the point of the consumption in the execution flow. An
SRAR error is indicated with UC=1, PCC=0, S=1, EN=1 and AR=1 in the
IA32_MCi_STATUS register. Recovery actions are MCA error code specific. The
MISCV and the ADDRV flags in the IA32_MCi_STATUS register are set when the
additional error information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. System software needs to inspect the MCA error code
fields in the IA32_MCi_STATUS register to identify the specific recovery action for
a given SRAR error. If MISCV and ADDRV are not set, it is recommended that
system software shutdown the system.
15-22 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Table 15-6 summarizes UCR, corrected, and uncorrected errors.

15.6.4 UCR Error Overwrite Rules
In general, the overwrite rules are as follows:
• UCR errors will overwrite corrected errors.
• Uncorrected (PCC=1) errors overwrite UCR (PCC=0) errors.
• UCR errors are not written over previous UCR errors.
• Corrected errors do not write over previous UCR errors.
Regardless of whether the 1st error is retained or the 2nd error is overwritten over
the 1st error, the OVER flag in the IA32_MCi_STATUS register will be set to indicate
an overflow condition. As the S flag and AR flag in the IA32_MCi_STATUS register are
defined to be sticky flags, a second event cannot clear these 2 flags once set,
however the MC bank information may be filled in for the 2nd error. The table below
shows the overwrite rules and how to treat a second error if the first event is already
logged in a MC bank along with the resulting bit setting of the UC, PCC, and AR flags
in the IA32_MCi_STATUS register. As UCNA and SRA0 errors do not require recovery
action from system software to continue program execution, a system reset by

Table 15-6. MC Error Classifications
Type of Error1

NOTES:
1. VAL=1, EN=1 for UC=1 errors; OVER=0 for UC=1 and PCC=0 errors SRAR, SRAO and UCNA errors

are supported by the processor only when IA32_MCG_CAP[24] (MCG_SER_P) is set.

UC PCC S AR Signaling Software Action Example

Uncorrected Error
(UC)

1 1 x x MCE Reset the system

SRAR 1 0 1 1 MCE For known MCACOD,
take specific recovery
action;

For unknown MCACOD,
must bugcheck

Cache to
processor load
error

SRAO 1 0 1 0 MCE For known MCACOD,
take specific recovery
action;

For unknown MCACOD,
OK to keep the system
running

Patrol scrub and
explicit writeback
poison errors

UCNA 1 0 0 0 CMC Log the error and Ok to
keep the system running

Poison detection
error

Corrected Error (CE) 0 0 x x CMC Log the error and no
corrective action
required

ECC in caches and
memory
Vol. 3A 15-23

MACHINE-CHECK ARCHITECTURE
system software is not required unless the AR flag or PCC flag is set for the UCR over-
flow case (OVER=1, VAL=1, UC=1, PCC=0).
Table 15-7 lists overwrite rules for uncorrected errors, corrected errors, and uncor-
rected recoverable errors.

15.7 MACHINE-CHECK AVAILABILITY
The machine-check architecture and machine-check exception (#MC) are model-
specific features. Software can execute the CPUID instruction to determine whether
a processor implements these features. Following the execution of the CPUID
instruction, the settings of the MCA flag (bit 14) and MCE flag (bit 7) in EDX indicate
whether the processor implements the machine-check architecture and machine-
check exception.

15.8 MACHINE-CHECK INITIALIZATION
To use the processors machine-check architecture, software must initialize the
processor to activate the machine-check exception and the error-reporting mecha-
nism.
Example 15-1 gives pseudocode for performing this initialization. This pseudocode
checks for the existence of the machine-check architecture and exception; it then

Table 15-7. Overwrite Rules for UC, CE, and UCR Errors
First Event Second Event UC PCC S AR MCA Bank Reset System

CE UCR 1 0 0 if UCNA,
else 1

1 if SRAR,
else 0

second yes, if AR=1

UCR CE 1 0 0 if UCNA,
else 1

1 if SRAR,
else 0

first yes, if AR=1

UCNA UCNA 1 0 0 0 first no

UCNA SRAO 1 0 1 0 first no

UCNA SRAR 1 0 1 1 first yes

SRAO UCNA 1 0 1 0 first no

SRAO SRAO 1 0 1 0 first no

SRAO SRAR 1 0 1 1 first yes

SRAR UCNA 1 0 1 1 first yes

SRAR SRAO 1 0 1 1 first yes

SRAR SRAR 1 0 1 1 first yes

UCR UC 1 1 undefined undefined second yes

UC UCR 1 1 undefined undefined first yes
15-24 Vol. 3A

MACHINE-CHECK ARCHITECTURE
enables machine-check exception and the error-reporting register banks. The
pseudocode shown is compatible with the Pentium 4, Intel Xeon, P6 family, and
Pentium processors.
Following power up or power cycling, IA32_MCi_STATUS registers are not guaran-
teed to have valid data until after they are initially cleared to zero by software (as
shown in the initialization pseudocode in Example 15-1). In addition, when using P6
family processors, software must set MCi_STATUS registers to zero when doing a
soft-reset.

Example 15-1. Machine-Check Initialization Pseudocode

Check CPUID Feature Flags for MCE and MCA support
IF CPU supports MCE
THEN

IF CPU supports MCA
THEN

IF (IA32_MCG_CAP.MCG_CTL_P = 1)
(* IA32_MCG_CTL register is present *)
THEN

IA32_MCG_CTL ← FFFFFFFFFFFFFFFFH;
(* enables all MCA features *)

FI

(* Determine number of error-reporting banks supported *)
COUNT← IA32_MCG_CAP.Count;
MAX_BANK_NUMBER ← COUNT - 1;

IF (Processor Family is 6H and Processor EXTMODEL:MODEL is less than 1AH)
THEN

(* Enable logging of all errors except for MC0_CTL register *)
FOR error-reporting banks (1 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

ELSE
(* Enable logging of all errors including MC0_CTL register *)
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_CTL ← 0FFFFFFFFFFFFFFFFH;
OD

FI

(* BIOS clears all errors only on power-on reset *)
IF (BIOS detects Power-on reset)
THEN

FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

IA32_MCi_STATUS ← 0;
OD

ELSE
Vol. 3A 15-25

MACHINE-CHECK ARCHITECTURE
FOR error-reporting banks (0 through MAX_BANK_NUMBER)
DO

(Optional for BIOS and OS) Log valid errors
(OS only) IA32_MCi_STATUS ← 0;

OD

FI
FI

Setup the Machine Check Exception (#MC) handler for vector 18 in IDT

Set the MCE bit (bit 6) in CR4 register to enable Machine-Check Exceptions
FI

15.9 INTERPRETING THE MCA ERROR CODES
When the processor detects a machine-check error condition, it writes a 16-bit error
code to the MCA error code field of one of the IA32_MCi_STATUS registers and sets
the VAL (valid) flag in that register. The processor may also write a 16-bit model-
specific error code in the IA32_MCi_STATUS register depending on the implementa-
tion of the machine-check architecture of the processor.
The MCA error codes are architecturally defined for Intel 64 and IA-32 processors. To
determine the cause of a machine-check exception, the machine-check exception
handler must read the VAL flag for each IA32_MCi_STATUS register. If the flag is set,
the machine check-exception handler must then read the MCA error code field of the
register. It is the encoding of the MCA error code field [15:0] that determines the
type of error being reported and not the register bank reporting it.
There are two types of MCA error codes: simple error codes and compound error
codes.

15.9.1 Simple Error Codes
Table 15-8 shows the simple error codes. These unique codes indicate global error
information.

Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding
Error Code Binary Encoding Meaning

No Error 0000 0000 0000 0000 No error has been reported to this bank of
error-reporting registers.

Unclassified 0000 0000 0000 0001 This error has not been classified into the
MCA error classes.

Microcode ROM Parity
Error

0000 0000 0000 0010 Parity error in internal microcode ROM
15-26 Vol. 3A

MACHINE-CHECK ARCHITECTURE
15.9.2 Compound Error Codes
Compound error codes describe errors related to the TLBs, memory, caches, bus and
interconnect logic, and internal timer. A set of sub-fields is common to all of
compound errors. These sub-fields describe the type of access, level in the cache
hierarchy, and type of request. Table 15-9 shows the general form of the compound
error codes.

The “Interpretation” column in the table indicates the name of a compound error. The
name is constructed by substituting mnemonics for the sub-field names given within
curly braces. For example, the error code ICACHEL1_RD_ERR is constructed from the
form:

{TT}CACHE{LL}_{RRRR}_ERR,
where {TT} is replaced by I, {LL} is replaced by L1, and {RRRR} is replaced by RD.

For more information on the “Form” and “Interpretation” columns, see Sections
Section 15.9.2.1, “Correction Report Filtering (F) Bit” through Section 15.9.2.5, “Bus
and Interconnect Errors”.

External Error 0000 0000 0000 0011 The BINIT# from another processor caused
this processor to enter machine check.1

FRC Error 0000 0000 0000 0100 FRC (functional redundancy check)
master/slave error

Internal Parity Error 0000 0000 0000 0101 Internal parity error.

Internal Timer Error 0000 0100 0000 0000 Internal timer error.

Internal Unclassified 0000 01xx xxxx xxxx Internal unclassified errors. 2

NOTES:
1. BINIT# assertion will cause a machine check exception if the processor (or any processor on the

same external bus) has BINIT# observation enabled during power-on configuration (hardware
strapping) and if machine check exceptions are enabled (by setting CR4.MCE = 1).

2. At least one X must equal one. Internal unclassified errors have not been classified.

Table 15-9. IA32_MCi_Status [15:0] Compound Error Code Encoding
Type Form Interpretation

Generic Cache Hierarchy 000F 0000 0000 11LL Generic cache hierarchy error

TLB Errors 000F 0000 0001 TTLL {TT}TLB{LL}_ERR

Memory Controller Errors 000F 0000 1MMM CCCC {MMM}_CHANNEL{CCCC}_ERR

Cache Hierarchy Errors 000F 0001 RRRR TTLL {TT}CACHE{LL}_{RRRR}_ERR

Bus and Interconnect Errors 000F 1PPT RRRR IILL BUS{LL}_{PP}_{RRRR}_{II}_{T}_ERR

Table 15-8. IA32_MCi_Status [15:0] Simple Error Code Encoding (Contd.)
Vol. 3A 15-27

MACHINE-CHECK ARCHITECTURE
15.9.2.1 Correction Report Filtering (F) Bit
Starting with Intel Core Duo processors, bit 12 in the “Form” column in Table 15-9 is
used to indicate that a particular posting to a log may be the last posting for correc-
tions in that line/entry, at least for some time:
• 0 in bit 12 indicates “normal” filtering (original P6/Pentium4/Xeon processor

meaning).
• 1 in bit 12 indicates “corrected” filtering (filtering is activated for the line/entry in

the posting). Filtering means that some or all of the subsequent corrections to
this entry (in this structure) will not be posted. The enhanced error reporting
introduced with the Intel Core Duo processors is based on tracking the lines
affected by repeated corrections (see Section 15.4, “Enhanced Cache Error
reporting”). This capability is indicated by IA32_MCG_CAP[11]. Only the first few
correction events for a line are posted; subsequent redundant correction events
to the same line are not posted. Uncorrected events are always posted.

The behavior of error filtering after crossing the yellow threshold is model-specific.

15.9.2.2 Transaction Type (TT) Sub-Field
The 2-bit TT sub-field (Table 15-10) indicates the type of transaction (data, instruc-
tion, or generic). The sub-field applies to the TLB, cache, and interconnect error
conditions. Note that interconnect error conditions are primarily associated with P6
family and Pentium processors, which utilize an external APIC bus separate from the
system bus. The generic type is reported when the processor cannot determine the
transaction type.

15.9.2.3 Level (LL) Sub-Field
The 2-bit LL sub-field (see Table 15-11) indicates the level in the memory hierarchy
where the error occurred (level 0, level 1, level 2, or generic). The LL sub-field also
applies to the TLB, cache, and interconnect error conditions. The Pentium 4, Intel
Xeon, and P6 family processors support two levels in the cache hierarchy and one
level in the TLBs. Again, the generic type is reported when the processor cannot
determine the hierarchy level.

Table 15-10. Encoding for TT (Transaction Type) Sub-Field
Transaction Type Mnemonic Binary Encoding

Instruction I 00

Data D 01

Generic G 10

Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field
Hierarchy Level Mnemonic Binary Encoding

Level 0 L0 00
15-28 Vol. 3A

MACHINE-CHECK ARCHITECTURE
15.9.2.4 Request (RRRR) Sub-Field
The 4-bit RRRR sub-field (see Table 15-12) indicates the type of action associated
with the error. Actions include read and write operations, prefetches, cache evictions,
and snoops. Generic error is returned when the type of error cannot be determined.
Generic read and generic write are returned when the processor cannot determine
the type of instruction or data request that caused the error. Eviction and snoop
requests apply only to the caches. All of the other requests apply to TLBs, caches and
interconnects.

15.9.2.5 Bus and Interconnect Errors
The bus and interconnect errors are defined with the 2-bit PP (participation), 1-bit T
(time-out), and 2-bit II (memory or I/O) sub-fields, in addition to the LL and RRRR
sub-fields (see Table 15-13). The bus error conditions are implementation dependent
and related to the type of bus implemented by the processor. Likewise, the intercon-
nect error conditions are predicated on a specific implementation-dependent inter-
connect model that describes the connections between the different levels of the
storage hierarchy. The type of bus is implementation dependent, and as such is not
specified in this document. A bus or interconnect transaction consists of a request
involving an address and a response.

Level 1 L1 01

Level 2 L2 10

Generic LG 11

Table 15-12. Encoding of Request (RRRR) Sub-Field
Request Type Mnemonic Binary Encoding

Generic Error ERR 0000

Generic Read RD 0001

Generic Write WR 0010

Data Read DRD 0011

Data Write DWR 0100

Instruction Fetch IRD 0101

Prefetch PREFETCH 0110

Eviction EVICT 0111

Snoop SNOOP 1000

Table 15-13. Encodings of PP, T, and II Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

Table 15-11. Level Encoding for LL (Memory Hierarchy Level) Sub-Field (Contd.)
Vol. 3A 15-29

MACHINE-CHECK ARCHITECTURE
15.9.2.6 Memory Controller Errors
The memory controller errors are defined with the 3-bit MMM (memory transaction
type), and 4-bit CCCC (channel) sub-fields. The encodings for MMM and CCCC are
defined in Table 15-14.

15.9.3 Architecturally Defined UCR Errors
Software recoverable compound error code are defined in this section.

PP (Participation) Local processor* originated request SRC 00

Local processor* responded to request RES 01

Local processor* observed error as
third party

OBS 10

Generic 11

T (Time-out) Request timed out TIMEOUT 1

Request did not time out NOTIMEOUT 0

II (Memory or I/O) Memory Access M 00

Reserved 01

I/O IO 10

Other transaction 11

NOTE:
* Local processor differentiates the processor reporting the error from other system compo-

nents (including the APIC, other processors, etc.).

Table 15-14. Encodings of MMM and CCCC Sub-Fields
Sub-Field Transaction Mnemonic Binary Encoding

MMM Generic undefined request GEN 000

Memory read error RD 001

Memory write error WR 010

Address/Command Error AC 011

Memory Scrubbing Error MS 100

Reserved 101-111

CCCC Channel number CHN 0000-1110

Channel not specified 1111

Table 15-13. Encodings of PP, T, and II Sub-Fields (Contd.)
15-30 Vol. 3A

MACHINE-CHECK ARCHITECTURE
15.9.3.1 Architecturally Defined SRAO Errors
The following two SRAO errors are architecturally defined.
• UCR Errors detected by memory controller scrubbing; and
• UCR Errors detected during L3 cache (L3) explicit writebacks.
The MCA error code encodings for these two architecturally-defined UCR errors
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their
values and compound encoding format are given in Table 15-15.

Table 15-16 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally
defined SRAO errors.

For both the memory scrubbing and L3 explicit writeback errors, the ADDRV and
MISCV flags in the IA32_MCi_STATUS register are set to indicate that the offending
physical address information is available from the IA32_MCi_MISC and the
IA32_MCi_ADDR registers. For the memory scrubbing and L3 explicit writeback
errors, the address mode in the IA32_MCi_MISC register should be set as physical
address mode (010b) and the address LSB information in the IA32_MCi_MISC
register should indicate the lowest valid address bit in the address information
provided from the IA32_MCi_ADDR register.
An MCE signal is broadcast to all logical processors on the system on which the UCR
errors are supported. MCi_STATUS banks can be shared by logical processors within

Table 15-15. MCA Compound Error Code Encoding for SRAO Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is

0, indicating "normal" filtering.

Memory Scrubbing 0xC0 - 0xCF 0000_0000_1100_CCCC

000F 0000 1MMM CCCC (Memory Controller Error), where

Memory subfield MMM = 100B (memory scrubbing)

Channel subfield CCCC = channel # or generic

L3 Explicit Writeback 0x17A 0000_0001_0111_1010

000F 0001 RRRR TTLL (Cache Hierarchy Error) where

Request subfields RRRR = 0111B (Eviction)

Transaction Type subfields TT = 10B (Generic)

Level subfields LL = 10B

Table 15-16. IA32_MCi_STATUS Values for SRAO Errors
SRAO Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Memory Scrubbing 1 0 1 1 1 1 0 1 0 0xC0-0xCF

L3 Explicit Writeback 1 0 1 1 1 1 0 1 0 0x17A
Vol. 3A 15-31

MACHINE-CHECK ARCHITECTURE
a core or within the same package. So several logical processors may find an SRAO
error in the shared IA32_MCi_STATUS bank but other processors do not find it in any
of the IA32_MCi_STATUS banks. Table 15-17 shows the RIPV and EIPV flag indication
in the IA32_MCG_STATUS register for the memory scrubbing and L3 explicit write-
back errors on both the reporting and non-reporting logical processors.

15.9.3.2 Architecturally Defined SRAR Errors
The following two SRAR errors are architecturally defined.
• UCR Errors detected on data load; and
• UCR Errors detected on instruction fetch.
The MCA error code encodings for these two architecturally-defined UCR errors
corresponds to sub-classes of compound MCA error codes (see Table 15-9). Their
values and compound encoding format are given in Table 15-18.

Table 15-17. IA32_MCG_STATUS Flag Indication for SRAO Errors
SRAO Type Reporting Logical Processors Non-reporting Logical Processors

RIPV EIPV RIPV EIPV

Memory Scrubbing 1 0 1 0

L3 Explicit Writeback 1 0 1 0

Table 15-18. MCA Compound Error Code Encoding for SRAR Errors
Type MCACOD Value MCA Error Code Encoding1

NOTES:
1. Note that for both of these errors the correction report filtering (F) bit (bit 12) of the MCA error is

0, indicating "normal" filtering.

Data Load 0x134 0000_0001_0011_0100

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0011B (Data Load)

Transaction Type subfield TT= 01B (Data)

Level subfield LL = 00B (Level 0)

Instruction Fetch 0x150 0000_0001_0101_0000

000F 0001 RRRR TTLL (Cache Hierarchy Error), where

Request subfield RRRR = 0101B (Instruction Fetch)

Transaction Type subfield TT= 00B (Instruction)

Level subfield LL = 00B (Level 0)
15-32 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Table 15-19 lists values of relevant bit fields of IA32_MCi_STATUS for architecturally
defined SRAR errors.

For both the data load and instruction fetch errors, the ADDRV and MISCV flags in the
IA32_MCi_STATUS register are set to indicate that the offending physical address
information is available from the IA32_MCi_MISC and the IA32_MCi_ADDR registers.
For the memory scrubbing and L3 explicit writeback errors, the address mode in the
IA32_MCi_MISC register should be set as physical address mode (010b) and the
address LSB information in the IA32_MCi_MISC register should indicate the lowest
valid address bit in the address information provided from the IA32_MCi_ADDR
register.
An MCE signal is broadcast to all logical processors on the system on which the UCR
errors are supported. The IA32_MCG_STATUS MSR allows system software to distin-
guish the affected logical processor of an SRAR error amongst logical processors that
observed SRAR via a shared MCi_STATUS bank.
Table 15-20 shows the RIPV and EIPV flag indication in the IA32_MCG_STATUS
register for the data load and instruction fetch errors on both the reporting and non-
reporting logical processors.

The affected logical processor is the one that has detected and raised an SRAR error
at the point of the consumption in the execution flow. The affected logical processor
should find the Data Load or the Instruction Fetch error information in the
IA32_MCi_STATUS register that is reporting the SRAR error.
For Data Load recoverable errors, the affected logical processor should find that the
IA32_MCG_STATUS.RIPV flag is cleared and the IA32_MCG_STATUS.EIPV flag is set
indicating that the error is detected at the instruction pointer saved on the stack for
this machine check exception and restarting execution with the interrupted context is
not possible.
For Instruction Fetch recoverable error, the affected logical processor should find that
the RIPV flag and the EIPV Flag in the IA32_MCG_STATUS register are cleared, indi-
cating that the error is detected at the instruction pointer saved on the stack may not
be associated with this error and restarting the execution with the interrupted
context is not possible.

Table 15-19. IA32_MCi_STATUS Values for SRAR Errors
SRAR Error Valid OVER UC EN MISCV ADDRV PCC S AR MCACOD

Data Load 1 0 1 1 1 1 0 1 1 0x134

Instruction Fetch 1 0 1 1 1 1 0 1 1 0x150

Table 15-20. IA32_MCG_STATUS Flag Indication for SRAR Errors
SRAR Type Affected Logical Processors Non-Affected Logical Processors

RIPV EIPV RIPV EIPV

Data Load 0 1 1 0

instruction Fetch 0 0 1 0
Vol. 3A 15-33

MACHINE-CHECK ARCHITECTURE
The logical processors that observed but not affected by an SRAR error should find
that the RIPV flag in the IA32_MCG_STATUS register is set and the EIPV flag in the
IA32_MCG_STATUS register is cleared, indicating that it is safe to restart the execu-
tion at the instruction saved on the stack for the machine check exception on these
processors after the recovery action is successfully taken by system software.
For the Data-Load and the Instruction-Fetch recoverable errors, system software
may take the following recovery actions for the affected logical processor:
• The current executing thread cannot be continued. You must terminate the

interrupted stream of execution and provide a new stream of execution on return
from the machine check handler for the affected logical processor

In addition to taking the recovery action described above, system software may also
need to disable the use of the affected page from the program. This recovery action
by system software may prevent the occurrence of future consumption errors from
that affected page.

15.9.4 Multiple MCA Errors
When multiple MCA errors are detected within a certain detection window, the
processor may aggregate the reporting of these errors together as a single event, i.e.
a single machine exception condition. If this occurs, system software may find
multiple MCA errors logged in different MC banks on one logical processor or find
multiple MCA errors logged across different processors for a single machine check
broadcast event. In order to handle multiple UCR errors reported from a single
machine check event and possibly recover from multiple errors, system software
may consider the following:
• Whether it can recover from multiple errors is determined by the most severe

error reported on the system. If the most severe error is found to be an unrecov-
erable error (VAL=1, UC=1, PCC=1 and EN=1) after system software examines
the MC banks of all processors to which the MCA signal is broadcast, recovery
from the multiple errors is not possible and system software needs to reset the
system.

• When multiple recoverable errors are reported and no other fatal condition (e.g..
overflowed condition for SRAR error) is found for the reported recoverable errors,
it is possible for system software to recover from the multiple recoverable errors
by taking necessary recovery action for each individual recoverable error.
However, system software can no longer expect one to one relationship with the
error information recorded in the IA32_MCi_STATUS register and the states of
the RIPV and EIPV flags in the IA32_MCG_STATUS register as the states of the
RIPV and the EIPV flags in the IA32_MCG_STATUS register may indicate the
information for the most severe error recorded on the processor. System
software is required to use the RIPV flag indication in the IA32_MCG_STATUS
register to make a final decision of recoverability of the errors and find the
15-34 Vol. 3A

MACHINE-CHECK ARCHITECTURE
restart-ability requirement after examining each IA32_MCi_STATUS register
error information in the MC banks.

15.9.5 Machine-Check Error Codes Interpretation
Appendix E, “Interpreting Machine-Check Error Codes,” provides information on
interpreting the MCA error code, model-specific error code, and other information
error code fields. For P6 family processors, information has been included on
decoding external bus errors. For Pentium 4 and Intel Xeon processors; information
is included on external bus, internal timer and cache hierarchy errors.

15.10 GUIDELINES FOR WRITING MACHINE-CHECK
SOFTWARE

The machine-check architecture and error logging can be used in three different
ways:
• To detect machine errors during normal instruction execution, using the

machine-check exception (#MC).
• To periodically check and log machine errors.
• To examine recoverable UCR errors, determine software recoverability and

perform recovery actions via a machine-check exception handler or a corrected
machine-check interrupt handler.

To use the machine-check exception, the operating system or executive software
must provide a machine-check exception handler. This handler may need to be
designed specifically for each family of processors.
A special program or utility is required to log machine errors.
Guidelines for writing a machine-check exception handler or a machine-error logging
utility are given in the following sections.

15.10.1 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service machine-
check exceptions, a trap gate must be added to the IDT. The pointer in the trap gate
must point to a machine-check exception handler. Two approaches can be taken to
designing the exception handler:

1. The handler can merely log all the machine status and error information, then call
a debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases,
attempt to correct the error and restart the processor.
Vol. 3A 15-35

MACHINE-CHECK ARCHITECTURE
For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all machine-
check conditions cannot be corrected (they result in abort-type exceptions). The
logging of status and error information is therefore a baseline implementation
requirement.
When recovery from a machine-check error may be possible, consider the following
when writing a machine-check exception handler:
• To determine the nature of the error, the handler must read each of the error-

reporting register banks. The count field in the IA32_MCG_CAP register gives
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank do not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the
IA32_MCi_STATUS register should be checked. See Section 15.9, “Interpreting
the MCA Error Codes,” for information that can be used to write an algorithm to
interpret this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate
whether recovery from the error is possible. If PCC or OVER are set, recovery is
not possible. If RIPV is not set, program execution can not be restarted reliably.
When recovery is not possible, the handler typically records the error information
and signals an abort to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in
each IA32_MCi_STATUS register indicates whether the processor automatically
corrected an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program
can be restarted at the instruction indicated by the instruction pointer (the
address of the instruction pushed on the stack when the exception was
generated). If this flag is clear, the processor may still be able to be restarted (for
debugging purposes) but not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register
indicates whether the instruction indicated by the instruction pointer pushed on
the stack (when the exception was generated) is related to the error. If the flag is
clear, the pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. Before returning from the machine-check
exception handler, software should clear this flag so that it can be used reliably by
an error logging utility. The MCIP flag also detects recursion. The machine-check
architecture does not support recursion. When the processor detects machine-
check recursion, it enters the shutdown state.

Example 15-2 gives typical steps carried out by a machine-check exception handler.

Example 15-2. Machine-Check Exception Handler Pseudocode

IF CPU supports MCE
15-36 Vol. 3A

MACHINE-CHECK ARCHITECTURE
THEN
IF CPU supports MCA

THEN
call errorlogging routine; (* returns restartability *)

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
report RESTARTABILITY to console;

FI;
IF error is not restartable

THEN
report RESTARTABILITY to console;
abort system;

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;

15.10.2 Pentium Processor Machine-Check Exception Handling
Machine-check exception handler on P6 family and later processor families, should
follow the guidelines described in Section 15.10.1 and Example 15-2 that check the
processor’s support of MCA.

NOTE
On processors that support MCA (CPUID.1.EDX.MCA = 1) reading the
P5_MC_TYPE and P5_MC_ADDR registers may produce invalid data.

When machine-check exceptions are enabled for the Pentium processor (MCE flag is
set in control register CR4), the machine-check exception handler uses the RDMSR
instruction to read the error type from the P5_MC_TYPE register and the machine
check address from the P5_MC_ADDR register. The handler then normally reports
these register values to the system console before aborting execution (see Example
15-2).

15.10.3 Logging Correctable Machine-Check Errors
The error handling routine for servicing the machine-check exceptions is responsible
for logging uncorrected errors.
If a machine-check error is correctable, the processor does not generate a machine-
check exception for it. To detect correctable machine-check errors, a utility program
must be written that reads each of the machine-check error-reporting register banks
and logs the results in an accounting file or data structure. This utility can be imple-
mented in either of the following ways.
• A system daemon that polls the register banks on an infrequent basis, such as

hourly or daily.
Vol. 3A 15-37

MACHINE-CHECK ARCHITECTURE
• A user-initiated application that polls the register banks and records the
exceptions. Here, the actual polling service is provided by an operating-system
driver or through the system call interface.

• An interrupt service routine servicing CMCI can read the MC banks and log the
error.

Example 15-3 gives pseudocode for an error logging utility.

Example 15-3. Machine-Check Error Logging Pseudocode

Assume that execution is restartable;
IF the processor supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF ADDRV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_ADDR;
FI;
IF MISCV flag in IA32_MCi_STATUS = 1

THEN READ IA32_MCi_MISC;
FI;
IF MCIP flag in IA32_MCG_STATUS = 1

(* Machine-check exception is in progress *)
AND PCC flag in IA32_MCi_STATUS = 1
OR RIPV flag in IA32_MCG_STATUS = 0
(* execution is not restartable *)

THEN
RESTARTABILITY = FALSE;
return RESTARTABILITY to calling procedure;

FI;
Save time-stamp counter and processor ID;
Set IA32_MCi_STATUS to all 0s;
Execute serializing instruction (i.e., CPUID);

FI;
OD;

FI;

If the processor supports the machine-check architecture, the utility reads through
the banks of error-reporting registers looking for valid register entries. It then saves
the values of the IA32_MCi_STATUS, IA32_MCi_ADDR, IA32_MCi_MISC and
IA32_MCG_STATUS registers for each bank that is valid. The routine minimizes
processing time by recording the raw data into a system data structure or file,
reducing the overhead associated with polling. User utilities analyze the collected
data in an off-line environment.
When the MCIP flag is set in the IA32_MCG_STATUS register, a machine-check
exception is in progress and the machine-check exception handler has called the
exception logging routine.
15-38 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Once the logging process has been completed the exception-handling routine must
determine whether execution can be restarted, which is usually possible when
damage has not occurred (The PCC flag is clear, in the IA32_MCi_STATUS register)
and when the processor can guarantee that execution is restartable (the RIPV flag is
set in the IA32_MCG_STATUS register). If execution cannot be restarted, the system
is not recoverable and the exception-handling routine should signal the console
appropriately before returning the error status to the Operating System kernel for
subsequent shutdown.
The machine-check architecture allows buffering of exceptions from a given error-
reporting bank although the Pentium 4, Intel Xeon, and P6 family processors do not
implement this feature. The error logging routine should provide compatibility with
future processors by reading each hardware error-reporting bank's
IA32_MCi_STATUS register and then writing 0s to clear the OVER and VAL flags in
this register. The error logging utility should re-read the IA32_MCi_STATUS register
for the bank ensuring that the valid bit is clear. The processor will write the next error
into the register bank and set the VAL flags.
Additional information that should be stored by the exception-logging routine
includes the processor’s time-stamp counter value, which provides a mechanism to
indicate the frequency of exceptions. A multiprocessing operating system stores the
identity of the processor node incurring the exception using a unique identifier, such
as the processor’s APIC ID (see Section 10.8, “Handling Interrupts”).
The basic algorithm given in Example 15-3 can be modified to provide more robust
recovery techniques. For example, software has the flexibility to attempt recovery
using information unavailable to the hardware. Specifically, the machine-check
exception handler can, after logging carefully analyze the error-reporting registers
when the error-logging routine reports an error that does not allow execution to be
restarted. These recovery techniques can use external bus related model-specific
information provided with the error report to localize the source of the error within
the system and determine the appropriate recovery strategy.

15.10.4 Machine-Check Software Handler Guidelines for Error
Recovery

15.10.4.1 Machine-Check Exception Handler for Error Recovery
When writing a machine-check exception (MCE) handler to support software
recovery from Uncorrected Recoverable (UCR) errors, consider the following:
• When IA32_MCG_CAP [24] is zero, there are no recoverable errors supported

and all machine-check are fatal exceptions. The logging of status and error
information is therefore a baseline implementation requirement.

• When IA32_MCG_CAP [24] is 1, certain uncorrected errors called uncorrected
recoverable (UCR) errors may be software recoverable. The handler can analyze
Vol. 3A 15-39

MACHINE-CHECK ARCHITECTURE
the reported error information, and in some cases attempt to recover from the
uncorrected error and continue execution.

• For processors on which CPUID reports DisplayFamily_DisplayModel as 06H_0EH
and onward, an MCA signal is broadcast to all logical processors in the system
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).
Due to the potentially shared machine check MSR resources among the logical
processors on the same package/core, the MCE handler may be required to
synchronize with the other processors that received a machine check error and
serialize access to the machine check registers when analyzing, logging and
clearing the information in the machine check registers.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank do not contain valid error information and should not be checked.

• The MCE handler is primarily responsible for processing uncorrected errors. The
UC flag in each IA32_MCi_Status register indicates whether the reported error
was corrected (UC=0) or uncorrected (UC=1). The MCE handler can optionally
log and clear the corrected errors in the MC banks if it can implement software
algorithm to avoid the undesired race conditions with the CMCI or CMC polling
handler.

• For uncorrectable errors, the EIPV flag in the IA32_MCG_STATUS register
indicates (when set) that the instruction pointed to by the instruction pointer
pushed onto the stack when the machine-check exception is generated is directly
associated with the error. When this flag is cleared, the instruction pointed to
may not be associated with the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-
check exception was generated. When a machine check exception is generated,
it is expected that the MCIP flag in the IA32_MCG_STATUS register is set to 1. If
it is not set, this machine check was generated by either an INT 18 instruction or
some piece of hardware signaling an interrupt with vector 18.

When IA32_MCG_CAP [24] is 1, the following rules can apply when writing a machine
check exception (MCE) handler to support software recovery:
• The PCC flag in each IA32_MCi_STATUS register indicates whether recovery from

the error is possible for uncorrected errors (UC=1). If the PCC flag is set for
uncorrected errors (UC=1), recovery is not possible. When recovery is not
possible, the MCE handler typically records the error information and signals the
operating system to reset the system.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether restarting the
program execution from the instruction pointer saved on the stack for the
machine check exception is possible. When the RIPV is set, program execution
can be restarted reliably when recovery is possible. If the RIPV flag is not set,
program execution cannot be restarted reliably. In this case the recovery
algorithm may involve terminating the current program execution and resuming
an alternate thread of execution upon return from the machine check handler
15-40 Vol. 3A

MACHINE-CHECK ARCHITECTURE
when recovery is possible. When recovery is not possible, the MCE handler
signals the operating system to reset the system.

• When the EN flag is zero but the VAL and UC flags are one in the
IA32_MCi_STATUS register, the reported uncorrected error in this bank is not
enabled. As uncorrected errors with the EN flag = 0 are not the source of
machine check exceptions, the MCE handler should log and clear non-enabled
errors when the S bit is set and should continue searching for enabled errors from
the other IA32_MCi_STATUS registers. Note that when IA32_MCG_CAP [24] is 0,
any uncorrected error condition (VAL =1 and UC=1) including the one with the
EN flag cleared are fatal and the handler must signal the operating system to
reset the system. For the errors that do not generate machine check exceptions,
the EN flag has no meaning. See Appendix A: Table A-4 to find the errors that do
not generate machine check exceptions.

• When the VAL flag is one, the UC flag is one, the EN flag is one and the PCC flag
is zero in the IA32_MCi_STATUS register, the error in this bank is an uncorrected
recoverable (UCR) error. The MCE handler needs to examine the S flag and the
AR flag to find the type of the UCR error for software recovery and determine if
software error recovery is possible.

• When both the S and the AR flags are clear in the IA32_MCi_STATUS register for
the UCR error (VAL=1, UC=1, EN=x and PCC=0), the error in this bank is an
uncorrected no-action required error (UCNA). UCNA errors are uncorrected but
do not require any OS recovery action to continue execution. These errors
indicate that some data in the system is corrupt, but that data has not been
consumed and may not be consumed. If that data is consumed a non-UNCA
machine check exception will be generated. UCNA errors are signaled in the same
way as corrected machine check errors and the CMCI and CMC polling handler is
primarily responsible for handling UCNA errors. Like corrected errors, the MCA
handler can optionally log and clear UCNA errors as long as it can avoid the
undesired race condition with the CMCI or CMC polling handler. As UCNA errors
are not the source of machine check exceptions, the MCA handler should
continue searching for uncorrected or software recoverable errors in all other MC
banks.

• When the S flag in the IA32_MCi_STATUS register is set for the UCR error
((VAL=1, UC=1, EN=1 and PCC=0), the error in this bank is software recoverable
and it was signaled through a machine-check exception. The AR flag in the
IA32_MCi_STATUS register further clarifies the type of the software recoverable
errors.

• When the AR flag in the IA32_MCi_STATUS register is clear for the software
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank
is a software recoverable action optional (SRAO) error. The MCE handler and the
operating system can analyze the IA32_MCi_STATUS [15:0] to implement MCA
error code specific optional recovery action, but this recovery action is optional.
System software can resume the program execution from the instruction pointer
saved on the stack for the machine check exception when the RIPV flag in the
IA32_MCG_STATUS register is set.
Vol. 3A 15-41

MACHINE-CHECK ARCHITECTURE
• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAO error
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=0), the MCE handler cannot take
recovery action as the information of the SRAO error in the IA32_MCi_STATUS
register was potentially lost due to the overflow condition. Since the recovery
action for SRAO errors is optional, restarting the program execution from the
instruction pointer saved on the stack for the machine check exception is still
possible for the overflowed SRAO error if the RIPV flag in the IA32_MCG_STATUS
is set.

• When the AR flag in the IA32_MCi_STATUS register is set for the software
recoverable error (VAL=1, UC=1, EN=1, PCC=0 and S=1), the error in this bank
is a software recoverable action required (SRAR) error. The MCE handler and the
operating system must take recovery action in order to continue execution after
the machine-check exception. The MCA handler and the operating system need
to analyze the IA32_MCi_STATUS [15:0] to determine the MCA error code
specific recovery action. If no recovery action can be performed, the operating
system must reset the system.

• When the OVER flag in the IA32_MCi_STATUS register is set for the SRAR error
(VAL=1, UC=1, EN=1, PCC=0, S=1 and AR=1), the MCE handler cannot take
recovery action as the information of the SRAR error in the IA32_MCi_STATUS
register was potentially lost due to the overflow condition. Since the recovery
action for SRAR errors must be taken, the MCE handler must signal the operating
system to reset the system.

• When the MCE handler cannot find any uncorrected (VAL=1, UC=1 and EN=1) or
any software recoverable errors (VAL=1, UC=1, EN=1, PCC=0 and S=1) in any
of the IA32_MCi banks of the processors, this is an unexpected condition for the
MCE handler and the handler should signal the operating system to reset the
system.

• Before returning from the machine-check exception handler, software must clear
the MCIP flag in the IA32_MCG_STATUS register. The MCIP flag is used to detect
recursion. The machine-check architecture does not support recursion. When the
processor receives a machine check when MCIP is set, it automatically enters the
shutdown state.

Example 15-4 gives pseudocode for an MC exception handler that supports recovery
of UCR.

Example 15-4. Machine-Check Error Handler Pseudocode Supporting UCR

MACHINE CHECK HANDLER: (* Called from INT 18 handler *)
NOERROR = TRUE;
ProcessorCount = 0;
IF CPU supports MCA

THEN
RESTARTABILITY = TRUE;
IF (Processor Family = 6 AND DisplayModel ≥ 0EH) OR (Processor Family > 6)

THEN
MCA_BROADCAST = TRUE;
15-42 Vol. 3A

MACHINE-CHECK ARCHITECTURE
Acquire SpinLock;
ProcessorCount++; (* Allowing one logical processor at a time to examine machine check

registers *)
CALL MCA ERROR PROCESSING; (* returns RESTARTABILITY and NOERROR *)

ELSE
MCA_BROADCAST = FALSE;
(* Implement a rendezvous mechanism with the other processors if necessary *)
CALL MCA ERROR PROCESSING;

FI;
ELSE (* Pentium(R) processor compatible *)

READ P5_MC_ADDR
READ P5_MC_TYPE;
RESTARTABILITY = FALSE;

FI;

IF NOERROR = TRUE
 THEN

IF NOT (MCG_RIPV = 1 AND MCG_EIPV = 0)
THEN

RESTARTABILITY = FALSE;
FI

FI;

IF RESTARTABILITY = FALSE
THEN

Report RESTARTABILITY to console;
Reset system;

FI;

IF MCA_BROADCAST = TRUE
THEN

IF ProcessorCount = MAX_PROCESSORS
 AND NOERROR = TRUE

THEN
Report RESTARTABILITY to console;
Reset system;

FI;
Release SpinLock;
Wait till ProcessorCount = MAX_PROCESSRS on system;
(* implement a timeout and abort function if necessary *)

FI;
CLEAR MCIP flag in IA32_MCG_STATUS;
RESUME Execution;
(* End of MACHINE CHECK HANDLER*)

MCA ERROR PROCESSING: (* MCA Error Processing Routine called from MCA Handler *)
IF MCIP flag in IA32_MCG_STATUS = 0

THEN (* MCIP=0 upon MCA is unexpected *)
RESTARTABILITY = FALSE;

FI;
FOR each bank of machine-check registers
Vol. 3A 15-43

MACHINE-CHECK ARCHITECTURE
DO
CLEAR_MC_BANK = FALSE;
READ IA32_MCi_STATUS;
IF VAL Flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 1

THEN
IF Bit 24 in IA32_MCG_CAP = 0

THEN (* the processor does not support software error recovery *)
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* the processor supports software error recovery *)
IF EN Flag in IA32_MCi_STATUS = 0 AND OVER Flag in IA32_MCi_STATUS=0

THEN (* It is a spurious MCA Log. Log and clear the register *)
CLEAR_MC_BANK = TRUE;
GOTO LOG MCA REGISTER;

FI;
IF PCC Flag in IA32_MCi_STATUS = 1

THEN (* processor context might have been corrupted *)
RESTARTABILITY = FALSE;

ELSE (* It is a uncorrected recoverable (UCR) error *)
IF S Flag in IA32_MCi_STATUS = 0

THEN
IF AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required (UCNA) error *)
GOTO CONTINUE; (* let CMCI and CMC polling handler to process *)

ELSE
FESTARTABILITY = FALSE; (* S=0, AR=1 is illegal *)

FI
FI;
IF RESTARTABILITY = FALSE

THEN (* no need to take recovery action if RESTARTABILITY is already false *)
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI;
(* S in IA32_MCi_STATUS = 1 *)
IF AR Flag in IA32_MCi_STATUS = 1

THEN (* It is a software recoverable and action required (SRAR) error *)
IF OVER Flag in IA32_MCi_STATUS = 1

THEN
RESTARTABILITY = FALSE;
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

FI
IF MCACOD Value in IA32_MCi_STATUS is recognized
 AND Current Processor is an Affected Processor

THEN
Implement MCACOD specific recovery action;
CLEAR_MC_BANK = TURE;

ELSE
15-44 Vol. 3A

MACHINE-CHECK ARCHITECTURE
RESTARTABILITY = FALSE;
FI;

ELSE (* It is a software recoverable and action optional (SRAO) error *)
IF OVER Flag in IA32_MCi_STATUS = 0 AND
 MCACOD in IA32_MCi_STATUS is recognized

THEN
Implement MCACOD specific recovery action;

FI;
CLEAR_MC_BANK = TRUE;

FI; AR
FI; PCC
NOERROR = FALSE;
GOTO LOG MCA REGISTER;

ELSE (* It is a corrected error; continue to the next IA32_MCi_STATUS *)
GOTO CONTINUE;

FI; UC
FI; VAL

LOG MCA REGISTER:
SAVE IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;

FI;
IF CLEAR_MC_BANK = TRUE

THEN
SET all 0 to IA32_MCi_STATUS;
If MISCV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV in IA32_MCi_STATUS

THEN
SET all 0 to IA32_MCi_ADDR;

FI;
FI;
CONTINUE:

OD;
(*END FOR *)
RETURN;
(* End of MCA ERROR PROCESSING*)

15.10.4.2 Corrected Machine-Check Handler for Error Recovery
When writing a corrected machine check handler, which is invoked as a result of CMCI
or called from an OS CMC Polling dispatcher, consider the following:
Vol. 3A 15-45

MACHINE-CHECK ARCHITECTURE
• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the
error information in the register is valid. If this flag is clear, the registers in that
bank does not contain valid error information and does not need to be checked.

• The CMCI or CMC polling handler is responsible for logging and clearing corrected
errors. The UC flag in each IA32_MCi_Status register indicates whether the
reported error was corrected (UC=0) or not (UC=1).

• When IA32_MCG_CAP [24] is one, the CMC handler is also responsible for
logging and clearing uncorrected no-action required (UCNA) errors. When the
UC flag is one but the PCC, S, and AR flags are zero in the IA32_MCi_STATUS
register, the reported error in this bank is an uncorrected no-action required
(UCNA) error.

• In addition to corrected errors and UCNA errors, the CMC handler optionally logs
uncorrected (UC=1 and PCC=1), software recoverable machine check errors
(UC=1, PCC=0 and S=1), but should avoid clearing those errors from the MC
banks. Clearing these errors may result in accidentally removing these errors
before these errors are actually handled and processed by the MCE handler for
attempted software error recovery.

Example 15-5 gives pseudocode for a CMCI handler with UCR support.

Example 15-5. Corrected Error Handler Pseudocode with UCR Support

Corrected Error HANDLER: (* Called from CMCI handler or OS CMC Polling Dispatcher*)
IF CPU supports MCA

THEN
FOR each bank of machine-check registers

DO
READ IA32_MCi_STATUS;
IF VAL flag in IA32_MCi_STATUS = 1

THEN
IF UC Flag in IA32_MCi_STATUS = 0 (* It is a corrected error *)

THEN
GOTO LOG CMC ERROR;

ELSE
IF Bit 24 in IA32_MCG_CAP = 0

THEN
GOTO CONTINUE;

FI;
IF S Flag in IA32_MCi_STATUS = 0 AND AR Flag in IA32_MCi_STATUS = 0

THEN (* It is a uncorrected no action required error *)
GOTO LOG CMC ERROR

FI
IF EN Flag in IA32_MCi_STATUS = 0

THEN (* It is a spurious MCA error *)
GOTO LOG CMC ERROR

FI;
FI;

FI;
GOTO CONTINUE;
15-46 Vol. 3A

MACHINE-CHECK ARCHITECTURE
LOG CMC ERROR:
SAVE IA32_MCi_STATUS;
If MISCV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_MISC;
SET all 0 to IA32_MCi_MISC;

FI;
IF ADDRV Flag in IA32_MCi_STATUS

THEN
SAVE IA32_MCi_ADDR;
SET all 0 to IA32_MCi_ADDR

FI;
SET all 0 to IA32_MCi_STATUS;
CONTINUE:

OD;
(*END FOR *)

FI;
Vol. 3A 15-47

MACHINE-CHECK ARCHITECTURE
15-48 Vol. 3A

CHAPTER 16
DEBUGGING, PROFILING BRANCHES AND TIME-

STAMP COUNTER

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code
and monitoring performance. These facilities are valuable for debugging application
software, system software, and multitasking operating systems. Debug support is
accessed using debug registers (DR0 through DR7) and model-specific registers
(MSRs):
• Debug registers hold the addresses of memory and I/O locations called break-

points. Breakpoints are user-selected locations in a program, a data-storage area
in memory, or specific I/O ports. They are set where a programmer or system
designer wishes to halt execution of a program and examine the state of the
processor by invoking debugger software. A debug exception (#DB) is generated
when a memory or I/O access is made to a breakpoint address.

• MSRs monitor branches, interrupts, and exceptions; they record addresses of the
last branch, interrupt or exception taken and the last branch taken before an
interrupt or exception.

16.1 OVERVIEW OF DEBUG SUPPORT FACILITIES
The following processor facilities support debugging and performance monitoring:
• Debug exception (#DB) — Transfers program control to a debug procedure or

task when a debug event occurs.
• Breakpoint exception (#BP) — See breakpoint instruction (INT 3) below.
• Breakpoint-address registers (DR0 through DR3) — Specifies the

addresses of up to 4 breakpoints.
• Debug status register (DR6) — Reports the conditions that were in effect

when a debug or breakpoint exception was generated.
• Debug control register (DR7) — Specifies the forms of memory or I/O access

that cause breakpoints to be generated.
• T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is

made to switch to a task with the T flag set in its TSS.
• RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the

same instruction.
• TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after

every execution of an instruction.
• Breakpoint instruction (INT 3) — Generates a breakpoint exception (#BP)

that transfers program control to the debugger procedure or task. This
Vol. 3A 16-1

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
instruction is an alternative way to set code breakpoints. It is especially useful
when more than four breakpoints are desired, or when breakpoints are being
placed in the source code.

• Last branch recording facilities — Store branch records in the last branch
record (LBR) stack MSRs for the most recent taken branches, interrupts, and/or
exceptions in MSRs. A branch record consist of a branch-from and a branch-to
instruction address. Send branch records out on the system bus as branch trace
messages (BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in
the context of the current program or task. The following conditions can be used to
invoke the debugger:
• Task switch to a specific task.
• Execution of the breakpoint instruction.
• Execution of any instruction.
• Execution of an instruction at a specified address.
• Read or write to a specified memory address/range.
• Write to a specified memory address/range.
• Input from a specified I/O address/range.
• Output to a specified I/O address/range.
• Attempt to change the contents of a debug register.

16.2 DEBUG REGISTERS
Eight debug registers (see Figure 16-1) control the debug operation of the processor.
These registers can be written to and read using the move to/from debug register
form of the MOV instruction. A debug register may be the source or destination
operand for one of these instructions.

Debug registers are privileged resources; a MOV instruction that accesses these
registers can only be executed in real-address mode, in SMM or in protected mode at
a CPL of 0. An attempt to read or write the debug registers from any other privilege
level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4
breakpoints, numbered 0 though 3. For each breakpoint, the following information
can be specified:
• The linear address where the breakpoint is to occur.
• The length of the breakpoint location (1, 2, or 4 bytes).
• The operation that must be performed at the address for a debug exception to be

generated.
• Whether the breakpoint is enabled.
16-2 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• Whether the breakpoint condition was present when the debug exception was
generated.

The following paragraphs describe the functions of flags and fields in the debug
registers.

Figure 16-1. Debug Registers

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

0 0 G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

31 0

DR5

31 0

DR4

31 0

DR3Breakpoint 3 Linear Address

31 0

DR2Breakpoint 2 Linear Address

31 0

DR1Breakpoint 1 Linear Address

31 0

DR0Breakpoint 0 Linear Address

0 0 1

Reserved (set to 1)
Vol. 3A 16-3

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.2.1 Debug Address Registers (DR0-DR3)
Each of the debug-address registers (DR0 through DR3) holds the 32-bit linear
address of a breakpoint (see Figure 16-1). Breakpoint comparisons are made before
physical address translation occurs. The contents of debug register DR7 further spec-
ifies breakpoint conditions.

16.2.2 Debug Registers DR4 and DR5
Debug registers DR4 and DR5 are reserved when debug extensions are enabled
(when the DE flag in control register CR4 is set) and attempts to reference the DR4
and DR5 registers cause invalid-opcode exceptions (#UD). When debug extensions
are not enabled (when the DE flag is clear), these registers are aliased to debug
registers DR6 and DR7.

16.2.3 Debug Status Register (DR6)
The debug status register (DR6) reports debug conditions that were sampled at the
time the last debug exception was generated (see Figure 16-1). Updates to this
register only occur when an exception is generated. The flags in this register show
the following information:
• B0 through B3 (breakpoint condition detected) flags (bits 0 through 3)

— Indicates (when set) that its associated breakpoint condition was met when a
debug exception was generated. These flags are set if the condition described for
each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is
true. They may or may not be set if the breakpoint is not enabled by the Ln or the
Gn flags in register DR7. Therefore on a #DB, a debug handler should check only
those B0-B3 bits which correspond to an enabled breakpoint.

• BD (debug register access detected) flag (bit 13) — Indicates that the next
instruction in the instruction stream accesses one of the debug registers (DR0
through DR7). This flag is enabled when the GD (general detect) flag in debug
control register DR7 is set. See Section 16.2.4, “Debug Control Register (DR7),”
for further explanation of the purpose of this flag.

• BS (single step) flag (bit 14) — Indicates (when set) that the debug exception
was triggered by the single-step execution mode (enabled with the TF flag in the
EFLAGS register). The single-step mode is the highest-priority debug exception.
When the BS flag is set, any of the other debug status bits also may be set.

• BT (task switch) flag (bit 15) — Indicates (when set) that the debug
exception resulted from a task switch where the T flag (debug trap flag) in the
TSS of the target task was set. See Section 7.2.1, “Task-State Segment (TSS),”
for the format of a TSS. There is no flag in debug control register DR7 to enable
or disable this exception; the T flag of the TSS is the only enabling flag.

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6
register are never cleared by the processor. To avoid confusion in identifying debug
16-4 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
exceptions, debug handlers should clear the register before returning to the inter-
rupted task.

16.2.4 Debug Control Register (DR7)
The debug control register (DR7) enables or disables breakpoints and sets break-
point conditions (see Figure 16-1). The flags and fields in this register control the
following things:
• L0 through L3 (local breakpoint enable) flags (bits 0, 2, 4, and 6) —

Enables (when set) the breakpoint condition for the associated breakpoint for the
current task. When a breakpoint condition is detected and its associated Ln flag
is set, a debug exception is generated. The processor automatically clears these
flags on every task switch to avoid unwanted breakpoint conditions in the new
task.

• G0 through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) —
Enables (when set) the breakpoint condition for the associated breakpoint for all
tasks. When a breakpoint condition is detected and its associated Gn flag is set,
a debug exception is generated. The processor does not clear these flags on a
task switch, allowing a breakpoint to be enabled for all tasks.

• LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) —
This feature is not supported in the P6 family processors, later IA-32 processors,
and Intel 64 processors. When set, these flags cause the processor to detect the
exact instruction that caused a data breakpoint condition. For backward and
forward compatibility with other Intel processors, we recommend that the LE and
GE flags be set to 1 if exact breakpoints are required.

• GD (general detect enable) flag (bit 13) — Enables (when set) debug-
register protection, which causes a debug exception to be generated prior to any
MOV instruction that accesses a debug register. When such a condition is
detected, the BD flag in debug status register DR6 is set prior to generating the
exception. This condition is provided to support in-circuit emulators.
When the emulator needs to access the debug registers, emulator software can
set the GD flag to prevent interference from the program currently executing on
the processor.
The processor clears the GD flag upon entering to the debug exception handler,
to allow the handler access to the debug registers.

• R/W0 through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28,
and 29) — Specifies the breakpoint condition for the corresponding breakpoint.
The DE (debug extensions) flag in control register CR4 determines how the bits in
the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
Vol. 3A 16-5

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
10 — Break on I/O reads or writes.
11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for
the Intel386™ and Intel486™ processors, which is as follows:

00 — Break on instruction execution only.
01 — Break on data writes only.
10 — Undefined.
11 — Break on data reads or writes but not instruction fetches.

• LEN0 through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and
31) — Specify the size of the memory location at the address specified in the
corresponding breakpoint address register (DR0 through DR3). These fields are
interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the
LENn field should also be 00. The effect of using other lengths is undefined. See
Section 16.2.5, “Breakpoint Field Recognition,” below.

NOTES
For Pentium® 4 and Intel® Xeon® processors with a CPUID signature
corresponding to family 15 (model 3, 4, and 6), break point
conditions permit specifying 8-byte length on data read/write with an
of encoding 10B in the LENn field.
Encoding 10B is also supported in processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture, the
respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in
Chapter 3, “Instruction Set Reference, A-M” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A). The
Encoding 10B is supported in processors based on Intel® Atom™
microarchitecture, with CPUID signature of family 6, DisplayModel
value 28. The encoding 10B is undefined for other processors.

16.2.5 Breakpoint Field Recognition
Breakpoint address registers (debug registers DR0 through DR3) and the LENn fields
for each breakpoint define a range of sequential byte addresses for a data or I/O
breakpoint. The LENn fields permit specification of a 1-, 2-, 4-, or 8-byte range,
beginning at the linear address specified in the corresponding debug register (DRn).
Two-byte ranges must be aligned on word boundaries; 4-byte ranges must be
aligned on doubleword boundaries. I/O addresses are zero-extended (from 16 to 32
16-6 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
bits, for comparison with the breakpoint address in the selected debug register).
These requirements are enforced by the processor; it uses LENn field bits to mask
the lower address bits in the debug registers. Unaligned data or I/O breakpoint
addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes partici-
pating in an access is within the range defined by a breakpoint address register and
its LENn field. Table 16-1 provides an example setup of debug registers and data
accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two break-
points, where each breakpoint is byte-aligned and the two breakpoints together
cover the operand. The breakpoints generate exceptions only for the operand, not for
neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the
LENn field is set to 00). Code breakpoints for other operand sizes are undefined. The
processor recognizes an instruction breakpoint address only when it points to the
first byte of an instruction. If the instruction has prefixes, the breakpoint address
must point to the first prefix.

Table 16-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn

DR0
DR1
DR2
DR3

R/W0 = 11 (Read/Write)
R/W1 = 01 (Write)
R/W2 = 11 (Read/Write)
R/W3 = 01 (Write)

A0001H
A0002H
B0002H
C0000H

LEN0 = 00 (1 byte)
LEN1 = 00 (1 byte)
LEN2 = 01) (2 bytes)
LEN3 = 11 (4 bytes)

Data Accesses

Operation Address Access Length
(In Bytes)

Data operations that trap
- Read or write
- Read or write
- Write
- Write
- Read or write
- Read or write
- Read or write
- Write
- Write
- Write

A0001H
A0001H
A0002H
A0002H
B0001H
B0002H
B0002H
C0000H
C0001H
C0003H

1
2
1
2
4
1
2
4
2
1

Vol. 3A 16-7

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.2.6 Debug Registers and Intel® 64 Processors
For Intel 64 architecture processors, debug registers DR0–DR7 are 64 bits. In 16-bit
or 32-bit modes (protected mode and compatibility mode), writes to a debug register
fill the upper 32 bits with zeros. Reads from a debug register return the lower 32 bits.
In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size prefixes
are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written
with zeros. Writing 1 to any of the upper 32 bits results in a #GP(0) exception (see
Figure 16-2). All 64 bits of DR0–DR3 are writable by software. However, MOV DRn
instructions do not check that addresses written to DR0–DR3 are in the linear-
address limits of the processor implementation (address matching is supported only
on valid addresses generated by the processor implementation). Break point condi-
tions for 8-byte memory read/writes are supported in all modes.

Data operations that do not trap
- Read or write
- Read
- Read or write
- Read or write
- Read
- Read or write

A0000H
A0002H
A0003H
B0000H
C0000H
C0004H

1
1
4
2
2
4

Table 16-1. Breakpoint Examples (Contd.)

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENn
16-8 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.3 DEBUG EXCEPTIONS
The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling
debug exceptions: vector 1 (debug exception, #DB) and vector 3 (breakpoint excep-
tion, #BP). The following sections describe how these exceptions are generated and
typical exception handler operations.

16.3.1 Debug Exception (#DB)—Interrupt Vector 1
The debug-exception handler is usually a debugger program or part of a larger soft-
ware system. The processor generates a debug exception for any of several condi-
tions. The debugger checks flags in the DR6 and DR7 registers to determine which
condition caused the exception and which other conditions might apply. Table 16-2
shows the states of these flags following the generation of each kind of breakpoint
condition.

Instruction-breakpoint and general-detect condition (see Section 16.3.1.3, “General-
Detect Exception Condition”) result in faults; other debug-exception conditions result
in traps. The debug exception may report one or both at one time. The following
sections describe each class of debug exception.

Figure 16-2. DR6/DR7 Layout on Processors Supporting Intel 64 Technology

31 24 23 22 21 20 19 16 15 1314 12 11 8 7 0

DR7L

Reserved

0

1234569101718252627282930

G
0

L
1

L
2

L
3

G
3

L
E

G
E

G
2

G
1

G
D

R/W
0

LEN
0

R/W
1

LEN
1

R/W
2

LEN
2

R/W
3

LEN
3

31 16 15 1314 12 11 8 7 0

DR6B
0

123456910

B
1

B
2

B
3

0 1 1 1 1 1 1 1 1 1B
D

B
S

B
T

63 32

63 32

DR6

DR7

0 0 0 0 1

Reserved (set to 1)
Vol. 3A 16-9

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

16.3.1.1 Instruction-Breakpoint Exception Condition
The processor reports an instruction breakpoint when it attempts to execute an
instruction at an address specified in a breakpoint-address register (DR0 through
DR3) that has been set up to detect instruction execution (R/W flag is set to 0). Upon
reporting the instruction breakpoint, the processor generates a fault-class, debug
exception (#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced
before any other exceptions detected during the decoding or execution of an instruc-
tion. However, if a code instruction breakpoint is placed on an instruction located
immediately after a POP SS/MOV SS instruction, the breakpoint may not be trig-
gered. In most situations, POP SS/MOV SS will inhibit such interrupts (see
“MOV—Move” and “POP—Pop a Value from the Stack” in Chapters 3 and 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B).

Because the debug exception for an instruction breakpoint is generated before the
instruction is executed, if the instruction breakpoint is not removed by the exception
handler; the processor will detect the instruction breakpoint again when the instruc-
tion is restarted and generate another debug exception. To prevent looping on an
instruction breakpoint, the Intel 64 and IA-32 architectures provide the RF flag

Table 16-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags
Tested

DR7 Flags
Tested

Exception Class

Single-step trap BS = 1 Trap

Instruction breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 0 Fault

Data write breakpoint, at addresses
defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 1 Trap

I/O read or write breakpoint, at
addresses defined by DRn and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 2 Trap

Data read or write (but not instruction
fetches), at addresses defined by DRn
and LENn

Bn = 1 and
(Gn or Ln = 1)

R/Wn = 3 Trap

General detect fault, resulting from an
attempt to modify debug registers
(usually in conjunction with in-circuit
emulation)

BD = 1 Fault

Task switch BT = 1 Trap
16-10 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
(resume flag) in the EFLAGS register (see Section 2.3, “System Flags and Fields in
the EFLAGS Register,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). When the RF flag is set, the processor ignores instruction
breakpoints.

All Intel 64 and IA-32 processors manage the RF flag as follows. The RF Flag is
cleared at the start of the instruction after the check for code breakpoint, CS limit
violation and FP exceptions. Task Switches and IRETD/IRETQ instructions transfer
the RF image from the TSS/stack to the EFLAGS register.

When calling an event handler, Intel 64 and IA-32 processors establish the value of
the RF flag in the EFLAGS image pushed on the stack:
• For any fault-class exception except a debug exception generated in response to

an instruction breakpoint, the value pushed for RF is 1.
• For any interrupt arriving after any iteration of a repeated string instruction but

the last iteration, the value pushed for RF is 1.
• For any trap-class exception generated by any iteration of a repeated string

instruction but the last iteration, the value pushed for RF is 1.
• For other cases, the value pushed for RF is the value that was in EFLAG.RF at the

time the event handler was called. This includes:

— Debug exceptions generated in response to instruction breakpoints

— Hardware-generated interrupts arriving between instructions (including
those arriving after the last iteration of a repeated string instruction)

— Trap-class exceptions generated after an instruction completes (including
those generated after the last iteration of a repeated string instruction)

— Software-generated interrupts (RF is pushed as 0, since it was cleared at the
start of the software interrupt)

As noted above, the processor does not set the RF flag prior to calling the debug
exception handler for debug exceptions resulting from instruction breakpoints. The
debug exception handler can prevent recurrence of the instruction breakpoint by
setting the RF flag in the EFLAGS image on the stack. If the RF flag in the EFLAGS
image is set when the processor returns from the exception handler, it is copied into
the RF flag in the EFLAGS register by IRETD/IRETQ or a task switch that causes the
return. The processor then ignores instruction breakpoints for the duration of the
next instruction. (Note that the POPF, POPFD, and IRET instructions do not transfer
the RF image into the EFLAGS register.) Setting the RF flag does not prevent other
types of debug-exception conditions (such as, I/O or data breakpoints) from being
detected, nor does it prevent non-debug exceptions from being generated.

For the Pentium processor, when an instruction breakpoint coincides with another
fault-type exception (such as a page fault), the processor may generate one spurious
debug exception after the second exception has been handled, even though the
debug exception handler set the RF flag in the EFLAGS image. To prevent a spurious
exception with Pentium processors, all fault-class exception handlers should set the
RF flag in the EFLAGS image.
Vol. 3A 16-11

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
Data memory and I/O breakpoints are reported when the processor attempts to
access a memory or I/O address specified in a breakpoint-address register (DR0
through DR3) that has been set up to detect data or I/O accesses (R/W flag is set to
1, 2, or 3). The processor generates the exception after it executes the instruction
that made the access, so these breakpoint condition causes a trap-class exception to
be generated.

Because data breakpoints are traps, the original data is overwritten before the trap
exception is generated. If a debugger needs to save the contents of a write break-
point location, it should save the original contents before setting the breakpoint. The
handler can report the saved value after the breakpoint is triggered. The address in
the debug registers can be used to locate the new value stored by the instruction that
triggered the breakpoint.

Intel486 and later processors ignore the GE and LE flags in DR7. In Intel386 proces-
sors, exact data breakpoint matching does not occur unless it is enabled by setting
the LE and/or the GE flags.

P6 family processors are unable to report data breakpoints exactly for the REP MOVS
and REP STOS instructions until the completion of the iteration after the iteration in
which the breakpoint occurred.

For repeated INS and OUTS instructions that generate an I/O-breakpoint debug
exception, the processor generates the exception after the completion of the first
iteration. Repeated INS and OUTS instructions generate a memory-breakpoint debug
exception after the iteration in which the memory address breakpoint location is
accessed.

16.3.1.3 General-Detect Exception Condition
When the GD flag in DR7 is set, the general-detect debug exception occurs when a
program attempts to access any of the debug registers (DR0 through DR7) at the
same time they are being used by another application, such as an emulator or
debugger. This protection feature guarantees full control over the debug registers
when required. The debug exception handler can detect this condition by checking
the state of the BD flag in the DR6 register. The processor generates the exception
before it executes the MOV instruction that accesses a debug register, which causes
a fault-class exception to be generated.

16.3.1.4 Single-Step Exception Condition
The processor generates a single-step debug exception if (while an instruction is
being executed) it detects that the TF flag in the EFLAGS register is set. The excep-
tion is a trap-class exception, because the exception is generated after the instruc-
tion is executed. The processor will not generate this exception after the instruction
that sets the TF flag. For example, if the POPF instruction is used to set the TF flag, a
16-12 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
single-step trap does not occur until after the instruction that follows the POPF
instruction.

The processor clears the TF flag before calling the exception handler. If the TF flag
was set in a TSS at the time of a task switch, the exception occurs after the first
instruction is executed in the new task.

The TF flag normally is not cleared by privilege changes inside a task. The INT n and
INTO instructions, however, do clear this flag. Therefore, software debuggers that
single-step code must recognize and emulate INT n or INTO instructions rather than
executing them directly. To maintain protection, the operating system should check
the CPL after any single-step trap to see if single stepping should continue at the
current privilege level.

The interrupt priorities guarantee that, if an external interrupt occurs, single step-
ping stops. When both an external interrupt and a single-step interrupt occur
together, the single-step interrupt is processed first. This operation clears the TF flag.
After saving the return address or switching tasks, the external interrupt input is
examined before the first instruction of the single-step handler executes. If the
external interrupt is still pending, then it is serviced. The external interrupt handler
does not run in single-step mode. To single step an interrupt handler, single step an
INT n instruction that calls the interrupt handler.

16.3.1.5 Task-Switch Exception Condition
The processor generates a debug exception after a task switch if the T flag of the new
task's TSS is set. This exception is generated after program control has passed to the
new task, and prior to the execution of the first instruction of that task. The exception
handler can detect this condition by examining the BT flag of the DR6 register.

If entry 1 (#DB) in the IDT is a task gate, the T bit of the corresponding TSS should
not be set. Failure to observe this rule will put the processor in a loop.

16.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3
The breakpoint exception (interrupt 3) is caused by execution of an INT 3 instruction.
See Chapter 6, “Interrupt 3—Breakpoint Exception (#BP).” Debuggers use break
exceptions in the same way that they use the breakpoint registers; that is, as a
mechanism for suspending program execution to examine registers and memory
locations. With earlier IA-32 processors, breakpoint exceptions are used extensively
for setting instruction breakpoints.

With the Intel386 and later IA-32 processors, it is more convenient to set break-
points with the breakpoint-address registers (DR0 through DR3). However, the
breakpoint exception still is useful for breakpointing debuggers, because a break-
point exception can call a separate exception handler. The breakpoint exception is
also useful when it is necessary to set more breakpoints than there are debug regis-
ters or when breakpoints are being placed in the source code of a program under
development.
Vol. 3A 16-13

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.4 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING OVERVIEW

P6 family processors introduced the ability to set breakpoints on taken branches,
interrupts, and exceptions, and to single-step from one branch to the next. This
capability has been modified and extended in the Pentium 4, Intel Xeon, Pentium M,
Intel® Core™ Solo, Intel® Core™ Duo, Intel® Core™2 Duo, Intel® Core™ i7 and
Intel® Atom™ processors to allow logging of branch trace messages in a branch trace
store (BTS) buffer in memory.

See the following sections for processor specific implementation of last branch, inter-
rupt and exception recording:

— Section 16.5, “Last Branch, Interrupt, and Exception Recording (Intel®
Core™2 Duo and Intel® Atom™ Processor Family)”

— Section 16.6, “Last Branch, Interrupt, and Exception Recording for
Processors based on Intel® Microarchitecture code name Nehalem”

— Section 16.8, “Last Branch, Interrupt, and Exception Recording (Processors
based on Intel NetBurst® Microarchitecture)”

— Section 16.9, “Last Branch, Interrupt, and Exception Recording (Intel® Core™
Solo and Intel® Core™ Duo Processors)”

— Section 16.10, “Last Branch, Interrupt, and Exception Recording (Pentium M
Processors)”

— Section 16.11, “Last Branch, Interrupt, and Exception Recording (P6 Family
Processors)”

The following subsections of Section 16.4 describe common features of profiling
branches. These features are generally enabled using the IA32_DEBUGCTL MSR
(older processor may have implemented a subset or model-specific features, see
definitions of MSR_DEBUGCTLA, MSR_DEBUGCTLB, MSR_DEBUGCTL).

16.4.1 IA32_DEBUGCTL MSR
The IA32_DEBUGCTL MSR provides bit field controls to enable debug trace inter-
rupts, debug trace stores, trace messages enable, single stepping on branches, last
branch record recording, and to control freezing of LBR stack or performance
counters on a PMI request. IA32_DEBUGCTL MSR is located at register address
01D9H.

See Figure 16-3 for the MSR layout and the bullets below for a description of the
flags:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the

processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
16-14 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
in the last branch record (LBR) stack. For more information, see the Section
16.5.1, “LBR Stack”.

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches. See Section 16.4.3, “Single-Stepping on
Branches,” for more information about the BTF flag.

• TR (trace message enable) flag (bit 6) — When set, branch trace messages
are enabled. When the processor detects a taken branch, interrupt, or exception;
it sends the branch record out on the system bus as a branch trace message
(BTM). See Section 16.4.4, “Branch Trace Messages,” for more information about
the TR flag.

• BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS save
area. See Section 16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bit 8) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS),”
for a description of this mechanism.

• BTS_OFF_OS (branch trace off in privileged code) flag (bit 9) — When set,
BTS or BTM is skipped if CPL is 0. See Section 16.8.2.

• BTS_OFF_USR (branch trace off in user code) flag (bit 10) — When set,
BTS or BTM is skipped if CPL is greater than 0. See Section 16.8.2.

Figure 16-3. IA32_DEBUGCTL MSR for Processors based
on Intel Core microarchitecture

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
Vol. 3A 16-15

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• FREEZE_LBRS_ON_PMI flag (bit 11) — When set, the LBR stack is frozen on a
hardware PMI request (e.g. when a counter overflows and is configured to trigger
PMI).

• FREEZE_PERFMON_ON_PMI flag (bit 12) — When set, a PMI request clears
each of the “ENABLE” field of MSR_PERF_GLOBAL_CTRL MSR (see Figure 30-3) to
disable all the counters.

• FREEZE_WHILE_SMM_EN (bit 14) — If this bit is set, upon the delivery of an
SMI, the processor will clear all the enable bits of IA32_PERF_GLOBAL_CTRL,
save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and BTS
fields of IA32_DEBUGCTL before transferring control to the SMI handler. Subse-
quently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved
copy of IA32_DEBUGCTL prior to SMI delivery will be restored, after the SMI
handler issues RSM to complete its service. Note that system software must
check IA32_DEBUGCTL. to determine if the processor supports the
FREEZE_WHILE_SMM_EN control bit. FREEZE_WHILE_SMM_EN is supported if
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 30.12 for details of detecting the presence of IA32_PERF_CAPABILITIES
MSR.

16.4.2 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag (bit 0) in the IA32_DEBUGCTL MSR is set, the processor automat-
ically begins recording branch records for taken branches, interrupts, and exceptions
(except for debug exceptions) in the LBR stack MSRs.

When the processor generates a a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler. This action does not clear previously
stored LBR stack MSRs. The branch record for the last four taken branches, interrupts
and/or exceptions are retained for analysis.

A debugger can use the linear addresses in the LBR stack to re-set breakpoints in the
breakpoint address registers (DR0 through DR3). This allows a backward trace from
the manifestation of a particular bug toward its source.

If the LBR flag is cleared and TR flag in the IA32_DEBUGCTL MSR remains set, the
processor will continue to update LBR stack MSRs. This is because BTM information
must be generated from entries in the LBR stack. A #DB does not automatically clear
the TR flag.

16.4.3 Single-Stepping on Branches
When software sets both the BTF flag (bit 1) in the IA32_DEBUGCTL MSR and the TF
flag in the EFLAGS register, the processor generates a single-step debug exception
only after instructions that cause a branch.1 This mechanism allows a debugger to
single-step on control transfers caused by branches. This “branch single stepping”
helps isolate a bug to a particular block of code before instruction single-stepping
16-16 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
further narrows the search. The processor clears the BTF flag when it generates a
debug exception. The debugger must set the BTF flag before resuming program
execution to continue single-stepping on branches.

16.4.4 Branch Trace Messages
Setting the TR flag (bit 6) in the IA32_DEBUGCTL MSR enables branch trace
messages (BTMs). Thereafter, when the processor detects a branch, exception, or
interrupt, it sends a branch record out on the system bus as a BTM. A debugging
device that is monitoring the system bus can read these messages and synchronize
operations with taken branch, interrupt, and exception events.

When interrupts or exceptions occur in conjunction with a taken branch, additional
BTMs are sent out on the bus, as described in Section 16.4.2, “Monitoring Branches,
Exceptions, and Interrupts.”

For P6 processor family, Pentium M processor family, processors based on Intel Core
microarchitecture, TR and LBR bits can not be set at the same time due to hardware
limitation. The content of LBR stack is undefined when TR is set.

For IA processor families based on Intel NetBurst microarchitecture, Intel microarchi-
tecture code name Nehalem and Intel Atom processor family, the processor can
collect branch records in the LBR stack and at the same time send/store BTMs when
both the TR and LBR flags are set in the IA32_DEBUGCTL MSR (or the equivalent
MSR_DEBUGCTLA, MSR_DEBUGCTLB).

The following exception applies:
• BTM may not be observable on Intel Atom processor family processors that do

not provide an externally visible system bus.

16.4.4.1 Branch Trace Message Visibility
Branch trace message (BTM) visibility is implementation specific and limited to
systems with a front side bus (FSB). BTMs may not be visible to newer system link
interfaces or a system bus that deviates from a traditional FSB.

16.4.5 Branch Trace Store (BTS)
A trace of taken branches, interrupts, and exceptions is useful for debugging code by
providing a method of determining the decision path taken to reach a particular code
location. The LBR flag (bit 0) of IA32_DEBUGCTL provides a mechanism for capturing
records of taken branches, interrupts, and exceptions and saving them in the last

1. Executions of CALL, IRET, and JMP that cause task switches never cause single-step debug
exceptions (regardless of the value of the BTF flag). A debugger desiring debug exceptions on
switches to a task should set the T flag (debug trap flag) in the TSS of that task. See Section
7.2.1, “Task-State Segment (TSS).”
Vol. 3A 16-17

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
branch record (LBR) stack MSRs, setting the TR flag for sending them out onto the
system bus as BTMs. The branch trace store (BTS) mechanism provides the addi-
tional capability of saving the branch records in a memory-resident BTS buffer, which
is part of the DS save area. The BTS buffer can be configured to be circular so that
the most recent branch records are always available or it can be configured to
generate an interrupt when the buffer is nearly full so that all the branch records can
be saved. The BTINT flag (bit 8) can be used to enable the generation of interrupt
when the BTS buffer is full. See Section 16.4.9.2, “Setting Up the DS Save Area.” for
additional details.

Setting this flag (BTS) alone can greatly reduce the performance of the processor.
CPL-qualified branch trace storing mechanism can help mitigate the performance
impact of sending/logging branch trace messages.

16.4.6 CPL-Qualified Branch Trace Mechanism
CPL-qualified branch trace mechanism is available to a subset of Intel 64 and IA-32
processors that support the branch trace storing mechanism. The processor supports
the CPL-qualified branch trace mechanism if CPUID.01H:ECX[bit 4] = 1.

The CPL-qualified branch trace mechanism is described in Section 16.4.9.4. System
software can selectively specify CPL qualification to not send/store Branch Trace
Messages associated with a specified privilege level. Two bit fields, BTS_OFF_USR
(bit 10) and BTS_OFF_OS (bit 9), are provided in the debug control register to
specify the CPL of BTMs that will not be logged in the BTS buffer or sent on the bus.

16.4.7 Freezing LBR and Performance Counters on PMI
Many issues may generate a performance monitoring interrupt (PMI); a PMI service
handler will need to determine cause to handle the situation. Two capabilities that
allow a PMI service routine to improve branch tracing and performance monitoring
are:
• Freezing LBRs on PMI (bit 11)— The processor freezes LBRs on a PMI request

by clearing the LBR bit (bit 0) in IA32_DEBUGCTL. Software must then re-enable
IA32_DEBUGCTL.[0] to continue monitoring branches. When using this feature,
software should be careful about writes to IA32_DEBUGCTL to avoid re-enabling
LBRs by accident if they were just disabled.

• Freezing PMCs on PMI (bit 12) — The processor freezes the performance
counters on a PMI request by clearing the MSR_PERF_GLOBAL_CTRL MSR (see
Figure 30-3). The PMCs affected include both general-purpose counters and
fixed-function counters (see Section 30.4.1, “Fixed-function Performance
Counters”). Software must re-enable counts by writing 1s to the corresponding
enable bits in MSR_PERF_GLOBAL_CTRL before leaving a PMI service routine to
continue counter operation.

Freezing LBRs and PMCs on PMIs occur when:
16-18 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• A performance counter had an overflow and was programmed to signal a PMI in
case of an overflow.

— For the general-purpose counters; this is done by setting bit 20 of the
IA32_PERFEVTSELx register.

— For the fixed-function counters; this is done by setting the 3rd bit in the
corresponding 4-bit control field of the MSR_PERF_FIXED_CTR_CTRL register
(see Figure 30-1) or IA32_FIXED_CTR_CTRL MSR (see Figure 30-2).

• The PEBS buffer is almost full and reaches the interrupt threshold.
• The BTS buffer is almost full and reaches the interrupt threshold.

16.4.8 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported
across Intel 64 and IA-32 processor families. However, the number of MSRs in the
LBR stack and the valid range of TOS pointer value can vary between different
processor families. Table 16-3 lists the LBR stack size and TOS pointer range for
several processor families according to the CPUID signatures of
DisplayFamily_DisplayModel encoding (see CPUID instruction in Chapter 3 of Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A).

The last branch recording mechanism tracks not only branch instructions (like JMP,
Jcc, LOOP and CALL instructions), but also other operations that cause a change in
the instruction pointer (like external interrupts, traps and faults). The branch
recording mechanisms generally employs a set of MSRs, referred to as last branch
record (LBR) stack. The size and exact locations of the LBR stack are generally
model-specific (see Appendix B, “Model-Specific Registers (MSRs)” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B for model-specific MSR
addresses).

Table 16-3. LBR Stack Size and TOS Pointer Range
DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_2AH 16 0 to 15

06_1AH, 06_1EH, 06_1FH,
06_2EH, 06_25H, 06_2CH

16 0 to 15

06_17H, 06_1DH 4 0 to 3

06_0FH 4 0 to 3

06_1CH 8 0 to 7
Vol. 3A 16-19

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• Last Branch Record (LBR) Stack — The LBR consists of N pairs of MSRs (N is
listed in the LBR stack size column of Table 16-3) that store source and
destination address of recent branches (see Figure 16-3):

— MSR_LASTBRANCH_0_FROM_IP (address is model specific) through the next
consecutive (N-1) MSR address store source addresses

— MSR_LASTBRANCH_0_TO_IP (address is model specific) through the next
consecutive (N-1) MSR address store destination addresses.

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant M
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address is model specific)
contains an M-bit pointer to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded. The valid range of the M-bit POS
pointer is given in Table 16-3.

16.4.8.1 LBR Stack and Intel® 64 Processors
LBR MSRs are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the
address is recorded. If IA-32e mode is enabled, the processor writes 64-bit values
into the MSR.

In 64-bit mode, last branch records store 64-bit addresses; in compatibility mode,
the upper 32-bits of last branch records are cleared.

Software should query an architectural MSR IA32_PERF_CAPABILITIES[5:0]
about the format of the address that is stored in the LBR stack. Four formats are
defined by the following encoding:

— 000000B (32-bit record format) — Stores 32-bit offset in current CS of
respective source/destination,

— 000001B (64-bit LIP record format) — Stores 64-bit linear address of
respective source/destination,

— 000010B (64-bit EIP record format) — Stores 64-bit offset (effective
address) of respective source/destination.

Figure 16-4. 64-bit Address Layout of LBR MSR

63

Source Address

0

063

Destination Address

MSR_LASTBRANCH_0_FROM_IP through MSR_LASTBRANCH_(N-1)_FROM_IP

MSR_LASTBRANCH_0_TO_IP through MSR_LASTBRANCH_(N-1)_TO_IP
16-20 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
— 000011B (64-bit EIP record format) and Flags — Stores 64-bit offset
(effective address) of respective source/destination. LBR flags are supported
in the upper bits of ‘FROM’ register in the LBR stack. See LBR stack details
below for flag support and definition.

Processor’s support for the architectural MSR IA32_PERF_CAPABILITIES is
provided by CPUID.01H:ECX[PERF_CAPAB_MSR] (bit 15).

16.4.8.2 LBR Stack and IA-32 Processors
The LBR MSRs in IA-32 processors introduced prior to Intel 64 architecture store the
32-bit “To Linear Address” and “From Linear Address“ using the high and low half of
each 64-bit MSR.

16.4.8.3 Last Exception Records and Intel 64 Architecture
Intel 64 and IA-32 processors also provide MSRs that store the branch record for the
last branch taken prior to an exception or an interrupt. The location of the last excep-
tion record (LER) MSRs are model specific. The MSRs that store last exception
records are 64-bits. If IA-32e mode is disabled, only the lower 32-bits of the address
is recorded. If IA-32e mode is enabled, the processor writes 64-bit values into the
MSR. In 64-bit mode, last exception records store 64-bit addresses; in compatibility
mode, the upper 32-bits of last exception records are cleared.

16.4.9 BTS and DS Save Area
The Debug store (DS) feature flag (bit 21), returned by CPUID.1:EDX[21] Indicates
that the processor provides the debug store (DS) mechanism. This mechanism
allows BTMs to be stored in a memory-resident BTS buffer. See Section 16.4.5,
“Branch Trace Store (BTS).” Precise event-based sampling (PEBS, see Section
30.4.4, “Precise Event Based Sampling (PEBS),”) also uses the DS save area
provided by debug store mechanism. When CPUID.1:EDX[21] is set, the following
BTS facilities are available:
• The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when

clear) the availability of the BTS facilities, including the ability to set the BTS and
BTINT bits in the MSR_DEBUGCTLA MSR.

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

The debug store (DS) save area is a software-designated area of memory that is
used to collect the following two types of information:
• Branch records — When the BTS flag in the IA32_DEBUGCTL MSR is set, a

branch record is stored in the BTS buffer in the DS save area whenever a taken
branch, interrupt, or exception is detected.

• PEBS records — When a performance counter is configured for PEBS, a PEBS
record is stored in the PEBS buffer in the DS save area after the counter overflow
Vol. 3A 16-21

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
occurs. This record contains the architectural state of the processor (state of the
8 general purpose registers, EIP register, and EFLAGS register) at the next
occurrence of the PEBS event that caused the counter to overflow. When the
state information has been logged, the counter is automatically reset to a
preselected value, and event counting begins again.

NOTE
On processors based on Intel Core microarchitecture, PEBS is
supported only for a subset of the performance events. In Intel Atom
processor family, all performance monitoring events can be
programmed to use PEBS.

NOTES
DS save area and recording mechanism is not available in the SMM.
The feature is disabled on transition to the SMM mode. Similarly DS
recording is disabled on the generation of a machine check exception
and is cleared on processor RESET and INIT. DS recording is available
in real address mode.
The BTS and PEBS facilities may not be available on all processors.
The availability of these facilities is indicated by the
BTS_UNAVAILABLE and PEBS_UNAVAILABLE flags, respectively, in
the IA32_MISC_ENABLE MSR (see Appendix B).

The DS save area is divided into three parts (see Figure 16-5): buffer management
area, branch trace store (BTS) buffer, and PEBS buffer. The buffer management area
is used to define the location and size of the BTS and PEBS buffers. The processor
then uses the buffer management area to keep track of the branch and/or PEBS
records in their respective buffers and to record the performance counter reset value.
The linear address of the first byte of the DS buffer management area is specified
with the IA32_DS_AREA MSR.

The fields in the buffer management area are as follows:
• BTS buffer base — Linear address of the first byte of the BTS buffer. This

address should point to a natural doubleword boundary.
• BTS index — Linear address of the first byte of the next BTS record to be written

to. Initially, this address should be the same as the address in the BTS buffer
base field.

• BTS absolute maximum — Linear address of the next byte past the end of the
BTS buffer. This address should be a multiple of the BTS record size (12 bytes)
plus 1.

• BTS interrupt threshold — Linear address of the BTS record on which an
interrupt is to be generated. This address must point to an offset from the BTS
buffer base that is a multiple of the BTS record size. Also, it must be several
16-22 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
records short of the BTS absolute maximum address to allow a pending interrupt
to be handled prior to processor writing the BTS absolute maximum record.

• PEBS buffer base — Linear address of the first byte of the PEBS buffer. This
address should point to a natural doubleword boundary.

• PEBS index — Linear address of the first byte of the next PEBS record to be
written to. Initially, this address should be the same as the address in the PEBS
buffer base field.

Figure 16-5. DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

4H

8H

CH

10H

14H

18H

1CH

20H

24H

30H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
Vol. 3A 16-23

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• PEBS absolute maximum — Linear address of the next byte past the end of the
PEBS buffer. This address should be a multiple of the PEBS record size (40 bytes)
plus 1.

• PEBS interrupt threshold — Linear address of the PEBS record on which an
interrupt is to be generated. This address must point to an offset from the PEBS
buffer base that is a multiple of the PEBS record size. Also, it must be several
records short of the PEBS absolute maximum address to allow a pending
interrupt to be handled prior to processor writing the PEBS absolute maximum
record.

• PEBS counter reset value — A 40-bit value that the counter is to be reset to
after state information has collected following counter overflow. This value allows
state information to be collected after a preset number of events have been
counted.

Figures 16-6 shows the structure of a 12-byte branch record in the BTS buffer. The
fields in each record are as follows:
• Last branch from — Linear address of the instruction from which the branch,

interrupt, or exception was taken.
• Last branch to — Linear address of the branch target or the first instruction in

the interrupt or exception service routine.
• Branch predicted — Bit 4 of field indicates whether the branch that was taken

was predicted (set) or not predicted (clear).

Figures 16-7 shows the structure of the 40-byte PEBS records. Nominally the register
values are those at the beginning of the instruction that caused the event. However,
there are cases where the registers may be logged in a partially modified state. The
linear IP field shows the value in the EIP register translated from an offset into the
current code segment to a linear address.

Figure 16-6. 32-bit Branch Trace Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

4H

8H

031 4
16-24 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.4.9.1 DS Save Area and IA-32e Mode Operation
When IA-32e mode is active (IA32_EFER.LMA = 1), the structure of the DS save area
is shown in Figure 16-8. The organization of each field in IA-32e mode operation is
similar to that of non-IA-32e mode operation. However, each field now stores a
64-bit address. The IA32_DS_AREA MSR holds the 64-bit linear address of the first
byte of the DS buffer management area.

Figure 16-7. PEBS Record Format

EFLAGS 0H

4H

8H

031

Linear IP

10H

18H

14H

1CH

20H

24H

CH

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP
Vol. 3A 16-25

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
When IA-32e mode is active, the structure of a branch trace record is similar to that
shown in Figure 16-6, but each field is 8 bytes in length. This makes each BTS record
24 bytes (see Figure 16-9). The structure of a PEBS record is similar to that shown in
Figure 16-7, but each field is 8 bytes in length and architectural states include
register R8 through R15. This makes the size of a PEBS record in 64-bit mode 144
bytes (see Figure 16-10).

Figure 16-8. IA-32e Mode DS Save Area

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR
16-26 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
Fields in the buffer management area of a DS save area are described in Section
16.4.9.

The format of a branch trace record and a PEBS record are the same as the 64-bit
record formats shown in Figures 16-9 and Figures 16-10, with the exception that the
branch predicted bit is not supported by Intel Core microarchitecture or Intel Atom
microarchitecture. The 64-bit record formats for BTS and PEBS apply to DS save area
for all operating modes.

Figure 16-9. 64-bit Branch Trace Record Format

Figure 16-10. 64-bit PEBS Record Format

Last Branch From

Last Branch To

Branch Predicted

0H

8H

10H

063 4

RFLAGS 0H

8H

10H

063

RIP

20H

30H

28H

38H

40H

48H

18H

RAX

RBX

RCX

RDX

RSI

RDI

RBP

RSP

R8

...

R15

50H

...

88H
Vol. 3A 16-27

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
The procedures used to program IA32_DEBUG_CTRL MSR to set up a BTS buffer or a
CPL-qualified BTS are described in Section 16.4.9.3 and Section 16.4.9.4.

Required elements for writing a DS interrupt service routine are largely the same on
processors that support using DS Save area for BTS or PEBS records. However, on
processors based on Intel NetBurst® microarchitecture, re-enabling counting
requires writing to CCCRs. But a DS interrupt service routine on processors based on
Intel Core or Intel Atom microarchitecture should:
• Re-enable the enable bits in IA32_PERF_GLOBAL_CTRL MSR if it is servicing an

overflow PMI due to PEBS.
• Clear overflow indications by writing to IA32_PERF_GLOBAL_OVF_CTRL when a

counting configuration is changed. This includes bit 62 (ClrOvfBuffer) and the
overflow indication of counters used in either PEBS or general-purpose counting
(specifically: bits 0 or 1; see Figures 30-3).

16.4.9.2 Setting Up the DS Save Area
To save branch records with the BTS buffer, the DS save area must first be set up in
memory as described in the following procedure (See Section 30.4.4.1, “Setting up
the PEBS Buffer,” for instructions for setting up a PEBS buffer, respectively, in the DS
save area):

1. Create the DS buffer management information area in memory (see Section
16.4.9, “BTS and DS Save Area,” and Section 16.4.9.1, “DS Save Area and IA-
32e Mode Operation”). Also see the additional notes in this section.

2. Write the base linear address of the DS buffer management area into the
IA32_DS_AREA MSR.

3. Set up the performance counter entry in the xAPIC LVT for fixed delivery and
edge sensitive. See Section 10.5.1, “Local Vector Table.”

4. Establish an interrupt handler in the IDT for the vector associated with the
performance counter entry in the xAPIC LVT.

5. Write an interrupt service routine to handle the interrupt. See Section 16.4.9.5,
“Writing the DS Interrupt Service Routine.”

The following restrictions should be applied to the DS save area.
• The three DS save area sections should be allocated from a non-paged pool, and

marked accessed and dirty. It is the responsibility of the operating system to
keep the pages that contain the buffer present and to mark them accessed and
dirty. The implication is that the operating system cannot do “lazy” page-table
entry propagation for these pages.

• The DS save area can be larger than a page, but the pages must be mapped to
contiguous linear addresses. The buffer may share a page, so it need not be
aligned on a 4-KByte boundary. For performance reasons, the base of the buffer
must be aligned on a doubleword boundary and should be aligned on a cache line
boundary.
16-28 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• It is recommended that the buffer size for the BTS buffer and the PEBS buffer be
an integer multiple of the corresponding record sizes.

• The precise event records buffer should be large enough to hold the number of
precise event records that can occur while waiting for the interrupt to be
serviced.

• The DS save area should be in kernel space. It must not be on the same page as
code, to avoid triggering self-modifying code actions.

• There are no memory type restrictions on the buffers, although it is
recommended that the buffers be designated as WB memory type for
performance considerations.

• Either the system must be prevented from entering A20M mode while DS save
area is active, or bit 20 of all addresses within buffer bounds must be 0.

• Pages that contain buffers must be mapped to the same physical addresses for all
processes, such that any change to control register CR3 will not change the DS
addresses.

• The DS save area is expected to used only on systems with an enabled APIC. The
LVT Performance Counter entry in the APCI must be initialized to use an interrupt
gate instead of the trap gate.

16.4.9.3 Setting Up the BTS Buffer
Three flags in the MSR_DEBUGCTLA MSR (see Table 16-4), IA32_DEBUGCTL (see
Figure 16-3), or MSR_DEBUGCTLB (see Figure 16-16) control the generation of
branch records and storing of them in the BTS buffer; these are TR, BTS, and BTINT.
The TR flag enables the generation of BTMs. The BTS flag determines whether the
BTMs are sent out on the system bus (clear) or stored in the BTS buffer (set). BTMs
cannot be simultaneously sent to the system bus and logged in the BTS buffer. The
BTINT flag enables the generation of an interrupt when the BTS buffer is full. When
this flag is clear, the BTS buffer is a circular buffer.

The following procedure describes how to set up a DS Save area to collect branch
records in the BTS buffer:

1. Place values in the BTS buffer base, BTS index, BTS absolute maximum, and BTS
interrupt threshold fields of the DS buffer management area to set up the BTS
buffer in memory.

Table 16-4. IA32_DEBUGCTL Flag Encodings
TR BTS BTINT Description

0 X X Branch trace messages (BTMs) off

1 0 X Generate BTMs

1 1 0 Store BTMs in the BTS buffer, used here as a circular buffer

1 1 1 Store BTMs in the BTS buffer, and generate an interrupt when
the buffer is nearly full
Vol. 3A 16-29

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
2. Set the TR and BTS flags in the IA32_DEBUGCTL for Intel Core Solo and Intel
Core Duo processors or later processors (or MSR_DEBUGCTLA MSR for
processors based on Intel NetBurst Microarchitecture; or MSR_DEBUGCTLB for
Pentium M processors).

3. Clear the BTINT flag in the corresponding IA32_DEBUGCTL (or MSR_DEBUGCTLA
MSR; or MSR_DEBUGCTLB) if a circular BTS buffer is desired.

NOTES
If the buffer size is set to less than the minimum allowable value (i.e.
BTS absolute maximum < 1 + size of BTS record), the results of BTS
is undefined.
In order to prevent generating an interrupt, when working with
circular BTS buffer, SW need to set BTS interrupt threshold to a value
greater than BTS absolute maximum (fields of the DS buffer
management area). It's not enough to clear the BTINT flag itself only.

16.4.9.4 Setting Up CPL-Qualified BTS
If the processor supports CPL-qualified last branch recording mechanism, the gener-
ation of branch records and storing of them in the BTS buffer are determined by: TR,
BTS, BTS_OFF_OS, BTS_OFF_USR, and BTINT. The encoding of these five bits are
shown in Table 16-5.

Table 16-5. CPL-Qualified Branch Trace Store Encodings
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description

0 X X X X Branch trace messages (BTMs)
off

1 0 X X X Generates BTMs but do not
store BTMs

1 1 0 0 0 Store all BTMs in the BTS buffer,
used here as a circular buffer

1 1 1 0 0 Store BTMs with CPL > 0 in the
BTS buffer

1 1 0 1 0 Store BTMs with CPL = 0 in the
BTS buffer

1 1 1 1 X Generate BTMs but do not store
BTMs

1 1 0 0 1 Store all BTMs in the BTS buffer;
generate an interrupt when the
buffer is nearly full
16-30 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.4.9.5 Writing the DS Interrupt Service Routine
The BTS, non-precise event-based sampling, and PEBS facilities share the same
interrupt vector and interrupt service routine (called the debug store interrupt
service routine or DS ISR). To handle BTS, non-precise event-based sampling, and
PEBS interrupts: separate handler routines must be included in the DS ISR. Use the
following guidelines when writing a DS ISR to handle BTS, non-precise event-based
sampling, and/or PEBS interrupts.
• The DS interrupt service routine (ISR) must be part of a kernel driver and operate

at a current privilege level of 0 to secure the buffer storage area.
• Because the BTS, non-precise event-based sampling, and PEBS facilities share

the same interrupt vector, the DS ISR must check for all the possible causes of
interrupts from these facilities and pass control on to the appropriate handler.

BTS and PEBS buffer overflow would be the sources of the interrupt if the buffer
index matches/exceeds the interrupt threshold specified. Detection of non-
precise event-based sampling as the source of the interrupt is accomplished by
checking for counter overflow.

• There must be separate save areas, buffers, and state for each processor in an
MP system.

• Upon entering the ISR, branch trace messages and PEBS should be disabled to
prevent race conditions during access to the DS save area. This is done by
clearing TR flag in the IA32_DEBUGCTL (or MSR_DEBUGCTLA MSR) and by
clearing the precise event enable flag in the MSR_PEBS_ENABLE MSR. These
settings should be restored to their original values when exiting the ISR.

• The processor will not disable the DS save area when the buffer is full and the
circular mode has not been selected. The current DS setting must be retained
and restored by the ISR on exit.

• After reading the data in the appropriate buffer, up to but not including the
current index into the buffer, the ISR must reset the buffer index to the beginning
of the buffer. Otherwise, everything up to the index will look like new entries upon
the next invocation of the ISR.

1 1 1 0 1 Store BTMs with CPL > 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full

1 1 0 1 1 Store BTMs with CPL = 0 in the
BTS buffer; generate an
interrupt when the buffer is
nearly full

Table 16-5. CPL-Qualified Branch Trace Store Encodings (Contd.)
TR BTS BTS_OFF_OS BTS_OFF_USR BTINT Description
Vol. 3A 16-31

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• The ISR must clear the mask bit in the performance counter LVT entry.
• The ISR must re-enable the counters to count via

IA32_PERF_GLOBAL_CTRL/IA32_PERF_GLOBAL_OVF_CTRL if it is servicing an
overflow PMI due to PEBS (or via CCCR's ENABLE bit on processor based on Intel
NetBurst microarchitecture).

• The Pentium 4 Processor and Intel Xeon Processor mask PMIs upon receiving an
interrupt. Clear this condition before leaving the interrupt handler.

16.5 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™2 DUO AND INTEL®
ATOM™ PROCESSOR FAMILY)

The Intel Core 2 Duo processor family and Intel Xeon processors based on Intel Core
microarchitecture or enhanced Intel Core microarchitecture provide last branch
interrupt and exception recording. The facilities described in this section also apply to
Intel Atom processor family. These capabilities are similar to those found in Pentium
4 processors, including support for the following facilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR

provide bit fields for software to configure mechanisms related to debug trace,
branch recording, branch trace store, and performance counter operations. See
Section 16.4.1 for a description of the flags. See Figure 16-3 for the MSR layout.

• Last branch record (LBR) stack — There are a collection of MSR pairs that
store the source and destination addresses related to recently executed
branches. See Section 16.5.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts

— See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the
LBR stack on a PMI request is available.

— The Intel Atom processor family clears the TR flag when the
FREEZE_LBRS_ON_PMI flag is set.

• Branch trace messages — See Section 16.4.4.
• Last exception records — See Section 16.8.3.
• Branch trace store and CPL-qualified BTS — See Section 16.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 16.4.1.
16-32 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.5.1 LBR Stack
The last branch record stack and top-of-stack (TOS) pointer MSRs are supported
across Intel Core 2, Intel Xeon and Intel Atom processor families.

Four pairs of MSRs are supported in the LBR stack for Intel Core 2 and Intel Xeon
processor families:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_3_FROM_IP (address 43H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_3_TO_IP (address 63H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 2
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a
pointer to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded.

Eight pairs of MSRs are supported in the LBR stack for Intel Atom processors:
• Last Branch Record (LBR) Stack

— MSR_LASTBRANCH_0_FROM_IP (address 40H) through
MSR_LASTBRANCH_7_FROM_IP (address 47H) store source addresses

— MSR_LASTBRANCH_0_TO_IP (address 60H) through
MSR_LASTBRANCH_7_TO_IP (address 67H) store destination addresses

• Last Branch Record Top-of-Stack (TOS) Pointer — The lowest significant 3
bits of the TOS Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a
pointer to the MSR in the LBR stack that contains the most recent branch,
interrupt, or exception recorded.

For compatibility, the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) dupli-
cate functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6
family processors.

16.6 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING FOR PROCESSORS BASED ON INTEL®
MICROARCHITECTURE CODE NAME NEHALEM

The processors based on Intel® microarchitecture code name Nehalem and Intel®
microarchitecture code name Westmere support last branch interrupt and exception
recording. These capabilities are similar to those found in Intel Core 2 processors and
adds additional capabilities:
• Debug Trace and Branch Recording Control — The IA32_DEBUGCTL MSR

provides bit fields for software to configure mechanisms related to debug trace,
Vol. 3A 16-33

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
branch recording, branch trace store, and performance counter operations. See
Section 16.4.1 for a description of the flags. See Figure 16-11 for the MSR layout.

• Last branch record (LBR) stack — There are 16 MSR pairs that store the
source and destination addresses related to recently executed branches. See
Section 16.6.1.

• Monitoring and single-stepping of branches, exceptions, and interrupts
— See Section 16.4.2 and Section 16.4.3. In addition, the ability to freeze the
LBR stack on a PMI request is available.

• Branch trace messages — The IA32_DEBUGCTL MSR provides bit fields for
software to enable each logical processor to generate branch trace messages.
See Section 16.4.4. However, not all BTM messages are observable using the
Intel® QPI link.

• Last exception records — See Section 16.8.3.
• Branch trace store and CPL-qualified BTS — See Section 16.4.6 and Section

16.4.5.
• FREEZE_LBRS_ON_PMI flag (bit 11) — see Section 16.4.7.
• FREEZE_PERFMON_ON_PMI flag (bit 12) — see Section 16.4.7.
• UNCORE_PMI_EN (bit 13) — When set. this logical processor is enabled to

receive an counter overflow interrupt form the uncore.
• FREEZE_WHILE_SMM_EN (bit 14) — FREEZE_WHILE_SMM_EN is supported

if IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1. See
Section 16.4.1.

Processors based on Intel microarchitecture code name Nehalem provide additional
capabilities:
• Independent control of uncore PMI — The IA32_DEBUGCTL MSR provides a

bit field (see Figure 16-11) for software to enable each logical processor to
receive an uncore counter overflow interrupt.

• LBR filtering — Processors based on Intel microarchitecture code name
Nehalem support filtering of LBR based on combination of CPL and branch type
conditions. When LBR filtering is enabled, the LBR stack only captures the subset
of branches that are specified by MSR_LBR_SELECT.
16-34 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.6.1 LBR Stack
Processors based on Intel microarchitecture code name Nehalem provide 16 pairs of
MSR to record last branch record information. The layout of each MSR pair is shown
in Table 16-6 and Table 16-7.

Figure 16-11. IA32_DEBUGCTL MSR for Processors based
on Intel microarchitecture code name Nehalem

Table 16-6. IA32_LASTBRANCH_x_FROM_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the branch instruction itself,
This is the “branch from“ address

SIGN_EXt 62:48 R/0 Signed extension of bit 47 of this register

MISPRED 63 R/O When set, indicates the branch was predicted;
otherwise, the branch was mispredicted.

Table 16-7. IA32_LASTBRANCH_x_TO_IP
Bit Field Bit Offset Access Description

Data 47:0 R/O The linear address of the target of the branch
instruction itself, This is the “branch to“ address

SIGN_EXt 63:48 R/0 Signed extension of bit 47 of this register

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved

910

BTS_OFF_OS — BTS off in OS
BTS_OFF_USR — BTS off in user code
FREEZE_LBRS_ON_PMI
FREEZE_PERFMON_ON_PMI

111214

FREEZE_WHILE_SMM_EN
UNCORE_PMI_EN

13
Vol. 3A 16-35

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
Processors based on Intel microarchitecture code name Nehalem have an LBR MSR
Stack as shown in Table 16-8.

Table 16-8. LBR Stack Size and TOS Pointer Range

16.6.2 Filtering of Last Branch Records
MSR_LBR_SELECT is cleared to zero at RESET, and LBR filtering is disabled, i.e. all
branches will be captured. MSR_LBR_SELECT provides bit fields to specify the condi-
tions of subsets of branches that will not be captured in the LBR. The layout of
MSR_LBR_SELECT is shown in Table 16-9.

16.7 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING FOR PROCESSORS BASED ON INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE

Generally, all of the last branch record, interrupt and exception recording facility
described in Section 16.6, “Last Branch, Interrupt, and Exception Recording for

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

06_1AH 16 0 to 15

Table 16-9. MSR_LBR_SELECT for Intel microarchitecture code name Nehalem
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
16-36 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
Processors based on Intel® Microarchitecture code name Nehalem”, apply to proces-
sors based on Intel® microarchitecture code name Sandy Bridge.

One difference of note is that MSR_LBR_SELECT is shared between two logical
processors in the same core. In Intel microarchitecture code name Sandy Bridge,
each logical processor has its own MSR_LBR_SELECT. The filtering semantics for
“Near_ind_jmp“ and “Near_rel_jmp“ has been enhanced, see Table 16-10.

16.8 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PROCESSORS BASED ON INTEL
NETBURST® MICROARCHITECTURE)

Pentium 4 and Intel Xeon processors based on Intel NetBurst microarchitecture
provide the following methods for recording taken branches, interrupts and excep-
tions:
• Store branch records in the last branch record (LBR) stack MSRs for the most

recent taken branches, interrupts, and/or exceptions in MSRs. A branch record
consist of a branch-from and a branch-to instruction address.

• Send the branch records out on the system bus as branch trace messages
(BTMs).

• Log BTMs in a memory-resident branch trace store (BTS) buffer.

Table 16-10. MSR_LBR_SELECT for Intel microarchitecture code name Sandy Bridge
Bit Field Bit Offset Access Description

CPL_EQ_0 0 R/W When set, do not capture branches occurring in ring 0

CPL_NEQ_0 1 R/W When set, do not capture branches occurring in ring
>0

JCC 2 R/W When set, do not capture conditional branches

NEAR_REL_CALL 3 R/W When set, do not capture near relative calls

NEAR_IND_CALL 4 R/W When set, do not capture near indirect calls

NEAR_RET 5 R/W When set, do not capture near returns

NEAR_IND_JMP 6 R/W When set, do not capture near indirect jumps except
near indirect calls and near returns

NEAR_REL_JMP 7 R/W When set, do not capture near relative jumps except
near relative calls.

FAR_BRANCH 8 R/W When set, do not capture far branches

Reserved 63:9 Must be zero
Vol. 3A 16-37

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
To support these functions, the processor provides the following MSRs and related
facilities:
• MSR_DEBUGCTLA MSR — Enables last branch, interrupt, and exception

recording; single-stepping on taken branches; branch trace messages (BTMs);
and branch trace store (BTS). This register is named DebugCtlMSR in the P6
family processors.

• Debug store (DS) feature flag (CPUID.1:EDX.DS[bit 21]) — Indicates that
the processor provides the debug store (DS) mechanism, which allows BTMs to
be stored in a memory-resident BTS buffer.

• CPL-qualified debug store (DS) feature flag (CPUID.1:ECX.DS-CPL[bit
4]) — Indicates that the processor provides a CPL-qualified debug store (DS)
mechanism, which allows software to selectively skip sending and storing BTMs,
according to specified current privilege level settings, into a memory-resident
BTS buffer.

• IA32_MISC_ENABLE MSR — Indicates that the processor provides the BTS
facilities.

• Last branch record (LBR) stack — The LBR stack is a circular stack that
consists of four MSRs (MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3) for
the Pentium 4 and Intel Xeon processor family [CPUID family 0FH, models 0H-
02H]. The LBR stack consists of 16 MSR pairs (MSR_LASTBRANCH_0_FROM_LIP
through MSR_LASTBRANCH_15_FROM_LIP and MSR_LASTBRANCH_0_TO_LIP
through MSR_LASTBRANCH_15_TO_LIP) for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, model 03H].

• Last branch record top-of-stack (TOS) pointer — The TOS Pointer MSR
contains a 2-bit pointer (0-3) to the MSR in the LBR stack that contains the most
recent branch, interrupt, or exception recorded for the Pentium 4 and Intel Xeon
processor family [CPUID family 0FH, models 0H-02H]. This pointer becomes a
4-bit pointer (0-15) for the Pentium 4 and Intel Xeon processor family [CPUID
family 0FH, model 03H]. See also: Table 16-11, Figure 16-12, and Section
16.8.2, “LBR Stack for Processors Based on Intel NetBurst® Microarchitecture.”

• Last exception record — See Section 16.8.3, “Last Exception Records.”

16.8.1 MSR_DEBUGCTLA MSR
The MSR_DEBUGCTLA MSR enables and disables the various last branch recording
mechanisms described in the previous section. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 16-12 shows the flags in the MSR_DEBUGCTLA MSR.
The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the

processor records a running trace of the most recent branches, interrupts, and/or
exceptions taken by the processor (prior to a debug exception being generated)
in the last branch record (LBR) stack. Each branch, interrupt, or exception is
16-38 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
recorded as a 64-bit branch record. The processor clears this flag whenever a
debug exception is generated (for example, when an instruction or data
breakpoint or a single-step trap occurs). See Section 16.8.2, “LBR Stack for
Processors Based on Intel NetBurst® Microarchitecture.”

• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag rather than
a “single-step on instructions” flag. This mechanism allows single-stepping the
processor on taken branches. See Section 16.4.3, “Single-Stepping on
Branches.”

• TR (trace message enable) flag (bit 2) — When set, branch trace messages
are enabled. Thereafter, when the processor detects a taken branch, interrupt, or
exception, it sends the branch record out on the system bus as a branch trace
message (BTM). See Section 16.4.4, “Branch Trace Messages.”

• BTS (branch trace store) flag (bit 3) — When set, enables the BTS facilities to
log BTMs to a memory-resident BTS buffer that is part of the DS save area. See
Section 16.4.9, “BTS and DS Save Area.”

• BTINT (branch trace interrupt) flag (bits 4) — When set, the BTS facilities
generate an interrupt when the BTS buffer is full. When clear, BTMs are logged to
the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace Store (BTS).”

• BTS_OFF_OS (disable ring 0 branch trace store) flag (bit 5) — When set,
enables the BTS facilities to skip sending/logging CPL_0 BTMs to the memory-
resident BTS buffer. See Section 16.8.2, “LBR Stack for Processors Based on Intel
NetBurst® Microarchitecture.”

• BTS_OFF_USR (disable ring 0 branch trace store) flag (bit 6) — When set,
enables the BTS facilities to skip sending/logging non-CPL_0 BTMs to the
memory-resident BTS buffer. See Section 16.8.2, “LBR Stack for Processors
Based on Intel NetBurst® Microarchitecture.”

Figure 16-12. MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

5 4 3 2 1 0

BTS — Branch trace store

Reserved

67

BTS_OFF_OS — Disable storing CPL_0 BTS
BTS_OFF_USR — Disable storing non-CPL_0 BTS
Vol. 3A 16-39

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
The initial implementation of BTS_OFF_USR and BTS_OFF_OS in
MSR_DEBUGCTLA is shown in Figure 16-12. The BTS_OFF_USR and
BTS_OFF_OS fields may be implemented on other model-specific
debug control register at different locations.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each
of the last branch recording MSRs.

16.8.2 LBR Stack for Processors Based on Intel NetBurst®
Microarchitecture

The LBR stack is made up of LBR MSRs that are treated by the processor as a circular
stack. The TOS pointer (MSR_LASTBRANCH_TOS MSR) points to the LBR MSR (or
LBR MSR pair) that contains the most recent (last) branch record placed on the stack.
Prior to placing a new branch record on the stack, the TOS is incremented by 1. When
the TOS pointer reaches it maximum value, it wraps around to 0. See Table 16-11
and Figure 16-12.

Table 16-11. LBR MSR Stack Size and TOS Pointer Range for the Pentium® 4 and the
Intel® Xeon® Processor Family

The registers in the LBR MSR stack and the MSR_LASTBRANCH_TOS MSR are read-
only and can be read using the RDMSR instruction.

Figure 16-13 shows the layout of a branch record in an LBR MSR (or MSR pair). Each
branch record consists of two linear addresses, which represent the “from” and “to”
instruction pointers for a branch, interrupt, or exception. The contents of the from
and to addresses differ, depending on the source of the branch:
• Taken branch — If the record is for a taken branch, the “from” address is the

address of the branch instruction and the “to” address is the target instruction of
the branch.

DisplayFamily_DisplayModel Size of LBR Stack Range of TOS Pointer

Family 0FH, Models 0H-02H;
MSRs at locations 1DBH-
1DEH.

4 0 to 3

Family 0FH, Models; MSRs at
locations 680H-68FH.

16 0 to 15

Family 0FH, Model 03H;
MSRs at locations 6C0H-
6CFH.

16 0 to 15
16-40 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• Interrupt — If the record is for an interrupt, the “from” address the return
instruction pointer (RIP) saved for the interrupt and the “to” address is the
address of the first instruction in the interrupt handler routine. The RIP is the
linear address of the next instruction to be executed upon returning from the
interrupt handler.

• Exception — If the record is for an exception, the “from” address is the linear
address of the instruction that caused the exception to be generated and the “to”
address is the address of the first instruction in the exception handler routine.

Additional information is saved if an exception or interrupt occurs in conjunction with
a branch instruction. If a branch instruction generates a trap type exception, two
branch records are stored in the LBR stack: a branch record for the branch instruction
followed by a branch record for the exception.

If a branch instruction is immediately followed by an interrupt, a branch record is
stored in the LBR stack for the branch instruction followed by a record for the
interrupt.

16.8.3 Last Exception Records
The Pentium 4, Intel Xeon, Pentium M, Intel® Core™ Solo, Intel® Core™ Duo, Intel®
Core™2 Duo, Intel® Core™ i7 and Intel® Atom™ processors provide two MSRs (the
MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate the functions
of the LastExceptionToIP and LastExceptionFromIP MSRs found in the P6 family
processors. The MSR_LER_TO_LIP and MSR_LER_FROM_LIP MSRs contain a branch

Figure 16-13. LBR MSR Branch Record Layout for the Pentium 4
and Intel Xeon Processor Family

63

From Linear Address

0

To Linear Address

63

From Linear Address

0

063

To Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_3
CPUID Family 0FH, Models 0H-02H

Reserved

CPUID Family 0FH, Model 03H-04H

Reserved

MSR_LASTBRANCH_0_FROM_LIP through MSR_LASTBRANCH_15_FROM_LIP

32 - 31

32 - 31

MSR_LASTBRANCH_0_TO_LIP through MSR_LASTBRANCH_15_TO_LIP
Vol. 3A 16-41

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
record for the last branch that the processor took prior to an exception or interrupt
being generated.

16.9 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (INTEL® CORE™ SOLO AND INTEL®
CORE™ DUO PROCESSORS)

Intel Core Solo and Intel Core Duo processors provide last branch interrupt and
exception recording. This capability is almost identical to that found in Pentium 4 and
Intel Xeon processors. There are differences in the stack and in some MSR names
and locations.

Note the following:
• IA32_DEBUGCTL MSR — Enables debug trace interrupt, debug trace store,

trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. IA32_DEBUGCTL MSR is located at
register address 01D9H.
See Figure 16-14 for the layout and the entries below for a description of the
flags:

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows
single-stepping the processor on taken branches. See Section 16.4.3,
“Single-Stepping on Branches,” for more information about the BTF flag.

— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception; it sends the branch record out on the system bus as
a branch trace message (BTM). See Section 16.4.4, “Branch Trace Messages,”
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, the flag enables BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace
Store (BTS),” for a description of this mechanism.
16-42 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 16.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address (MSR addresses start at 40H). See
Figure 16-15.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Intel Core Solo and
Intel Core Duo processors, this MSR is located at register address 01C9H.

For compatibility, the Intel Core Solo and Intel Core Duo processors provide two 32-
bit MSRs (the MSR_LER_TO_LIP and the MSR_LER_FROM_LIP MSRs) that duplicate
functions of the LastExceptionToIP and LastExceptionFromIP MSRs found in P6 family
processors.

For details, see Section 16.8, “Last Branch, Interrupt, and Exception Recording
(Processors based on Intel NetBurst® Microarchitecture),” and Appendix B.9, “MSRs
In Intel® Core™ Solo and Intel® Core™ Duo Processors.”

Figure 16-14. IA32_DEBUGCTL MSR for Intel Core Solo
and Intel Core Duo Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

Reserved
Vol. 3A 16-43

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.10 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (PENTIUM M PROCESSORS)

Like the Pentium 4 and Intel Xeon processor family, Pentium M processors provide
last branch interrupt and exception recording. The capability operates almost identi-
cally to that found in Pentium 4 and Intel Xeon processors. There are differences in
the shape of the stack and in some MSR names and locations. Note the following:
• MSR_DEBUGCTLB MSR — Enables debug trace interrupt, debug trace store,

trace messages enable, performance monitoring breakpoint flags, single
stepping on branches, and last branch. For Pentium M processors, this MSR is
located at register address 01D9H. See Figure 16-16 and the entries below for a
description of the flags.

— LBR (last branch/interrupt/exception) flag (bit 0) — When set, the
processor records a running trace of the most recent branches, interrupts,
and/or exceptions taken by the processor (prior to a debug exception being
generated) in the last branch record (LBR) stack. For more information, see
the “Last Branch Record (LBR) Stack” bullet below.

— BTF (single-step on branches) flag (bit 1) — When set, the processor
treats the TF flag in the EFLAGS register as a “single-step on branches” flag
rather than a “single-step on instructions” flag. This mechanism allows
single-stepping the processor on taken branches. See Section 16.4.3,
“Single-Stepping on Branches,” for more information about the BTF flag.

— PBi (performance monitoring/breakpoint pins) flags (bits 5-2) —
When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The
processor asserts then deasserts the corresponding BPi# pin when a
breakpoint match occurs. When a PBi flag is clear, the performance
monitoring/breakpoint pins report performance events. Processor execution
is not affected by reporting performance events.

Figure 16-15. LBR Branch Record Layout for the Intel Core Solo
and Intel Core Duo Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
16-44 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
— TR (trace message enable) flag (bit 6) — When set, branch trace
messages are enabled. When the processor detects a taken branch,
interrupt, or exception, it sends the branch record out on the system bus as a
branch trace message (BTM). See Section 16.4.4, “Branch Trace Messages,”
for more information about the TR flag.

— BTS (branch trace store) flag (bit 7) — When set, enables the BTS
facilities to log BTMs to a memory-resident BTS buffer that is part of the DS
save area. See Section 16.4.9, “BTS and DS Save Area.”

— BTINT (branch trace interrupt) flag (bits 8) — When set, the BTS
facilities generate an interrupt when the BTS buffer is full. When clear, BTMs are
logged to the BTS buffer in a circular fashion. See Section 16.4.5, “Branch Trace
Store (BTS),” for a description of this mechanism.

• Debug store (DS) feature flag (bit 21), returned by the CPUID
instruction — Indicates that the processor provides the debug store (DS)
mechanism, which allows BTMs to be stored in a memory-resident BTS buffer.
See Section 16.4.5, “Branch Trace Store (BTS).”

• Last Branch Record (LBR) Stack — The LBR stack consists of 8 MSRs
(MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7); bits 31-0 hold the ‘from’
address, bits 63-32 hold the ‘to’ address. For Pentium M Processors, these pairs
are located at register addresses 040H-047H. See Figure 16-17.

• Last Branch Record Top-of-Stack (TOS) Pointer — The TOS Pointer MSR
contains a 3-bit pointer (bits 2-0) to the MSR in the LBR stack that contains the
most recent branch, interrupt, or exception recorded. For Pentium M Processors,
this MSR is located at register address 01C9H.

Figure 16-16. MSR_DEBUGCTLB MSR for Pentium M Processors

31

TR — Trace messages enable

BTINT — Branch trace interrupt

BTF — Single-step on branches
LBR — Last branch/interrupt/exception

Reserved

8 7 6 5 4 3 2 1 0

BTS — Branch trace store

PB3/2/1/0 — Performance monitoring breakpoint flags
Vol. 3A 16-45

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
For more detail on these capabilities, see Section 16.8.3, “Last Exception Records,”
and Appendix B.10, “MSRs In the Pentium M Processor.”

16.11 LAST BRANCH, INTERRUPT, AND EXCEPTION
RECORDING (P6 FAMILY PROCESSORS)

The P6 family processors provide five MSRs for recording the last branch, interrupt,
or exception taken by the processor: DEBUGCTLMSR, LastBranchToIP, LastBranch-
FromIP, LastExceptionToIP, and LastExceptionFromIP. These registers can be used to
collect last branch records, to set breakpoints on branches, interrupts, and excep-
tions, and to single-step from one branch to the next.

See Appendix B, “Model-Specific Registers (MSRs),” for a detailed description of each
of the last branch recording MSRs.

16.11.1 DEBUGCTLMSR Register
The version of the DEBUGCTLMSR register found in the P6 family processors enables
last branch, interrupt, and exception recording; taken branch breakpoints; the
breakpoint reporting pins; and trace messages. This register can be written to using
the WRMSR instruction, when operating at privilege level 0 or when in real-address
mode. A protected-mode operating system procedure is required to provide user
access to this register. Figure 16-18 shows the flags in the DEBUGCTLMSR register
for the P6 family processors. The functions of these flags are as follows:
• LBR (last branch/interrupt/exception) flag (bit 0) — When set, the

processor records the source and target addresses (in the LastBranchToIP,
LastBranchFromIP, LastExceptionToIP, and LastExceptionFromIP MSRs) for the
last branch and the last exception or interrupt taken by the processor prior to a
debug exception being generated. The processor clears this flag whenever a
debug exception, such as an instruction or data breakpoint or single-step trap
occurs.

Figure 16-17. LBR Branch Record Layout for the Pentium M Processor

063

From Linear AddressTo Linear Address

32 - 31

MSR_LASTBRANCH_0 through MSR_LASTBRANCH_7
16-46 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
• BTF (single-step on branches) flag (bit 1) — When set, the processor treats
the TF flag in the EFLAGS register as a “single-step on branches” flag. See
Section 16.4.3, “Single-Stepping on Branches.”

• PBi (performance monitoring/breakpoint pins) flags (bits 2 through 5)
— When these flags are set, the performance monitoring/breakpoint pins on the
processor (BP0#, BP1#, BP2#, and BP3#) report breakpoint matches in the
corresponding breakpoint-address registers (DR0 through DR3). The processor
asserts then deasserts the corresponding BPi# pin when a breakpoint match
occurs. When a PBi flag is clear, the performance monitoring/breakpoint pins
report performance events. Processor execution is not affected by reporting
performance events.

• TR (trace message enable) flag (bit 6) — When set, trace messages are
enabled as described in Section 16.4.4, “Branch Trace Messages.” Setting this
flag greatly reduces the performance of the processor. When trace messages are
enabled, the values stored in the LastBranchToIP, LastBranchFromIP, LastExcep-
tionToIP, and LastExceptionFromIP MSRs are undefined.

16.11.2 Last Branch and Last Exception MSRs
The LastBranchToIP and LastBranchFromIP MSRs are 32-bit registers for recording
the instruction pointers for the last branch, interrupt, or exception that the processor
took prior to a debug exception being generated. When a branch occurs, the
processor loads the address of the branch instruction into the LastBranchFromIP MSR
and loads the target address for the branch into the LastBranchToIP MSR.

When an interrupt or exception occurs (other than a debug exception), the address
of the instruction that was interrupted by the exception or interrupt is loaded into the
LastBranchFromIP MSR and the address of the exception or interrupt handler that is
called is loaded into the LastBranchToIP MSR.

The LastExceptionToIP and LastExceptionFromIP MSRs (also 32-bit registers) record
the instruction pointers for the last branch that the processor took prior to an excep-

Figure 16-18. DEBUGCTLMSR Register (P6 Family Processors)

31

TR — Trace messages enable
PBi — Performance monitoring/breakpoint pins
BTF — Single-step on branches
LBR — Last branch/interrupt/exception

7 6 5 4 3 2 1 0

P
B
2

P
B
1

P
B
0

B
T
F

T
R

L
B
R

P
B
3

Reserved
Vol. 3A 16-47

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
tion or interrupt being generated. When an exception or interrupt occurs, the
contents of the LastBranchToIP and LastBranchFromIP MSRs are copied into these
registers before the to and from addresses of the exception or interrupt are recorded
in the LastBranchToIP and LastBranchFromIP MSRs.

These registers can be read using the RDMSR instruction.

Note that the values stored in the LastBranchToIP, LastBranchFromIP, LastException-
ToIP, and LastExceptionFromIP MSRs are offsets into the current code segment, as
opposed to linear addresses, which are saved in last branch records for the Pentium
4 and Intel Xeon processors.

16.11.3 Monitoring Branches, Exceptions, and Interrupts
When the LBR flag in the DEBUGCTLMSR register is set, the processor automatically
begins recording branches that it takes, exceptions that are generated (except for
debug exceptions), and interrupts that are serviced. Each time a branch, exception,
or interrupt occurs, the processor records the to and from instruction pointers in the
LastBranchToIP and LastBranchFromIP MSRs. In addition, for interrupts and excep-
tions, the processor copies the contents of the LastBranchToIP and LastBranch-
FromIP MSRs into the LastExceptionToIP and LastExceptionFromIP MSRs prior to
recording the to and from addresses of the interrupt or exception.

When the processor generates a debug exception (#DB), it automatically clears the
LBR flag before executing the exception handler, but does not touch the last branch
and last exception MSRs. The addresses for the last branch, interrupt, or exception
taken are thus retained in the LastBranchToIP and LastBranchFromIP MSRs and the
addresses of the last branch prior to an interrupt or exception are retained in the
LastExceptionToIP, and LastExceptionFromIP MSRs.

The debugger can use the last branch, interrupt, and/or exception addresses in
combination with code-segment selectors retrieved from the stack to reset break-
points in the breakpoint-address registers (DR0 through DR3), allowing a backward
trace from the manifestation of a particular bug toward its source. Because the
instruction pointers recorded in the LastBranchToIP, LastBranchFromIP, LastExcepti-
onToIP, and LastExceptionFromIP MSRs are offsets into a code segment, software
must determine the segment base address of the code segment associated with the
control transfer to calculate the linear address to be placed in the breakpoint-address
registers. The segment base address can be determined by reading the segment
selector for the code segment from the stack and using it to locate the segment
descriptor for the segment in the GDT or LDT. The segment base address can then be
read from the segment descriptor.

Before resuming program execution from a debug-exception handler, the handler
must set the LBR flag again to re-enable last branch and last exception/interrupt
recording.
16-48 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.12 TIME-STAMP COUNTER
The Intel 64 and IA-32 architectures (beginning with the Pentium processor) define a
time-stamp counter mechanism that can be used to monitor and identify the relative
time occurrence of processor events. The counter’s architecture includes the
following components:
• TSC flag — A feature bit that indicates the availability of the time-stamp counter.

The counter is available in an if the function CPUID.1:EDX.TSC[bit 4] = 1.
• IA32_TIME_STAMP_COUNTER MSR (called TSC MSR in P6 family and

Pentium processors) — The MSR used as the counter.
• RDTSC instruction — An instruction used to read the time-stamp counter.
• TSD flag — A control register flag is used to enable or disable the time-stamp

counter (enabled if CR4.TSD[bit 2] = 1).

The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,
Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and later
processors) is a 64-bit counter that is set to 0 following a RESET of the processor.
Following a RESET, the counter increments even when the processor is halted by the
HLT instruction or the external STPCLK# pin. Note that the assertion of the external
DPSLP# pin may cause the time-stamp counter to stop.

Processor families increment the time-stamp counter differently:
• For Pentium M processors (family [06H], models [09H, 0DH]); for Pentium 4

processors, Intel Xeon processors (family [0FH], models [00H, 01H, or 02H]);
and for P6 family processors: the time-stamp counter increments with every
internal processor clock cycle.
The internal processor clock cycle is determined by the current core-clock to bus-
clock ratio. Intel® SpeedStep® technology transitions may also impact the
processor clock.

• For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and
higher]); for Intel Core Solo and Intel Core Duo processors (family [06H], model
[0EH]); for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors
(family [06H], model [0FH]); for Intel Core 2 and Intel Xeon processors (family
[06H], DisplayModel [17H]); for Intel Atom processors (family [06H],
DisplayModel [1CH]): the time-stamp counter increments at a constant rate.
That rate may be set by the maximum core-clock to bus-clock ratio of the
processor or may be set by the maximum resolved frequency at which the
processor is booted. The maximum resolved frequency may differ from the
maximum qualified frequency of the processor, see Section 30.11.5 for more
detail.
The specific processor configuration determines the behavior. Constant TSC
behavior ensures that the duration of each clock tick is uniform and supports the
use of the TSC as a wall clock timer even if the processor core changes frequency.
This is the architectural behavior moving forward.
Vol. 3A 16-49

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
NOTE
To determine average processor clock frequency, Intel recommends
the use of EMON logic to count processor core clocks over the period
of time for which the average is required. See Section 30.11,
“Counting Clocks,” and Appendix A, “Performance-
Monitoring Events,” for more information.

The RDTSC instruction reads the time-stamp counter and is guaranteed to return a
monotonically increasing unique value whenever executed, except for a 64-bit
counter wraparound. Intel guarantees that the time-stamp counter will not wrap-
around within 10 years after being reset. The period for counter wrap is longer for
Pentium 4, Intel Xeon, P6 family, and Pentium processors.

Normally, the RDTSC instruction can be executed by programs and procedures
running at any privilege level and in virtual-8086 mode. The TSD flag allows use of
this instruction to be restricted to programs and procedures running at privilege level
0. A secure operating system would set the TSD flag during system initialization to
disable user access to the time-stamp counter. An operating system that disables
user access to the time-stamp counter should emulate the instruction through a
user-accessible programming interface.

The RDTSC instruction is not serializing or ordered with other instructions. It does not
necessarily wait until all previous instructions have been executed before reading the
counter. Similarly, subsequent instructions may begin execution before the RDTSC
instruction operation is performed.

The RDMSR and WRMSR instructions read and write the time-stamp counter, treating
the time-stamp counter as an ordinary MSR (address 10H). In the Pentium 4, Intel
Xeon, and P6 family processors, all 64-bits of the time-stamp counter are read using
RDMSR (just as with RDTSC). When WRMSR is used to write the time-stamp counter
on processors before family [0FH], models [03H, 04H]: only the low-order 32-bits of
the time-stamp counter can be written (the high-order 32 bits are cleared to 0). For
family [0FH], models [03H, 04H, 06H]; for family [06H]], model [0EH, 0FH]; for
family [06H]], DisplayModel [17H, 1AH, 1CH, 1DH]: all 64 bits are writable.

16.12.1 Invariant TSC
The time stamp counter in newer processors may support an enhancement, referred
to as invariant TSC. Processor’s support for invariant TSC is indicated by
CPUID.80000007H:EDX[8].

The invariant TSC will run at a constant rate in all ACPI P-, C-. and T-states. This is
the architectural behavior moving forward. On processors with invariant TSC
support, the OS may use the TSC for wall clock timer services (instead of ACPI or
HPET timers). TSC reads are much more efficient and do not incur the overhead
associated with a ring transition or access to a platform resource.
16-50 Vol. 3A

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16.12.2 IA32_TSC_AUX Register and RDTSCP Support
Processors based on Intel microarchitecture code name Nehalem provide an auxiliary
TSC register, IA32_TSC_AUX that is designed to be used in conjunction with
IA32_TSC. IA32_TSC_AUX provides a 32-bit field that is initialized by privileged soft-
ware with a signature value (for example, a logical processor ID).

The primary usage of IA32_TSC_AUX in conjunction with IA32_TSC is to allow soft-
ware to read the 64-bit time stamp in IA32_TSC and signature value in
IA32_TSC_AUX with the instruction RDTSCP in an atomic operation. RDTSCP returns
the 64-bit time stamp in EDX:EAX and the 32-bit TSC_AUX signature value in ECX.
The atomicity of RDTSCP ensures that no context switch can occur between the reads
of the TSC and TSC_AUX values.

Support for RDTSCP is indicated by CPUID.80000001H:EDX[27]. As with RDTSC
instruction, non-ring 0 access is controlled by CR4.TSD (Time Stamp Disable flag).

User mode software can use RDTSCP to detect if CPU migration has occurred
between successive reads of the TSC. It can also be used to adjust for per-CPU differ-
ences in TSC values in a NUMA system.
Vol. 3A 16-51

DEBUGGING, PROFILING BRANCHES AND TIME-STAMP COUNTER
16-52 Vol. 3A

CHAPTER 17
8086 EMULATION

IA-32 processors (beginning with the Intel386 processor) provide two ways to
execute new or legacy programs that are assembled and/or compiled to run on an
Intel 8086 processor:
• Real-address mode.
• Virtual-8086 mode.

Figure 2-3 shows the relationship of these operating modes to protected mode and
system management mode (SMM).

When the processor is powered up or reset, it is placed in the real-address mode.
This operating mode almost exactly duplicates the execution environment of the
Intel 8086 processor, with some extensions. Virtually any program assembled and/or
compiled to run on an Intel 8086 processor will run on an IA-32 processor in this
mode.

When running in protected mode, the processor can be switched to virtual-8086
mode to run 8086 programs. This mode also duplicates the execution environment of
the Intel 8086 processor, with extensions. In virtual-8086 mode, an 8086 program
runs as a separate protected-mode task. Legacy 8086 programs are thus able to run
under an operating system (such as Microsoft Windows*) that takes advantage of
protected mode and to use protected-mode facilities, such as the protected-mode
interrupt- and exception-handling facilities. Protected-mode multitasking permits
multiple virtual-8086 mode tasks (with each task running a separate 8086 program)
to be run on the processor along with other non-virtual-8086 mode tasks.

This section describes both the basic real-address mode execution environment and
the virtual-8086-mode execution environment, available on the IA-32 processors
beginning with the Intel386 processor.

17.1 REAL-ADDRESS MODE
The IA-32 architecture’s real-address mode runs programs written for the Intel 8086,
Intel 8088, Intel 80186, and Intel 80188 processors, or for the real-address mode of
the Intel 286, Intel386, Intel486, Pentium, P6 family, Pentium 4, and Intel Xeon
processors.

The execution environment of the processor in real-address mode is designed to
duplicate the execution environment of the Intel 8086 processor. To an 8086
program, a processor operating in real-address mode behaves like a high-speed
8086 processor. The principal features of this architecture are defined in Chapter 3,
“Basic Execution Environment”, of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.
Vol. 3A 17-1

8086 EMULATION
The following is a summary of the core features of the real-address mode execution
environment as would be seen by a program written for the 8086:
• The processor supports a nominal 1-MByte physical address space (see Section

17.1.1, “Address Translation in Real-Address Mode”, for specific details). This
address space is divided into segments, each of which can be up to 64 KBytes in
length. The base of a segment is specified with a 16-bit segment selector, which
is zero extended to form a 20-bit offset from address 0 in the address space. An
operand within a segment is addressed with a 16-bit offset from the base of the
segment. A physical address is thus formed by adding the offset to the 20-bit
segment base (see Section 17.1.1, “Address Translation in Real-Address Mode”).

• All operands in “native 8086 code” are 8-bit or 16-bit values. (Operand size
override prefixes can be used to access 32-bit operands.)

• Eight 16-bit general-purpose registers are provided: AX, BX, CX, DX, SP, BP, SI,
and DI. The extended 32 bit registers (EAX, EBX, ECX, EDX, ESP, EBP, ESI, and
EDI) are accessible to programs that explicitly perform a size override operation.

• Four segment registers are provided: CS, DS, SS, and ES. (The FS and GS
registers are accessible to programs that explicitly access them.) The CS register
contains the segment selector for the code segment; the DS and ES registers
contain segment selectors for data segments; and the SS register contains the
segment selector for the stack segment.

• The 8086 16-bit instruction pointer (IP) is mapped to the lower 16-bits of the EIP
register. Note this register is a 32-bit register and unintentional address wrapping
may occur.

• The 16-bit FLAGS register contains status and control flags. (This register is
mapped to the 16 least significant bits of the 32-bit EFLAGS register.)

• All of the Intel 8086 instructions are supported (see Section 17.1.3, “Instructions
Supported in Real-Address Mode”).

• A single, 16-bit-wide stack is provided for handling procedure calls and
invocations of interrupt and exception handlers. This stack is contained in the
stack segment identified with the SS register. The SP (stack pointer) register
contains an offset into the stack segment. The stack grows down (toward lower
segment offsets) from the stack pointer. The BP (base pointer) register also
contains an offset into the stack segment that can be used as a pointer to a
parameter list. When a CALL instruction is executed, the processor pushes the
current instruction pointer (the 16 least-significant bits of the EIP register and,
on far calls, the current value of the CS register) onto the stack. On a return,
initiated with a RET instruction, the processor pops the saved instruction pointer
from the stack into the EIP register (and CS register on far returns). When an
implicit call to an interrupt or exception handler is executed, the processor
pushes the EIP, CS, and EFLAGS (low-order 16-bits only) registers onto the
stack. On a return from an interrupt or exception handler, initiated with an IRET
instruction, the processor pops the saved instruction pointer and EFLAGS image
from the stack into the EIP, CS, and EFLAGS registers.
17-2 Vol. 3A

8086 EMULATION
• A single interrupt table, called the “interrupt vector table” or “interrupt table,” is
provided for handling interrupts and exceptions (see Figure 17-2). The interrupt
table (which has 4-byte entries) takes the place of the interrupt descriptor table
(IDT, with 8-byte entries) used when handling protected-mode interrupts and
exceptions. Interrupt and exception vector numbers provide an index to entries
in the interrupt table. Each entry provides a pointer (called a “vector”) to an
interrupt- or exception-handling procedure. See Section 17.1.4, “Interrupt and
Exception Handling”, for more details. It is possible for software to relocate the
IDT by means of the LIDT instruction on IA-32 processors beginning with the
Intel386 processor.

• The x87 FPU is active and available to execute x87 FPU instructions in real-
address mode. Programs written to run on the Intel 8087 and Intel 287 math
coprocessors can be run in real-address mode without modification.

The following extensions to the Intel 8086 execution environment are available in the
IA-32 architecture’s real-address mode. If backwards compatibility to Intel 286 and
Intel 8086 processors is required, these features should not be used in new programs
written to run in real-address mode.
• Two additional segment registers (FS and GS) are available.
• Many of the integer and system instructions that have been added to later IA-32

processors can be executed in real-address mode (see Section 17.1.3, “Instruc-
tions Supported in Real-Address Mode”).

• The 32-bit operand prefix can be used in real-address mode programs to execute
the 32-bit forms of instructions. This prefix also allows real-address mode
programs to use the processor’s 32-bit general-purpose registers.

• The 32-bit address prefix can be used in real-address mode programs, allowing
32-bit offsets.

The following sections describe address formation, registers, available instructions,
and interrupt and exception handling in real-address mode. For information on I/O in
real-address mode, see Chapter 13, “Input/Output”, of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.

17.1.1 Address Translation in Real-Address Mode
In real-address mode, the processor does not interpret segment selectors as indexes
into a descriptor table; instead, it uses them directly to form linear addresses as the
8086 processor does. It shifts the segment selector left by 4 bits to form a 20-bit
base address (see Figure 17-1). The offset into a segment is added to the base
address to create a linear address that maps directly to the physical address space.

When using 8086-style address translation, it is possible to specify addresses larger
than 1 MByte. For example, with a segment selector value of FFFFH and an offset of
FFFFH, the linear (and physical) address would be 10FFEFH (1 megabyte plus 64
KBytes). The 8086 processor, which can form addresses only up to 20 bits long, trun-
cates the high-order bit, thereby “wrapping” this address to FFEFH. When operating
Vol. 3A 17-3

8086 EMULATION
in real-address mode, however, the processor does not truncate such an address and
uses it as a physical address. (Note, however, that for IA-32 processors beginning
with the Intel486 processor, the A20M# signal can be used in real-address mode to
mask address line A20, thereby mimicking the 20-bit wrap-around behavior of the
8086 processor.) Care should be take to ensure that A20M# based address wrapping
is handled correctly in multiprocessor based system.

The IA-32 processors beginning with the Intel386 processor can generate 32-bit
offsets using an address override prefix; however, in real-address mode, the value of
a 32-bit offset may not exceed FFFFH without causing an exception.

For full compatibility with Intel 286 real-address mode, pseudo-protection faults
(interrupt 12 or 13) occur if a 32-bit offset is generated outside the range 0 through
FFFFH.

17.1.2 Registers Supported in Real-Address Mode
The register set available in real-address mode includes all the registers defined for
the 8086 processor plus the new registers introduced in later IA-32 processors, such
as the FS and GS segment registers, the debug registers, the control registers, and
the floating-point unit registers. The 32-bit operand prefix allows a real-address
mode program to use the 32-bit general-purpose registers (EAX, EBX, ECX, EDX,
ESP, EBP, ESI, and EDI).

17.1.3 Instructions Supported in Real-Address Mode
The following instructions make up the core instruction set for the 8086 processor. If
backwards compatibility to the Intel 286 and Intel 8086 processors is required, only
these instructions should be used in a new program written to run in real-address
mode.

Figure 17-1. Real-Address Mode Address Translation

19 0

16-bit Segment Selector

3

0 0 0 0Base

19 0

16-bit Effective Address

15

0 0 0 0Offset

0

20-bit Linear AddressLinear
Address

+

=

4

16

19
17-4 Vol. 3A

8086 EMULATION
• Move (MOV) instructions that move operands between general-purpose
registers, segment registers, and between memory and general-purpose
registers.

• The exchange (XCHG) instruction.
• Load segment register instructions LDS and LES.
• Arithmetic instructions ADD, ADC, SUB, SBB, MUL, IMUL, DIV, IDIV, INC, DEC,

CMP, and NEG.
• Logical instructions AND, OR, XOR, and NOT.
• Decimal instructions DAA, DAS, AAA, AAS, AAM, and AAD.
• Stack instructions PUSH and POP (to general-purpose registers and segment

registers).
• Type conversion instructions CWD, CDQ, CBW, and CWDE.
• Shift and rotate instructions SAL, SHL, SHR, SAR, ROL, ROR, RCL, and RCR.
• TEST instruction.
• Control instructions JMP, Jcc, CALL, RET, LOOP, LOOPE, and LOOPNE.
• Interrupt instructions INT n, INTO, and IRET.
• EFLAGS control instructions STC, CLC, CMC, CLD, STD, LAHF, SAHF, PUSHF, and

POPF.
• I/O instructions IN, INS, OUT, and OUTS.
• Load effective address (LEA) instruction, and translate (XLATB) instruction.
• LOCK prefix.
• Repeat prefixes REP, REPE, REPZ, REPNE, and REPNZ.
• Processor halt (HLT) instruction.
• No operation (NOP) instruction.

The following instructions, added to later IA-32 processors (some in the Intel 286
processor and the remainder in the Intel386 processor), can be executed in real-
address mode, if backwards compatibility to the Intel 8086 processor is not required.
• Move (MOV) instructions that operate on the control and debug registers.
• Load segment register instructions LSS, LFS, and LGS.
• Generalized multiply instructions and multiply immediate data.
• Shift and rotate by immediate counts.
• Stack instructions PUSHA, PUSHAD, POPA and POPAD, and PUSH immediate

data.
• Move with sign extension instructions MOVSX and MOVZX.
• Long-displacement Jcc instructions.
• Exchange instructions CMPXCHG, CMPXCHG8B, and XADD.
• String instructions MOVS, CMPS, SCAS, LODS, and STOS.
Vol. 3A 17-5

8086 EMULATION
• Bit test and bit scan instructions BT, BTS, BTR, BTC, BSF, and BSR; the byte-set-
on condition instruction SETcc; and the byte swap (BSWAP) instruction.

• Double shift instructions SHLD and SHRD.
• EFLAGS control instructions PUSHF and POPF.
• ENTER and LEAVE control instructions.
• BOUND instruction.
• CPU identification (CPUID) instruction.
• System instructions CLTS, INVD, WINVD, INVLPG, LGDT, SGDT, LIDT, SIDT,

LMSW, SMSW, RDMSR, WRMSR, RDTSC, and RDPMC.

Execution of any of the other IA-32 architecture instructions (not given in the
previous two lists) in real-address mode result in an invalid-opcode exception (#UD)
being generated.

17.1.4 Interrupt and Exception Handling
When operating in real-address mode, software must provide interrupt and excep-
tion-handling facilities that are separate from those provided in protected mode.
Even during the early stages of processor initialization when the processor is still in
real-address mode, elementary real-address mode interrupt and exception-handling
facilities must be provided to insure reliable operation of the processor, or the initial-
ization code must insure that no interrupts or exceptions will occur.

The IA-32 processors handle interrupts and exceptions in real-address mode similar
to the way they handle them in protected mode. When a processor receives an inter-
rupt or generates an exception, it uses the vector number of the interrupt or excep-
tion as an index into the interrupt table. (In protected mode, the interrupt table is
called the interrupt descriptor table (IDT), but in real-address mode, the table is
usually called the interrupt vector table, or simply the interrupt table.) The entry
in the interrupt vector table provides a pointer to an interrupt- or exception-handler
procedure. (The pointer consists of a segment selector for a code segment and a 16-
bit offset into the segment.) The processor performs the following actions to make an
implicit call to the selected handler:

1. Pushes the current values of the CS and EIP registers onto the stack. (Only the 16
least-significant bits of the EIP register are pushed.)

2. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF, RC, and AC flags, in the EFLAGS register.

5. Transfers program control to the location specified in the interrupt vector table.

An IRET instruction at the end of the handler procedure reverses these steps to
return program control to the interrupted program. Exceptions do not return error
codes in real-address mode.
17-6 Vol. 3A

8086 EMULATION
The interrupt vector table is an array of 4-byte entries (see Figure 17-2). Each entry
consists of a far pointer to a handler procedure, made up of a segment selector and
an offset. The processor scales the interrupt or exception vector by 4 to obtain an
offset into the interrupt table. Following reset, the base of the interrupt vector table
is located at physical address 0 and its limit is set to 3FFH. In the Intel 8086
processor, the base address and limit of the interrupt vector table cannot be
changed. In the later IA-32 processors, the base address and limit of the interrupt
vector table are contained in the IDTR register and can be changed using the LIDT
instruction.

(For backward compatibility to Intel 8086 processors, the default base address and
limit of the interrupt vector table should not be changed.)

Table 17-1 shows the interrupt and exception vectors that can be generated in real-
address mode and virtual-8086 mode, and in the Intel 8086 processor. See Chapter
6, “Interrupt and Exception Handling”, for a description of the exception conditions.

Figure 17-2. Interrupt Vector Table in Real-Address Mode

0

2

4

8

12

015

Segment Selector

Offset

* Interrupt vector number 0 selects entry 0

Interrupt Vector 0*

Entry 1

Entry 2

Entry 3

Up to Entry 255

IDTR(called “interrupt vector 0”) in the interrupt
vector table. Interrupt vector 0 in turn
points to the start of the interrupt handler
for interrupt 0.
Vol. 3A 17-7

8086 EMULATION
17.2 VIRTUAL-8086 MODE
Virtual-8086 mode is actually a special type of a task that runs in protected mode.
When the operating-system or executive switches to a virtual-8086-mode task, the
processor emulates an Intel 8086 processor. The execution environment of the
processor while in the 8086-emulation state is the same as is described in Section
17.1, “Real-Address Mode” for real-address mode, including the extensions. The
major difference between the two modes is that in virtual-8086 mode the 8086
emulator uses some protected-mode services (such as the protected-mode interrupt
and exception-handling and paging facilities).

As in real-address mode, any new or legacy program that has been assembled
and/or compiled to run on an Intel 8086 processor will run in a virtual-8086-mode
task. And several 8086 programs can be run as virtual-8086-mode tasks concur-
rently with normal protected-mode tasks, using the processor’s multitasking
facilities.

Table 17-1. Real-Address Mode Exceptions and Interrupts

Vector
No.

Description Real-Address
Mode

Virtual-8086
Mode

Intel 8086
Processor

 0 Divide Error (#DE) Yes Yes Yes

 1 Debug Exception (#DB) Yes Yes No

 2 NMI Interrupt Yes Yes Yes

 3 Breakpoint (#BP) Yes Yes Yes

 4 Overflow (#OF) Yes Yes Yes

 5 BOUND Range Exceeded (#BR) Yes Yes Reserved

 6 Invalid Opcode (#UD) Yes Yes Reserved

 7 Device Not Available (#NM) Yes Yes Reserved

 8 Double Fault (#DF) Yes Yes Reserved

 9 (Intel reserved. Do not use.) Reserved Reserved Reserved

10 Invalid TSS (#TS) Reserved Yes Reserved

11 Segment Not Present (#NP) Reserved Yes Reserved

12 Stack Fault (#SS) Yes Yes Reserved

13 General Protection (#GP)* Yes Yes Reserved

14 Page Fault (#PF) Reserved Yes Reserved

15 (Intel reserved. Do not use.) Reserved Reserved Reserved

16 Floating-Point Error (#MF) Yes Yes Reserved

17 Alignment Check (#AC) Reserved Yes Reserved

18 Machine Check (#MC) Yes Yes Reserved
17-8 Vol. 3A

8086 EMULATION
17.2.1 Enabling Virtual-8086 Mode
The processor runs in virtual-8086 mode when the VM (virtual machine) flag in the
EFLAGS register is set. This flag can only be set when the processor switches to a
new protected-mode task or resumes virtual-8086 mode via an IRET instruction.

System software cannot change the state of the VM flag directly in the EFLAGS
register (for example, by using the POPFD instruction). Instead it changes the flag in
the image of the EFLAGS register stored in the TSS or on the stack following a call to
an interrupt- or exception-handler procedure. For example, software sets the VM flag
in the EFLAGS image in the TSS when first creating a virtual-8086 task.

The processor tests the VM flag under three general conditions:
• When loading segment registers, to determine whether to use 8086-style

address translation.
• When decoding instructions, to determine which instructions are not supported in

virtual-8086 mode and which instructions are sensitive to IOPL.
• When checking privileged instructions, on page accesses, or when performing

other permission checks. (Virtual-8086 mode always executes at CPL 3.)

17.2.2 Structure of a Virtual-8086 Task
A virtual-8086-mode task consists of the following items:
• A 32-bit TSS for the task.
• The 8086 program.
• A virtual-8086 monitor.
• 8086 operating-system services.

The TSS of the new task must be a 32-bit TSS, not a 16-bit TSS, because the 16-bit
TSS does not load the most-significant word of the EFLAGS register, which contains
the VM flag. All TSS’s, stacks, data, and code used to handle exceptions when in
virtual-8086 mode must also be 32-bit segments.

19-31 (Intel reserved. Do not use.) Reserved Reserved Reserved

32-
255

User Defined Interrupts Yes Yes Yes

NOTE:
* In the real-address mode, vector 13 is the segment overrun exception. In protected and vir-

tual-8086 modes, this exception covers all general-protection error conditions, including traps
to the virtual-8086 monitor from virtual-8086 mode.

Table 17-1. Real-Address Mode Exceptions and Interrupts (Contd.)

Vector
No.

Description Real-Address
Mode

Virtual-8086
Mode

Intel 8086
Processor
Vol. 3A 17-9

8086 EMULATION
The processor enters virtual-8086 mode to run the 8086 program and returns to
protected mode to run the virtual-8086 monitor.

The virtual-8086 monitor is a 32-bit protected-mode code module that runs at a CPL
of 0. The monitor consists of initialization, interrupt- and exception-handling, and I/O
emulation procedures that emulate a personal computer or other 8086-based plat-
form. Typically, the monitor is either part of or closely associated with the protected-
mode general-protection (#GP) exception handler, which also runs at a CPL of 0. As
with any protected-mode code module, code-segment descriptors for the virtual-
8086 monitor must exist in the GDT or in the task’s LDT. The virtual-8086 monitor
also may need data-segment descriptors so it can examine the IDT or other parts of
the 8086 program in the first 1 MByte of the address space. The linear addresses
above 10FFEFH are available for the monitor, the operating system, and other system
software.

The 8086 operating-system services consists of a kernel and/or operating-system
procedures that the 8086 program makes calls to. These services can be imple-
mented in either of the following two ways:
• They can be included in the 8086 program. This approach is desirable for either

of the following reasons:

— The 8086 program code modifies the 8086 operating-system services.

— There is not sufficient development time to merge the 8086 operating-
system services into main operating system or executive.

• They can be implemented or emulated in the virtual-8086 monitor. This approach
is desirable for any of the following reasons:

— The 8086 operating-system procedures can be more easily coordinated
among several virtual-8086 tasks.

— Memory can be saved by not duplicating 8086 operating-system procedure
code for several virtual-8086 tasks.

— The 8086 operating-system procedures can be easily emulated by calls to the
main operating system or executive.

The approach chosen for implementing the 8086 operating-system services may
result in different virtual-8086-mode tasks using different 8086 operating-system
services.

17.2.3 Paging of Virtual-8086 Tasks
Even though a program running in virtual-8086 mode can use only 20-bit linear
addresses, the processor converts these addresses into 32-bit linear addresses
before mapping them to the physical address space. If paging is being used, the
8086 address space for a program running in virtual-8086 mode can be paged and
located in a set of pages in physical address space. If paging is used, it is transparent
to the program running in virtual-8086 mode just as it is for any task running on the
processor.
17-10 Vol. 3A

8086 EMULATION
Paging is not necessary for a single virtual-8086-mode task, but paging is useful or
necessary in the following situations:
• When running multiple virtual-8086-mode tasks. Here, paging allows the lower 1

MByte of the linear address space for each virtual-8086-mode task to be mapped
to a different physical address location.

• When emulating the 8086 address-wraparound that occurs at 1 MByte. When
using 8086-style address translation, it is possible to specify addresses larger
than 1 MByte. These addresses automatically wraparound in the Intel 8086
processor (see Section 17.1.1, “Address Translation in Real-Address Mode”). If
any 8086 programs depend on address wraparound, the same effect can be
achieved in a virtual-8086-mode task by mapping the linear addresses between
100000H and 110000H and linear addresses between 0 and 10000H to the same
physical addresses.

• When sharing the 8086 operating-system services or ROM code that is common
to several 8086 programs running as different 8086-mode tasks.

• When redirecting or trapping references to memory-mapped I/O devices.

17.2.4 Protection within a Virtual-8086 Task
Protection is not enforced between the segments of an 8086 program. Either of the
following techniques can be used to protect the system software running in a virtual-
8086-mode task from the 8086 program:
• Reserve the first 1 MByte plus 64 KBytes of each task’s linear address space for

the 8086 program. An 8086 processor task cannot generate addresses outside
this range.

• Use the U/S flag of page-table entries to protect the virtual-8086 monitor and
other system software in the virtual-8086 mode task space. When the processor
is in virtual-8086 mode, the CPL is 3. Therefore, an 8086 processor program has
only user privileges. If the pages of the virtual-8086 monitor have supervisor
privilege, they cannot be accessed by the 8086 program.

17.2.5 Entering Virtual-8086 Mode
Figure 17-3 summarizes the methods of entering and leaving virtual-8086 mode.
The processor switches to virtual-8086 mode in either of the following situations:
• Task switch when the VM flag is set to 1 in the EFLAGS register image stored in

the TSS for the task. Here the task switch can be initiated in either of two ways:

— A CALL or JMP instruction.

— An IRET instruction, where the NT flag in the EFLAGS image is set to 1.
• Return from a protected-mode interrupt or exception handler when the VM flag is

set to 1 in the EFLAGS register image on the stack.
Vol. 3A 17-11

8086 EMULATION
When a task switch is used to enter virtual-8086 mode, the TSS for the virtual-8086-
mode task must be a 32-bit TSS. (If the new TSS is a 16-bit TSS, the upper word of
the EFLAGS register is not in the TSS, causing the processor to clear the VM flag
when it loads the EFLAGS register.) The processor updates the VM flag prior to
loading the segment registers from their images in the new TSS. The new setting of
the VM flag determines whether the processor interprets the contents of the segment
registers as 8086-style segment selectors or protected-mode segment selectors.
When the VM flag is set, the segment registers are loaded from the TSS, using 8086-
style address translation to form base addresses.

See Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on entering virtual-8086 mode on a return from an interrupt or exception
handler.
17-12 Vol. 3A

8086 EMULATION
Figure 17-3. Entering and Leaving Virtual-8086 Mode

Monitor
Virtual-8086

Real Mode
Code

Protected-
Mode Tasks

Virtual-8086
Mode Tasks

(8086
Programs)

Protected-
Mode Interrupt
and Exception

Handlers

Task Switch1

VM = 1

Protected
Mode

Virtual-8086
Mode

Real-Address
Mode

RESET

PE=1
PE=0 or
RESET

#GP Exception3

CALL

RET

Task Switch
VM=0

Redirect Interrupt to 8086 Program
Interrupt or Exception Handler6

IRET4

Interrupt or
Exception2

VM = 0

NOTES:

- CALL or JMP where the VM flag in the EFLAGS image is 1.
- IRET where VM is 1 and NT is 1.

4. Normal return from protected-mode interrupt or exception handler.

3. General-protection exception caused by software interrupt (INT n), IRET,
POPF, PUSHF, IN, or OUT when IOPL is less than 3.

2. Hardware interrupt or exception; software interrupt (INT n) when IOPL is 3.

5. A return from the 8086 monitor to redirect an interrupt or exception back
 to an interrupt or exception handler in the 8086 program running in virtual-

6. Internal redirection of a software interrupt (INT n) when VME is 1,
IOPL is <3, and the redirection bit is 1.

IRET5

8086 mode.

1. Task switch carried out in either of two ways:
Vol. 3A 17-13

8086 EMULATION
17.2.6 Leaving Virtual-8086 Mode
The processor can leave the virtual-8086 mode only through an interrupt or excep-
tion. The following are situations where an interrupt or exception will lead to the
processor leaving virtual-8086 mode (see Figure 17-3):
• The processor services a hardware interrupt generated to signal the suspension

of execution of the virtual-8086 application. This hardware interrupt may be
generated by a timer or other external mechanism. Upon receiving the hardware
interrupt, the processor enters protected mode and switches to a protected-
mode (or another virtual-8086 mode) task either through a task gate in the
protected-mode IDT or through a trap or interrupt gate that points to a handler
that initiates a task switch. A task switch from a virtual-8086 task to another task
loads the EFLAGS register from the TSS of the new task. The value of the VM flag
in the new EFLAGS determines if the new task executes in virtual-8086 mode or
not.

• The processor services an exception caused by code executing the virtual-8086
task or services a hardware interrupt that “belongs to” the virtual-8086 task.
Here, the processor enters protected mode and services the exception or
hardware interrupt through the protected-mode IDT (normally through an
interrupt or trap gate) and the protected-mode exception- and interrupt-
handlers. The processor may handle the exception or interrupt within the context
of the virtual 8086 task and return to virtual-8086 mode on a return from the
handler procedure. The processor may also execute a task switch and handle the
exception or interrupt in the context of another task.

• The processor services a software interrupt generated by code executing in the
virtual-8086 task (such as a software interrupt to call a MS-DOS* operating
system routine). The processor provides several methods of handling these
software interrupts, which are discussed in detail in Section 17.3.3, “Class
3—Software Interrupt Handling in Virtual-8086 Mode”. Most of them involve the
processor entering protected mode, often by means of a general-protection
(#GP) exception. In protected mode, the processor can send the interrupt to the
virtual-8086 monitor for handling and/or redirect the interrupt back to the
application program running in virtual-8086 mode task for handling.
IA-32 processors that incorporate the virtual mode extension (enabled with the
VME flag in control register CR4) are capable of redirecting software-generated
interrupts back to the program’s interrupt handlers without leaving virtual-8086
mode. See Section 17.3.3.4, “Method 5: Software Interrupt Handling”, for more
information on this mechanism.

• A hardware reset initiated by asserting the RESET or INIT pin is a special kind of
interrupt. When a RESET or INIT is signaled while the processor is in virtual-8086
mode, the processor leaves virtual-8086 mode and enters real-address mode.

• Execution of the HLT instruction in virtual-8086 mode will cause a general-
protection (GP#) fault, which the protected-mode handler generally sends to the
virtual-8086 monitor. The virtual-8086 monitor then determines the correct
17-14 Vol. 3A

8086 EMULATION
execution sequence after verifying that it was entered as a result of a HLT
execution.

See Section 17.3, “Interrupt and Exception Handling in Virtual-8086 Mode”, for infor-
mation on leaving virtual-8086 mode to handle an interrupt or exception generated
in virtual-8086 mode.

17.2.7 Sensitive Instructions
When an IA-32 processor is running in virtual-8086 mode, the CLI, STI, PUSHF, POPF,
INT n, and IRET instructions are sensitive to IOPL. The IN, INS, OUT, and OUTS
instructions, which are sensitive to IOPL in protected mode, are not sensitive in
virtual-8086 mode.

The CPL is always 3 while running in virtual-8086 mode; if the IOPL is less than 3, an
attempt to use the IOPL-sensitive instructions listed above triggers a general-protec-
tion exception (#GP). These instructions are sensitive to IOPL to give the virtual-
8086 monitor a chance to emulate the facilities they affect.

17.2.8 Virtual-8086 Mode I/O
Many 8086 programs written for non-multitasking systems directly access I/O ports.
This practice may cause problems in a multitasking environment. If more than one
program accesses the same port, they may interfere with each other. Most multi-
tasking systems require application programs to access I/O ports through the oper-
ating system. This results in simplified, centralized control.

The processor provides I/O protection for creating I/O that is compatible with the
environment and transparent to 8086 programs. Designers may take any of several
possible approaches to protecting I/O ports:
• Protect the I/O address space and generate exceptions for all attempts to

perform I/O directly.
• Let the 8086 program perform I/O directly.
• Generate exceptions on attempts to access specific I/O ports.
• Generate exceptions on attempts to access specific memory-mapped I/O ports.

The method of controlling access to I/O ports depends upon whether they are
I/O-port mapped or memory mapped.

17.2.8.1 I/O-Port-Mapped I/O
The I/O permission bit map in the TSS can be used to generate exceptions on
attempts to access specific I/O port addresses. The I/O permission bit map of each
virtual-8086-mode task determines which I/O addresses generate exceptions for
that task. Because each task may have a different I/O permission bit map, the
addresses that generate exceptions for one task may be different from the addresses
Vol. 3A 17-15

8086 EMULATION
for another task. This differs from protected mode in which, if the CPL is less than or
equal to the IOPL, I/O access is allowed without checking the I/O permission bit map.
See Chapter 13, “Input/Output”, in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the I/O permission bit
map.

17.2.8.2 Memory-Mapped I/O
In systems which use memory-mapped I/O, the paging facilities of the processor can
be used to generate exceptions for attempts to access I/O ports. The virtual-8086
monitor may use paging to control memory-mapped I/O in these ways:
• Map part of the linear address space of each task that needs to perform I/O to the

physical address space where I/O ports are placed. By putting the I/O ports at
different addresses (in different pages), the paging mechanism can enforce
isolation between tasks.

• Map part of the linear address space to pages that are not-present. This
generates an exception whenever a task attempts to perform I/O to those pages.
System software then can interpret the I/O operation being attempted.

Software emulation of the I/O space may require too much operating system inter-
vention under some conditions. In these cases, it may be possible to generate an
exception for only the first attempt to access I/O. The system software then may
determine whether a program can be given exclusive control of I/O temporarily, the
protection of the I/O space may be lifted, and the program allowed to run at full
speed.

17.2.8.3 Special I/O Buffers
Buffers of intelligent controllers (for example, a bit-mapped frame buffer) also can be
emulated using page mapping. The linear space for the buffer can be mapped to a
different physical space for each virtual-8086-mode task. The virtual-8086 monitor
then can control which virtual buffer to copy onto the real buffer in the physical
address space.

17.3 INTERRUPT AND EXCEPTION HANDLING
IN VIRTUAL-8086 MODE

When the processor receives an interrupt or detects an exception condition while in
virtual-8086 mode, it invokes an interrupt or exception handler, just as it does in
protected or real-address mode. The interrupt or exception handler that is invoked
and the mechanism used to invoke it depends on the class of interrupt or exception
that has been detected or generated and the state of various system flags and fields.
17-16 Vol. 3A

8086 EMULATION
In virtual-8086 mode, the interrupts and exceptions are divided into three classes for
the purposes of handling:
• Class 1 — All processor-generated exceptions and all hardware interrupts,

including the NMI interrupt and the hardware interrupts sent to the processor’s
external interrupt delivery pins. All class 1 exceptions and interrupts are handled
by the protected-mode exception and interrupt handlers.

• Class 2 — Special case for maskable hardware interrupts (Section 6.3.2,
“Maskable Hardware Interrupts”) when the virtual mode extensions are enabled.

• Class 3 — All software-generated interrupts, that is interrupts generated with
the INT n instruction1.

The method the processor uses to handle class 2 and 3 interrupts depends on the
setting of the following flags and fields:
• IOPL field (bits 12 and 13 in the EFLAGS register) — Controls how class 3

software interrupts are handled when the processor is in virtual-8086 mode (see
Section 2.3, “System Flags and Fields in the EFLAGS Register”). This field also
controls the enabling of the VIF and VIP flags in the EFLAGS register when the
VME flag is set. The VIF and VIP flags are provided to assist in the handling of
class 2 maskable hardware interrupts.

• VME flag (bit 0 in control register CR4) — Enables the virtual mode extension
for the processor when set (see Section 2.5, “Control Registers”).

• Software interrupt redirection bit map (32 bytes in the TSS, see
Figure 17-5) — Contains 256 flags that indicates how class 3 software
interrupts should be handled when they occur in virtual-8086 mode. A software
interrupt can be directed either to the interrupt and exception handlers in the
currently running 8086 program or to the protected-mode interrupt and
exception handlers.

• The virtual interrupt flag (VIF) and virtual interrupt pending flag (VIP)
in the EFLAGS register — Provides virtual interrupt support for the handling
of class 2 maskable hardware interrupts (see Section 17.3.2, “Class 2—Maskable
Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”).

NOTE
The VME flag, software interrupt redirection bit map, and VIF and VIP
flags are only available in IA-32 processors that support the virtual
mode extensions. These extensions were introduced in the IA-32
architecture with the Pentium processor.

The following sections describe the actions that processor takes and the possible
actions of interrupt and exception handlers for the two classes of interrupts described

1. The INT 3 instruction is a special case (see the description of the INT n instruction in Chapter 3,
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A).
Vol. 3A 17-17

8086 EMULATION
in the previous paragraphs. These sections describe three possible types of interrupt
and exception handlers:
• Protected-mode interrupt and exceptions handlers — These are the

standard handlers that the processor calls through the protected-mode IDT.
• Virtual-8086 monitor interrupt and exception handlers — These handlers

are resident in the virtual-8086 monitor, and they are commonly accessed
through a general-protection exception (#GP, interrupt 13) that is directed to the
protected-mode general-protection exception handler.

• 8086 program interrupt and exception handlers — These handlers are part
of the 8086 program that is running in virtual-8086 mode.

The following sections describe how these handlers are used, depending on the
selected class and method of interrupt and exception handling.

17.3.1 Class 1—Hardware Interrupt and Exception Handling in
Virtual-8086 Mode

In virtual-8086 mode, the Pentium, P6 family, Pentium 4, and Intel Xeon processors
handle hardware interrupts and exceptions in the same manner as they are handled
by the Intel486 and Intel386 processors. They invoke the protected-mode interrupt
or exception handler that the interrupt or exception vector points to in the IDT. Here,
the IDT entry must contain either a 32-bit trap or interrupt gate or a task gate. The
following sections describe various ways that a virtual-8086 mode interrupt or excep-
tion can be handled after the protected-mode handler has been invoked.

See Section 17.3.2, “Class 2—Maskable Hardware Interrupt Handling in Virtual-8086
Mode Using the Virtual Interrupt Mechanism”, for a description of the virtual interrupt
mechanism that is available for handling maskable hardware interrupts while in
virtual-8086 mode. When this mechanism is either not available or not enabled,
maskable hardware interrupts are handled in the same manner as exceptions, as
described in the following sections.

17.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode
Trap or Interrupt Gate

When an interrupt or exception vector points to a 32-bit trap or interrupt gate in the
IDT, the gate must in turn point to a nonconforming, privilege-level 0, code segment.
When accessing this code segment, processor performs the following steps.

1. Switches to 32-bit protected mode and privilege level 0.

2. Saves the state of the processor on the privilege-level 0 stack. The states of the
EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see
Figure 17-4).

3. Clears the segment registers. Saving the DS, ES, FS, and GS registers on the
stack and then clearing the registers lets the interrupt or exception handler safely
17-18 Vol. 3A

8086 EMULATION
save and restore these registers regardless of the type segment selectors they
contain (protected-mode or 8086-style). The interrupt and exception handlers,
which may be called in the context of either a protected-mode task or a virtual-
8086-mode task, can use the same code sequences for saving and restoring the
registers for any task. Clearing these registers before execution of the IRET
instruction does not cause a trap in the interrupt handler. Interrupt procedures
that expect values in the segment registers or that return values in the segment
registers must use the register images saved on the stack for privilege level 0.

4. Clears VM, NT, RF and TF flags (in the EFLAGS register). If the gate is an interrupt
gate, clears the IF flag.

5. Begins executing the selected interrupt or exception handler.

If the trap or interrupt gate references a procedure in a conforming segment or in a
segment at a privilege level other than 0, the processor generates a general-protec-
tion exception (#GP). Here, the error code is the segment selector of the code
segment to which a call was attempted.

Figure 17-4. Privilege Level 0 Stack After Interrupt or
Exception in Virtual-8086 Mode

Unused

Old GS

Old ESP

With Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP

Error Code New ESP

TSS
Unused

Old GS

Old ESP

Without Error Code

ESP from

Old FS

Old DS

Old ES

Old SS

Old EFLAGS

Old CS

Old EIP New ESP

TSS
Vol. 3A 17-19

8086 EMULATION
Interrupt and exception handlers can examine the VM flag on the stack to determine
if the interrupted procedure was running in virtual-8086 mode. If so, the interrupt or
exception can be handled in one of three ways:
• The protected-mode interrupt or exception handler that was called can handle

the interrupt or exception.
• The protected-mode interrupt or exception handler can call the virtual-8086

monitor to handle the interrupt or exception.
• The virtual-8086 monitor (if called) can in turn pass control back to the 8086

program’s interrupt and exception handler.

If the interrupt or exception is handled with a protected-mode handler, the handler
can return to the interrupted program in virtual-8086 mode by executing an IRET
instruction. This instruction loads the EFLAGS and segment registers from the
images saved in the privilege level 0 stack (see Figure 17-4). A set VM flag in the
EFLAGS image causes the processor to switch back to virtual-8086 mode. The CPL at
the time the IRET instruction is executed must be 0, otherwise the processor does
not change the state of the VM flag.

The virtual-8086 monitor runs at privilege level 0, like the protected-mode interrupt
and exception handlers. It is commonly closely tied to the protected-mode general-
protection exception (#GP, vector 13) handler. If the protected-mode interrupt or
exception handler calls the virtual-8086 monitor to handle the interrupt or exception,
the return from the virtual-8086 monitor to the interrupted virtual-8086 mode
program requires two return instructions: a RET instruction to return to the
protected-mode handler and an IRET instruction to return to the interrupted
program.

The virtual-8086 monitor has the option of directing the interrupt and exception back
to an interrupt or exception handler that is part of the interrupted 8086 program, as
described in Section 17.3.1.2, “Handling an Interrupt or Exception With an 8086
Program Interrupt or Exception Handler”.

17.3.1.2 Handling an Interrupt or Exception With an 8086 Program
Interrupt or Exception Handler

Because it was designed to run on an 8086 processor, an 8086 program running in a
virtual-8086-mode task contains an 8086-style interrupt vector table, which starts at
linear address 0. If the virtual-8086 monitor correctly directs an interrupt or excep-
tion vector back to the virtual-8086-mode task it came from, the handlers in the
8086 program can handle the interrupt or exception. The virtual-8086 monitor must
carry out the following steps to send an interrupt or exception back to the 8086
program:

1. Use the 8086 interrupt vector to locate the appropriate handler procedure in the
8086 program interrupt table.
17-20 Vol. 3A

8086 EMULATION
2. Store the EFLAGS (low-order 16 bits only), CS and EIP values of the 8086
program on the privilege-level 3 stack. This is the stack that the virtual-8086-
mode task is using. (The 8086 handler may use or modify this information.)

3. Change the return link on the privilege-level 0 stack to point to the privilege-level
3 handler procedure.

4. Execute an IRET instruction to pass control to the 8086 program handler.

5. When the IRET instruction from the privilege-level 3 handler triggers a general-
protection exception (#GP) and thus effectively again calls the virtual-8086
monitor, restore the return link on the privilege-level 0 stack to point to the
original, interrupted, privilege-level 3 procedure.

6. Copy the low order 16 bits of the EFLAGS image from the privilege-level 3 stack
to the privilege-level 0 stack (because some 8086 handlers modify these flags to
return information to the code that caused the interrupt).

7. Execute an IRET instruction to pass control back to the interrupted 8086
program.

Note that if an operating system intends to support all 8086 MS-DOS-based
programs, it is necessary to use the actual 8086 interrupt and exception handlers
supplied with the program. The reason for this is that some programs modify their
own interrupt vector table to substitute (or hook in series) their own specialized
interrupt and exception handlers.

17.3.1.3 Handling an Interrupt or Exception Through a Task Gate
When an interrupt or exception vector points to a task gate in the IDT, the processor
performs a task switch to the selected interrupt- or exception-handling task. The
following actions are carried out as part of this task switch:

1. The EFLAGS register with the VM flag set is saved in the current TSS.

2. The link field in the TSS of the called task is loaded with the segment selector of
the TSS for the interrupted virtual-8086-mode task.

3. The EFLAGS register is loaded from the image in the new TSS, which clears the
VM flag and causes the processor to switch to protected mode.

4. The NT flag in the EFLAGS register is set.

5. The processor begins executing the selected interrupt- or exception-handler
task.

When an IRET instruction is executed in the handler task and the NT flag in the
EFLAGS register is set, the processors switches from a protected-mode interrupt- or
exception-handler task back to a virtual-8086-mode task. Here, the EFLAGS and
segment registers are loaded from images saved in the TSS for the virtual-8086-
mode task. If the VM flag is set in the EFLAGS image, the processor switches back to
virtual-8086 mode on the task switch. The CPL at the time the IRET instruction is
Vol. 3A 17-21

8086 EMULATION
executed must be 0, otherwise the processor does not change the state of the VM
flag.

17.3.2 Class 2—Maskable Hardware Interrupt Handling in
Virtual-8086 Mode Using the Virtual Interrupt Mechanism

Maskable hardware interrupts are those interrupts that are delivered through the
INTR# pin or through an interrupt request to the local APIC (see Section 6.3.2,
“Maskable Hardware Interrupts”). These interrupts can be inhibited (masked) from
interrupting an executing program or task by clearing the IF flag in the EFLAGS
register.

When the VME flag in control register CR4 is set and the IOPL field in the EFLAGS
register is less than 3, two additional flags are activated in the EFLAGS register:
• VIF (virtual interrupt) flag, bit 19 of the EFLAGS register.
• VIP (virtual interrupt pending) flag, bit 20 of the EFLAGS register.

These flags provide the virtual-8086 monitor with more efficient control over
handling maskable hardware interrupts that occur during virtual-8086 mode tasks.
They also reduce interrupt-handling overhead, by eliminating the need for all IF
related operations (such as PUSHF, POPF, CLI, and STI instructions) to trap to the
virtual-8086 monitor. The purpose and use of these flags are as follows.

NOTE
The VIF and VIP flags are only available in IA-32 processors that
support the virtual mode extensions. These extensions were
introduced in the IA-32 architecture with the Pentium processor.
When this mechanism is either not available or not enabled,
maskable hardware interrupts are handled as class 1 interrupts.
Here, if VIF and VIP flags are needed, the virtual-8086 monitor can
implement them in software.

Existing 8086 programs commonly set and clear the IF flag in the EFLAGS register to
enable and disable maskable hardware interrupts, respectively; for example, to
disable interrupts while handling another interrupt or an exception. This practice
works well in single task environments, but can cause problems in multitasking and
multiple-processor environments, where it is often desirable to prevent an applica-
tion program from having direct control over the handling of hardware interrupts.
When using earlier IA-32 processors, this problem was often solved by creating a
virtual IF flag in software. The IA-32 processors (beginning with the Pentium
processor) provide hardware support for this virtual IF flag through the VIF and VIP
flags.

The VIF flag is a virtualized version of the IF flag, which an application program
running from within a virtual-8086 task can used to control the handling of maskable
hardware interrupts. When the VIF flag is enabled, the CLI and STI instructions
operate on the VIF flag instead of the IF flag. When an 8086 program executes the
17-22 Vol. 3A

8086 EMULATION
CLI instruction, the processor clears the VIF flag to request that the virtual-8086
monitor inhibit maskable hardware interrupts from interrupting program execution;
when it executes the STI instruction, the processor sets the VIF flag requesting that
the virtual-8086 monitor enable maskable hardware interrupts for the 8086
program. But actually the IF flag, managed by the operating system, always controls
whether maskable hardware interrupts are enabled. Also, if under these circum-
stances an 8086 program tries to read or change the IF flag using the PUSHF or POPF
instructions, the processor will change the VIF flag instead, leaving IF unchanged.

The VIP flag provides software a means of recording the existence of a deferred (or
pending) maskable hardware interrupt. This flag is read by the processor but never
explicitly written by the processor; it can only be written by software.

If the IF flag is set and the VIF and VIP flags are enabled, and the processor receives
a maskable hardware interrupt (interrupt vector 0 through 255), the processor
performs and the interrupt handler software should perform the following
operations:

1. The processor invokes the protected-mode interrupt handler for the interrupt
received, as described in the following steps. These steps are almost identical to
those described for method 1 interrupt and exception handling in Section
17.3.1.1, “Handling an Interrupt or Exception Through a Protected-Mode Trap or
Interrupt Gate”:

a. Switches to 32-bit protected mode and privilege level 0.

b. Saves the state of the processor on the privilege-level 0 stack. The states of
the EIP, CS, EFLAGS, ESP, SS, ES, DS, FS, and GS registers are saved (see
Figure 17-4).

c. Clears the segment registers.

d. Clears the VM flag in the EFLAGS register.

e. Begins executing the selected protected-mode interrupt handler.

2. The recommended action of the protected-mode interrupt handler is to read the
VM flag from the EFLAGS image on the stack. If this flag is set, the handler makes
a call to the virtual-8086 monitor.

3. The virtual-8086 monitor should read the VIF flag in the EFLAGS register.

— If the VIF flag is clear, the virtual-8086 monitor sets the VIP flag in the
EFLAGS image on the stack to indicate that there is a deferred interrupt
pending and returns to the protected-mode handler.

— If the VIF flag is set, the virtual-8086 monitor can handle the interrupt if it
“belongs” to the 8086 program running in the interrupted virtual-8086 task;
otherwise, it can call the protected-mode interrupt handler to handle the
interrupt.

4. The protected-mode handler executes a return to the program executing in
virtual-8086 mode.
Vol. 3A 17-23

8086 EMULATION
5. Upon returning to virtual-8086 mode, the processor continues execution of the
8086 program.

When the 8086 program is ready to receive maskable hardware interrupts, it
executes the STI instruction to set the VIF flag (enabling maskable hardware
interrupts). Prior to setting the VIF flag, the processor automatically checks the VIP
flag and does one of the following, depending on the state of the flag:
• If the VIP flag is clear (indicating no pending interrupts), the processor sets the

VIF flag.
• If the VIP flag is set (indicating a pending interrupt), the processor generates a

general-protection exception (#GP).

The recommended action of the protected-mode general-protection exception
handler is to then call the virtual-8086 monitor and let it handle the pending inter-
rupt. After handling the pending interrupt, the typical action of the virtual-8086
monitor is to clear the VIP flag and set the VIF flag in the EFLAGS image on the stack,
and then execute a return to the virtual-8086 mode. The next time the processor
receives a maskable hardware interrupt, it will then handle it as described in steps 1
through 5 earlier in this section.

If the processor finds that both the VIF and VIP flags are set at the beginning of an
instruction, it generates a general-protection exception. This action allows the
virtual-8086 monitor to handle the pending interrupt for the virtual-8086 mode task
for which the VIF flag is enabled. Note that this situation can only occur immediately
following execution of a POPF or IRET instruction or upon entering a virtual-8086
mode task through a task switch.

Note that the states of the VIF and VIP flags are not modified in real-address mode or
during transitions between real-address and protected modes.

NOTE
The virtual interrupt mechanism described in this section is also
available for use in protected mode, see Section 17.4, “Protected-
Mode Virtual Interrupts”.

17.3.3 Class 3—Software Interrupt Handling in Virtual-8086 Mode
When the processor receives a software interrupt (an interrupt generated with the
INT n instruction) while in virtual-8086 mode, it can use any of six different methods
to handle the interrupt. The method selected depends on the settings of the VME flag
in control register CR4, the IOPL field in the EFLAGS register, and the software inter-
rupt redirection bit map in the TSS. Table 17-2 lists the six methods of handling soft-
ware interrupts in virtual-8086 mode and the respective settings of the VME flag,
IOPL field, and the bits in the interrupt redirection bit map for each method. The table
also summarizes the various actions the processor takes for each method.

The VME flag enables the virtual mode extensions for the Pentium and later IA-32
processors. When this flag is clear, the processor responds to interrupts and excep-
17-24 Vol. 3A

8086 EMULATION
tions in virtual-8086 mode in the same manner as an Intel386 or Intel486 processor
does. When this flag is set, the virtual mode extension provides the following
enhancements to virtual-8086 mode:
• Speeds up the handling of software-generated interrupts in virtual-8086 mode by

allowing the processor to bypass the virtual-8086 monitor and redirect software
interrupts back to the interrupt handlers that are part of the currently running
8086 program.

• Supports virtual interrupts for software written to run on the 8086 processor.

The IOPL value interacts with the VME flag and the bits in the interrupt redirection bit
map to determine how specific software interrupts should be handled.

The software interrupt redirection bit map (see Figure 17-5) is a 32-byte field in the
TSS. This map is located directly below the I/O permission bit map in the TSS. Each
bit in the interrupt redirection bit map is mapped to an interrupt vector. Bit 0 in the
interrupt redirection bit map (which maps to vector zero in the interrupt table) is
located at the I/O base map address in the TSS minus 32 bytes. When a bit in this bit
map is set, it indicates that the associated software interrupt (interrupt generated
with an INT n instruction) should be handled through the protected-mode IDT and
interrupt and exception handlers. When a bit in this bit map is clear, the processor
redirects the associated software interrupt back to the interrupt table in the 8086
program (located at linear address 0 in the program’s address space).

NOTE
The software interrupt redirection bit map does not affect hardware
generated interrupts and exceptions. Hardware generated interrupts
and exceptions are always handled by the protected-mode interrupt
and exception handlers.
Vol. 3A 17-25

8086 EMULATION
Table 17-2. Software Interrupt Handling Methods While in Virtual-8086 Mode

Method VME IOPL

Bit in
Redir.

Bitmap* Processor Action

1 0 3 X Interrupt directed to a protected-mode interrupt handler:

• Switches to privilege-level 0 stack
• Pushes GS, FS, DS and ES onto privilege-level 0 stack
• Pushes SS, ESP, EFLAGS, CS and EIP of interrupted task onto

privilege-level 0 stack
• Clears VM, RF, NT, and TF flags
• If serviced through interrupt gate, clears IF flag
• Clears GS, FS, DS and ES to 0
• Sets CS and EIP from interrupt gate

2 0 < 3 X Interrupt directed to protected-mode general-protection
exception (#GP) handler.

3 1 < 3 1 Interrupt directed to a protected-mode general-protection
exception (#GP) handler; VIF and VIP flag support for handling
class 2 maskable hardware interrupts.

4 1 3 1 Interrupt directed to protected-mode interrupt handler: (see
method 1 processor action).

5 1 3 0 Interrupt redirected to 8086 program interrupt handler:

• Pushes EFLAGS
• Pushes CS and EIP (lower 16 bits only)
• Clears IF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in

the interrupt vector table of the current virtual-8086 task

6 1 < 3 0 Interrupt redirected to 8086 program interrupt handler; VIF and
VIP flag support for handling class 2 maskable hardware
interrupts:

• Pushes EFLAGS with IOPL set to 3 and VIF copied to IF
• Pushes CS and EIP (lower 16 bits only)
• Clears the VIF flag
• Clears TF flag
• Loads CS and EIP (lower 16 bits only) from selected entry in

the interrupt vector table of the current virtual-8086 task

NOTE:
* When set to 0, software interrupt is redirected back to the 8086 program interrupt handler;

when set to 1, interrupt is directed to protected-mode handler.
17-26 Vol. 3A

8086 EMULATION
Redirecting software interrupts back to the 8086 program potentially speeds up
interrupt handling because a switch back and forth between virtual-8086 mode and
protected mode is not required. This latter interrupt-handling technique is particu-
larly useful for 8086 operating systems (such as MS-DOS) that use the INT n instruc-
tion to call operating system procedures.

The CPUID instruction can be used to verify that the virtual mode extension is imple-
mented on the processor. Bit 1 of the feature flags register (EDX) indicates the avail-
ability of the virtual mode extension (see “CPUID—CPU Identification” in Chapter 3,
“Instruction Set Reference, A-M”, of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A).

The following sections describe the six methods (or mechanisms) for handling soft-
ware interrupts in virtual-8086 mode. See Section 17.3.2, “Class 2—Maskable Hard-
ware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt
Mechanism”, for a description of the use of the VIF and VIP flags in the EFLAGS
register for handling maskable hardware interrupts.

17.3.3.1 Method 1: Software Interrupt Handling
When the VME flag in control register CR4 is clear and the IOPL field is 3, a Pentium
or later IA-32 processor handles software interrupts in the same manner as they are
handled by an Intel386 or Intel486 processor. It executes an implicit call to the inter-

Figure 17-5. Software Interrupt Redirection Bit Map in TSS

I/O Map Base

Task-State Segment (TSS)

64H

31 24 23 0

1 1111111

I/O Permission Bit Map

0

I/O map
base must
not exceed
DFFFH.

Last byte of
bit

map must be

Software Interrupt Redirection Bit Map (32 Bytes)
Vol. 3A 17-27

8086 EMULATION
rupt handler in the protected-mode IDT pointed to by the interrupt vector. See
Section 17.3.1, “Class 1—Hardware Interrupt and Exception Handling in Virtual-8086
Mode”, for a complete description of this mechanism and its possible uses.

17.3.3.2 Methods 2 and 3: Software Interrupt Handling
When a software interrupt occurs in virtual-8086 mode and the method 2 or 3 condi-
tions are present, the processor generates a general-protection exception (#GP).
Method 2 is enabled when the VME flag is set to 0 and the IOPL value is less than 3.
Here the IOPL value is used to bypass the protected-mode interrupt handlers and
cause any software interrupt that occurs in virtual-8086 mode to be treated as a
protected-mode general-protection exception (#GP). The general-protection excep-
tion handler calls the virtual-8086 monitor, which can then emulate an 8086-
program interrupt handler or pass control back to the 8086 program’s handler, as
described in Section 17.3.1.2, “Handling an Interrupt or Exception With an 8086
Program Interrupt or Exception Handler”.

Method 3 is enabled when the VME flag is set to 1, the IOPL value is less than 3, and
the corresponding bit for the software interrupt in the software interrupt redirection
bit map is set to 1. Here, the processor performs the same operation as it does for
method 2 software interrupt handling. If the corresponding bit for the software inter-
rupt in the software interrupt redirection bit map is set to 0, the interrupt is handled
using method 6 (see Section 17.3.3.5, “Method 6: Software Interrupt Handling”).

17.3.3.3 Method 4: Software Interrupt Handling
Method 4 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and
the bit for the interrupt vector in the redirection bit map is set to 1. Method 4 soft-
ware interrupt handling allows method 1 style handling when the virtual mode exten-
sion is enabled; that is, the interrupt is directed to a protected-mode handler (see
Section 17.3.3.1, “Method 1: Software Interrupt Handling”).

17.3.3.4 Method 5: Software Interrupt Handling
Method 5 software interrupt handling provides a streamlined method of redirecting
software interrupts (invoked with the INT n instruction) that occur in virtual 8086
mode back to the 8086 program’s interrupt vector table and its interrupt handlers.
Method 5 handling is enabled when the VME flag is set to 1, the IOPL value is 3, and
the bit for the interrupt vector in the redirection bit map is set to 0. The processor
performs the following actions to make an implicit call to the selected 8086 program
interrupt handler:

1. Pushes the low-order 16 bits of the EFLAGS register onto the stack.

2. Pushes the current values of the CS and EIP registers onto the current stack.
(Only the 16 least-significant bits of the EIP register are pushed and no stack
switch occurs.)
17-28 Vol. 3A

8086 EMULATION
3. Clears the IF flag in the EFLAGS register to disable interrupts.

4. Clears the TF flag, in the EFLAGS register.

5. Locates the 8086 program interrupt vector table at linear address 0 for the 8086-
mode task.

6. Loads the CS and EIP registers with values from the interrupt vector table entry
pointed to by the interrupt vector number. Only the 16 low-order bits of the EIP
are loaded and the 16 high-order bits are set to 0. The interrupt vector table is
assumed to be at linear address 0 of the current virtual-8086 task.

7. Begins executing the selected interrupt handler.

An IRET instruction at the end of the handler procedure reverses these steps to
return program control to the interrupted 8086 program.

Note that with method 5 handling, a mode switch from virtual-8086 mode to
protected mode does not occur. The processor remains in virtual-8086 mode
throughout the interrupt-handling operation.

The method 5 handling actions are virtually identical to the actions the processor
takes when handling software interrupts in real-address mode. The benefit of using
method 5 handling to access the 8086 program handlers is that it avoids the over-
head of methods 2 and 3 handling, which requires first going to the virtual-8086
monitor, then to the 8086 program handler, then back again to the virtual-8086
monitor, before returning to the interrupted 8086 program (see Section 17.3.1.2,
“Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception
Handler”).

NOTE
Methods 1 and 4 handling can handle a software interrupt in a virtual-
8086 task with a regular protected-mode handler, but this approach
requires all virtual-8086 tasks to use the same software interrupt
handlers, which generally does not give sufficient latitude to the
programs running in the virtual-8086 tasks, particularly MS-DOS
programs.

17.3.3.5 Method 6: Software Interrupt Handling
Method 6 handling is enabled when the VME flag is set to 1, the IOPL value is less
than 3, and the bit for the interrupt or exception vector in the redirection bit map is
set to 0. With method 6 interrupt handling, software interrupts are handled in the
same manner as was described for method 5 handling (see Section 17.3.3.4,
“Method 5: Software Interrupt Handling”).

Method 6 differs from method 5 in that with the IOPL value set to less than 3, the VIF
and VIP flags in the EFLAGS register are enabled, providing virtual interrupt support
for handling class 2 maskable hardware interrupts (see Section 17.3.2, “Class
2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual
Interrupt Mechanism”). These flags provide the virtual-8086 monitor with an effi-
Vol. 3A 17-29

8086 EMULATION
cient means of handling maskable hardware interrupts that occur during a virtual-
8086 mode task. Also, because the IOPL value is less than 3 and the VIF flag is
enabled, the information pushed on the stack by the processor when invoking the
interrupt handler is slightly different between methods 5 and 6 (see Table 17-2).

17.4 PROTECTED-MODE VIRTUAL INTERRUPTS
The IA-32 processors (beginning with the Pentium processor) also support the VIF
and VIP flags in the EFLAGS register in protected mode by setting the PVI (protected-
mode virtual interrupt) flag in the CR4 register. Setting the PVI flag allows applica-
tions running at privilege level 3 to execute the CLI and STI instructions without
causing a general-protection exception (#GP) or affecting hardware interrupts.

When the PVI flag is set to 1, the CPL is 3, and the IOPL is less than 3, the STI and
CLI instructions set and clear the VIF flag in the EFLAGS register, leaving IF unaf-
fected. In this mode of operation, an application running in protected mode and at a
CPL of 3 can inhibit interrupts in the same manner as is described in Section 17.3.2,
“Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the
Virtual Interrupt Mechanism”, for a virtual-8086 mode task. When the application
executes the CLI instruction, the processor clears the VIF flag. If the processor
receives a maskable hardware interrupt, the processor invokes the protected-mode
interrupt handler. This handler checks the state of the VIF flag in the EFLAGS register.
If the VIF flag is clear (indicating that the active task does not want to have interrupts
handled now), the handler sets the VIP flag in the EFLAGS image on the stack and
returns to the privilege-level 3 application, which continues program execution.
When the application executes a STI instruction to set the VIF flag, the processor
automatically invokes the general-protection exception handler, which can then
handle the pending interrupt. After handing the pending interrupt, the handler typi-
cally sets the VIF flag and clears the VIP flag in the EFLAGS image on the stack and
executes a return to the application program. The next time the processor receives a
maskable hardware interrupt, the processor will handle it in the normal manner for
interrupts received while the processor is operating at a CPL of 3.

As with the virtual mode extension (enabled with the VME flag in the CR4 register),
the protected-mode virtual interrupt extension only affects maskable hardware
interrupts (interrupt vectors 32 through 255). NMI interrupts and exceptions are
handled in the normal manner.

When protected-mode virtual interrupts are disabled (that is, when the PVI flag in
control register CR4 is set to 0, the CPL is less than 3, or the IOPL value is 3), then
the CLI and STI instructions execute in a manner compatible with the Intel486
processor. That is, if the CPL is greater (less privileged) than the I/O privilege level
(IOPL), a general-protection exception occurs. If the IOPL value is 3, CLI and STI
clear or set the IF flag, respectively.

PUSHF, POPF, IRET and INT are executed like in the Intel486 processor, regardless of
whether protected-mode virtual interrupts are enabled.
17-30 Vol. 3A

8086 EMULATION
It is only possible to enter virtual-8086 mode through a task switch or the execution
of an IRET instruction, and it is only possible to leave virtual-8086 mode by faulting
to a protected-mode interrupt handler (typically the general-protection exception
handler, which in turn calls the virtual 8086-mode monitor). In both cases, the
EFLAGS register is saved and restored. This is not true, however, in protected mode
when the PVI flag is set and the processor is not in virtual-8086 mode. Here, it is
possible to call a procedure at a different privilege level, in which case the EFLAGS
register is not saved or modified. However, the states of VIF and VIP flags are never
examined by the processor when the CPL is not 3.
Vol. 3A 17-31

8086 EMULATION
17-32 Vol. 3A

CHAPTER 18
MIXING 16-BIT AND 32-BIT CODE

Program modules written to run on IA-32 processors can be either 16-bit modules or
32-bit modules. Table 18-1 shows the characteristic of 16-bit and 32-bit modules.

The IA-32 processors function most efficiently when executing 32-bit program
modules. They can, however, also execute 16-bit program modules, in any of the
following ways:
• In real-address mode.
• In virtual-8086 mode.
• System management mode (SMM).
• As a protected-mode task, when the code, data, and stack segments for the task

are all configured as a 16-bit segments.
• By integrating 16-bit and 32-bit segments into a single protected-mode task.
• By integrating 16-bit operations into 32-bit code segments.

Real-address mode, virtual-8086 mode, and SMM are native 16-bit modes. A legacy
program assembled and/or compiled to run on an Intel 8086 or Intel 286 processor
should run in real-address mode or virtual-8086 mode without modification. Sixteen-
bit program modules can also be written to run in real-address mode for handling
system initialization or to run in SMM for handling system management functions.
See Chapter 17, “8086 Emulation,” for detailed information on real-address mode
and virtual-8086 mode; see Chapter 26, “System Management Mode,” for informa-
tion on SMM.

This chapter describes how to integrate 16-bit program modules with 32-bit program
modules when operating in protected mode and how to mix 16-bit and 32-bit code
within 32-bit code segments.

Table 18-1. Characteristics of 16-Bit and 32-Bit Program Modules

Characteristic 16-Bit Program Modules 32-Bit Program Modules

Segment Size 0 to 64 KBytes 0 to 4 GBytes

Operand Sizes 8 bits and 16 bits 8 bits and 32 bits

Pointer Offset Size (Address
Size)

16 bits 32 bits

Stack Pointer Size 16 Bits 32 Bits

Control Transfers Allowed to
Code Segments of This Size

16 Bits 32 Bits
Vol. 3A 18-1

MIXING 16-BIT AND 32-BIT CODE
18.1 DEFINING 16-BIT AND 32-BIT PROGRAM MODULES
The following IA-32 architecture mechanisms are used to distinguish between and
support 16-bit and 32-bit segments and operations:
• The D (default operand and address size) flag in code-segment descriptors.
• The B (default stack size) flag in stack-segment descriptors.
• 16-bit and 32-bit call gates, interrupt gates, and trap gates.
• Operand-size and address-size instruction prefixes.
• 16-bit and 32-bit general-purpose registers.

The D flag in a code-segment descriptor determines the default operand-size and
address-size for the instructions of a code segment. (In real-address mode and
virtual-8086 mode, which do not use segment descriptors, the default is 16 bits.) A
code segment with its D flag set is a 32-bit segment; a code segment with its D flag
clear is a 16-bit segment.

The B flag in the stack-segment descriptor specifies the size of stack pointer (the
32-bit ESP register or the 16-bit SP register) used by the processor for implicit stack
references. The B flag for all data descriptors also controls upper address range for
expand down segments.

When transferring program control to another code segment through a call gate,
interrupt gate, or trap gate, the operand size used during the transfer is determined
by the type of gate used (16-bit or 32-bit), (not by the D-flag or prefix of the transfer
instruction). The gate type determines how return information is saved on the stack
(or stacks).

For most efficient and trouble-free operation of the processor, 32-bit programs or
tasks should have the D flag in the code-segment descriptor and the B flag in the
stack-segment descriptor set, and 16-bit programs or tasks should have these flags
clear. Program control transfers from 16-bit segments to 32-bit segments (and vice
versa) are handled most efficiently through call, interrupt, or trap gates.

Instruction prefixes can be used to override the default operand size and address size
of a code segment. These prefixes can be used in real-address mode as well as in
protected mode and virtual-8086 mode. An operand-size or address-size prefix only
changes the size for the duration of the instruction.

18.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A
CODE SEGMENT

The following two instruction prefixes allow mixing of 32-bit and 16-bit operations
within one segment:
• The operand-size prefix (66H)
• The address-size prefix (67H)
18-2 Vol. 3A

MIXING 16-BIT AND 32-BIT CODE
These prefixes reverse the default size selected by the D flag in the code-segment
descriptor. For example, the processor can interpret the (MOV mem, reg) instruction
in any of four ways:
• In a 32-bit code segment:

— Moves 32 bits from a 32-bit register to memory using a 32-bit effective
address.

— If preceded by an operand-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

— If preceded by an address-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves
16 bits from a 16-bit register to memory using a 16-bit effective address.

• In a 16-bit code segment:

— Moves 16 bits from a 16-bit register to memory using a 16-bit effective
address.

— If preceded by an operand-size prefix, moves 32 bits from a 32-bit register to
memory using a 16-bit effective address.

— If preceded by an address-size prefix, moves 16 bits from a 16-bit register to
memory using a 32-bit effective address.

— If preceded by both an address-size prefix and an operand-size prefix, moves
32 bits from a 32-bit register to memory using a 32-bit effective address.

The previous examples show that any instruction can generate any combination of
operand size and address size regardless of whether the instruction is in a 16- or
32-bit segment. The choice of the 16- or 32-bit default for a code segment is
normally based on the following criteria:
• Performance — Always use 32-bit code segments when possible. They run

much faster than 16-bit code segments on P6 family processors, and somewhat
faster on earlier IA-32 processors.

• The operating system the code segment will be running on — If the
operating system is a 16-bit operating system, it may not support 32-bit program
modules.

• Mode of operation — If the code segment is being designed to run in real-
address mode, virtual-8086 mode, or SMM, it must be a 16-bit code segment.

• Backward compatibility to earlier IA-32 processors — If a code segment
must be able to run on an Intel 8086 or Intel 286 processor, it must be a 16-bit
code segment.
Vol. 3A 18-3

MIXING 16-BIT AND 32-BIT CODE
18.3 SHARING DATA AMONG MIXED-SIZE CODE
SEGMENTS

Data segments can be accessed from both 16-bit and 32-bit code segments. When a
data segment that is larger than 64 KBytes is to be shared among 16- and 32-bit
code segments, the data that is to be accessed from the 16-bit code segments must
be located within the first 64 KBytes of the data segment. The reason for this is that
16-bit pointers by definition can only point to the first 64 KBytes of a segment.

A stack that spans less than 64 KBytes can be shared by both 16- and 32-bit code
segments. This class of stacks includes:
• Stacks in expand-up segments with the G (granularity) and B (big) flags in the

stack-segment descriptor clear.
• Stacks in expand-down segments with the G and B flags clear.
• Stacks in expand-up segments with the G flag set and the B flag clear and where

the stack is contained completely within the lower 64 KBytes. (Offsets greater
than FFFFH can be used for data, other than the stack, which is not shared.)

See Section 3.4.5, “Segment Descriptors,” for a description of the G and B flags and
the expand-down stack type.

The B flag cannot, in general, be used to change the size of stack used by a 16-bit
code segment. This flag controls the size of the stack pointer only for implicit stack
references such as those caused by interrupts, exceptions, and the PUSH, POP, CALL,
and RET instructions. It does not control explicit stack references, such as accesses
to parameters or local variables. A 16-bit code segment can use a 32-bit stack only if
the code is modified so that all explicit references to the stack are preceded by the
32-bit address-size prefix, causing those references to use 32-bit addressing and
explicit writes to the stack pointer are preceded by a 32-bit operand-size prefix.

In 32-bit, expand-down segments, all offsets may be greater than 64 KBytes; there-
fore, 16-bit code cannot use this kind of stack segment unless the code segment is
modified to use 32-bit addressing.

18.4 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE
SEGMENTS

There are three ways for a procedure in a 16-bit code segment to safely make a call
to a 32-bit code segment:
• Make the call through a 32-bit call gate.
• Make a 16-bit call to a 32-bit interface procedure. The interface procedure then

makes a 32-bit call to the intended destination.
• Modify the 16-bit procedure, inserting an operand-size prefix before the call, to

change it to a 32-bit call.
18-4 Vol. 3A

MIXING 16-BIT AND 32-BIT CODE
Likewise, there are three ways for procedure in a 32-bit code segment to safely make
a call to a 16-bit code segment:
• Make the call through a 16-bit call gate. Here, the EIP value at the CALL

instruction cannot exceed FFFFH.
• Make a 32-bit call to a 16-bit interface procedure. The interface procedure then

makes a 16-bit call to the intended destination.
• Modify the 32-bit procedure, inserting an operand-size prefix before the call,

changing it to a 16-bit call. Be certain that the return offset does not exceed
FFFFH.

These methods of transferring program control overcome the following architectural
limitations imposed on calls between 16-bit and 32-bit code segments:
• Pointers from 16-bit code segments (which by default can only be 16 bits) cannot

be used to address data or code located beyond FFFFH in a 32-bit segment.
• The operand-size attributes for a CALL and its companion RETURN instruction

must be the same to maintain stack coherency. This is also true for implicit calls
to interrupt and exception handlers and their companion IRET instructions.

• A 32-bit parameters (particularly a pointer parameter) greater than FFFFH
cannot be squeezed into a 16-bit parameter location on a stack.

• The size of the stack pointer (SP or ESP) changes when switching between 16-bit
and 32-bit code segments.

These limitations are discussed in greater detail in the following sections.

18.4.1 Code-Segment Pointer Size
For control-transfer instructions that use a pointer to identify the next instruction
(that is, those that do not use gates), the operand-size attribute determines the size
of the offset portion of the pointer. The implications of this rule are as follows:
• A JMP, CALL, or RET instruction from a 32-bit segment to a 16-bit segment is

always possible using a 32-bit operand size, providing the 32-bit pointer does not
exceed FFFFH.

• A JMP, CALL, or RET instruction from a 16-bit segment to a 32-bit segment
cannot address a destination greater than FFFFH, unless the instruction is given
an operand-size prefix.

See Section 18.4.5, “Writing Interface Procedures,” for an interface procedure that
can transfer program control from 16-bit segments to destinations in 32-bit
segments beyond FFFFH.

18.4.2 Stack Management for Control Transfer
Because the stack is managed differently for 16-bit procedure calls than for 32-bit
calls, the operand-size attribute of the RET instruction must match that of the CALL
Vol. 3A 18-5

MIXING 16-BIT AND 32-BIT CODE
instruction (see Figure 18-1). On a 16-bit call, the processor pushes the contents of
the 16-bit IP register and (for calls between privilege levels) the 16-bit SP register.
The matching RET instruction must also use a 16-bit operand size to pop these 16-bit
values from the stack into the 16-bit registers.

A 32-bit CALL instruction pushes the contents of the 32-bit EIP register and (for
inter-privilege-level calls) the 32-bit ESP register. Here, the matching RET instruction
must use a 32-bit operand size to pop these 32-bit values from the stack into the
32-bit registers. If the two parts of a CALL/RET instruction pair do not have matching
operand sizes, the stack will not be managed correctly and the values of the instruc-
tion pointer and stack pointer will not be restored to correct values.

Figure 18-1. Stack after Far 16- and 32-Bit Calls

SP

After 16-bit Call

PARM 1

IP SP

SS

PARM 2

CS

031

SS

EIP

After 32-bit Call

CS

ESP

ESP

PARM 2

PARM 1

031

With Privilege Transition

Stack
Growth

After 16-bit Call

PARM 1

IP SP

PARM 2

CS

031

Without Privilege Transition

Stack
Growth

After 32-bit Call

PARM 1

ESP

PARM 2

CS

031

EIP

Undefined
18-6 Vol. 3A

MIXING 16-BIT AND 32-BIT CODE
While executing 32-bit code, if a call is made to a 16-bit code segment which is at the
same or a more privileged level (that is, the DPL of the called code segment is less
than or equal to the CPL of the calling code segment) through a 16-bit call gate, then
the upper 16-bits of the ESP register may be unreliable upon returning to the 32-bit
code segment (that is, after executing a RET in the 16-bit code segment).

When the CALL instruction and its matching RET instruction are in code segments
that have D flags with the same values (that is, both are 32-bit code segments or
both are 16-bit code segments), the default settings may be used. When the CALL
instruction and its matching RET instruction are in segments which have different
D-flag settings, an operand-size prefix must be used.

18.4.2.1 Controlling the Operand-Size Attribute For a Call
Three things can determine the operand-size of a call:
• The D flag in the segment descriptor for the calling code segment.
• An operand-size instruction prefix.
• The type of call gate (16-bit or 32-bit), if a call is made through a call gate.

When a call is made with a pointer (rather than a call gate), the D flag for the calling
code segment determines the operand-size for the CALL instruction. This operand-
size attribute can be overridden by prepending an operand-size prefix to the CALL
instruction. So, for example, if the D flag for a code segment is set for 16 bits and the
operand-size prefix is used with a CALL instruction, the processor will cause the infor-
mation stored on the stack to be stored in 32-bit format. If the call is to a 32-bit code
segment, the instructions in that code segment will be able to read the stack coher-
ently. Also, a RET instruction from the 32-bit code segment without an operand-size
prefix will maintain stack coherency with the 16-bit code segment being returned to.

When a CALL instruction references a call-gate descriptor, the type of call is deter-
mined by the type of call gate (16-bit or 32-bit). The offset to the destination in the
code segment being called is taken from the gate descriptor; therefore, if a 32-bit call
gate is used, a procedure in a 16-bit code segment can call a procedure located more
than 64 KBytes from the base of a 32-bit code segment, because a 32-bit call gate
uses a 32-bit offset.

Note that regardless of the operand size of the call and how it is determined, the size
of the stack pointer used (SP or ESP) is always controlled by the B flag in the stack-
segment descriptor currently in use (that is, when B is clear, SP is used, and when B
is set, ESP is used).

An unmodified 16-bit code segment that has run successfully on an 8086 processor
or in real-mode on a later IA-32 architecture processor will have its D flag clear and
will not use operand-size override prefixes. As a result, all CALL instructions in this
code segment will use the 16-bit operand-size attribute. Procedures in these code
Vol. 3A 18-7

MIXING 16-BIT AND 32-BIT CODE
segments can be modified to safely call procedures to 32-bit code segments in either
of two ways:
• Relink the CALL instruction to point to 32-bit call gates (see Section 18.4.2.2,

“Passing Parameters With a Gate”).
• Add a 32-bit operand-size prefix to each CALL instruction.

18.4.2.2 Passing Parameters With a Gate
When referencing 32-bit gates with 16-bit procedures, it is important to consider the
number of parameters passed in each procedure call. The count field of the gate
descriptor specifies the size of the parameter string to copy from the current stack to
the stack of a more privileged (numerically lower privilege level) procedure. The
count field of a 16-bit gate specifies the number of 16-bit words to be copied,
whereas the count field of a 32-bit gate specifies the number of 32-bit doublewords
to be copied. The count field for a 32-bit gate must thus be half the size of the
number of words being placed on the stack by a 16-bit procedure. Also, the 16-bit
procedure must use an even number of words as parameters.

18.4.3 Interrupt Control Transfers
A program-control transfer caused by an exception or interrupt is always carried out
through an interrupt or trap gate (located in the IDT). Here, the type of the gate
(16-bit or 32-bit) determines the operand-size attribute used in the implicit call to
the exception or interrupt handler procedure in another code segment.

A 32-bit interrupt or trap gate provides a safe interface to a 32-bit exception or inter-
rupt handler when the exception or interrupt occurs in either a 32-bit or a 16-bit code
segment. It is sometimes impractical, however, to place exception or interrupt
handlers in 16-bit code segments, because only 16-bit return addresses are saved on
the stack. If an exception or interrupt occurs in a 32-bit code segment when the EIP
was greater than FFFFH, the 16-bit handler procedure cannot provide the correct
return address.

18.4.4 Parameter Translation
When segment offsets or pointers (which contain segment offsets) are passed as
parameters between 16-bit and 32-bit procedures, some translation is required. If a
32-bit procedure passes a pointer to data located beyond 64 KBytes to a 16-bit
procedure, the 16-bit procedure cannot use it. Except for this limitation, interface
code can perform any format conversion between 32-bit and 16-bit pointers that
may be needed.

Parameters passed by value between 32-bit and 16-bit code also may require trans-
lation between 32-bit and 16-bit formats. The form of the translation is application-
dependent.
18-8 Vol. 3A

MIXING 16-BIT AND 32-BIT CODE
18.4.5 Writing Interface Procedures
Placing interface code between 32-bit and 16-bit procedures can be the solution to
the following interface problems:
• Allowing procedures in 16-bit code segments to call procedures with offsets

greater than FFFFH in 32-bit code segments.
• Matching operand-size attributes between companion CALL and RET instructions.
• Translating parameters (data), including managing parameter strings with a

variable count or an odd number of 16-bit words.
• The possible invalidation of the upper bits of the ESP register.

The interface procedure is simplified where these rules are followed.

1. The interface procedure must reside in a 32-bit code segment (the D flag for the
code-segment descriptor is set).

2. All procedures that may be called by 16-bit procedures must have offsets not
greater than FFFFH.

3. All return addresses saved by 16-bit procedures must have offsets not greater
than FFFFH.

The interface procedure becomes more complex if any of these rules are violated. For
example, if a 16-bit procedure calls a 32-bit procedure with an entry point beyond
FFFFH, the interface procedure will need to provide the offset to the entry point. The
mapping between 16- and 32-bit addresses is only performed automatically when a
call gate is used, because the gate descriptor for a call gate contains a 32-bit
address. When a call gate is not used, the interface code must provide the 32-bit
address.

The structure of the interface procedure depends on the types of calls it is going to
support, as follows:
• Calls from 16-bit procedures to 32-bit procedures — Calls to the interface

procedure from a 16-bit code segment are made with 16-bit CALL instructions
(by default, because the D flag for the calling code-segment descriptor is clear),
and 16-bit operand-size prefixes are used with RET instructions to return from
the interface procedure to the calling procedure. Calls from the interface
procedure to 32-bit procedures are performed with 32-bit CALL instructions (by
default, because the D flag for the interface procedure’s code segment is set),
and returns from the called procedures to the interface procedure are performed
with 32-bit RET instructions (also by default).

• Calls from 32-bit procedures to 16-bit procedures — Calls to the interface
procedure from a 32-bit code segment are made with 32-bit CALL instructions
(by default), and returns to the calling procedure from the interface procedure
are made with 32-bit RET instructions (also by default). Calls from the interface
procedure to 16-bit procedures require the CALL instructions to have the
operand-size prefixes, and returns from the called procedures to the interface
procedure are performed with 16-bit RET instructions (by default).
Vol. 3A 18-9

MIXING 16-BIT AND 32-BIT CODE
18-10 Vol. 3A

CHAPTER 19
ARCHITECTURE COMPATIBILITY

Intel 64 and IA-32 processors are binary compatible. Compatibility means that,
within limited constraints, programs that execute on previous generations of proces-
sors will produce identical results when executed on later processors. The compati-
bility constraints and any implementation differences between the Intel 64 and IA-32
processors are described in this chapter.

Each new processor has enhanced the software visible architecture from that found
in earlier Intel 64 and IA-32 processors. Those enhancements have been defined
with consideration for compatibility with previous and future processors. This chapter
also summarizes the compatibility considerations for those extensions.

19.1 PROCESSOR FAMILIES AND CATEGORIES
IA-32 processors are referred to in several different ways in this chapter, depending
on the type of compatibility information being related, as described in the following:
• IA-32 Processors — All the Intel processors based on the Intel IA-32 Archi-

tecture, which include the 8086/88, Intel 286, Intel386, Intel486, Pentium,
Pentium Pro, Pentium II, Pentium III, Pentium 4, and Intel Xeon processors.

• 32-bit Processors — All the IA-32 processors that use a 32-bit architecture,
which include the Intel386, Intel486, Pentium, Pentium Pro, Pentium II,
Pentium III, Pentium 4, and Intel Xeon processors.

• 16-bit Processors — All the IA-32 processors that use a 16-bit architecture,
which include the 8086/88 and Intel 286 processors.

• P6 Family Processors — All the IA-32 processors that are based on the P6
microarchitecture, which include the Pentium Pro, Pentium II, and Pentium III
processors.

• Pentium® 4 Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel NetBurst® microarchitecture.

• Intel® Pentium® M Processors — A family of IA-32 processors that are based
on the Intel Pentium M processor microarchitecture.

• Intel® Core™ Duo and Solo Processors — Families of IA-32 processors that
are based on an improved Intel Pentium M processor microarchitecture.

• Intel® Xeon® Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel NetBurst microarchitecture. This family includes the Intel Xeon
processor and the Intel Xeon processor MP based on the Intel NetBurst microar-
chitecture. Intel Xeon processors 3000, 3100, 3200, 3300, 3200, 5100, 5200,
5300, 5400, 7200, 7300 series are based on Intel Core microarchitectures and
support Intel 64 architecture.
Vol. 3A 19-1

ARCHITECTURE COMPATIBILITY
• Pentium® D Processors — A family of dual-core Intel 64 processors that
provides two processor cores in a physical package. Each core is based on the
Intel NetBurst microarchitecture.

• Pentium® Processor Extreme Editions — A family of dual-core Intel 64
processors that provides two processor cores in a physical package. Each core is
based on the Intel NetBurst microarchitecture and supports Intel Hyper-
Threading Technology.

• Intel® Core™ 2 Processor family— A family of Intel 64 processors that are
based on the Intel Core microarchitecture. Intel Pentium Dual-Core processors
are also based on the Intel Core microarchitecture.

• Intel® Atom™ Processors — A family of IA-32 and Intel 64 processors that are
based on the Intel Atom microarchitecture.

19.2 RESERVED BITS
Throughout this manual, certain bits are marked as reserved in many register and
memory layout descriptions. When bits are marked as undefined or reserved, it is
essential for compatibility with future processors that software treat these bits as
having a future, though unknown effect. Software should follow these guidelines in
dealing with reserved bits:
• Do not depend on the states of any reserved bits when testing the values of

registers or memory locations that contain such bits. Mask out the reserved bits
before testing.

• Do not depend on the states of any reserved bits when storing them to memory
or to a register.

• Do not depend on the ability to retain information written into any reserved bits.
• When loading a register, always load the reserved bits with the values indicated

in the documentation, if any, or reload them with values previously read from the
same register.

Software written for existing IA-32 processor that handles reserved bits correctly will
port to future IA-32 processors without generating protection exceptions.

19.3 ENABLING NEW FUNCTIONS AND MODES
Most of the new control functions defined for the P6 family and Pentium processors
are enabled by new mode flags in the control registers (primarily register CR4). This
register is undefined for IA-32 processors earlier than the Pentium processor.
Attempting to access this register with an Intel486 or earlier IA-32 processor results
in an invalid-opcode exception (#UD). Consequently, programs that execute
correctly on the Intel486 or earlier IA-32 processor cannot erroneously enable these
functions. Attempting to set a reserved bit in register CR4 to a value other than its
19-2 Vol. 3A

ARCHITECTURE COMPATIBILITY
original value results in a general-protection exception (#GP). So, programs that
execute on the P6 family and Pentium processors cannot erroneously enable func-
tions that may be implemented in future IA-32 processors.

The P6 family and Pentium processors do not check for attempts to set reserved bits
in model-specific registers; however these bits may be checked on more recent
processors. It is the obligation of the software writer to enforce this discipline. These
reserved bits may be used in future Intel processors.

19.4 DETECTING THE PRESENCE OF NEW FEATURES
THROUGH SOFTWARE

Software can check for the presence of new architectural features and extensions in
either of two ways:

1. Test for the presence of the feature or extension. Software can test for the
presence of new flags in the EFLAGS register and control registers. If these flags
are reserved (meaning not present in the processor executing the test), an
exception is generated. Likewise, software can attempt to execute a new
instruction, which results in an invalid-opcode exception (#UD) being generated
if it is not supported.

2. Execute the CPUID instruction. The CPUID instruction (added to the IA-32 in the
Pentium processor) indicates the presence of new features directly.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for detailed
information on detecting new processor features and extensions.

19.5 INTEL MMX TECHNOLOGY
The Pentium processor with MMX technology introduced the MMX technology and a
set of MMX instructions to the IA-32. The MMX instructions are described in Chapter
9, “Programming with Intel® MMX™ Technology,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 2A & 2B. The MMX technology
and MMX instructions are also included in the Pentium II, Pentium III, Pentium 4, and
Intel Xeon processors.

19.6 STREAMING SIMD EXTENSIONS (SSE)
The Streaming SIMD Extensions (SSE) were introduced in the Pentium III processor.
The SSE extensions consist of a new set of instructions and a new set of registers.
The new registers include the eight 128-bit XMM registers and the 32-bit MXCSR
Vol. 3A 19-3

ARCHITECTURE COMPATIBILITY
control and status register. These instructions and registers are designed to allow
SIMD computations to be made on single-precision floating-point numbers. Several
of these new instructions also operate in the MMX registers. SSE instructions and
registers are described in Section 10, “Programming with Streaming SIMD Exten-
sions (SSE),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, and in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A & 2B.

19.7 STREAMING SIMD EXTENSIONS 2 (SSE2)
The Streaming SIMD Extensions 2 (SSE2) were introduced in the Pentium 4 and Intel
Xeon processors. They consist of a new set of instructions that operate on the XMM
and MXCSR registers and perform SIMD operations on double-precision floating-
point values and on integer values. Several of these new instructions also operate in
the MMX registers. SSE2 instructions and registers are described in Chapter 11,
“Programming with Streaming SIMD Extensions 2 (SSE2),” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.

19.8 STREAMING SIMD EXTENSIONS 3 (SSE3)
The Streaming SIMD Extensions 3 (SSE3) were introduced in Pentium 4 processors
supporting Intel Hyper-Threading Technology and Intel Xeon processors. SSE3
extensions include 13 instructions. Ten of these 13 instructions support the single
instruction multiple data (SIMD) execution model used with SSE/SSE2 extensions.
One SSE3 instruction accelerates x87 style programming for conversion to integer.
The remaining two instructions (MONITOR and MWAIT) accelerate synchronization
of threads. SSE3 instructions are described in Chapter 12, “Programming with SSE3,
SSSE3 and SSE4,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, and in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volumes 2A & 2B.

19.9 ADDITIONAL STREAMING SIMD EXTENSIONS
The Supplemental Streaming SIMD Extensions 3 (SSSE3) were introduced in the
Intel Core 2 processor and Intel Xeon processor 5100 series. Streaming SIMD Exten-
sions 4 provided 54 new instructions introduced in 45nm Intel Xeon processors and
Intel Core 2 processors. SSSE3, SSE4.1 and SSE4.2 instructions are described in
Chapter 12, “Programming with SSE3, SSSE3 and SSE4,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, and in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A & 2B.
19-4 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.10 INTEL HYPER-THREADING TECHNOLOGY
Intel Hyper-Threading Technology provides two logical processors that can execute
two separate code streams (called threads) concurrently by using shared resources
in a single processor core or in a physical package.

This feature was introduced in the Intel Xeon processor MP and later steppings of the
Intel Xeon processor, and Pentium 4 processors supporting Intel Hyper-Threading
Technology. The feature is also found in the Pentium processor Extreme Edition. See
also: Section 8.7, “Intel® Hyper-Threading Technology Architecture.”

Intel Atom processors also support Intel Hyper-Threading Technology.

19.11 MULTI-CORE TECHNOLOGY
The Pentium D processor and Pentium processor Extreme Edition provide two
processor cores in each physical processor package. See also: Section 8.5, “Intel®
Hyper-Threading Technology and Intel® Multi-Core Technology,” and Section 8.8,
“Multi-Core Architecture.” Intel Core 2 Duo, Intel Pentium Dual-Core processors,
Intel Xeon processors 3000, 3100, 5100, 5200 series provide two processor cores in
each physical processor package. Intel Core 2 Extreme, Intel Core 2 Quad proces-
sors, Intel Xeon processors 3200, 3300, 5300, 5400, 7300 series provide two
processor cores in each physical processor package.

19.12 SPECIFIC FEATURES OF DUAL-CORE PROCESSOR
Dual-core processors may have some processor-specific features. Use CPUID feature
flags to detect the availability features. Note the following:
• CPUID Brand String — On Pentium processor Extreme Edition, the process will

report the correct brand string only after the correct microcode updates are
loaded.

• Enhanced Intel SpeedStep Technology — This feature is supported in
Pentium D processor but not in Pentium processor Extreme Edition.

19.13 NEW INSTRUCTIONS IN THE PENTIUM AND LATER
IA-32 PROCESSORS

Table 19-1 identifies the instructions introduced into the IA-32 in the Pentium
processor and later IA-32 processors.
Vol. 3A 19-5

ARCHITECTURE COMPATIBILITY
19.13.1 Instructions Added Prior to the Pentium Processor
The following instructions were added in the Intel486 processor:
• BSWAP (byte swap) instruction.
• XADD (exchange and add) instruction.
• CMPXCHG (compare and exchange) instruction.
• ΙNVD (invalidate cache) instruction.
• WBINVD (write-back and invalidate cache) instruction.
• INVLPG (invalidate TLB entry) instruction.

The following instructions were added in the Intel386 processor:
• LSS, LFS, and LGS (load SS, FS, and GS registers).
• Long-displacement conditional jumps.

Table 19-1. New Instruction in the Pentium Processor and
Later IA-32 Processors

Instruction CPUID Identification Bits Introduced In

CMOVcc (conditional move) EDX, Bit 15 Pentium Pro processor

FCMOVcc (floating-point conditional
move)

EDX, Bits 0 and 15

FCOMI (floating-point compare and set
EFLAGS)

EDX, Bits 0 and 15

RDPMC (read performance monitoring
counters)

EAX, Bits 8-11, set to 6H;
see Note 1

UD2 (undefined) EAX, Bits 8-11, set to 6H

CMPXCHG8B (compare and exchange 8
bytes)

EDX, Bit 8 Pentium processor

CPUID (CPU identification) None; see Note 2

RDTSC (read time-stamp counter) EDX, Bit 4

RDMSR (read model-specific register) EDX, Bit 5

WRMSR (write model-specific register) EDX, Bit 5

MMX Instructions EDX, Bit 23

NOTES:
1. The RDPMC instruction was introduced in the P6 family of processors and added to later model

Pentium processors. This instruction is model specific in nature and not architectural.
2. The CPUID instruction is available in all Pentium and P6 family processors and in later models of

the Intel486 processors. The ability to set and clear the ID flag (bit 21) in the EFLAGS register
indicates the availability of the CPUID instruction.
19-6 Vol. 3A

ARCHITECTURE COMPATIBILITY
• Single-bit instructions.
• Bit scan instructions.
• Double-shift instructions.
• Byte set on condition instruction.
• Move with sign/zero extension.
• Generalized multiply instruction.
• MOV to and from control registers.
• MOV to and from test registers (now obsolete).
• MOV to and from debug registers.
• RSM (resume from SMM). This instruction was introduced in the Intel386 SL and

Intel486 SL processors.

The following instructions were added in the Intel 387 math coprocessor:
• FPREM1.
• FUCOM, FUCOMP, and FUCOMPP.

19.14 OBSOLETE INSTRUCTIONS
The MOV to and from test registers instructions were removed from the Pentium
processor and future IA-32 processors. Execution of these instructions generates an
invalid-opcode exception (#UD).

19.15 UNDEFINED OPCODES
All new instructions defined for IA-32 processors use binary encodings that were
reserved on earlier-generation processors. Attempting to execute a reserved opcode
always results in an invalid-opcode (#UD) exception being generated. Consequently,
programs that execute correctly on earlier-generation processors cannot erroneously
execute these instructions and thereby produce unexpected results when executed
on later IA-32 processors.

19.16 NEW FLAGS IN THE EFLAGS REGISTER
The section titled “EFLAGS Register” in Chapter 3, “Basic Execution Environment,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
shows the configuration of flags in the EFLAGS register for the P6 family processors.
No new flags have been added to this register in the P6 family processors. The flags
added to this register in the Pentium and Intel486 processors are described in the
following sections.
Vol. 3A 19-7

ARCHITECTURE COMPATIBILITY
The following flags were added to the EFLAGS register in the Pentium processor:
• VIF (virtual interrupt flag), bit 19.
• VIP (virtual interrupt pending), bit 20.
• ID (identification flag), bit 21.

The AC flag (bit 18) was added to the EFLAGS register in the Intel486 processor.

19.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32
Processors

The following bits in the EFLAGS register that can be used to differentiate between
the 32-bit IA-32 processors:
• Bit 18 (the AC flag) can be used to distinguish an Intel386 processor from the P6

family, Pentium, and Intel486 processors. Since it is not implemented on the
Intel386 processor, it will always be clear.

• Bit 21 (the ID flag) indicates whether an application can execute the CPUID
instruction. The ability to set and clear this bit indicates that the processor is a P6
family or Pentium processor. The CPUID instruction can then be used to
determine which processor.

• Bits 19 (the VIF flag) and 20 (the VIP flag) will always be zero on processors that
do not support virtual mode extensions, which includes all 32-bit processors prior
to the Pentium processor.

See Chapter 14, “Processor Identification and Feature Determination,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation on identifying processors.

19.17 STACK OPERATIONS
This section identifies the differences in stack implementation between the various
IA-32 processors.

19.17.1 PUSH SP
The P6 family, Pentium, Intel486, Intel386, and Intel 286 processors push a different
value on the stack for a PUSH SP instruction than the 8086 processor. The 32-bit
processors push the value of the SP register before it is decremented as part of the
push operation; the 8086 processor pushes the value of the SP register after it is
decremented. If the value pushed is important, replace PUSH SP instructions with the
following three instructions:

PUSH BP
MOV BP, SP
19-8 Vol. 3A

ARCHITECTURE COMPATIBILITY
XCHG BP, [BP]

This code functions as the 8086 processor PUSH SP instruction on the P6 family,
Pentium, Intel486, Intel386, and Intel 286 processors.

19.17.2 EFLAGS Pushed on the Stack
The setting of the stored values of bits 12 through 15 (which includes the IOPL field
and the NT flag) in the EFLAGS register by the PUSHF instruction, by interrupts, and
by exceptions is different with the 32-bit IA-32 processors than with the 8086 and
Intel 286 processors. The differences are as follows:
• 8086 processor—bits 12 through 15 are always set.
• Intel 286 processor—bits 12 through 15 are always cleared in real-address mode.
• 32-bit processors in real-address mode—bit 15 (reserved) is always cleared, and

bits 12 through 14 have the last value loaded into them.

19.18 X87 FPU
This section addresses the issues that must be faced when porting floating-point
software designed to run on earlier IA-32 processors and math coprocessors to a
Pentium 4, Intel Xeon, P6 family, or Pentium processor with integrated x87 FPU. To
software, a Pentium 4, Intel Xeon, or P6 family processor looks very much like a
Pentium processor. Floating-point software which runs on a Pentium or Intel486 DX
processor, or on an Intel486 SX processor/Intel 487 SX math coprocessor system or
an Intel386 processor/Intel 387 math coprocessor system, will run with at most
minor modifications on a Pentium 4, Intel Xeon, or P6 family processor. To port code
directly from an Intel 286 processor/Intel 287 math coprocessor system or an
Intel 8086 processor/8087 math coprocessor system to a Pentium 4, Intel Xeon, P6
family, or Pentium processor, certain additional issues must be addressed.

In the following sections, the term “32-bit x87 FPUs” refers to the P6 family, Pentium,
and Intel486 DX processors, and to the Intel 487 SX and Intel 387 math coproces-
sors; the term “16-bit IA-32 math coprocessors” refers to the Intel 287 and 8087
math coprocessors.

19.18.1 Control Register CR0 Flags
The ET, NE, and MP flags in control register CR0 control the interface between the
integer unit of an IA-32 processor and either its internal x87 FPU or an external math
coprocessor. The effect of these flags in the various IA-32 processors are described in
the following paragraphs.

The ET (extension type) flag (bit 4 of the CR0 register) is used in the Intel386
processor to indicate whether the math coprocessor in the system is an Intel 287
Vol. 3A 19-9

ARCHITECTURE COMPATIBILITY
math coprocessor (flag is clear) or an Intel 387 DX math coprocessor (flag is set).
This bit is hardwired to 1 in the P6 family, Pentium, and Intel486 processors.

The NE (Numeric Exception) flag (bit 5 of the CR0 register) is used in the P6 family,
Pentium, and Intel486 processors to determine whether unmasked floating-point
exceptions are reported internally through interrupt vector 16 (flag is set) or exter-
nally through an external interrupt (flag is clear). On a hardware reset, the NE flag is
initialized to 0, so software using the automatic internal error-reporting mechanism
must set this flag to 1. This flag is nonexistent on the Intel386 processor.

As on the Intel 286 and Intel386 processors, the MP (monitor coprocessor) flag (bit 1
of register CR0) determines whether the WAIT/FWAIT instructions or waiting-type
floating-point instructions trap when the context of the x87 FPU is different from that
of the currently-executing task. If the MP and TS flag are set, then a WAIT/FWAIT
instruction and waiting instructions will cause a device-not-available exception
(interrupt vector 7). The MP flag is used on the Intel 286 and Intel386 processors to
support the use of a WAIT/FWAIT instruction to wait on a device other than a math
coprocessor. The device reports its status through the BUSY# pin. Since the P6
family, Pentium, and Intel486 processors do not have such a pin, the MP flag has no
relevant use and should be set to 1 for normal operation.

19.18.2 x87 FPU Status Word
This section identifies differences to the x87 FPU status word for the different IA-32
processors and math coprocessors, the reason for the differences, and their impact
on software.

19.18.2.1 Condition Code Flags (C0 through C3)
The following information pertains to differences in the use of the condition code
flags (C0 through C3) located in bits 8, 9, 10, and 14 of the x87 FPU status word.

After execution of an FINIT instruction or a hardware reset on a 32-bit x87 FPU, the
condition code flags are set to 0. The same operations on a 16-bit IA-32 math copro-
cessor leave these flags intact (they contain their prior value). This difference in
operation has no impact on software and provides a consistent state after reset.

Transcendental instruction results in the core range of the P6 family and Pentium
processors may differ from the Intel486 DX processor and Intel 487 SX math copro-
cessor by 2 to 3 units in the last place (ulps)—(see “Transcendental Instruction Accu-
racy” in Chapter 8, “Programming with the x87 FPU,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1). As a result, the value saved
in the C1 flag may also differ.

After an incomplete FPREM/FPREM1 instruction, the C0, C1, and C3 flags are set to 0
on the 32-bit x87 FPUs. After the same operation on a 16-bit IA-32 math copro-
cessor, these flags are left intact.
19-10 Vol. 3A

ARCHITECTURE COMPATIBILITY
On the 32-bit x87 FPUs, the C2 flag serves as an incomplete flag for the FTAN instruc-
tion. On the 16-bit IA-32 math coprocessors, the C2 flag is undefined for the FPTAN
instruction. This difference has no impact on software, because Intel 287 or 8087
programs do not check C2 after an FPTAN instruction. The use of this flag on later
processors allows fast checking of operand range.

19.18.2.2 Stack Fault Flag
When unmasked stack overflow or underflow occurs on a 32-bit x87 FPU, the IE flag
(bit 0) and the SF flag (bit 6) of the x87 FPU status word are set to indicate a stack
fault and condition code flag C1 is set or cleared to indicate overflow or underflow,
respectively. When unmasked stack overflow or underflow occurs on a 16-bit IA-32
math coprocessor, only the IE flag is set. Bit 6 is reserved on these processors. The
addition of the SF flag on a 32-bit x87 FPU has no impact on software. Existing excep-
tion handlers need not change, but may be upgraded to take advantage of the addi-
tional information.

19.18.3 x87 FPU Control Word
Only affine closure is supported for infinity control on a 32-bit x87 FPU. The infinity
control flag (bit 12 of the x87 FPU control word) remains programmable on these
processors, but has no effect. This change was made to conform to the IEEE Stan-
dard 754 for Binary Floating-Point Arithmetic. On a 16-bit IA-32 math coprocessor,
both affine and projective closures are supported, as determined by the setting of bit
12. After a hardware reset, the default value of bit 12 is projective. Software that
requires projective infinity arithmetic may give different results.

19.18.4 x87 FPU Tag Word
When loading the tag word of a 32-bit x87 FPU, using an FLDENV, FRSTOR, or
FXRSTOR (Pentium III processor only) instruction, the processor examines the
incoming tag and classifies the location only as empty or non-empty. Thus, tag
values of 00, 01, and 10 are interpreted by the processor to indicate a non-empty
location. The tag value of 11 is interpreted by the processor to indicate an empty
location. Subsequent operations on a non-empty register always examine the value
in the register, not the value in its tag. The FSTENV, FSAVE, and FXSAVE (Pentium III
processor only) instructions examine the non-empty registers and put the correct
values in the tags before storing the tag word.

The corresponding tag for a 16-bit IA-32 math coprocessor is checked before each
register access to determine the class of operand in the register; the tag is updated
after every change to a register so that the tag always reflects the most recent status
of the register. Software can load a tag with a value that disagrees with the contents
of a register (for example, the register contains a valid value, but the tag says
special). Here, the 16-bit IA-32 math coprocessors honor the tag and do not examine
the register.
Vol. 3A 19-11

ARCHITECTURE COMPATIBILITY
Software written to run on a 16-bit IA-32 math coprocessor may not operate
correctly on a 16-bit x87 FPU, if it uses the FLDENV, FRSTOR, or FXRSTOR instruc-
tions to change tags to values (other than to empty) that are different from actual
register contents.

The encoding in the tag word for the 32-bit x87 FPUs for unsupported data formats
(including pseudo-zero and unnormal) is special (10B), to comply with IEEE Standard
754. The encoding in the 16-bit IA-32 math coprocessors for pseudo-zero and
unnormal is valid (00B) and the encoding for other unsupported data formats is
special (10B). Code that recognizes the pseudo-zero or unnormal format as valid
must therefore be changed if it is ported to a 32-bit x87 FPU.

19.18.5 Data Types
This section discusses the differences of data types for the various x87 FPUs and
math coprocessors.

19.18.5.1 NaNs
The 32-bit x87 FPUs distinguish between signaling NaNs (SNaNs) and quiet NaNs
(QNaNs). These x87 FPUs only generate QNaNs and normally do not generate an
exception upon encountering a QNaN. An invalid-operation exception (#I) is gener-
ated only upon encountering a SNaN, except for the FCOM, FIST, and FBSTP instruc-
tions, which also generates an invalid-operation exceptions for a QNaNs. This
behavior matches IEEE Standard 754.

The 16-bit IA-32 math coprocessors only generate one kind of NaN (the equivalent of
a QNaN), but the raise an invalid-operation exception upon encountering any kind of
NaN.

When porting software written to run on a 16-bit IA-32 math coprocessor to a 32-bit
x87 FPU, uninitialized memory locations that contain QNaNs should be changed to
SNaNs to cause the x87 FPU or math coprocessor to fault when uninitialized memory
locations are referenced.

19.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal
Formats

The 32-bit x87 FPUs neither generate nor support the pseudo-zero, pseudo-NaN,
pseudo-infinity, and unnormal formats. Whenever they encounter them in an arith-
metic operation, they raise an invalid-operation exception. The 16-bit IA-32 math
coprocessors define and support special handling for these formats. Support for
these formats was dropped to conform with IEEE Standard 754 for Binary Floating-
Point Arithmetic.

This change should not impact software ported from 16-bit IA-32 math coprocessors
to 32-bit x87 FPUs. The 32-bit x87 FPUs do not generate these formats, and there-
fore will not encounter them unless software explicitly loads them in the data regis-
19-12 Vol. 3A

ARCHITECTURE COMPATIBILITY
ters. The only affect may be in how software handles the tags in the tag word (see
also: Section 19.18.4, “x87 FPU Tag Word”).

19.18.6 Floating-Point Exceptions
This section identifies the implementation differences in exception handling for
floating-point instructions in the various x87 FPUs and math coprocessors.

19.18.6.1 Denormal Operand Exception (#D)
When the denormal operand exception is masked, the 32-bit x87 FPUs automatically
normalize denormalized numbers when possible; whereas, the 16-bit IA-32 math
coprocessors return a denormal result. A program written to run on a 16-bit IA-32
math coprocessor that uses the denormal exception solely to normalize denormal-
ized operands is redundant when run on the 32-bit x87 FPUs. If such a program is run
on 32-bit x87 FPUs, performance can be improved by masking the denormal excep-
tion. Floating-point programs run faster when the FPU performs normalization of
denormalized operands.

The denormal operand exception is not raised for transcendental instructions and the
FXTRACT instruction on the 16-bit IA-32 math coprocessors. This exception is raised
for these instructions on the 32-bit x87 FPUs. The exception handlers ported to these
latter processors need to be changed only if the handlers gives special treatment to
different opcodes.

19.18.6.2 Numeric Overflow Exception (#O)
On the 32-bit x87 FPUs, when the numeric overflow exception is masked and the
rounding mode is set to chop (toward 0), the result is the largest positive or smallest
negative number. The 16-bit IA-32 math coprocessors do not signal the overflow
exception when the masked response is not ∞; that is, they signal overflow only
when the rounding control is not set to round to 0. If rounding is set to chop (toward
0), the result is positive or negative ∞. Under the most common rounding modes, this
difference has no impact on existing software.

If rounding is toward 0 (chop), a program on a 32-bit x87 FPU produces, under over-
flow conditions, a result that is different in the least significant bit of the significand,
compared to the result on a 16-bit IA-32 math coprocessor. The reason for this differ-
ence is IEEE Standard 754 compatibility.

When the overflow exception is not masked, the precision exception is flagged on the
32-bit x87 FPUs. When the result is stored in the stack, the significand is rounded
according to the precision control (PC) field of the FPU control word or according to
the opcode. On the 16-bit IA-32 math coprocessors, the precision exception is not
flagged and the significand is not rounded. The impact on existing software is that if
the result is stored on the stack, a program running on a 32-bit x87 FPU produces a
different result under overflow conditions than on a 16-bit IA-32 math coprocessor.
Vol. 3A 19-13

ARCHITECTURE COMPATIBILITY
The difference is apparent only to the exception handler. This difference is for IEEE
Standard 754 compatibility.

19.18.6.3 Numeric Underflow Exception (#U)
When the underflow exception is masked on the 32-bit x87 FPUs, the underflow
exception is signaled when both the result is tiny and denormalization results in a
loss of accuracy. When the underflow exception is unmasked and the instruction is
supposed to store the result on the stack, the significand is rounded to the appro-
priate precision (according to the PC flag in the FPU control word, for those instruc-
tions controlled by PC, otherwise to extended precision), after adjusting the
exponent.

When the underflow exception is masked on the 16-bit IA-32 math coprocessors and
rounding is toward 0, the underflow exception flag is raised on a tiny result, regard-
less of loss of accuracy. When the underflow exception is not masked and the desti-
nation is the stack, the significand is not rounded, but instead is left as is.

When the underflow exception is masked, this difference has no impact on existing
software. The underflow exception occurs less often when rounding is toward 0.

When the underflow exception not masked. A program running on a 32-bit x87 FPU
produces a different result during underflow conditions than on a 16-bit IA-32 math
coprocessor if the result is stored on the stack. The difference is only in the least
significant bit of the significand and is apparent only to the exception handler.

19.18.6.4 Exception Precedence
There is no difference in the precedence of the denormal-operand exception on the
32-bit x87 FPUs, whether it be masked or not. When the denormal-operand excep-
tion is not masked on the 16-bit IA-32 math coprocessors, it takes precedence over
all other exceptions. This difference causes no impact on existing software, but some
unneeded normalization of denormalized operands is prevented on the Intel486
processor and Intel 387 math coprocessor.

19.18.6.5 CS and EIP For FPU Exceptions
On the Intel 32-bit x87 FPUs, the values from the CS and EIP registers saved for
floating-point exceptions point to any prefixes that come before the floating-point
instruction. On the 8087 math coprocessor, the saved CS and IP registers points to
the floating-point instruction.

19.18.6.6 FPU Error Signals
The floating-point error signals to the P6 family, Pentium, and Intel486 processors do
not pass through an interrupt controller; an INT# signal from an Intel 387, Intel 287
or 8087 math coprocessors does. If an 8086 processor uses another exception for
19-14 Vol. 3A

ARCHITECTURE COMPATIBILITY
the 8087 interrupt, both exception vectors should call the floating-point-error excep-
tion handler. Some instructions in a floating-point-error exception handler may need
to be deleted if they use the interrupt controller. The P6 family, Pentium, and Intel486
processors have signals that, with the addition of external logic, support reporting for
emulation of the interrupt mechanism used in many personal computers.

On the P6 family, Pentium, and Intel486 processors, an undefined floating-point
opcode will cause an invalid-opcode exception (#UD, interrupt vector 6). Undefined
floating-point opcodes, like legal floating-point opcodes, cause a device not available
exception (#NM, interrupt vector 7) when either the TS or EM flag in control register
CR0 is set. The P6 family, Pentium, and Intel486 processors do not check for floating-
point error conditions on encountering an undefined floating-point opcode.

19.18.6.7 Assertion of the FERR# Pin
When using the MS-DOS compatibility mode for handing floating-point exceptions,
the FERR# pin must be connected to an input to an external interrupt controller. An
external interrupt is then generated when the FERR# output drives the input to the
interrupt controller and the interrupt controller in turn drives the INTR pin on the
processor.

For the P6 family and Intel386 processors, an unmasked floating-point exception
always causes the FERR# pin to be asserted upon completion of the instruction that
caused the exception. For the Pentium and Intel486 processors, an unmasked
floating-point exception may cause the FERR# pin to be asserted either at the end of
the instruction causing the exception or immediately before execution of the next
floating-point instruction. (Note that the next floating-point instruction would not be
executed until the pending unmasked exception has been handled.) See Appendix D,
“Guidelines for Writing x87 FPU Extension Handlers,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a complete description of
the required mechanism for handling floating-point exceptions using the MS-DOS
compatibility mode.

Using FERR# and IGNNE# to handle floating-point exception is deprecated by
modern operating systems; this approach also limits newer processors to operate
with one logical processor active.

19.18.6.8 Invalid Operation Exception On Denormals
An invalid-operation exception is not generated on the 32-bit x87 FPUs upon encoun-
tering a denormal value when executing a FSQRT, FDIV, or FPREM instruction or upon
conversion to BCD or to integer. The operation proceeds by first normalizing the
value. On the 16-bit IA-32 math coprocessors, upon encountering this situation, the
invalid-operation exception is generated. This difference has no impact on existing
software. Software running on the 32-bit x87 FPUs continues to execute in cases
where the 16-bit IA-32 math coprocessors trap. The reason for this change was to
eliminate an exception from being raised.
Vol. 3A 19-15

ARCHITECTURE COMPATIBILITY
19.18.6.9 Alignment Check Exceptions (#AC)
If alignment checking is enabled, a misaligned data operand on the P6 family,
Pentium, and Intel486 processors causes an alignment check exception (#AC) when
a program or procedure is running at privilege-level 3, except for the stack portion of
the FSAVE/FNSAVE, FXSAVE, FRSTOR, and FXRSTOR instructions.

19.18.6.10 Segment Not Present Exception During FLDENV
On the Intel486 processor, when a segment not present exception (#NP) occurs in
the middle of an FLDENV instruction, it can happen that part of the environment is
loaded and part not. In such cases, the FPU control word is left with a value of 007FH.
The P6 family and Pentium processors ensure the internal state is correct at all times
by attempting to read the first and last bytes of the environment before updating the
internal state.

19.18.6.11 Device Not Available Exception (#NM)
The device-not-available exception (#NM, interrupt 7) will occur in the P6 family,
Pentium, and Intel486 processors as described in Section 2.5, “Control Registers,”
Table 2-1, and Chapter 6, “Interrupt 7—Device Not Available Exception (#NM).”

19.18.6.12 Coprocessor Segment Overrun Exception
The coprocessor segment overrun exception (interrupt 9) does not occur in the P6
family, Pentium, and Intel486 processors. In situations where the Intel 387 math
coprocessor would cause an interrupt 9, the P6 family, Pentium, and Intel486 proces-
sors simply abort the instruction. To avoid undetected segment overruns, it is recom-
mended that the floating-point save area be placed in the same page as the TSS. This
placement will prevent the FPU environment from being lost if a page fault occurs
during the execution of an FLDENV, FRSTOR, or FXRSTOR instruction while the oper-
ating system is performing a task switch.

19.18.6.13 General Protection Exception (#GP)
A general-protection exception (#GP, interrupt 13) occurs if the starting address of a
floating-point operand falls outside a segment’s size. An exception handler should be
included to report these programming errors.

19.18.6.14 Floating-Point Error Exception (#MF)
In real mode and protected mode (not including virtual-8086 mode), interrupt vector
16 must point to the floating-point exception handler. In virtual 8086 mode, the
virtual-8086 monitor can be programmed to accommodate a different location of the
interrupt vector for floating-point exceptions.
19-16 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.18.7 Changes to Floating-Point Instructions
This section identifies the differences in floating-point instructions for the various
Intel FPU and math coprocessor architectures, the reason for the differences, and
their impact on software.

19.18.7.1 FDIV, FPREM, and FSQRT Instructions
The 32-bit x87 FPUs support operations on denormalized operands and, when
detected, an underflow exception can occur, for compatibility with the IEEE Standard
754. The 16-bit IA-32 math coprocessors do not operate on denormalized operands
or return underflow results. Instead, they generate an invalid-operation exception
when they detect an underflow condition. An existing underflow exception handler
will require change only if it gives different treatment to different opcodes. Also, it is
possible that fewer invalid-operation exceptions will occur.

19.18.7.2 FSCALE Instruction
With the 32-bit x87 FPUs, the range of the scaling operand is not restricted. If (0 < |
ST(1) < 1), the scaling factor is 0; therefore, ST(0) remains unchanged. If the
rounded result is not exact or if there was a loss of accuracy (masked underflow), the
precision exception is signaled. With the 16-bit IA-32 math coprocessors, the range
of the scaling operand is restricted. If (0 < | ST(1) | < 1), the result is undefined and
no exception is signaled. The impact of this difference on exiting software is that
different results are delivered on the 32-bit and 16-bit FPUs and math coprocessors
when (0 < | ST(1) | < 1).

19.18.7.3 FPREM1 Instruction
The 32-bit x87 FPUs compute a partial remainder according to IEEE Standard 754.
This instruction does not exist on the 16-bit IA-32 math coprocessors. The avail-
ability of the FPREM1 instruction has is no impact on existing software.

19.18.7.4 FPREM Instruction
On the 32-bit x87 FPUs, the condition code flags C0, C3, C1 in the status word
correctly reflect the three low-order bits of the quotient following execution of the
FPREM instruction. On the 16-bit IA-32 math coprocessors, the quotient bits are
incorrect when performing a reduction of (64N + M) when (N ≥ 1) and M is 1 or 2. This
difference does not affect existing software; software that works around the bug
should not be affected.

19.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
When executing the FUCOM, FUCOMP, and FUCOMPP instructions, the 32-bit x87
FPUs perform unordered compare according to IEEE Standard 754. These instruc-
Vol. 3A 19-17

ARCHITECTURE COMPATIBILITY
tions do not exist on the 16-bit IA-32 math coprocessors. The availability of these
new instructions has no impact on existing software.

19.18.7.6 FPTAN Instruction
On the 32-bit x87 FPUs, the range of the operand for the FPTAN instruction is much
less restricted (| ST(0) | < 263) than on earlier math coprocessors. The instruction
reduces the operand internally using an internal π/4 constant that is more accurate.
The range of the operand is restricted to (| ST(0) | < π/4) on the 16-bit IA-32 math
coprocessors; the operand must be reduced to this range using FPREM. This change
has no impact on existing software.

19.18.7.7 Stack Overflow
On the 32-bit x87 FPUs, if an FPU stack overflow occurs when the invalid-operation
exception is masked, the FPU returns the real, integer, or BCD-integer indefinite
value to the destination operand, depending on the instruction being executed. On
the 16-bit IA-32 math coprocessors, the original operand remains unchanged
following a stack overflow, but it is loaded into register ST(1). This difference has no
impact on existing software.

19.18.7.8 FSIN, FCOS, and FSINCOS Instructions
On the 32-bit x87 FPUs, these instructions perform three common trigonometric
functions. These instructions do not exist on the 16-bit IA-32 math coprocessors. The
availability of these instructions has no impact on existing software, but using them
provides a performance upgrade.

19.18.7.9 FPATAN Instruction
On the 32-bit x87 FPUs, the range of operands for the FPATAN instruction is unre-
stricted. On the 16-bit IA-32 math coprocessors, the absolute value of the operand in
register ST(0) must be smaller than the absolute value of the operand in register
ST(1). This difference has impact on existing software.

19.18.7.10 F2XM1 Instruction
The 32-bit x87 FPUs support a wider range of operands (–1 < ST (0) < + 1) for the
F2XM1 instruction. The supported operand range for the 16-bit IA-32 math coproces-
sors is (0 ≤ ST(0) ≤ 0.5). This difference has no impact on existing software.

19.18.7.11 FLD Instruction
On the 32-bit x87 FPUs, when using the FLD instruction to load an extended-real
value, a denormal-operand exception is not generated because the instruction is not
19-18 Vol. 3A

ARCHITECTURE COMPATIBILITY
arithmetic. The 16-bit IA-32 math coprocessors do report a denormal-operand
exception in this situation. This difference does not affect existing software.

On the 32-bit x87 FPUs, loading a denormal value that is in single- or double-real
format causes the value to be converted to extended-real format. Loading a
denormal value on the 16-bit IA-32 math coprocessors causes the value to be
converted to an unnormal. If the next instruction is FXTRACT or FXAM, the 32-bit x87
FPUs will give a different result than the 16-bit IA-32 math coprocessors. This change
was made for IEEE Standard 754 compatibility.

On the 32-bit x87 FPUs, loading an SNaN that is in single- or double-real format
causes the FPU to generate an invalid-operation exception. The 16-bit IA-32 math
coprocessors do not raise an exception when loading a signaling NaN. The invalid-
operation exception handler for 16-bit math coprocessor software needs to be
updated to handle this condition when porting software to 32-bit FPUs. This change
was made for IEEE Standard 754 compatibility.

19.18.7.12 FXTRACT Instruction
On the 32-bit x87 FPUs, if the operand is 0 for the FXTRACT instruction, the divide-
by-zero exception is reported and –∞ is delivered to register ST(1). If the operand is
+∞, no exception is reported. If the operand is 0 on the 16-bit IA-32 math coproces-
sors, 0 is delivered to register ST(1) and no exception is reported. If the operand is
+∞, the invalid-operation exception is reported. These differences have no impact on
existing software. Software usually bypasses 0 and ∞. This change is due to the IEEE
Standard 754 recommendation to fully support the “logb” function.

19.18.7.13 Load Constant Instructions
On 32-bit x87 FPUs, rounding control is in effect for the load constant instructions.
Rounding control is not in effect for the 16-bit IA-32 math coprocessors. Results for
the FLDPI, FLDLN2, FLDLG2, and FLDL2E instructions are the same as for the 16-bit
IA-32 math coprocessors when rounding control is set to round to nearest or round
to +∞. They are the same for the FLDL2T instruction when rounding control is set to
round to nearest, round to –∞, or round to zero. Results are different from the 16-bit
IA-32 math coprocessors in the least significant bit of the mantissa if rounding
control is set to round to –∞ or round to 0 for the FLDPI, FLDLN2, FLDLG2, and
FLDL2E instructions; they are different for the FLDL2T instruction if round to +∞ is
specified. These changes were implemented for compatibility with IEEE Standard
754 for Floating-Point Arithmetic recommendations.

19.18.7.14 FSETPM Instruction
With the 32-bit x87 FPUs, the FSETPM instruction is treated as NOP (no operation).
This instruction informs the Intel 287 math coprocessor that the processor is in
protected mode. This change has no impact on existing software. The 32-bit x87
Vol. 3A 19-19

ARCHITECTURE COMPATIBILITY
FPUs handle all addressing and exception-pointer information, whether in protected
mode or not.

19.18.7.15 FXAM Instruction
With the 32-bit x87 FPUs, if the FPU encounters an empty register when executing
the FXAM instruction, it not generate combinations of C0 through C3 equal to 1101 or
1111. The 16-bit IA-32 math coprocessors may generate these combinations, among
others. This difference has no impact on existing software; it provides a performance
upgrade to provide repeatable results.

19.18.7.16 FSAVE and FSTENV Instructions
With the 32-bit x87 FPUs, the address of a memory operand pointer stored by FSAVE
or FSTENV is undefined if the previous floating-point instruction did not refer to
memory

19.18.8 Transcendental Instructions
The floating-point results of the P6 family and Pentium processors for transcendental
instructions in the core range may differ from the Intel486 processors by about 2 or
3 ulps (see “Transcendental Instruction Accuracy” in Chapter 8, “Programming with
the x87 FPU,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). Condition code flag C1 of the status word may differ as a result. The exact
threshold for underflow and overflow will vary by a few ulps. The P6 family and
Pentium processors’ results will have a worst case error of less than 1 ulp when
rounding to the nearest-even and less than 1.5 ulps when rounding in other modes.
The transcendental instructions are guaranteed to be monotonic, with respect to the
input operands, throughout the domain supported by the instruction.

Transcendental instructions may generate different results in the round-up flag (C1)
on the 32-bit x87 FPUs. The round-up flag is undefined for these instructions on the
16-bit IA-32 math coprocessors. This difference has no impact on existing software.

19.18.9 Obsolete Instructions
The 8087 math coprocessor instructions FENI and FDISI and the Intel 287 math
coprocessor instruction FSETPM are treated as integer NOP instructions in the 32-bit
x87 FPUs. If these opcodes are detected in the instruction stream, no specific opera-
tion is performed and no internal states are affected.
19-20 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.18.10 WAIT/FWAIT Prefix Differences
On the Intel486 processor, when a WAIT/FWAIT instruction precedes a floating-point
instruction (one which itself automatically synchronizes with the previous floating-
point instruction), the WAIT/FWAIT instruction is treated as a no-op. Pending
floating-point exceptions from a previous floating-point instruction are processed not
on the WAIT/FWAIT instruction but on the floating-point instruction following the
WAIT/FWAIT instruction. In such a case, the report of a floating-point exception may
appear one instruction later on the Intel486 processor than on a P6 family or Pentium
FPU, or on Intel 387 math coprocessor.

19.18.11 Operands Split Across Segments and/or Pages
On the P6 family, Pentium, and Intel486 processor FPUs, when the first half of an
operand to be written is inside a page or segment and the second half is outside, a
memory fault can cause the first half to be stored but not the second half. In this situ-
ation, the Intel 387 math coprocessor stores nothing.

19.18.12 FPU Instruction Synchronization
On the 32-bit x87 FPUs, all floating-point instructions are automatically synchro-
nized; that is, the processor automatically waits until the previous floating-point
instruction has completed before completing the next floating-point instruction. No
explicit WAIT/FWAIT instructions are required to assure this synchronization. For the
8087 math coprocessors, explicit waits are required before each floating-point
instruction to ensure synchronization. Although 8087 programs having explicit WAIT
instructions execute perfectly on the 32-bit IA-32 processors without reassembly,
these WAIT instructions are unnecessary.

19.19 SERIALIZING INSTRUCTIONS
Certain instructions have been defined to serialize instruction execution to ensure
that modifications to flags, registers and memory are completed before the next
instruction is executed (or in P6 family processor terminology “committed to machine
state”). Because the P6 family processors use branch-prediction and out-of-order
execution techniques to improve performance, instruction execution is not generally
serialized until the results of an executed instruction are committed to machine state
(see Chapter 2, “Intel® 64 and IA-32 Architectures,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).

As a result, at places in a program or task where it is critical to have execution
completed for all previous instructions before executing the next instruction (for
example, at a branch, at the end of a procedure, or in multiprocessor dependent
code), it is useful to add a serializing instruction. See Section 8.3, “Serializing
Instructions,” for more information on serializing instructions.
Vol. 3A 19-21

ARCHITECTURE COMPATIBILITY
19.20 FPU AND MATH COPROCESSOR INITIALIZATION
Table 9-1 shows the states of the FPUs in the P6 family, Pentium, Intel486 processors
and of the Intel 387 math coprocessor and Intel 287 coprocessor following a power-
up, reset, or INIT, or following the execution of an FINIT/FNINIT instruction. The
following is some additional compatibility information concerning the initialization of
x87 FPUs and math coprocessors.

19.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
Following an Intel386 processor reset, the processor identifies its coprocessor type
(Intel® 287 or Intel® 387 DX math coprocessor) by sampling its ERROR# input some
time after the falling edge of RESET# signal and before execution of the first floating-
point instruction. The Intel 287 coprocessor keeps its ERROR# output in inactive
state after hardware reset; the Intel 387 coprocessor keeps its ERROR# output in
active state after hardware reset.

Upon hardware reset or execution of the FINIT/FNINIT instruction, the Intel 387
math coprocessor signals an error condition. The P6 family, Pentium, and Intel486
processors, like the Intel 287 coprocessor, do not.

19.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor
Initialization

When initializing an Intel486 SX processor and an Intel 487 SX math coprocessor,
the initialization routine should check the presence of the math coprocessor and
should set the FPU related flags (EM, MP, and NE) in control register CR0 accordingly
(see Section 2.5, “Control Registers,” for a complete description of these flags). Table
19-2 gives the recommended settings for these flags when the math coprocessor is
present. The FSTCW instruction will give a value of FFFFH for the Intel486 SX micro-
processor and 037FH for the Intel 487 SX math coprocessor.

The EM and MP flags in register CR0 are interpreted as shown in Table 19-3.

Table 19-2. Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor System

CR0 Flags Intel486 SX Processor Only Intel 487 SX Math Coprocessor Present

EM 1 0

MP 0 1

NE 1 0, for MS-DOS* systems
1, for user-defined exception handler
19-22 Vol. 3A

ARCHITECTURE COMPATIBILITY
Following is an example code sequence to initialize the system and check for the
presence of Intel486 SX processor/Intel 487 SX math coprocessor.

fninit
fstcw mem_loc
mov ax, mem_loc
cmp ax, 037fh
jz Intel487_SX_Math_CoProcessor_present ;ax=037fh
jmp Intel486_SX_microprocessor_present ;ax=ffffh

If the Intel 487 SX math coprocessor is not present, the following code can be run to
set the CR0 register for the Intel486 SX processor.

mov eax, cr0
and eax, fffffffdh ;make MP=0
or eax, 0024h ;make EM=1, NE=1
mov cr0, eax

This initialization will cause any floating-point instruction to generate a device not
available exception (#NH), interrupt 7. The software emulation will then take control
to execute these instructions. This code is not required if an Intel 487 SX math
coprocessor is present in the system. In that case, the typical initialization routine for
the Intel486 SX microprocessor will be adequate.

Also, when designing an Intel486 SX processor based system with an Intel 487 SX
math coprocessor, timing loops should be independent of clock speed and clocks per
instruction. One way to attain this is to implement these loops in hardware and not in
software (for example, BIOS).

Table 19-3. EM and MP Flag Interpretation

EM MP Interpretation

0 0 Floating-point instructions are passed to FPU; WAIT/FWAIT
and other waiting-type instructions ignore TS.

0 1 Floating-point instructions are passed to FPU; WAIT/FWAIT
and other waiting-type instructions test TS.

1 0 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions ignore TS.

1 1 Floating-point instructions trap to emulator; WAIT/FWAIT and
other waiting-type instructions test TS.
Vol. 3A 19-23

ARCHITECTURE COMPATIBILITY
19.21 CONTROL REGISTERS
The following sections identify the new control registers and control register flags
and fields that were introduced to the 32-bit IA-32 in various processor families. See
Figure 2-6 for the location of these flags and fields in the control registers.

The Pentium III processor introduced one new control flag in control register CR4:
• OSXMMEXCPT (bit 10) — The OS will set this bit if it supports unmasked SIMD

floating-point exceptions.

The Pentium II processor introduced one new control flag in control register CR4:
• OSFXSR (bit 9) — The OS supports saving and restoring the Pentium III processor

state during context switches.

The Pentium Pro processor introduced three new control flags in control register CR4:
• PAE (bit 5) — Physical address extension. Enables paging mechanism to

reference extended physical addresses when set; restricts physical addresses to
32 bits when clear (see also: Section 19.22.1.1, “Physical Memory Addressing
Extension”).

• PGE (bit 7) — Page global enable. Inhibits flushing of frequently-used or shared
pages on CR3 writes (see also: Section 19.22.1.2, “Global Pages”).

• PCE (bit 8) — Performance-monitoring counter enable. Enables execution of the
RDPMC instruction at any protection level.

The content of CR4 is 0H following a hardware reset.

Control register CR4 was introduced in the Pentium processor. This register contains
flags that enable certain new extensions provided in the Pentium processor:
• VME — Virtual-8086 mode extensions. Enables support for a virtual interrupt flag

in virtual-8086 mode (see Section 17.3, “Interrupt and Exception Handling in
Virtual-8086 Mode”).

• PVI — Protected-mode virtual interrupts. Enables support for a virtual interrupt
flag in protected mode (see Section 17.4, “Protected-Mode Virtual Interrupts”).

• TSD — Time-stamp disable. Restricts the execution of the RDTSC instruction to
procedures running at privileged level 0.

• DE — Debugging extensions. Causes an undefined opcode (#UD) exception to be
generated when debug registers DR4 and DR5 are references for improved
performance (see Section 19.23.3, “Debug Registers DR4 and DR5”).

• PSE — Page size extensions. Enables 4-MByte pages with 32-bit paging when set
(see Section 4.3, “32-Bit Paging”).

• MCE — Machine-check enable. Enables the machine-check exception, allowing
exception handling for certain hardware error conditions (see Chapter 15,
“Machine-Check Architecture”).

The Intel486 processor introduced five new flags in control register CR0:
19-24 Vol. 3A

ARCHITECTURE COMPATIBILITY
• NE — Numeric error. Enables the normal mechanism for reporting floating-point
numeric errors.

• WP — Write protect. Write-protects read-only pages against supervisor-mode
accesses.

• AM — Alignment mask. Controls whether alignment checking is performed.
Operates in conjunction with the AC (Alignment Check) flag.

• NW — Not write-through. Enables write-throughs and cache invalidation cycles
when clear and disables invalidation cycles and write-throughs that hit in the
cache when set.

• CD — Cache disable. Enables the internal cache when clear and disables the
cache when set.

The Intel486 processor introduced two new flags in control register CR3:
• PCD — Page-level cache disable. The state of this flag is driven on the PCD# pin

during bus cycles that are not paged, such as interrupt acknowledge cycles, when
paging is enabled. The PCD# pin is used to control caching in an external cache
on a cycle-by-cycle basis.

• PWT — Page-level write-through. The state of this flag is driven on the PWT# pin
during bus cycles that are not paged, such as interrupt acknowledge cycles, when
paging is enabled. The PWT# pin is used to control write through in an external
cache on a cycle-by-cycle basis.

19.22 MEMORY MANAGEMENT FACILITIES
The following sections describe the new memory management facilities available in
the various IA-32 processors and some compatibility differences.

19.22.1 New Memory Management Control Flags
The Pentium Pro processor introduced three new memory management features:
physical memory addressing extension, the global bit in page-table entries, and
general support for larger page sizes. These features are only available when oper-
ating in protected mode.

19.22.1.1 Physical Memory Addressing Extension
The new PAE (physical address extension) flag in control register CR4, bit 5, may
enable additional address lines on the processor, allowing extended physical
addresses. This option can only be used when paging is enabled, using a new page-
table mechanism provided to support the larger physical address range (see Section
4.1, “Paging Modes and Control Bits”).
Vol. 3A 19-25

ARCHITECTURE COMPATIBILITY
19.22.1.2 Global Pages
The new PGE (page global enable) flag in control register CR4, bit 7, provides a
mechanism for preventing frequently used pages from being flushed from the trans-
lation lookaside buffer (TLB). When this flag is set, frequently used pages (such as
pages containing kernel procedures or common data tables) can be marked global by
setting the global flag in a page-directory or page-table entry.

On a task switch or a write to control register CR3 (which normally causes the TLBs
to be flushed), the entries in the TLB marked global are not flushed. Marking pages
global in this manner prevents unnecessary reloading of the TLB due to TLB misses
on frequently used pages. See Section 4.10, “Caching Translation Information” for a
detailed description of this mechanism.

19.22.1.3 Larger Page Sizes
The P6 family processors support large page sizes. For 32-bit paging, this facility is
enabled with the PSE (page size extension) flag in control register CR4, bit 4. When
this flag is set, the processor supports either 4-KByte or 4-MByte page sizes. PAE
paging and IA-32e paging support 2-MByte pages regardless of the value of CR4.PSE
(see Section 4.4, “PAE Paging” and Section 4.5, “IA-32e Paging”). See Chapter 4,
“Paging,” for more information about large page sizes.

19.22.2 CD and NW Cache Control Flags
The CD and NW flags in control register CR0 were introduced in the Intel486
processor. In the P6 family and Pentium processors, these flags are used to imple-
ment a writeback strategy for the data cache; in the Intel486 processor, they imple-
ment a write-through strategy. See Table 11-5 for a comparison of these bits on the
P6 family, Pentium, and Intel486 processors. For complete information on caching,
see Chapter 11, “Memory Cache Control.”

19.22.3 Descriptor Types and Contents
Operating-system code that manages space in descriptor tables often contains an
invalid value in the access-rights field of descriptor-table entries to identify unused
entries. Access rights values of 80H and 00H remain invalid for the P6 family,
Pentium, Intel486, Intel386, and Intel 286 processors. Other values that were invalid
on the Intel 286 processor may be valid on the 32-bit processors because uses for
these bits have been defined.
19-26 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.22.4 Changes in Segment Descriptor Loads
On the Intel386 processor, loading a segment descriptor always causes a locked read
and write to set the accessed bit of the descriptor. On the P6 family, Pentium, and
Intel486 processors, the locked read and write occur only if the bit is not already set.

19.23 DEBUG FACILITIES
The P6 family and Pentium processors include extensions to the Intel486 processor
debugging support for breakpoints. To use the new breakpoint features, it is neces-
sary to set the DE flag in control register CR4.

19.23.1 Differences in Debug Register DR6
It is not possible to write a 1 to reserved bit 12 in debug status register DR6 on the
P6 family and Pentium processors; however, it is possible to write a 1 in this bit on the
Intel486 processor. See Table 9-1 for the different setting of this register following a
power-up or hardware reset.

19.23.2 Differences in Debug Register DR7
The P6 family and Pentium processors determines the type of breakpoint access by
the R/W0 through R/W3 fields in debug control register DR7 as follows:

00 Break on instruction execution only.

01 Break on data writes only.

10 Undefined if the DE flag in control register CR4 is cleared; break on I/O reads
or writes but not instruction fetches if the DE flag in control register CR4 is
set.

11 Break on data reads or writes but not instruction fetches.

On the P6 family and Pentium processors, reserved bits 11, 12, 14 and 15 are hard-
wired to 0. On the Intel486 processor, however, bit 12 can be set. See Table 9-1 for
the different settings of this register following a power-up or hardware reset.

19.23.3 Debug Registers DR4 and DR5
Although the DR4 and DR5 registers are documented as reserved, previous genera-
tions of processors aliased references to these registers to debug registers DR6 and
DR7, respectively. When debug extensions are not enabled (the DE flag in control
register CR4 is cleared), the P6 family and Pentium processors remain compatible
with existing software by allowing these aliased references. When debug extensions
Vol. 3A 19-27

ARCHITECTURE COMPATIBILITY
are enabled (the DE flag is set), attempts to reference registers DR4 or DR5 will
result in an invalid-opcode exception (#UD).

19.24 RECOGNITION OF BREAKPOINTS
For the Pentium processor, it is recommended that debuggers execute the LGDT
instruction before returning to the program being debugged to ensure that break-
points are detected. This operation does not need to be performed on the P6 family,
Intel486, or Intel386 processors.

The implementation of test registers on the Intel486 processor used for testing the
cache and TLB has been redesigned using MSRs on the P6 family and Pentium
processors. (Note that MSRs used for this function are different on the P6 family and
Pentium processors.) The MOV to and from test register instructions generate
invalid-opcode exceptions (#UD) on the P6 family processors.

19.25 EXCEPTIONS AND/OR EXCEPTION CONDITIONS
This section describes the new exceptions and exception conditions added to the 32-
bit IA-32 processors and implementation differences in existing exception handling.
See Chapter 6, “Interrupt and Exception Handling,” for a detailed description of the
IA-32 exceptions.

The Pentium III processor introduced new state with the XMM registers. Computations
involving data in these registers can produce exceptions. A new MXCSR
control/status register is used to determine which exception or exceptions have
occurred. When an exception associated with the XMM registers occurs, an interrupt
is generated.
• SIMD floating-point exception (#XF, interrupt 19) — New exceptions associated

with the SIMD floating-point registers and resulting computations.

No new exceptions were added with the Pentium Pro and Pentium II processors. The
set of available exceptions is the same as for the Pentium processor. However, the
following exception condition was added to the IA-32 with the Pentium Pro
processor:
• Machine-check exception (#MC, interrupt 18) — New exception conditions. Many

exception conditions have been added to the machine-check exception and a new
architecture has been added for handling and reporting on hardware errors. See
Chapter 15, “Machine-Check Architecture,” for a detailed description of the new
conditions.

The following exceptions and/or exception conditions were added to the IA-32 with
the Pentium processor:
• Machine-check exception (#MC, interrupt 18) — New exception. This exception

reports parity and other hardware errors. It is a model-specific exception and
19-28 Vol. 3A

ARCHITECTURE COMPATIBILITY
may not be implemented or implemented differently in future processors. The
MCE flag in control register CR4 enables the machine-check exception. When this
bit is clear (which it is at reset), the processor inhibits generation of the machine-
check exception.

• General-protection exception (#GP, interrupt 13) — New exception condition
added. An attempt to write a 1 to a reserved bit position of a special register
causes a general-protection exception to be generated.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. When
a 1 is detected in any of the reserved bit positions of a page-table entry, page-
directory entry, or page-directory pointer during address translation, a page-fault
exception is generated.

The following exception was added to the Intel486 processor:
• Alignment-check exception (#AC, interrupt 17) — New exception. Reports

unaligned memory references when alignment checking is being performed.

The following exceptions and/or exception conditions were added to the Intel386
processor:
• Divide-error exception (#DE, interrupt 0)

— Change in exception handling. Divide-error exceptions on the Intel386
processors always leave the saved CS:IP value pointing to the instruction that
failed. On the 8086 processor, the CS:IP value points to the next instruction.

— Change in exception handling. The Intel386 processors can generate the
largest negative number as a quotient for the IDIV instruction (80H and
8000H). The 8086 processor generates a divide-error exception instead.

• Invalid-opcode exception (#UD, interrupt 6) — New exception condition added.
Improper use of the LOCK instruction prefix can generate an invalid-opcode
exception.

• Page-fault exception (#PF, interrupt 14) — New exception condition added. If
paging is enabled in a 16-bit program, a page-fault exception can be generated
as follows. Paging can be used in a system with 16-bit tasks if all tasks use the
same page directory. Because there is no place in a 16-bit TSS to store the PDBR
register, switching to a 16-bit task does not change the value of the PDBR
register. Tasks ported from the Intel 286 processor should be given 32-bit TSSs
so they can make full use of paging.

• General-protection exception (#GP, interrupt 13) — New exception condition
added. The Intel386 processor sets a limit of 15 bytes on instruction length. The
only way to violate this limit is by putting redundant prefixes before an
instruction. A general-protection exception is generated if the limit on instruction
length is violated. The 8086 processor has no instruction length limit.
Vol. 3A 19-29

ARCHITECTURE COMPATIBILITY
19.25.1 Machine-Check Architecture
The Pentium Pro processor introduced a new architecture to the IA-32 for handling
and reporting on machine-check exceptions. This machine-check architecture
(described in detail in Chapter 15, “Machine-Check Architecture”) greatly expands
the ability of the processor to report on internal hardware errors.

19.25.2 Priority of Exceptions
The priority of exceptions are broken down into several major categories:

1. Traps on the previous instruction

2. External interrupts

3. Faults on fetching the next instruction

4. Faults in decoding the next instruction

5. Faults on executing an instruction

There are no changes in the priority of these major categories between the different
processors, however, exceptions within these categories are implementation depen-
dent and may change from processor to processor.

19.25.3 Exception Conditions of Legacy SIMD Instructions Operating
on MMX Registers

MMX instructions and a subset of SSE, SSE2, SSSE3 instructions operate on MMX
registers. The exception conditions of these instructions are described in the
following tables.
19-30 Vol. 3A

ARCHITECTURE COMPATIBILITY
Table 19-4. Exception Conditions for Legacy SIMD/MMX Instructions with FP
Exception and 16-Byte Alignment

Exception
R

ea
l

V
ir

tu
al

 8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment is
in a non-canonical form

General Protec-
tion, #GP(0)

X X X X Legacy SSE: Memory operand is not 16-byte aligned

X
For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effective
address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

#XM X X X X
If an unmasked SIMD floating-point exception and
CR4.OSXMMEXCPT[bit 10] = 1

Applicable
Instructions

CVTPD2PI, CVTTPD2PI
Vol. 3A 19-31

ARCHITECTURE COMPATIBILITY
Table 19-5. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and FP
Exception

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 0.

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment
is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

#PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

SIMD Floating-point
Exception, #XM

X X X X
If an unmasked SIMD floating-point exception
and CR4.OSXMMEXCPT[bit 10] = 1

Applicable Instruc-
tions

CVTPI2PS, CVTPS2PI, CVTTPS2PI
19-32 Vol. 3A

ARCHITECTURE COMPATIBILITY
Table 19-6. Exception Conditions for Legacy SIMD/MMX Instructions with XMM and
without FP Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF1

NOTES:
1. Applies to “CVTPI2PD xmm, mm” but not “CVTPI2PD xmm, m64”.

X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective
address in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the
effective address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

Applicable Instruc-
tions

CVTPI2PD
Vol. 3A 19-33

ARCHITECTURE COMPATIBILITY
Table 19-7. Exception Conditions for SIMD/MMX Instructions with Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS seg-
ment is in a non-canonical form

General Protection,
#GP(0)

X
For an illegal memory operand effective address
in the CS, DS, ES, FS or GS segments.

X
If the memory address is in a non-canonical
form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

Alignment Check
#AC(0)

X X X
If alignment checking is enabled and an
unaligned memory reference is made while the
current privilege level is 3.

Applicable Instruc-
tions

PABSB, PABSD, PABSW, PACKSSWB, PACKSSDW, PACKUSWB,
PADDB, PADDD, PADDQ, PADDW, PADDSB, PADDSW,
PADDUSB, PADDUSW, PALIGNR, PAND, PANDN, PAVGB,
PAVGW, PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD,
PCMPGTW, PHADDD, PHADDW, PHADDSW, PHSUBD, PHSUBW,
PHSUBSW, PINSRW, PMADDUBSW, PMADDWD, PMAXSW,
PMAXUB, PMINSW, PMINUB, PMULHRSW, PMULHUW, PMULHW,
PMULLW, PMULUDQ, PSADBW, PSHUFB, PSHUFW, PSIGNB
PSIGND PSIGNW, PSLLW, PSLLD, PSLLQ, PSRAD, PSRAW,
PSRLW, PSRLD, PSRLQ, PSUBB, PSUBD, PSUBQ, PSUBW,
PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PUNPCKHBW,
PUNPCKHWD, PUNPCKHDQ, PUNPCKLBW, PUNPCKLWD,
PUNPCKLDQ, PXOR
19-34 Vol. 3A

ARCHITECTURE COMPATIBILITY
Table 19-8. Exception Conditions for Legacy SIMD/MMX Instructions without FP
Exception

Exception
R

ea
l

V
ir

tu
al

 8
0

x8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X
If CR0.EM[bit 2] = 1.
If ModR/M.mod != 11b1

NOTES:
1. Applies to MASKMOVQ only.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X X X If CR0.TS[bit 3]=1

Stack, SS(0)

X For an illegal address in the SS segment

X
If a memory address referencing the SS segment
is in a non-canonical form

#GP(0)

X

For an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.
If the destination operand is in a non-writable seg-
ment.2

If the DS, ES, FS, or GS register contains a NULL
segment selector.3

2. Applies to MASKMOVQ and MOVQ (mmreg) only.

X If the memory address is in a non-canonical form.

X X
If any part of the operand lies outside the effec-
tive address space from 0 to FFFFH

 #PF(fault-code) X X X For a page fault

#AC(0) X X X
If alignment checking is enabled and an unaligned
memory reference is made while the current privi-
lege level is 3.

Applicable Instruc-
tions

MASKMOVQ, MOVNTQ, “MOVQ (mmreg)”
Vol. 3A 19-35

ARCHITECTURE COMPATIBILITY
19.26 INTERRUPTS
The following differences in handling interrupts are found among the IA-32
processors.

19.26.1 Interrupt Propagation Delay
External hardware interrupts may be recognized on different instruction boundaries
on the P6 family, Pentium, Intel486, and Intel386 processors, due to the superscaler
designs of the P6 family and Pentium processors. Therefore, the EIP pushed onto the
stack when servicing an interrupt may be different for the P6 family, Pentium,
Intel486, and Intel386 processors.

19.26.2 NMI Interrupts
After an NMI interrupt is recognized by the P6 family, Pentium, Intel486, Intel386,
and Intel 286 processors, the NMI interrupt is masked until the first IRET instruction
is executed, unlike the 8086 processor.

3. Applies to MASKMOVQ only.

Table 19-9. Exception Conditions for Legacy SIMD/MMX Instructions without
Memory Reference

Exception

R
ea

l

V
ir

tu
al

 8
0

x8
6

Pr
ot

ec
te

d
an

d
Co

m
pa

ti
bi

lit
y

6
4

-b
it

Cause of Exception

Invalid Opcode, #UD

X X X X If CR0.EM[bit 2] = 1.

X X X X If preceded by a LOCK prefix (F0H)

X X X X If any corresponding CPUID feature flag is ‘0’

#MF X X X X If there is a pending X87 FPU exception

#NM X X If CR0.TS[bit 3]=1

Applicable Instruc-
tions

PEXTRW, PMOVMSKB
19-36 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.26.3 IDT Limit
The LIDT instruction can be used to set a limit on the size of the IDT. A double-fault
exception (#DF) is generated if an interrupt or exception attempts to read a vector
beyond the limit. Shutdown then occurs on the 32-bit IA-32 processors if the double-
fault handler vector is beyond the limit. (The 8086 processor does not have a shut-
down mode nor a limit.)

19.27 ADVANCED PROGRAMMABLE INTERRUPT
CONTROLLER (APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in this book as
the local APIC, was introduced into the IA-32 processors with the Pentium
processor (beginning with the 735/90 and 815/100 models) and is included in the
Pentium 4, Intel Xeon, and P6 family processors. The features and functions of the
local APIC are derived from the Intel 82489DX external APIC, which was used with
the Intel486 and early Pentium processors. Additional refinements of the local APIC
architecture were incorporated in the Pentium 4 and Intel Xeon processors.

19.27.1 Software Visible Differences Between the Local APIC and
the 82489DX

The following features in the local APIC features differ from those found in the
82489DX external APIC:
• When the local APIC is disabled by clearing the APIC software enable/disable flag

in the spurious-interrupt vector MSR, the state of its internal registers are
unaffected, except that the mask bits in the LVT are all set to block local
interrupts to the processor. Also, the local APIC ceases accepting IPIs except for
INIT, SMI, NMI, and start-up IPIs. In the 82489DX, when the local unit is
disabled, all the internal registers including the IRR, ISR and TMR are cleared and
the mask bits in the LVT are set. In this state, the 82489DX local unit will accept
only the reset deassert message.

• In the local APIC, NMI and INIT (except for INIT deassert) are always treated as
edge triggered interrupts, even if programmed otherwise. In the 82489DX, these
interrupts are always level triggered.

• In the local APIC, IPIs generated through the ICR are always treated as edge
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to
generate either edge or level triggered IPIs.

• In the local APIC, the logical destination register supports 8 bits; in the 82489DX,
it supports 32 bits.

• In the local APIC, the APIC ID register is 4 bits wide; in the 82489DX, it is 8 bits
wide.
Vol. 3A 19-37

ARCHITECTURE COMPATIBILITY
• The remote read delivery mode provided in the 82489DX and local APIC for
Pentium processors is not supported in the local APIC in the Pentium 4, Intel
Xeon, and P6 family processors.

• For the 82489DX, in the lowest priority delivery mode, all the target local APICs
specified by the destination field participate in the lowest priority arbitration. For
the local APIC, only those local APICs which have free interrupt slots will
participate in the lowest priority arbitration.

19.27.2 New Features Incorporated in the Local APIC for the P6
Family and Pentium Processors

The local APIC in the Pentium and P6 family processors have the following new
features not found in the 82489DX external APIC.
• Cluster addressing is supported in logical destination mode.
• Focus processor checking can be enabled/disabled.
• Interrupt input signal polarity can be programmed for the LINT0 and LINT1 pins.
• An SMI IPI is supported through the ICR and I/O redirection table.
• An error status register is incorporated into the LVT to log and report APIC errors.

In the P6 family processors, the local APIC incorporates an additional LVT register to
handle performance monitoring counter interrupts.

19.27.3 New Features Incorporated in the Local APIC of the Pentium
4 and Intel Xeon Processors

The local APIC in the Pentium 4 and Intel Xeon processors has the following new
features not found in the P6 family and Pentium processors and in the 82489DX.
• The local APIC ID is extended to 8 bits.
• An thermal sensor register is incorporated into the LVT to handle thermal sensor

interrupts.
• The the ability to deliver lowest-priority interrupts to a focus processor is no

longer supported.
• The flat cluster logical destination mode is not supported.

19.28 TASK SWITCHING AND TSS
This section identifies the implementation differences of task switching, additions to
the TSS and the handling of TSSs and TSS segment selectors.
19-38 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.28.1 P6 Family and Pentium Processor TSS
When the virtual mode extensions are enabled (by setting the VME flag in control
register CR4), the TSS in the P6 family and Pentium processors contain an interrupt
redirection bit map, which is used in virtual-8086 mode to redirect interrupts back to
an 8086 program.

19.28.2 TSS Selector Writes
During task state saves, the Intel486 processor writes 2-byte segment selectors into
a 32-bit TSS, leaving the upper 16 bits undefined. For performance reasons, the P6
family and Pentium processors write 4-byte segment selectors into the TSS, with the
upper 2 bytes being 0. For compatibility reasons, code should not depend on the
value of the upper 16 bits of the selector in the TSS.

19.28.3 Order of Reads/Writes to the TSS
The order of reads and writes into the TSS is processor dependent. The P6 family and
Pentium processors may generate different page-fault addresses in control register
CR2 in the same TSS area than the Intel486 and Intel386 processors, if a TSS
crosses a page boundary (which is not recommended).

19.28.4 Using A 16-Bit TSS with 32-Bit Constructs
Task switches using 16-bit TSSs should be used only for pure 16-bit code. Any new
code written using 32-bit constructs (operands, addressing, or the upper word of the
EFLAGS register) should use only 32-bit TSSs. This is due to the fact that the 32-bit
processors do not save the upper 16 bits of EFLAGS to a 16-bit TSS. A task switch
back to a 16-bit task that was executing in virtual mode will never re-enable the
virtual mode, as this flag was not saved in the upper half of the EFLAGS value in the
TSS. Therefore, it is strongly recommended that any code using 32-bit constructs
use a 32-bit TSS to ensure correct behavior in a multitasking environment.

19.28.5 Differences in I/O Map Base Addresses
The Intel486 processor considers the TSS segment to be a 16-bit segment and wraps
around the 64K boundary. Any I/O accesses check for permission to access this I/O
address at the I/O base address plus the I/O offset. If the I/O map base address
exceeds the specified limit of 0DFFFH, an I/O access will wrap around and obtain the
permission for the I/O address at an incorrect location within the TSS. A TSS limit
violation does not occur in this situation on the Intel486 processor. However, the P6
family and Pentium processors consider the TSS to be a 32-bit segment and a limit
violation occurs when the I/O base address plus the I/O offset is greater than the TSS
limit. By following the recommended specification for the I/O base address to be less
Vol. 3A 19-39

ARCHITECTURE COMPATIBILITY
than 0DFFFH, the Intel486 processor will not wrap around and access incorrect loca-
tions within the TSS for I/O port validation and the P6 family and Pentium processors
will not experience general-protection exceptions (#GP). Figure 19-1 demonstrates
the different areas accessed by the Intel486 and the P6 family and Pentium
processors.

19.29 CACHE MANAGEMENT
The P6 family processors include two levels of internal caches: L1 (level 1) and L2
(level 2). The L1 cache is divided into an instruction cache and a data cache; the L2
cache is a general-purpose cache. See Section 11.1, “Internal Caches, TLBs, and
Buffers,” for a description of these caches. (Note that although the Pentium II
processor L2 cache is physically located on a separate chip in the cassette, it is
considered an internal cache.)

The Pentium processor includes separate level 1 instruction and data caches. The
data cache supports a writeback (or alternatively write-through, on a line by line
basis) policy for memory updates.

The Intel486 processor includes a single level 1 cache for both instructions and data.

The meaning of the CD and NW flags in control register CR0 have been redefined for
the P6 family and Pentium processors. For these processors, the recommended value
(00B) enables writeback for the data cache of the Pentium processor and for the L1

Figure 19-1. I/O Map Base Address Differences

Intel486 Processor

FFFFHI/O Map
Base Addres

FFFFH

FFFFH + 10H = FH
for I/O Validation

0H

FFFFH

FFFFH

I/O access at port 10H checks

0H

FFFFH + 10H = Outside Segment
for I/O Validation

bitmap at I/O address FFFFH + 10H,
which exceeds segment limit.
Wrap around does not occur,
general-protection exception (#GP)

I/O access at port 10H checks
bitmap at I/O map base address
FFFFH + 10H = offset 10H.
Offset FH from beginning of
TSS segment results because

P6 family and Pentium Processors

I/O Map
Base Addres

occurs. wraparound occurs.
19-40 Vol. 3A

ARCHITECTURE COMPATIBILITY
data cache and L2 cache of the P6 family processors. In the Intel486 processor,
setting these flags to (00B) enables write-through for the cache.

External system hardware can force the Pentium processor to disable caching or to
use the write-through cache policy should that be required. In the P6 family proces-
sors, the MTRRs can be used to override the CD and NW flags (see Table 11-6).

The P6 family and Pentium processors support page-level cache management in the
same manner as the Intel486 processor by using the PCD and PWT flags in control
register CR3, the page-directory entries, and the page-table entries. The Intel486
processor, however, is not affected by the state of the PWT flag since the internal
cache of the Intel486 processor is a write-through cache.

19.29.1 Self-Modifying Code with Cache Enabled
On the Intel486 processor, a write to an instruction in the cache will modify it in both
the cache and memory. If the instruction was prefetched before the write, however,
the old version of the instruction could be the one executed. To prevent this problem,
it is necessary to flush the instruction prefetch unit of the Intel486 processor by
coding a jump instruction immediately after any write that modifies an instruction.
The P6 family and Pentium processors, however, check whether a write may modify
an instruction that has been prefetched for execution. This check is based on the
linear address of the instruction. If the linear address of an instruction is found to be
present in the prefetch queue, the P6 family and Pentium processors flush the
prefetch queue, eliminating the need to code a jump instruction after any writes that
modify an instruction.

Because the linear address of the write is checked against the linear address of the
instructions that have been prefetched, special care must be taken for self-modifying
code to work correctly when the physical addresses of the instruction and the written
data are the same, but the linear addresses differ. In such cases, it is necessary to
execute a serializing operation to flush the prefetch queue after the write and before
executing the modified instruction. See Section 8.3, “Serializing Instructions,” for
more information on serializing instructions.

NOTE
The check on linear addresses described above is not in practice a
concern for compatibility. Applications that include self-modifying
code use the same linear address for modifying and fetching the
instruction. System software, such as a debugger, that might
possibly modify an instruction using a different linear address than
that used to fetch the instruction must execute a serializing
operation, such as IRET, before the modified instruction is executed.
Vol. 3A 19-41

ARCHITECTURE COMPATIBILITY
19.29.2 Disabling the L3 Cache
A unified third-level (L3) cache in processors based on Intel NetBurst microarchitec-
ture (see Section 11.1, “Internal Caches, TLBs, and Buffers”) provides the third-level
cache disable flag, bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache
disable flag allows the L3 cache to be disabled and enabled, independently of the L1
and L2 caches (see Section 11.5.4, “Disabling and Enabling the L3 Cache”). The
third-level cache disable flag applies only to processors based on Intel NetBurst
microarchitecture. Processors with L3 and based on other microarchitectures do not
support the third-level cache disable flag.

19.30 PAGING
This section identifies enhancements made to the paging mechanism and implemen-
tation differences in the paging mechanism for various IA-32 processors.

19.30.1 Large Pages
The Pentium processor extended the memory management/paging facilities of the
IA-32 to allow large (4 MBytes) pages sizes (see Section 4.3, “32-Bit Paging”). The
first P6 family processor (the Pentium Pro processor) added a 2 MByte page size to
the IA-32 in conjunction with the physical address extension (PAE) feature (see
Section 4.4, “PAE Paging”).

The availability of large pages with 32-bit paging on any IA-32 processor can be
determined via feature bit 3 (PSE) of register EDX after the CPUID instruction has
been execution with an argument of 1. (Large pages are always available with PAE
paging and IA-32e paging.) Intel processors that do not support the CPUID instruc-
tion support only 32-bit paging and do not support page size enhancements. (See
“CPUID—CPU Identification” in Chapter 3, “Instruction Set Reference, A-M,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and AP-
485, Intel Processor Identification and the CPUID Instruction, for more information
on the CPUID instruction.)

19.30.2 PCD and PWT Flags
The PCD and PWT flags were introduced to the IA-32 in the Intel486 processor to
control the caching of pages:
• PCD (page-level cache disable) flag—Controls caching on a page-by-page basis.
• PWT (page-level write-through) flag—Controls the write-through/writeback

caching policy on a page-by-page basis. Since the internal cache of the Intel486
processor is a write-through cache, it is not affected by the state of the PWT flag.
19-42 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.30.3 Enabling and Disabling Paging
Paging is enabled and disabled by loading a value into control register CR0 that modi-
fies the PG flag. For backward and forward compatibility with all IA-32 processors,
Intel recommends that the following operations be performed when enabling or
disabling paging:

1. Execute a MOV CR0, REG instruction to either set (enable paging) or clear
(disable paging) the PG flag.

2. Execute a near JMP instruction.

The sequence bounded by the MOV and JMP instructions should be identity mapped
(that is, the instructions should reside on a page whose linear and physical addresses
are identical).

For the P6 family processors, the MOV CR0, REG instruction is serializing, so the
jump operation is not required. However, for backwards compatibility, the JMP
instruction should still be included.

19.31 STACK OPERATIONS
This section identifies the differences in the stack mechanism for the various IA-32
processors.

19.31.1 Selector Pushes and Pops
When pushing a segment selector onto the stack, the Pentium 4, Intel Xeon, P6
family, and Intel486 processors decrement the ESP register by the operand size and
then write 2 bytes. If the operand size is 32-bits, the upper two bytes of the write are
not modified. The Pentium processor decrements the ESP register by the operand
size and determines the size of the write by the operand size. If the operand size is
32-bits, the upper two bytes are written as 0s.

When popping a segment selector from the stack, the Pentium 4, Intel Xeon, P6
family, and Intel486 processors read 2 bytes and increment the ESP register by the
operand size of the instruction. The Pentium processor determines the size of the
read from the operand size and increments the ESP register by the operand size.

It is possible to align a 32-bit selector push or pop such that the operation generates
an exception on a Pentium processor and not on an Pentium 4, Intel Xeon, P6 family,
or Intel486 processor. This could occur if the third and/or fourth byte of the operation
lies beyond the limit of the segment or if the third and/or fourth byte of the operation
is locate on a non-present or inaccessible page.

For a POP-to-memory instruction that meets the following conditions:
• The stack segment size is 16-bit.
• Any 32-bit addressing form with the SIB byte specifying ESP as the base register.
Vol. 3A 19-43

ARCHITECTURE COMPATIBILITY
• The initial stack pointer is FFFCH (32-bit operand) or FFFEH (16-bit operand) and
will wrap around to 0H as a result of the POP operation.

The result of the memory write is implementation-specific. For example, in P6 family
processors, the result of the memory write is SS:0H plus any scaled index and
displacement. In Pentium processors, the result of the memory write may be either a
stack fault (real mode or protected mode with stack segment size of 64 KByte), or
write to SS:10000H plus any scaled index and displacement (protected mode and
stack segment size exceeds 64 KByte).

19.31.2 Error Code Pushes
The Intel486 processor implements the error code pushed on the stack as a 16-bit
value. When pushed onto a 32-bit stack, the Intel486 processor only pushes 2 bytes
and updates ESP by 4. The P6 family and Pentium processors’ error code is a full 32
bits with the upper 16 bits set to zero. The P6 family and Pentium processors, there-
fore, push 4 bytes and update ESP by 4. Any code that relies on the state of the upper
16 bits may produce inconsistent results.

19.31.3 Fault Handling Effects on the Stack
During the handling of certain instructions, such as CALL and PUSHA, faults may
occur in different sequences for the different processors. For example, during far
calls, the Intel486 processor pushes the old CS and EIP before a possible branch fault
is resolved. A branch fault is a fault from a branch instruction occurring from a
segment limit or access rights violation. If a branch fault is taken, the Intel486 and
P6 family processors will have corrupted memory below the stack pointer. However,
the ESP register is backed up to make the instruction restartable. The P6 family
processors issue the branch before the pushes. Therefore, if a branch fault does
occur, these processors do not corrupt memory below the stack pointer. This imple-
mentation difference, however, does not constitute a compatibility problem, as only
values at or above the stack pointer are considered to be valid. Other operations that
encounter faults may also corrupt memory below the stack pointer and this behavior
may vary on different implementations.

19.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate
If a call or interrupt is made from a 32-bit stack environment through a 16-bit gate,
only 16 bits of the old ESP can be pushed onto the stack. On the subsequent
RET/IRET, the 16-bit ESP is popped but the full 32-bit ESP is updated since control is
being resumed in a 32-bit stack environment. The Intel486 processor writes the SS
selector into the upper 16 bits of ESP. The P6 family and Pentium processors write
zeros into the upper 16 bits.
19-44 Vol. 3A

ARCHITECTURE COMPATIBILITY
19.32 MIXING 16- AND 32-BIT SEGMENTS
The features of the 16-bit Intel 286 processor are an object-code compatible subset
of those of the 32-bit IA-32 processors. The D (default operation size) flag in
segment descriptors indicates whether the processor treats a code or data segment
as a 16-bit or 32-bit segment; the B (default stack size) flag in segment descriptors
indicates whether the processor treats a stack segment as a 16-bit or 32-bit
segment.

The segment descriptors used by the Intel 286 processor are supported by the 32-bit
IA-32 processors if the Intel-reserved word (highest word) of the descriptor is clear.
On the 32-bit IA-32 processors, this word includes the upper bits of the base address
and the segment limit.

The segment descriptors for data segments, code segments, local descriptor tables
(there are no descriptors for global descriptor tables), and task gates are the same
for the 16- and 32-bit processors. Other 16-bit descriptors (TSS segment, call gate,
interrupt gate, and trap gate) are supported by the 32-bit processors.

The 32-bit processors also have descriptors for TSS segments, call gates, interrupt
gates, and trap gates that support the 32-bit architecture. Both kinds of descriptors
can be used in the same system.

For those segment descriptors common to both 16- and 32-bit processors, clear bits
in the reserved word cause the 32-bit processors to interpret these descriptors
exactly as an Intel 286 processor does, that is:
• Base Address — The upper 8 bits of the 32-bit base address are clear, which limits

base addresses to 24 bits.
• Limit — The upper 4 bits of the limit field are clear, restricting the value of the

limit field to 64 KBytes.
• Granularity bit — The G (granularity) flag is clear, indicating the value of the

16-bit limit is interpreted in units of 1 byte.
• Big bit — In a data-segment descriptor, the B flag is clear in the segment

descriptor used by the 32-bit processors, indicating the segment is no larger than
64 KBytes.

• Default bit — In a code-segment descriptor, the D flag is clear, indicating 16-bit
addressing and operands are the default. In a stack-segment descriptor, the D
flag is clear, indicating use of the SP register (instead of the ESP register) and a
64-KByte maximum segment limit.

For information on mixing 16- and 32-bit code in applications, see Chapter 18,
“Mixing 16-Bit and 32-Bit Code.”

19.33 SEGMENT AND ADDRESS WRAPAROUND
This section discusses differences in segment and address wraparound between the
P6 family, Pentium, Intel486, Intel386, Intel 286, and 8086 processors.
Vol. 3A 19-45

ARCHITECTURE COMPATIBILITY
19.33.1 Segment Wraparound
On the 8086 processor, an attempt to access a memory operand that crosses offset
65,535 or 0FFFFH or offset 0 (for example, moving a word to offset 65,535 or
pushing a word when the stack pointer is set to 1) causes the offset to wrap around
modulo 65,536 or 010000H. With the Intel 286 processor, any base and offset combi-
nation that addresses beyond 16 MBytes wraps around to the 1 MByte of the address
space. The P6 family, Pentium, Intel486, and Intel386 processors in real-address
mode generate an exception in these cases:
• A general-protection exception (#GP) if the segment is a data segment (that is,

if the CS, DS, ES, FS, or GS register is being used to address the segment).
• A stack-fault exception (#SS) if the segment is a stack segment (that is, if the SS

register is being used).

An exception to this behavior occurs when a stack access is data aligned, and the
stack pointer is pointing to the last aligned piece of data that size at the top of the
stack (ESP is FFFFFFFCH). When this data is popped, no segment limit violation
occurs and the stack pointer will wrap around to 0.

The address space of the P6 family, Pentium, and Intel486 processors may wrap-
around at 1 MByte in real-address mode. An external A20M# pin forces wraparound
if enabled. On Intel 8086 processors, it is possible to specify addresses greater than
1 MByte. For example, with a selector value FFFFH and an offset of FFFFH, the effec-
tive address would be 10FFEFH (1 MByte plus 65519 bytes). The 8086 processor,
which can form addresses up to 20 bits long, truncates the uppermost bit, which
“wraps” this address to FFEFH. However, the P6 family, Pentium, and Intel486
processors do not truncate this bit if A20M# is not enabled.

If a stack operation wraps around the address limit, shutdown occurs. (The 8086
processor does not have a shutdown mode or a limit.)

The behavior when executing near the limit of a 4-GByte selector (limit=0xFFFFFFFF)
is different between the Pentium Pro and the Pentium 4 family of processors. On the
Pentium Pro, instructions which cross the limit -- for example, a two byte instruction
such as INC EAX that is encoded as 0xFF 0xC0 starting exactly at the limit faults for
a segment violation (a one byte instruction at 0xFFFFFFFF does not cause an excep-
tion). Using the Pentium 4 microprocessor family, neither of these situations causes
a fault.

Segment wraparound and the functionality of A20M# is used primarily by older oper-
ating systems and not used by modern operating systems. On newer Intel 64 proces-
sors, A20M# may be absent.

19.34 STORE BUFFERS AND MEMORY ORDERING
The Pentium 4, Intel Xeon, and P6 family processors provide a store buffer for
temporary storage of writes (stores) to memory (see Section 11.10, “Store Buffer”).
Writes stored in the store buffer(s) are always written to memory in program order,
19-46 Vol. 3A

ARCHITECTURE COMPATIBILITY
with the exception of “fast string” store operations (see Section 8.2.4, “Out-of-Order
Stores and Fast-String Operation”).

The Pentium processor has two store buffers, one corresponding to each of the pipe-
lines. Writes in these buffers are always written to memory in the order they were
generated by the processor core.

It should be noted that only memory writes are buffered and I/O writes are not. The
Pentium 4, Intel Xeon, P6 family, Pentium, and Intel486 processors do not synchro-
nize the completion of memory writes on the bus and instruction execution after a
write. An I/O, locked, or serializing instruction needs to be executed to synchronize
writes with the next instruction (see Section 8.3, “Serializing Instructions”).

The Pentium 4, Intel Xeon, and P6 family processors use processor ordering to main-
tain consistency in the order that data is read (loaded) and written (stored) in a
program and the order the processor actually carries out the reads and writes. With
this type of ordering, reads can be carried out speculatively and in any order, reads
can pass buffered writes, and writes to memory are always carried out in program
order. (See Section 8.2, “Memory Ordering,” for more information about processor
ordering.) The Pentium III processor introduced a new instruction to serialize writes
and make them globally visible. Memory ordering issues can arise between a
producer and a consumer of data. The SFENCE instruction provides a performance-
efficient way of ensuring ordering between routines that produce weakly-ordered
results and routines that consume this data.

No re-ordering of reads occurs on the Pentium processor, except under the condition
noted in Section 8.2.1, “Memory Ordering in the Intel® Pentium® and Intel486™
Processors,” and in the following paragraph describing the Intel486 processor.

Specifically, the store buffers are flushed before the IN instruction is executed. No
reads (as a result of cache miss) are reordered around previously generated writes
sitting in the store buffers. The implication of this is that the store buffers will be
flushed or emptied before a subsequent bus cycle is run on the external bus.

On both the Intel486 and Pentium processors, under certain conditions, a memory
read will go onto the external bus before the pending memory writes in the buffer
even though the writes occurred earlier in the program execution. A memory read
will only be reordered in front of all writes pending in the buffers if all writes pending
in the buffers are cache hits and the read is a cache miss. Under these conditions, the
Intel486 and Pentium processors will not read from an external memory location that
needs to be updated by one of the pending writes.

During a locked bus cycle, the Intel486 processor will always access external
memory, it will never look for the location in the on-chip cache. All data pending in
the Intel486 processor's store buffers will be written to memory before a locked cycle
is allowed to proceed to the external bus. Thus, the locked bus cycle can be used for
eliminating the possibility of reordering read cycles on the Intel486 processor. The
Pentium processor does check its cache on a read-modify-write access and, if the
cache line has been modified, writes the contents back to memory before locking the
bus. The P6 family processors write to their cache on a read-modify-write operation
(if the access does not split across a cache line) and does not write back to system
Vol. 3A 19-47

ARCHITECTURE COMPATIBILITY
memory. If the access does split across a cache line, it locks the bus and accesses
system memory.

I/O reads are never reordered in front of buffered memory writes on an IA-32
processor. This ensures an update of all memory locations before reading the status
from an I/O device.

19.35 BUS LOCKING
The Intel 286 processor performs the bus locking differently than the Intel P6 family,
Pentium, Intel486, and Intel386 processors. Programs that use forms of memory
locking specific to the Intel 286 processor may not run properly when run on later
processors.

A locked instruction is guaranteed to lock only the area of memory defined by the
destination operand, but may lock a larger memory area. For example, typical 8086
and Intel 286 configurations lock the entire physical memory space. Programmers
should not depend on this.

On the Intel 286 processor, the LOCK prefix is sensitive to IOPL. If the CPL is greater
than the IOPL, a general-protection exception (#GP) is generated. On the Intel386
DX, Intel486, and Pentium, and P6 family processors, no check against IOPL is
performed.

The Pentium processor automatically asserts the LOCK# signal when acknowledging
external interrupts. After signaling an interrupt request, an external interrupt
controller may use the data bus to send the interrupt vector to the processor. After
receiving the interrupt request signal, the processor asserts LOCK# to insure that no
other data appears on the data bus until the interrupt vector is received. This bus
locking does not occur on the P6 family processors.

19.36 BUS HOLD
Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 proces-
sors, the P6 family and Pentium processors respond to requests for control of the bus
from other potential bus masters, such as DMA controllers, between transfers of
parts of an unaligned operand, such as two words which form a doubleword. Unlike
the Intel386 processor, the P6 family, Pentium and Intel486 processors respond to
bus hold during reset initialization.

19.37 MODEL-SPECIFIC EXTENSIONS TO THE IA-32
Certain extensions to the IA-32 are specific to a processor or family of IA-32 proces-
sors and may not be implemented or implemented in the same way in future proces-
19-48 Vol. 3A

ARCHITECTURE COMPATIBILITY
sors. The following sections describe these model-specific extensions. The CPUID
instruction indicates the availability of some of the model-specific features.

19.37.1 Model-Specific Registers
The Pentium processor introduced a set of model-specific registers (MSRs) for use in
controlling hardware functions and performance monitoring. To access these MSRs,
two new instructions were added to the IA-32 architecture: read MSR (RDMSR) and
write MSR (WRMSR). The MSRs in the Pentium processor are not guaranteed to be
duplicated or provided in the next generation IA-32 processors.

The P6 family processors greatly increased the number of MSRs available to soft-
ware. See Appendix B, “Model-Specific Registers (MSRs),” for a complete list of the
available MSRs. The new registers control the debug extensions, the performance
counters, the machine-check exception capability, the machine-check architecture,
and the MTRRs. These registers are accessible using the RDMSR and WRMSR instruc-
tions. Specific information on some of these new MSRs is provided in the following
sections. As with the Pentium processor MSR, the P6 family processor MSRs are not
guaranteed to be duplicated or provided in the next generation IA-32 processors.

19.37.2 RDMSR and WRMSR Instructions
The RDMSR (read model-specific register) and WRMSR (write model-specific
register) instructions recognize a much larger number of model-specific registers in
the P6 family processors. (See “RDMSR—Read from Model Specific Register” and
“WRMSR—Write to Model Specific Register” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volumes 2A & 2B for more information.)

19.37.3 Memory Type Range Registers
Memory type range registers (MTRRs) are a new feature introduced into the IA-32 in
the Pentium Pro processor. MTRRs allow the processor to optimize memory opera-
tions for different types of memory, such as RAM, ROM, frame buffer memory, and
memory-mapped I/O.

MTRRs are MSRs that contain an internal map of how physical address ranges are
mapped to various types of memory. The processor uses this internal memory map
to determine the cacheability of various physical memory locations and the optimal
method of accessing memory locations. For example, if a memory location is speci-
fied in an MTRR as write-through memory, the processor handles accesses to this
location as follows. It reads data from that location in lines and caches the read data
or maps all writes to that location to the bus and updates the cache to maintain cache
coherency. In mapping the physical address space with MTRRs, the processor recog-
nizes five types of memory: uncacheable (UC), uncacheable, speculatable, write-
combining (WC), write-through (WT), write-protected (WP), and writeback (WB).
Vol. 3A 19-49

ARCHITECTURE COMPATIBILITY
Earlier IA-32 processors (such as the Intel486 and Pentium processors) used the
KEN# (cache enable) pin and external logic to maintain an external memory map and
signal cacheable accesses to the processor. The MTRR mechanism simplifies hard-
ware designs by eliminating the KEN# pin and the external logic required to drive it.

See Chapter 9, “Processor Management and Initialization,” and Appendix B, “Model-
Specific Registers (MSRs),” for more information on the MTRRs.

19.37.4 Machine-Check Exception and Architecture
The Pentium processor introduced a new exception called the machine-check excep-
tion (#MC, interrupt 18). This exception is used to detect hardware-related errors,
such as a parity error on a read cycle.

The P6 family processors extend the types of errors that can be detected and that
generate a machine-check exception. It also provides a new machine-check architec-
ture for recording information about a machine-check error and provides extended
recovery capability.

The machine-check architecture provides several banks of reporting registers for
recording machine-check errors. Each bank of registers is associated with a specific
hardware unit in the processor. The primary focus of the machine checks is on bus
and interconnect operations; however, checks are also made of translation lookaside
buffer (TLB) and cache operations.

The machine-check architecture can correct some errors automatically and allow for
reliable restart of instruction execution. It also collects sufficient information for soft-
ware to use in correcting other machine errors not corrected by hardware.

See Chapter 15, “Machine-Check Architecture,” for more information on the
machine-check exception and the machine-check architecture.

19.37.5 Performance-Monitoring Counters
The P6 family and Pentium processors provide two performance-monitoring counters
for use in monitoring internal hardware operations. The number of performance
monitoring counters and associated programming interfaces may be implementation
specific for Pentium 4 processors, Pentium M processors. Later processors may have
implemented these as part of an architectural performance monitoring feature. The
architectural and non-architectural performance monitoring interfaces for different
processor families are described in Chapter 30, “Performance Monitoring,”. Appendix
A, “Performance-Monitoring Events,” lists all the events that can be counted for
architectural performance monitoring events and non-architectural events. The
counters are set up, started, and stopped using two MSRs and the RDMSR and
WRMSR instructions. For the P6 family processors, the current count for a particular
counter can be read using the new RDPMC instruction.
19-50 Vol. 3A

ARCHITECTURE COMPATIBILITY
The performance-monitoring counters are useful for debugging programs, optimizing
code, diagnosing system failures, or refining hardware designs. See Chapter 30,
“Performance Monitoring,” for more information on these counters.

19.38 TWO WAYS TO RUN INTEL 286 PROCESSOR TASKS
When porting 16-bit programs to run on 32-bit IA-32 processors, there are two
approaches to consider:
• Porting an entire 16-bit software system to a 32-bit processor, complete with the

old operating system, loader, and system builder. Here, all tasks will have 16-bit
TSSs. The 32-bit processor is being used as if it were a faster version of the 16-bit
processor.

• Porting selected 16-bit applications to run in a 32-bit processor environment with
a 32-bit operating system, loader, and system builder. Here, the TSSs used to
represent 286 tasks should be changed to 32-bit TSSs. It is possible to mix 16
and 32-bit TSSs, but the benefits are small and the problems are great. All tasks
in a 32-bit software system should have 32-bit TSSs. It is not necessary to
change the 16-bit object modules themselves; TSSs are usually constructed by
the operating system, by the loader, or by the system builder. See Chapter 18,
“Mixing 16-Bit and 32-Bit Code,” for more detailed information about mixing
16-bit and 32-bit code.

Because the 32-bit processors use the contents of the reserved word of 16-bit
segment descriptors, 16-bit programs that place values in this word may not run
correctly on the 32-bit processors.
Vol. 3A 19-51

ARCHITECTURE COMPATIBILITY
19-52 Vol. 3A

CHAPTER 20
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS

20.1 OVERVIEW
This chapter describes the basics of virtual machine architecture and an overview of
the virtual-machine extensions (VMX) that support virtualization of processor hard-
ware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B. Other aspects of VMX and system
programming considerations are described in chapters of Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

20.2 VIRTUAL MACHINE ARCHITECTURE
Virtual-machine extensions define processor-level support for virtual machines on
IA-32 processors. Two principal classes of software are supported:
• Virtual-machine monitors (VMM) — A VMM acts as a host and has full control

of the processor(s) and other platform hardware. A VMM presents guest software
(see next paragraph) with an abstraction of a virtual processor and allows it to
execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and I/O.

• Guest software — Each virtual machine (VM) is a guest software environment
that supports a stack consisting of operating system (OS) and application
software. Each operates independently of other virtual machines and uses on the
same interface to processor(s), memory, storage, graphics, and I/O provided by
a physical platform. The software stack acts as if it were running on a platform
with no VMM. Software executing in a virtual machine must operate with reduced
privilege so that the VMM can retain control of platform resources.

20.3 INTRODUCTION TO VMX OPERATION
Processor support for virtualization is provided by a form of processor operation
called VMX operation. There are two kinds of VMX operation: VMX root operation and
VMX non-root operation. In general, a VMM will run in VMX root operation and guest
software will run in VMX non-root operation. Transitions between VMX root operation
and VMX non-root operation are called VMX transitions. There are two kinds of VMX
transitions. Transitions into VMX non-root operation are called VM entries. Transi-
tions from VMX non-root operation to VMX root operation are called VM exits.
Vol. 3B 20-1

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
Processor behavior in VMX root operation is very much as it is outside VMX operation.
The principal differences are that a set of new instructions (the VMX instructions) is
available and that the values that can be loaded into certain control registers are
limited (see Section 20.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate
virtualization. Instead of their ordinary operation, certain instructions (including the
new VMCALL instruction) and events cause VM exits to the VMM. Because these
VM exits replace ordinary behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the VMM to retain control of
processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is
in VMX non-root operation. This fact may allow a VMM to prevent guest software from
determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current
privilege level (CPL) 0, guest software can run at the privilege level for which it was
originally designed. This capability may simplify the development of a VMM.

20.4 LIFE CYCLE OF VMM SOFTWARE
Figure 20-1 illustrates the life cycle of a VMM and its guest software as well as the
interactions between them. The following items summarize that life cycle:
• Software enters VMX operation by executing a VMXON instruction.
• Using VM entries, a VMM can then enter guests into virtual machines (one at a

time). The VMM effects a VM entry using instructions VMLAUNCH and
VMRESUME; it regains control using VM exits.

• VM exits transfer control to an entry point specified by the VMM. The VMM can
take action appropriate to the cause of the VM exit and can then return to the
virtual machine using a VM entry.

• Eventually, the VMM may decide to shut itself down and leave VMX operation. It
does so by executing the VMXOFF instruction.
20-2 Vol. 3B

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
20.5 VIRTUAL-MACHINE CONTROL STRUCTURE
VMX non-root operation and VMX transitions are controlled by a data structure called
a virtual-machine control structure (VMCS).

Access to the VMCS is managed through a component of processor state called the
VMCS pointer (one per logical processor). The value of the VMCS pointer is the 64-bit
address of the VMCS. The VMCS pointer is read and written using the instructions
VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE,
and VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM could
use a different VMCS for each virtual processor.

20.6 DISCOVERING SUPPORT FOR VMX
Before system software enters into VMX operation, it must discover the presence of
VMX support in the processor. System software can determine whether a processor
supports VMX operation using CPUID. If CPUID.1:ECX.VMX[bit 5] = 1, then VMX
operation is supported. See Chapter 3, “Instruction Set Reference, A-M” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX
operation can support additional features not present in first-generation implemen-
tations of the VMX architecture. The availability of extensible VMX features is
reported to software using a set of VMX capability MSRs (see Appendix G, “VMX
Capability Reporting Facility”).

Figure 20-1. Interaction of a Virtual-Machine Monitor and Guests

VM Monitor

Guest 0 Guest 1

VM Exit VM ExitVM Entry

VMXOFFVMXON
Vol. 3B 20-3

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
20.7 ENABLING AND ENTERING VMX OPERATION
Before system software can enter VMX operation, it enables VMX by setting
CR4.VMXE[bit 13] = 1. VMX operation is then entered by executing the VMXON
instruction. VMXON causes an invalid-opcode exception (#UD) if executed with
CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see
Section 20.8). System software leaves VMX operation by executing the VMXOFF
instruction. CR4.VMXE can be cleared outside of VMX operation after executing of
VMXOFF.

VMXON is also controlled by the IA32_FEATURE_CONTROL MSR (MSR address 3AH).
This MSR is cleared to zero when a logical processor is reset. The relevant bits of the
MSR are:
• Bit 0 is the lock bit. If this bit is clear, VMXON causes a general-protection

exception. If the lock bit is set, WRMSR to this MSR causes a general-protection
exception; the MSR cannot be modified until a power-up reset condition. System
BIOS can use this bit to provide a setup option for BIOS to disable support for
VMX. To enable VMX support in a platform, BIOS must set bit 1, bit 2, or both
(see below), as well as the lock bit.

• Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of
VMXON in SMX operation causes a general-protection exception. Attempts to set
this bit on logical processors that do not support both VMX operation (see Section
20.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B)
cause general-protection exceptions.

• Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of
VMXON outside SMX operation causes a general-protection exception. Attempts
to set this bit on logical processors that do not support VMX operation (see
Section 20.6) cause general-protection exceptions.

NOTE
A logical processor is in SMX operation if GETSEC[SEXIT] has not
been executed since the last execution of GETSEC[SENTER]. A logical
processor is outside SMX operation if GETSEC[SENTER] has not been
executed or if GETSEC[SEXIT] was executed after the last execution
of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region
of memory that a logical processor may use to support VMX operation.1 This region
is called the VMXON region. The address of the VMXON region (the VMXON pointer)

1. Future processors may require that a different amount of memory be reserved. If so, this fact is
reported to software using the VMX capability-reporting mechanism.
20-4 Vol. 3B

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
is provided in an operand to VMXON. Section 21.10.5, “VMXON Region,” details how
software should initialize and access the VMXON region.

20.8 RESTRICTIONS ON VMX OPERATION
VMX operation places restrictions on processor operation. These are detailed below:
• In VMX operation, processors may fix certain bits in CR0 and CR4 to specific

values and not support other values. VMXON fails if any of these bits contains an
unsupported value (see “VMXON—Enter VMX Operation” in Chapter 5 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).
Any attempt to set one of these bits to an unsupported value while in VMX
operation (including VMX root operation) using any of the CLTS, LMSW, or MOV
CR instructions causes a general-protection exception. VM entry or VM exit
cannot set any of these bits to an unsupported value.2

NOTES
The first processors to support VMX operation require that the
following bits be 1 in VMX operation: CR0.PE, CR0.NE, CR0.PG, and
CR4.VMXE. The restrictions on CR0.PE and CR0.PG imply that VMX
operation is supported only in paged protected mode (including
IA-32e mode). Therefore, guest software cannot be run in unpaged
protected mode or in real-address mode. See Section 27.2,
“Supporting Processor Operating Modes in Guest Environments,” for
a discussion of how a VMM might support guest software that expects
to run in unpaged protected mode or in real-address mode.
Later processors support a VM-execution control called “unrestricted
guest” (see Section 21.6.2). If this control is 1, CR0.PE and CR0.PG
may be 0 in VMX non-root operation (even if the capability MSR
IA32_VMX_CR0_FIXED0 reports otherwise).3 Such processors allow
guest software to run in unpaged protected mode or in real-address
mode.

• VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX
Operation” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B). Once the processor is in VMX operation, A20M

2. Software should consult the VMX capability MSRs IA32_VMX_CR0_FIXED0 and
IA32_VMX_CR0_FIXED1 to determine how bits in CR0 are set. (see Appendix G.7). For CR4, soft-
ware should consult the VMX capability MSRs IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 (see Appendix G.8).

3. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.
Vol. 3B 20-5

INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
interrupts are blocked. Thus, it is impossible to be in A20M mode in VMX
operation.

• The INIT signal is blocked whenever a logical processor is in VMX root operation.
It is not blocked in VMX non-root operation. Instead, INITs cause VM exits (see
Section 22.3, “Other Causes of VM Exits”).
20-6 Vol. 3B

CHAPTER 21
VIRTUAL-MACHINE CONTROL STRUCTURES

21.1 OVERVIEW
A logical processor uses virtual-machine control data structures (VMCSs) while
it is in VMX operation. These manage transitions into and out of VMX non-root oper-
ation (VM entries and VM exits) as well as processor behavior in VMX non-root oper-
ation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD,
VMREAD, and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a
virtual machine with multiple logical processors (virtual processors), the VMM can
use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is
called the VMCS region.1 Software references a specific VMCS using the 64-bit
physical address of the region (a VMCS pointer). VMCS pointers must be aligned on
a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits
beyond the processor’s physical-address width.2,3

A logical processor may maintain a number of VMCSs that are active. The processor
may optimize VMX operation by maintaining the state of an active VMCS in memory,
on the processor, or both. At any given time, at most one of the active VMCSs is the
current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions
operate only on the current VMCS.

The following items describe how a logical processor determines which VMCSs are
active and which is current:
• The memory operand of the VMPTRLD instruction is the address of a VMCS. After

execution of the instruction, that VMCS is both active and current on the logical
processor. Any other VMCS that had been active remains so, but no other VMCS
is current.

• The memory operand of the VMCLEAR instruction is also the address of a VMCS.
After execution of the instruction, that VMCS is neither active nor current on the

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is imple-
mentation specific and can be determined by consulting the VMX capability MSR
IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see
Appendix G.1.
Vol. 3B 21-1

VIRTUAL-MACHINE CONTROL STRUCTURES
logical processor. If the VMCS had been current on the logical processor, the
logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS
into a specified memory location (it stores the value FFFFFFFF_FFFFFFFFH if there is
no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used
with that VMCS: the VMLAUNCH instruction requires a VMCS whose launch state is
“clear”; the VMRESUME instruction requires a VMCS whose launch state is
“launched”. A logical processor maintains a VMCS’s launch state in the corresponding
VMCS region. The following items describe how a logical processor manages the
launch state of a VMCS:
• If the launch state of the current VMCS is “clear”, successful execution of the

VMLAUNCH instruction changes the launch state to “launched”.
• The memory operand of the VMCLEAR instruction is the address of a VMCS. After

execution of the instruction, the launch state of that VMCS is “clear”.
• There are no other ways to modify the launch state of a VMCS (it cannot be

modified using VMWRITE) and there is no direct way to discover it (it cannot be
read using VMREAD).

Figure 21-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS
and “Y” to refer to any other VMCS. Thus: “VMPTRLD X” always makes X current and
active; “VMPTRLD Y” always makes X not current (because it makes Y current);
VMLAUNCH makes the launch state of X “launched” if X was current and its launch
state was “clear”; and VMCLEAR X always makes X inactive and not current and
makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative
to these parameters (e.g., execution of VMPTRLD X when X is already current). Note
that VMCLEAR X makes X “inactive, not current, and clear,” even if X’s current state
is not defined (e.g., even if X has not yet been initialized). See Section 21.10.3.
21-2 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
21.2 FORMAT OF THE VMCS REGION
A VMCS region comprises up to 4-KBytes.1 The format of a VMCS region is given in
Table 21-1.

The first 32 bits of the VMCS region contain the VMCS revision identifier. Proces-
sors that maintain VMCS data in different formats (see below) use different VMCS

Figure 21-1. States of VMCS X

1. The exact size is implementation specific and can be determined by consulting the VMX capabil-
ity MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix G.1).

Table 21-1. Format of the VMCS Region

Byte Offset Contents

0 VMCS revision identifier

4 VMX-abort indicator

8 VMCS data (implementation-specific format)

Active
Not Current

Clear

Active
Current
Clear

Inactive
Not Current

Clear

Active
Not Current
Launched

Active
Current

Launched

VM
PTRLD X

VM
CLEAR X

VMLAUNCH

VM
CLEAR X

VMCLEAR XVMCLEAR X

VMCLEAR X

Anything
Else

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y

V
M

P
T

R
L

D
 X

V
M

P
T

R
L

D
 Y
Vol. 3B 21-3

VIRTUAL-MACHINE CONTROL STRUCTURES
revision identifiers. These identifiers enable software to avoid using a VMCS region
formatted for one processor on a processor that uses a different format.1

Software should write the VMCS revision identifier to the VMCS region before using
that region for a VMCS. The VMCS revision identifier is never written by the
processor; VMPTRLD may fail if its operand references a VMCS region whose VMCS
revision identifier differs from that used by the processor. Software can discover the
VMCS revision identifier that a processor uses by reading the VMX capability MSR
IA32_VMX_BASIC (see Appendix G, “VMX Capability Reporting Facility”).

The next 32 bits of the VMCS region are used for the VMX-abort indicator. The
contents of these bits do not control processor operation in any way. A logical
processor writes a non-zero value into these bits if a VMX abort occurs (see Section
24.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS
that control VMX non-root operation and the VMX transitions). The format of these
data is implementation-specific. VMCS data are discussed in Section 21.3 through
Section 21.9. To ensure proper behavior in VMX operation, software should maintain
the VMCS region and related structures (enumerated in Section 21.10.4) in
writeback cacheable memory. Future implementations may allow or require a
different memory type2. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix G.1).

21.3 ORGANIZATION OF VMCS DATA
The VMCS data are organized into six logical groups:
• Guest-state area. Processor state is saved into the guest-state area on

VM exits and loaded from there on VM entries.
• Host-state area. Processor state is loaded from the host-state area on VM exits.
• VM-execution control fields. These fields control processor behavior in VMX

non-root operation. They determine in part the causes of VM exits.
• VM-exit control fields. These fields control VM exits.
• VM-entry control fields. These fields control VM entries.
• VM-exit information fields. These fields receive information on VM exits and

describe the cause and the nature of VM exits. They are read-only.

1. Logical processors that use the same VMCS revision identifier use the same size for VMCS
regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type.
Doing so is strongly discouraged unless necessary as it will cause the performance of transitions
using those structures to suffer significantly. In addition, the processor will continue to use the
memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in
Appendix G.1.
21-4 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
The VM-execution control fields, the VM-exit control fields, and the VM-entry control
fields are sometimes referred to collectively as VMX controls.

21.4 GUEST-STATE AREA
This section describes fields contained in the guest-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM entry (see Section
23.3.2) and stored into these fields on every VM exit (see Section 24.3).

21.4.1 Guest Register State
The following fields in the guest-state area correspond to processor registers:
• Control registers CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do

not support Intel 64 architecture).
• Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64

architecture).
• RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support

Intel 64 architecture).1

• The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and
TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture). The base-address fields for CS, SS, DS, and ES have only 32
architecturally-defined bits; nevertheless, the corresponding VMCS fields
have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.

— Access rights (32 bits). The format of this field is given in Table 21-2 and
detailed as follows:

• The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit
segment descriptor. While bits 19:16 of code-segment and data-segment
descriptors correspond to the upper 4 bits of the segment limit, the corre-
sponding bits (bits 11:8) are reserved in this VMCS field.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
Vol. 3B 21-5

VIRTUAL-MACHINE CONTROL STRUCTURES
• Bit 16 indicates an unusable segment. Attempts to use such a segment
fault except in 64-bit mode. In general, a segment register is unusable if
it has been loaded with a null selector.1

• Bits 31:17 are reserved.

The base address, segment limit, and access rights compose the “hidden” part
(or “descriptor cache”) of each segment register. These data are included in the
VMCS because it is possible for a segment register’s descriptor cache to be incon-
sistent with the segment descriptor in memory (in the GDT or the LDT)
referenced by the segment register’s selector.
The value of the DPL field for SS is always equal to the logical processor’s current
privilege level (CPL).2

• The following fields for each of the registers GDTR and IDTR:

1. There are a few exceptions to this statement. For example, a segment with a non-null selector
may be unusable following a task switch that fails after its commit point; see “Interrupt
10—Invalid TSS Exception (#TS)” in Section 6.14, “Exception and Interrupt Handling in 64-bit
Mode,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In
contrast, the TR register is usable after processor reset despite having a null selector; see Table
10-1 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 21-2. Format of Access Rights

Bit Position(s) Field

3:0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)

6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

13 Reserved (except for CS)
L — 64-bit mode active (for CS only)

14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

15 G — Granularity

16 Segment unusable (0 = usable; 1 = unusable)

31:17 Reserved
21-6 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
— Base address (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are
specified as only 16 bits in the architecture.

• The following MSRs:

— IA32_DEBUGCTL (64 bits)

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture)

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-entry control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-entry control or that
of the “save IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-entry control or that
of the “save IA32_EFER” VM-exit control.

• The register SMBASE (32 bits). This register contains the base address of the
logical processor’s SMRAM image.

21.4.2 Guest Non-Register State
In addition to the register state described in Section 21.4.1, the guest-state area
includes the following fields that characterize guest state but which do not corre-
spond to processor registers:
• Activity state (32 bits). This field identifies the logical processor’s activity state.

When a logical processor is executing instructions normally, it is in the active
state. Execution of certain instructions and the occurrence of certain events may
cause a logical processor to transition to an inactive state in which it ceases to
execute instructions.
The following activity states are defined:1

— 0: Active. The logical processor is executing instructions normally.

— 1: HLT. The logical processor is inactive because it executed the HLT
instruction.

2. In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL
fields are not meaningful in real-address mode or in virtual-8086 mode.

1. Execution of the MWAIT instruction may put a logical processor into an inactive state. However,
this VMCS field never reflects this state. See Section 24.1.
Vol. 3B 21-7

VIRTUAL-MACHINE CONTROL STRUCTURES
— 2: Shutdown. The logical processor is inactive because it incurred a triple
fault1 or some other serious error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a
startup-IPI (SIPI).

Future processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to determine
what activity states are supported.

• Interruptibility state (32 bits). The IA-32 architecture includes features that
permit certain events to be blocked for a period of time. This field contains
information about such blocking. Details and the format of this field are given in
Table 21-3.

1. A triple fault occurs when a logical processor encounters an exception while attempting to
deliver a double fault.

Table 21-3. Format of Interruptibility State

Bit
Position(s)

Bit Name Notes

0 Blocking by STI See the “STI—Set Interrupt Flag” section in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B.

Execution of STI with RFLAGS.IF = 0 blocks interrupts (and,
optionally, other events) for one instruction after its
execution. Setting this bit indicates that this blocking is in
effect.

1 Blocking by
MOV SS

See the “MOV—Move a Value from the Stack” and “POP—Pop
a Value from the Stack” sections in Chapter 3 and Chapter 4
of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A & 2B, and Section 6.8.3 in
the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for
one instruction after its execution. In addition, certain debug
exceptions are inhibited between a MOV to SS or a POP to SS
and a subsequent instruction. Setting this bit indicates that
the blocking of all these events is in effect. This document
uses the term “blocking by MOV SS,” but it applies equally to
POP SS.

2 Blocking by SMI See Section 26.2. System-management interrupts (SMIs) are
disabled while the processor is in system-management mode
(SMM). Setting this bit indicates that blocking of SMIs is in
effect.
21-8 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
• Pending debug exceptions (64 bits; 32 bits on processors that do not support
Intel 64 architecture). IA-32 processors may recognize one or more debug
exceptions without immediately delivering them.1 This field contains information
about such exceptions. This field is described in Table 21-4.

3 Blocking by NMI See Section 6.7.1 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A and Section 26.8.

Delivery of a non-maskable interrupt (NMI) or a system-
management interrupt (SMI) blocks subsequent NMIs until
the next execution of IRET. See Section 22.4 for how this
behavior of IRET may change in VMX non-root operation.
Setting this bit indicates that blocking of NMIs is in effect.
Clearing this bit does not imply that NMIs are not
(temporarily) blocked for other reasons.

If the “virtual NMIs” VM-execution control (see Section
21.6.1) is 1, this bit does not control the blocking of NMIs.
Instead, it refers to “virtual-NMI blocking” (the fact that guest
software is not ready for an NMI).

31:4 Reserved VM entry will fail if these bits are not 0. See Section 23.3.1.5.

1. For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one
instruction. See Section 6.8.3 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. In addition, certain events incident to an instruction (for example, an INIT signal) may
take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

Table 21-4. Format of Pending-Debug-Exceptions

Bit
Position(s)

Bit Name Notes

3:0 B3 – B0 When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set
even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5.

12 Enabled
breakpoint

When set, this bit indicates that at least one data or I/O
breakpoint was met and was enabled in DR7.

Table 21-3. Format of Interruptibility State (Contd.)

Bit
Position(s)

Bit Name Notes
Vol. 3B 21-9

VIRTUAL-MACHINE CONTROL STRUCTURES
• VMCS link pointer (64 bits). This field is included for future expansion. Software
should set this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see
Section 23.3.1.5).

• VMX-preemption timer value (32 bits). This field is supported only on logical
processors that support the 1-setting of the “activate VMX-preemption timer”
VM-execution control. This field contains the value that the VMX-preemption
timer will use following the next VM entry with that setting. See Section 22.7.1
and Section 23.6.4.

• Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4)
fields (PDPTE0, PDPTE1, PDPTE2, and PDPTE3) are supported only on logical
processors that support the 1-setting of the “enable EPT” VM-execution control.
They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A). They are used only if the “enable EPT” VM-execution control
is 1.

21.5 HOST-STATE AREA
This section describes fields contained in the host-state area of the VMCS. As noted
earlier, processor state is loaded from these fields on every VM exit (see Section
24.5).

All fields in the host-state area correspond to processor registers:
• CR0, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel

64 architecture).
• RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64

architecture).
• Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS,

and TR. There is no field in the host-state area for the LDTR selector.
• Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on

processors that do not support Intel 64 architecture).

13 Reserved VM entry fails if this bit is not 0. See Section 23.3.1.5.

14 BS When set, this bit indicates that a debug exception would
have been triggered by single-step execution mode.

63:15 Reserved VM entry fails if these bits are not 0. See Section 23.3.1.5.
Bits 63:32 exist only on processors that support Intel 64
architecture.

Table 21-4. Format of Pending-Debug-Exceptions (Contd.)

Bit
Position(s)

Bit Name Notes
21-10 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
• The following MSRs:

— IA32_SYSENTER_CS (32 bits)

— IA32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on
processors that do not support Intel 64 architecture).

— IA32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on logical
processors that support the 1-setting of the “load IA32_PERF_GLOBAL_CTRL”
VM-exit control.

— IA32_PAT (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_PAT” VM-exit control.

— IA32_EFER (64 bits). This field is supported only on logical processors that
support either the 1-setting of the “load IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded
with fixed values on every VM exit; there are no fields corresponding to these compo-
nents in the host-state area. See Section 24.5 for details of how state is loaded on
VM exits.

21.6 VM-EXECUTION CONTROL FIELDS
The VM-execution control fields govern VMX non-root operation. These are described
in Section 21.6.1 through Section 21.6.8.

21.6.1 Pin-Based VM-Execution Controls
The pin-based VM-execution controls constitute a 32-bit vector that governs the
handling of asynchronous events (for example: interrupts).1 Table 21-5 lists the
controls supported. See Chapter 22 for how these controls affect processor behavior
in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-exe-
cution controls (see Section 22.3).
Vol. 3B 21-11

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PINBASED_CTLS and
IA32_VMX_TRUE_PINBASED_CTLS (see Appendix G.3.1) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 2, and 4. The VMX capability MSR IA32_VMX_PINBASED_CTLS will
always report that these bits must be 1. Logical processors that support the 0-
settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to
discover support for the 0-settings of these bits. Software that is not aware of the
functionality of any one of these bits should set that bit to 1.

21.6.2 Processor-Based VM-Execution Controls
The processor-based VM-execution controls constitute two 32-bit vectors that
govern the handling of synchronous events, mainly those caused by the execution of
specific instructions.1 These are the primary processor-based VM-execution
controls and the secondary processor-based VM-execution controls.

Table 21-5. Definitions of Pin-Based VM-Execution Controls
Bit Position(s) Name Description

0 External-interrupt
exiting

If this control is 1, external interrupts cause VM exits.
Otherwise, they are delivered normally through the guest
interrupt-descriptor table (IDT). If this control is 1, the value
of RFLAGS.IF does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause
VM exits. Otherwise, they are delivered normally using
descriptor 2 of the IDT. This control also determines
interactions between IRET and blocking by NMI (see Section
22.4).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking
by NMI” bit (bit 3) in the interruptibility-state field indicates
“virtual-NMI blocking” (see Table 21-3). This control also
interacts with the “NMI-window exiting” VM-execution
control (see Section 21.6.2).

This control can be set only if the “NMI exiting” VM-execution
control (above) is 1.

6 Activate VMX-
preemption timer

If this control is 1, the VMX-preemption timer counts down in
VMX non-root operation; see Section 22.7.1. A VM exit occurs
when the timer counts down to zero; see Section 22.3.
21-12 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
Table 21-6 lists the primary processor-based VM-execution controls. See Chapter 22
for more details of how these controls affect processor behavior in VMX non-root
operation.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execu-
tion controls (see Section 22.1.2), as do task switches (see Section 22.3).

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

2 Interrupt-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if RFLAGS.IF = 1 and there are no other blocking
of interrupts (see Section 21.4.2).

3 Use TSC offsetting This control determines whether executions of RDTSC,
executions of RDTSCP, and executions of RDMSR that read
from the IA32_TIME_STAMP_COUNTER MSR return a value
modified by the TSC offset field (see Section 21.6.5 and
Section 22.4).

7 HLT exiting This control determines whether executions of HLT cause
VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause
VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause
VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause
VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and
RDTSCP cause VM exits.

15 CR3-load exiting In conjunction with the CR3-target controls (see Section
21.6.7), this control determines whether executions of MOV
to CR3 cause VM exits. See Section 22.1.3.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

16 CR3-store exiting This control determines whether executions of MOV from
CR3 cause VM exits.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

19 CR8-load exiting This control determines whether executions of MOV to CR8
cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.
Vol. 3B 21-13

VIRTUAL-MACHINE CONTROL STRUCTURES
20 CR8-store exiting This control determines whether executions of MOV from
CR8 cause VM exits.

This control must be 0 on processors that do not support
Intel 64 architecture.

21 Use TPR shadow Setting this control to 1 activates the TPR shadow, which is
maintained in a page of memory addressed by the virtual-
APIC address. See Section 22.4.

This control must be 0 on processors that do not support
Intel 64 architecture.

22 NMI-window
exiting

If this control is 1, a VM exit occurs at the beginning of any
instruction if there is no virtual-NMI blocking (see Section
21.4.2).

This control can be set only if the “virtual NMIs” VM-
execution control (see Section 21.6.1) is 1.

23 MOV-DR exiting This control determines whether executions of MOV DR
cause VM exits.

24 Unconditional I/O
exiting

This control determines whether executions of I/O
instructions (IN, INS/INSB/INSW/INSD, OUT, and
OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.

This control is ignored if the “use I/O bitmaps” control is 1.

25 Use I/O bitmaps This control determines whether I/O bitmaps are used to
restrict executions of I/O instructions (see Section 21.6.4 and
Section 22.1.3).

For this control, “0” means “do not use I/O bitmaps” and “1”
means “use I/O bitmaps.” If the I/O bitmaps are used, the
setting of the “unconditional I/O exiting” control is ignored.

27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is
enabled. See Section 22.7.2.

28 Use MSR bitmaps This control determines whether MSR bitmaps are used to
control execution of the RDMSR and WRMSR instructions
(see Section 21.6.9 and Section 22.1.3).

For this control, “0” means “do not use MSR bitmaps” and “1”
means “use MSR bitmaps.” If the MSR bitmaps are not used,
all executions of the RDMSR and WRMSR instructions cause
VM exits.

29 MONITOR exiting This control determines whether executions of MONITOR
cause VM exits.

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
21-14 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_PROCBASED_CTLS and
IA32_VMX_TRUE_PROCBASED_CTLS (see Appendix G.3.2) to determine how to set
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 1, 4–6, 8, 13–16, and 26. The VMX capability MSR
IA32_VMX_PROCBASED_CTLS will always report that these bits must be 1. Logical
processors that support the 0-settings of any of these bits will support the VMX capa-
bility MSR IA32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult
this MSR to discover support for the 0-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether
the secondary processor-based VM-execution controls are used. If that bit is 0,
VM entry and VMX non-root operation function as if all the secondary processor-
based VM-execution controls were 0. Processors that support only the 0-setting of
bit 31 of the primary processor-based VM-execution controls do not support the
secondary processor-based VM-execution controls.

Table 21-7 lists the secondary processor-based VM-execution controls. See Chapter
22 for more details of how these controls affect processor behavior in VMX non-root
operation.

30 PAUSE exiting This control determines whether executions of PAUSE cause
VM exits.

31 Activate secondary
controls

This control determines whether the secondary processor-
based VM-execution controls are used. If this control is 0, the
logical processor operates as if all the secondary processor-
based VM-execution controls were also 0.

Table 21-7. Definitions of Secondary Processor-Based VM-Execution Controls
Bit Position(s) Name Description

0 Virtualize APIC
accesses

If this control is 1, a VM exit occurs on any attempt to access
data on the page with the APIC-access address. See Section
22.2.

1 Enable EPT If this control is 1, extended page tables (EPT) are enabled.
See Section 25.2.

2 Descriptor-table
exiting

This control determines whether executions of LGDT, LIDT,
LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits.

3 Enable RDTSCP If this control is 0, any execution of RDTSCP causes and
invalid-opcode exception (#UD).

Table 21-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
Vol. 3B 21-15

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in these fields are reserved to 0. Software should consult the VMX capa-
bility MSR IA32_VMX_PROCBASED_CTLS2 (see Appendix G.3.3) to determine how to
set reserved bits. Failure to clear reserved bits causes subsequent VM entries to fail
(see Section 23.2).

If a logical processor supports the 1-setting of bit 31 of the primary processor-based
VM-execution controls but software has set that bit is 0, VM entry and VMX non-root
operation function as if all the secondary processor-based VM-execution controls
were 0. However, the logical processor will maintain the secondary processor-based
VM-execution controls as written by VMWRITE.

21.6.3 Exception Bitmap
The exception bitmap is a 32-bit field that contains one bit for each exception.
When an exception occurs, its vector is used to select a bit in this field. If the bit is 1,
the exception causes a VM exit. If the bit is 0, the exception is delivered normally
through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by
bit 14 in the exception bitmap as well as the error code produced by the page fault
and two 32-bit fields in the VMCS (the page-fault error-code mask and page-
fault error-code match). See Section 22.3 for details.

21.6.4 I/O-Bitmap Addresses
The VM-execution control fields include the 64-bit physical addresses of I/O
bitmaps A and B (each of which are 4 KBytes in size). I/O bitmap A contains one bit

4 Virtualize x2APIC
mode

Setting this control to 1 causes RDMSR and WRMSR to MSR
808H to use the TPR shadow, which is maintained on the
virtual-APIC page. See Section 22.4.

5 Enable VPID If this control is 1, cached translations of linear addresses are
associated with a virtual-processor identifier (VPID). See
Section 25.1.

6 WBINVD exiting This control determines whether executions of WBINVD
cause VM exits.

7 Unrestricted guest This control determines whether guest software may run in
unpaged protected mode or in real-address mode.

10 PAUSE-loop exiting This control determines whether a series of executions of
PAUSE can cause a VM exit (see Section 21.6.13 and Section
22.1.3).

Table 21-7. Definitions of Secondary Processor-Based VM-Execution Controls (Contd.)
Bit Position(s) Name Description
21-16 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
for each I/O port in the range 0000H through 7FFFH; I/O bitmap B contains bits for
ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use I/O bitmaps” control is
1. If the bitmaps are used, execution of an I/O instruction causes a VM exit if any bit
in the I/O bitmaps corresponding to a port it accesses is 1. See Section 22.1.3 for
details. If the bitmaps are used, their addresses must be 4-KByte aligned.

21.6.5 Time-Stamp Counter Offset
VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting”
control is 0 and the “use TSC offsetting” control is 1, this field controls executions of
the RDTSC and RDTSCP instructions. It also controls executions of the RDMSR
instruction that read from the IA32_TIME_STAMP_COUNTER MSR. For all of these,
the signed value of the TSC offset is combined with the contents of the time-stamp
counter (using signed addition) and the sum is reported to guest software in
EDX:EAX. See Chapter 22 for a detailed treatment of the behavior of RDTSC,
RDTSCP, and RDMSR in VMX non-root operation.

21.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
VM-execution control fields include guest/host masks and read shadows for the
CR0 and CR4 registers. These fields control executions of instructions that access
those registers (including CLTS, LMSW, MOV CR, and SMSW). They are 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:
• Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing

from the corresponding bits in the corresponding read shadow cause VM exits.
• Guest reads (using MOV from CR or SMSW) return values for these bits from the

corresponding read shadow.

Bits cleared to 0 correspond to bits “owned” by the guest; guest attempts to modify
them succeed and guest reads return values for these bits from the control register
itself.

See Chapter 22 for details regarding how these fields affect VMX non-root operation.

21.6.7 CR3-Target Controls
The VM-execution control fields include a set of 4 CR3-target values and a CR3-
target count. The CR3-target values each have 64 bits on processors that support
Intel 64 architecture and 32 bits on processors that do not. The CR3-target count has
32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its
source operand matches one of these values. If the CR3-target count is n, only the
Vol. 3B 21-17

VIRTUAL-MACHINE CONTROL STRUCTURES
first n CR3-target values are considered; if the CR3-target count is 0, MOV to CR3
always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values.
VM entry fails (see Section 23.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software
should read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to deter-
mine the number of values supported.

21.6.8 Controls for APIC Accesses
There are three mechanisms by which software accesses registers of the logical
processor’s local APIC:
• If the local APIC is in xAPIC mode, it can perform memory-mapped accesses to

addresses in the 4-KByte page referenced by the physical address in the
IA32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A
and Intel® 64 Architecture Processor Topology Enumeration).1

• If the local APIC is in x2APIC mode, it can accesses the local APIC’s registers
using the RDMSR and WRMSR instructions (see Intel® 64 Architecture Processor
Topology Enumeration).

• In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using
the MOV CR8 instruction.

There are three processor-based VM-execution controls (see Section 21.6.2) that
control such accesses. There are “use TPR shadow”, “virtualize APIC accesses”, and
“virtualize x2APIC mode”. These controls interact with the following fields:
• APIC-access address (64 bits). This field is the physical address of the 4-KByte

APIC-access page. If the “virtualize APIC accesses” VM-execution control is 1,
operations that access this page may cause VM exits. See Section 22.2 and
Section 22.5.
The APIC-access address exists only on processors that support the 1-setting of
the “virtualize APIC accesses” VM-execution control.

• Virtual-APIC address (64 bits). This field is the physical address of the 4-KByte
virtual-APIC page.
If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
be 4-KByte aligned. The virtual-APIC page is accessed by the following
operations if the “use TPR shadow” VM-execution control is 1:

— The MOV CR8 instructions (see Section 22.1.3 and Section 22.4).

— Accesses to byte 80H on the APIC-access page if, in addition, the “virtualize
APIC accesses” VM-execution control is 1 (see Section 22.5.3).

1. If the local APIC does not support x2APIC mode, it is always in xAPIC mode.
21-18 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
— The RDMSR and WRMSR instructions if, in addition, the value of ECX is 808H
(indicating the TPR MSR) and the “virtualize x2APIC mode” VM-execution
control is 1 (see Section 22.4).

The virtual-APIC address exists only on processors that support the 1-setting of
the “use TPR shadow” VM-execution control.

• TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below
which the TPR shadow (bits 7:4 of byte 80H of the virtual-APIC page) cannot fall.
A VM exit occurs after an operation (e.g., an execution of MOV to CR8) that
reduces the TPR shadow below this value. See Section 22.4 and Section 22.5.3.
The TPR threshold exists only on processors that support the 1-setting of the
“use TPR shadow” VM-execution control.

21.6.9 MSR-Bitmap Address
On processors that support the 1-setting of the “use MSR bitmaps” VM-execution
control, the VM-execution control fields include the 64-bit physical address of four
contiguous MSR bitmaps, which are each 1-KByte in size. This field does not exist
on processors that do not support the 1-setting of that control. The four bitmaps are:
• Read bitmap for low MSRs (located at the MSR-bitmap address). This contains

one bit for each MSR address in the range 00000000H to 00001FFFH. The bit
determines whether an execution of RDMSR applied to that MSR causes a
VM exit.

• Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

• Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048).
This contains one bit for each MSR address in the range 00000000H to
00001FFFH. The bit determines whether an execution of WRMSR applied to that
MSR causes a VM exit.

• Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072).
This contains one bit for each MSR address in the range C0000000H
toC0001FFFH. The bit determines whether an execution of WRMSR applied to
that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control
is 1. If the bitmaps are used, an execution of RDMSR or WRMSR causes a VM exit if
the value of RCX is in neither of the ranges covered by the bitmaps or if the appro-
priate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is
1. See Section 22.1.3 for details. If the bitmaps are used, their address must be 4-
KByte aligned.
Vol. 3B 21-19

VIRTUAL-MACHINE CONTROL STRUCTURES
21.6.10 Executive-VMCS Pointer
The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of
system-management interrupts (SMIs) and system-management mode (SMM). SMM
VM exits save this field as described in Section 26.15.2. VM entries that return from
SMM use this field as described in Section 26.15.4.

21.6.11 Extended-Page-Table Pointer (EPTP)
The extended-page-table pointer (EPTP) contains the address of the base of EPT
PML4 table (see Section 25.2.2), as well as other EPT configuration information. The
format of this field is shown in Table 21-8.

The EPTP exists only on processors that support the 1-setting of the “enable EPT”
VM-execution control.

21.6.12 Virtual-Processor Identifier (VPID)
The virtual-processor identifier (VPID) is a 16-bit field. It exists only on proces-
sors that support the 1-setting of the “enable VPID” VM-execution control. See
Section 25.1 for details regarding the use of this field.

Table 21-8. Format of Extended-Page-Table Pointer

Bit Position(s) Field

2:0 EPT paging-structure memory type (see Section 25.2.4):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.1

NOTES:
1. Software should read the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to

determine what EPT paging-structure memory types are supported.

5:3 This value is 1 less than the EPT page-walk length (see Section 25.2.2)

11:6 Reserved

N–1:12 Bits N–1:12 of the physical address of the 4-KByte aligned EPT PML4 table2

2. N is the physical-address width supported by the logical processor. Software can determine a pro-
cessor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

63:N Reserved
21-20 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
21.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution
control, the VM-execution control fields include the following 32-bit fields:
• PLE_Gap. Software can configure this field as an upper bound on the amount of

time between two successive executions of PAUSE in a loop.
• PLE_Window. Software can configure this field as an upper bound on the

amount of time a guest is allowed to execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the
timestamp counter (TSC). See Section 22.1.3 for more details regarding PAUSE-loop
exiting.

21.7 VM-EXIT CONTROL FIELDS
The VM-exit control fields govern the behavior of VM exits. They are discussed in
Section 21.7.1 and Section 21.7.2.

21.7.1 VM-Exit Controls
The VM-exit controls constitute a 32-bit vector that governs the basic operation of
VM exits. Table 21-9 lists the controls supported. See Chapter 24 for complete details
of how these controls affect VM exits.

Table 21-9. Definitions of VM-Exit Controls

Bit Position(s) Name Description

2 Save debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are saved on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 Host address-
space size

On processors that support Intel 64 architecture, this
control determines whether a logical processor is in 64-bit
mode after the next VM exit. Its value is loaded into CS.L,
IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.1

This control must be 0 on processors that do not support
Intel 64 architecture.

12 Load
IA32_PERF_GLOB
AL_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.
Vol. 3B 21-21

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_EXIT_CTLS and
IA32_VMX_TRUE_EXIT_CTLS (see Appendix G.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to
fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8, 10, 11, 13, 14, 16, and 17. The VMX capability MSR
IA32_VMX_EXIT_CTLS always reports that these bits must be 1. Logical processors
that support the 0-settings of any of these bits will support the VMX capability MSR
IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover
support for the 0-settings of these bits. Software that is not aware of the functionality
of any one of these bits should set that bit to 1.

15 Acknowledge
interrupt on exit

This control affects VM exits due to external interrupts:

• If such a VM exit occurs and this control is 1, the logical
processor acknowledges the interrupt controller,
acquiring the interrupt’s vector. The vector is stored in
the VM-exit interruption-information field, which is
marked valid.

• If such a VM exit occurs and this control is 0, the
interrupt is not acknowledged and the VM-exit
interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is
saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is
saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM exit.

22 Save VMX-
preemption timer
value

This control determines whether the value of the VMX-
preemption timer is saved on VM exit.

NOTES:
1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of

CR0.PG and IA32_EFER.LME, and since CR0.PG is always 1 in VMX operation, IA32_EFER.LMA is
always identical to IA32_EFER.LME in VMX operation.

Table 21-9. Definitions of VM-Exit Controls (Contd.)

Bit Position(s) Name Description
21-22 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
21.7.2 VM-Exit Controls for MSRs
A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following
VM-exit control fields determine how MSRs are stored on VM exits:

• VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to
be stored on VM exit. It is recommended that this count not exceed 512 bytes.1
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.

• VM-exit MSR-store address (64 bits). This field contains the physical address
of the VM-exit MSR-store area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-store count. The format
of each entry is given in Table 21-10. If the VM-exit MSR-store count is not zero,
the address must be 16-byte aligned.

See Section 24.4 for how this area is used on VM exits.

The following VM-exit control fields determine how MSRs are loaded on VM exits:
• VM-exit MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM exit. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM exit.2

• VM-exit MSR-load address (64 bits). This field contains the physical address of
the VM-exit MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-exit MSR-load count (see
Table 21-10). If the VM-exit MSR-load count is not zero, the address must be
16-byte aligned.

See Section 24.6 for how this area is used on VM exits.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).

Table 21-10. Format of an MSR Entry
Bit Position(s) Contents

31:0 MSR index

63:32 Reserved

127:64 MSR data

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).
Vol. 3B 21-23

VIRTUAL-MACHINE CONTROL STRUCTURES
21.8 VM-ENTRY CONTROL FIELDS
The VM-entry control fields govern the behavior of VM entries. They are discussed in
Sections 21.8.1 through 21.8.3.

21.8.1 VM-Entry Controls
The VM-entry controls constitute a 32-bit vector that governs the basic operation of
VM entries. Table 21-11 lists the controls supported. See Chapter 23 for how these
controls affect VM entries.

Table 21-11. Definitions of VM-Entry Controls
Bit Position(s) Name Description

2 Load debug
controls

This control determines whether DR7 and the
IA32_DEBUGCTL MSR are loaded on VM exit.

The first processors to support the virtual-machine
extensions supported only the 1-setting of this control.

9 IA-32e mode guest On processors that support Intel 64 architecture, this control
determines whether the logical processor is in IA-32e mode
after VM entry. Its value is loaded into IA32_EFER.LMA as
part of VM entry.1

This control must be 0 on processors that do not support
Intel 64 architecture.

NOTES:
1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting

of the “unrestricted guest” VM-execution control. If it is read as 1, every VM exit stores the value of
IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control (see Section 24.2).

10 Entry to SMM This control determines whether the logical processor is in
system-management mode (SMM) after VM entry. This
control must be 0 for any VM entry from outside SMM.

11 Deactivate dual-
monitor treatment

If set to 1, the default treatment of SMIs and SMM is in effect
after the VM entry (see Section 26.15.7). This control must
be 0 for any VM entry from outside SMM.

13 Load
IA32_PERF_GLOBA
L_CTRL

This control determines whether the
IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.

14 Load IA32_PAT This control determines whether the IA32_PAT MSR is
loaded on VM entry.

15 Load IA32_EFER This control determines whether the IA32_EFER MSR is
loaded on VM entry.
21-24 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
All other bits in this field are reserved, some to 0 and some to 1. Software should
consult the VMX capability MSRs IA32_VMX_ENTRY_CTLS and
IA32_VMX_TRUE_ENTRY_CTLS (see Appendix G.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries
to fail (see Section 23.2).

The first processors to support the virtual-machine extensions supported only the 1-
settings of bits 0–8 and 12. The VMX capability MSR IA32_VMX_ENTRY_CTLS always
reports that these bits must be 1. Logical processors that support the 0-settings of
any of these bits will support the VMX capability MSR IA32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the 0-settings of
these bits. Software that is not aware of the functionality of any one of these bits
should set that bit to 1.

21.8.2 VM-Entry Controls for MSRs
A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry
control fields manage this functionality:
• VM-entry MSR-load count (32 bits). This field contains the number of MSRs to

be loaded on VM entry. It is recommended that this count not exceed 512 bytes.
Otherwise, unpredictable processor behavior (including a machine check) may
result during VM entry.1

• VM-entry MSR-load address (64 bits). This field contains the physical address
of the VM-entry MSR-load area. The area is a table of entries, 16 bytes per entry,
where the number of entries is given by the VM-entry MSR-load count. The
format of entries is described in Table 21-10. If the VM-entry MSR-load count is
not zero, the address must be 16-byte aligned.

See Section 23.4 for details of how this area is used on VM entries.

21.8.3 VM-Entry Controls for Event Injection
VM entry can be configured to conclude by delivering an event through the IDT (after
all guest state and MSRs have been loaded). This process is called event injection
and is controlled by the following three VM-entry control fields:
• VM-entry interruption-information field (32 bits). This field provides details

about the event to be injected. Table 21-12 describes the field.

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the
VMX capability MSR IA32_VMX_MISC to determine the number supported (see Appendix G.6).

Table 21-12. Format of the VM-Entry Interruption-Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception
Vol. 3B 21-25

VIRTUAL-MACHINE CONTROL STRUCTURES
— The vector (bits 7:0) determines which entry in the IDT is used or which
other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is
performed. In general, a VMM should use the type hardware exception for
all exceptions other than breakpoint exceptions (#BP; generated by INT3)
and overflow exceptions (#OF; generated by INTO); it should use the type
software exception for #BP and #OF. The type other event is used for
injection of events that are not delivered through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether
delivery pushes an error code on the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit
in this field is cleared on every VM exit (see Section 24.2).

• VM-entry exception error code (32 bits). This field is used if and only if the
valid bit (bit 31) and the deliver-error-code bit (bit 11) are both set in the
VM-entry interruption-information field.

• VM-entry instruction length (32 bits). For injection of events whose type is
software interrupt, software exception, or privileged software exception, this
field is used to determine the value of RIP that is pushed on the stack.

See Section 23.5 for details regarding the mechanics of event injection, including the
use of the interruption type and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.

10:8 Interruption type:

0: External interrupt
1: Reserved
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)

30:12 Reserved

31 Valid

Table 21-12. Format of the VM-Entry Interruption-Information Field (Contd.)
Bit
Position(s)

Content
21-26 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
21.9 VM-EXIT INFORMATION FIELDS
The VMCS contains a section of read-only fields that contain information about the
most recent VM exit. Attempts to write to these fields with VMWRITE fail (see
“VMWRITE—Write Field to Virtual-Machine Control Structure” in Chapter 6 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B).

21.9.1 Basic VM-Exit Information
The following VM-exit information fields provide basic information about a VM exit:
• Exit reason (32 bits). This field encodes the reason for the VM exit and has the

structure given in Table 21-13.

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is
clear) or of the VM-entry failure (if bit 31 is set). Appendix I enumerates the
basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 26.15.2) that took priority
over an MTF VM exit (see Section 22.7.2) that would have occurred had the
SMM VM exit not occurred. See Section 26.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time
the VM exit occurred. This can happen only for SMM VM exits. See Section
26.15.2.

— Because some VM-entry failures load processor state from the host-state
area (see Section 23.7), software must be able to distinguish such cases from
true VM exits. Bit 31 is used for that purpose.

• Exit qualification (64 bits; 32 bits on processors that do not support Intel 64
architecture). This field contains additional information about the cause of
VM exits due to the following: debug exceptions; page-fault exceptions; start-up
IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR;

Table 21-13. Format of Exit Reason

Bit
Position(s)

Contents

15:0 Basic exit reason

27:16 Reserved (cleared to 0)

28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)
Vol. 3B 21-27

VIRTUAL-MACHINE CONTROL STRUCTURES
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE;
VMXON; control-register accesses; MOV DR; I/O instructions; and MWAIT. The
format of the field depends on the cause of the VM exit. See Section 24.2.1 for
details.

• Guest-linear address (64 bits; 32 bits on processors that do not support
Intel 64 architecture). This field is used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.

— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions.

— Certain VM exits due to EPT violations
See Section 24.2.1 and Section 26.15.2.3 for details of when and how this field is
used.

• Guest-physical address (64 bits). This field is used VM exits due to EPT
violations and EPT misconfigurations. See Section 24.2.1 for details of when and
how this field is used.

21.9.2 Information for VM Exits Due to Vectored Events
Event-specific information is provided for VM exits due to the following vectored
events: exceptions (including those generated by the instructions INT3, INTO,
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information
is provided in the following fields:
• VM-exit interruption information (32 bits). This field receives basic

information associated with the event causing the VM exit. Table 21-14 describes
this field.

Table 21-14. Format of the VM-Exit Interruption-Information Field
Bit Position(s) Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4 – 5: Not used
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 NMI unblocking due to IRET
21-28 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
• VM-exit interruption error code (32 bits). For VM exits caused by hardware
exceptions that would have delivered an error code on the stack, this field
receives that error code.

Section 24.2.2 provides details of how these fields are saved on VM exits.

21.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in
VMX non-root operation.1 This information is provided in the following fields:
• IDT-vectoring information (32 bits). This field receives basic information

associated with the event that was being delivered when the VM exit occurred.
Table 21-15 describes this field.

30:13 Reserved (cleared to 0)

31 Valid

1. This includes cases in which the event delivery was caused by event injection as part of
VM entry; see Section 23.5.1.2.

Table 21-15. Format of the IDT-Vectoring Information Field
Bit
Position(s)

Content

7:0 Vector of interrupt or exception

10:8 Interruption type:

0: External interrupt
1: Not used
2: Non-maskable interrupt (NMI)
3: Hardware exception
4: Software interrupt
5: Privileged software exception
6: Software exception
7: Not used

11 Error code valid (0 = invalid; 1 = valid)

12 Undefined

30:13 Reserved (cleared to 0)

31 Valid

Table 21-14. Format of the VM-Exit Interruption-Information Field (Contd.)
Bit Position(s) Content
Vol. 3B 21-29

VIRTUAL-MACHINE CONTROL STRUCTURES
• IDT-vectoring error code (32 bits). For VM exits the occur during delivery of
hardware exceptions that would have delivered an error code on the stack, this
field receives that error code.

See Section 24.2.3 provides details of how these fields are saved on VM exits.

21.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain
instructions in VMX non-root operation:
• VM-exit instruction length (32 bits). For VM exits resulting from instruction

execution, this field receives the length in bytes of the instruction whose
execution led to the VM exit.1 See Section 24.2.4 for details of when and how this
field is used.

• VM-exit instruction information (32 bits). This field is used for VM exits due
to attempts to execute INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS,
SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or
VMXON.2 The format of the field depends on the cause of the VM exit. See
Section 24.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64
architecture) are used only for VM exits due to SMIs that arrive immediately after
retirement of I/O instructions. They provide information about that I/O instruction:
• I/O RCX. The value of RCX before the I/O instruction started.
• I/O RSI. The value of RSI before the I/O instruction started.
• I/O RDI. The value of RDI before the I/O instruction started.
• I/O RIP. The value of RIP before the I/O instruction started (the RIP that

addressed the I/O instruction).

21.9.5 VM-Instruction Error Field
The 32-bit VM-instruction error field does not provide information about the most
recent VM exit. In fact, it is not modified on VM exits. Instead, it provides information
about errors encountered by a non-faulting execution of one of the VMX instructions.

1. This field is also used for VM exits that occur during the delivery of a software interrupt or soft-
ware exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or
OUTS can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix
G.1).
21-30 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
21.10 SOFTWARE USE OF THE VMCS AND RELATED
STRUCTURES

This section details guidelines that software should observe when using a VMCS and
related structures. It also provides descriptions of consequences for failing to follow
guidelines.

21.10.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines
when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be
“migrated” from one logical processor to another, the first logical processor should
execute VMCLEAR for the VMCS (to make it inactive on that logical processor and to
ensure that all VMCS data are in memory) before the other logical processor
executes VMPTRLD for the VMCS (to make it active on the second logical processor).
A VMCS that is made active on more than one logical processor may become
corrupted (see below).

Software should use the VMREAD and VMWRITE instructions to access the different
fields in the current VMCS (see Section 21.10.2). Software should never access or
modify the VMCS data of an active VMCS using ordinary memory operations, in part
because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some
VMCS data of an active VMCS on the processor and not in the VMCS region. The
following items detail some of the hazards of accessing VMCS data using ordinary
memory operations:
• Any data read from a VMCS with an ordinary memory read does not reliably

reflect the state of the VMCS. Results may vary from time to time or from logical
processor to logical processor.

• Writing to a VMCS with an ordinary memory write is not guaranteed to have a
deterministic effect on the VMCS. Doing so may cause the VMCS to become
corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a
VMCS region before executing a VMPTRLD for that region and by not remapping it
until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical
processor may be corrupted (see below). To prevent such corruption of a VMCS that
may be used either after a return to VMX operation or on another logical processor,
software should VMCLEAR that VMCS before executing the VMXOFF instruction or
removing power from the processor (e.g., as part of a transition to the S3 and S4
power states).

This section has identified operations that may cause a VMCS to become corrupted.
These operations may cause the VMCS’s data to become undefined. Behavior may be
Vol. 3B 21-31

VIRTUAL-MACHINE CONTROL STRUCTURES
unpredictable if that VMCS used subsequently on any logical processor. The following
items detail some hazards of VMCS corruption:
• VM entries may fail for unexplained reasons or may load undesired processor

state.
• The processor may not correctly support VMX non-root operation as documented

in Chapter 22 and may generate unexpected VM exits.
• VM exits may load undesired processor state, save incorrect state into the VMCS,

or cause the logical processor to transition to a shutdown state.

21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
Every field of the VMCS is associated with a 32-bit value that is its encoding. The
encoding is provided in an operand to VMREAD and VMWRITE when software wishes
to read or write that field. These instructions fail if given, in 64-bit mode, an operand
that sets an encoding bit beyond bit 32. See Chapter 5 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined princi-
pally by the width of the fields and their function in the VMCS. See Table 21-16.

The following items detail the meaning of the bits in each encoding:

Table 21-16. Structure of VMCS Component Encoding

Bit Position(s) Contents

31:15 Reserved (must be 0)

14:13 Width:

0: 16-bit
1: 64-bit
2: 32-bit
3: natural-width

12 Reserved (must be 0)

11:10 Type:

0: control
1: read-only data
2: guest state
3: host state

9:1 Index

0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-
width fields
21-32 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
• Field width. Bits 14:13 encode the width of the field.

— A value of 0 indicates a 16-bit field.

— A value of 1 indicates a 64-bit field.

— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on
processors that support Intel 64 architecture and 32 bits on processors that
do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software
access to all 64 bits of the field. Such access is allowed by defining, for each such
field, an encoding that allows direct access to the high 32 bits of the field. See
below.

• Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-
state, or read-only data. The last category includes the VM-exit information fields
and the VM-instruction error field.

• Index. Bits 9:1 distinguish components with the same field width and type.
• Access type. Bit 0 must be 0 for all fields except for 64-bit fields (those with

field-width 1; see above). A VMREAD or VMWRITE using an encoding with this bit
cleared to 0 accesses the entire field. For a 64-bit field with field-width 1, a
VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the
high 32 bits of the field.

Appendix H gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor
mode, VMCS-field width, and access type:
• 16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination
operand; other bits of the destination operand are cleared to 0.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS
field; other bits of the source operand are not used.

• 32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination
operand; in 64-bit mode, bits 63:32 of the destination operand are cleared to
0.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS
field; in 64-bit mode, bits 63:32 of the source operand are not used.

• 64-bit fields and natural-width fields using the full access type outside IA-32e
mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination
operand; bits 63:32 of the field are ignored.
Vol. 3B 21-33

VIRTUAL-MACHINE CONTROL STRUCTURES
— A VMWRITE writes the value of its source operand to bits 31:0 of the field and
clears bits 63:32 of the field.

• 64-bit fields and natural-width fields using the full access type in 64-bit mode
(only on processors that support Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination
operand

— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS
field.

• 64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the
destination operand; in 64-bit mode, bits 63:32 of the destination operand
are cleared to 0.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32
of the field; in 64-bit mode, bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside IA-32e mode can use VMREAD with
the full access type (reading bits 31:0 of the field) and VMREAD with the high access
type (reading bits 63:32 of the field); the order of the two VMREAD executions is not
important. Software seeking to modify a 64-bit field outside IA-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while
clearing bits 63:32) and then use VMWRITE with the high access type (establishing
bits 63:32 of the field).

21.10.3 Initializing a VMCS
Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS
for VM entry. Failure to do so may result in unpredictable behavior; for example, a
VM entry may fail for unexplained reasons, or a successful transition (VM entry or
VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For
example, it is not necessary to unitize the MSR-bitmap address if the “use MSR
bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the
VMWRITE instruction; this includes a VMCS’s launch state (see Section 21.1). Such
information may be stored in the VMCS data portion of a VMCS region. Because the
format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the
processor will determine this information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implemen-
tation-specific information in the VMCS region referenced by its operand. To avoid
the uncertainties of implementation-specific behavior, software should execute
VMCLEAR on a VMCS region before making the corresponding VMCS active with
21-34 Vol. 3B

VIRTUAL-MACHINE CONTROL STRUCTURES
VMPTRLD for the first time. (Figure 21-1 illustrates how execution of VMCLEAR puts
a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
• VMCLEAR should be executed for a VMCS before it is used for VM entry for the

first time.
• VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR

has been executed for that VMCS.
• VMRESUME should be used for any subsequent VM entry using a VMCS (until the

next execution of VMCLEAR for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH.
Since “migrating” a VMCS from one logical processor to another requires use of
VMCLEAR (see Section 21.10.1), which sets the launch state of the VMCS to “clear”,
such migration requires the next VM entry to be performed using VMLAUNCH. Soft-
ware developers can avoid the performance cost of increased VM-entry latency by
avoiding unnecessary migration of a VMCS from one logical processor to another.

21.10.4 Software Access to Related Structures
In addition to data in the VMCS region itself, VMX non-root operation can be
controlled by data structures that are referenced by pointers in a VMCS (for example,
the I/O bitmaps). While the pointers to these data structures are parts of the VMCS,
the data structures themselves are not. They are not accessible using VMREAD and
VMWRITE but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no
logical processor with a current VMCS that references it is in VMX non-root operation.
Doing otherwise may lead to unpredictable behavior (including behaviors identified
in Section 21.10.1).

21.10.5 VMXON Region
Before executing VMXON, software allocates a region of memory (called the VMXON
region)1 that the logical processor uses to support VMX operation. The physical
address of this region (the VMXON pointer) is provided in an operand to VMXON. The
VMXON pointer is subject to the limitations that apply to VMCS pointers:
• The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).
• The VMXON pointer must not set any bits beyond the processor’s physical-

address width.2,3

1. The amount of memory required for the VMXON region is the same as that required for a VMCS
region. This size is implementation specific and can be determined by consulting the VMX capa-
bility MSR IA32_VMX_BASIC (see Appendix G.1).
Vol. 3B 21-35

VIRTUAL-MACHINE CONTROL STRUCTURES
Before executing VMXON, software should write the VMCS revision identifier (see
Section 21.2) to the VMXON region. It need not initialize the VMXON region in any
other way. Software should use a separate region for each logical processor and
should not access or modify the VMXON region of a logical processor between execu-
tion of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to
unpredictable behavior (including behaviors identified in Section 21.10.1).

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range
63:32; see Appendix G.1.
21-36 Vol. 3B

CHAPTER 22
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a
logical processor in VMX non-root operation. This mode of operation is similar to that
of ordinary processor operation outside of the virtualized environment. This chapter
describes the differences between VMX non-root operation and ordinary processor
operation with special attention to causes of VM exits (which bring a logical processor
from VMX non-root operation to root operation). The differences between VMX non-
root operation and ordinary processor operation are described in the following
sections:
• Section 22.1, “Instructions That Cause VM Exits”
• Section 22.2, “APIC-Access VM Exits”
• Section 22.3, “Other Causes of VM Exits”
• Section 22.4, “Changes to Instruction Behavior in VMX Non-Root Operation”
• Section 22.5, “APIC Accesses That Do Not Cause VM Exits”
• Section 22.6, “Other Changes in VMX Non-Root Operation”
• Section 22.7, “Features Specific to VMX Non-Root Operation”

Chapter 21, “Virtual-Machine Control Structures,” describes the data control struc-
ture that governs VMX operation (root and non-root). Chapter 22, “VMX Non-Root
Operation,” describes the operation of VM entries which allow the processor to tran-
sition from VMX root operation to non-root operation.

22.1 INSTRUCTIONS THAT CAUSE VM EXITS
Certain instructions may cause VM exits if executed in VMX non-root operation.
Unless otherwise specified, such VM exits are “fault-like,” meaning that the instruc-
tion causing the VM exit does not execute and no processor state is updated by the
instruction. Section 24.1 details architectural state in the context of a VM exit.

Section 22.1.1 defines the prioritization between faults and VM exits for instructions
subject to both. Section 22.1.2 identifies instructions that cause VM exits whenever
they are executed in VMX non-root operation (and thus can never be executed in
VMX non-root operation). Section 22.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 21.6).

22.1.1 Relative Priority of Faults and VM Exits
The following principles describe the ordering between existing faults and VM exits:
Vol. 3B 22-1

VMX NON-ROOT OPERATION
• Certain exceptions have priority over VM exits. These include invalid-opcode
exceptions, faults based on privilege level,1 and general-protection exceptions
that are based on checking I/O permission bits in the task-state segment (TSS).
For example, execution of RDMSR with CPL = 3 generates a general-protection
exception and not a VM exit.2

• Faults incurred while fetching instruction operands have priority over VM exits
that are conditioned based on the contents of those operands (see LMSW in
Section 22.1.3).

• VM exits caused by execution of the INS and OUTS instructions (resulting either
because the “unconditional I/O exiting” VM-execution control is 1 or because the
“use I/O bitmaps control is 1) have priority over the following faults:

— A general-protection fault due to the relevant segment (ES for INS; DS for
OUTS unless overridden by an instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant
segment

— An alignment-check exception
• Fault-like VM exits have priority over exceptions other than those mentioned

above. For example, RDMSR of a non-existent MSR with CPL = 0 generates a
VM exit and not a general-protection exception.

When Section 22.1.2 or Section 22.1.3 (below) identify an instruction execution that
may lead to a VM exit, it is assumed that the instruction does not incur a fault that
takes priority over a VM exit.

22.1.2 Instructions That Cause VM Exits Unconditionally
The following instructions cause VM exits when they are executed in VMX non-root
operation: CPUID, GETSEC,3 INVD, and XSETBV.4 This is also true of instructions
introduced with VMX, which include: INVEPT, INVVPID, VMCALL,5 VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and
VMXON.

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instruc-
tions that are not recognized in that mode.

2. MOV DR is an exception to this rule; see Section 22.1.3.

3. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1
regardless of the value of CPL or RAX. An execution of GETSEC causes an invalid-opcode excep-
tion (#UD) if CR4.SMXE[Bit 14] = 0.

4. An execution of XSETBV in VMX non-root operation causes a VM exit if CR4.OSXSAVE[Bit 18] =
1 regardless of the value of CPL, RAX, RCX, or RDX. An execution of XSETBV causes an invalid-
opcode exception (#UD) if CR4.OSXSAVE[Bit 18] = 0.

5. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits
in VMX root operation outside SMM. See Section 26.15.2.
22-2 Vol. 3B

VMX NON-ROOT OPERATION
22.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the
setting of the VM-execution controls. The following instructions can cause “fault-like”
VM exits based on the conditions described:
• CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corre-

sponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 read
shadow.

• HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution
control is 1.

• IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD. The
behavior of each of these instructions is determined by the settings of the
“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls:

— If both controls are 0, the instruction executes normally.

— If the “unconditional I/O exiting” VM-execution control is 1 and the “use I/O
bitmaps” VM-execution control is 0, the instruction causes a VM exit.

— If the “use I/O bitmaps” VM-execution control is 1, the instruction causes a
VM exit if it attempts to access an I/O port corresponding to a bit set to 1 in
the appropriate I/O bitmap (see Section 21.6.4). If an I/O operation “wraps
around” the 16-bit I/O-port space (accesses ports FFFFH and 0000H), the I/O
instruction causes a VM exit (the “unconditional I/O exiting” VM-execution
control is ignored if the “use I/O bitmaps” VM-execution control is 1).

See Section 22.1.1 for information regarding the priority of VM exits relative to
faults that may be caused by the INS and OUTS instructions.

• INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting”
VM-execution control is 1.

• LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause
VM exits if the “descriptor-table exiting” VM-execution control is 1.1

• LMSW. In general, the LMSW instruction causes a VM exit if it would write, for
any bit set in the low 4 bits of the CR0 guest/host mask, a value different than the
corresponding bit in the CR0 read shadow. LMSW never clears bit 0 of CR0
(CR0.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CR0.PE) are set in both the CR0
guest/mask and the source operand, and the bit in position 0 is clear in the
CR0 read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CR0
guest/mask and the values of the corresponding bits in the source operand
and the CR0 read shadow differ.

1. “Descriptor-table exiting” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“descriptor-table exiting” VM-execution control were 0. See Section 21.6.2.
Vol. 3B 22-3

VMX NON-ROOT OPERATION
• MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting”
VM-execution control is 1.

• MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-
store exiting” VM-execution control is 1. The first processors to support the
virtual-machine extensions supported only the 1-setting of this control.

• MOV from CR8. The MOV from CR8 instruction (which can be executed only in
64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution control is
1. If this control is 0, the behavior of the MOV from CR8 instruction is modified if
the “use TPR shadow” VM-execution control is 1 (see Section 22.4).

• MOV to CR0. The MOV to CR0 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR0 guest/host
mask, the corresponding bit in the CR0 read shadow. (If every bit is clear in the
CR0 guest/host mask, MOV to CR0 cannot cause a VM exit.)

• MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load
exiting” VM-execution control is 0 or the value of its source operand is equal to
one of the CR3-target values specified in the VMCS. If the CR3-target count in n,
only the first n CR3-target values are considered; if the CR3-target count is 0,
MOV to CR3 always causes a VM exit.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “CR3-load exiting” VM-execution control. These processors
always consult the CR3-target controls to determine whether an execution of
MOV to CR3 causes a VM exit.

• MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its
source operand matches, for the position of each bit set in the CR4 guest/host
mask, the corresponding bit in the CR4 read shadow.

• MOV to CR8. The MOV to CR8 instruction (which can be executed only in 64-bit
mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. If this
control is 0, the behavior of the MOV to CR8 instruction is modified if the “use TPR
shadow” VM-execution control is 1 (see Section 22.4) and it may cause a trap-
like VM exit (see below).

• MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting”
VM-execution control is 1. Such VM exits represent an exception to the principles
identified in Section 22.1.1 in that they take priority over the following: general-
protection exceptions based on privilege level; and invalid-opcode exceptions
that occur because CR4.DE=1 and the instruction specified access to DR4 or DR5.

• MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting”
VM-execution control is 1. If this control is 0, the behavior of the MWAIT
instruction may be modified (see Section 22.4).

• PAUSE.The behavior of each of this instruction depends on CPL and the settings
of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls:

— CPL = 0.

• If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls
are both 0, the PAUSE instruction executes normally.
22-4 Vol. 3B

VMX NON-ROOT OPERATION
• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit (the “PAUSE-loop exiting” VM-execution control is
ignored if CPL = 0 and the “PAUSE exiting” VM-execution control is 1).

• If the “PAUSE exiting” VM-execution control is 0 and the “PAUSE-loop
exiting” VM-execution control is 1, the following treatment applies.

The logical processor determines the amount of time between this
execution of PAUSE and the previous execution of PAUSE at CPL 0. If this
amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution
of PAUSE in a loop. (It also does so for the first execution of PAUSE at CPL
0 after VM entry.)

Otherwise, the logical processor determines the amount of time since the
most recent execution of PAUSE that was considered to be the first in a
loop. If this amount of time exceeds the value of the VM-execution control
field PLE_Window, a VM exit occurs.

For purposes of these computations, time is measured based on a counter
that runs at the same rate as the timestamp counter (TSC).

— CPL > 0.

• If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction
executes normally.

• If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction
causes a VM exit.

The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
• RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in read
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in read
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.
• RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting”

VM-execution control is 1.
• RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting”

VM-execution control is 1.
• RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and

“enable RDTSCP” VM-execution controls are both 1.
• RSM. The RSM instruction causes a VM exit if executed in system-management

mode (SMM).1
Vol. 3B 22-5

VMX NON-ROOT OPERATION
• WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting”
VM-execution control is 1.1

• WRMSR. The WRMSR instruction causes a VM exit if any of the following are
true:

— The “use MSR bitmaps” VM-execution control is 0.

— The value of ECX is not in the range 00000000H – 00001FFFH or
C0000000H – C0001FFFH.

— The value of ECX is in the range 00000000H – 00001FFFH and bit n in write
bitmap for low MSRs is 1, where n is the value of ECX.

— The value of ECX is in the range C0000000H – C0001FFFH and bit n in write
bitmap for high MSRs is 1, where n is the value of ECX & 00001FFFH.

See Section 21.6.9 for details regarding how these bitmaps are identified.
If an execution of WRMSR does not cause a VM exit as specified above and
ECX = 808H (indicating the TPR MSR), instruction behavior is modified if the
“virtualize x2APIC mode” VM-execution control is 1 (see Section 22.4) and it
may cause a trap-like VM exit (see below).2

The MOV to CR8 and WRMSR instructions may cause “trap-like” VM exits. In such a
case, the instruction completes before the VM exit occurs and that processor state is
updated by the instruction (for example, the value of CS:RIP saved in the guest-state
area of the VMCS references the next instruction).

Specifically, a trap-like VM exit occurs following either instruction if the execution
reduces the value of the TPR shadow below that of the TPR threshold VM-execution
control field (see Section 21.6.8 and Section 22.4) and the following hold:
• For MOV to CR8:

— The “CR8-load exiting” VM-execution control is 0.

— The “use TPR shadow” VM-execution control is 1.
• For WRMSR:

— The “use MSR bitmaps” VM-execution control is 1, the value of ECX is 808H,
and bit 808H in write bitmap for low MSRs is 0 (see above).

— The “virtualize x2APIC mode” VM-execution control is 1.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of
whether the processor is in VMX operation. It also does so in VMX root operation in SMM; see
Section 26.15.3.

1. “WBINVD exiting” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“WBINVD exiting” VM-execution control were 0. See Section 21.6.2.

2. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.
22-6 Vol. 3B

VMX NON-ROOT OPERATION
22.2 APIC-ACCESS VM EXITS
If the “virtualize APIC accesses” VM-execution control is 1, an attempt to access
memory using a physical address on the APIC-access page (see Section 21.6.8)
causes a VM exit.1,2 Such a VM exit is called an APIC-access VM exit.

Whether an operation that attempts to access memory with a physical address on the
APIC-access page causes an APIC-access VM exit may be qualified based on the type
of access. Section 22.2.1 describes the treatment of linear accesses, while Section
22.2.3 describes that of physical accesses. Section 22.2.4 discusses accesses to the
TPR field on the APIC-access page (called VTPR accesses), which do not, if the “use
TPR shadow” VM-execution control is 1, cause APIC-access VM exits.

22.2.1 Linear Accesses to the APIC-Access Page
An access to the APIC-access page is called a linear access if (1) it results from a
memory access using a linear address; and (2) the access’s physical address is the
translation of that linear address. Section 22.2.1.1 specifies which linear accesses to
the APIC-access page cause APIC-access VM exits.

In general, the treatment of APIC-access VM exits caused by linear accesses is
similar to that of page faults and EPT violations. Based upon this treatment, Section
22.2.1.2 specifies the priority of such VM exits with respect to other events, while
Section 22.2.1.3 discusses instructions that may cause page faults without accessing
memory and the treatment when they access the APIC-access page.

22.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
Whether a linear access to the APIC-access page causes an APIC-access VM exit
depends in part of the nature of the translation used by the linear address:
• If the linear access uses a translation with a 4-KByte page, it causes an APIC-

access VM exit.
• If the linear access uses a translation with a large page (2-MByte, 4-MByte, or

1-GByte), the access may or may not cause an APIC-access VM exit. Section
22.5.1 describes the treatment of such accesses that do not cause an APIC-
access VM exits.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.

2. Even when addresses are translated using EPT (see Section 25.2), the determination of whether
an APIC-access VM exit occurs depends on an access’s physical address, not its guest-physical
address.
Vol. 3B 22-7

VMX NON-ROOT OPERATION
If CR0.PG = 1 and EPT is in use (the “enable EPT” VM-execution control is 1), a
linear access uses a translation with a large page only if a large page is specified
by both the guest paging structures and the EPT paging structures.1

It is recommended that software configure the paging structures so that any transla-
tion to the APIC-access page uses a 4-KByte page.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable EPT” VM-execution control is 1 and software has not properly invalidate
information cached from the EPT paging structures:
• At time t1, EPT was in use, the EPTP value was X, and some guest-physical

address Y translated to an address that was not on the APIC-access page at that
time. (This might be because the “virtualize APIC accesses” VM-execution control
was 0.)

• At later time t2, EPT is in use, the EPTP value is X, and a memory access uses a
linear address that translates to Y, which now translates to an address on the
APIC-access page. (This implies that the “virtualize APIC accesses” VM-execution
control is 1 at this time.)

• Software did not execute the INVEPT instruction between times t1 and t2, either
with the all-context INVEPT type or with the single-context INVEPT type and X as
the INVEPT descriptor.

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 25.3.3.4.

A linear access to the APIC-access page might not cause an APIC-access VM exit if
the “enable VPID” VM-execution control is 1 and software has not properly invali-
dated the TLBs and paging-structure caches:
• At time t1, the processor was in VMX non-root operation with non-zero VPID X,

and some linear address Y translated to an address that was not on the APIC-
access page at that time. (This might be because the “virtualize APIC accesses”
VM-execution control was 0.)

• At later time t2, the processor was again in VMX non-root operation with VPID X,
and a memory access uses linear address, which now translates to an address on
the APIC-access page. (This implies that the “virtualize APIC accesses” VM-
execution control is 1 at this time.)

• Software did not execute the INVVPID instruction in any of the following ways
between times t1 and t2:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1. “Enable EPT” is a secondary processor-based
VM-execution control. If bit 31 of the primary processor-based VM-execution controls is 0, VMX
non-root operation functions as if the “enable EPT” VM-execution control were 0. See Section
21.6.2.
22-8 Vol. 3B

VMX NON-ROOT OPERATION
— With the individual-address INVVPID type and an INVVPID descriptor
specifying VPID X and linear address Y.

— With the single-context INVVPID type and an INVVPID descriptor specifying
VPID X.

— With the all-context INVEPT type.

— With the single-context-retaining-globals INVVPID type and an INVVPID
descriptor specifying VPID X (assuming that, at time t1, the translation for Y
was global; see Section 4.10, “Caching Translation Information” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A for details
regarding global translations).

In this case, the linear access at time t2 might or might not cause an APIC-access
VM exit. If it does not, the access operates on memory on the APIC-access page.

Software can avoid this situation through appropriate use of the INVVPID instruction;
see Section 25.3.3.3.

22.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
The following items specify the priority relative to other events of APIC-access
VM exits caused by linear accesses.
• The priority of an APIC-access VM exit on a linear access to memory is below that

of any page fault or EPT violation that that access may incur. That is, a linear
access does not cause an APIC-access VM exit if it would cause a page fault or an
EPT violation.

• A linear access does not cause an APIC-access VM exit until after the accessed
bits are set in the paging structures.

• A linear write access will not cause an APIC-access VM exit until after the dirty bit
is set in the appropriate paging structure.

• With respect to all other events, any APIC-access VM exit due to a linear access
has the same priority as any page fault or EPT violation that the linear access
could cause. (This item applies to other events that the linear access may
generate as well as events that may be generated by other accesses by the same
instruction or operation.)

These principles imply among other things, that an APIC-access VM exit may occur
during the execution of a repeated string instruction (including INS and OUTS).
Suppose, for example, that the first n iterations (n may be 0) of such an instruction
do not access the APIC-access page and that the next iteration does access that
page. As a result, the first n iterations may complete and be followed by an APIC-
access VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers reflect the comple-
tion of n iterations.
Vol. 3B 22-9

VMX NON-ROOT OPERATION
22.2.1.3 Instructions That May Cause Page Faults or EPT Violations
Without Accessing Memory

APIC-access VM exits may occur as a result of executing an instruction that can
cause a page fault or an EPT violation even if that instruction would not access the
APIC-access page. The following are some examples:
• The CLFLUSH instruction is considered to read from the linear address in its

source operand. If that address translates to one on the APIC-access page, the
instruction causes an APIC-access VM exit.

• The ENTER instruction causes a page fault if the byte referenced by the final
value of the stack pointer is not writable (even though ENTER does not write to
that byte if its size operand is non-zero). If that byte is writable but is on the
APIC-access page, ENTER causes an APIC-access VM exit.1

• An execution of the MASKMOVQ or MASKMOVDQU instructions with a zero mask
may or may not cause a page fault or an EPT violation if the destination page is
unwritable (the behavior is implementation-specific). An execution with a zero
mask causes an APIC-access VM exit only on processors for which it could cause
a page fault or an EPT violation.

• The MONITOR instruction is considered to read from the effective address in RAX.
If the linear address corresponding to that address translates to one on the APIC-
access page, the instruction causes an APIC-access VM exit.2

• An execution of the PREFETCH instruction that would result in an access to the
APIC-access page does not cause an APIC-access VM exit.

22.2.2 Guest-Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a guest-physical access if
(1) CR0.PG = 1;3 (2) the “enable EPT” VM-execution control is 1;4 (3) the access’s
physical address is the result of an EPT translation; and (4) either (a) the access was

1. The ENTER instruction may also cause page faults due to the memory accesses that it actually
does perform. With regard to APIC-access VM exits, these are treated just as accesses by any
other instruction.

2. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated regis-
ter.

3. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG must be 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary
processor-based VM-execution controls are both 1.

4. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 21.6.2.
22-10 Vol. 3B

VMX NON-ROOT OPERATION
not generated by a linear address; or (b) the access’s guest-physical address is not
the translation of the access’s linear address. Guest-physical accesses include the
following when guest-physical addresses are being translated using EPT:
• Reads from the guest paging structures when translating a linear address (such

an access uses a guest-physical address that is not the translation of that linear
address).

• Loads of the page-directory-pointer-table entries by MOV to CR when the logical
processor is using (or that causes the logical processor to use) PAE paging.1

• Updates to the accessed and dirty bits in the guest paging structures when using
a linear address (such an access uses a guest-physical address that is not the
translation of that linear address).

Section 22.2.2.1 specifies when guest-physical accesses to the APIC-access page
might not cause APIC-access VM exits. In general, the treatment of APIC-access
VM exits caused by guest-physical accesses is similar to that of EPT violations. Based
upon this treatment, Section 22.2.2.2 specifies the priority of such VM exits with
respect to other events.

22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access
VM Exits

Whether a guest-physical access to the APIC-access page causes an APIC-access
VM exit depends on the nature of the EPT translation used by the guest-physical
address and on how software is managing information cached from the EPT paging
structures. The following items detail cases in which a guest-physical access to the
APIC-access page might not cause an APIC-access VM exit:
• If the access uses a guest-physical address whose translation to the APIC-access

page uses an EPT PDPTE that maps a 1-GByte page (because bit 7 of the EPT
PDPTE is 1).

• If the access uses a guest-physical address whose translation to the APIC-access
page uses an EPT PDE that maps a 2-MByte page (because bit 7 of the EPT PDE
is 1).

• Software has not properly invalidated information cached from the EPT paging
structures:

— At time t1, EPT was in use, the EPTP value was X, and some guest-physical
address Y translated to an address that was not on the APIC-access page at
that time. (This might be because the “virtualize APIC accesses” VM-
execution control was 0.)

— At later time t2, the EPTP value is X and a memory access uses guest-physical
address Y, which now translates to an address on the APIC-access page. (This

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3B 22-11

VMX NON-ROOT OPERATION
implies that the “virtualize APIC accesses” VM-execution control is 1 at this
time.)

— Software did not execute the INVEPT instruction, either with the all-context
INVEPT type or with the single-context INVEPT type and X as the INVEPT
descriptor, between times t1 and t2.

In any of the above cases, the guest-physical access at time t2 might or might not an
APIC-access VM exit. If it does not, the access operates on memory on the APIC-
access page.

Software can avoid this situation through appropriate use of the INVEPT instruction;
see Section 25.3.3.4.

22.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical
Accesses

The following items specify the priority relative to other events of APIC-access
VM exits caused by guest-physical accesses.
• The priority of an APIC-access VM exit caused by a guest-physical access to

memory is below that of any EPT violation that that access may incur. That is, a
guest-physical access does not cause an APIC-access VM exit if it would cause an
EPT violation.

• With respect to all other events, any APIC-access VM exit caused by a guest-
physical access has the same priority as any EPT violation that the guest-physical
access could cause.

22.2.3 Physical Accesses to the APIC-Access Page
An access to the APIC-access page is called a physical access if (1) either (a) the
“enable EPT” VM-execution control is 0;1 or (b) the access’s physical address is not
the result of a translation through the EPT paging structures; and (2) either (a) the
access is not generated by a linear address; or (b) the access’s physical address is
not the translation of its linear address.

Physical accesses include the following:
• If the “enable EPT” VM-execution control is 0:

— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the
logical processor is using (or that causes the logical processor to use) PAE
paging.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
EPT” VM-execution control were 0. See Section 21.6.2.
22-12 Vol. 3B

VMX NON-ROOT OPERATION
— Updates to the accessed and dirty bits in the paging structures.
• If the “enable EPT” VM-execution control is 1, accesses to the EPT paging

structures.
• Any of the following accesses made by the processor to support VMX non-root

operation:

— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical
addresses in VM-execution control fields in the VMCS. These include the I/O
bitmaps, the MSR bitmaps, and the virtual-APIC page.

• Accesses that effect transitions into and out of SMM.1 These include the
following:

— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during
VM entries that return from SMM.

A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. (A physical write to the APIC-access page may write to memory as specified
in Section 22.5.2 before causing the APIC-access VM exit.) The priority of an APIC-
access VM exit caused by physical access is not defined relative to other events that
the access may cause. Section 22.5.2 describes the treatment of physical accesses to
the APIC-access page that do not cause APIC-access VM exits.

It is recommended that software not set the APIC-access address to any of those
used by physical memory accesses (identified above). For example, it should not set
the APIC-access address to the physical address of any of the active paging struc-
tures if the “enable EPT” VM-execution control is 0.

22.2.4 VTPR Accesses
A memory access is a VTPR access if all of the following hold: (1) the “use TPR
shadow” VM-execution control is 1; (2) the access is not for an instruction fetch;
(3) the access is at most 32 bits in width; and (4) the access is to offset 80H on the
APIC-access page.

A memory access is not a VTPR access (even if it accesses only bytes in the range
80H–83H on the APIC-access page) if any of the following hold: (1) the “use TPR
shadow” VM-execution control is 0; (2) the access is for an instruction fetch; (3) the
access is more than 32 bits in width; or (4) the access is to some offset is on the
APIC-access page other than 80H. For example, a 16-bit access to offset 81H on the

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

1. Technically, these accesses do not occur in VMX non-root operation. They are included here for
clarity.
Vol. 3B 22-13

VMX NON-ROOT OPERATION
APIC-access page is not a VTPR access, even if the “use TPR shadow” VM-execution
control is 1.

In general, VTPR accesses do not cause APIC-access VM exits. Instead, they are
treated as described in Section 22.5.3. Physical VTPR accesses (see Section 22.2.3)
may or may not cause APIC-access VM exits; see Section 22.5.2.

22.3 OTHER CAUSES OF VM EXITS
In addition to VM exits caused by instruction execution, the following events can
cause VM exits:
• Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the

exception bitmap (see Section 21.6.3). If an exception occurs, its vector (in the
range 0–31) is used to select a bit in the exception bitmap. If the bit is 1, a
VM exit occurs; if the bit is 0, the exception is delivered normally through the
guest IDT. This use of the exception bitmap applies also to exceptions generated
by the instructions INT3, INTO, BOUND, and UD2.
Page faults (exceptions with vector 14) are specially treated. When a page fault
occurs, a logical processor consults (1) bit 14 of the exception bitmap; (2) the
error code produced with the page fault [PFEC]; (3) the page-fault error-code
mask field [PFEC_MASK]; and (4) the page-fault error-code match field
[PFEC_MATCH]. It checks if PFEC & PFEC_MASK = PFEC_MATCH. If there is
equality, the specification of bit 14 in the exception bitmap is followed (for
example, a VM exit occurs if that bit is set). If there is inequality, the meaning of
that bit is reversed (for example, a VM exit occurs if that bit is clear).
Thus, if software desires VM exits on all page faults, it can set bit 14 in the
exception bitmap to 1 and set the page-fault error-code mask and match fields
each to 00000000H. If software desires VM exits on no page faults, it can set bit
14 in the exception bitmap to 1, the page-fault error-code mask field to
00000000H, and the page-fault error-code match field to FFFFFFFFH.

• Triple fault. A VM exit occurs if the logical processor encounters an exception
while attempting to call the double-fault handler and that exception itself does
not cause a VM exit due to the exception bitmap. This applies to the case in which
the double-fault exception was generated within VMX non-root operation, the
case in which the double-fault exception was generated during event injection by
VM entry, and to the case in which VM entry is injecting a double-fault exception.

• External interrupts. An external interrupt causes a VM exit if the “external-
interrupt exiting” VM-execution control is 1. Otherwise, the interrupt is delivered
normally through the IDT. (If a logical processor is in the shutdown state or the
wait-for-SIPI state, external interrupts are blocked. The interrupt is not delivered
through the IDT and no VM exit occurs.)

• Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI
exiting” VM-execution control is 1. Otherwise, it is delivered using descriptor 2 of
22-14 Vol. 3B

VMX NON-ROOT OPERATION
the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs are blocked. The
NMI is not delivered through the IDT and no VM exit occurs.)

• INIT signals. INIT signals cause VM exits. A logical processor performs none of
the operations normally associated with these events. Such exits do not modify
register state or clear pending events as they would outside of VMX operation. (If
a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

• Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in
the wait-for-SIPI activity state when a SIPI arrives, no VM exit occurs and the
SIPI is discarded. VM exits due to SIPIs do not perform any of the normal
operations associated with those events: they do not modify register state as
they would outside of VMX operation. (If a logical processor is not in the wait-for-
SIPI state, SIPIs are blocked. They do not cause VM exits in this case.)

• Task switches. Task switches are not allowed in VMX non-root operation. Any
attempt to effect a task switch in VMX non-root operation causes a VM exit. See
Section 22.6.2.

• System-management interrupts (SMIs). If the logical processor is using the
dual-monitor treatment of SMIs and system-management mode (SMM), SMIs
cause SMM VM exits. See Section 26.15.2.1

• VMX-preemption timer. A VM exit occurs when the timer counts down to zero.
See Section 22.7.1 for details of operation of the VMX-preemption timer. As noted
in that section, the timer does not cause VM exits if the logical processor is
outside the C-states C0, C1, and C2.
Debug-trap exceptions and higher priority events take priority over VM exits
caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
timer take priority over VM exits caused by the “NMI-window exiting”
VM-execution control and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
a non-maskable interrupt. Specifically, they wake a logical processor from the
shutdown state and from the states entered using the HLT and MWAIT instruc-
tions. These VM exits do not occur if the logical processor is in the wait-for-SIPI
state.

In addition, there are controls that cause VM exits based on the readiness of guest
software to receive interrupts:
• If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs

before execution of any instruction if RFLAGS.IF = 1 and there is no blocking of
events by STI or by MOV SS (see Table 21-3). Such a VM exit occurs immediately
after VM entry if the above conditions are true (see Section 23.6.5).

1. Under the dual-monitor treatment of SMIs and SMM, SMIs also cause SMM VM exits if they occur
in VMX root operation outside SMM. If the processor is using the default treatment of SMIs and
SMM, SMIs are delivered as described in Section 26.14.1.
Vol. 3B 22-15

VMX NON-ROOT OPERATION
Non-maskable interrupts (NMIs) and higher priority events take priority over
VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an external interrupt. Specifically, they wake a logical processor from the states
entered using the HLT and MWAIT instructions. These VM exits do not occur if the
logical processor is in the shutdown state or the wait-for-SIPI state.

• If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before
execution of any instruction if there is no virtual-NMI blocking and there is no
blocking of events by MOV SS (see Table 21-3). (A logical processor may also
prevent such a VM exit if there is blocking of events by STI.) Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section
23.6.6).
VM exits caused by the VMX-preemption timer and higher priority events take
priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.
These VM exits wake a logical processor from the same inactive states as would
an NMI. Specifically, they wake a logical processor from the shutdown state and
from the states entered using the HLT and MWAIT instructions. These VM exits do
not occur if the logical processor is in the wait-for-SIPI state.

22.4 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-
ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of
these changes are determined by the settings of certain VM-execution control fields.
The following items detail such changes:
• CLTS. Behavior of the CLTS instruction is determined by the bits in position 3

(corresponding to CR0.TS) in the CR0 guest/host mask and the CR0 read
shadow:

— If bit 3 in the CR0 guest/host mask is 0, CLTS clears CR0.TS normally (the
value of bit 3 in the CR0 read shadow is irrelevant in this case), unless CR0.TS
is fixed to 1 in VMX operation (see Section 20.8), in which case CLTS causes
a general-protection exception.

— If bit 3 in the CR0 guest/host mask is 1 and bit 3 in the CR0 read shadow is 0,
CLTS completes but does not change the contents of CR0.TS.

— If the bits in position 3 in the CR0 guest/host mask and the CR0 read shadow
are both 1, CLTS causes a VM exit (see Section 22.1.3).

• IRET. Behavior of IRET with regard to NMI blocking (see Table 21-3) is
determined by the settings of the “NMI exiting” and “virtual NMIs” VM-execution
controls:
22-16 Vol. 3B

VMX NON-ROOT OPERATION
— If the “NMI exiting” VM-execution control is 0, IRET operates normally and
unblocks NMIs. (If the “NMI exiting” VM-execution control is 0, the “virtual
NMIs” control must be 0; see Section 23.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking
of NMIs. If, in addition, the “virtual NMIs” VM-execution control is 1, the
logical processor tracks virtual-NMI blocking. In this case, IRET removes any
virtual-NMI blocking.

The unblocking of NMIs or virtual NMIs specified above occurs even if IRET
causes a fault.

• LMSW. Outside of VMX non-root operation, LMSW loads its source operand into
CR0[3:0], but it does not clear CR0.PE if that bit is set. In VMX non-root
operation, an execution of LMSW that does not cause a VM exit (see Section
22.1.3) leaves unmodified any bit in CR0[3:0] corresponding to a bit set in the
CR0 guest/host mask. An attempt to set any other bit in CR0[3:0] to a value not
supported in VMX operation (see Section 20.8) causes a general-protection
exception. Attempts to clear CR0.PE are ignored without fault.

• MOV from CR0. The behavior of MOV from CR0 is determined by the CR0
guest/host mask and the CR0 read shadow. For each position corresponding to a
bit clear in the CR0 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR0. For each position corresponding to a bit set
in the CR0 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR0 read shadow. Thus, if every bit is cleared in the
CR0 guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set
in the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution
of MOV from CR3 does not cause a VM exit (see Section 22.1.3), the value loaded
from CR3 is a guest-physical address; see Section 25.2.1.

• MOV from CR4. The behavior of MOV from CR4 is determined by the CR4
guest/host mask and the CR4 read shadow. For each position corresponding to a
bit clear in the CR4 guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CR4. For each position corresponding to a bit set
in the CR4 guest/host mask, the destination operand is loaded with the value of
the corresponding bit in the CR4 read shadow. Thus, if every bit is cleared in the
CR4 guest/host mask, MOV from CR4 reads normally from CR4; if every bit is set
in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read
shadow.
Depending on the contents of the CR4 guest/host mask and the CR4 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR4.
Vol. 3B 22-17

VMX NON-ROOT OPERATION
• MOV from CR8. Behavior of the MOV from CR8 instruction (which can be
executed only in 64-bit mode) is determined by the settings of the “CR8-store
exiting” and “use TPR shadow” VM-execution controls:

— If both controls are 0, MOV from CR8 operates normally.

— If the “CR8-store exiting” VM-execution control is 0 and the “use TPR
shadow” VM-execution control is 1, MOV from CR8 reads from the TPR
shadow. Specifically, it loads bits 3:0 of its destination operand with the value
of bits 7:4 of byte 80H of the virtual-APIC page (see Section 21.6.8). Bits
63:4 of the destination operand are cleared.

— If the “CR8-store exiting” VM-execution control is 1, MOV from CR8 causes a
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

• MOV to CR0. An execution of MOV to CR0 that does not cause a VM exit (see
Section 22.1.3) leaves unmodified any bit in CR0 corresponding to a bit set in the
CR0 guest/host mask. Treatment of attempts to modify other bits in CR0 depends
on the setting of the “unrestricted guest” VM-execution control:1

— If the control is 0, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 to a value not supported in VMX operation (see
Section 20.8).

— If the control is 1, MOV to CR0 causes a general-protection exception if it
attempts to set any bit in CR0 other than bit 0 (PE) or bit 31 (PG) to a value
not supported in VMX operation. It remains the case, however, that MOV to
CR0 causes a general-protection exception if it would result in CR0.PE = 0
and CR0.PG = 1 or if it would result in CR0.PG = 1, CR4.PAE = 0, and
IA32_EFER.LME = 1.

• MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of
MOV to CR3 does not cause a VM exit (see Section 22.1.3), the value loaded into
CR3 is treated as a guest-physical address; see Section 25.2.1.

— If PAE paging is not being used, the instruction does not use the guest-
physical address to access memory and it does not cause it to be translated
through EPT.2

— If PAE paging is being used, the instruction translates the guest-physical
address through EPT and uses the result to load the four (4) page-directory-
pointer-table entries (PDPTEs). The instruction does not use the guest-
physical addresses the PDPTEs to access memory and it does not cause them
to be translated through EPT.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.

2. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
22-18 Vol. 3B

VMX NON-ROOT OPERATION
• MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see
Section 22.1.3) leaves unmodified any bit in CR4 corresponding to a bit set in the
CR4 guest/host mask. Such an execution causes a general-protection exception
if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4
guest/host mask) to a value not supported in VMX operation (see Section 20.8).

• MOV to CR8. Behavior of the MOV to CR8 instruction (which can be executed
only in 64-bit mode) is determined by the settings of the “CR8-load exiting” and
“use TPR shadow” VM-execution controls:

— If both controls are 0, MOV to CR8 operates normally.

— If the “CR8-load exiting” VM-execution control is 0 and the “use TPR shadow”
VM-execution control is 1, MOV to CR8 writes to the TPR shadow. Specifically,
it stores bits 3:0 of its source operand into bits 7:4 of byte 80H of the virtual-
APIC page (see Section 21.6.8); bits 3:0 of that byte and bytes 129-131 of
that page are cleared. Such a store may cause a VM exit to occur after it
completes (see Section 22.1.3).

— If the “CR8-load exiting” VM-execution control is 1, MOV to CR8 causes a
VM exit (see Section 22.1.3); the “use TPR shadow” VM-execution control is
ignored in this case.

• MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-
opcode exception—#UD—if CPL > 0) is determined by the setting of the “MWAIT
exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit
(see Section 22.1.3).

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if
any of the following is true: (1) the “interrupt-window exiting” VM-execution
control is 0; (2) ECX[0] is 0; or (3) RFLAGS.IF = 1.

— If the “MWAIT exiting” VM-execution control is 0, the “interrupt-window
exiting” VM-execution control is 1, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT
does not cause the processor to enter an implementation-dependent
optimized state; instead, control passes to the instruction following the
MWAIT instruction.

• RDMSR. Section 22.1.3 identifies when executions of the RDMSR instruction
cause VM exits. If such an execution causes neither a fault due to CPL > 0 nor a
VM exit, the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the
value returned by the instruction is determined by the setting of the “use TSC
offsetting” VM-execution control as well as the TSC offset:

• If the control is 0, the instruction operates normally, loading EAX:EDX
with the value of the IA32_TIME_STAMP_COUNTER MSR.

• If the control is 1, the instruction loads EAX:EDX with the sum (using
signed addition) of the value of the IA32_TIME_STAMP_COUNTER MSR
and the value of the TSC offset (interpreted as a signed value).
Vol. 3B 22-19

VMX NON-ROOT OPERATION
The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of RDMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline
relative to the actual timestamp counter without regard to the TSC offset.

— If ECX contains 808H (indicating the TPR MSR), instruction behavior is
determined by the setting of the “virtualize x2APIC mode” VM-execution
control:1

• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, EAX[7:0] is loaded with the value of the APIC’s task-
priority register (EDX and EAX[31:8] are cleared to 0). If the local APIC is
not in x2APIC mode, a general-protection fault occurs.

• If the control is 1, the instruction loads EAX:EDX with the value of
bytes 87H:80H of the virtual-APIC page. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the
local APIC is not x2APIC mode).

• RDTSC. Behavior of the RDTSC instruction is determined by the settings of the
“RDTSC exiting” and “use TSC offsetting” VM-execution controls as well as the
TSC offset:

— If both controls are 0, RDTSC operates normally.

— If the “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting”
VM-execution control is 1, RDTSC loads EAX:EDX with the sum (using signed
addition) of the value of the IA32_TIME_STAMP_COUNTER MSR and the
value of the TSC offset (interpreted as a signed value).

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit
(see Section 22.1.3).

• RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of
the “enable RDTSCP” VM-execution control:2

— If the “enable RDTSCP” VM-execution control is 0, RDTSCP causes an invalid-
opcode exception (#UD).

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the
settings the “RDTSC exiting” and “use TSC offsetting” VM-execution controls
as well as the TSC offset:

• If both controls are 0, RDTSCP operates normally.

1. “Virtualize x2APIC mode” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize x2APIC mode” VM-execution control were 0. See Section 21.6.2.

2. “Enable RDTSCP” is a secondary processor-based VM-execution control. If bit 31 of the primary
processor-based VM-execution controls is 0, VMX non-root operation functions as if the “enable
RDTSCP” VM-execution control were 0. See Section 21.6.2.
22-20 Vol. 3B

VMX NON-ROOT OPERATION
• If the “RDTSC exiting” VM-execution control is 0 and the “use TSC
offsetting” VM-execution control is 1, RDTSCP loads EAX:EDX with the
sum (using signed addition) of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset (inter-
preted as a signed value); it also loads ECX with the value of bits 31:0 of
the IA32_TSC_AUX MSR.

• If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a
VM exit (see Section 22.1.3).

• SMSW. The behavior of SMSW is determined by the CR0 guest/host mask and
the CR0 read shadow. For each position corresponding to a bit clear in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in CR0. For each position corresponding to a bit set in the CR0
guest/host mask, the destination operand is loaded with the value of the corre-
sponding bit in the CR0 read shadow. Thus, if every bit is cleared in the CR0
guest/host mask, MOV from CR0 reads normally from CR0; if every bit is set in
the CR0 guest/host mask, MOV from CR0 returns the value of the CR0 read
shadow.
Note the following: (1) for any memory destination or for a 16-bit register desti-
nation, only the low 16 bits of the CR0 guest/host mask and the CR0 read shadow
are used (bits 63:16 of a register destination are left unchanged); (2) for a 32-bit
register destination, only the low 32 bits of the CR0 guest/host mask and the CR0
read shadow are used (bits 63:32 of the destination are cleared); and
(3) depending on the contents of the CR0 guest/host mask and the CR0 read
shadow, bits may be set in the destination that would never be set when reading
directly from CR0.

• WRMSR. Section 22.1.3 identifies when executions of the WRMSR instruction
cause VM exits. If such an execution neither a fault due to CPL > 0 nor a VM exit,
the instruction’s behavior may be modified for certain values of ECX:

— If ECX contains 79H (indicating IA32_BIOS_UPDT_TRIG MSR), no microcode
update is loaded, and control passes to the next instruction. This implies that
microcode updates cannot be loaded in VMX non-root operation.

— If ECX contains 808H (indicating the TPR MSR) and either EDX or EAX[31:8]
is non-zero, a general-protection fault occurs (this is true even if the logical
processor is not in VMX non-root operation). Otherwise, instruction behavior
is determined by the setting of the “virtualize x2APIC mode” VM-execution
control and the value of the TPR-threshold VM-execution control field:

• If the control is 0, the instruction operates normally. If the local APIC is in
x2APIC mode, the value of EAX[7:0] is written to the APIC’s task-priority
register. If the local APIC is not in x2APIC mode, a general-protection
fault occurs.

• If the control is 1, the instruction stores the value of EAX:EDX to
bytes 87H:80H of the virtual-APIC page. This store occurs even if the
local APIC is not in x2APIC mode (no general-protection fault occurs
Vol. 3B 22-21

VMX NON-ROOT OPERATION
because the local APIC is not x2APIC mode). The store may cause a
VM exit to occur after the instruction completes (see Section 22.1.3).

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 10H (indicating the
IA32_TIME_STAMP_COUNTER MSR). Such executions modify the actual
timestamp counter without regard to the TSC offset.

• The 1-setting of the “use TSC-offsetting” VM-execution control does not
effect executions of WRMSR if ECX contains 6E0H (indicating the
IA32_TSC_DEADLINE MSR). Such executions modify the APIC-timer
deadline relative to the actual timestamp counter without regard to the
TSC offset.

22.5 APIC ACCESSES THAT DO NOT CAUSE VM EXITS
As noted in Section 22.2, if the “virtualize APIC accesses” VM-execution control is 1,
most memory accesses to the APIC-access page (see Section 21.6.2) cause APIC-
access VM exits.1 Section 22.2 identifies potential exceptions. These are covered in
Section 22.5.1 through Section 22.5.3.

In some cases, an attempt to access memory on the APIC-access page is converted
to an access to the virtual-APIC page (see Section 21.6.8). In these cases, the access
uses the memory type reported in bit 53:50 of the IA32_VMX_BASIC MSR (see
Appendix G.1).

22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page
Translations

As noted in Section 22.2.1, a linear access to the APIC-access page using translation
with a large page (2-MByte, 4-MByte, or 1-GByte) may or may not cause an APIC-
access VM exit. If it does not and the access is not a VTPR access (see Section
22.2.4), the access operates on memory on the APIC-access page. Section 22.5.3
describes the treatment if there is no APIC-access VM exit and the access is a VTPR
access.

22.5.2 Physical Accesses to the APIC-Access Page
A physical access to the APIC-access page may or may not cause an APIC-access
VM exit. If it does not and the access is not a VTPR access (see Section 22.2.4), the
access operates on memory on the APIC-access page (this may happen if the access

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“virtualize APIC accesses” VM-execution control were 0. See Section 21.6.2.
22-22 Vol. 3B

VMX NON-ROOT OPERATION
causes an APIC-access VM exit). Section 22.5.3 describes the treatment if there is no
APIC-access VM exit and the access is a VTPR access.

22.5.3 VTPR Accesses
As noted in Section 22.2.4, a memory access is a VTPR access if all of the following
hold: (1) the “use TPR shadow” VM-execution control is 1; (2) the access is not for
an instruction fetch; (3) the access is at most 32 bits in width; and (4) the access is
to offset 80H on the APIC-access page.

The treatment of VTPR accesses depends on the nature of the access:
• A linear VTPR access using a translation with a 4-KByte page does not cause an

APIC-access VM exit. Instead, it is converted so that, instead of accessing offset
80H on the APIC-access page, it accesses offset 80H on the virtual-APIC page.
Further details are provided in Section 22.5.3.1 to Section 22.5.3.3.

• A linear VTPR access using a translation with a large page (2-MByte, 4-MByte, or
1-GByte) may be treated in either of two ways:

— It may operate on memory on the APIC-access page. The details in Section
22.5.3.1 to Section 22.5.3.3 do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 22.5.3.1 to Section 22.5.3.3.

• A physical VTPR access may be treated in one of three ways:

— It may cause an APIC-access VM exit. The details in Section 22.5.3.1 to
Section 22.5.3.3 do not apply.

— It may operate on memory on the APIC-access page (and possibly then cause
an APIC-access VM exit). The details in Section 22.5.3.1 to Section 22.5.3.3
do not apply.

— It may be converted so that, instead of accessing offset 80H on the APIC-
access page, it accesses offset 80H on the virtual-APIC page. Further details
are provided in Section 22.5.3.1 to Section 22.5.3.3.

Linear VTPR accesses never cause APIC-access VM exits (recall that an access is a
VTPR access only if the “use TPR shadow” VM-execution control is 1).

22.5.3.1 Treatment of Individual VTPR Accesses
The following items detail the treatment of VTPR accesses:
• VTPR read accesses. Such an access completes normally (reading data from the

field at offset 80H on the virtual-APIC page).
The following items detail certain instructions that are considered to perform
read accesses and how they behavior when accessing the VTPR:
Vol. 3B 22-23

VMX NON-ROOT OPERATION
— A VTPR access using the CLFLUSH instruction flushes data for offset 80H on
the virtual-APIC page.

— A VTPR access using the LMSW instruction may cause a VM exit due to the
CR0 guest/host mask and the CR0 read shadow.

— A VTPR access using the MONITOR instruction causes the logical processor to
monitor offset 80H on the virtual-APIC page.

— A VTPR access using the PREFETCH instruction may prefetch data; if so, it is
from offset 80H on the virtual-APIC page.

• VTPR write accesses. Such an access completes normally (writing data to the
field at offset 80H on the virtual-APIC page) and causes a TPR-shadow update
(see Section 22.5.3.3).
The following items detail certain instructions that are considered to perform
write accesses and how they behavior when accessing the VTPR:

— The ENTER instruction is considered to write to VTPR if the byte referenced by
the final value of the stack pointer is at offset 80H on the APIC-access page
(even though ENTER does not write to that byte if its size operand is non-
zero). The instruction is followed by a TPR-shadow update.

— A VTPR access using the SMSW instruction stores data determined by the
current CR0 contents, the CR0 guest/host mask, and the CR0 read shadow.
The instruction is followed by a TPR-shadow update.

22.5.3.2 Operations with Multiple Accesses
Some operations may access multiple addresses. These operations include the
execution of some instructions and the delivery of events through the IDT (including
those injected with VM entry). In some cases, the Intel® 64 architecture specifies the
ordering of these memory accesses. The following items describe the treatment of
VTPR accesses that are part of such multi-access operations:
• Read-modify-write instructions may first perform a VTPR read access and then a

VTPR write access. Both accesses complete normally (as described in Section
22.5.3.1). The instruction is followed by a TPR-shadow update (see Section
22.5.3.3).

• Some operations may perform a VTPR write access and subsequently cause a
fault. This situation is treated as follows:

— If the fault leads to a VM exit, no TPR-shadow update occurs.

— If the fault does not lead to a VM exit, a TPR-shadow update occurs after fault
delivery completes and before execution of the fault handler.

• If an operation includes a VTPR access and an access to some other field on the
APIC-access page, the latter access causes an APIC-access VM exit as described
in Section 22.2.
If the operation performs a VTPR write access before the APIC-access VM exit,
there is no TPR-shadow update.
22-24 Vol. 3B

VMX NON-ROOT OPERATION
• Suppose that the first iteration of a repeated string instruction (including OUTS)
that accesses the APIC-access page performs a VTPR read access and that the
next iteration would read from the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR read access completes successfully,
reading data from offset 80H on the virtual-APIC page.

— The iteration that would read from the other offset causes an APIC-access
VM exit. The instruction pointer saved in the VMCS references the repeated
string instruction and the values of the general-purpose registers are such
that iteration would be repeated if the instruction were restarted.

• Suppose that the first iteration of a repeated string instruction (including INS)
that accesses the APIC-access page performs a VTPR write access and that the
next iteration would write to the APIC-access page using an offset other than
80H. The following items describe the behavior of the logical processor:

— The iteration that performs the VTPR write access writes data to offset 80H on
the virtual-APIC page. The write is followed by a TPR-shadow update, which
may cause a VM exit (see Section 22.5.3.3).

— If the TPR-shadow update does cause a VM exit, the instruction pointer saved
in the VMCS references the repeated string instruction and the values of the
general-purpose registers are such that the next iteration would be
performed if the instruction were restarted.

— If the TPR-shadow update does not cause a VM exit, the iteration that would
write to the other offset causes an APIC-access VM exit. The instruction
pointer saved in the VMCS references the repeated string instruction and the
values of the general-purpose registers are such that that iteration would be
repeated if the instruction were restarted.

• Suppose that the last iteration of a repeated string instruction (including INS)
performs a VTPR write access. The iteration writes data to offset 80H on the
virtual-APIC page. The write is followed by a TPR-shadow update, which may
cause a VM exit (see Section 22.5.3.3). If it does, the instruction pointer saved in
the VMCS references the instruction after the string instruction and the values of
the general-purpose registers reflect completion of the string instruction.

22.5.3.3 TPR-Shadow Updates
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a logical processor performs certain actions after any operation (or iteration
of a repeated string instruction) with a VTPR write access. These actions are called a
TPR-shadow update. (As noted in Section 22.5.3.2, a TPR-shadow update does not
occur following an access that causes a VM exit.)

A TPR-shadow update includes the following actions:

1. Bits 31:8 at offset 80H on the virtual-APIC page are cleared.
Vol. 3B 22-25

VMX NON-ROOT OPERATION
2. If the value of bits 3:0 of the TPR threshold VM-execution control field is greater
than the value of bits 7:4 at offset 80H on the virtual-APIC page, a VM exit will
occur.

TPR-shadow updates take priority over system-management interrupts (SMIs), INIT
signals, and lower priority events. A TPR-shadow update thus has priority over any
debug exceptions that may have been triggered by the operation causing the TPR-
shadow update. TPR-shadow updates (and any VM exits they cause) are not blocked
if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

22.6 OTHER CHANGES IN VMX NON-ROOT OPERATION
Treatments of event blocking and of task switches differ in VMX non-root operation as
described in the following sections.

22.6.1 Event Blocking
Event blocking is modified in VMX non-root operation as follows:
• If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not

control the blocking of external interrupts. In this case, an external interrupt that
is not blocked for other reasons causes a VM exit (even if RFLAGS.IF = 0).

• If the “external-interrupt exiting” VM-execution control is 1, external interrupts
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

• If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs)
may or may not be blocked by STI or by MOV SS (behavior is implementation-
specific).

22.6.2 Treatment of Task Switches
Task switches are not allowed in VMX non-root operation. Any attempt to effect a
task switch in VMX non-root operation causes a VM exit. However, the following
checks are performed (in the order indicated), possibly resulting in a fault, before
there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the
proper values of the relevant privilege fields. The following cases detail the
privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in IA-32e mode, a general-
protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside IA-32e mode,
privilege-levels checks are performed on the task gate but, if they pass,
22-26 Vol. 3B

VMX NON-ROOT OPERATION
privilege levels are not checked on the referenced task-state segment (TSS)
descriptor.

c. If CALL or JMP accesses a TSS descriptor directly in IA-32e mode, a general-
protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside IA-32e mode,
privilege levels are checked on the TSS descriptor.

e. If a non-maskable interrupt (NMI), an exception, or an external interrupt
accesses a task gate in the IDT in IA-32e mode, a general-protection
exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint
exceptions (#BP) and overflow exceptions (#OF), or an external interrupt
accesses a task gate in the IDT outside IA-32e mode, no privilege checks are
performed.

g. If IRET is executed with RFLAGS.NT = 1 in IA-32e mode, a general-
protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside IA-32e mode, a TSS
descriptor is accessed directly and no privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT
limits).

3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not
present).

4. The TSS descriptor is checked for proper values of type (depends on type of task
switch), P bit, S bit, and limit.

Only if checks 1–4 all pass (do not generate faults) might a VM exit occur. However,
the ordering between a VM exit due to a task switch and a page fault resulting from
accessing the old TSS or the new TSS is implementation-specific. Some logical
processors may generate a page fault (instead of a VM exit due to a task switch) if
accessing either TSS would cause a page fault. Other logical processors may
generate a VM exit due to a task switch even if accessing either TSS would cause a
page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception
(before generating a VM exit due to the task switch) and that exception causes a
VM exit, information about the event whose delivery that accessed the task gate is
recorded in the IDT-vectoring information fields and information about the exception
that caused the VM exit is recorded in the VM-exit interruption-information fields.
See Section 24.2. The fact that a task gate was being accessed is not recorded in the
VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to
the task switch, information about the event whose delivery accessed the task gate
is recorded in the IDT-vectoring fields of the VMCS. Since the cause of such a VM exit
is a task switch and not an interruption, the valid bit for the VM-exit interruption
information field is 0. See Section 24.2.
Vol. 3B 22-27

VMX NON-ROOT OPERATION
22.7 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION
Some VM-execution controls cause VM exits using features that are specific to VMX
non-root operation. These are the VMX-preemption timer (Section 22.7.1) and the
monitor trap flag (Section 22.7.2).

22.7.1 VMX-Preemption Timer
If the last VM entry was performed with the 1-setting of “activate VMX-preemption
timer” VM-execution control, the VMX-preemption timer counts down (from the
value loaded by VM entry; see Section 23.6.4) in VMX non-root operation. When the
timer counts down to zero, it stops counting down and a VM exit occurs (see Section
22.3).

The VMX-preemption timer counts down at rate proportional to that of the timestamp
counter (TSC). Specifically, the timer counts down by 1 every time bit X in the TSC
changes due to a TSC increment. The value of X is in the range 0–31 and can be
determined by consulting the VMX capability MSR IA32_VMX_MISC (see Appendix
G.6).

The VMX-preemption timer operates in the C-states C0, C1, and C2; it also operates
in the shutdown and wait-for-SIPI states. If the timer counts down to zero in C1, C2,
or shutdown, the logical processor transitions to the C0 C-state and causes a VM exit.
(The timer does not cause a VM exit if it counts down to zero in the wait-for-SIPI
state.) The timer is not decremented and does not cause VM exits in C-states deeper
than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and
system-management mode (SMM) depends on whether the treatment of SMIs and
SMM:
• If the default treatment of SMIs and SMM (see Section 26.14) is active, the VMX-

preemption timer counts across an SMI to VMX non-root operation, subsequent
execution in SMM, and the return from SMM via the RSM instruction. However,
the timer can cause a VM exit only from VMX non-root operation. If the timer
expires during SMI, in SMM, or during RSM, a timer-induced VM exit occurs
immediately after RSM with its normal priority unless it is blocked based on
activity state (Section 22.3).

• If the dual-monitor treatment of SMIs and SMM (see Section 26.15) is active,
transitions into and out of SMM are VM exits and VM entries, respectively. The
treatment of the VMX-preemption timer by those transitions is mostly the same
as for ordinary VM exits and VM entries; Section 26.15.2 and Section 26.15.4
detail some differences.
22-28 Vol. 3B

VMX NON-ROOT OPERATION
22.7.2 Monitor Trap Flag
The monitor trap flag is a debugging feature that causes VM exits to occur on
certain instruction boundaries in VMX non-root operation. Such VM exits are called
MTF VM exits. An MTF VM exit may occur on an instruction boundary in VMX non-
root operation as follows:
• If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a

vectored event (see Section 23.5.1), an MTF VM exit is pending on the instruction
boundary before the first instruction following the VM entry.

• If VM entry is injecting a pending MTF VM exit (see Section 23.5.2), an MTF
VM exit is pending on the instruction boundary before the first instruction
following the VM entry. This is the case even if the “monitor trap flag” VM-
execution control is 0.

• If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an
event, and a pending event (e.g., debug exception or interrupt) is delivered
before an instruction can execute, an MTF VM exit is pending on the instruction
boundary following delivery of the event (or any nested exception).

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is a REP-prefixed
string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is
pending on the instruction boundary following delivery of the fault (or any
nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit
is pending on the instruction boundary after that iteration.

• Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not
injecting an event, and the first instruction following VM entry is not a REP-
prefixed string instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction
boundary following delivery of the fault (or any nested exception).1

— If the instruction does not cause a fault, an MTF VM exit is pending on the
instruction boundary following execution of that instruction. If the instruction
is INT3 or INTO, this boundary follows delivery of any software exception. If
the instruction is INT n, this boundary follows delivery of a software interrupt.
If the instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction
boundary on which an MTF VM exit would be pending (e.g., due to an exception or
triple fault).

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UD2
instruction and a BOUND-range exceeded exception—#BR—generated by the BOUND instruc-
tion.
Vol. 3B 22-29

VMX NON-ROOT OPERATION
An MTF VM exit occurs on the instruction boundary on which it is pending unless a
higher priority event takes precedence or the MTF VM exit is blocked due to the
activity state:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over MTF VM exits. MTF VM exits take priority over debug-trap
exceptions and lower priority events.

• No MTF VM exit occurs if the processor is in either the shutdown activity state or
wait-for-SIPI activity state. If a non-maskable interrupt subsequently takes the
logical processor out of the shutdown activity state without causing a VM exit, an
MTF VM exit is pending after delivery of that interrupt.

22.7.3 Translation of Guest-Physical Addresses Using EPT
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain physical addresses
are treated as guest-physical addresses and are not used to access memory directly.
Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT are given in Section 25.2.

22.8 UNRESTRICTED GUESTS
The first processors to support VMX operation require CR0.PE and CR0.PG to be 1 in
VMX operation (see Section 20.8). This restriction implies that guest software cannot
be run in unpaged protected mode or in real-address mode. Later processors support
a VM-execution control called “unrestricted guest”.1 If this control is 1, CR0.PE and
CR0.PG may be 0 in VMX non-root operation. Such processors allow guest software
to run in unpaged protected mode or in real-address mode. The following items
describe the behavior of such software:
• The MOV CR0 instructions does not cause a general-protection exception simply

because it would set either CR0.PE and CR0.PG to 0. See Section 22.4 for details.
• A logical processor treats the values of CR0.PE and CR0.PG in VMX non-root

operation just as it does outside VMX operation. Thus, if CR0.PE = 0, the
processor operates as it does normally in real-address mode (for example, it uses
the 16-bit interrupt table to deliver interrupts and exceptions). If CR0.PG = 0,
the processor operates as it does normally when paging is disabled.

• Processor operation is modified by the fact that the processor is in VMX non-root
operation and by the settings of the VM-execution controls just as it is in

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VMX non-root operation functions as if the
“unrestricted guest” VM-execution control were 0. See Section 21.6.2.
22-30 Vol. 3B

VMX NON-ROOT OPERATION
protected mode or when paging is enabled. Instructions, interrupts, and
exceptions that cause VM exits in protected mode or when paging is enabled also
do so in real-address mode or when paging is disabled. The following examples
should be noted:

— If CR0.PG = 0, page faults do not occur and thus cannot cause VM exits.

— If CR0.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause
VM exits.

— If CR0.PE = 0, the following instructions cause invalid-opcode exceptions and
do not cause VM exits: INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR,
VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF,
and VMXON.

• If CR0.PG = 0, each linear address is passed directly to the EPT mechanism for
translation to a physical address.1 The guest memory type passed on to the EPT
mechanism is WB (writeback).

1. As noted in Section 23.2.1.1, the “enable EPT” VM-execution control must be 1 if the “unre-
stricted guest” VM-execution control is 1.
Vol. 3B 22-31

VMX NON-ROOT OPERATION
22-32 Vol. 3B

CHAPTER 23
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions
VMLAUNCH and VMRESUME. VMLAUNCH can be used only with a VMCS whose launch
state is clear and VMRESUME can be used only with a VMCS whose the launch state
is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 23.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are
proper for supporting VMX non-root operation and that the VMCS is correctly
configured to support the next VM exit (Section 23.2).

3. The following may be performed in parallel or in any order (Section 23.3):

• The guest-state area of the VMCS is checked to ensure that, after the
VM entry completes, the state of the logical processor is consistent with
IA-32 and Intel 64 architectures.

• Processor state is loaded from the guest-state area and based on controls in
the VMCS.

• Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 23.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to
“launched.”

6. An event may be injected in the guest context (Section 23.5).

Steps 1–4 above perform checks that may cause VM entry to fail. Such failures occur
in one of the following three ways:
• Some of the checks in Section 23.1 may generate ordinary faults (for example,

an invalid-opcode exception). Such faults are delivered normally.
• Some of the checks in Section 23.1 and all the checks in Section 23.2 cause

control to pass to the instruction following the VM-entry instruction. The failure is
indicated by setting RFLAGS.ZF1 (if there is a current VMCS) or RFLAGS.CF (if
there is no current VMCS). If there is a current VMCS, an error number indicating
the cause of the failure is stored in the VM-instruction error field. See Chapter 5

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For IA-32 processors,
this notation refers to the 32-bit forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few
places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
Vol. 3B 23-1

VM ENTRIES
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B for the error numbers.

• The checks in Section 23.3 and Section 23.4 cause processor state to be loaded
from the host-state area of the VMCS (as would be done on a VM exit).
Information about the failure is stored in the VM-exit information fields. See
Section 23.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug excep-
tion only if failure of one of the checks in Section 23.1 and Section 23.2 causes
control to pass to the following instruction. A VM-entry does not generate a single-
step debug exception in any of the following cases: (1) the instruction generates a
fault; (2) failure of one of the checks in Section 23.3 or in loading MSRs causes
processor state to be loaded from the host-state area of the VMCS; or (3) the instruc-
tion passes all checks in Section 23.1, Section 23.2, and Section 23.3 and there is no
failure in loading MSRs.

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, code
running in SMM returns using VM entries instead of the RSM instruction. A VM entry
returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that
are detailed in Section 26.15.4.

23.1 BASIC VM-ENTRY CHECKS
Before a VM entry commences, the current state of the logical processor is checked
in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an
invalid-opcode exception is generated.

2. If the current privilege level (CPL) is not zero, a general-protection exception is
generated.

3. If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next
instruction.

4. If there is a current VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 21-3)

b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not
clear

c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not
launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next
instruction. An error number indicating the cause of the failure is stored in the
23-2 Vol. 3B

VM ENTRIES
VM-instruction error field. See Chapter 5 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B for the error numbers.

23.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREA
If the checks in Section 23.1 do not cause VM entry to fail, the control and host-state
areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation, that the VMCS is correctly configured to support the next
VM exit, and that, after the next VM exit, the processor’s state is consistent with the
Intel 64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed
to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the
VM-instruction error field is loaded with an error number that indicates whether the
failure was due to the controls or the host-state area (see Chapter 5 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B).

These checks may be performed in any order. Thus, an indication by error number of
one cause (for example, host state) does not imply that there are not also other
errors. Different processors may thus give different error numbers for the same
VMCS. Some checks prevent establishment of settings (or combinations of settings)
that are currently reserved. Future processors may allow such settings (or combina-
tions) and may not perform the corresponding checks. The correctness of software
should not rely on VM-entry failures resulting from the checks documented in this
section.

The checks on the controls and the host-state area are presented in Section 23.2.1
through Section 23.2.4. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the host-
state area.

23.2.1 Checks on VMX Controls
This section identifies VM-entry checks on the VMX control fields.

23.2.1.1 VM-Execution Control Fields
VM entries perform the following checks on the VM-execution control fields:1

• Reserved bits in the pin-based VM-execution controls must be set properly.
Software may consult the VMX capability MSRs to determine the proper settings
(see Appendix G.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is 0, VM entry
operates as if each secondary processor-based VM-execution control were 0.
Vol. 3B 23-3

VM ENTRIES
• Reserved bits in the primary processor-based VM-execution controls must be set
properly. Software may consult the VMX capability MSRs to determine the proper
settings (see Appendix G.3.2).

• If the “activate secondary controls” primary processor-based VM-execution
control is 1, reserved bits in the secondary processor-based VM-execution
controls must be set properly. Software may consult the VMX capability MSRs to
determine the proper settings (see Appendix G.3.3).
If the “activate secondary controls” primary processor-based VM-execution
control is 0 (or if the processor does not support the 1-setting of that control),
no checks are performed on the secondary processor-based VM-execution
controls. The logical processor operates as if all the secondary processor-based
VM-execution controls were 0.

• The CR3-target count must not be greater than 4. Future processors may support
a different number of CR3-target values. Software should read the VMX
capability MSR IA32_VMX_MISC to determine the number of values supported
(see Appendix G.6).

• If the “use I/O bitmaps” VM-execution control is 1, bits 11:0 of each I/O-bitmap
address must be 0. Neither address should set any bits beyond the processor’s
physical-address width.1,2

• If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap
address must be 0. The address should not set any bits beyond the processor’s
physical-address width.3

• If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must
satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.4

The following items describe the treatment of bytes 81H-83H on the virtual-
APIC page (see Section 21.6.8) if all of the above checks are satisfied and the
“use TPR shadow” VM-execution control is 1, treatment depends upon the
setting of the “virtualize APIC accesses” VM-execution control:5

— If the “virtualize APIC accesses” VM-execution control is 0, the bytes may be
cleared. (If the bytes are not cleared, they are left unmodified.)

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32;
see Appendix G.1.

3. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix G.1.

4. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix G.1.
23-4 Vol. 3B

VM ENTRIES
— If the “virtualize APIC accesses” VM-execution control is 1, the bytes are
cleared.

— If the VM entry fails, the any clearing of the bytes may or may not occur. This
is true either if the failure causes control to pass to the instruction following
the VM-entry instruction or if it cause processor state to be loaded from the
host-state area of the VMCS. Behavior may be implementation-specific.

• If the “use TPR shadow” VM-execution control is 1, bits 31:4 of the TPR threshold
VM-execution control field must be 0.

• The following check is performed if the “use TPR shadow” VM-execution control is
1 and the “virtualize APIC accesses” VM-execution control is 0: the value of
bits 3:0 of the TPR threshold VM-execution control field should not be greater
than the value of bits 7:4 in byte 80H on the virtual-APIC page (see Section
21.6.8).

• If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution
control must be 0.

• If the “virtual NMIs” VM-execution control is 0, the “NMI-window exiting” VM-
execution control must be 0.

• If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access
address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address
width.1

• If the “virtualize x2APIC mode” VM-execution control is 1, the “use TPR shadow”
VM-execution control must be 1 and the “virtualize APIC accesses” VM-execution
control must be 0.2

• If the “enable VPID” VM-execution control is 1, the value of the VPID VM-
execution control field must not be 0000H.

• If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field
(see Table 21-8 in Section 21.6.11) must satisfy the following checks:3

5. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.

1. If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see
Appendix G.1.

2. “Virtualize APIC accesses” and “virtualize x2APIC mode” are both secondary processor-based VM-
execution controls. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry
functions as if both these controls were 0. See Section 21.6.2.

3. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 21.6.2.
Vol. 3B 23-5

VM ENTRIES
— The EPT memory type (bits 2:0) must be a value supported by the logical
processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR (see Appendix
G.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT
page-walk length of 4; see Section 25.2.2.

— Reserved bits 11:6 and 63:N (where N is the processor’s physical-address
width) must all be 0.

— If the “unrestricted guest” VM-execution control is 1, the “enable EPT” VM-
execution control must also be 1.1

23.2.1.2 VM-Exit Control Fields
VM entries perform the following checks on the VM-exit control fields.
• Reserved bits in the VM-exit controls must be set properly. Software may consult

the VMX capability MSRs to determine the proper settings (see Appendix G.4).
• If “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-

preemption timer value” VM-exit control must also be 0.
• The following checks are performed for the VM-exit MSR-store address if the

VM-exit MSR-store count field is non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.2

— The address of the last byte in the VM-exit MSR-store area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

• The following checks are performed for the VM-exit MSR-load address if the
VM-exit MSR-load count field is non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-exit MSR-load address + (MSR count * 16) – 1. (The arithmetic

1. “Unrestricted guest” and “enable EPT” are both secondary processor-based VM-execution con-
trols. If bit 31 of the primary processor-based VM-execution controls is 0, VM entry functions as
if both these controls were 0. See Section 21.6.2.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
23-6 Vol. 3B

VM ENTRIES
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

23.2.1.3 VM-Entry Control Fields
VM entries perform the following checks on the VM-entry control fields.
• Reserved bits in the VM-entry controls must be set properly. Software may

consult the VMX capability MSRs to determine the proper settings (see Appendix
G.5).

• Fields relevant to VM-entry event injection must be set properly. These fields are
the VM-entry interruption-information field (see Table 21-12 in Section 21.8.3),
the VM-entry exception error code, and the VM-entry instruction length. If the
valid bit (bit 31) in the VM-entry interruption-information field is 1, the following
must hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1
is reserved on all logical processors; value 7 (other event) is reserved on
logical processors that do not support the 1-setting of the “monitor trap flag”
VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:

• If the interruption type is non-maskable interrupt (NMI), the vector is 2.

• If the interruption type is hardware exception, the vector is at most 31.

• If the interruption type is other event, the vector is 0 (pending MTF
VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the
"unrestricted guest" VM-execution control is 0; or (b) bit 0 (corresponding to
CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption
type is hardware exception; and (3) the vector indicates an exception that
would normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 =
#SS; 13 = #GP; 14 = #PF; or 17 = #AC).

— Reserved bits in the field (30:12) are 0.

— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry
exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or
privileged software exception, the VM-entry instruction-length field is in the
range 1–15.

• The following checks are performed for the VM-entry MSR-load address if the
VM-entry MSR-load count field is non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address
should not set any bits beyond the processor’s physical-address width.1
Vol. 3B 23-7

VM ENTRIES
— The address of the last byte in the VM-entry MSR-load area should not set any
bits beyond the processor’s physical-address width. The address of this last
byte is VM-entry MSR-load address + (MSR count * 16) – 1. (The arithmetic
used for the computation uses more bits than the processor’s physical-
address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the
range 63:32; see Appendix G.1.

• If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor
treatment” VM-entry controls must be 0.

• The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
cannot both be 1.

23.2.2 Checks on Host Control Registers and MSRs
The following checks are performed on fields in the host-state area that correspond
to control registers and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation (see

Section 20.8).1

• The CR4 field must not set any bit to a value not supported in VMX operation (see
Section 20.8).

• On processors that support Intel 64 architecture, the CR3 field must be such that
bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address
width must be 0.2,3

• On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP field
and the IA32_SYSENTER_EIP field must each contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 30-3).

• If the “load IA32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT
MSR must be one that could be written by WRMSR without fault at CPL 0. Specif-
ically, each of the 8 bytes in the field must have one of the values 0 (UC), 1 (WC),
4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

1. The bits corresponding to CR0.NW (bit 29) and CR0.CD (bit 30) are never checked because the
values of these bits are not changed by VM exit; see Section 24.5.1.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE =
1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached translation
information is invalidated.
23-8 Vol. 3B

VM ENTRIES
• If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR
must be 0 in the field for that register. In addition, the values of the LMA and LME
bits in the field must each be that of the “host address-space size” VM-exit
control.

23.2.3 Checks on Host Segment and Descriptor-Table Registers
The following checks are performed on fields in the host-state area that correspond
to segment and descriptor-table registers:
• In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0)

and the TI flag (bit 2) must be 0.
• The selector fields for CS and TR cannot be 0000H.
• The selector field for SS cannot be 0000H if the “host address-space size” VM-exit

control is 0.
• On processors that support Intel 64 architecture, the base-address fields for FS,

GS, GDTR, IDTR, and TR must contain canonical addresses.

23.2.4 Checks Related to Address-Space Size
On processors that support Intel 64 architecture, the following checks related to
address-space size are performed on VMX controls and fields in the host-state area:
• If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0) at the

time of VM entry, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.
• If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the time of

VM entry, the “host address-space size” VM-exit control must be 1.
• If the “host address-space size” VM-exit control is 0, the following must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.

— Bits 63:32 in the RIP field is 0.
• If the “host address-space size” VM-exit control is 1, the following must hold:

— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.

— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to
ensure that the “IA-32e mode guest” VM-entry control and the “host address-space
size” VM-exit control are both 0.
Vol. 3B 23-9

VM ENTRIES
23.3 CHECKING AND LOADING GUEST STATE
If all checks on the VMX controls and the host-state area pass (see Section 23.2), the
following operations take place concurrently: (1) the guest-state area of the VMCS is
checked to ensure that, after the VM entry completes, the state of the logical
processor is consistent with IA-32 and Intel 64 architectures; (2) processor state is
loaded from the guest-state area or as specified by the VM-entry control fields; and
(3) address-range monitoring is cleared.

Because the checking and the loading occur concurrently, a failure may be discov-
ered only after some state has been loaded. For this reason, the logical processor
responds to such failures by loading state from the host-state area, as it would for a
VM exit. See Section 23.7.

23.3.1 Checks on the Guest State Area
This section describes checks performed on fields in the guest-state area. These
checks may be performed in any order. Some checks prevent establishment of
settings (or combinations of settings) that are currently reserved. Future processors
may allow such settings (or combinations) and may not perform the corresponding
checks. The correctness of software should not rely on VM-entry failures resulting
from the checks documented in this section.

The following subsections reference fields that correspond to processor state. Unless
otherwise stated, these references are to fields in the guest-state area.

23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
The following checks are performed on fields in the guest-state area corresponding to
control registers, debug registers, and MSRs:
• The CR0 field must not set any bit to a value not supported in VMX operation

(see Section 20.8). The following are exceptions:

— Bit 0 (corresponding to CR0.PE) and bit 31 (PG) are not checked if the
“unrestricted guest” VM-execution control is 1.1

— Bit 29 (corresponding to CR0.NW) and bit 30 (CD) are never checked
because the values of these bits are not changed by VM entry; see Section
23.3.2.1.

• If bit 31 in the CR0 field (corresponding to PG) is 1, bit 0 in that field (PE) must
also be 1.2

• The CR4 field must not set any bit to a value not supported in VMX operation
(see Section 20.8).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.
23-10 Vol. 3B

VM ENTRIES
• If the “load debug controls” VM-entry control is 1, bits reserved in the
IA32_DEBUGCTL MSR must be 0 in the field for that register. The first processors
to support the virtual-machine extensions supported only the 1-setting of this
control and thus performed this check unconditionally.

• The following checks are performed on processors that support Intel 64 archi-
tecture:

— If the “IA-32e mode guest” VM-entry control is 1, bit 31 in the CR0 field
(corresponding to CR0.PG) and bit 5 in the CR4 field (corresponding to
CR4.PAE) must each be 1.1

— If the “IA-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field
(corresponding to CR4.PCIDE) must each be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32
beyond the processor’s physical-address width are 0.2,3

— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field
must be 0. The first processors to support the virtual-machine extensions
supported only the 1-setting of this control and thus performed this check
unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field must each
contain a canonical address.

• If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the
IA32_PERF_GLOBAL_CTRL MSR must be 0 in the field for that register (see
Figure 30-3).

• If the “load IA32_PAT” VM-entry control is 1, the value of the field for the
IA32_PAT MSR must be one that could be written by WRMSR without fault at CPL
0. Specifically, each of the 8 bytes in the field must have one of the values 0 (UC),
1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

• If the “load IA32_EFER” VM-entry control is 1, the following checks are performed
on the field for the IA32_EFER MSR :

— Bits reserved in the IA32_EFER MSR must be 0.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If
CR4.PCIDE = 1, bit 63 of the source operand to MOV to CR3 is used to determine whether cached
translation information is invalidated.
Vol. 3B 23-11

VM ENTRIES
— Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of the
“IA-32e mode guest” VM-exit control. It must also be identical to bit 8 (LME)
if bit 31 in the CR0 field (corresponding to CR0.PG) is 1.1

23.3.1.2 Checks on Guest Segment Registers
This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and
LDTR. The following terms are used in defining these checks:
• The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in

the guest-state area.
• The guest will be IA-32e mode if the “IA-32e mode guest” VM-entry control is 1.

(This is possible only on processors that support Intel 64 architecture.)
• Any one of these registers is said to be usable if the unusable bit (bit 16) is 0 in

the access-rights field for that register.

The following are the checks on these fields:
• Selector fields.

— TR. The TI flag (bit 2) must be 0.

— LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-
execution control is 0, the RPL (bits 1:0) must equal the RPL of the selector
field for CS.2

• Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be
the selector field shifted left 4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 archi-
tecture:

• TR, FS, GS. The address must be canonical.

• LDTR. If LDTR is usable, the address must be canonical.

• CS. Bits 63:32 of the address must be zero.

• SS, DS, ES. If the register is usable, bits 63:32 of the address must be
zero.

• Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field
must be 0000FFFFH.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
bit 31 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.
23-12 Vol. 3B

VM ENTRIES
• Access-rights fields.

— CS, SS, DS, ES, FS, GS.

• If the guest will be virtual-8086, the field must be 000000F3H. This
implies the following:

— Bits 3:0 (Type) must be 3, indicating an expand-up read/write
accessed data segment.

— Bit 4 (S) must be 1.

— Bits 6:5 (DPL) must be 3.

— Bit 7 (P) must be 1.

— Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L),
bit 14 (D/B), bit 15 (G), bit 16 (unusable), and bits 31:17 (reserved)
must all be 0.

• If the guest will not be virtual-8086, the different sub-fields are
considered separately:

— Bits 3:0 (Type).

• CS. The values allowed depend on the setting of the
“unrestricted guest” VM-execution control:

— If the control is 0, the Type must be 9, 11, 13, or 15
(accessed code segment).

— If the control is 1, the Type must be either 3 (read/write
accessed expand-up data segment) or one of 9, 11, 13, and
15 (accessed code segment).

• SS. If SS is usable, the Type must be 3 or 7 (read/write,
accessed data segment).

• DS, ES, FS, GS. The following checks apply if the register is
usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the
Type must be 1 (readable).

— Bit 4 (S). If the register is CS or if the register is usable, S must
be 1.

— Bits 6:5 (DPL).

• CS.

— If the Type is 3 (read/write accessed expand-up data
segment), the DPL must be 0. The Type can be 3 only if the
“unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the
DPL must equal the DPL in the access-rights field for SS.
Vol. 3B 23-13

VM ENTRIES
— If the Type is 13 or 15 (conforming code segment), the DPL
cannot be greater than the DPL in the access-rights field for
SS.

• SS.

— If the “unrestricted guest” VM-execution control is 0, the DPL
must equal the RPL from the selector field.

— The DPL must be 0 either if the Type in the access-rights field
for CS is 3 (read/write accessed expand-up data segment) or
if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

• DS, ES, FS, GS. The DPL cannot be less than the RPL in the
selector field if (1) the “unrestricted guest” VM-execution control
is 0; (2) the register is usable; and (3) the Type in the access-
rights field is in the range 0 – 11 (data segment or non-
conforming code segment).

— Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

— Bits 11:8 (reserved). If the register is CS or if the register is usable,
these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be 0 if the guest will be IA-32e mode
and the L bit (bit 13) in the access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the
register is usable:

• If any bit in the limit field in the range 11:0 is 0, G must be 0.

• If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is
usable, these bits must all be 0.

— TR. The different sub-fields are considered separately:

• Bits 3:0 (Type).

— If the guest will not be IA-32e mode, the Type must be 3 (16-bit
busy TSS) or 11 (32-bit busy TSS).

— If the guest will be IA-32e mode, the Type must be 11 (64-bit busy
TSS).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the pri-
mary processor-based VM-execution controls is 0: (1) bit 0 in the CR0 field must be 1 if the capa-
bility MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation; and (2) the
Type in the access-rights field for CS cannot be 3.
23-14 Vol. 3B

VM ENTRIES
• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bit 16 (Unusable). The unusable bit must be 0.

• Bits 31:17 (reserved). These bits must all be 0.

— LDTR. The following checks on the different sub-fields apply only if LDTR is
usable:

• Bits 3:0 (Type). The Type must be 2 (LDT).

• Bit 4 (S). S must be 0.

• Bit 7 (P). P must be 1.

• Bits 11:8 (reserved). These bits must all be 0.

• Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

• Bits 31:17 (reserved). These bits must all be 0.

23.3.1.3 Checks on Guest Descriptor-Table Registers
The following checks are performed on the fields for GDTR and IDTR:
• On processors that support Intel 64 architecture, the base-address fields must

contain canonical addresses.
• Bits 31:16 of each limit field must be 0.

23.3.1.4 Checks on Guest RIP and RFLAGS
The following checks are performed on fields in the guest-state area corresponding to
RIP and RFLAGS:
• RIP. The following checks are performed on processors that support Intel 64

architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0 or if
the L bit (bit 13) in the access-rights field for CS is 0.

— If the processor supports N < 64 linear-address bits, bits 63:N must be
identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the
access-rights field for CS is 1.1 (No check applies if the processor supports 64
linear-address bits.)

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
Vol. 3B 23-15

VM ENTRIES
• RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64
architecture), bit 15, bit 5 and bit 3 must be 0 in the field, and reserved bit 1
must be 1.

— The VM flag (bit 17) must be 0 either if the “IA-32e mode guest” VM-entry
control is 1 or if bit 0 in the CR0 field (corresponding to CR0.PE) is 0.1

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) is
external interrupt.

23.3.1.5 Checks on Guest Non-Register State
The following checks are performed on fields in the guest-state area corresponding to
non-register state:
• Activity state.

— The activity-state field must contain a value in the range 0 – 3, indicating an
activity state supported by the implementation (see Section 21.4.2). Future
processors may include support for other activity states. Software should
read the VMX capability MSR IA32_VMX_MISC (see Appendix G.6) to
determine what activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in
the access-rights field for SS is not 0.2

— The activity-state field must indicate the active state if the interruptibility-
state field indicates blocking by either MOV-SS or by STI (if either bit 0 or
bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the
interruption to be delivered (as defined by interruption type and vector) must
not be one that would normally be blocked while a logical processor is in the
activity state corresponding to the contents of the activity-state field. The
following items enumerate the interruptions (as specified in the VM-entry
interruption-information field) whose injection is allowed for the different
activity states:

• Active. Any interruption is allowed.

• HLT. The only events allowed are the following:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
bit 0 in the CR0 field must be 1 unless the “unrestricted guest” VM-execution control and bit 31
of the primary processor-based VM-execution controls are both 1.

2. As noted in Section 21.4.1, SS.DPL corresponds to the logical processor’s current privilege level
(CPL).
23-16 Vol. 3B

VM ENTRIES
— Those with interruption type external interrupt or non-maskable
interrupt (NMI).

— Those with interruption type hardware exception and vector 1
(debug exception) or vector 18 (machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF
VM exit).

See Table 21-12 in Section 21.8.3 for details regarding the format of the
VM-entry interruption-information field.

• Shutdown. Only NMIs and machine-check exceptions are allowed.

• Wait-for-SIPI. No interruptions are allowed.

— The activity-state field must not indicate the wait-for-SIPI state if the “entry
to SMM” VM-entry control is 1.

• Interruptibility state.

— The reserved bits (bits 31:4) must be 0.

— The field cannot indicate blocking by both STI and MOV SS (bits 0 and 1
cannot both be 1).

— Bit 0 (blocking by STI) must be 0 if the IF flag (bit 9) is 0 in the RFLAGS field.

— Bit 0 (blocking by STI) and bit 1 (blocking by MOV-SS) must both be 0 if the
valid bit (bit 31) in the VM-entry interruption-information field is 1 and the
interruption type (bits 10:8) in that field has value 0, indicating external
interrupt.

— Bit 1 (blocking by MOV-SS) must be 0 if the valid bit (bit 31) in the VM-entry
interruption-information field is 1 and the interruption type (bits 10:8) in that
field has value 2, indicating non-maskable interrupt (NMI).

— Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.

— Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

— A processor may require bit 0 (blocking by STI) to be 0 if the valid bit (bit 31)
in the VM-entry interruption-information field is 1 and the interruption type
(bits 10:8) in that field has value 2, indicating NMI. Other processors may not
make this requirement.

— Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control
is 1, the valid bit (bit 31) in the VM-entry interruption-information field is 1,
and the interruption type (bits 10:8) in that field has value 2 (indicating
NMI).

NOTE
If the “virtual NMIs” VM-execution control is 0, there is no
requirement that bit 3 be 0 if the valid bit in the VM-entry
interruption-information field is 1 and the interruption type in that
field has value 2.
Vol. 3B 23-17

VM ENTRIES
• Pending debug exceptions.

— Bits 11:4, bit 13, and bits 63:15 (bits 31:15 on processors that do not
support Intel 64 architecture) must be 0.

— The following checks are performed if any of the following holds: (1) the
interruptibility-state field indicates blocking by STI (bit 0 in that field is 1);
(2) the interruptibility-state field indicates blocking by MOV SS (bit 1 in that
field is 1); or (3) the activity-state field indicates HLT:

• Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 0.

• Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is 0 or the
BTF flag (bit 1) in the IA32_DEBUGCTL field is 1.

• VMCS link pointer. The following checks apply if the field contains a value other
than FFFFFFFF_FFFFFFFFH:

— Bits 11:0 must be 0.

— Bits beyond the processor’s physical-address width must be 0.1,2

— The 32 bits located in memory referenced by the value of the field (as a
physical address) must contain the processor’s VMCS revision identifier (see
Section 21.2).

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the
field must not contain the current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is 0, the
field must not contain the VMXON pointer.

23.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
If CR0.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor also uses
PAE paging (see Section 4.4 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).3 When PAE paging is in use, the physical address in
CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV
to CR3 when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CR0.PG)
is set in the CR0 field in the guest-state area; (2) bit 5 (corresponding to CR4.PAE) is

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see
Appendix G.1.

3. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine the number physical-address bits
supported by executing CPUID with 80000008H in EAX. The physical-address width is returned
in bits 7:0 of EAX.
23-18 Vol. 3B

VM ENTRIES
set in the CR4 field; and (3) the “IA-32e mode guest” VM-entry control is 0. Such a
VM entry checks the validity of the PDPTEs:
• If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the

PDPTEs referenced by the CR3 field in the guest-state area if either (1) PAE
paging was not in use before the VM entry; or (2) the value of CR3 is changing as
a result of the VM entry. VM entry may check their validity even if neither (1) nor
(2) hold.1

• If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the
PDPTE fields in the guest-state area (see Section 21.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any
PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use.2 If MOV to CR3
would cause a general-protection exception due to the PDPTEs that would be loaded
(e.g., because a reserved bit is set), the VM entry fails.

23.3.2 Loading Guest State
Processor state is updated on VM entries in the following ways:
• Some state is loaded from the guest-state area.
• Some state is determined by VM-entry controls.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order and in parallel with the checking of VMCS
contents (see Section 23.3.1).

The loading of guest state is detailed in Section 23.3.2.1 to Section 23.3.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs
from the VM-entry MSR-load area (see Section 23.4). This loading occurs only after
the state loading described in this section and the checking of VMCS contents
described in Section 23.3.1.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM entry functions as if the “enable EPT” VM-execu-
tion control were 0. See Section 21.6.2.

2. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit 0 (present) is clear in one
of the PDPTEs, bits 63:1 of that PDPTE are ignored.
Vol. 3B 23-19

VM ENTRIES
23.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
The following items describe how guest control registers, debug registers, and MSRs
are loaded on VM entry:
• CR0 is loaded from the CR0 field with the exception of the following bits, which

are never modified on VM entry: ET (bit 4); reserved bits 15:6, 17, and 28:19;
NW (bit 29) and CD (bit 30).1 The values of these bits in the CR0 field are
ignored.

• CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.
• If the “load debug controls” VM-execution control is 1, DR7 is loaded from the

DR7 field with the exception that bit 12 and bits 15:14 are always 0 and bit 10 is
always 1. The values of these bits in the DR7 field are ignored.
The first processors to support the virtual-machine extensions supported only
the 1-setting of the “load debug controls” VM-execution control and thus always
loaded DR7 from the DR7 field.

• The following describes how some MSRs are loaded using fields in the guest-state
area:

— If the “load debug controls” VM-execution control is 1, the IA32_DEBUGCTL
MSR is loaded from the IA32_DEBUGCTL field. The first processors to support
the virtual-machine extensions supported only the 1-setting of this control
and thus always loaded the IA32_DEBUGCTL MSR from the IA32_DEBUGCTL
field.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since this field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively. On processors that do not support Intel 64 architecture, these fields
have only 32 bits; bits 63:32 of the MSRs are cleared to 0.

— The following are performed on processors that support Intel 64 architecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 23.3.2.2).

• If the “load IA32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR
are modified as follows:

— IA32_EFER.LMA is loaded with the setting of the “IA-32e mode
guest” VM-entry control.

— If CR0 is being loaded so that CR0.PG = 1, IA32_EFER.LME is also
loaded with the setting of the “IA-32e mode guest” VM-entry
control.2 Otherwise, IA32_EFER.LME is unmodified.

1. Bits 15:6, bit 17, and bit 28:19 of CR0 and CR0.ET are unchanged by executions of MOV to CR0.
Bits 15:6, bit 17, and bit 28:19 of CR0 are always 0 and CR0.ET is always 1.
23-20 Vol. 3B

VM ENTRIES
See below for the case in which the “load IA32_EFER” VM-entry control is
1

— If the “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded
from the IA32_PAT field.

— If the “load IA32_EFER” VM-entry control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-entry MSR-load area. See Section 23.4.

• The SMBASE register is unmodified by all VM entries except those that return
from SMM.

23.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-
state area as follows:

• The unusable bit is loaded from the access-rights field. This bit can never be set
for TR (see Section 23.3.1.2). If it is set for one of the other registers, the
following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults
(general-protection exception or stack-fault exception) outside 64-bit mode,
just as they would had the segment been loaded using a null selector. This bit
does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in
all modes, just as they would had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null
selector value does not cause a fault (general-protection exception or stack-
fault exception).

• TR. The selector, base, limit, and access-rights fields are loaded.
• CS.

— The following fields are always loaded: selector, base address, limit, and
(from the access-rights field) the L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:

• If the unusable bit is 0, all of the access-rights field is loaded.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
VM entry must be loading CR0 so that CR0.PG = 1 unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
Vol. 3B 23-21

VM ENTRIES
• If the unusable bit is 1, the remainder of CS access rights are undefined
after VM entry.

• SS, DS, ES, FS, GS, and LDTR.

— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field

is consulted:

• If the unusable bit is 0, the base-address, limit, and access-rights fields
are loaded.

• If the unusable bit is 1, the base address, the segment limit, and the
remainder of the access rights are undefined after VM entry with the
following exceptions:

— Bits 3:0 of the base address for SS are cleared to 0.

— SS.DPL is always loaded from the SS access-rights field. This will be
the current privilege level (CPL) after the VM entry completes.

— SS.B is always set to 1.

— The base addresses for FS and GS are loaded from the corre-
sponding fields in the VMCS. On processors that support Intel 64
architecture, the values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address
for LDTR is set to an undefined but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the
base addresses for SS, DS, and ES are cleared to 0.

GDTR and IDTR are loaded using the base and limit fields.

23.3.2.3 Loading Guest RIP, RSP, and RFLAGS
RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS
field, respectively. The following items regard the upper 32 bits of these fields on
VM entries that are not to 64-bit mode:
• Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor

may ignore the contents of bits 63:32 of the RSP field on VM entries that are not
to 64-bit mode.

• As noted in Section 23.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0
on VM entries that are not to 64-bit mode.

23.3.2.4 Loading Page-Directory-Pointer-Table Entries
As noted in Section 23.3.1.6, the logical processor uses PAE paging if bit 5 in CR4
(CR4.PAE) is 1 and IA32_EFER.LMA is 0. A VM entry to a guest that uses PAE paging
23-22 Vol. 3B

VM ENTRIES
loads the PDPTEs into internal, non-architectural registers based on the setting of the
“enable EPT” VM-execution control:
• If the control is 0, the PDPTEs are loaded from the page-directory-pointer table

referenced by the physical address in the value of CR3 being loaded by the
VM entry (see Section 23.3.2.1). The values loaded are treated as physical
addresses in VMX non-root operation.

• If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-
state area (see Section 21.4.2). The values loaded are treated as guest-physical
addresses in VMX non-root operation.

23.3.2.5 Updating Non-Register State
Section 25.3 describe how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM entries invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM entries are not required to invalidate any guest-physical mappings, nor are
they required to invalidate any linear mappings or combined mappings if the
“enable VPID” VM-execution control is 1.

23.3.3 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM entries
clear any address-range monitoring that may be in effect.

23.4 LOADING MSRS
VM entries may load MSRs from the VM-entry MSR-load area (see Section 21.8.2).
Specifically each entry in that area (up to the number specified in the VM-entry MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101 (the IA32_GS_BASE MSR).

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to
modify it using the VM-entry MSR-load area are also ignored.
Vol. 3B 23-23

VM ENTRIES
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that
allows access to an APIC register when the local APIC is in x2APIC mode.

• The value of bits 31:0 indicates an MSR that can be written only in system-
management mode (SMM) and the VM entry did not commence in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for
model-specific reasons. A processor may prevent loading of certain MSRs even if
they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to
such failures by loading state from the host-state area, as it would for a VM exit. See
Section 23.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM entry, the logical processor will not use
any translations that were cached before the transition.

23.5 EVENT INJECTION
If the valid bit in the VM-entry interruption-information field (see Section 21.8.3) is
1, VM entry causes an event to be delivered (or made pending) after all components
of guest state have been loaded (including MSRs) and after the VM-execution control
fields have been established.
• If the interruption type in the field is 0 (external interrupt), 2 (non-maskable

interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged software
exception), or 6 (software exception), the event is delivered as described in
Section 23.5.1.

• If the interruption type in the field is 7 (other event) and the vector field is 0, an
MTF VM exit is pending after VM entry. See Section 23.5.2.

23.5.1 Vectored-Event Injection
VM entry delivers an injected vectored event within the guest context established by
VM entry. This means that delivery occurs after all components of guest state have

1. If CR0.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would
modify the LME bit. If VM entry has established CR0.PG = 1, the IA32_EFER MSR should not be
included in the VM-entry MSR-load area for the purpose of modifying the LME bit.
23-24 Vol. 3B

VM ENTRIES
been loaded (including MSRs) and after the VM-execution control fields have been
established.1 The event is delivered using the vector in that field to select a
descriptor in the IDT. Since event injection occurs after loading IDTR from the guest-
state area, this is the guest IDT.

Section 23.5.1.1 provides details of vectored-event injection. In general, the event is
delivered exactly as if it had been generated normally.

If event delivery encounters a nested exception (for example, a general-protection
exception because the vector indicates a descriptor beyond the IDT limit), the excep-
tion bitmap is consulted using the vector of that exception. If the bit is 0, the excep-
tion is delivered through the IDT. If the bit is 1, a VM exit occurs. Section 23.5.1.2
details cases in which event injection causes a VM exit.

23.5.1.1 Details of Vectored-Event Injection
The event-injection process is controlled by the contents of the VM-entry interruption
information field (format given in Table 21-12), the VM-entry exception error-code
field, and the VM-entry instruction-length field. The following items provide details of
the process:
• The value pushed on the stack for RFLAGS is generally that which was loaded

from the guest-state area. The value pushed for the RF flag is not modified based
on the type of event being delivered. However, the pushed value of RFLAGS may
be modified if a software interrupt is being injected into a guest that will be in
virtual-8086 mode (see below). After RFLAGS is pushed on the stack, the value
in the RFLAGS register is modified as is done normally when delivering an event
through the IDT.

• The instruction pointer that is pushed on the stack depends on the type of event
and whether nested exceptions occur during its delivery. The term current
guest RIP refers to the value to be loaded from the guest-state area. The value
pushed is determined as follows:2

— If VM entry successfully injects (with no nested exception) an event with
interruption type external interrupt, NMI, or hardware exception, the current
guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with
interruption type software interrupt, privileged software exception, or
software exception, the current guest RIP is incremented by the VM-entry
instruction length before being pushed on the stack.

1. This does not imply that injection of an exception or interrupt will cause a VM exit due to the set-
tings of VM-execution control fields (such as the exception bitmap) that would cause a VM exit if
the event had occurred in VMX non-root operation. In contrast, a nested exception encountered
during event delivery may cause a VM exit; see Section 23.5.1.1.

2. While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is
determined normally.
Vol. 3B 23-25

VM ENTRIES
— If VM entry encounters an exception while injecting an event and that
exception does not cause a VM exit, the current guest RIP is pushed on the
stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is
current guest RIP.

• If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-
information field, the contents of the VM-entry exception error-code field is
pushed on the stack as an error code would be pushed during delivery of an
exception.

• DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection,
even if the event has vector 1 (normal deliveries of debug exceptions, which have
vector 1, do update these registers).

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode (RFLAGS.VM = 1), no general-protection exception can occur due to
RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL before injecting
such an event and, if desired, inject a general-protection exception instead of a
software interrupt.

• If VM entry is injecting a software interrupt and the guest will be in virtual-8086
mode with virtual-8086 mode extensions (RFLAGS.VM = CR4.VME = 1), event
delivery is subject to VME-based interrupt redirection based on the software
interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software
interrupt), the interrupt is directed to an 8086 program interrupt handler: the
processor uses a 16-bit interrupt-vector table (IVT) located at linear address
zero. If the value of RFLAGS.IOPL is less than 3, the following modifications
are made to the value of RFLAGS that is pushed on the stack: IOPL is set to
3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt),
the interrupt is directed to a protected-mode interrupt handler. (In other
words, the injection is treated as described in the next item.) In this case, the
software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a
general-protection exception occurs instead). However, as noted above,
RFLAGS.IOPL cannot cause an injected software interrupt to cause such a
exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.
• If VM entry is injecting a software interrupt (not redirected as described above)

or software exception, privilege checking is performed on the IDT descriptor
being accessed as would be the case for executions of INT n, INT3, or INTO (the
descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL,
even if the guest will be in virtual-8086 mode. Failure of this check may lead to a
nested exception. Injection of an event with interruption type external interrupt,
NMI, hardware exception, and privileged software exception, or with interruption
23-26 Vol. 3B

VM ENTRIES
type software interrupt and being redirected as described above, do not perform
these checks.

• If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs”
VM-execution control is 1, virtual-NMI blocking is in effect after VM entry.

• The transition causes a last-branch record to be logged if the LBR bit is set in the
IA32_DEBUGCTL MSR. This is true even for events such as debug exceptions,
which normally clear the LBR bit before delivery.

• The last-exception record MSRs (LERs) may be updated based on the setting of
the LBR bit in the IA32_DEBUGCTL MSR. Events such as debug exceptions, which
normally clear the LBR bit before they are delivered, and therefore do not
normally update the LERs, may do so as part of VM-entry event injection.

• If injection of an event encounters a nested exception that does not itself cause a
VM exit, the value of the EXT bit (bit 0) in any error code pushed on the stack is
determined as follows:

— If event being injected has interruption type external interrupt, NMI,
hardware exception, or privileged software exception and encounters a
nested exception (but does not produce a double fault), the error code for the
first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and
encounters a nested exception (but does not produce a double fault), the
error code for the first such exception encountered clears the EXT bit.

— If event delivery encounters a nested exception and delivery of that
exception encounters another exception (but does not produce a double
fault), the error code for that exception sets the EXT bit. If a double fault is
produced, the error code for the double fault is 0000H (the EXT bit is clear).

23.5.1.2 VM Exits During Event Injection
An event being injected never causes a VM exit directly regardless of the settings of
the VM-execution controls. For example, setting the “NMI exiting” VM-execution
control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:
• If the vector in the VM-entry interruption-information field identifies a task gate

in the IDT, the attempted task switch may cause a VM exit just as it would had
the injected event occurred during normal execution in VMX non-root operation
(see Section 22.6.2).

• If event delivery encounters a nested exception, a VM exit may occur depending
on the contents of the exception bitmap (see Section 22.3).

• If event delivery generates a double-fault exception (due to a nested exception);
the logical processor encounters another nested exception while attempting to
call the double-fault handler; and that exception does not cause a VM exit due to
the exception bitmap; then a VM exit occurs due to triple fault (see Section
22.3).
Vol. 3B 23-27

VM ENTRIES
• If event delivery injects a double-fault exception and encounters a nested
exception that does not cause a VM exit due to the exception bitmap, then a
VM exit occurs due to triple fault (see Section 22.3).

• If the “virtualize APIC accesses” VM-execution control is 1 and event delivery
generates an access to the APIC-access page, that access may cause an APIC-
access VM exit (see Section 22.2) or, if the access is a VTPR access, be treated as
specified in Section 22.5.3.1

If the event-delivery process does cause a VM exit, the processor state before the
VM exit is determined just as it would be had the injected event occurred during
normal execution in VMX non-root operation. If the injected event directly accesses a
task gate that cause a VM exit or if the first nested exception encountered causes a
VM exit, information about the injected event is saved in the IDT-vectoring informa-
tion field (see Section 24.2.3).

23.5.1.3 Event Injection for VM Entries to Real-Address Mode
If VM entry is loading CR0.PE with 0, any injected vectored event is delivered as
would normally be done in real-address mode.2 Specifically, VM entry uses the vector
provided in the VM-entry interruption-information field to select a 4-byte entry from
an interrupt-vector table at the linear address in IDTR.base. Further details are
provided in Section 15.1.4 in Volume 3A of the IA-32 Intel® Architecture Software
Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field
must be 0 if CR0.PE will be 0 after VM entry (see Section 23.2.1.3), vectored events
injected with CR0.PE = 0 do not push an error code on the stack. This is consistent
with event delivery in real-address mode.

If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit),
the fault is treated as if it had occurred during event delivery in VMX non-root opera-
tion. Such a fault may lead to a VM exit as discussed in Section 23.5.1.2.

23.5.2 Injection of Pending MTF VM Exits
If the interruption type in the VM-entry interruption-information field is 7 (other
event) and the vector field is 0, VM entry causes an MTF VM exit to be pending on the
instruction boundary following VM entry. This is the case even if the “monitor trap
flag” VM-execution control is 0. See Section 22.7.2 for the treatment of pending MTF
VM exits.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation,
VM entry must be loading CR0.PE with 1 unless the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
23-28 Vol. 3B

VM ENTRIES
23.6 SPECIAL FEATURES OF VM ENTRY
This section details a variety of features of VM entry. It uses the following termi-
nology: a VM entry is vectoring if the valid bit (bit 31) of the VM-entry interruption
information field is 1 and the interruption type in the field is 0 (external interrupt), 2
(non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privi-
leged software exception), or 6 (software exception).

23.6.1 Interruptibility State
The interruptibility-state field in the guest-state area (see Table 21-3) contains bits
that control blocking by STI, blocking by MOV SS, and blocking by NMI. This field
impacts event blocking after VM entry as follows:
• If the VM entry is vectoring, there is no blocking by STI or by MOV SS following

the VM entry, regardless of the contents of the interruptibility-state field.
• If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit 0 in the interruptibility-state field
is 1. This blocking is cleared after the guest executes one instruction or incurs
an exception (including a debug exception made pending by VM entry; see
Section 23.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state
field is 1. This may affect the treatment of pending debug exceptions; see
Section 23.6.3. This blocking is cleared after the guest executes one
instruction or incurs an exception (including a debug exception made pending
by VM entry).

• The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if
bit 3 (blocking by NMI) in the interruptibility-state field is 1. If the “NMI
exiting” VM-execution control is 0, execution of the IRET instruction removes
this blocking (even if the instruction generates a fault). If the “NMI exiting”
control is 1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the inter-
ruptibility-state field if the “virtual NMIs” VM-execution control is 1:

• The bit’s value does not affect the blocking of NMIs after VM entry. NMIs
are not blocked in VMX non-root operation (except for ordinary blocking
for other reasons, such as by the MOV SS instruction, the wait-for-SIPI
state, etc.)

• The bit’s value determines whether there is virtual-NMI blocking after
VM entry. If the bit is 1, virtual-NMI blocking is in effect after VM entry. If
the bit is 0, there is no virtual-NMI blocking after VM entry unless the
VM entry is injecting an NMI (see Section 23.5.1.1). Execution of IRET
removes virtual-NMI blocking (even if the instruction generates a fault).
Vol. 3B 23-29

VM ENTRIES
If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” control must
be 0; see Section 23.2.1.1.

• Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI
blocking is unchanged by VM entry.

— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and
only if the bit 2 in the interruptibility-state field is 1.

23.6.2 Activity State
The activity-state field in the guest-state area controls whether, after VM entry, the
logical processor is active or in one of the inactive states identified in Section 21.4.2.
The use of this field is determined as follows:
• If the VM entry is vectoring, the logical processor is in the active state after

VM entry. While the consistency checks described in Section 23.3.1.5 on the
activity-state field do apply in this case, the contents of the activity-state field do
not determine the activity state after VM entry.

• If the VM entry is not vectoring, the logical processor ends VM entry in the
activity state specified in the guest-state area. If VM entry ends with the logical
processor in an inactive activity state, the VM entry generates any special bus
cycle that is normally generated when that activity state is entered from the
active state. If VM entry would end with the logical processor in the shutdown
state and the logical processor is in SMX operation,1 an Intel® TXT shutdown
condition occurs. The error code used is 0000H, indicating “legacy shutdown.”
See Intel® Trusted Execution Technology Preliminary Architecture Specification.

• Some activity states unconditionally block certain events. The following blocking
is in effect after any VM entry that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the active state and in VMX non-root operation are discarded
and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical
processor is in the HLT state and in VMX non-root operation are discarded and
do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts
that arrive while a logical processor is in the shutdown state and in VMX non-
root operation do not cause VM exits even if the “external-interrupt exiting”
VM-execution control is 1. SIPIs that arrive while a logical processor is in the

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.
23-30 Vol. 3B

VM ENTRIES
shutdown state and in VMX non-root operation are discarded and do not
cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts
(NMIs), INIT signals, and system-management interrupts (SMIs). Such
events do not cause VM exits if they arrive while a logical processor is in the
wait-for-SIPI state and in VMX non-root operation do not cause VM exits
regardless of the settings of the pin-based VM-execution controls.

23.6.3 Delivery of Pending Debug Exceptions after VM Entry
The pending debug exceptions field in the guest-state area indicates whether there
are debug exceptions that have not yet been delivered (see Section 21.4.2). This
section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are
true:
• The VM entry is vectoring with one of the following interruption types: external

interrupt, non-maskable interrupt (NMI), hardware exception, or privileged
software exception.

• The interruptibility-state field does not indicate blocking by MOV SS and the
VM entry is vectoring with either of the following interruption type: software
interrupt or software exception.

• The VM entry is not vectoring and the activity-state field indicates either
shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug
exceptions that are pending for the guest. There are valid pending debug excep-
tions if either the BS bit (bit 14) or the enable-breakpoint bit (bit 12) is 1. If there
are valid pending debug exceptions, they are handled as follows:
• If the VM entry is not vectoring, the pending debug exceptions are treated as

they would had they been encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-
state field indicates no blocking by MOV SS), a debug exception is delivered
after VM entry (see below).

— If the logical processor is blocking such exceptions (due to blocking by
MOV SS), the pending debug exceptions are held pending or lost as would
normally be the case.

• If the VM entry is vectoring (with interruption type software interrupt or software
exception and with blocking by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3
(#BP) or vector 4 (#OF), the pending debug exceptions are treated as they
would had they been encountered normally in guest execution if the corre-
sponding instruction (INT3 or INTO) were executed after a MOV SS that
encountered a debug trap.
Vol. 3B 23-31

VM ENTRIES
— For injection of a software exception with a vector other than 3 and 4, the
pending debug exceptions may be lost or they may be delivered after
injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug
exceptions are delivered after VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps
on the previous instruction” (see Section 6.9 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A). Thus, INIT signals and system-
management interrupts (SMIs) take priority of such an exception, as do VM exits
induced by the TPR shadow (see Section 23.6.7) and pending MTF VM exits (see
Section 23.6.8. The exception takes priority over any pending non-maskable inter-
rupt (NMI) or external interrupt and also over VM exits due to the 1-settings of the
“interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1
(#DB) is 1 in the exception bitmap. If it does not cause a VM exit, it updates DR6
normally.

23.6.4 VMX-Preemption Timer
If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts
the VMX-preemption timer with the unsigned value in the VMX-preemption timer-
value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the
value in the VMX-preemption timer-value field is zero). If this happens (and if the VM
entry was not to the wait-for-SIPI state), a VM exit occurs with its normal priority
after any event injection and before execution of any instruction following VM entry.
For example, any pending debug exceptions established by VM entry (see Section
23.6.3) take priority over a timer-induced VM exit. (The timer-induced VM exit will
occur after delivery of the debug exception, unless that exception or its delivery
causes a different VM exit.)

See Section 22.7.1 for details of the operation of the VMX-preemption timer in VMX
non-root operation, including the blocking and priority of the VM exits that it causes.

23.6.5 Interrupt-Window Exiting
The “interrupt-window exiting” VM-execution control may cause a VM exit to occur
immediately after VM entry (see Section 22.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Non-maskable interrupts (NMIs) and higher priority events take priority over

VM exits caused by this control. VM exits caused by this control take priority over
external interrupts and lower priority events.
23-32 Vol. 3B

VM ENTRIES
• VM exits caused by this control wake the logical processor if it just entered the
HLT state because of a VM entry (see Section 23.6.2). They do not occur if the
logical processor just entered the shutdown state or the wait-for-SIPI state.

23.6.6 NMI-Window Exiting
The “NMI-window exiting” VM-execution control may cause a VM exit to occur imme-
diately after VM entry (see Section 22.3 for details).

The following items detail the treatment of these VM exits:
• These VM exits follow event injection if such injection is specified for VM entry.
• Debug-trap exceptions (see Section 23.6.3) and higher priority events take

priority over VM exits caused by this control. VM exits caused by this control take
priority over non-maskable interrupts (NMIs) and lower priority events.

• VM exits caused by this control wake the logical processor if it just entered either
the HLT state or the shutdown state because of a VM entry (see Section 23.6.2).
They do not occur if the logical processor just entered the wait-for-SIPI state.

23.6.7 VM Exits Induced by the TPR Shadow
If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are
both 1, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 in byte 80H
on the virtual-APIC page (see Section 21.6.8).1

The following items detail the treatment of these VM exits:
• The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the

interruptibility-state field in guest-state area.
• The VM exits follow event injection if such injection is specified for VM entry.
• VM exits caused by this control take priority over system-management interrupts

(SMIs), INIT signals, and lower priority events. They thus have priority over the
VM exits described in Section 23.6.5, Section 23.6.6, and Section 23.6.8, as well
as any interrupts or debug exceptions that may be pending at the time of
VM entry.

• These VM exits wake the logical processor if it just entered the HLT state as part
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.
If such a VM exit is suppressed because the processor just entered the
shutdown state, it occurs after the delivery of any event that cause the logical

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if the “virtualize APIC
accesses” VM-execution control were 0. See Section 21.6.2.
Vol. 3B 23-33

VM ENTRIES
processor to leave the shutdown state while remaining in VMX non-root
operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution
control is 0).

• The basic exit reason is “TPR below threshold.”

23.6.8 Pending MTF VM Exits
As noted in Section 23.5.2, VM entry may cause an MTF VM exit to be pending imme-
diately after VM entry. The following items detail the treatment of these VM exits:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over these VM exits. These VM exits take priority over debug-trap
exceptions and lower priority events.

• These VM exits wake the logical processor if it just entered the HLT state because
of a VM entry (see Section 23.6.2). They do not occur if the logical processor just
entered the shutdown state or the wait-for-SIPI state.

23.6.9 VM Entries and Advanced Debugging Features
VM entries are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

23.7 VM-ENTRY FAILURES DURING OR AFTER LOADING
GUEST STATE

VM-entry failures due to the checks identified in Section 23.3.1 and failures during
the MSR loading identified in Section 23.4 are treated differently from those that
occur earlier in VM entry. In these cases, the following steps take place:

1. Information about the VM-entry failure is recorded in the VM-exit information
fields:

— Exit reason.

• Bits 15:0 of this field contain the basic exit reason. It is loaded with a
number indicating the general cause of the VM-entry failure. The
following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of
the checks identified in Section 23.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt
to load MSRs (see Section 23.4).

41. VM-entry failure due to machine check. A machine check occurred
during VM entry (see Section 23.8).
23-34 Vol. 3B

VM ENTRIES
• Bit 31 is set to 1 to indicate a VM-entry failure.

• The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

• VM-entry failure due to invalid guest state. In most cases, the exit quali-
fication is cleared to 0. The following non-zero values are used in the
cases indicated:

1. Not used.

2. Failure was due to a problem loading the PDPTEs (see Section
23.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt
(NMI) into a guest that is blocking events through the STI blocking bit
in the interruptibility-state field. Such failures are implementation-
specific (see Section 23.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section
23.3.1.5).

VM-entry checks on guest-state fields may be performed in any order.
Thus, an indication by exit qualification of one cause does not imply that
there are not also other errors. Different processors may give different
exit qualifications for the same VMCS.

• VM-entry failure due to MSR loading. The exit qualification is loaded to
indicate which entry in the VM-entry MSR-load area caused the problem
(1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

2. Processor state is loaded as would be done on a VM exit (see Section 24.5). If
this results in [CR4.PAE & CR0.PG & ~IA32_EFER.LMA] = 1, page-directory-
pointer-table entries (PDPTEs) may be checked and loaded (see Section 24.5.4).

3. The state of blocking by NMI is what it was before VM entry.

4. MSRs are loaded as specified in the VM-exit MSR-load area (see Section 24.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit
do not occur for these VM-entry failures:
• Most VM-exit information fields are not updated (see step 1 above).
• The valid bit in the VM-entry interruption-information field is not cleared.
• The guest-state area is not modified.
• No MSRs are saved into the VM-exit MSR-store area.

23.8 MACHINE CHECKS DURING VM ENTRY
If a machine check occurs during a VM entry, one of the following occurs:
Vol. 3B 23-35

VM ENTRIES
• The machine check is handled normally:

— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the
IDT.

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine check condition.” See Intel® Trusted Execution Technology
Preliminary Architecture Specification.

• If the logical processor is outside SMX operation, it goes to the shutdown
state.

• A VM-entry failure occurs as described in Section 23.7. The basic exit reason is
41, for “VM-entry failure due to machine check.”

The first option is not used if the machine check occurs after any guest state has
been loaded.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
23-36 Vol. 3B

CHAPTER 24
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root opera-
tion. Section 22.1 through Section 22.3 detail the causes of VM exits. VM exits
perform the following operation:

1. Information about the cause of the VM exit is recorded in the VM-exit information
fields and VM-entry control fields are modified as described in Section 24.2.

2. Processor state is saved in the guest-state area (Section 24.3).

3. MSRs may be saved in the VM-exit MSR-store area (Section 24.4).

4. The following may be performed in parallel and in any order (Section 24.5):

— Processor state is loaded based in part on the host-state area and some
VM-exit controls. This step is not performed for SMM VM exits that activate
the dual-monitor treatment of SMIs and SMM. See Section 26.15.6 for
information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 24.6). This step is
not performed for SMM VM exits that activate the dual-monitor treatment of
SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace
messages, and do not update the branch-trace store.

Section 24.1 clarifies the nature of the architectural state before a VM exit begins.
The steps described above are detailed in Section 24.2 through Section 24.6.

Section 26.15 describes the dual-monitor treatment of system-management inter-
rupts (SMIs) and system-management mode (SMM). Under this treatment, ordinary
transitions to SMM are replaced by VM exits to a separate SMM monitor. Called SMM
VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are
detailed in Section 26.15.2.

24.1 ARCHITECTURAL STATE BEFORE A VM EXIT
This section describes the architectural state that exists before a VM exit, especially
for VM exits caused by events that would normally be delivered through the IDT.
Note the following:
• An exception causes a VM exit directly if the bit corresponding to that exception

is set in the exception bitmap. A non-maskable interrupt (NMI) causes a VM exit
directly if the “NMI exiting” VM-execution control is 1. An external interrupt
Vol. 3B 24-1

VM EXITS
causes a VM exit directly if the “external-interrupt exiting” VM-execution control
is 1. A start-up IPI (SIPI) that arrives while a logical processor is in the wait-for-
SIPI activity state causes a VM exit directly. INIT signals that arrive while the
processor is not in the wait-for-SIPI activity state cause VM exits directly.

• An exception, NMI, external interrupt, or software interrupt causes a VM exit
indirectly if it does not do so directly but delivery of the event causes a nested
exception, double fault, task switch, APIC access (see Section 22.2), EPT
violation, or EPT misconfiguration that causes a VM exit.

• An event results in a VM exit if it causes a VM exit (directly or indirectly).

The following bullets detail when architectural state is and is not updated in response
to VM exits:
• If an event causes a VM exit directly, it does not update architectural state as it

would have if it had it not caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR.
(Information about the nature of the debug exception is saved in the exit
qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault
is saved in the exit-qualification field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit
completes.

— An external interrupt does not acknowledge the interrupt controller and the
interrupt remains pending, unless the “acknowledge interrupt on exit”
VM-exit control is 1. In such a case, the interrupt controller is acknowledged
and the interrupt is no longer pending.

— The flags L0 – L3 in DR7 (bit 0, bit 2, bit 4, and bit 6) are not cleared when a
task switch causes a VM exit.

— If a task switch causes a VM exit, none of the following are modified by the
task switch: old task-state segment (TSS); new TSS; old TSS descriptor; new
TSS descriptor; RFLAGS.NT1; or the TR register.

— No last-exception record is made if the event that would do so directly causes
a VM exit.

— If a machine-check exception causes a VM exit directly, this does not prevent
machine-check MSRs from being updated. These are updated by the machine
check itself and not the resulting machine-check exception.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to
lower 32 bits of the indicated register.
24-2 Vol. 3B

VM EXITS
— If the logical processor is in an inactive state (see Section 21.4.2) and not
executing instructions, some events may be blocked but others may return
the logical processor to the active state. Unblocked events may cause
VM exits.1 If an unblocked event causes a VM exit directly, a return to the
active state occurs only after the VM exit completes.2 The VM exit generates
any special bus cycle that is normally generated when the active state is
entered from that activity state.

MTF VM exits (see Section 22.7.2 and Section 23.6.8) are not blocked in the
HLT activity state. If an MTF VM exit occurs in the HLT activity state, the
logical processor returns to the active state only after the VM exit completes.
MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

• If an event causes a VM exit indirectly, the event does update architectural state:

— A debug exception updates DR6, DR7, and the IA32_DEBUGCTL MSR. No
debug exceptions are considered pending.

— A page fault updates CR2.

— An NMI causes subsequent NMIs to be blocked before the VM exit
commences.

— An external interrupt acknowledges the interrupt controller and the interrupt
is no longer pending.

— If the logical processor had been in an inactive state, it enters the active state
and, before the VM exit commences, generates any special bus cycle that is
normally generated when the active state is entered from that activity state.

— There is no blocking by STI or by MOV SS when the VM exit commences.

— Processor state that is normally updated as part of delivery through the IDT
(CS, RIP, SS, RSP, RFLAGS) is not modified. However, the incomplete delivery
of the event may write to the stack.

— The treatment of last-exception records is implementation dependent:

• Some processors make a last-exception record when beginning the
delivery of an event through the IDT (before it can encounter a nested
exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case
where nested exceptions lead to a triple fault).

• Other processors delay making a last-exception record until event
delivery has reached some event handler successfully (perhaps after one
or more nested exceptions). Such processors do not update the last-

1. If a VM exit takes the processor from an inactive state resulting from execution of a specific
instruction (HLT or MWAIT), the value saved for RIP by that VM exit will reference the following
instruction.

2. An exception is made if the logical processor had been inactive due to execution of MWAIT; in
this case, it is considered to have become active before the VM exit.
Vol. 3B 24-3

VM EXITS
exception record if a VM exit or triple fault occurs before an event handler
is reached.

• If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and
delivery of the NMI causes a nested exception, double fault, task switch, or APIC
access that causes a VM exit, virtual-NMI blocking is in effect before the VM exit
commences.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “NMI exiting” VM-execution
control is 0, any blocking by NMI is cleared before the VM exit commences.
However, the previous state of blocking by NMI may be recorded in the VM-exit
interruption-information field; see Section 24.2.2.

• If a VM exit results from a fault, EPT violation, or EPT misconfiguration
encountered during execution of IRET and the “virtual NMIs” VM-execution
control is 1, virtual-NMI blocking is cleared before the VM exit commences.
However, the previous state of virtual-NMI blocking may be recorded in the
VM-exit interruption-information field; see Section 24.2.2.

• Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error
(#MF) or by any of the following events if the event was unblocked due to (and
given priority over) an x87 FPU Floating-Point Error: an INIT signal, an external
interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there
is no blocking by STI or by MOV SS when the VM exit commences.

• Normally, a last-branch record may be made when an event is delivered through
the IDT. However, if such an event results in a VM exit before delivery is
complete, no last-branch record is made.

• If machine-check exception results in a VM exit, processor state is suspect and
may result in suspect state being saved to the guest-state area. A VM monitor
should consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit resulting from a machine-check
exception.

• If a VM exit results from a fault, APIC access (see Section 22.2), EPT violation, or
EPT misconfiguration encountered while executing an instruction, data
breakpoints due to that instruction may have been recognized and information
about them may be saved in the pending debug exceptions field (see Section
24.3.4).

• The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, I/O breakpoints, and data
breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by
blocking by MOV SS.

— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load
exiting” VM-execution control is 0 and the “use TPR shadow” VM-execution
24-4 Vol. 3B

VM EXITS
control is 1. (Such VM exits can occur only from 64-bit mode and thus only on
processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps”
VM-execution control is 1, the value of ECX is 808H, bit 808H in write bitmap
for low MSRs is 0, and the “virtualize x2APIC mode” VM-execution control is
1. See Section 22.1.3.

— VM exits caused by TPR-shadow updates (see Section 22.5.3.3) that result
from APIC accesses as part of instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete
before the VM exit occurs. Such modifications include those to the logical
processor’s interruptibility state (see Table 21-3). If there had been blocking by
MOV SS, POP SS, or STI before the instruction executed, such blocking is no
longer in effect.

24.2 RECORDING VM-EXIT INFORMATION AND UPDATING
VM-ENTRY CONTROL FIELDS

VM exits begin by recording information about the nature of and reason for the
VM exit in the VM-exit information fields. Section 24.2.1 to Section 24.2.4 detail the
use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared
in the VM-entry interruption-information field. If bit 5 of the IA32_VMX_MISC MSR
(index 485H) is read as 1 (see Appendix G.6), the value of IA32_EFER.LMA is stored
into the “IA-32e mode guest” VM-entry control.1

24.2.1 Basic VM-Exit Information
Section 21.9.1 defines the basic VM-exit information fields. The following items detail
their use.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number
indicating the general cause of the VM exit. Appendix I lists the numbers used
and their meaning.

— The remainder of the field (bits 31:16) is cleared to 0 (certain SMM VM exits
may set some of these bits; see Section 26.15.2.3).2

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-set-
ting of the “unrestricted guest” VM-execution control.

2. Bit 13 of this field is set on certain VM-entry failures; see Section 23.7.
Vol. 3B 24-5

VM EXITS
• Exit qualification. This field is saved for VM exits due to the following causes:
debug exceptions; page-fault exceptions; start-up IPIs (SIPIs); system-
management interrupts (SMIs) that arrive immediately after the retirement of
I/O instructions; task switches; INVEPT; INVLPG; INVVPID; LGDT; LIDT; LLDT;
LTR; SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD;
VMWRITE; VMXON; control-register accesses; MOV DR; I/O instructions;
MWAIT; accesses to the APIC-access page (see Section 22.2); and EPT violations.
For all other VM exits, this field is cleared. The following items provide details:

— For a debug exception, the exit qualification contains information about the
debug exception. The information has the format given in Table 24-1.

— For a page-fault exception, the exit qualification contains the linear address
that caused the page fault. On processors that support Intel 64 architecture,
bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For a start-up IPI (SIPI), the exit qualification contains the SIPI vector
information in bits 7:0. Bits 63:8 of the exit qualification are cleared to 0.

— For a task switch, the exit qualification contains details about the task switch,
encoded as shown in Table 24-2.

Table 24-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3:0 B3 – B0. When set, each of these bits indicates that the corresponding
breakpoint condition was met. Any of these bits may be set even if its
corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is
“debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is
either the execution of a single instruction (if RFLAGS.TF = 1 and
IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that
support Intel 64 architecture.

Table 24-2. Exit Qualification for Task Switch

Bit Position(s) Contents

15:0 Selector of task-state segment (TSS) to which the guest attempted to switch
24-6 Vol. 3B

VM EXITS
— For INVLPG, the exit qualification contains the linear-address operand of the
instruction.

• On processors that support Intel 64 architecture, bits 63:32 are cleared if
the logical processor was not in 64-bit mode before the VM exit.

• If the INVLPG source operand specifies an unusable segment, the linear
address specified in the exit qualification will match the linear address
that the INVLPG would have used if no VM exit occurred. This address is
not architecturally defined and may be implementation-specific.

— For INVEPT, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR,
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, and VMXON, the exit
qualification receives the value of the instruction’s displacement field, which
is sign-extended to 64 bits if necessary (32 bits on processors that do not
support Intel 64 architecture). If the instruction has no displacement (for
example, has a register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for
RIP-relative addressing (used only in 64-bit mode). Such addressing causes
an instruction to use an address that is the sum of the displacement field
and the value of RIP that references the following instruction. In this case,
the exit qualification is loaded with the sum of the displacement field and
the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are
undefined. For example, suppose that the address-size field in the VM-exit
instruction-information field (see Section 21.9.4 and Section 24.2.4) reports
an n-bit address size. Then bits 63:n (bits 31:n on processors that do not
support Intel 64 architecture) of the instruction displacement are undefined.

29:16 Reserved (cleared to 0)

31:30 Source of task switch initiation:

0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 24-2. Exit Qualification for Task Switch (Contd.)

Bit Position(s) Contents
Vol. 3B 24-7

VM EXITS
— For a control-register access, the exit qualification contains information about
the access and has the format given in Table 24-3.

Table 24-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3:0 Number of control register (0 for CLTS and LMSW). Bit 3 is always 0 on
processors that do not support Intel 64 architecture as they do not support CR8.

5:4 Access type:

0 = MOV to CR
1 = MOV from CR
2 = CLTS
3 = LMSW

6 LMSW operand type:

0 = register
1 = memory

For CLTS and MOV CR, cleared to 0

7 Reserved (cleared to 0)

11:8 For MOV CR, the general-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

For CLTS and LMSW, cleared to 0

15:12 Reserved (cleared to 0)

31:16 For LMSW, the LMSW source data

For CLTS and MOV CR, cleared to 0

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.
24-8 Vol. 3B

VM EXITS
— For MOV DR, the exit qualification contains information about the instruction
and has the format given in Table 24-4.

— For an I/O instruction, the exit qualification contains information about the
instruction and has the format given in Table 24-5.

Table 24-4. Exit Qualification for MOV DR

Bit Position(s) Contents

2:0 Number of debug register

3 Reserved (cleared to 0)

4 Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5 Reserved (cleared to 0)

11:8 General-purpose register:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8 –15 = R8 – R15, respectively

63:12 Reserved (cleared to 0)

Table 24-5. Exit Qualification for I/O Instructions

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)
Vol. 3B 24-9

VM EXITS
— For MWAIT, the exit qualification contains a value that indicates whether
address-range monitoring hardware was armed. The exit qualification is set
either to 0 (if address-range monitoring hardware is not armed) or to 1 (if
address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical
access to the APIC-access page (see Section 22.2.1 and Section 22.2.2), the
exit qualification contains information about the access and has the format
given in Table 24-6.1

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in DX or in an immediate operand)

63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel
64 architecture.

Table 24-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and
Guest-Physical Accesses

Bit Position(s) Contents

11:0 • If the APIC-access VM exit is due to a linear access, the offset of access
within the APIC page.

• Undefined if the APIC-access VM exit is due a guest-physical access

15:12 Access type:

0 = linear access for a data read during instruction execution
1 = linear access for a data write during instruction execution
2 = linear access for an instruction fetch
3 = linear access (read or write) during event delivery
10 = guest-physical access during event delivery
15 = guest-physical access for an instruction fetch or during instruction
execution

Other values not used

63:16 Reserved (cleared to 0). Bits 63:32 exist only on processors that support
Intel 64 architecture.

Table 24-5. Exit Qualification for I/O Instructions (Contd.)

Bit Position(s) Contents
24-10 Vol. 3B

VM EXITS
Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data
read during instruction execution) or 0001b (data write during instruction
execution) set bit 12—which distinguishes data read from data write—to that
which would have been stored in bit 1—W/R—of the page-fault error code had
the access caused a page fault instead of an APIC-access VM exit. This
implies the following:

• For an APIC-access VM exit caused by the CLFLUSH instruction, the
access type is “data read during instruction execution.”

• For an APIC-access VM exit caused by the ENTER instruction, the access
type is “data write during instruction execution.”

• For an APIC-access VM exit caused by the MASKMOVQ instruction or the
MASKMOVDQU instruction, the access type is “data write during
instruction execution.”

• For an APIC-access VM exit caused by the MONITOR instruction, the
access type is “data read during instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see
Section 24.2.3) if and only if it sets bits 15:12 of the exit qualification to
0011b (linear access during event delivery) or 1010b (guest-physical access
during event delivery).

See Section 22.2.1.3 for further discussion of these instructions and APIC-
access VM exits.

For APIC-access VM exits resulting from physical accesses, the APIC-access
page (see Section 22.2.3), the exit qualification is undefined.

— For an EPT violation, the exit qualification contains information about the
access causing the EPT violation and has the format given in Table 24-5.

1. The exit qualification is undefined if the access was part of the logging of a branch record or a
precise-event-based-sampling (PEBS) record to the DS save area. It is recommended that soft-
ware configure the paging structures so that no address in the DS save area translates to an
address on the APIC-access page.

Table 24-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.

1 Set if the access causing the EPT violation was a data write.

2 Set if the access causing the EPT violation was an instruction fetch.
Vol. 3B 24-11

VM EXITS
An EPT violation that occurs during as a result of execution of a read-modify-
write operation sets bit 1 (data write). Whether it also sets bit 0 (data read)
is implementation-specific and, for a given implementation, may differ for
different kinds of read-modify-write operations.

Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

3 The logical-AND of bit 0 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was readable).1

4 The logical-AND of bit 1 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was writeable).

5 The logical-AND of bit 2 in the EPT paging-structures entries used to translate
the guest-physical address of the access causing the EPT violation (indicates
that the guest-physical address was executable).

6 Reserved (cleared to 0).

7 Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those
resulting from an attempt to load the guest PDPTEs as part of the execution of
the MOV CR instruction.

8 If bit 7 is 1:

• Set if the access causing the EPT violation is to a guest-physical address
that is the translation of a linear address.

• Clear if the access causing the EPT violation is to a paging-structure entry
as part of a page walk or the update of an accessed or dirty bit.

Reserved if bit 7 is 0 (cleared to 0).

11:9 Reserved (cleared to 0).

12 NMI unblocking due to IRET

63:13 Reserved (cleared to 0).

NOTES:
1. Bits 5:3 are cleared to 0 if any of EPT paging-structures entries used to translate the guest-physi-

cal address of the access causing the EPT violation is not present (see Section 25.2.2).

Table 24-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s) Contents
24-12 Vol. 3B

VM EXITS
• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 24.2.3).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and blocking by NMI (see Table 21-3) was in effect before execution of
IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1,the EPT violation was
caused by a memory access as part of execution of the IRET instruction,
and virtual-NMI blocking was in effect before execution of IRET, bit 12 is
set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.
• Guest-linear address. For some VM exits, this field receives a linear address

that pertains to the VM exit. The field is set for different VM exits as follows:

— VM exits due to attempts to execute LMSW with a memory operand. In these
cases, this field receives the linear address of that operand. Bits 63:32 are
cleared if the logical processor was not in 64-bit mode before the VM exit.

— VM exits due to attempts to execute INS or OUTS for which the relevant
segment is usable (if the relevant segment is not usable, the value is
undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear
address is the base address of relevant segment plus (E)DI (for INS) or (E)SI
(for OUTS). Bits 63:32 are cleared if the logical processor was not in 64-bit
mode before the VM exit.

— VM exits due to EPT violations that set bit 7 of the exit qualification (see
Table 24-7; these are all EPT violations except those resulting from an
attempt to load the PDPTEs as of execution of the MOV CR instruction). The
linear address may translate to the guest-physical address whose access
caused the EPT violation. Alternatively, translation of the linear address may
reference a paging-structure entry whose access caused the EPT violation.
Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

— For all other VM exits, the field is undefined.
• Guest-physical address. For a VM exit due to an EPT violation or an EPT

misconfiguration, this field receives the guest-physical address that caused the
EPT violation or EPT misconfiguration. For all other VM exits, the field is
undefined.

24.2.2 Information for VM Exits Due to Vectored Events
Section 21.9.2 defines fields containing information for VM exits due to the following
events: exceptions (including those generated by the instructions INT3, INTO,
Vol. 3B 24-13

VM EXITS
BOUND, and UD2); external interrupts that occur while the “acknowledge interrupt
on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). Such VM exits
include those that occur on an attempt at a task switch that causes an exception
before generating the VM exit due to the task switch that causes the VM exit.

The following items detail the use of these fields:
• VM-exit interruption information (format given in Table 21-14). The following

items detail how this field is established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an
NMI, bits 7:0 are set to 2. For an external interrupt, bits 7:0 receive the
interrupt number.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), or 6 (software exception). Hardware exceptions
comprise all exceptions except breakpoint exceptions (#BP; generated by
INT3) and overflow exceptions (#OF; generated by INTO); these are
software exceptions. BOUND-range exceeded exceptions (#BR; generated by
BOUND) and invalid opcode exceptions (#UD) generated by UD2 are
hardware exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would
have delivered an error code on the stack. This bit is always 0 if the VM exit
occurred while the logical processor was in real-address mode (CR0.PE=0).1
If bit 11 is set to 1, the error code is placed in the VM-exit interruption error
code (see below).

— Bit 12 is undefined in any of the following cases:

• If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs”
VM-execution control is 0.

• If the VM exit sets the valid bit in the IDT-vectoring information field (see
Section 24.2.3).

• If the VM exit is due to a double fault (the interruption type is hardware
exception and the vector is 8).

Otherwise, bit 12 is defined as follows:

• If the “virtual NMIs” VM-execution control is 0, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an
instruction breakpoint), and blocking by NMI (see Table 21-3) was in
effect before execution of IRET, bit 12 is set to 1.

• If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a
fault on the IRET instruction (other than a debug exception for an

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
24-14 Vol. 3B

VM EXITS
instruction breakpoint), and virtual-NMI blocking was in effect before
execution of IRET, bit 12 is set to 1.

• For all other relevant VM exits, bit 12 is cleared to 0.1

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.
For other VM exits (including those due to external interrupts when the
“acknowledge interrupt on exit” VM-exit control is 0), the field is marked invalid
(by clearing bit 31) and the remainder of the field is undefined.

• VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
VM-exit interruption-information field, this field receives the error code that
would have been pushed on the stack had the event causing the VM exit been
delivered normally through the IDT. The EXT bit is set in this field exactly
when it would be set normally. For exceptions that occur during the delivery
of double fault (if the IDT-vectoring information field indicates a double fault),
the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the
error code uses the EXT bit (not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

24.2.3 Information for VM Exits During Event Delivery
Section 21.9.3 defined fields containing information for VM exits that occur while
delivering an event through the IDT and as a result of any of the following cases:2

• A fault occurs during event delivery and causes a VM exit (because the bit
associated with the fault is set to 1 in the exception bitmap).

• A task switch is invoked through a task gate in the IDT. The VM exit occurs due to
the task switch only after the initial checks of the task switch pass (see Section
22.6.2).

• Event delivery causes an APIC-access VM exit (see Section 22.2).
• An EPT violation or EPT misconfiguration that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as
part of VM entry (see Section 23.5.1.2).

1. The conditions imply that, if the “NMI exiting” VM-execution control is 0 or the “virtual NMIs” VM-
execution control is 1, bit 12 is always cleared to 0 by VM exits due to debug exceptions.

2. This includes the case in which a VM exit occurs while delivering a software interrupt (INT n)
through the 16-bit IVT (interrupt vector table) that is used in virtual-8086 mode with virtual-
machine extensions (if RFLAGS.VM = CR4.VME = 1).
Vol. 3B 24-15

VM EXITS
A VM exit is not considered to occur during event delivery in any of the following
circumstances:
• The original event causes the VM exit directly (for example, because the original

event is a non-maskable interrupt (NMI) and the “NMI exiting” VM-execution
control is 1).

• The original event results in a double-fault exception that causes the VM exit
directly.

• The VM exit occurred as a result of fetching the first instruction of the handler
invoked by the event delivery.

• The VM exit is caused by a triple fault.

The following items detail the use of these fields:
• IDT-vectoring information (format given in Table 21-15). The following items

detail how this field is established for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the
exception vector (at most 31). If the VM exit occurred during delivery of an
NMI, bits 7:0 are set to 2. If the VM exit occurred during delivery of an
external interrupt, bits 7:0 receive the interrupt number.

— Bits 10:8 are set to indicate the type of event that was being delivered when
the VM exit occurred: 0 (external interrupt), 2 (non-maskable interrupt), 3
(hardware exception), 4 (software interrupt), 5 (privileged software
interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions
(#BP; generated by INT3) and overflow exceptions (#OF; generated by
INTO); these are software exceptions. BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated
by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was
injected as part of VM entry.

— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware
exception that would have delivered an error code on the stack. This bit is
always 0 if the VM exit occurred while the logical processor was in real-
address mode (CR0.PE=0).1 If bit 11 is set to 1, the error code is placed in
the IDT-vectoring error code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PE must be 1 in VMX operation, a
logical processor cannot be in real-address mode unless the “unrestricted guest” VM-execution
control and bit 31 of the primary processor-based VM-execution controls are both 1.
24-16 Vol. 3B

VM EXITS
For other VM exits, the field is marked invalid (by clearing bit 31) and the
remainder of the field is undefined.

• IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the
IDT-vectoring information field, this field receives the error code that would
have been pushed on the stack by the event that was being delivered through
the IDT at the time of the VM exit. The EXT bit is set in this field when it would
be set normally.

— For other VM exits, the value of this field is undefined.

24.2.4 Information for VM Exits Due to Instruction Execution
Section 21.9.4 defined fields containing information for VM exits that occur due to
instruction execution. (The VM-exit instruction length is also used for VM exits that
occur during the delivery of a software interrupt or software exception.) The
following items detail their use.
• VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following
instructions that cause VM exits unconditionally (see Section 22.1.2) or
based on the settings of VM-execution controls (see Section 22.1.3): CLTS,
CPUID, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVVPID, LGDT, LIDT,
LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE,
RDMSR, RDPMC, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL,
VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD, VMRESUME,
VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, and XSETBV.1

— For VM exits due to software exceptions (those generated by executions of
INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software
interrupt, privileged software exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution.
These are VM exits that produce an exit reason indicating task switch and
either of the following:

• An exit qualification indicating execution of CALL, IRET, or JMP
instruction.

• An exit qualification indicating a task gate in the IDT and an IDT-vectoring
information field indicating that the task gate was encountered during

1. This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following exe-
cutions of the MOV to CR8 instruction when the “use TPR shadow” VM-execution control is 1 or
to those following executions of the WRMSR instruction when the “virtualize x2APIC mode” VM-
execution control is 1.
Vol. 3B 24-17

VM EXITS
delivery of a software interrupt, privileged software exception, or
software exception.

— For APIC-access VM exits resulting from linear accesses (see Section 22.2.1)
and encountered during delivery of a software interrupt, privileged software
exception, or software exception.1

In all the above cases, this field receives the length in bytes (1–15) of the
instruction (including any instruction prefixes) whose execution led to the
VM exit (see the next paragraph for one exception).
The cases of VM exits encountered during delivery of a software interrupt,
privileged software exception, or software exception include those encountered
during delivery of events injected as part of VM entry (see Section 23.5.1.2). If
the original event was injected as part of VM entry, this field receives the value of
the VM-entry instruction length.
All VM exits other than those listed in the above items leave this field undefined.

• VM-exit instruction information. For VM exits due to attempts to execute
INS, INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR,
VMCLEAR, VMPTRLD, VMPTRST, VMREAD, VMWRITE, or VMXON, this field
receives information about the instruction that caused the VM exit. The format of
the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format
is given in Table 24-8.2

1. The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from
physical accesses (see Section 22.2.3) even if encountered during delivery of a software inter-
rupt, privileged software exception, or software exception.

Table 24-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS

Bit Position(s) Content

6:0 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

14:10 Undefined.

2. The format of the field was undefined for these VM exits on the first processors to support the
virtual-machine extensions. Software can determine whether the format specified in Table 24-8
is used by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1).
24-18 Vol. 3B

VM EXITS
— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field
has the format is given in Table 24-9.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

Table 24-9. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

11 Operand size:

0: 16-bit
1: 32-bit

Undefined for VM exits from 64-bit mode.

14:12 Undefined.

Table 24-8. Format of the VM-Exit Instruction-Information Field as Used for INS and
OUTS (Contd.)

Bit Position(s) Content
Vol. 3B 24-19

VM EXITS
— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has
the format is given in Table 24-10.

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, or
VMXON, the field has the format is given in Table 24-11.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has
the format is given in Table 24-12.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1: SIDT
2: LGDT
3: LIDT

31:30 Undefined.

Table 24-9. Format of the VM-Exit Instruction-Information Field as Used for LIDT,
LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) Content
24-20 Vol. 3B

VM EXITS
Table 24-10. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).
Vol. 3B 24-21

VM EXITS
21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

29:28 Instruction identity:

0: SLDT
1: STR
2: LLDT
3: LTR

31:30 Undefined.

Table 24-11. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

Table 24-10. Format of the VM-Exit Instruction-Information Field as Used for LLDT,
LTR, SLDT, and STR (Contd.)

Bit Position(s) Content
24-22 Vol. 3B

VM EXITS
17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Undefined.

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

Table 24-11. Format of the VM-Exit Instruction-Information Field as Used for
VMCLEAR, VMPTRLD, VMPTRST, and VMXON (Contd.)

Bit Position(s) Content
Vol. 3B 24-23

VM EXITS
2 Undefined.

6:3 Reg1:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for memory instructions (bit 10 is clear).

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no index register (bit 10 is clear and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
24-24 Vol. 3B

VM EXITS
— For VM exits due to attempts to execute INVEPT or INVVPID, the field has the
format is given in Table 24-13.

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with
no base register (bit 10 is clear and bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

Undefined for register instructions (bit 10 is set).

31:28 Reg2 (same encoding as Reg1 above)

Table 24-13. Format of the VM-Exit Instruction-Information Field as Used for INVEPT
and INVVPID

Bit Position(s) Content

1:0 Scaling:

0: no scaling
1: scale by 2
2: scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9:7 Address size:

0: 16-bit
1: 32-bit
2: 64-bit (used only on processors that support Intel 64 architecture)

Other values not used.

10 Cleared to 0.

14:11 Undefined.

17:15 Segment register:

0: ES
1: CS
2: SS
3: DS
4: FS
5: GS

Other values not used.

Table 24-12. Format of the VM-Exit Instruction-Information Field as Used for
VMREAD and VMWRITE (Contd.)

Bit Position(s) Content
Vol. 3B 24-25

VM EXITS
For all other VM exits, the field is undefined.
• I/O RCX, I/O RSI, I/O RDI, I/O RIP. These fields are undefined except for

SMM VM exits due to system-management interrupts (SMIs) that arrive
immediately after retirement of I/O instructions. See Section 26.15.2.3.

24.3 SAVING GUEST STATE
Each field in the guest-state area of the VMCS (see Section 21.4) is written with the
corresponding component of processor state. On processors that support Intel 64
architecture, the full values of each natural-width field (see Section 21.10.2) is saved
regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the
VM exit commences. See Section 24.1 for a discussion of which architectural updates
occur at that time.

Section 24.3.1 through Section 24.3.4 provide details for how certain components of
processor state are saved. These sections reference VMCS fields that correspond to
processor state. Unless otherwise stated, these references are to fields in the guest-
state area.

21:18 IndexReg:

0 = RAX
1 = RCX
2 = RDX
3 = RBX
4 = RSP
5 = RBP
6 = RSI
7 = RDI
8–15 represent R8–R15, respectively (used only on processors that support
Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)

Undefined for memory instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

31:28 Reg2 (same encoding as IndexReg above)

Table 24-13. Format of the VM-Exit Instruction-Information Field as Used for INVEPT
and INVVPID (Contd.)

Bit Position(s) Content
24-26 Vol. 3B

VM EXITS
24.3.1 Saving Control Registers, Debug Registers, and MSRs
Contents of certain control registers, debug registers, and MSRs is saved as follows:
• The contents of CR0, CR3, CR4, and the IA32_SYSENTER_CS,

IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP MSRs are saved into the corre-
sponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the
IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are not saved.

• If the “save debug controls” VM-exit control is 1, the contents of DR7 and the
IA32_DEBUGCTL MSR are saved into the corresponding fields. The first
processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always saved data into these fields.

• If the “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR
are saved into the corresponding field.

• If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR
are saved into the corresponding field.

• The value of the SMBASE field is undefined after all VM exits except SMM
VM exits. See Section 26.15.2.

24.3.2 Saving Segment Registers and Descriptor-Table Registers
For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved
for the base-address, segment-limit, and access rights are based on whether the
register was unusable (see Section 21.4.1) before the VM exit:
• If the register was unusable, the values saved into the following fields are

undefined: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12
in the access-rights field. The following exceptions apply:

— CS.

• The base-address and segment-limit fields are saved.

• The L, D, and G bits are saved in the access-rights field.

— SS.

• DPL is saved in the access-rights field.

• On processors that support Intel 64 architecture, bits 63:32 of the value
saved for the base address are always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of
the values saved for the base addresses are always zero.

— FS and GS. The base-address field is saved.

— LDTR. The value saved for the base address is always canonical.
Vol. 3B 24-27

VM EXITS
• If the register was not unusable, the values saved into the following fields are
those which were in the register before the VM exit: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

• Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to
1 if and only if the segment is unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-
address and limit fields.

24.3.3 Saving RIP, RSP, and RFLAGS
The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
• The value saved in the RIP field is determined by the nature and cause of the

VM exit:

— If the VM exit occurs due to by an attempt to execute an instruction that
causes VM exits unconditionally or that has been configured to cause a
VM exit via the VM-execution controls, the value saved references that
instruction.

— If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI
(SIPI), or system-management interrupt (SMI), the value saved is that which
was in RIP before the event occurred.

— If the VM exit occurs due to the 1-setting of either the “interrupt-window
exiting” VM-execution control or the “NMI-window exiting” VM-execution
control, the value saved is that which would be in the register had the VM exit
not occurred.

— If the VM exit is due to an external interrupt, non-maskable interrupt (NMI),
or hardware exception (as defined in Section 24.2.2), the value saved is the
return pointer that would have been saved (either on the stack had the event
been delivered through a trap or interrupt gate,1 or into the old task-state
segment had the event been delivered through a task gate).

— If the VM exit is due to a triple fault, the value saved is the return pointer that
would have been saved (either on the stack had the event been delivered
through a trap or interrupt gate, or into the old task-state segment had the
event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

— If the VM exit is due to a software exception (due to an execution of INT3 or
INTO), the value saved references the INT3 or INTO instruction that caused
that exception.

— Suppose that the VM exit is due to a task switch that was caused by execution
of CALL, IRET, or JMP or by execution of a software interrupt (INT n) or

1. The reference here is to the full value of RIP before any truncation that would occur had the
stack width been only 32 bits or 16 bits.
24-28 Vol. 3B

VM EXITS
software exception (due to execution of INT3 or INTO) that encountered a
task gate in the IDT. The value saved references the instruction that caused
the task switch (CALL, IRET, JMP, INT n, INT3, or INTO).

— Suppose that the VM exit is due to a task switch that was caused by a task
gate in the IDT that was encountered for any reason except the direct access
by a software interrupt or software exception. The value saved is that which
would have been saved in the old task-state segment had the task switch
completed normally.

— If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced
the value of the TPR shadow1 below that of TPR threshold VM-execution
control field, the value saved references the instruction following the MOV to
CR8 or WRMSR.

— If the VM exit was caused by a TPR-shadow update (see Section 21.5.3.3)
that results from an APIC access as part of instruction execution, the value
saved references the instruction following the one whose execution caused
the VTPR access.

• The contents of the RSP register are saved into the RSP field.
• With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS

register is saved into the RFLAGS field. RFLAGS.RF is saved as follows:

— If the VM exit is caused directly by an event that would normally be delivered
through the IDT, the value saved is that which would appear in the saved
RFLAGS image (either that which would be saved on the stack had the event
been delivered through a trap or interrupt gate2 or into the old task-state
segment had the event been delivered through a task gate) had the event
been delivered through the IDT. See below for VM exits due to task switches
caused by task gates in the IDT.

— If the VM exit is caused by a triple fault, the value saved is that which the
logical processor would have in RF in the RFLAGS register had the triple fault
taken the logical processor to the shutdown state.

— If the VM exit is caused by a task switch (including one caused by a task gate
in the IDT), the value saved is that which would have been saved in the
RFLAGS image in the old task-state segment (TSS) had the task switch
completed normally without exception.

— If the VM exit is caused by an attempt to execute an instruction that uncondi-
tionally causes VM exits or one that was configured to do with a VM-execution
control, the value saved is 0.3

1. The TPR shadow is bits 7:4 of the byte at offset 80H of the virtual-APIC page (see Section
21.6.8).

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the
stack width been only 32 bits or 16 bits.
Vol. 3B 24-29

VM EXITS
— For APIC-access VM exits and for VM exits caused by EPT violations and EPT
misconfigurations, the value saved depends on whether the VM exit occurred
during delivery of an event through the IDT:

• If the VM exit stored 0 for bit 31 for IDT-vectoring information field
(because the VM exit did not occur during delivery of an event through
the IDT; see Section 24.2.3), the value saved is 1.

• If the VM exit stored 1 for bit 31 for IDT-vectoring information field
(because the VM exit did occur during delivery of an event through the
IDT), the value saved is the value that would have appeared in the saved
RFLAGS image had the event been delivered through the IDT (see
above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the
VM exit occurred.

24.3.4 Saving Non-Register State
Information corresponding to guest non-register state is saved as follows:
• The activity-state field is saved with the logical processor’s activity state before

the VM exit.1 See Section 24.1 for details of how events leading to a VM exit may
affect the activity state.

• The interruptibility-state field is saved to reflect the logical processor’s interrupt-
ibility before the VM exit. See Section 24.1 for details of how events leading to a
VM exit may affect this state. VM exits that end outside system-management
mode (SMM) save bit 2 (blocking by SMI) as 0 regardless of the state of such
blocking before the VM exit.
Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution
control is 1. In this case, the value saved for this field does not indicate the
blocking of NMIs but rather the state of virtual-NMI blocking.

• The pending debug exceptions field is saved as clear for all VM exits except the
following:

— A VM exit caused by an INIT signal, a machine-check exception, or a system-
management interrupt (SMI).

— A VM exit with basic exit reason either “TPR below threshold.”2

— A VM exit with basic exit reason “monitor trap flag.”

3. This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such
a VM exit, a VM monitor re-enters the guest to re-execute the instruction that caused the
VM exit (for example, after clearing the VM-execution control that caused the VM exit), the
instruction may encounter a code breakpoint that has already been processed. A VM monitor can
avoid this by setting the guest value of RFLAGS.RF to 1 before resuming guest software.

1. If this activity state was an inactive state resulting from execution of a specific instruction (HLT
or MWAIT), the value saved for RIP by that VM exit will reference the following instruction.
24-30 Vol. 3B

VM EXITS
— VM exits that are not caused by debug exceptions and that occur while there
is MOV-SS blocking of debug exceptions.

For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This
may be true even if the corresponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception,
or an SMI; or that a VM exit has basic exit reason “TPR below threshold” or
“monitor trap flag.” In this case, the value saved sets bits corresponding to
the causes of any debug exceptions that were pending at the time of the
VM exit.

If the VM exit occurs immediately after VM entry, the value saved may match
that which was loaded on VM entry (see Section 23.6.3). Otherwise, the
following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 23.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

• IA32_DEBUGCTL.BTF = 0 and the cause of a pending debug
exception was the execution of a single instruction.

• IA32_DEBUGCTL.BTF = 1 and the cause of a pending debug
exception was a taken branch.

— Suppose that a VM exit is due to another reason (but not a debug exception)
and occurs while there is MOV-SS blocking of debug exceptions. In this case,
the value saved sets bits corresponding to the causes of any debug
exceptions that were pending at the time of the VM exit. If the VM exit occurs
immediately after VM entry (no instructions were executed in VMX non-root
operation), the value saved may match that which was loaded on VM entry
(see Section 23.6.3). Otherwise, the following items apply:

• Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched
data or I/O breakpoint that was enabled in DR7. Bit 12 is also set if it had
been set on VM entry, causing there to be valid pending debug exceptions
(see Section 23.6.3) and the VM exit occurred before those exceptions
were either delivered or lost. In other cases, bit 12 is cleared to 0.

• The setting of bit 14 (BS) is implementation-specific. However, it is not
set if RFLAGS.TF = 0 or IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.

2. This item includes VM exits that occur after executions of MOV to CR8 or WRMSR (Section
22.1.3), TPR-shadow updates (Section 22.5.3.3), and certain VM entries (Section 23.6.7).
Vol. 3B 24-31

VM EXITS
• If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer
is saved into the VMX-preemption timer-value field. This is the value loaded from
this field on VM entry as subsequently decremented (see Section 22.7.1). VM
exits due to timer expiration save the value 0. Other VM exits may also save the
value 0 if the timer expired during VM exit. (If the “save VMX-preemption timer
value” VM-exit control is 0, VM exit does not modify the value of the VMX-
preemption timer-value field.)

• If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control, values are saved into the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was
using PAE paging at the time of the VM exit, the PDPTE values currently in use
are saved:1

• The values saved into bits 11:9 of each of the fields is undefined.

• If the value saved into one of the fields has bit 0 (present) clear, the value
saved into bits 63:1 of that field is undefined. That value need not
correspond to the value that was loaded by VM entry or to any value that
might have been loaded in VMX non-root operation.

• If the value saved into one of the fields has bit 0 (present) set, the value
saved into bits 63:12 of the field is a guest-physical address.

— If the “enable EPT” VM-execution control is 0 or the logical processor was not
using PAE paging at the time of the VM exit, the values saved are undefined.

24.4 SAVING MSRS
After processor state is saved to the guest-state area, values of MSRs may be stored
into the VM-exit MSR-store area (see Section 21.7.2). Specifically each entry in that
area (up to the number specified in the VM-exit MSR-store count) is processed in
order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be read only in system-

management mode (SMM) and the VM exit will not end in SMM.
• The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for

model-specific reasons. A processor may prevent certain MSRs (based on the

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
“Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, VM exit functions as if the “enable EPT” VM-execution
control were 0. See Section 21.6.2.
24-32 Vol. 3B

VM EXITS
value of bits 31:0) from being stored on VM exits, even if they can normally be
read by RDMSR. Such model-specific behavior is documented in Appendix B.

• Bits 63:32 of the entry are not all 0.
• An attempt to read the MSR indexed by bits 31:0 would cause a general-

protection exception if executed via RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 24.7.

24.5 LOADING HOST STATE
Processor state is updated on VM exits in the following ways:
• Some state is loaded from or otherwise determined by the contents of the host-

state area.
• Some state is determined by VM-exit controls.
• Some state is established in the same way on every VM exit.
• The page-directory pointers are loaded based on the values of certain control

registers.

This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field
loaded (for example, the base address for GDTR) is loaded regardless of the mode of
the logical processor before and after the VM exit.

The loading of host state is detailed in Section 24.5.1 to Section 24.5.5. These
sections reference VMCS fields that correspond to processor state. Unless otherwise
stated, these references are to fields in the host-state area.

A logical processor is in IA-32e mode after a VM exit only if the “host address-space
size” VM-exit control is 1. If the logical processor was in IA-32e mode before the
VM exit and this control is 0, a VMX abort occurs. See Section 24.7.

In addition to loading host state, VM exits clear address-range monitoring (Section
24.5.6).

After the state loading described in this section, VM exits may load MSRs from the
VM-exit MSR-load area (see Section 24.6). This loading occurs only after the state
loading described in this section.

24.5.1 Loading Host Control Registers, Debug Registers, MSRs
VM exits load new values for controls registers, debug registers, and some MSRs:
• CR0, CR3, and CR4 are loaded from the CR0 field, the CR3 field, and the CR4

field, respectively, with the following exceptions:

— The following bits are not modified:
Vol. 3B 24-33

VM EXITS
• For CR0, ET, CD, NW; bits 63:32 (on processors that support Intel 64
architecture), 28:19, 17, and 15:6; and any bits that are fixed in VMX
operation (see Section 20.8).1

• For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s
physical-address width (they are cleared to 0).2 (This item applies only to
processors that support Intel 64 architecture.)

• For CR4, any bits that are fixed in VMX operation (see Section 20.8).

— CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.

— CR4.PCIDE is set to 0 if the “host address-space size” VM-exit control is 0.
• DR7 is set to 400H.
• The following MSRs are established as follows:

— The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.

— The IA32_SYSENTER_CS MSR is loaded from the IA32_SYSENTER_CS field.
Since that field has only 32 bits, bits 63:32 of the MSR are cleared to 0.

— IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from
the IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field, respec-
tively.

If the processor does not support the Intel 64 architecture, these fields have
only 32 bits; bits 63:32 of the MSRs are cleared to 0.

If the processor does support the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.3

— The following steps are performed on processors that support Intel 64 archi-
tecture:

• The MSRs FS.base and GS.base are loaded from the base-address fields
for FS and GS, respectively (see Section 24.5.2).

• The LMA and LME bits in the IA32_EFER MSR are each loaded with the
setting of the “host address-space size” VM-exit control.

— If the “load IA32_PERF_GLOBAL_CTRL” VM-exit control is 1, the
IA32_PERF_GLOBAL_CTRL MSR is loaded from the
IA32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are
maintained with their reserved values.

1. Bits 28:19, 17, and 15:6 of CR0 and CR0.ET are unchanged by executions of MOV to CR0. CR0.ET
is always 1 and the other bits are always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
24-34 Vol. 3B

VM EXITS
— If the “load IA32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from
the IA32_PAT field. Bits that are reserved in that MSR are maintained with
their reserved values.

— If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded
from the IA32_EFER field. Bits that are reserved in that MSR are maintained
with their reserved values.

With the exception of FS.base and GS.base, any of these MSRs is subsequently
overwritten if it appears in the VM-exit MSR-load area. See Section 24.6.

24.5.2 Loading Host Segment and Descriptor-Table Registers
Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below
for the treatment of LDTR):
• The selector is loaded from the selector field. The segment is unusable if its

selector is loaded with zero. The checks specified Section 23.3.1.2 limit the
selector values that may be loaded. In particular, CS and TR are never loaded
with zero and are thus never unusable. SS can be loaded with zero only on
processors that support Intel 64 architecture and only if the VM exit is to 64-bit
mode (64-bit mode allows use of segments marked unusable).

• The base address is set as follows:

— CS. Cleared to zero.

— SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to
zero.

— FS and GS. Undefined (but, on processors that support Intel 64 architecture,
canonical) if the segment is unusable and the VM exit is not to 64-bit mode;
otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of
bit N–1.1 The values loaded for base addresses for FS and GS are also
manifest in the FS.base and GS.base MSRs.

— TR. Loaded from the host-state area. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of
bits 63:N is set to the value of bit N–1.

• The segment limit is set as follows:

— CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-
bit setting of 1).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to FFFFFFFFH.

1. Software can determine the number N by executing CPUID with 80000008H in EAX. The num-
ber of linear-address bits supported is returned in bits 15:8 of EAX.
Vol. 3B 24-35

VM EXITS
— TR. Set to 00000067H.
• The type field and S bit are set as follows:

— CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming
code segment).

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise,
type set to 3 and S set to 1 (read/write, accessed, expand-up data segment).

— TR. Type set to 11 and S set to 0 (busy 32-bit task-state segment).
• The DPL is set as follows:

— CS, SS, and TR. Set to 0. The current privilege level (CPL) will be 0 after the
VM exit completes.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
0.

• The P bit is set as follows:

— CS, TR. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

• On processors that support Intel 64 architecture, CS.L is loaded with the setting
of the “host address-space size” VM-exit control. Because the value of this
control is also loaded into IA32_EFER.LMA (see Section 24.5.1), no VM exit is
ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).

• D/B.

— CS. Loaded with the inverse of the setting of the “host address-space size”
VM-exit control. For example, if that control is 0, indicating a 32-bit guest,
CS.D/B is set to 1.

— SS. Set to 1.

— DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to
1.

— TR. Set to 0.
• G.

— CS. Set to 1.

— SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set
to 1.

— TR. Set to 0.

The host-state area does not contain a selector field for LDTR. LDTR is established as
follows on all VM exits: the selector is cleared to 0000H, the segment is marked
unusable and is otherwise undefined (although the base address is always canon-
ical).
24-36 Vol. 3B

VM EXITS
The base addresses for GDTR and IDTR are loaded from the GDTR base-address field
and the IDTR base-address field, respectively. If the processor supports the Intel 64
architecture and the processor supports N < 64 linear-address bits, each of bits 63:N
of each base address is set to the value of bit N–1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

24.5.3 Loading Host RIP, RSP, and RFLAGS
RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is
cleared, except bit 1, which is always set.

24.5.4 Checking and Loading Host Page-Directory-Pointer-Table
Entries

If CR0.PG = 1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses
PAE paging. See Section 4.4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the physical address
in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A
MOV to CR3 when PAE paging is in use checks the validity of the PDPTEs and, if they
are valid, loads them into the processor (into internal, non-architectural registers).

A VM exit is to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is
set in the CR4 field in the host-state area of the VMCS; and (2) the “host address-
space size” VM-exit control is 0. Such a VM exit may check the validity of the PDPTEs
referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must
check their validity if either (1) PAE paging was not in use before the VM exit; or
(2) the value of CR3 is changing as a result of the VM exit. A VM exit to a VMM that
does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used
when CR3 is loaded with MOV to CR3 when PAE paging is in use. If MOV to CR3 would
cause a general-protection exception due to the PDPTEs that would be loaded (e.g.,
because a reserved bit is set), a VMX abort occurs (see Section 24.7). If a VM exit to
a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the
processor as would MOV to CR3, using the value of CR3 being load by the VM exit.

24.5.5 Updating Non-Register State
VM exits affect the non-register state of a logical processor as follows:
• A logical processor is always in the active state after a VM exit.

1. On processors that support Intel 64 architecture, the physical-address extension may support
more than 36 physical-address bits. Software can determine a processor’s physical-address
width by executing CPUID with 80000008H in EAX. The physical-address width is returned in
bits 7:0 of EAX.
Vol. 3B 24-37

VM EXITS
• Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking
by NMI (see Table 21-3). Other VM exits do not affect blocking by NMI. (See
Section 24.1 for the case in which an NMI causes a VM exit indirectly.)

• There are no pending debug exceptions after a VM exit.

Section 25.3 describes how the VMX architecture controls how a logical processor
manages information in the TLBs and paging-structure caches. The following items
detail how VM exits invalidate cached mappings:
• If the “enable VPID” VM-execution control is 0, the logical processor invalidates

linear mappings and combined mappings associated with VPID 0000H (for all
PCIDs); combined mappings for VPID 0000H are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP).

• VM exits are not required to invalidate any guest-physical mappings, nor are they
required to invalidate any linear mappings or combined mappings if the “enable
VPID” VM-execution control is 1.

24.5.6 Clearing Address-Range Monitoring
The Intel 64 and IA-32 architectures allow software to monitor a specified address
range using the MONITOR and MWAIT instructions. See Section 8.10.4 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. VM exits clear
any address-range monitoring that may be in effect.

24.6 LOADING MSRS
VM exits may load MSRs from the VM-exit MSR-load area (see Section 21.7.2).
Specifically each entry in that area (up to the number specified in the VM-exit MSR-
load count) is processed in order by loading the MSR indexed by bits 31:0 with the
contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:
• The value of bits 31:0 is either C0000100H (the IA32_FS_BASE MSR) or

C0000101H (the IA32_GS_BASE MSR).
• The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that

allows access to an APIC register when the local APIC is in x2APIC mode.
• The value of bits 31:0 indicates an MSR that can be written only in system-

management mode (SMM) and the VM exit will not end in SMM.
(IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

• The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for
model-specific reasons. A processor may prevent loading of certain MSRs even if
24-38 Vol. 3B

VM EXITS
they can normally be written by WRMSR. Such model-specific behavior is
documented in Appendix B.

• Bits 63:32 are not all 0.
• An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry

would cause a general-protection exception if executed via WRMSR with
CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 24.7.

If any MSR is being loaded in such a way that would architecturally require a TLB
flush, the TLBs are updated so that, after VM exit, the logical processor does not use
any translations that were cached before the transition.

24.7 VMX ABORTS
A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a
logical processor into a shutdown state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS.
The contents of these data are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field
at byte offset 4 in the VMCS region of the VMCS whose misconfiguration caused the
failure (see Section 21.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 24.4).

2. Host checking of the page-directory-pointer-table entries (PDPTEs) failed (see
Section 24.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding
VMCS region) in such a way that the logical processor cannot complete the
VM exit properly.

4. There was a failure on loading host MSRs (see Section 24.6).

5. There was a machine check during VM exit (see Section 24.8).

6. The logical processor was in IA-32e mode before the VM exit and the “host
address-space size” VM-entry control was 0 (see Section 24.5).

Some of these causes correspond to failures during the loading of state from the
host-state area. Because the loading of such state may be done in any order (see
Section 24.5) a VM exit that might lead to a VMX abort for multiple reasons (for
example, the current VMCS may be corrupt and the host PDPTEs might not be prop-

1. Note the following about processors that support Intel 64 architecture. If CR0.PG = 1, WRMSR to
the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. Since
CR0.PG is always 1 in VMX operation, the IA32_EFER MSR should not be included in the VM-exit
MSR-load area for the purpose of modifying the LME bit.
Vol. 3B 24-39

VM EXITS
erly configured). In such cases, the VMX-abort indicator could correspond to any one
of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes
it only with one of the non-zero values mentioned above. The VMX-abort indicator
allows software on one logical processor to diagnose the VMX-abort on another. For
this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a
VMX abort depends on whether the logical processor is in SMX operation:1

• If the logical processor is in SMX operation, an Intel® TXT shutdown condition
occurs. The error code used is 000DH, indicating “VMX abort.” See Intel® Trusted
Execution Technology Measured Launched Environment Programming Guide.

• If the logical processor is outside SMX operation, it issues a special bus cycle (to
notify the chipset) and enters the VMX-abort shutdown state. RESET is the
only event that wakes a logical processor from the VMX-abort shutdown state.
The following events do not affect a logical processor in this state: machine
checks; INIT signals; external interrupts; non-maskable interrupts (NMIs); start-
up IPIs (SIPIs); and system-management interrupts (SMIs).

24.8 MACHINE CHECK DURING VM EXIT
If a machine check occurs during VM exit, one of the following occurs:
• The machine check is handled normally:

— If CR4.MCE = 1, a machine-check exception (#MC) delivered through the
guest IDT.

— If CR4.MCE = 0, operation of the logical processor depends on whether the
logical processor is in SMX operation:2

• If the logical processor is in SMX operation, an Intel® TXT shutdown
condition occurs. The error code used is 000CH, indicating “unrecoverable
machine check condition.” See Intel® Trusted Execution Technology
Measured Launched Environment Programming Guide.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.

2. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
24-40 Vol. 3B

VM EXITS
• If the logical processor is outside SMX operation, it goes to the shutdown
state.

• A VMX abort is generated (see Section 24.7). The logical processor blocks events
as done normally in VMX abort. The VMX abort indicator is 5, for “machine check
during VM exit.”

The first option is not used if the machine check occurs after any host state has been
loaded.
Vol. 3B 24-41

VM EXITS
24-42 Vol. 3B

CHAPTER 25
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address trans-
lation: virtual-processor identifiers (VPIDs) and the extended page-table mechanism
(EPT). VPIDs are a mechanism for managing translations of linear addresses. EPT
defines a layer of address translation that augments the translation of linear
addresses.

Section 25.1 details the architecture of VPIDs. Section 25.2 provides the details of
EPT. Section 25.3 explains how a logical processor may cache information from the
paging structures, how it may use that cached information, and how software can
managed the cached information.

25.1 VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)
The original architecture for VMX operation required VMX transitions to flush the TLBs
and paging-structure caches. This ensured that translations cached for the old linear-
address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which
a logical processor may cache information for multiple linear-address spaces. When
VPIDs are used, VMX transitions may retain cached information and the logical
processor switches to a different linear-address space.

Section 25.3 details the mechanisms by which a logical processor manages informa-
tion cached for multiple address spaces. A logical processor may tag some cached
information with a 16-bit VPID. This section specifies how the current VPID is deter-
mined at any point in time:
• The current VPID is 0000H in the following situations:

— Outside VMX operation. (This includes operation in system-management
mode under the default treatment of SMIs and SMM with VMX operation; see
Section 26.14.)

— In VMX root operation.

— In VMX non-root operation when the “enable VPID” VM-execution control is 0.
• If the logical processor is in VMX non-root operation and the “enable VPID” VM-

execution control is 1, the current VPID is the value of the VPID VM-execution
control field in the VMCS. (VM entry ensures that this value is never 0000H; see
Section 23.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done,
the processor associates cached information with both a VPID and a PCID. Such
Vol. 3B 25-1

VMX SUPPORT FOR ADDRESS TRANSLATION
information is used only if the current VPID and PCID both match those associated
with the cached information.

25.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain addresses that
would normally be treated as physical addresses (and used to access memory) are
instead treated as guest-physical addresses. Guest-physical addresses are trans-
lated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory.
• Section 25.2.1 gives an overview of EPT.
• Section 25.2.2 describes operation of EPT-based address translation.
• Section 25.2.3 discusses VM exits that may be caused by EPT.
• Section 25.2.4 describes interactions between EPT and memory typing.

25.2.1 EPT Overview
EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the
guest-physical addresses used in VMX non-root operation and those used by
VM entry for event injection.

The translation from guest-physical addresses to physical addresses is determined
by a set of EPT paging structures. The EPT paging structures are similar to those
used to translate linear addresses while the processor is in IA-32e mode. Section
25.2.2 gives the details of the EPT paging structures.

If CR0.PG = 1, linear addresses are translated through paging structures referenced
through control register CR3 . While the “enable EPT” VM-execution control is 1,
these are called guest paging structures. There are no guest paging structures if
CR0.PG = 0.2

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, the logical processor operates as if the “enable EPT”
VM-execution control were 0. See Section 21.6.2.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
25-2 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
When the “enable EPT” VM-execution control is 1, the identity of guest-physical
addresses depends on the value of CR0.PG:
• If CR0.PG = 0, each linear address is treated as a guest-physical address.
• If CR0.PG = 1, guest-physical addresses are those derived from the contents of

control register CR3 and the guest paging structures. (This includes the values of
the PDPTEs, which logical processors store in internal, non-architectural
registers.) The latter includes (in page-table entries and in other paging-
structure entries for which bit 7—PS—is 1) the addresses to which linear
addresses are translated by the guest paging structures.

If CR0.PG = 1, the translation of a linear address to a physical address requires
multiple translations of guest-physical addresses using EPT. Assume, for example,
that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear address then oper-
ates as follows:
• Bits 31:22 of the linear address select an entry in the guest page directory

located at the guest-physical address in CR3. The guest-physical address of the
guest page-directory entry (PDE) is translated through EPT to determine the
guest PDE’s physical address.

• Bits 21:12 of the linear address select an entry in the guest page table located at
the guest-physical address in the guest PDE. The guest-physical address of the
guest page-table entry (PTE) is translated through EPT to determine the guest
PTE’s physical address.

• Bits 11:0 of the linear address is the offset in the page frame located at the
guest-physical address in the guest PTE. The guest-physical address determined
by this offset is translated through EPT to determine the physical address to
which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT speci-
fies the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits. See Section
25.2.3.

A logical processor uses EPT to translate guest-physical addresses only when those
addresses are used to access memory. This principle implies the following:
• The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether

that address is translated through EPT depends on whether PAE paging is being
used.1

— If PAE paging is not being used, the instruction does not use that address to
access memory and does not cause it to be translated through EPT. (If
CR0.PG = 1, the address will be translated through EPT on the next memory
accessing using a linear address.)

1. A logical processor uses PAE paging if CR0.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See
Section 4.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Vol. 3B 25-3

VMX SUPPORT FOR ADDRESS TRANSLATION
— If PAE paging is being used, the instruction loads the four (4) page-directory-
pointer-table entries (PDPTEs) from that address and it does cause the
address to be translated through EPT.

• The MOV to CR0 instruction establishes PAE paging if it results in CR0.PG = 1 and
the following were held before the instruction executed: (1) CR0.PG = 0;
(2) CR4.PAE = 1; and (3) IA32_EFER.LME = 0. Such an execution loads the
PDPTEs from the guest-physical address in CR3. The address is translated
through EPT.

• The MOV to CR4 instruction establishes PAE paging if it results in CR4.PAE = 1
and the following were held before the instruction executed: (1) CR0.PG = 1;
(2) CR4.PAE = 0; and (3) IA32_EFER.LMA = 0. Such an execution loads the
PDPTEs from the guest-physical address in CR3. The address is translated
through EPT.

• The PDPTEs contain guest-physical addresses. The instructions that load the
PDPTEs (see above) do not use those addresses to access memory and do not
cause them to be translated through EPT. (The address in a PDPTE will be
translated through EPT on the next memory accessing using a linear address that
uses that PDPTE.)

25.2.2 EPT Translation Mechanism
The EPT translation mechanism uses only bits 47:0 of each guest-physical address.1
It uses a page-walk length of 4, meaning that at most 4 EPT paging-structure entries
are accessed to translate a guest-physical address.2

These 48 bits are partitioned by the logical processor to traverse the EPT paging
structures:
• A 4-KByte naturally aligned EPT PML4 table is located at the physical address

specified in bits 51:12 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 21-8 in Section 21.6.11). An EPT PML4 table
comprises 512 64-bit entries (EPT PML4Es). An EPT PML4E is selected using the
physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPTP.

— Bits 11:3 are bits 47:39 of the guest-physical address.

1. No processors supporting the Intel 64 architecture support more than 48 physical-address bits.
Thus, no such processor can produce a guest-physical address with more than 48 bits. An
attempt to use such an address causes a page fault. An attempt to load CR3 with such an
address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3
that would load a PDPTE with such an address causes a general-protection fault.

2. Future processors may include support for other EPT page-walk lengths. Software should read
the VMX capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine what EPT
page-walk lengths are supported.
25-4 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 2:0 are all 0.
Because an EPT PML4E is identified using bits 47:39 of the guest-physical
address, it controls access to a 512-GByte region of the guest-physical-address
space.

• A 4-KByte naturally aligned EPT page-directory-pointer table is located at the
physical address specified in bits 51:12 of the EPT PML4E (see Table 25-1). An
EPT page-directory-pointer table comprises 512 64-bit entries (PDPTEs). An EPT
PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4 entry.

— Bits 11:3 are bits 38:30 of the guest-physical address.

— Bits 2:0 are all 0.

Because a PDPTE is identified using bits 47:30 of the guest-physical address, it
controls access to a 1-GByte region of the guest-physical-address space. Use of the
PDPTE depends on the value of bit 7 in that entry:1

Table 25-1. Format of an EPT PML4 Entry (PML4E)

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 512-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 512-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 512-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced
by this entry1

NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor’s

physical-address width by executing CPUID with 80000008H in EAX. The physical-address width
is returned in bits 7:0 of EAX.

51:N Reserved (must be 0)

63:52 Ignored
Vol. 3B 25-5

VMX SUPPORT FOR ADDRESS TRANSLATION
• If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page (see
Table 25-2). The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.
• If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is

located at the physical address specified in bits 51:12 of the EPT PDPTE (see
Table 25-3). An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT
PDE is selected using the physical address defined as follows:

1. Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX
capability MSR IA32_VMX_EPT_VPID_CAP (see Appendix G.10) to determine whether this is
allowed.

Table 25-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps
a 1-GByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte page referenced by this entry

5:3 EPT memory type for this 1-GByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 1-GByte page (see Section 25.2.4)

7 Must be 1 (otherwise, this entry references an EPT page directory)

11:8 Ignored

29:12 Reserved (must be 0)

(N–1):30 Physical address of the 1-GByte page referenced by this entry1

NOTES:
1. N is the physical-address width supported by the logical processor.

51:N Reserved (must be 0)

63:52 Ignored
25-6 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.

— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it
controls access to a 2-MByte region of the guest-physical-address space. Use of the
EPT PDE depends on the value of bit 7 in that entry:
• If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page (see Table 25-4).

The final physical address is computed as follows:

— Bits 63:52 are all 0.

— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.
• If bit 7 of the EPT PDE is 0, a 4-KByte naturally aligned EPT page table is located

at the physical address specified in bits 51:12 of the EPT PDE (see Table 25-5).
An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected
using a physical address defined as follows:

— Bits 63:52 are all 0.

Table 25-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that
References an EPT Page Directory

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 1-GByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 1-GByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 1-
GByte region controlled by this entry

7:3 Reserved (must be 0)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page directory referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3B 25-7

VMX SUPPORT FOR ADDRESS TRANSLATION
— Bits 51:12 are from the EPT PDE.

— Bits 11:3 are bits 20:12 of the guest-physical address.

— Bits 2:0 are all 0.
• Because an EPT PTE is identified using bits 47:12 of the guest-physical address,

every EPT PTE maps a 4-KByte page (see Table 25-6). The final physical address
is computed as follows:

• Bits 63:52 are all 0.

• Bits 51:12 are from the EPT PTE.

• Bits 11:0 are from the original guest-physical address.

If bits 2:0 of an EPT paging-structure entry are all 0, the entry is not present. The
processor ignores bits 63:3 and does uses the entry neither to reference another EPT
paging-structure entry nor to produce a physical address. A reference using a guest-
physical address whose translation encounters an EPT paging-structure that is not
present causes an EPT violation (see Section 25.2.3.2).

Table 25-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte page referenced by this entry

5:3 EPT memory type for this 2-MByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 2-MByte page (see Section 25.2.4)

7 Must be 1 (otherwise, this entry references an EPT page table)

11:8 Ignored

20:12 Reserved (must be 0)

(N–1):21 Physical address of the 2-MByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
25-8 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
The discussion above describes how the EPT paging structures reference each other
and how the logical processor traverses those structures when translating a guest-
physical address. It does not cover all details of the translation process. Additional
details are provided as follows:
• Situations in which the translation process may lead to VM exits (sometimes

before the process completes) are described in Section 25.2.3.
• Interactions between the EPT translation mechanism and memory typing are

described in Section 25.2.4.

Figure 25-1 gives a summary of the formats of the EPTP and the EPT paging-struc-
ture entries. For the EPT paging structure entries, it identifies separately the format
of entries that map pages, those that reference other EPT paging structures, and
those that do neither because they are “not present”; bits 2:0 and bit 7 are high-
lighted because they determine how a paging-structure entry is used.

Table 25-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT
Page Table

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 2-MByte region
controlled by this entry

1 Write access; indicates whether writes are allowed to the 2-MByte region
controlled by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 2-
MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be 0 (otherwise, this entry maps a 2-MByte page)

11:8 Ignored

(N–1):12 Physical address of 4-KByte aligned EPT page table referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.
Vol. 3B 25-9

VMX SUPPORT FOR ADDRESS TRANSLATION
25.2.3 EPT-Induced VM Exits
Accesses using guest-physical addresses may cause VM exits due to EPT miscon-
figurations and EPT violations. An EPT misconfiguration occurs when, in the
course of translation a guest-physical address, the logical processor encounters an
EPT paging-structure entry that contains an unsupported value. An EPT violation
occurs when there is no EPT misconfiguration but the EPT paging-structure entries
disallow an access using the guest-physical address.

EPT misconfigurations and EPT violations occur only due to an attempt to access
memory with a guest-physical address. Loading CR3 with a guest-physical address
with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT
violation until that address is used to access a paging structure.1

Table 25-6. Format of an EPT Page-Table Entry

Bit
Position(s)

Contents

0 Read access; indicates whether reads are allowed from the 4-KByte page
referenced by this entry

1 Write access; indicates whether writes are allowed to the 4-KByte page
referenced by this entry

2 Execute access; indicates whether instruction fetches are allowed from the 4-
KByte page referenced by this entry

5:3 EPT memory type for this 4-KByte page (see Section 25.2.4)

6 Ignore PAT memory type for this 4-KByte page (see Section 25.2.4)

11:7 Ignored

(N–1):12 Physical address of the 4-KByte page referenced by this entry1

51:N Reserved (must be 0)

63:52 Ignored

NOTES:
1. N is the physical-address width supported by the logical processor.

1. If the logical processor is using PAE paging—because CR0.PG = CR4.PAE = 1 and
IA32_EFER.LMA = 0—the MOV to CR3 instruction loads the PDPTEs from memory using the
guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3 instruction
may cause an EPT misconfiguration or an EPT violation.
25-10 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Address of EPT PML4 table Reserved
EPT

PWL–
1

EPT
PS
MT

EPTP2

Ignored Rsvd. Address of EPT page-directory-pointer table Ign. Reserved XW R PML4E:
present

Ignored 0 0 0
PML4E:

not
present

Ignored Rsvd.
Physical

address of
1GB page

Reserved Ign. 1

I
P
A
T

EPT
MT XW R

PDPTE:
1GB
page

Ignored Rsvd. Address of EPT page directory Ign. 0 Rsvd. XW R
PDPTE:
page

directory

Ignored 0 0 0
PDTPE:

not
present

Ignored Rsvd. Physical address
of 2MB page Reserved Ign. 1

I
P
A
T

EPT
MT XW R

PDE:
2MB
page

Ignored Rsvd. Address of EPT page table Ign. 0 Rsvd. XW R
PDE:
page
table

Ignored 0 0 0
PDE:
not

present

Ignored Rsvd. Physical address of 4KB page Ign.

I
P
A
T

EPT
MT XW R

PTE:
4KB
page

Ignored 0 0 0
PTE:
not

present

Figure 25-1. Formats of EPTP and EPT Paging-Structure Entries

NOTES:
1. M is an abbreviation for MAXPHYADDR.
2. See Section 21.6.11 for details of the EPTP.
Vol. 3B 25-11

VMX SUPPORT FOR ADDRESS TRANSLATION
25.2.3.1 EPT Misconfigurations
AN EPT misconfiguration occurs if any of the following is identified while translating a
guest-physical address:
• The value of bits 2:0 of an EPT paging-structure entry is either 010b (write-only)

or 110b (write/execute).
• The value of bits 2:0 of an EPT paging-structure entry is 100b (execute-only) and

this value is not supported by the logical processor. Software should read the
VMX capability MSR IA32_VMX_EPT_VPID_CAP to determine whether this value
is supported (see Appendix G.10).

• The value of bits 2:0 of an EPT paging-structure entry is not 000b (the entry is
present) and one of the following holds:

— A reserved bit is set. This includes the setting of a bit in the range 51:12 that
is beyond the logical processor’s physical-address width.1 See Section 25.2.2
for details of which bits are reserved in which EPT paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an
EPT PDE with bit 7 set to 1 or an EPT PTE) and the value of bits 5:3 (EPT
memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with
settings reserved for future functionality. Software developers should be aware that
such settings may be used in the future and that an EPT paging-structure entry that
causes an EPT misconfiguration on one processor might not do so in the future.

25.2.3.2 EPT Violations
An EPT violation may occur during an access using a guest-physical address whose
translation does not cause an EPT misconfiguration. An EPT violation occurs in any of
the following situations:
• Translation of the guest-physical address encounters an EPT paging-structure

entry that is not present (see Section 25.2.2).
• The access is a data read and bit 0 was clear in any of the EPT paging-structure

entries used to translate the guest-physical address. Reads by the logical
processor of guest paging structures to translate a linear address are considered
to be data reads.

• The access is a data write and bit 1 was clear in any of the EPT paging-structure
entries used to translate the guest-physical address. Writes by the logical
processor to guest paging structures to update accessed and dirty flags are
considered to be data writes.

• The access is an instruction fetch and bit 2 was clear in any of the EPT paging-
structure entries used to translate the guest-physical address.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
25-12 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
25.2.3.3 Prioritization of EPT-Induced VM Exits
The translation of a linear address to a physical address requires one or more trans-
lations of guest-physical addresses using EPT (see Section 25.2.1). This section
specifies the relative priority of EPT-induced VM exits with respect to each other and
to other events that may be encountered when accessing memory using a linear
address.

For an access to a guest-physical address, determination of whether an EPT miscon-
figuration or an EPT violation occurs is based on an iterative process:1

1. An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):

a. If the entry is not present (bits 2:0 are all 0), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see
Section 25.2.3.1), an EPT misconfiguration occurs.

c. If the entry is present and its contents are configured properly, operation
depends on whether the entry references another EPT paging structure
(whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from
that structure is accessed; step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address
(the translation of the original guest-physical address); step 2 is
executed.

2. Once the ultimate physical address is determined, the privileges determined by
the EPT paging-structure entries are evaluated:

a. If the access to the guest-physical address is not allowed by these privileges
(see Section 25.2.3.2), an EPT violation occurs.

b. If the access to the guest-physical address is allowed by these privileges,
memory is accessed using the ultimate physical address.

If CR0.PG = 1, the translation of a linear address is also an iterative process, with the
processor first accessing an entry in the guest paging structure referenced by the
guest-physical address in CR3 (or, if PAE paging is in use, the guest-physical address
in the appropriate PDPTE register), then accessing an entry in another guest paging
structure referenced by the guest-physical address in the first guest paging-structure
entry, etc. Each guest-physical address is itself translated using EPT and may cause
an EPT-induced VM exit. The following items detail how page faults and EPT-induced
VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-
physical address (initially, the address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see
above), an EPT-induced VM exit occurs.

1. This is a simplification of the more detailed description given in Section 25.2.2.
Vol. 3B 25-13

VMX SUPPORT FOR ADDRESS TRANSLATION
b. If the access does not cause an EPT-induced VM exit, bit 0 (the present flag)
of the entry is consulted:

i) If the present flag is 0 or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on
whether the entry references another guest paging structure (whether it
is a guest PDE with PS = 1 or a guest PTE):

• If the entry does reference another guest paging structure, an entry
from that structure is accessed; step 1 is executed for that other
entry.

• Otherwise, the entry is used to produce the ultimate guest-physical
address (the translation of the original linear address); step 2 is
executed.

2. Once the ultimate guest-physical address is determined, the privileges
determined by the guest paging-structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it
was a write to a read-only page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt
is made to access memory at the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation
(see above), an EPT-induced VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed
using the ultimate physical address (the translation, using EPT, of the
ultimate guest-physical address).

If CR0.PG = 0, a linear address is treated as a guest-physical address and is trans-
lated using EPT (see above). This process, if it completes without an EPT violation or
EPT misconfiguration, produces a physical address and determines the privileges
allowed by the EPT paging-structure entries. If these privileges do not allow the
access to the physical address (see Section 25.2.3.2), an EPT violation occurs.
Otherwise, memory is accessed using the physical address.

25.2.4 EPT and Memory Typing
This section specifies how a logical processor determines the memory type use for a
memory access while EPT is in use. (See Chapter 11, “Memory Cache Control” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for
details of memory typing in the Intel 64 architecture.) Section 25.2.4.1 explains how
the memory type is determined for accesses to the EPT paging structures. Section
25.2.4.2 explains how the memory type is determined for an access using a guest-
physical address that is translated using EPT.
25-14 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
25.2.4.1 Memory Type Used for Accessing EPT Paging Structures
This section explains how the memory type is determined for accesses to the EPT
paging structures. The determination is based first on the value of bit 30 (cache
disable—CD) in control register CR0:
• If CR0.CD = 0, the memory type used for any such reference is the EPT paging-

structure memory type, which is specified in bits 2:0 of the extended-page-table
pointer (EPTP), a VM-execution control field (see Section 21.6.11). A value of 0
indicates the uncacheable type (UC), while a value of 6 indicates the write-back
type (WB). Other values are reserved.

• If CR0.CD = 1, the memory type used for any such reference is uncacheable
(UC).

The MTRRs have no effect on the memory type used for an access to an EPT paging
structure.

25.2.4.2 Memory Type Used for Translated Guest-Physical Addresses
The effective memory type of a memory access using a guest-physical address (an
access that is translated using EPT) is the memory type that is used to access
memory. The effective memory type is based on the value of bit 30 (cache
disable—CD) in control register CR0; the last EPT paging-structure entry used to
translate the guest-physical address (either an EPT PDE with bit 7 set to 1 or an EPT
PTE); and the PAT memory type (see below):
• The PAT memory type depends on the value of CR0.PG:

— If CR0.PG = 0, the PAT memory type is WB (writeback).1

— If CR0.PG = 1, the PAT memory type is the memory type selected from the
IA32_PAT MSR as specified in Section 11.12.3, “Selecting a Memory Type
from the PAT”.2

• The EPT memory type is specified in bits 5:3 of the last EPT paging-structure
entry: 0 = UC; 1 = WC; 4 = WT; 5 = WP; and 6 = WB. Other values are reserved
and cause EPT misconfigurations (see Section 25.2.3).

• If CR0.CD = 0, the effective memory type depends upon the value of bit 6 of the
last EPT paging-structure entry:

1. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT” illustrates how the PAT
memory type is selected based on the values of the PAT, PCD, and PWT bits in a page-table entry
(or page-directory entry with PS = 1). For accesses to a guest paging-structure entry X, the PAT
memory type is selected from the table by using a value of 0 for the PAT bit with the values of
PCD and PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root
paging structure). With PAE paging, the PAT memory type for accesses to the PDPTEs is WB.
Vol. 3B 25-15

VMX SUPPORT FOR ADDRESS TRANSLATION
— If the value is 0, the effective memory type is the combination of the EPT
memory type and the PAT memory type specified in Table 11-7 in Section
11.5.2.2, using the EPT memory type in place of the MTRR memory type.

— If the value is 1, the memory type used for the access is the EPT memory
type. The PAT memory type is ignored.

• If CR0.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical
address.

25.3 CACHING TRANSLATION INFORMATION
Processors supporting Intel® 64 and IA-32 architectures may accelerate the
address-translation process by caching on the processor data from the structures in
memory that control that process. Such caching is discussed in Section 4.10,
“Caching Translation Information” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A. The current section describes how this caching
interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this
caching architecture. EPT defines the guest-physical address space and defines
translations to that address space (from the linear-address space) and from that
address space (to the physical-address space). Both features control the ways in
which a logical processor may create and use information cached from the paging
structures.

Section 25.3.1 describes the different kinds of information that may be cached.
Section 25.3.2 specifies when such information may be cached and how it may be
used. Section 25.3.3 details how software can invalidate cached information.

25.3.1 Information That May Be Cached
Section 4.10, “Caching Translation Information” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A identifies two kinds of translation-related
information that may be cached by a logical processor: translations, which are
mappings from linear page numbers to physical page frames, and paging-structure
caches, which map the upper bits of a linear page number to information from the
paging-structure entries used to translate linear addresses matching those upper
bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A
logical processor may cache and use such information based on its function. Informa-
tion with different functionality is identified as follows:
• Linear mappings.1 There are two kinds:

1. Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.
25-16 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
— Linear translations. Each of these is a mapping from a linear page number to
the physical page frame to which it translates, along with information about
access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the
upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges. For example,
bits 47:39 of a linear address would map to the address of the relevant page-
directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
• Guest-physical mappings.1 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical
page number to the physical page frame to which it translates, along with
information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping
from the upper portion of a guest-physical address to the physical address of
the EPT paging structure used to translate the corresponding region of the
guest-physical address space, along with information about access
privileges.

The information in guest-physical mappings about access privileges and memory
typing is derived from EPT paging structures.

• Combined mappings.2 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number
to the physical page frame to which it translates, along with information
about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from
the upper portion of a linear address to the physical address of the paging
structure used to translate the corresponding region of the linear-address
space, along with information about access privileges.

The information in combined mappings about access privileges and memory
typing is derived from both guest paging structures and EPT paging structures.

25.3.2 Creating and Using Cached Translation Information
The following items detail the creation of the mappings described in the previous
section:3

• The following items describe the creation of mappings while EPT is not in use
(including execution outside VMX non-root operation):

1. Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.

2. Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.
Vol. 3B 25-17

VMX SUPPORT FOR ADDRESS TRANSLATION
— Linear mappings may be created. They are derived from the paging
structures referenced (directly or indirectly) by the current value of CR3 and
are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-
structure entries that are not present (bit 0 is 0) or that set reserved bits. For
example, if a PTE is not present, no linear mapping are created for any linear
page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
• The following items describe the creation of mappings while EPT is in use:

— Guest-physical mappings may be created. They are derived from the EPT
paging structures referenced (directly or indirectly) by bits 51:12 of the
current EPTP. These 40 bits contain the address of the EPT-PML4-table. (the
notation EP4TA refers to those 40 bits). Newly created guest-physical
mappings are associated with the current EP4TA.

— Combined mappings may be created. They are derived from the EPT paging
structures referenced (directly or indirectly) by the current EP4TA. If
CR0.PG = 1, they are also derived from the paging structures referenced
(directly or indirectly) by the current value of CR3. They are associated with
the current VPID, the current PCID, and the current EP4TA.1 No combined
paging-structure-cache entries are created if CR0.PG = 0.2

— No guest-physical mappings or combined mappings are created with
information derived from EPT paging-structure entries that are not present
(bits 2:0 are all 0) or that are misconfigured (see Section 25.2.3.1).

— No combined mappings are created with information derived from guest
paging-structure entries that are not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:
• If EPT is not in use (e.g., when outside VMX non-root operation), a logical

processor may use cached mappings as follows:

3. This section associated cached information with the current VPID and PCID. If PCIDs are not sup-
ported or are not being used (e.g., because CR4.PCIDE = 0), all the information is implicitly associ-
ated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers (PCIDs),” in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID
that are associated with different EP4TAs. Similarly, it may be caching combined mappings for an
EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CR0_FIXED0 reports that CR0.PG must be 1 in VMX operation,
CR0.PG can be 0 in VMX non-root operation only if the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls are both 1.
25-18 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
— For accesses using linear addresses, it may use linear mappings associated
with the current VPID and the current PCID. It may also use global TLB
entries (linear mappings) associated with the current VPID and any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
• If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings
associated with the current VPID, the current PCID, and the current EP4TA. It
may also use global TLB entries (combined mappings) associated with the
current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical
mappings associated with the current EP4TA.

— No linear mappings are used while EPT is in use.

25.3.3 Invalidating Cached Translation Information
Software modifications of paging structures (including EPT paging structures) may
result in inconsistencies between those structures and the mappings cached by a
logical processor. Certain operations invalidate information cached by a logical
processor and can be used to eliminate such inconsistencies.

25.3.3.1 Operations that Invalidate Cached Mappings
The following operations invalidate cached mappings as indicated:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation (e.g., the INVLPG instruction) invalidate
linear mappings and combined mappings.1 They are required to do so only for the
current VPID (but, for combined mappings, all EP4TAs). Linear mappings for the
current VPID are invalidated even if EPT is in use.2 Combined mappings for the
current VPID are invalidated even if EPT is not in use.3

• An EPT violation invalidates any guest-physical mappings (associated with the
current EP4TA) that would be used to translate the guest-physical address that

1. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for an enumeration of operations that
architecturally invalidate entries in the TLBs and paging-structure caches independent of VMX
operation.

2. While no linear mappings are created while EPT is in use, a logical processor may retain, while
EPT is in use, linear mappings (for the same VPID as the current one) there were created earlier,
when EPT was not in use.

3. While no combined mappings are created while EPT is not in use, a logical processor may retain,
while EPT is in not use, combined mappings (for the same VPID as the current one) there were
created earlier, when EPT was in use.
Vol. 3B 25-19

VMX SUPPORT FOR ADDRESS TRANSLATION
caused the EPT violation. If that guest-physical address was the translation of a
linear address, the EPT violation also invalidates any combined mappings for that
linear address associated with the current PCID, the current VPID and the current
EP4TA.

• If the “enable VPID” VM-execution control is 0, VM entries and VM exits
invalidate linear mappings and combined mappings associated with VPID 0000H
(for all PCIDs). Combined mappings for VPID 0000H are invalidated for all
EP4TAs.

• Execution of the INVVPID instruction invalidates linear mappings and combined
mappings. Invalidation is based on instruction operands, called the INVVPID type
and the INVVPID descriptor. Four INVVPID types are currently defined:

— Individual-address. If the INVVPID type is 0, the logical processor
invalidates linear mappings and combined mappings associated with the
VPID specified in the INVVPID descriptor and that would be used to translate
the linear address specified in of the INVVPID descriptor. Linear mappings
and combined mappings for that VPID and linear address are invalidated for
all PCIDs and, for combined mappings, all EP4TAs. (The instruction may also
invalidate mappings associated with other VPIDs and for other linear
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all
linear mappings and combined mappings associated with the VPID specified
in the INVVPID descriptor. Linear mappings and combined mappings for that
VPID are invalidated for all PCIDs and, for combined mappings, all EP4TAs.
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear
mappings and combined mappings associated with all VPIDs except VPID
0000H and with all PCIDs. (In some cases, it may invalidate linear mappings
with VPID 0000H as well.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical
processor invalidates linear mappings and combined mappings associated
with the VPID specified in the INVVPID descriptor. Linear mappings and
combined mappings for that VPID are invalidated for all PCIDs and, for
combined mappings, all EP4TAs. The logical processor is not required to
invalidate information that was used for global translations (although it may
do so). See Section 4.10, “Caching Translation Information” for details
regarding global translations. (The instruction may invalidate mappings
associated with other VPIDs.)

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVVPID instruction. See Section 25.3.3.3
for guidelines regarding use of this instruction.

• Execution of the INVEPT instruction invalidates guest-physical mappings and
combined mappings. Invalidation is based on instruction operands, called the
INVEPT type and the INVEPT descriptor. Two INVEPT types are currently defined:
25-20 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
— Single-context. If the INVEPT type is 1, the logical processor invalidates all
guest-physical mappings and combined mappings associated with the EP4TA
specified in the INVEPT descriptor. Combined mappings for that EP4TA are
invalidated for all VPIDs and all PCIDs. (The instruction may invalidate
mappings associated with other EP4TAs.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-
physical mappings and combined mappings associated with all EP4TAs (and,
for combined mappings, for all VPIDs and PCIDs).

See Chapter 5 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2B for details of the INVEPT instruction. See Section 25.3.3.4 for
guidelines regarding use of this instruction.

• A power-up or a reset invalidates all linear mappings, guest-physical mappings,
and combined mappings.

25.3.3.2 Operations that Need Not Invalidate Cached Mappings
The following items detail cases of operations that are not required to invalidate
certain cached mappings:
• Operations that architecturally invalidate entries in the TLBs or paging-structure

caches independent of VMX operation are not required to invalidate any guest-
physical mappings.

• The INVVPID instruction is not required to invalidate any guest-physical
mappings.

• The INVEPT instruction is not required to invalidate any linear mappings.
• VMX transitions are not required to invalidate any guest-physical mappings. If

the “enable VPID” VM-execution control is 1, VMX transitions are not required to
invalidate any linear mappings or combined mappings.

• The VMXOFF and VMXON instructions are not required to invalidate any linear
mappings, guest-physical mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason,
the operations identified above may invalidate the indicated mappings despite the
fact that doing so is not required.

25.3.3.3 Guidelines for Use of the INVVPID Instruction
The need for VMM software to use the INVVPID instruction depends on how that soft-
ware is virtualizing memory (e.g., see Section 28.3, “Memory Virtualization”).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures.
Such a VMM may configure the VMCS so that all or some of the operations that inval-
idate entries the TLBs and the paging-structure caches (e.g., the INVLPG instruction)
cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the
paging-structure caches are appropriately invalidated.
Vol. 3B 25-21

VMX SUPPORT FOR ADDRESS TRANSLATION
Requirements of when software should use the INVVPID instruction depend on the
specific algorithm being used for page-table virtualization. The following items
provide guidelines for software developers:
• Emulation of the INVLPG instruction may require execution of the INVVPID

instruction as follows:

— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

— The linear address in the INVVPID descriptor is that of the operand of the
INVLPG instruction being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure
caches—except for global translations. An example is the MOV to CR3 instruction.
(See Section 4.10, “Caching Translation Information” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A for details regarding
global translations.) Emulation of such an instruction may require execution of
the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

• Some instructions invalidate all entries in the TLBs and paging-structure
caches—including for global translations. An example is the MOV to CR4
instruction if the value of value of bit 4 (page global enable—PGE) is changing.
Emulation of such an instruction may require execution of the INVVPID
instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual
processor whose execution is being emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the
current VPID, and it will use such mappings to translate linear addresses. For that
reason, a VMM should not use the same VPID for different non-EPT guests that use
different page tables. Doing so may result in one guest using translations that pertain
to the other.

If EPT is in use, the instructions enumerated above might not be configured to cause
VM exits and the VMM might not be emulating them. In that case, executions of the
instructions by guest software properly invalidate the required entries in the TLBs
and paging-structure caches (see Section 25.3.3.1); execution of the INVVPID
instruction is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value
of bits 51:12 of current EPTP. If a VMM uses different EPTP values for different guests,
it may use the same VPID for those guests. Doing so cannot result in one guest using
translations that pertain to the other.
25-22 Vol. 3B

VMX SUPPORT FOR ADDRESS TRANSLATION
The following guidelines apply more generally and are appropriate even if EPT is in
use:
• As detailed in Section 22.2.1.1, an access to the APIC-access page might not

cause an APIC-access VM exit if software does not properly invalidate information
that may be cached from the paging structures. If, at one time, the current VPID
on a logical processor was a non-zero value X, it is recommended that software
use the INVVPID instruction with the “single-context” INVVPID type and with
VPID X in the INVVPID descriptor before a VM entry on the same logical
processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from 0 to 1; or (b) the value of the APIC-
access address was changed.

• Software can use the INVVPID instruction with the “all-context” INVVPID type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from paging structures between separate uses of
VMX operation.

25.3.3.4 Guidelines for Use of the INVEPT Instruction
The following items provide guidelines for use of the INVEPT instruction to invalidate
information cached from the EPT paging structures.
• Software should use the INVEPT instruction with the “single-context” INVEPT

type after making any of the following changes to an EPT paging-structure entry
(the INVEPT descriptor should contain an EPTP value that references — directly
or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.

— Changing the physical address in bits 51:12.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether
the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical
address (either an EPT PDE with bit 7 set to 1 or an EPT PTE), changing either
bits 5:3 or bit 6. (These bits determine the effective memory type of
accesses using that EPT paging-structure entry; see Section 25.2.4.)

• Software may use the INVEPT instruction after modifying a present EPT paging-
structure entry to change any of the privilege bits 2:0 from 0 to 1. Failure to do
so may cause an EPT violation that would not otherwise occur. Because an EPT
violation invalidates any mappings that would be used by the access that caused
the EPT violation (see Section 25.3.3.1), an EPT violation will not recur if the
original access is performed again, even if the INVEPT instruction is not executed.

• Because a logical processor does not cache any information derived from EPT
paging-structure entries that are not present or misconfigured (see Section
25.2.3.1), it is not necessary to execute INVEPT following modification of an EPT
paging-structure entry that had been not present or misconfigured.
Vol. 3B 25-23

VMX SUPPORT FOR ADDRESS TRANSLATION
• As detailed in Section 22.2.1.1 and Section 22.2.2.1, an access to the APIC-
access page might not cause an APIC-access VM exit if software does not
properly invalidate information that may be cached from the EPT paging
structures. If EPT was in use on a logical processor at one time with EPTP X, it is
recommended that software use the INVEPT instruction with the “single-context”
INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry on the
same logical processor that enables EPT with EPTP X and either (a) the “virtualize
APIC accesses” VM-execution control was changed from 0 to 1; or (b) the value
of the APIC-access address was changed.

• Software can use the INVEPT instruction with the “all-context” INVEPT type
immediately after execution of the VMXON instruction or immediately prior to
execution of the VMXOFF instruction. Either prevents potentially undesired
retention of information cached from EPT paging structures between separate
uses of VMX operation.

In a system containing more than one logical processor, software must account for
the fact that information from an EPT paging-structure entry may be cached on
logical processors other than the one that modifies that entry. The process of propa-
gating the changes to a paging-structure entry is commonly referred to as “TLB
shootdown.” A discussion of TLB shootdown appears in Section 4.10.5, “Propagation
of Paging-Structure Changes to Multiple Processors,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
25-24 Vol. 3B

CHAPTER 26
SYSTEM MANAGEMENT MODE

This chapter describes aspects of IA-64 and IA-32 architecture used in system
management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and
manage various system resources for more efficient energy usage, to control system
hardware, and/or to run proprietary code. It was introduced into the IA-32 architec-
ture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and
Pentium and Intel486 processors (beginning with the enhanced versions of the
Intel486 SL and Intel486 processors).

26.1 SYSTEM MANAGEMENT MODE OVERVIEW
SMM is a special-purpose operating mode provided for handling system-wide func-
tions like power management, system hardware control, or proprietary OEM-
designed code. It is intended for use only by system firmware, not by applications
software or general-purpose systems software. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transpar-
ently to the operating system or executive and software applications.

When SMM is invoked through a system management interrupt (SMI), the processor
saves the current state of the processor (the processor’s context), then switches to a
separate operating environment contained in system management RAM (SMRAM).
While in SMM, the processor executes SMI handler code to perform operations such
as powering down unused disk drives or monitors, executing proprietary code, or
placing the whole system in a suspended state. When the SMI handler has completed
its operations, it executes a resume (RSM) instruction. This instruction causes the
processor to reload the saved context of the processor, switch back to protected or
real mode, and resume executing the interrupted application or operating-system
program or task.

The following SMM mechanisms make it transparent to applications programs and
operating systems:
• The only way to enter SMM is by means of an SMI.
• The processor executes SMM code in a separate address space (SMRAM) that can

be made inaccessible from the other operating modes.
• Upon entering SMM, the processor saves the context of the interrupted program

or task.
Vol. 3B 26-1

SYSTEM MANAGEMENT MODE
• All interrupts normally handled by the operating system are disabled upon entry
into SMM.

• The RSM instruction can be executed only in SMM.

SMM is similar to real-address mode in that there are no privilege levels or address
mapping. An SMM program can address up to 4 GBytes of memory and can execute
all I/O and applicable system instructions. See Section 26.5 for more information
about the SMM execution environment.

NOTES
Software developers should be aware that, even if a logical processor
was using the physical-address extension (PAE) mechanism
(introduced in the P6 family processors) or was in IA-32e mode
before an SMI, this will not be the case after the SMI is delivered. This
is because delivery of an SMI disables paging (see Table 26-4). (This
does not apply if the dual-monitor treatment of SMIs and SMM is
active; see Section 26.15.)

26.1.1 System Management Mode and VMX Operation
Traditionally, SMM services system management interrupts and then resumes
program execution (back to the software stack consisting of executive and applica-
tion software; see Section 26.2 through Section 26.13).

A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual
machines and each virtual machine can support its own software stack of executive
and application software. On processors that support VMX, virtual-machine exten-
sions may use system-management interrupts (SMIs) and system-management
mode (SMM) in one of two ways:
• Default treatment. System firmware handles SMIs. The processor saves archi-

tectural states and critical states relevant to VMX operation upon entering SMM.
When the firmware completes servicing SMIs, it uses RSM to resume VMX
operation.

• Dual-monitor treatment. Two VM monitors collaborate to control the servicing
of SMIs: one VMM operates outside of SMM to provide basic virtualization in
support for guests; the other VMM operates inside SMM (while in VMX operation)
to support system-management functions. The former is referred to as
executive monitor, the latter SMM monitor.1

The default treatment is described in Section 26.14, “Default Treatment of SMIs and
SMM with VMX Operation and SMX Operation”. Dual-monitor treatment of SMM is
described in Section 26.15, “Dual-Monitor Treatment of SMIs and SMM”.

1. The dual-monitor treatment may not be supported by all processors. Software should consult the
VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine whether it is supported.
26-2 Vol. 3B

SYSTEM MANAGEMENT MODE
26.2 SYSTEM MANAGEMENT INTERRUPT (SMI)
The only way to enter SMM is by signaling an SMI through the SMI# pin on the
processor or through an SMI message received through the APIC bus. The SMI is a
nonmaskable external interrupt that operates independently from the processor’s
interrupt- and exception-handling mechanism and the local APIC. The SMI takes
precedence over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the
SMI is disabled while the processor is in SMM.

NOTES
In the Pentium 4, Intel Xeon, and P6 family processors, when a
processor that is designated as an application processor during an MP
initialization sequence is waiting for a startup IPI (SIPI), it is in a
mode where SMIs are masked. However if a SMI is received while an
application processor is in the wait for SIPI mode, the SMI will be
pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before
handling the SIPI.
An SMI may be blocked for one instruction following execution of STI,
MOV to SS, or POP into SS.

26.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor
operating modes (protected, real-address, and virtual-8086). Signaling an SMI while
the processor is in real-address, protected, or virtual-8086 modes always causes the
processor to switch to SMM. Upon execution of the RSM instruction, the processor
always returns to the mode it was in when the SMI occurred.

26.3.1 Entering SMM
The processor always handles an SMI on an architecturally defined “interruptible”
point in program execution (which is commonly at an IA-32 architecture instruction
boundary). When the processor receives an SMI, it waits for all instructions to retire
and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 26.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMM handling has
begun. The signaling mechanism used is implementation dependent. For the P6
family processors, an SMI acknowledge transaction is generated on the system bus
and the multiplexed status signal EXF4 is asserted each time a bus transaction is
generated while the processor is in SMM. For the Pentium and Intel486 processors,
the SMIACT# pin is asserted.
Vol. 3B 26-3

SYSTEM MANAGEMENT MODE
An SMI has a greater priority than debug exceptions and external interrupts. Thus, if
an NMI, maskable hardware interrupt, or a debug exception occurs at an instruction
boundary along with an SMI, only the SMI is handled. Subsequent SMI requests are
not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to
external hardware) is latched and serviced when the processor exits SMM with the
RSM instruction. The processor will latch only one SMI while in SMM.

See Section 26.5 for a detailed description of the execution environment when in
SMM.

26.3.2 Exiting From SMM
The only way to exit SMM is to execute the RSM instruction. The RSM instruction is
only available to the SMI handler; if the processor is not in SMM, attempts to execute
the RSM instruction result in an invalid-opcode exception (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image
from SMRAM back into the processor’s registers. The processor then returns an
SMIACK transaction on the system bus and returns program control back to the
interrupted program.

Upon successful completion of the RSM instruction, the processor signals external
hardware that SMM has been exited. For the P6 family processors, an SMI acknowl-
edge transaction is generated on the system bus and the multiplexed status signal
EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors,
the SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the
shutdown state and generates a special bus cycle to indicate it has entered shutdown
state. Shutdown happens only in the following situations:
• A reserved bit in control register CR4 is set to 1 on a write to CR4. This error

should not happen unless SMI handler code modifies reserved areas of the
SMRAM saved state map (see Section 26.4.1). CR4 is saved in the state map in a
reserved location and cannot be read or modified in its saved state.

• An illegal combination of bits is written to control register CR0, in particular PG
set to 1 and PE set to 0, or NW set to 1 and CD set to 0.

• CR4.PCIDE would be set to 1 and IA32_EFER.LMA to 0.
• (For the Pentium and Intel486 processors only.) If the address stored in the

SMBASE register when an RSM instruction is executed is not aligned on a
32-KByte boundary. This restriction does not apply to the P6 family processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#,
INIT# or NMI# is asserted. While Pentium family processors recognize the SMI#
signal in shutdown state, P6 family and Intel486 processors do not. Intel does not
support using SMI# to recover from shutdown states for any processor family; the
response of processors in this circumstance is not well defined. On Pentium 4 and
later processors, shutdown will inhibit INTR and A20M but will not change any of the
26-4 Vol. 3B

SYSTEM MANAGEMENT MODE
other inhibits. On these processors, NMIs will be inhibited if no action is taken in the
SMM handler to uninhibit them (see Section 26.8).

If the processor is in the HALT state when the SMI is received, the processor handles
the return from SMM slightly differently (see Section 26.10). Also, the SMBASE
address can be changed on a return from SMM (see Section 26.11).

26.4 SMRAM
While in SMM, the processor executes code and stores data in the SMRAM space. The
SMRAM space is mapped to the physical address space of the processor and can be
up to 4 GBytes in size. The processor uses this space to save the context of the
processor and to store the SMI handler code, data and stack. It can also be used to
store system management information (such as the system configuration and
specific information about powered-down devices) and OEM-specific information.

The default SMRAM size is 64 KBytes beginning at a base physical address in physical
memory called the SMBASE (see Figure 26-1). The SMBASE default value following a
hardware reset is 30000H. The processor looks for the first instruction of the SMI
handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FE00H] to [SMBASE + FFFFH]. See Section 26.4.1 for a description
of the mapping of the state save area.

The system logic is minimally required to decode the physical address range for the
SMRAM from [SMBASE + 8000H] to [SMBASE + FFFFH]. A larger area can be
decoded if needed. The size of this SMRAM can be between 32 KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see
Section 26.11). It should be noted that all processors in a multiple-processor system
are initialized with the same SMBASE value (30000H). Initialization software must
sequentially place each processor in SMM and change its SMBASE so that it does not
overlap those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate
RAM memory. The processor generates an SMI acknowledge transaction (P6 family
processors) or asserts the SMIACT# pin (Pentium and Intel486 processors) when the
processor receives an SMI (see Section 26.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the
SMIACT# pin to decode accesses to the SMRAM and redirect them (if desired) to
specific SMRAM memory. If a separate RAM memory is used for SMRAM, system logic
should provide a programmable method of mapping the SMRAM into system memory
space when the processor is not in SMM. This mechanism will enable start-up proce-
dures to initialize the SMRAM space (that is, load the SMI handler) before executing
the SMI handler during SMM.
Vol. 3B 26-5

SYSTEM MANAGEMENT MODE
26.4.1 SMRAM State Save Map
When an IA-32 processor that does not support Intel 64 architecture initially enters
SMM, it writes its state to the state save area of the SMRAM. The state save area
begins at [SMBASE + 8000H + 7FFFH] and extends down to [SMBASE + 8000H +
7E00H]. Table 26-1 shows the state save map. The offset in column 1 is relative to
the SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may
be read and changed by the SMI handler, with the changed values restored to the
processor registers by the RSM instruction. Some register images are read-only, and
must not be modified (modifying these registers will result in unpredictable
behavior). An SMI handler should not rely on any values stored in an area that is
marked as reserved.

Figure 26-1. SMRAM Usage

Table 26-1. SMRAM State Save Map

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

Start of State Save Area
SMBASE + FFFFH

SMBASE

SMBASE + 8000H

SMRAM

SMI Handler Entry Point
26-6 Vol. 3B

SYSTEM MANAGEMENT MODE
The following registers are saved (but not readable) and restored upon exiting SMM:
• Control register CR4. (This register is cleared to all 0s when entering SMM).
• The hidden segment descriptor information stored in segment registers CS, DS,

ES, FS, GS, and SS.

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR1 No

7FC0H Reserved No

7FBCH GS1 No

7FB8H FS1 No

7FB4H DS1 No

7FB0H SS1 No

7FACH CS1 No

7FA8H ES1 No

7FA4H I/O State Field, see Section 26.7 No

7FA0H I/O Memory Address Field, see Section 26.7 No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 26-1. SMRAM State Save Map (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3B 26-7

SYSTEM MANAGEMENT MODE
If an SMI request is issued for the purpose of powering down the processor, the
values of all reserved locations in the SMM state save must be saved to nonvolatile
memory.

The following state is not automatically saved and restored following an SMI and the
RSM instruction, respectively:
• Debug registers DR0 through DR3.
• The x87 FPU registers.
• The MTRRs.
• Control register CR2.
• The model-specific registers (for the P6 family and Pentium processors) or test

registers TR3 through TR7 (for the Pentium and Intel486 processors).
• The state of the trap controller.
• The machine-check architecture registers.
• The APIC internal interrupt state (ISR, IRR, etc.).
• The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required
before returning to SMM, which will reset much of this state back to its default
values. So an SMI handler that is going to trigger power down should first read these
registers listed above directly, and save them (along with the rest of RAM) to nonvol-
atile storage. After the power-on reset, the continuation of the SMI handler should
restore these values, along with the rest of the system's state. Anytime the SMI
handler changes these registers in the processor, it must also save and restore them.

NOTES
A small subset of the MSRs (such as, the time-stamp counter and
performance-monitoring counters) are not arbitrarily writable and
therefore cannot be saved and restored. SMM-based power-down
and restoration should only be performed with operating systems
that do not use or rely on the values of these registers.
Operating system developers should be aware of this fact and insure
that their operating-system assisted power-down and restoration
software is immune to unexpected changes in these register values.

26.4.1.1 SMRAM State Save Map and Intel 64 Architecture
When the processor initially enters SMM, it writes its state to the state save area of
the SMRAM. The state save area on an Intel 64 processor at [SMBASE + 8000H +
7FFFH] and extends to [SMBASE + 8000H + 7C00H].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The
layout of the SMRAM state save map is shown in Table 26-3.
26-8 Vol. 3B

SYSTEM MANAGEMENT MODE
Additionally, the SMRAM state save map shown in Table 26-3 also applies to proces-
sors with the following CPUID signatures listed in Table 26-2, irrespective of the value
in CPUID.80000001:EDX[29].

Table 26-2. Processor Signatures and 64-bit SMRAM State Save Map Format
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9xxx, Intel Core 2 Duo processors E8000, T9000,

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors

06_1CH Intel® Atom™ processors

Table 26-3. SMRAM State Save Map for Intel 64 Architecture

Offset
(Added to SMBASE +

8000H)

Register Writable?

7FF8H CR0 No

7FF0H CR3 No

7FE8H RFLAGS Yes

7FE0H IA32_EFER Yes

7FD8H RIP Yes

7FD0H DR6 No

7FC8H DR7 No

7FC4H TR SEL1 No

7FC0H LDTR SEL1 No

7FBCH GS SEL1 No

7FB8H FS SEL1 No

7FB4H DS SEL1 No

7FB0H SS SEL1 No

7FACH CS SEL1 No

7FA8H ES SEL1 No

7FA4H IO_MISC No

7F9CH IO_MEM_ADDR No
Vol. 3B 26-9

SYSTEM MANAGEMENT MODE
7F94H RDI Yes

7F8CH RSI Yes

7F84H RBP Yes

7F7CH RSP Yes

7F74H RBX Yes

7F6CH RDX Yes

7F64H RCX Yes

7F5CH RAX Yes

7F54H R8 Yes

7F4CH R9 Yes

7F44H R10 Yes

7F3CH R11 Yes

7F34H R12 Yes

7F2CH R13 Yes

7F24H R14 Yes

7F1CH R15 Yes

7F1BH-7F04H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7EE4H Reserved No

7EE0H Setting of “enable EPT” VM-execution control No

7ED8H Value of EPTP VM-execution control field No

7ED7H - 7EA0H Reserved No

7E9CH LDT Base (lower 32 bits) No

7E98H Reserved No

7E94H IDT Base (lower 32 bits) No

7E90H Reserved No

Table 26-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
26-10 Vol. 3B

SYSTEM MANAGEMENT MODE
26.4.2 SMRAM Caching
An IA-32 processor does not automatically write back and invalidate its caches before
entering SMM or before exiting SMM. Because of this behavior, care must be taken in
the placement of the SMRAM in system memory and in the caching of the SMRAM to
prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the
SMRAM in system memory will guarantee cache coherency:
• Place the SRAM in a dedicated section of system memory that the operating

system and applications are prevented from accessing. Here, the SRAM can be
designated as cacheable (WB, WT, or WC) for optimum processor performance,
without risking cache incoherence when entering or exiting SMM.

• Place the SRAM in a section of memory that overlaps an area used by the
operating system (such as the video memory), but designate the SMRAM as
uncacheable (UC). This method prevents cache access when in SMM to maintain
cache coherency, but the use of uncacheable memory reduces the performance
of SMM code.

• Place the SRAM in a section of system memory that overlaps an area used by the
operating system and/or application code, but explicitly flush (write back and
invalidate) the caches upon entering and exiting SMM mode. This method
maintains cache coherency, but the incurs the overhead of two complete cache
flushes.

7E8CH GDT Base (lower 32 bits) No

7E8BH - 7E44H Reserved No

7E40H CR4 No

7E3FH - 7DF0H Reserved No

7DE8H IO_EIP Yes

7DE7H - 7DDCH Reserved No

7DD8H IDT Base (Upper 32 bits) No

7DD4H LDT Base (Upper 32 bits) No

7DD0H GDT Base (Upper 32 bits) No

7DCFH - 7C00H Reserved No

NOTE:
1. The two most significant bytes are reserved.

Table 26-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset
(Added to SMBASE +

8000H)

Register Writable?
Vol. 3B 26-11

SYSTEM MANAGEMENT MODE
For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two
methods of locating the SMRAM is recommended. Here the SMRAM is split between
an overlapping and a dedicated region of memory. Upon entering SMM, the SMRAM
space that is accessed overlaps video memory (typically located in low memory).
This SMRAM section is designated as UC memory. The initial SMM code then jumps to
a second SMRAM section that is located in a dedicated region of system memory
(typically in high memory). This SMRAM section can be cached for optimum
processor performance.

For systems that explicitly flush the caches upon entering SMM (the third method
described above), the cache flush can be accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM (generally initiated by asserting the
SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is
serviced first. To guarantee this behavior, the processor requires that the following
constraints on the interaction of FLUSH# and SMI# be met. In a system where the
FLUSH# and SMI# pins are synchronous and the set up and hold times are met, then
the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous
systems, the FLUSH# pin must be asserted at least one clock before the SMI# pin to
guarantee that the FLUSH# pin is serviced first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruc-
tion should be executed prior to leaving SMM to flush the caches.

NOTES
In systems based on the Pentium processor that use the FLUSH# pin
to write back and invalidate cache contents before entering SMM, the
processor will prefetch at least one cache line in between when the
Flush Acknowledge cycle is run and the subsequent recognition of
SMI# and the assertion of SMIACT#.
It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive to the Pentium processor.

26.4.2.1 System Management Range Registers (SMRR)
SMI handler code and data stored by SMM code resides in SMRAM. The SMRR inter-
face is an enhancement in Intel 64 architecture to limit cacheable reference of
addresses in SMRAM to code running in SMM. The SMRR interface can be configured
only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

26.5 SMI HANDLER EXECUTION ENVIRONMENT
After saving the current context of the processor, the processor initializes its core
registers to the values shown in Table 26-4. Upon entering SMM, the PE and PG flags
in control register CR0 are cleared, which places the processor is in an environment
similar to real-address mode. The differences between the SMM execution environ-
ment and the real-address mode execution environment are as follows:
26-12 Vol. 3B

SYSTEM MANAGEMENT MODE
• The addressable SMRAM address space ranges from 0 to FFFFFFFFH (4 GBytes).
(The physical address extension — enabled with the PAE flag in control register
CR4 — is not supported in SMM.)

• The normal 64-KByte segment limit for real-address mode is increased to
4 GBytes.

• The default operand and address sizes are set to 16 bits, which restricts the
addressable SMRAM address space to the 1-MByte real-address mode limit for
native real-address-mode code. However, operand-size and address-size
override prefixes can be used to access the address space beyond the 1-MByte.

• Near jumps and calls can be made to anywhere in the 4-GByte address space if a
32-bit operand-size override prefix is used. Due to the real-address-mode style
of base-address formation, a far call or jump cannot transfer control to a
segment with a base address of more than 20 bits (1 MByte). However, since the
segment limit in SMM is 4 GBytes, offsets into a segment that go beyond the
1-MByte limit are allowed when using 32-bit operand-size override prefixes. Any
program control transfer that does not have a 32-bit operand-size override prefix
truncates the EIP value to the 16 low-order bits.

• Data and the stack can be located anywhere in the 4-GByte address space, but
can be accessed only with a 32-bit address-size override if they are located above
1 MByte. As with the code segment, the base address for a data or stack segment
cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the
SMBASE shifted 4 bits to the right; that is, 3000H. The EIP register is set to 8000H.
When the EIP value is added to shifted CS value (the SMBASE), the resulting linear
address points to the first instruction of the SMI handler.

Table 26-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)

CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits 0FFFFFFFFH

CR0 PE, EM, TS, and PG flags set to 0; others unmodified

CR4 Cleared to zero

DR6 Undefined

DR7 00000400H
Vol. 3B 26-13

SYSTEM MANAGEMENT MODE
The other segment registers (DS, SS, ES, FS, and GS) are cleared to 0 and their
segment limits are set to 4 GBytes. In this state, the SMRAM address space may be
treated as a single flat 4-GByte linear address space. If a segment register is loaded
with a 16-bit value, that value is then shifted left by 4 bits and loaded into the
segment base (hidden part of the segment register). The limits and attributes are not
modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M
interrupts, single-step traps, breakpoint traps, and INIT operations are inhibited
when the processor enters SMM. Maskable hardware interrupts, exceptions, single-
step traps, and breakpoint traps can be enabled in SMM if the SMM execution envi-
ronment provides and initializes an interrupt table and the necessary interrupt and
exception handlers (see Section 26.6).

26.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM
When the processor enters SMM, all hardware interrupts are disabled in the following
manner:
• The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware

interrupts from being generated.
• The TF flag in the EFLAGS register is cleared, which disables single-step traps.
• Debug register DR7 is cleared, which disables breakpoint traps. (This action

prevents a debugger from accidentally breaking into an SMM handler if a debug
breakpoint is set in normal address space that overlays code or data in SMRAM.)

• NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section
26.8 for more information about how NMIs are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware
interrupts can be enabled by setting the IF flag. Intel recommends that SMM code be
written in so that it does not invoke software interrupts (with the INT n, INTO, INT 3,
or BOUND instructions) or generate exceptions.

If the SMM handler requires interrupt and exception handling, an SMM interrupt table
and the necessary exception and interrupt handlers must be created and initialized
from within SMM. Until the interrupt table is correctly initialized (using the LIDT
instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-
handling facilities:
• The interrupt table should be located at linear address 0 and must contain real-

address mode style interrupt vectors (4 bytes containing CS and IP).
• Due to the real-address mode style of base address formation, an interrupt or

exception cannot transfer control to a segment with a base address of more that
20 bits.
26-14 Vol. 3B

SYSTEM MANAGEMENT MODE
• An interrupt or exception cannot transfer control to a segment offset of more
than 16 bits (64 KBytes).

• When an exception or interrupt occurs, only the 16 least-significant bits of the
return address (EIP) are pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 KBytes, it is not possible for the interrupt/exception
handler to return control to that procedure. (One solution to this problem is for a
handler to adjust the return address on the stack.)

• The SMBASE relocation feature affects the way the processor will return from an
interrupt or exception generated while the SMI handler is executing. For
example, if the SMBASE is relocated to above 1 MByte, but the exception
handlers are below 1 MByte, a normal return to the SMI handler is not possible.
One solution is to provide the exception handler with a mechanism for calculating
a return address above 1 MByte from the 16-bit return address on the stack, then
use a 32-bit far call to return to the interrupted procedure.

• If an SMI handler needs access to the debug trap facilities, it must insure that an
SMM accessible debug handler is available and save the current contents of
debug registers DR0 through DR3 (for later restoration). Debug registers DR0
through DR3 and DR7 must then be initialized with the appropriate values.

• If an SMI handler needs access to the single-step mechanism, it must insure that
an SMM accessible single-step handler is available, and then set the TF flag in the
EFLAGS register.

• If the SMI design requires the processor to respond to maskable hardware
interrupts or software-generated interrupts while in SMM, it must ensure that
SMM accessible interrupt handlers are available and then set the IF flag in the
EFLAGS register (using the STI instruction). Software interrupts are not blocked
upon entry to SMM, so they do not need to be enabled.

26.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it
was not always possible for an SMI handler to distinguish between a synchronous
SMI (triggered during an I/O instruction) and an asynchronous SMI. To facilitate the
discrimination of these two events, incremental state information has been added to
the SMM state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental
state information described below.

26.7.1 I/O State Implementation
Within the extended SMM state save map, a bit (IO_SMI) is provided that is set only
when an SMI is either taken immediately after a successful I/O instruction or is taken
Vol. 3B 26-15

SYSTEM MANAGEMENT MODE
after a successful iteration of a REP I/O instruction (the successful notion pertains to
the processor point of view; not necessarily to the corresponding platform function).
When set, the IO_SMI bit provides a strong indication that the corresponding SMI
was synchronous. In this case, the SMM State Save Map also supplies the port
address of the I/O operation. The IO_SMI bit and the I/O Port Address may be used
in conjunction with the information logged by the platform to confirm that the SMI
was indeed synchronous.

The IO_SMI bit by itself is a strong indication, not a guarantee, that the SMI is
synchronous. This is because an asynchronous SMI might coincidentally be taken
after an I/O instruction. In such a case, the IO_SMI bit would still be set in the SMM
state save map.

Information characterizing the I/O instruction is saved in two locations in the SMM
State Save Map (Table 26-5). The IO_SMI bit also serves as a valid bit for the rest of
the I/O information fields. The contents of these I/O information fields are not
defined when the IO_SMI bit is not set.

When IO_SMI is set, the other fields may be interpreted as follows:
• I/O length:

• 001 – Byte

• 010 – Word

• 100 – Dword
• I/O instruction type (Table 26-6)

Table 26-5. I/O Instruction Information in the SMM State Save Map
State (SMM Rev. ID: 30004H or
higher)

Format

31 16 15 8 7 4 3 1 0

I/0 State Field

SMRAM offset 7FA4

I/O
 Port

Reserved

I/O
 Type

I/O
 Length

IO
_SM

I

31 0

I/O Memory Address Field

SMRAM offset 7FA0

I/O Memory Address

Table 26-6. I/O Instruction Type Encodings
Instruction Encoding

IN Immediate 1001

IN DX 0001

OUT Immediate 1000
26-16 Vol. 3B

SYSTEM MANAGEMENT MODE
26.8 NMI HANDLING WHILE IN SMM
NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs
during the SMI handler, it is latched and serviced after the processor exits SMM. Only
one NMI request will be latched during the SMI handler. If an NMI request is pending
when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not
blocked before the SMI occurred. If NMIs were blocked before the SMI occurred, they
are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be
enabled through software by executing an IRET instruction. If the SMM handler
requires the use of NMI interrupts, it should invoke a dummy interrupt service
routine for the purpose of executing an IRET instruction. Once an IRET instruction is
executed, NMI interrupt requests are serviced in the same “real mode” manner in
which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then
another NMI occurs. During NMI interrupt handling, NMI interrupts are disabled, so
normally NMI interrupts are serviced and completed with an IRET instruction one at
a time. When the processor enters SMM while executing an NMI handler, the
processor saves the SMRAM state save map but does not save the attribute to keep
NMI interrupts disabled. Potentially, an NMI could be latched (while in SMM or upon
exit) and serviced upon exit of SMM even though the previous NMI handler has still
not completed. One or more NMIs could thus be nested inside the first NMI handler.
The NMI interrupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will
enable NMI interrupts from inside of SMM. This behavior is implementation specific
for the Pentium processor and is not part of the IA-32 architecture.

26.9 SMM REVISION IDENTIFIER
The SMM revision identifier field is used to indicate the version of SMM and the SMM
extensions that are supported by the processor (see Figure 26-2). The SMM revision
identifier is written during SMM entry and can be examined in SMRAM space at offset

OUT DX 0000

INS 0011

OUTS 0010

REP INS 0111

REP OUTS 0110

Table 26-6. I/O Instruction Type Encodings (Contd.)
Instruction Encoding
Vol. 3B 26-17

SYSTEM MANAGEMENT MODE
7EFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

The upper word of the SMM revision identifier refers to the extensions available. If
the I/O instruction restart flag (bit 16) is set, the processor supports the I/O instruc-
tion restart (see Section 26.12); if the SMBASE relocation flag (bit 17) is set, SMRAM
base address relocation is supported (see Section 26.11).

26.10 AUTO HALT RESTART
If the processor is in a HALT state (due to the prior execution of a HLT instruction)
when it receives an SMI, the processor records the fact in the auto HALT restart flag
in the saved processor state (see Figure 26-3). (This flag is located at offset 7F02H
and bit 0 in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that
the SMI occurred when the processor was in the HALT state), the SMI handler has
two options:
• It can leave the auto HALT restart flag set, which instructs the RSM instruction to

return program control to the HLT instruction. This option in effect causes the
processor to re-enter the HALT state after handling the SMI. (This is the default
operation.)

• It can clear the auto HALT restart flag, with instructs the RSM instruction to
return program control to the instruction following the HLT instruction.

Figure 26-2. SMM Revision Identifier

SMM Revision Identifier

I/O Instruction Restart
SMBASE Relocation

Register Offset
7EFCH

31 0

Reserved

18 17 16 15
26-18 Vol. 3B

SYSTEM MANAGEMENT MODE
These options are summarized in Table 26-7. If the processor was not in a HALT state
when the SMI was received (the auto HALT restart flag is cleared), setting the flag to
1 will cause unpredictable behavior when the RSM instruction is executed.

If the HLT instruction is restarted, the processor will generate a memory access to
fetch the HLT instruction (if it is not in the internal cache), and execute a HLT bus
transaction. This behavior results in multiple HLT bus transactions for the same HLT
instruction.

26.10.1 Executing the HLT Instruction in SMM
The HLT instruction should not be executed during SMM, unless interrupts have been
enabled by setting the IF flag in the EFLAGS register. If the processor is halted in
SMM, the only event that can remove the processor from this state is a maskable
hardware interrupt or a hardware reset.

26.11 SMBASE RELOCATION
The default base address for the SMRAM is 30000H. This value is contained in an
internal processor register called the SMBASE register. The operating system or
executive can relocate the SMRAM by setting the SMBASE field in the saved state
map (at offset 7EF8H) to a new value (see Figure 26-4). The RSM instruction reloads
the internal SMBASE register with the value in the SMBASE field each time it exits
SMM. All subsequent SMI requests will use the new SMBASE value to find the starting

Figure 26-3. Auto HALT Restart Field

Table 26-7. Auto HALT Restart Flag Values

Value of Flag
After Entry to
SMM

Value of Flag
When Exiting SMM

Action of Processor When Exiting SMM

0

0

1

1

0

1

0

1

Returns to next instruction in interrupted program or task.

Unpredictable.

Returns to next instruction after HLT instruction.

Returns to HALT state.

Auto HALT Restart

015

Reserved
Register Offset
7F02H

1

Vol. 3B 26-19

SYSTEM MANAGEMENT MODE
address for the SMI handler (at SMBASE + 8000H) and the SMRAM state save area
(from SMBASE + FE00H to SMBASE + FFFFH). (The processor resets the value in its
internal SMBASE register to 30000H on a RESET, but does not change it on an INIT.)

In multiple-processor systems, initialization software must adjust the SMBASE value
for each processor so that the SMRAM state save areas for each processor do not
overlap. (For Pentium and Intel486 processors, the SMBASE values must be aligned
on a 32-KByte boundary or the processor will enter shutdown state during the execu-
tion of a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the
ability to relocate the SMBASE (see Section 26.9).

26.11.1 Relocating SMRAM to an Address Above 1 MByte
In SMM, the segment base registers can only be updated by changing the value in the
segment registers. The segment registers contain only 16 bits, which allows only 20
bits to be used for a segment base address (the segment register is shifted left 4 bits
to determine the segment base address). If SMRAM is relocated to an address above
1 MByte, software operating in real-address mode can no longer initialize the
segment registers to point to the SMRAM base address (SMBASE).

The SMRAM can still be accessed by using 32-bit address-size override prefixes to
generate an offset to the correct address. For example, if the SMBASE has been relo-
cated to FFFFFFH (immediately below the 16-MByte boundary) and the DS, ES, FS,
and GS registers are still initialized to 0H, data in SMRAM can be accessed by using
32-bit displacement registers, as in the following example:

mov esi,00FFxxxxH; 64K segment immediately below 16M
mov ax,ds:[esi]

A stack located above the 1-MByte boundary can be accessed in the same manner.

26.12 I/O INSTRUCTION RESTART
If the I/O instruction restart flag in the SMM revision identifier field is set (see Section
26.9), the I/O instruction restart mechanism is present on the processor. This mech-
anism allows an interrupted I/O instruction to be re-executed upon returning from

Figure 26-4. SMBASE Relocation Field

031

SMM Base
Register Offset
7EF8H
26-20 Vol. 3B

SYSTEM MANAGEMENT MODE
SMM mode. For example, if an I/O instruction is used to access a powered-down I/O
device, a chip set supporting this device can intercept the access and respond by
asserting SMI#. This action invokes the SMI handler to power-up the device. Upon
returning from the SMI handler, the I/O instruction restart mechanism can be used to
re-execute the I/O instruction that caused the SMI.

The I/O instruction restart field (at offset 7F00H in the SMM state-save area, see
Figure 26-5) controls I/O instruction restart. When an RSM instruction is executed, if
this field contains the value FFH, then the EIP register is modified to point to the I/O
instruction that received the SMI request. The processor will then automatically re-
execute the I/O instruction that the SMI trapped. (The processor saves the necessary
machine state to insure that re-execution of the instruction is handled coherently.)

If the I/O instruction restart field contains the value 00H when the RSM instruction is
executed, then the processor begins program execution with the instruction following
the I/O instruction. (When a repeat prefix is being used, the next instruction may be
the next I/O instruction in the repeat loop.) Not re-executing the interrupted I/O
instruction is the default behavior; the processor automatically initializes the I/O
instruction restart field to 00H upon entering SMM. Table 26-8 summarizes the states
of the I/O instruction restart field.

The I/O instruction restart mechanism does not indicate the cause of the SMI. It is
the responsibility of the SMI handler to examine the state of the processor to deter-
mine the cause of the SMI and to determine if an I/O instruction was interrupted and
should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-I/O
instruction boundary, setting the I/O instruction restart field to FFH prior to executing
the RSM instruction will likely result in a program error.

Figure 26-5. I/O Instruction Restart Field

Table 26-8. I/O Instruction Restart Field Values

Value of Flag After
Entry to SMM

Value of Flag When
Exiting SMM

Action of Processor When Exiting SMM

00H

00H

00H

FFH

Does not re-execute trapped I/O instruction.

Re-executes trapped I/O instruction.

015

I/O Instruction Restart Field Register Offset
7F00H
Vol. 3B 26-21

SYSTEM MANAGEMENT MODE
26.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is
Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that
occurred on an I/O instruction boundary, the processor will service the new SMI
request before restarting the originally interrupted I/O instruction. If the I/O instruc-
tion restart field is set to FFH prior to returning from the second SMI handler, the EIP
will point to an address different from the originally interrupted I/O instruction, which
will likely lead to a program error. To avoid this situation, the SMI handler must be
able to recognize the occurrence of back-to-back SMI interrupts when I/O instruction
restart is being used and insure that the handler sets the I/O instruction restart field
to 00H prior to returning from the second invocation of the SMI handler.

26.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS
The following should be noted when designing multiple-processor systems:
• Any processor in a multiprocessor system can respond to an SMM.
• Each processor needs its own SMRAM space. This space can be in system

memory or in a separate RAM.
• The SMRAMs for different processors can be overlapped in the same memory

space. The only stipulation is that each processor needs its own state save area
and its own dynamic data storage area. (Also, for the Pentium and Intel486
processors, the SMBASE address must be located on a 32-KByte boundary.) Code
and static data can be shared among processors. Overlapping SMRAM spaces can
be done more efficiently with the P6 family processors because they do not
require that the SMBASE address be on a 32-KByte boundary.

• The SMI handler will need to initialize the SMBASE for each processor.
• Processors can respond to local SMIs through their SMI# pins or to SMIs received

through the APIC interface. The APIC interface can distribute SMIs to different
processors.

• Two or more processors can be executing in SMM at the same time.
• When operating Pentium processors in dual processing (DP) mode, the SMIACT#

pin is driven only by the MRM processor and should be sampled with ADS#. For
additional details, see Chapter 14 of the Pentium Processor Family User’s Manual,
Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the
SMBASE. If there is a need to support two or more processors in SMM mode at the
same time then each processor should have dedicated SMRAM spaces. This can be
done by using the SMBASE Relocation feature (see Section 26.11).
26-22 Vol. 3B

SYSTEM MANAGEMENT MODE
26.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX
OPERATION AND SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation
are few. This section details those interactions. It also explains how this treatment
affects SMX operation.

26.14.1 Default Treatment of SMI Delivery
Ordinary SMI delivery saves processor state into SMRAM and then loads state based
on architectural definitions. Under the default treatment, processors that support
VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:

CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)

IF the logical processor is in VMX operation
THEN

save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;

FI;
IF the logical processor supports SMX operation

THEN
save internal to the logical processor an indication of whether the Intel® TXT private space

is locked;
IF the TXT private space is unlocked

THEN lock the TXT private space;
FI;

FI;
CR4.VMXE ← 0;
perform ordinary SMI delivery:

save processor state in SMRAM;
set processor state to standard SMM values;1

invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs);
combined mappings for VPID 0000H are invalidated for all EP4TA values (EP4TA is the value of bits
51:12 of EPTP; see Section 25.3);

The pseudocode above makes reference to the saving of VMX-critical state. This
state consists of the following: (1) SS.DPL (the current privilege level);
(2) RFLAGS.VM2; (3) the state of blocking by STI and by MOV SS (see Table 21-3 in

1. This causes the logical processor to block INIT signals, NMIs, and SMIs.
Vol. 3B 26-23

SYSTEM MANAGEMENT MODE
Section 21.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX
non-root operation and the “virtual NMIs” VM-execution control is 1); and (5) an
indication of whether an MTF VM exit is pending (see Section 22.7.2). These data
may be saved internal to the processor or in the VMCS region of the current VMCS.
Processors that do not support SMI recognition while there is blocking by STI or by
MOV SS need not save the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution
control and the logical processor was in VMX non-root operation at the time of an
SMI, it saves the value of that control into bit 0 of the 32-bit field at offset SMBASE +
8000H + 7EE0H (SMBASE + FEE0H; see Table 26-3).1 If the logical processor was
not in VMX non-root operation at the time of the SMI, it saves 0 into that bit. If the
logical processor saves 1 into that bit (it was in VMX non-root operation and the
“enable EPT” VM-execution control was 1), it saves the value of the EPT pointer
(EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the
controls associated with VMX non-root operation are disabled in SMM and thus
cannot cause VM exits while the logical processor in SMM.

26.14.2 Default Treatment of RSM
Ordinary execution of RSM restores processor state from SMRAM. Under the default
treatment, processors that support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE

restore state normally from SMRAM;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs;

combined mappings are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 25.3);

IF the logical processor supports SMX operation andthe Intel® TXT private space was
unlocked at the time of the last SMI (as saved)

THEN unlock the TXT private space;
FI;
CR4.VMXE ← value stored internally;

2. Section 26.14 and Section 26.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor reg-
isters because most processors that support VMX operation also support Intel 64 architecture.
For processors that do not support Intel 64 architecture, this notation refers to the 32-bit forms
of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to
refer specifically to the lower 32 bits of the register.

1. “Enable EPT” is a secondary processor-based VM-execution control. If bit 31 of the primary pro-
cessor-based VM-execution controls is 0, SMI functions as the “enable EPT” VM-execution control
were 0. See Section 21.6.2.
26-24 Vol. 3B

SYSTEM MANAGEMENT MODE
IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)

THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 26.14.1;
set to their fixed values any bits in CR0 and CR4 whose values must be fixed in

VMX operation (see Section 20.8);1

IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-
execution control is 0)2

THEN
CS.RPL ← SS.DPL;
SS.RPL ← SS.DPL;

FI;
restore current VMCS pointer;

FI;
leave SMM;
IF logical processor will be in VMX operation or in SMX operation after RSM

THEN block A20M and leave A20M mode;
FI;

FI;

RSM unblocks SMIs. It restores the state of blocking by NMI (see Table 21-3 in
Section 21.4.2) as follows:
• If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution

control will be 0, the state of NMI blocking is restored normally.
• If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution

control will be 1, NMIs are not blocked after RSM. The state of virtual-NMI
blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX
root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the
controls associated with the current VMCS. If the “interrupt-window exiting”
VM-execution control is 1, a VM exit occurs immediately after RSM if the enabling
conditions apply. The same is true for the “NMI-window exiting” VM-execution
control. Such VM exits occur with their normal priority. See Section 22.3.

1. If the RSM is to VMX non-root operation and both the “unrestricted guest” VM-execution control
and bit 31 of the primary processor-based VM-execution controls will be 1, CR0.PE and CR0.PG
retain the values that were loaded from SMRAM regardless of what is reported in the capability
MSR IA32_VMX_CR0_FIXED0.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if the “unrestricted
guest” VM-execution control were 0. See Section 21.6.2.
Vol. 3B 26-25

SYSTEM MANAGEMENT MODE
If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is
pending on the instruction boundary following execution of RSM. The following items
detail the treatment of MTF VM exits that may be pending following RSM:
• System-management interrupts (SMIs), INIT signals, and higher priority events

take priority over these MTF VM exits. These MTF VM exits take priority over
debug-trap exceptions and lower priority events.

• These MTF VM exits wake the logical processor if RSM caused the logical
processor to enter the HLT state (see Section 26.10). They do not occur if the
logical processor just entered the shutdown state.

26.14.3 Protection of CR4.VMXE in SMM
Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical
processor is in SMM. Any attempt by software running in SMM to set this bit causes a
general-protection exception. In addition, software cannot use VMX instructions or
enter VMX operation while in SMM.

26.14.4 VMXOFF and SMI Unblocking
The VMXOFF instruction can be executed only with the default treatment (see Section
26.15.1) and only outside SMM. If SMIs are blocked when VMXOFF is executed,
VMXOFF unblocks them unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
26.15.5 for details regarding this MSR).1 Section 26.15.7 identifies a case in which
SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capa-
bility MSR IA32_VMX_MISC (see Appendix G.6) to determine whether this is allowed.

26.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM
Dual-monitor treatment is activated through the cooperation of the executive
monitor (the VMM that operates outside of SMM to provide basic virtualization) and
the SMM monitor (the VMM that operates inside SMM—while in VMX operation—to
support system-management functions). Control is transferred to the SMM monitor
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should
consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to determine
whether it is supported.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIs regardless
of the value of the register’s valid bit (bit 0).
26-26 Vol. 3B

SYSTEM MANAGEMENT MODE
26.15.1 Dual-Monitor Treatment Overview
The dual-monitor treatment uses an executive monitor and an SMM monitor. Transi-
tions from the executive monitor or its guests to the SMM monitor are called SMM
VM exits and are discussed in Section 26.15.2. SMM VM exits are caused by SMIs as
well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the SMM monitor for service.

The SMM monitor runs in VMX root operation and uses VMX instructions to establish
a VMCS and perform VM entries to its own guests. This is done all inside SMM (see
Section 26.15.3). The SMM monitor returns from SMM, not by using the RSM instruc-
tion, but by using a VM entry that returns from SMM. Such VM entries are described
in Section 26.15.4.

Initially, there is no SMM monitor and the default treatment (Section 26.14) is used.
The dual-monitor treatment is not used until it is enabled and activated. The steps to
do this are described in Section 26.15.5 and Section 26.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF
will fail if executed. The dual-monitor treatment must be deactivated first. The SMM
monitor deactivates dual-monitor treatment using a VM entry that returns from SMM
with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section
26.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive
monitor. SMM VM exits, which transfer control to the SMM monitor, use a different
VMCS. Under the dual-monitor treatment, each logical processor uses a separate
VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active,
the logical processor maintains another VMCS pointer called the SMM-transfer
VMCS pointer. The SMM-transfer VMCS pointer is established when the dual-
monitor treatment is activated.

26.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits
result from the arrival of an SMI outside SMM or from execution of VMCALL in VMX
root operation outside SMM. Execution of VMCALL in VMX root operation causes an
SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see
Section 26.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the
default treatment. This SMM VM exit activates the dual-monitor treatment (see
Section 26.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections
26.15.2.1 through 26.15.2.5. Differences between SMM VM exits that activate the
dual-monitor treatment and other SMM VM exits are described in Section 26.15.6.
Vol. 3B 26-27

SYSTEM MANAGEMENT MODE
26.15.2.1 Architectural State Before a VM Exit
System-management interrupts (SMIs) that cause SMM VM exits always do so
directly. They do not save state to SMRAM as they do under the default treatment.

26.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:

— If the SMM VM exit commenced in VMX non-root operation, it receives the
current-VMCS pointer.

— If the SMM VM exit commenced in VMX root operation, it receives the VMXON
pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS
pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit
information is recorded in that VMCS, and VM-entry control fields in that VMCS are
updated. State is saved into the guest-state area of that VMCS. The VM-exit controls
and host-state area of that VMCS determine how the VM exit operates.

26.15.2.3 Recording VM-Exit Information
SMM VM exits differ from other VM exit with regard to the way they record VM-exit
information. The differences follow.
• Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with
the reason for the SMM VM exit: I/O SMI (an SMI arrived immediately after
retirement of an I/O instruction), other SMI, or VMCALL. See Appendix I,
“VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation.
Because the SMM monitor may need to know whether it was invoked from
VMX root or VMX non-root operation, this information is stored in bit 29 of the
exit-reason field (see Table 21-13 in Section 21.9.1). The bit is set by SMM
VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit
was pending, bit 28 of the exit-reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.
• Exit qualification. For an SMM VM exit due an SMI that arrives immediately

after the retirement of an I/O instruction, the exit qualification contains
information about the I/O instruction that retired immediately before the SMI.It
has the format given in Table 26-9.
26-28 Vol. 3B

SYSTEM MANAGEMENT MODE
• Guest linear address. This field is used for VM exits due to SMIs that arrive
immediately after the retirement of an INS or OUTS instruction for which the
relevant segment (ES for INS; DS for OUTS unless overridden by an instruction
prefix) is usable. The field receives the value of the linear address generated by
ES:(E)DI (for INS) or segment:(E)SI (for OUTS; the default segment is DS but
can be overridden by a segment override prefix) at the time the instruction
started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical
processor was not in 64-bit mode before the VM exit.

• I/O RCX, I/O RSI, I/O RDI, and I/O RIP. For an SMM VM exit due an SMI
that arrives immediately after the retirement of an I/O instruction, these fields
receive the values that were in RCX, RSI, RDI, and RIP, respectively, before the
I/O instruction executed. Thus, the value saved for I/O RIP addresses the I/O
instruction.

26.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area.

Table 26-9. Exit Qualification for SMIs That Arrive Immediately
After the Retirement of an I/O Instruction

Bit Position(s) Contents

2:0 Size of access:

0 = 1-byte
1 = 2-byte
3 = 4-byte

Other values not used.

3 Direction of the attempted access (0 = OUT, 1 = IN)

4 String instruction (0 = not string; 1 = string)

5 REP prefixed (0 = not REP; 1 = REP)

6 Operand encoding (0 = DX, 1 = immediate)

15:7 Reserved (cleared to 0)

31:16 Port number (as specified in the I/O instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.
Vol. 3B 26-29

SYSTEM MANAGEMENT MODE
The value of the VMX-preemption timer is saved into the corresponding field in the
guest-state area if the “save VMX-preemption timer value” VM-exit control is 1. That
field becomes undefined if, in addition, either the SMM VM exit is from VMX root
operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is 0.

26.15.2.5 Updating Non-Register State
SMM VM exits affect the non-register state of a logical processor as follows:
• SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be

unblocked through execution of IRET or through a VM entry (depending on the
value loaded for the interruptibility state and the setting of the “virtual NMIs”
VM-execution control).

• SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry
that returns from SMM (see Section 26.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with
VPID 0000H for all PCIDs. Combined mappings for VPID 0000H are invalidated for all
EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary
VM exits are not required to perform such invalidation if the “enable VPID” VM-
execution control is 1; see Section 24.5.5.)

26.15.3 Operation of an SMM Monitor
Once invoked, an SMM monitor is in VMX root operation and can use VMX instructions
to configure VMCSs and to cause VM entries to virtual machines supported by those
structures. As noted in Section 26.15.1, the VMXOFF instruction cannot be used
under the dual-monitor treatment and thus cannot be used by an SMM monitor.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted
in Section 22.1.3, it causes a VM exit if executed in SMM in VMX non-root operation.
If executed in VMX root operation, it causes an invalid-opcode exception. SMM
monitor uses VM entries to return from SMM (see Section 26.15.4).

26.15.4 VM Entries that Return from SMM
The SMM monitor returns from SMM using a VM entry with the “entry to SMM”
VM-entry control clear. VM entries that return from SMM reverse the effects of an
SMM VM exit (see Section 26.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not
necessarily enter VMX non-root operation. If the executive-VMCS pointer field in the
current VMCS contains the VMXON pointer, the logical processor remains in VMX root
operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see
Sections 26.15.4.1 through 26.15.4.10.
26-30 Vol. 3B

SYSTEM MANAGEMENT MODE
26.15.4.1 Checks on the Executive-VMCS Pointer Field
VM entries that return from SMM perform the following checks on the executive-
VMCS pointer field in the current VMCS:
• Bits 11:0 must be 0.
• The pointer must not set any bits beyond the processor’s physical-address

width.1,2

• The 32 bits located in memory referenced by the physical address in the pointer
must contain the processor’s VMCS revision identifier (see Section 21.2).

The checks above are performed before the checks described in Section 26.15.4.2
and before any of the following checks:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, the launch state

of the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field) must be launched (see Section 21.10.3).

• If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-
VMCS pointer field must contain the VMXON pointer (see Section 26.15.7).3

26.15.4.2 Checks on VM-Execution Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-execution control fields specified in Section 23.2.1.1.
They do not apply the checks to the current VMCS. Instead, VM-entry behavior
depends on whether the executive-VMCS pointer field contains the VMXON pointer:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the checks are not performed at all.
• If the executive-VMCS pointer field does not contain the VMXON pointer (the

VM entry enters VMX non-root operation), the checks are performed on the
VM-execution control fields in the executive VMCS (the VMCS referenced by the
executive-VMCS pointer field in the current VMCS). These checks are performed
after checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution
control is 0, the “save VMX-preemption timer value” VM-exit control is also 0. This
check is not performed by VM entries that return from SMM.

1. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

2. If IA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see
Appendix G.1.

3. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
Vol. 3B 26-31

SYSTEM MANAGEMENT MODE
26.15.4.3 Checks on VM-Entry Control Fields
VM entries that return from SMM differ from other VM entries with regard to the
checks performed on the VM-entry control fields specified in Section 23.2.1.3.

Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the
VM entry remains in VMX root operation), the following must not all hold for the
VM-entry interruption-information field:
• the valid bit (bit 31) in the VM-entry interruption-information field is 1
• the interruption type (bits 10:8) is not 7 (other event); and
• the vector (bits 7:0) is not 0 (pending MTF VM exit).

26.15.4.4 Checks on the Guest State Area
Section 23.3.1 specifies checks performed on fields in the guest-state area of the
VMCS. Some of these checks are conditioned on the settings of certain VM-execution
controls (e.g., “virtual NMIs” or “unrestricted guest”). VM entries that return from
SMM modify these checks based on whether the executive-VMCS pointer field
contains the VMXON pointer:1

• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry
remains in VMX root operation), the checks are performed as all relevant VM-
execution controls were 0. (As a result, some checks may not be performed at
all.)

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), this check is performed based on the
settings of the VM-execution controls in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the
wait-for-SIPI state if the executive-VMCS pointer field contains the VMXON pointer
(the VM entry is to VMX root operation).

26.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings
associated with all VPIDs. Combined mappings are invalidated for all EP4TA values
(EP4TA is the value of bits 51:12 of EPTP; see Section 25.3). (Ordinary VM entries
are required to perform such invalidation only for VPID 0000H and are not required
to do even that if the “enable VPID” VM-execution control is 1; see Section 23.3.2.5.)

1. An SMM monitor can determine the VMXON pointer by reading the executive-VMCS pointer field
in the current VMCS after the SMM VM exit that activates the dual-monitor treatment.
26-32 Vol. 3B

SYSTEM MANAGEMENT MODE
26.15.4.6 VMX-Preemption Timer
A VM entry that returns from SMM activates the VMX-preemption timer only if the
executive-VMCS pointer field does not contain the VMXON pointer (the VM entry
enters VMX non-root operation) and the “activate VMX-preemption timer” VM-entry
control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS
pointer field). In this case, VM entry starts the VMX-preemption timer with the value
in the VMX-preemption timer-value field in the current VMCS.

26.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer
with the current-VMCS pointer. Following this, they load the current-VMCS pointer
from a field in the current VMCS:
• If the executive-VMCS pointer field contains the VMXON pointer (the VM entry

remains in VMX root operation), the current-VMCS pointer is loaded from the
VMCS-link pointer field.

• If the executive-VMCS pointer field does not contain the VMXON pointer (the
VM entry enters VMX non-root operation), the current-VMCS pointer is loaded
with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution
controls in effect after the VM entry are those from the new current VMCS. This
includes any structures external to the VMCS referenced by VM-execution control
fields.

The updating of these VMCS pointers occurs before event injection. Event injection is
determined, however, by the VM-entry control fields in the VMCS that was current
when the VM entry commenced.

26.15.4.8 VM Exits Induced by VM Entry
Section 23.5.1.2 describes how the event-delivery process invoked by event injec-
tion may lead to a VM exit. Section 23.6.3 to Section 23.6.7 describe other situations
that may cause a VM exit to occur immediately after a VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the
current VMCS. For VM entries that return from SMM, they can occur only if the exec-
utive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters
VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS
that is current after the VM entry. This is the VMCS referenced by the value of the
executive-VMCS pointer field at the time of the VM entry (see Section 26.15.4.7).
This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a
VM entry returning from SMM are to the executive monitor and not to the SMM
monitor.
Vol. 3B 26-33

SYSTEM MANAGEMENT MODE
26.15.4.9 SMI Blocking
VM entries that return from SMM determine the blocking of system-management
interrupts (SMIs) as follows:
• If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are

blocked after VM entry if and only if the bit 2 in the interruptibility-state field is 1.
• If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of

SMIs depends on whether the logical processor is in SMX operation:1

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.

— If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treat-
ment may leave SMIs blocked. This feature exists to allow an SMM monitor to invoke
functionality outside of SMM without unblocking SMIs.

26.15.4.10 Failures of VM Entries That Return from SMM
Section 23.7 describes the treatment of VM entries that fail during or after loading
guest state. Such failures record information in the VM-exit information fields and
load processor state as would be done on a VM exit. The VMCS used is the one that
was current before the VM entry commenced. Control is thus transferred to the SMM
monitor and the logical processor remains in SMM.

26.15.5 Enabling the Dual-Monitor Treatment
Code and data for the SMM monitor reside in a region of SMRAM called the monitor
segment (MSEG). Code running in SMM determines the location of MSEG and estab-
lishes its content. This code is also responsible for enabling the dual-monitor treat-
ment.

SMM code enables the dual-monitor treatment and determines the location of MSEG
by writing to IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following
format:
• Bit 0 is the register’s valid bit. The SMM monitor may be invoked using VMCALL

only if this bit is 1. Because VMCALL is used to activate the dual-monitor
treatment (see Section 26.15.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

• Bit 1 is reserved.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
26-34 Vol. 3B

SYSTEM MANAGEMENT MODE
• Bit 2 determines whether executions of VMXOFF unblock SMIs under the default
treatment of SMIs and SMM. Executions of VMXOFF unblock SMIs unless bit 2 is
1 (the value of bit 0 is irrelevant). See Section 26.14.4.
Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6,
“Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B)

• Bits 11:3 are reserved.
• Bits 31:12 contain a value that, when shifted right 12 bits, is the physical address

of MSEG (the MSEG base address).
• Bits 63:32 are reserved.

The following items detail use of this MSR:
• The IA32_SMM_MONITOR_CTL MSR is supported only on processors that support

the dual-monitor treatment.1 On other processors, accesses to the MSR using
RDMSR or WRMSR generate a general-protection fault (#GP(0)).

• A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a
general-protection fault (#GP(0)) if executed outside of SMM or if an attempt is
made to set any reserved bit. An attempt to write to IA32_SMM_MONITOR_CTL
MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

• Reads from IA32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time
RDMSR is allowed. The MSR may be read as part of any VM exit.

• The dual-monitor treatment can be activated only if the valid bit in the MSR is set
to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The
format of the MSEG header is given in Table 26-10 (each field is 32 bits).

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

Table 26-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier

4 SMM-monitor features

8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset
Vol. 3B 26-35

SYSTEM MANAGEMENT MODE
To ensure proper behavior in VMX operation, software should maintain the MSEG
header in writeback cacheable memory. Future implementations may allow or
require a different memory type.1 Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix G.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in
IA32_SMM_MONITOR_CTL MSR) only after establishing the content of the MSEG
header as follows:
• Bytes 3:0 contain the MSEG revision identifier. Different processors may use

different MSEG revision identifiers. These identifiers enable software to avoid
using an MSEG header formatted for one processor on a processor that uses a
different format. Software can discover the MSEG revision identifier that a
processor uses by reading the VMX capability MSR IA32_VMX_MISC (see
Appendix G.6).

• Bytes 7:4 contain the SMM-monitor features field. Bits 31:1 of this field are
reserved and must be zero. Bit 0 of the field is the IA-32e mode SMM feature
bit. It indicates whether the logical processor will be in IA-32e mode after the
SMM monitor is activated (see Section 26.15.6).

• Bytes 31:8 contain fields that determine how processor state is loaded when the
SMM monitor is activated (see Section 26.15.6.4). SMM code should establish
these fields so that activating of the SMM monitor invokes the SMM monitor’s
initialization code.

26.15.6 Activating the Dual-Monitor Treatment
The dual-monitor treatment may be enabled by SMM code as described in Section
26.15.5. The dual-monitor treatment is activated only if it is enabled and only by the
executive monitor. The executive monitor activates the dual-monitor treatment by
executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit.
Differences between this SMM VM exit and other SMM VM exits are discussed in

24 ESP offset

28 CR3 offset

1. Alternatively, software may map the MSEG header with the UC memory type; this may be neces-
sary, depending on how memory is organized. Doing so is strongly discouraged unless necessary
as it will cause the performance of transitions using those structures to suffer significantly. In
addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix G.1.

Table 26-10. Format of MSEG Header (Contd.)

Byte Offset Field
26-36 Vol. 3B

SYSTEM MANAGEMENT MODE
Sections 26.15.6.1 through 26.15.6.5. See also “VMCALL—Call to VM Monitor” in
Chapter 6 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B.

26.15.6.1 Initial Checks
An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the
processor supports the dual-monitor treatment;1 (2) the logical processor is in VMX
root operation; (3) the logical processor is outside SMM and the valid bit is set in the
IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086
mode and not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treat-
ment is not active.

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS
established by the executive monitor. The VMCALL performs the following checks on
the current VMCS in the order indicated:

1. There must be a current VMCS pointer.

2. The launch state of the current VMCS must be clear.

3. The VM-exit control fields must be valid:

— Reserved bits in the VM-exit controls must be set properly. Software may
consult the VMX capability MSR IA32_VMX_EXIT_CTLS to determine the
proper settings (see Appendix G.4).

— The following checks are performed for the VM-exit MSR-store address if the
VM-exit MSR-store count field is non-zero:

• The lower 4 bits of the VM-exit MSR-store address must be 0. The address
should not set any bits beyond the processor’s physical-address width.2

• The address of the last byte in the VM-exit MSR-store area should not set
any bits beyond the processor’s physical-address width. The address of
this last byte is VM-exit MSR-store address + (MSR count * 16) – 1. (The
arithmetic used for the computation uses more bits than the processor’s
physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in
the range 63:32; see Appendix G.1.

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all
these checks succeed, the logical processor uses the IA32_SMM_MONITOR_CTL MSR
to determine the base address of MSEG. The following checks are performed in the
order indicated:

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix G.1) to deter-
mine whether the dual-monitor treatment is supported.

2. Software can determine a processor’s physical-address width by executing CPUID with
80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.
Vol. 3B 26-37

SYSTEM MANAGEMENT MODE
1. The logical processor reads the 32 bits at the base of MSEG and compares them
to the processor’s MSEG revision identifier.

2. The logical processor reads the SMM-monitor features field:

— Bit 0 of the field is the IA-32e mode SMM feature bit, and it indicates whether
the logical processor will be in IA-32e mode after the SMM monitor is
activated.

• If the VMCALL is executed on a processor that does not support Intel 64
architecture, the IA-32e mode SMM feature bit must be 0.

• If the VMCALL is executed in 64-bit mode, the IA-32e mode SMM feature
bit must be 1.

— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

26.15.6.2 MSEG Checking
SMM VM exits that activate the dual-monitor treatment check the following before
updating the current-VMCS pointer and the executive-VMCS pointer field (see
Section 26.15.2.2):
• The 32 bits at the MSEG base address (used as a physical address) must contain

the processor’s MSEG revision identifier.
• Bits 31:1 of the SMM-monitor features field in the MSEG header (see

Table 26-10) must be 0. Bit 0 of the field (the IA-32e mode SMM feature bit)
must be 0 if the processor does not support Intel 64 architecture.

If either of these checks fail, execution of VMCALL fails.

26.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
Before performing the steps in Section 26.15.2.2, SMM VM exits that activate the
dual-monitor treatment begin by loading the SMM-transfer VMCS pointer with the
value of the current-VMCS pointer.

26.15.6.4 Loading Host State
The VMCS that is current during an SMM VM exit that activates the dual-monitor
treatment was established by the executive monitor. It does not contain the VM-exit
controls and host state required to initialize the SMM monitor. For this reason, such
SMM VM exits do not load processor state as described in Section 24.5. Instead,
state is set to fixed values or loaded based on the content of the MSEG header (see
Table 26-10):
• CR0 is set to as follows:

— PG, NE, ET, MP, and PE are all set to 1.
26-38 Vol. 3B

SYSTEM MANAGEMENT MODE
— CD and NW are left unchanged.

— All other bits are cleared to 0.
• CR3 is set as follows:

— Bits 63:32 are cleared on processors that supports IA-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the
CR3-offset field in the MSEG header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset
field in the MSEG header are ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
• CR4 is set as follows:

— MCE and PGE are cleared.

— PAE is set to the value of the IA-32e mode SMM feature bit.

— If the IA-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the
processor; if the bit is set, PSE is cleared.

— All other bits are unchanged.
• DR7 is set to 400H.
• The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
• The registers CS, SS, DS, ES, FS, and GS are loaded as follows:

— All registers are usable.

— CS.selector is loaded from the corresponding fields in the MSEG header (the
high 16 bits are ignored), with bits 2:0 cleared to 0. If the result is 0000H,
CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the
result is 0000H (if the CS selector was 0xFFF8), these selectors are instead
set to 0008H.

— The base addresses of all registers are cleared to zero.

— The segment limits for all registers are set to FFFFFFFFH.

— The AR bytes for the registers are set as follows:

• CS.Type is set to 11 (execute/read, accessed, non-conforming code
segment).

• For SS, DS, FS, and GS, the Type is set to 3 (read/write, accessed,
expand-up data segment).

• The S bits for all registers are set to 1.

• The DPL for each register is set to 0.

• The P bits for all registers are set to 1.
Vol. 3B 26-39

SYSTEM MANAGEMENT MODE
• On processors that support Intel 64 architecture, CS.L is loaded with the
value of the IA-32e mode SMM feature bit.

• CS.D is loaded with the inverse of the value of the IA-32e mode SMM
feature bit.

• For each of SS, DS, FS, and GS, the D/B bit is set to 1.

• The G bits for all registers are set to 1.
• LDTR is unusable. The LDTR selector is cleared to 0000H, and the register is

otherwise undefined (although the base address is always canonical)
• GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset

field in the MSEG header (bits 63:32 are always cleared on processors that
supports IA-32e mode). GDTR.limit is set to the corresponding field in the MSEG
header (the high 16 bits are ignored).

• IDTR.base is unchanged. IDTR.limit is cleared to 0000H.
• RIP is set to the sum of the MSEG base address and the value of the RIP-offset

field in the MSEG header (bits 63:32 are always cleared on logical processors
that support IA-32e mode).

• RSP is set to the sum of the MSEG base address and the value of the RSP-offset
field in the MSEG header (bits 63:32 are always cleared on logical processor that
supports IA-32e mode).

• RFLAGS is cleared, except bit 1, which is always set.
• The logical processor is left in the active state.
• Event blocking after the SMM VM exit is as follows:

— There is no blocking by STI or by MOV SS.

— There is blocking by non-maskable interrupts (NMIs) and by SMIs.
• There are no pending debug exceptions after the SMM VM exit.
• For processors that support IA-32e mode, the IA32_EFER MSR is modified so that

LME and LMA both contain the value of the IA-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are
updated so that, after VM exit, the logical processor does not use translations that
were cached before the transition. This is not necessary for changes that would not
affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

26.15.6.5 Loading MSRs
The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-
monitor treatment. No MSRs are loaded from that area.
26-40 Vol. 3B

SYSTEM MANAGEMENT MODE
26.15.7 Deactivating the Dual-Monitor Treatment
An SMM monitor may deactivate the dual monitor treatment and return the
processor to default treatment of SMIs and SMM (see Section 26.14). It does this by
executing a VM entry with the “deactivate dual-monitor treatment” VM-entry control
set to 1.

As noted in Section 23.2.1.3 and Section 26.15.4.1, an attempt to deactivate the
dual-monitor treatment fails in the following situations: (1) the processor is not in
SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the executive-VMCS
pointer does not contain the VMXON pointer (the VM entry is to VMX non-root oper-
ation).

As noted in Section 26.15.4.9, VM entries that deactivate the dual-monitor treat-
ment ignore the SMI bit in the interruptibility-state field of the guest-state area.
Instead, the blocking of SMIs following such a VM entry depends on whether the
logical processor is in SMX operation:1

• If the logical processor is in SMX operation, SMIs are blocked after VM entry.
SMIs may later be unblocked by the VMXOFF instruction (see Section 26.14.4) or
by certain leaf functions of the GETSEC instruction (see Chapter 6, “Safer Mode
Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

• If the logical processor is outside SMX operation, SMIs are unblocked after
VM entry.

26.16 SMI AND PROCESSOR EXTENDED STATE
MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see
Chapter 13, “System Programming for Instruction Set Extensions and Processor
Extended States”), the processor does not save any XSAVE/XRSTOR related state on
an SMI. It is the responsibility of the SMM handler code to properly preserve the state
information (including CR4.OSXSAVE, XCR0, and possibly processor extended states
using XSAVE/XRSTOR). Therefore, the SMM handler must follow the rules described
in Chapter 13.

1. A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of GET-
SEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2B.
Vol. 3B 26-41

SYSTEM MANAGEMENT MODE
26-42 Vol. 3B

CHAPTER 27
VIRTUAL-MACHINE MONITOR PROGRAMMING

CONSIDERATIONS

27.1 VMX SYSTEM PROGRAMMING OVERVIEW
The Virtual Machine Monitor (VMM) is a software class used to manage virtual
machines (VM). This chapter describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system
(OS) and applications. The VMM software layer runs at the most privileged level and
has complete ownership of the underlying system hardware. The VMM controls
creation of a VM, transfers control to a VM, and manages situations that can cause
transitions between the guest VMs and host VMM. The VMM allows the VMs to share
the underlying hardware and yet provides isolation between the VMs. The guest soft-
ware executing in a VM is unaware of any transitions that might have occurred
between the VM and its host.

27.2 SUPPORTING PROCESSOR OPERATING MODES IN
GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM
entries. The boundary conditions that define what a VM is allowed to execute in isola-
tion are specified in a virtual-machine control structure (VMCS).

As noted in Section 20.8, processors may fix certain bits in CR0 and CR4 to specific
values and not support other values. The first processors to support VMX operation
require that CR0.PE and CR0.PG be 1 in VMX operation. Thus, a VM entry is allowed
only to guests with paging enabled that are in protected mode or in virtual-8086
mode. Guest execution in other processor operating modes need to be specially
handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could
support guest real-mode execution using at least two approaches:
• By using a fast instruction set emulator in the VMM.
• By using the similarity between real-mode and virtual-8086 mode to support

real-mode guest execution in a virtual-8086 container. The virtual-8086
container may be implemented as a virtual-8086 container task within a monitor
that emulates real-mode guest state and instructions, or by running the guest VM
as the virtual-8086 container (by entering the guest with RFLAGS.VM1 set).
Attempts by real-mode code to access privileged state outside the virtual-8086
container would trap to the VMM and would also need to be emulated.
Vol. 3B 27-1

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Another example of such a condition is guest execution in protected mode with
paging disabled. A VMM could support such guest execution by using “identity” page
tables to emulate unpaged protected mode.

27.2.1 Using Unrestricted Guest Mode
Processors which support the “unrestricted guest” VM-execution control allow VM
software to run in real-address mode and unpaged protected mode. Since these
modes do not use paging, VMM software must virtualize guest memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest”
VM-execution control:
• It is recommended that 64-bit VMM software use the 1-settings of the "load

IA32_EFER" VM entry control and the "save IA32_EFER" VM-exit control. If VM
entry is establishing CR0.PG=0 and if the "IA-32e mode guest" and "load
IA32_EFER" VM entry controls are both 0, VM entry leaves IA32_EFER.LME
unmodified (i.e., the host value will persist in the guest).

• It is not necessary for VMM software to track guest transitions into and out of IA-
32e mode for the purpose of maintaining the correct setting of the "IA-32e mode
guest" VM entry control. This is because VM exits on processors supporting the
1-setting of the "unrestricted guest" VM-execution control save the (guest) value
of IA32_EFER.LMA into the "IA-32e mode guest" VM entry control.

27.3 MANAGING VMCS REGIONS AND POINTERS
A VMM must observe necessary procedures when working with a VMCS, the associ-
ated VMCS pointer, and the VMCS region. It must also not assume the state of persis-
tency for VMCS regions in memory or cache.

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can
host several virtual machines and have many VMCSs active under its management.
A unique VMCS region is required for each virtual machine; a VMXON region is
required for the VMM itself.

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it
creates VMCS regions of this size using a 4-KByte-aligned area of physical memory.
Each VMCS region needs to be initialized with a VMCS revision identifier (at byte
offset 0) identical to the revision reported by the processor in the VMX capability
MSR.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
27-2 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
NOTE
Software must not read or write directly to the VMCS data region as
the format is not architecturally defined. Consequently, Intel
recommends that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before
entering into VMX operation. The address of the VMXON region for the VMM is
provided as an operand to VMXON instruction. Once in VMX root operation, the VMM
needs to prepare data fields in the VMCS that control the execution of a VM upon a
VM entry. The VMM can make a VMCS the current VMCS by using the VMPTRLD
instruction. VMCS data fields must be read or written only through VMREAD and
VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as
an operand to VMREAD and VMWRITE. Appendix H provides the encodings. A VMM
must properly initialize all fields in a VMCS before using the current VMCS for VM
entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical
processor in VMX non-root operation. A current VMCS for controlling a logical
processor in VMX non-root operation may be referred to as a working VMCS if the
logical processor is not in VMX non-root operation. The relationship of active, current
(i.e. working) and controlling VMCS during VMX operation is shown in Figure 27-1.

NOTE
As noted in Section 21.1, the processor may optimize VMX operation
by maintaining the state of an active VMCS (one for which VMPTRLD
has been executed) on the processor. Before relinquishing control to
other system software that may, without informing the VMM, remove
power from the processor (e.g., for transitions to S3 or S4) or leave
VMX operation, a VMM must VMCLEAR all active VMCSs. This ensures
that all VMCS data cached by the processor are flushed to memory
and that no other software can corrupt the current VMM’s VMCS data.
It is also recommended that the VMM execute VMXOFF after such
executions of VMCLEAR.

The VMX capability MSR IA32_VMX_BASIC reports the memory type used by the
processor for accessing a VMCS or any data structures referenced through pointers in
the VMCS. Software must maintain the VMCS structures in cache-coherent memory.
Software must always map the regions hosting the I/O bitmaps, MSR bitmaps, VM-
exit MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the
write-back (WB) memory type. Mapping these regions to uncacheable (UC) memory
type is supported, but strongly discouraged due to negative impact on performance.
Vol. 3B 27-3

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.4 USING VMX INSTRUCTIONS
VMX instructions are allowed only in VMX root operation. An attempt to execute a
VMX instruction in VMX non-root operation causes a VM exit.

Figure 27-1. VMX Transitions and States of VMCS in a Logical Processor

(a) VMX Operation and VMX Transitions

(b) State of VMCS and VMX Operation

Processor
Operation

VMXON

VM Entry VM Entry VM Entry VM Entry

VM Exit VM Exit
VM Exit

VM Exit

VMXOFF

Outside
VMX

Operation

VMX Root
Operation

VMX
Non-Root
Operation

Legend:

Legend:
Inactive
VMCS

Current VMCS
(working)

Active VMCS
(not current)

Current VMCS
(controlling)

VMCS B

VMCS A

VMLAUNCH
VMRESUME

VMPTRLD B

VMCLEAR B

VM Exit VM Exit

VMPTRLD A VMPTRLD A

VMCLEAR A

VM Exit VM Exit

VMLAUNCH VMRESUME
27-4 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Processors perform various checks while executing any VMX instruction. They follow
well-defined error handling on failures. VMX instruction execution failures detected
before loading of a guest state are handled by the processor as follows:
• If the working-VMCS pointer is not valid, the instruction fails by setting

RFLAGS.CF to 1.
• If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-

code is saved in the VM-instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or
failure of VMX instruction executions.

The following items provide details regarding use of the VM-entry instructions
(VMLAUNCH and VMRESUME):
• If the working-VMCS pointer is valid, the state of the working VMCS may cause

the VM-entry instruction to fail. RFLAGS.ZF is set to 1 and one of the following
values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.

— 6: VMRESUME after VMXOFF.1
If this error occurs, software can avoid the error by executing the following
sequence of instructions:

VMPTRST working-VMCS pointer
VMCLEAR working-VMCS pointer
VMPTRLD working-VMCS pointer
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-
VMCS pointer.)

• If none of the above errors occur, the processor checks on the VMX controls and
host-state area. If any of these checks fail, the VM-entry instruction fails.
RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control field(s)) or 8
(VM entry with invalid host-state field(s)) is saved in the VM-instruction error
field.

• After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes
the general checks and checks on VMX controls and the host-state area (see
Section 23.2), any errors encountered while loading of guest-state (due to bad
guest-state or bad MSR loading) causes the processor to load state from the
host-state area of the working VMCS as if a VM exit had occurred (see Section
27.7).

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS”.
Vol. 3B 27-5

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This failure behavior differs from that of VM exits in that no guest-state is saved
to the guest-state area. A VMM can detect its VM-exit handler was invoked by
such a failure by checking bit 31 (for 1) in the exit reason field of the working
VMCS and further identify the failure by using the exit qualification field.

See Chapter 23 for more details about the VM-entry instructions.

27.5 VMM SETUP & TEAR DOWN
VMMs need to ensure that the processor is running in protected mode with paging
before entering VMX operation. The following list describes the minimal steps
required to enter VMX root operation with a VMM running at CPL = 0.
• Check VMX support in processor using CPUID.
• Determine the VMX capabilities supported by the processor through the VMX

capability MSRs. See Section 27.5.1 and Appendix G.
• Create a VMXON region in non-pageable memory of a size specified by

IA32_VMX_BASIC MSR and aligned to a 4-KByte boundary. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for the VMXON region and ensure the entire VMXON region can be
addressed by addresses with that width. Also, software must ensure that the
VMXON region is hosted in cache-coherent memory.

• Initialize the version identifier in the VMXON region (the first 32 bits) with the
VMCS revision identifier reported by capability MSRs.

• Ensure the current processor operating mode meets the required CR0 fixed bits
(CR0.PE = 1, CR0.PG = 1). Other required CR0 fixed bits can be detected
through the IA32_VMX_CR0_FIXED0 and IA32_VMX_CR0_FIXED1 MSRs.

• Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value
supports all the CR4 fixed bits reported in the IA32_VMX_CR4_FIXED0 and
IA32_VMX_CR4_FIXED1 MSRs.

• Ensure that the IA32_FEATURE_CONTROL MSR (MSR index 3AH) has been
properly programmed and that its lock bit is set (Bit 0 = 1). This MSR is generally
configured by the BIOS using WRMSR.

• Execute VMXON with the physical address of the VMXON region as the operand.
Check successful execution of VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = 0 leaves VMX operation by
executing VMXOFF and verifies successful execution by checking if RFLAGS.CF = 0
and RFLAGS.ZF = 0.

If an SMM monitor has been configured to service SMIs while in VMX operation (see
Section 26.15), the SMM monitor needs to be torn down before the executive
monitor can leave VMX operation (see Section 26.15.7). VMXOFF fails for the execu-
27-6 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
tive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

27.5.1 Algorithms for Determining VMX Capabilities
As noted earlier, a VMM should determine the VMX capabilities supported by the
processor by reading the VMX capability MSRs. The architecture for these MSRs is
detailed in Appendix G.

As noted in Chapter 21, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.
Most controls have a default setting of 0; Appendix G.2 identifies those controls that
have a default setting of 1. The term default1 describes the class of controls whose
default setting is 1. The are controls in this class from the pin-based VM-execution
controls, the primary processor-based VM-execution controls, the VM-exit controls,
and the VM-entry controls. There are no secondary processor-based VM-execution
controls in the default1 class.

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting.

The capability MSRs IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS report, respectively, on the
allowed settings of most of the pin-based VM-execution controls, the primary
processor-based VM-execution controls, the VM-exit controls, and the VM-entry
controls. However, they will always report that any control in the default1 class must
be 1. If a logical processor allows any control in the default1 class to be 0, it indicates
this fact by returning 1 for the value of bit 55 of the IA32_VMX_BASIC MSR. If this bit
is 1, the logical processor supports the capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. These capability
MSRs report, respectively, on the allowed settings of all of the pin-based VM-execu-
tion controls, the primary processor-based VM-execution controls, the VM-exit
controls, and the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct
default control settings:1

1. The following algorithm does not use the details given in Appendix G.2:

a. Ignore bit 55 of the IA32_VMX_BASIC MSR.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-
based VM-execution controls, the VM-exit controls, and the VM-entry controls. Because there are
no secondary processor-based VM-execution controls in the default1 class, a VMM can always
set to 0 any such control whose meaning is unknown to it.
Vol. 3B 27-7

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
b. Using RDMSR, read the VMX capability MSRs IA32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS, IA32_VMX_EXIT_CTLS, and
IA32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

A VMM using this algorithm will set to 1 all controls in the default1 class (in
step (c)(i)). It will operate correctly even on processors that allow some
controls in the default1 class to be 0. However, such a VMM will not be able to
use the new features enabled by the 0-setting of such controls. For that reason,
this algorithm is not recommended.

2. The following algorithm uses the details given in Appendix G.2. This algorithm
requires software to know the identity of the controls in the default1 class:

a. Using RDMSR, read the IA32_VMX_BASIC MSR.

b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS.

c. Set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is not in the default1 class; then set the control to 0.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; (2) the control’s meaning is not known to the VMM; and (3) the
control is in the default1 class; then set the control to 1.
27-8 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM using this algorithm will set to 1 all controls in default1 class whose
meaning it does not know (either in step (c)(i) or step (c)(iv)). It will operate
correctly even on processors that allow some controls in the default1 class to be
0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use
the new features enabled by the 0-setting of such controls.

3. The following algorithm uses the details given in Appendix G.2. This algorithm
does not require software to know the identity of the controls in the default1
class:

a. Using RDMSR, read the VMX capability MSRs IA32_VMX_BASIC,
IA32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and IA32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:

i) If the relevant VMX capability MSR reports that a control has a single
setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is known to the VMM; then set the
control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to
0 or 1; and (2) the control’s meaning is not known to the VMM; then set
the control to 0.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX
capability MSRs IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a
single setting, use that setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; and (2) the control’s meaning is known to the VMM; then
set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control can be set to 0; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can
be set to 0 or 1; (2) the control’s meaning is not known to the VMM; and
(3) the relevant VMX capability MSR as read in step (a) reports that a
control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the default1 class whose
meaning it does not know (in step (b)(i), step (c)(i), or step (c)(iv)). It will
operate correctly even on processors that allow some controls in the default1
class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be
able to use the new features enabled by the 0-setting of such controls. Unlike a
Vol. 3B 27-9

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMM using Algorithm 2, a VMM using Algorithm 3 need not know the identities
of the controls in the default1 class.

27.6 PREPARATION AND LAUNCHING A VIRTUAL
MACHINE

The following list describes the minimal steps required by the VMM to set up and
launch a guest VM.
• Create a VMCS region in non-pageable memory of size specified by the VMX

capability MSR IA32_VMX_BASIC and aligned to 4-KBytes. Software should read
the capability MSRs to determine width of the physical addresses that may be
used for a VMCS region and ensure the entire VMCS region can be addressed by
addresses with that width. The term “guest-VMCS address” refers to the physical
address of the new VMCS region for the following steps.

• Initialize the version identifier in the VMCS (first 32 bits) with the VMCS revision
identifier reported by the VMX capability MSR IA32_VMX_BASIC.

• Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will
initialize the new VMCS region in memory and set the launch state of the VMCS
to “clear”. This action also invalidates the working-VMCS pointer register to
FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR
by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

• Execute the VMPTRLD instruction by supplying the guest-VMCS address. This
initializes the working-VMCS pointer with the new VMCS region’s physical
address.

• Issue a sequence of VMWRITEs to initialize various host-state area fields in the
working VMCS. The initialization sets up the context and entry-points to the VMM
upon subsequent VM exits from the guest. Host-state fields include control
registers (CR0, CR3 and CR4), selector fields for the segment registers (CS, SS,
DS, ES, FS, GS and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR;
RSP, RIP and the MSRs that control fast system calls).
Chapter 22 describes the host-state consistency checking done by the processor
for VM entries. The VMM is required to set up host-state that comply with these
consistency checks. For example, VMX requires the host-area to have a task
register (TR) selector with TI and RPL fields set to 0 and pointing to a valid TSS.

• Use VMWRITEs to set up the various VM-exit control fields, VM-entry control
fields, and VM-execution control fields in the VMCS. Care should be taken to
make sure the settings of individual fields match the allowed 0 and 1 settings for
the respective controls as reported by the VMX capability MSRs (see Appendix G).
Any settings inconsistent with the settings reported by the capability MSRs will
cause VM entries to fail.

• Use VMWRITE to initialize various guest-state area fields in the working VMCS.
This sets up the context and entry-point for guest execution upon VM entry.
27-10 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Chapter 22 describes the guest-state loading and checking done by the processor
for VM entries to protected and virtual-8086 guest execution.

• The VMM is required to set up guest-state that complies with these consistency
checks:

— If the VMM design requires the initial VM launch to cause guest software
(typically the guest virtual BIOS) execution from the guest’s reset vector, it
may need to initialize the guest execution state to reflect the state of a
physical processor at power-on reset (described in Chapter 9, Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not
captured in the VMCS guest-state area by loading them directly on the
respective processor registers. Examples include general purpose registers,
the CR2 control register, debug registers, floating point registers and so forth.
VMM may support lazy loading of FPU, MMX, SSE, and SSE2 states with
CR0.TS = 1 (described in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A).

• Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any
consistency checks before guest-state loading, RFLAGS.CF or RFLAGS.ZF will be
set and the VM-instruction error field (see Section 21.9.5) will contain the error-
code. If guest-state consistency checks fail upon guest-state loading, the
processor loads state from the host-state area as if a VM exit had occurred (see
Section 27.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer
and saves the old value of controlling-VMCS as the parent pointer. In addition, the
launch state of the guest VMCS is changed to “launched” from “clear”. Any
programmed exit conditions will cause the guest to VM exit to the VMM. The VMM
should execute VMRESUME instruction for subsequent VM entries to guests in a
“launched” state.

27.7 HANDLING OF VM EXITS
This section provides examples of software steps involved in a VMM’s handling of VM-
exit conditions:
• Determine the exit reason through a VMREAD of the exit-reason field in the

working-VMCS. Appendix I describes exit reasons and their encodings.
• VMREAD the exit-qualification from the VMCS if the exit-reason field provides a

valid qualification. The exit-qualification field provides additional details on the
VM-exit condition. For example, in case of page faults, the exit-qualification field
provides the guest linear address that caused the page fault.

• Depending on the exit reason, fetch other relevant fields from the VMCS.
Appendix I lists the various exit reasons.
Vol. 3B 27-11

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Handle the VM-exit condition appropriately in the VMM. This may involve the
VMM emulating one or more guest instructions, programming the underlying
host hardware resources, and then re-entering the VM to continue execution.

27.7.1 Handling VM Exits Due to Exceptions
As noted in Section 22.3, an exception causes a VM exit if the bit corresponding to
the exception’s vector is set in the exception bitmap. (For page faults, the error code
also determines whether a VM exit occurs.) This section provide some guidelines of
how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that soft-
ware may not have expected. When guest software encounters an exception, it may
be the case that the condition was caused by the guest software. For example, a
guest application may attempt to access a page that is restricted to supervisor
access. Alternatively, the condition causing the exception may have been established
by the VMM. For example, a guest OS may attempt to access a page that the VMM
has chosen to make not present.

When the condition causing an exception was established by guest software, the
VMM may choose to reflect the exception to guest software. When the condition was
established by the VMM itself, the VMM may choose to resume guest software after
removing the condition.

27.7.1.1 Reflecting Exceptions to Guest Software
If the VMM determines that a VM exit was caused by an exception due to a condition
established by guest software, it may reflect that exception to guest software. The
VMM would cause the exception to be delivered to guest software, where it can be
handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry
event injection as described in Section 23.5. The VMM can copy (using VMREAD and
VMWRITE) the contents of the VM-exit interruption-information field (which is valid,
since the VM exit was caused by an exception) to the VM-entry interruption-informa-
tion field (which, if valid, will cause the exception to be delivered as part of the next
VM entry). The VMM would also copy the contents of the VM-exit interruption error-
code field to the VM-entry exception error-code field; this need not be done if bit 11
(error code valid) is clear in the VM-exit interruption-information field. After this, the
VMM can execute VMRESUME.

The following items provide details that may qualify the general approach:
• Care should be taken to ensure that reserved bits 30:12 in the VM-entry inter-

ruption-information field are 0. In particular, some VM exits may set bit 12 in the
VM-exit interruption-information field to indicate NMI unblocking due to IRET. If
this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be 0.
27-12 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. If this is the case, it may not be appropriate simply to reflect
that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would.
Processor handling is described in Chapter 6, “Interrupt 8—Double Fault
Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software
in any of the following cases:

• The value of bits 10:8 (interruption type) of the IDT-vectoring
information field is anything other than 3 (hardware exception).

• The value of bits 7:0 (vector) of the IDT-vectoring information field
indicates a benign exception (1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, or 19).

• The value of bits 7:0 (vector) of the VM-exit interruption-information field
indicates a benign exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
contributory exception (0, 10, 11, 12, or 13) and the value of bits 7:0 of
the VM-exit interruption-information field indicates a page fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception), the VMM should reflect a double-fault exception to guest software
in any of the following cases:

• The value of bits 7:0 of the IDT-vectoring information field and the value
of bits 7:0 of the VM-exit interruption-information field each indicates a
contributory exception.

• The value of bits 7:0 of the IDT-vectoring information field indicates a
page fault and the value of bits 7:0 of the VM-exit interruption-
information field indicates either a contributory exception or a page fault.

A VMM can reflect a double-fault exception to guest software by setting the
VM-entry interruption-information and VM-entry exception error-code fields
as follows:

• Set bits 7:0 (vector) of the VM-entry interruption-information field to 8
(#DF).

• Set bits 10:8 (interruption type) of the VM-entry interruption-information
field to 3 (hardware exception).

• Set bit 11 (deliver error code) of the VM-entry interruption-information
field to 1.

• Clear bits 30:12 (reserved) of VM-entry interruption-information field.

• Set bit 31 (valid) of VM-entry interruption-information field.

• Set the VM-entry exception error-code field to zero.
Vol. 3B 27-13

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware
exception) and the value of bits 7:0 is 8 (#DF), guest software would have
encountered a triple fault. Event injection should not be used in this case. The
VMM may choose to terminate the guest, or it might choose to enter the
guest in the shutdown activity state.

27.7.1.2 Resuming Guest Software after Handling an Exception
If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after
removing the condition. The approach for removing the condition may be specific to
the VMM’s software architecture. and algorithms This section describes how guest
software may be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:
• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-

information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that unblocked non-maskable interrupts
(NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs
were blocked before guest software executed the IRET instruction that caused
the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in
the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during
an execution of the IRET instruction that removed virtual-NMI blocking. In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is
not 8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction
that caused the fault that caused the VM exit. The VMM should set bit 3 (blocking
by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered
to guest software. The VMM should ensure that the other event is delivered when
27-14 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
guest software is resumed. It can do so using the VM-entry event injection
described in Section 23.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be
delivered as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is
copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been
injected as part of the previous VM entry. In this case, bit 3 (blocking by
NMI) will be 1 in the interruptibility-state field in the VMCS. The VMM
should clear this bit; otherwise, the next VM entry will fail (see Section
23.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to
the VM-entry exception error-code field. This need not be done if bit 11 (error
code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.

27.8 MULTI-PROCESSOR CONSIDERATIONS
The most common VMM design will be the symmetric VMM. This type of VMM runs the
same VMM binary on all logical processors. Like a symmetric operating system, the
symmetric VMM is written to ensure all critical data is updated by only one processor
at a time, IO devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one
processor and run just enough of the VMM on other processors to allow the correct
execution of guest VMs. The remainder of this section focuses on the multi-processor
considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For
example, a symmetric VMM can support asymmetric allocation of logical processor
resources to guests. Multiple logical processors can be brought into a single guest
environment to support an MP-aware guest OS. Because an active VMCS can not
control more than one logical processor simultaneously, a symmetric VMM must
make copies of its VMCS to control the VM allocated to support an MP-aware guest
Vol. 3B 27-15

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 27.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of
hardware capabilities (with all processors supporting the same processor feature
sets, including the same revision of VMX), there are advantages in developing a VMM
that comprehends different levels of VMX capability (reported by VMX capability
MSRs). One possible advantage of such an approach could be that an existing soft-
ware installation (VMM and guest software stack) could continue to run without
requiring software upgrades to the VMM, when the software installation is upgraded
to run on hardware with enhancements in the processor’s VMX capabilities. Another
advantage could be that a single software installation image, consisting of a VMM and
guests, could be deployed to multiple hardware platforms with varying VMX capabil-
ities. In such cases, the VMM could fall back to a common subset of VMX features
supported by all VMX revisions, or choose to understand the asymmetry of the VMX
capabilities and assign VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an
MP-aware VMM.

27.8.1 Initialization
Before enabling VMX, an MP-aware VMM must check to make sure that all processors
in the system are compatible and support features required. This can be done by:
• Checking the CPUID on each logical processor to ensure VMX is supported and

that the overall feature set of each logical processor is compatible.
• Checking VMCS revision identifiers on each logical processor.
• Checking each of the “allowed-1” or “allowed-0” fields of the VMX capability

MSR’s on each processor.

27.8.2 Moving a VMCS Between Processors
An MP-aware VMM is free to assign any logical processor to a VM. But for perfor-
mance considerations, moving a guest VMCS to another logical processor is slower
than resuming that guest VMCS on the same logical processor. Certain VMX perfor-
mance features (such as caching of portions of the VMCS in the processor) are opti-
mized for a guest VMCS that runs on the same logical processor.

The reasons are:
• To restart a guest on the same logical processor, a VMM can use VMRESUME.

VMRESUME is expected to be faster than VMLAUNCH in general.
• To migrate a VMCS to another logical processor, a VMM must use the sequence of

VMCLEAR, VMPTRLD and VMLAUNCH.
• Operations involving VMCLEAR can impact performance negatively. See

Section 21.10.3.
27-16 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
A VMM scheduler should make an effort to schedule a guest VMCS to run on the
logical processor where it last ran. Such a scheduler might also benefit from doing
lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only when the scheduler
knows the VMCS is being moved to a new logical processor). The remainder of this
section describes the steps a VMM must take to move a VMCS from one processor to
another.

A VMM must check the VMCS revision identifier in the VMX capability MSR
IA32_VMX_BASIC to determine if the VMCS regions are identical between all logical
processors. If the VMCS regions are identical (same revision ID) the following
sequence can be used to move or copy the VMCS from one logical processor to
another:
• Perform a VMCLEAR operation on the source logical processor. This ensures that

all VMCS data that may be cached by the processor are flushed to memory.
• Copy the VMCS region from one memory location to another location. This is an

optional step assuming the VMM wishes to relocate the VMCS or move the VMCS
to another system.

• Perform a VMPTRLD of the physical address of VMCS region on the destination
processor to establish its current VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate
structure using individual reads (VMREAD) from the source fields and writes
(VMWRITE) to destination fields. Care must be taken on fields that are hard-wired to
certain values on some processor implementations.

27.8.3 Paired Index-Data Registers
A VMM may need to virtualize hardware that is visible to software using paired index-
data registers. Paired index-data register interfaces, such as those used in PCI (CF8,
CFC), require special treatment in cases where a VM performing writes to these pairs
can be moved during execution. In this case, the index (e.g. CF8) should be part of
the virtualized state. If the VM is moved during execution, writes to the index should
be redone so subsequent data reads/writes go to the right location.

27.8.4 External Data Structures
Certain fields in the VMCS point to external data structures (for example: the MSR
bitmap, the I/O bitmaps). If a logical processor is in VMX non-root operation, none of
the external structures referenced by that logical processor's current VMCS should be
modified by any logical processor or DMA. Before updating one of these structures,
the VMM must ensure that no logical processor whose current VMCS references the
structure is in VMX non-root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures,
and these structures must be kept synchronized, the VMM must apply the same care
to updating these structures.
Vol. 3B 27-17

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.8.5 CPUID Emulation
CPUID reports information that is used by OS and applications to detect hardware
features. It also provides multi-threading/multi-core configuration information. For
example, MP-aware OSs rely on data reported by CPUID to discover the topology of
logical processors in a platform (see Section 8.9, “Programming Considerations for
Hardware Multi-Threading Capable Processors,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest
OSs that are MP aware, then the VMM must emulate CPUID for its guests. The emula-
tion of CPUID by the VMM must ensure the guest’s view of CPUID leaves are consis-
tent with the logical processor allocation committed by the VMM to each guest OS.

27.9 32-BIT AND 64-BIT GUEST ENVIRONMENTS
For the most part, extensions provided by VMX to support virtualization are orthog-
onal to the extensions provided by Intel 64 architecture. There are considerations
that impact VMM designs. These are described in the following subsections.

27.9.1 Operating Modes of Guest Environments
For Intel 64 processors, VMX operation supports host and guest environments that
run in IA-32e mode or without IA-32e mode. VMX operation also supports host and
guest environments on IA-32 processors.

A VMM entering VMX operation while IA-32e mode is active is considered to be an
IA-32e mode host. A VMM entering VMX operation while IA-32e mode is not activated
or not available is referred to as a 32-bit VMM. The type of guest operations such
VMMs support are summarized in Table 27-1.

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compati-
bility sub-mode of IA-32e mode. VMMs may resume guests in either mode. The sub-
mode in which an IA-32e mode guest resumes VMX non-root operation is determined
by the attributes of the code segment which experienced the VM exit. If CS.L = 1,
the guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compat-
ibility mode (see Section 27.9.5).

Table 27-1. Operating Modes for Host and Guest Environments
Capability Guest Operation

in IA-32e mode
Guest Operation
Not Requiring IA-32e Mode

IA-32e mode VMM Yes Yes

32-bit VMM Not supported Yes
27-18 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
Not all of an IA-32e mode VMM must run in 64-bit mode. While some parts of an
IA-32e mode VMM must run in 64-bit mode, there are only a few restrictions
preventing a VMM from executing in compatibility mode. The most notable restriction
is that most VMX instructions cause exceptions when executed in compatibility mode.

27.9.2 Handling Widths of VMCS Fields
Individual VMCS control fields must be accessed using VMREAD or VMWRITE instruc-
tions. Outside of 64-Bit mode, VMREAD and VMWRITE operate on 32 bits of data. The
widths of VMCS control fields may vary depending on whether a processor supports
Intel 64 architecture.

Many VMCS fields are architected to extend transparently on processors supporting
Intel 64 architecture (64 bits on processors that support Intel 64 architecture, 32 bits
on processors that do not). Some VMCS fields are 64-bits wide regardless of whether
the processor supports Intel 64 architecture or is in IA-32e mode.

27.9.2.1 Natural-Width VMCS Fields
Many VMCS fields operate using natural width. Such fields return (on reads) and set
(on writes) 32-bits when operating in 32-bit mode and 64-bits when operating in
64-bit mode. For the most part, these fields return the naturally expected data
widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type
of field.

27.9.2.2 64-Bit VMCS Fields
Unlike natural width fields, these fields are fixed to 64-bit width on all processors.
When in 64-bit mode, reads of these fields return 64-bit wide data and writes to
these fields write 64-bits. When outside of 64-bit mode, reads of these fields return
the low 32-bits and writes to these fields write the low 32-bits and zero the upper
32-bits. Should a non-IA-32e mode host require access to the upper 32-bits of these
fields, a separate VMCS encoding is used when issuing VMREAD/VMWRITE instruc-
tions.

The VMCS control field “MSR bitmap address” (which contains the physical address of
a region of memory which specifies which MSR accesses should generate VM-exits) is
an example of this type of field. Specifying encoding 00002004H to VMREAD returns
the lower 32-bits to non-IA-32e mode hosts and returns 64-bits to 64-bit hosts. The
separate encoding 00002005H returns only the upper 32-bits.

27.9.3 IA-32e Mode Hosts
An IA-32e mode host is required to support 64-bit guest environments. Because acti-
vating IA-32e mode currently requires that paging be disabled temporarily and VMX
entry requires paging to be enabled, IA-32e mode must be enabled before entering
Vol. 3B 27-19

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
VMX operation. For this reason, it is not possible to toggle in and out of IA-32e mode
in a VMM.

Section 27.5 describes the steps required to launch a VMM. An IA-32e mode host is
also required to set the “host address-space size” VMCS VM-exit control to 1. The
value of this control is then loaded in the IA32_EFER.LME/LMA and CS.L bits on each
VM exit. This establishes a 64-bit host environment as execution transfers to the
VMM entry point. At a minimum, the entry point is required to be in a 64-bit code
segment. Subsequently, the VMM can, if it chooses, switch to 32-bit compatibility
mode on a code-segment basis (see Section 27.9.1). Note, however, that VMX
instructions other than VMCALL are not supported in compatibility mode; they
generate an invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit
occurs: the “host address-space size” control (described above), the “load
IA32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-exit MSR-
load address” (see Section 24.3).

If the “load IA32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the
IA32_EFER field in the host-state area must be the value of the “host address-space
size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-
space size” control precede any loading of the IA32_EFER MSR due from the VM-exit
MSR-load area. If IA32_EFER is specified in the VM-exit MSR-load area, the value of
the LME bit in the load image of IA32_EFER should match the setting of the “host
address-space size” control. Otherwise the attempt to modify the LME bit (while
paging is enabled) will lead to a VMX-abort. However, IA32_EFER.LMA is always set
by the processor to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in
the load image of the IA32_EFER MSR is ignored. For these and performance
reasons, VMM writers may choose to not use the VM-exit/entry MSR-load/save areas
for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating IA-32e
mode if the latter is required.

27.9.4 IA-32e Mode Guests
A 32-bit guest can be launched by either IA-32e-mode hosts or non-IA-32e-mode
hosts. A 64-bit guests can only be launched by a IA-32e-mode host.

In addition to the steps outlined in Section 27.6, VMM writers need to:
• Set the “IA-32e-mode guest” VM-entry control to 1 in the VMCS to assure

VM-entry (VMLAUNCH or VMRESUME) will establish a 64-bit (or 32-bit
compatible) guest operating environment.

• Enable paging (CR0.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit
guest will succeed.
27-20 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
• Ensure that the host to be in IA-32e mode (the IA32_EFER.LMA must be set to 1)
and the setting of the VM-exit “host address-space size” control bit in the VMCS
must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the
VM-entry “IA-32e-mode guest” control bit into the guests IA32_EFER.LME bit, which
will result in subsequent activation of IA-32e mode. If any of the above conditions is
false, the VM-entry will fail and load state from the host-state area of the working
VMCS as if a VM exit had occurred (see Section 23.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the
“IA-32e-mode guest” VM-entry control (described above), the “load IA32_EFER” VM-
entry control, the “VM-entry MSR-load count,” and the “VM-entry MSR-load address”
(see Section 23.4).

If the “load IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in
the IA32_EFER field in the guest-state area must be the value of the “IA-32e-mode
guest” VM-exit control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the
IA32_EFER MSR from the VM-entry MSR-load area of the VMCS. If loading of
IA32_EFER is specified in the VM-entry MSR-load area, the value of the LME bit in the
load image should be match the setting of the “IA-32e-mode guest” VM-entry
control. Otherwise, the attempt to modify the LME bit (while paging is enabled)
results in a failed VM entry. However, IA32_EFER.LMA is always set by the processor
to equal IA32_EFER.LME & CR0.PG; the value specified for LMA in the load image of
the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers
may choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring
control to a VM. VMM writers may choose to launch guests in protected mode and
subsequently allow the guest to activate IA-32e mode or they may allow guests to
toggle in and out of IA-32e mode. In this case, the VMM should require VM exit on
accesses to the IA32_EFER MSR to detect changes in the operating mode and modify
the VM-entry “IA-32e-mode guest” control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-
purpose registers, the new general-purpose registers (R8-R15) and the SIMD regis-
ters introduced in 64-bit mode should it need to modify these upon VM exit.

27.9.5 32-Bit Guests
To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in
Section 27.6, making sure that the “IA-32e-mode guest” VM-entry control bit is set
to 0. Then the “IA-32e-mode guest” control bit is copied into the guest
IA32_EFER.LME bit, establishing IA32_EFER.LMA as 0.
Vol. 3B 27-21

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.10 HANDLING MODEL SPECIFIC REGISTERS
Model specific registers (MSR) provide a wide range of functionality. They affect
processor features, control the programming interfaces, or are used in conjunction
with specific instructions. As part of processor virtualization, a VMM may wish to
protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

27.10.1 Using VM-Execution Controls
Processor-based VM-execution controls provide two levels of support for handling
guest access to processor MSRs using RDMSR and WRMSR:
• MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix

G) of the user-MSR-bitmaps execution control bit, MSR bitmaps can be used to
provide flexibility in managing guest MSR accesses. The MSR-bitmap-address in
the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.
MSR bitmaps form a 4-KByte region in physical memory and are required to be
aligned to a 4-KByte boundary. The first 1-KByte region manages read control of
MSRs in the range 00000000H-00001FFFH; the second 1-KByte region covers
read control of MSR addresses in the range C0000000H-C0001FFFH. The bitmaps
for write control of these MSRs are located in the 2-KByte region immediately
following the read control bitmaps. While the MSR bitmap address is part of
VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are not
accessible through VMREAD and VMWRITE instructions but rather by using
ordinary memory writes. Also, they are not specially cached by the processor and
may be placed in normal cache-coherent memory by the VMM.
When MSR bitmap addresses are properly programmed and the use-MSR-bitmap
control (see Section 21.6.2) is set, the processor consults the associated bit in
the appropriate bitmap on guest MSR accesses to the corresponding MSR and
causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted
to proceed. This level of protection may be utilized by VMMs to selectively allow
guest access to some MSRs while virtualizing others.

• Default MSR protection: If the use-MSR-bitmap control is not set, an attempt
by a guest to access any MSR causes a VM exit. This also occurs for any attempt
to access an MSR outside the ranges identified above (even if the use-MSR-
bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit
reason codes. The MSR-read exit reason implies guest software attempted to read an
MSR protected either by default or through MSR bitmaps. The MSR-write exit reason
implies guest software attempting to write a MSR protected through the VM-execu-
tion controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the
guest MSR access through emulation of RDMSR/WRMSR.
27-22 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.10.2 Using VM-Exit Controls for MSRs
If a VMM allows its guest to access MSRs directly, the VMM may need to store guest
MSR values and load host MSR values for these MSRs on VM exits. This is especially
true if the VMM uses the same MSRs while in VMX root operation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit
control fields (see Section 21.7.2) to manage how MSRs are stored on VM exits. The
VM-exit MSR-store-address field contains the physical address (16-byte aligned) of
the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit
MSR-store-count contains the number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to
the location and size of the VM-exit MSR load area. The entries in the VM-exit MSR-
load area contain the host expected values of specific MSRs when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated
with the contents of the MSR indexed by bits 31:0. Also, bits 127:64 of each entry in
the VM-exit MSR-load area is updated by loading with values from bits 127:64 the
contents of the MSR indexed by bits 31:0.

27.10.3 Using VM-Entry Controls for MSRs
A VMM may require specific MSRs to be loaded explicitly on VM entries while
launching or resuming guest execution. The VM-entry MSR-load-address and
VM-entry MSR-load-count entry control fields determine how MSRs are loaded on
VM-entries. The VM-entry MSR-load-address and count fields are similar in structure
and function to the VM-exit MSR-load address and count fields, except the MSR
loading is done on VM-entries.

27.10.4 Handling Special-Case MSRs and Instructions
A number of instructions make use of designated MSRs in their operation. The VMM
may need to consider saving the states of those MSRs. Instructions that merit such
consideration include SYSENTER/SYSEXIT, SYSCALL/SYSRET, SWAPGS.

27.10.4.1 Handling IA32_EFER MSR
The IA32_EFER MSR includes bit fields that allow system software to enable
processor features. For example: the SCE bit enables SYSCALL/SYSRET and the NXE
bit enables the execute-disable bits in the paging-structure entries.

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and
to save it on VM exits. Because of this, VMM software need not use the RDMSR and
WRMSR instruction to give the register different values during host and guest execu-
tion.
Vol. 3B 27-23

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
The SYSENTER and SYSEXIT instructions use three dedicated MSRs
(IA32_SYSENTER_CS, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP) to manage
fast system calls. These MSRs may be utilized by both the VMM and the guest OS to
manage system calls in VMX root operation and VMX non-root operation respectively.

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits
save the values of these MSRs into those fields and loads the MSRs from fields in the
host-state area.

27.10.4.3 Handling the SYSCALL and SYSRET Instructions
The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are
designed to operate within the context of a 64-bit flat code segment. They are avail-
able only in 64-bit mode and only when the SCE bit of the IA32_EFER MSR is set.
SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode appli-
cation code or from 64-bit application code. Three related MSR registers
(IA32_STAR, IA32_LSTAR, IA32_FMASK) are used in conjunction with fast system
calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need
to save the guest state of the above registers on VM exit, load the host state, and
restore the guest state on VM entry. One possible approach is to use the VM-exit
MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls
in the VMCS. A disadvantage to this approach, however, is that the approach results
in the unconditional saving, loading, and restoring of MSR registers on each VM exit
or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no
fast system call support but the VMM will be burdened with the additional overhead
of saving and restoring MSRs if the VMM chooses to support fast system call
uniformly. Further, even if the host intends to support fast system calls during a
VM-exit, some of the MSR values (such as the setting of the SCE bit in IA32_EFER)
may not require modification as they may already be set to the appropriate value in
the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these
MSR values on certain VM exits when it is determined that this is acceptable. The
lazy-save-load-restore operation can be carried out “manually” using RDMSR and
WRMSR.

27.10.4.4 Handling the SWAPGS Instruction
The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of
two specific MSRs (IA32_GSBASE and IA32_KERNEL_GSBASE). The IA32_GSBASE
MSR shadows the base address portion of the GS descriptor register; the
IA32_KERNEL_GSBASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast
27-24 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
system calls when in 64-bit mode to allow immediate access to kernel structures on
transition to kernel mode.

Similar to SYSCALL/SYSRET, IA-32e mode hosts which use fast system calls may
need to save, load, and restore these MSR registers on VM exit and VM entry using
the guidelines discussed in previous paragraphs.

27.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs
As noted in Section 23.4 and Section 24.4, a processor may prevent writing to
certain MSRs when loading guest states on VM entries or storing guest states on VM
exits. This is done to ensure consistent operation. The subset and number of MSRs
subject to restrictions are implementation specific. For initial VMX implementations,
there are two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see
Appendix B).

27.10.5 Handling Accesses to Reserved MSR Addresses
Privileged software (either a VMM or a guest OS) can access a model specific register
by specifying addresses in MSR address space. VMMs, however, must prevent a guest
from accessing reserved MSR addresses in MSR address space.

Consult Appendix B for lists of supported MSRs and their usage. Use the MSR bitmap
control to cause a VM exit when a guest attempts to access a reserved MSR address.
The response to such a VM exit should be to reflect #GP(0) back to the guest.

27.11 HANDLING ACCESSES TO CONTROL REGISTERS
Bit fields in control registers (CR0, CR4) control various aspects of processor opera-
tion. The VMM must prevent guests from modifying bits in CR0 or CR4 that are
reserved at the time the VMM is written.

Guest/host masks should be used by the VMM to cause VM exits when a guest
attempts to modify reserved bits. Read shadows should be used to ensure that the
guest always reads the reserved value (usually 0) for such bits. The VMM response to
VM exits due to attempts from a guest to modify reserved bits should be to emulate
the response which the processor would have normally produced (usually a #GP(0)).

27.12 PERFORMANCE CONSIDERATIONS
VMX provides hardware features that may be used for improving processor virtual-
ization performance. VMMs must be designed to use this support properly. The basic
idea behind most of these performance optimizations of the VMM is to reduce the
number of VM exits while executing a guest VM.
Vol. 3B 27-25

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
This section lists ways that VMMs can take advantage of the performance enhancing
features in VMX.
• Read Access to Control Registers. Analysis of common client workloads with

common PC operating systems in a virtual machine shows a large number of
VM-exits are caused by control register read accesses (particularly CR0). Reads
of CR0 and CR4 does not cause VM exits. Instead, they return values from the
CR0/CR4 read-shadows configured by the VMM in the guest controlling-VMCS
with the guest-expected values.

• Write Access to Control Registers. Most VMM designs require only certain bits
of the control registers to be protected from direct guest access. Write access to
CR0/CR4 registers can be reduced by defining the host-owned and guest-owned
bits in them through the CR0/CR4 host/guest masks in the VMCS. CR0/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-
owned bits, they are allowed without causing VM exits. Any write that cause
changes to host-owned bits cause VM exits and need to be handled by the VMM.

• Access Rights based Page Table protection. For VMM that implement
access-rights-based page table protection, the VMCS provides a CR3 target value
list that can be consulted by the processor to determine if a VM exit is required.
Loading of CR3 with a value matching an entry in the CR3 target-list are allowed
to proceed without VM exits. The VMM can utilize the CR3 target-list to save
page-table hierarchies whose state is previously verified by the VMM.

• Page-fault handling. Another common cause for a VM exit is due to page-faults
induced by guest address remapping done through virtual memory virtualization.
VMX provides page-fault error-code mask and match fields in the VMCS to filter
VM exits due to page-faults based on their cause (reflected in the error-code).

27.13 USE OF THE VMX-PREEMPTION TIMER
The VMX-preemption timer allows VMM software to preempt guest VM execution
after a specified amount of time. Typical VMX-preemption timer usage is to program
the initial VM quantum into the timer, save the timer value on each successive VM-
exit (using the VM-exit control “save preemption timer value”) and run the VM until
the timer expires.

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track
the amount of time the VM has run while still using the VMX-preemption timer for VM
preemption. In this scenario the VMM would not save the VMX-preemption timer on
each VM-exit but instead would reload the VMX-preemption timer with initial VM
quantum less the time the VM has already run. This scenario includes all the VM-
entry and VM-exit latencies in the VM run time.

In both scenarios, on each successive VM-entry the VMX-preemption timer contains
a smaller value until the VM quantum ends. If the VMX-preemption timer is loaded
with a value smaller than the VM-entry latency then the VM will not execute any
27-26 Vol. 3B

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
instructions before the timer expires. The VMM must ensure the initial VM quantum is
greater than the VM-entry latency; otherwise the VM will make no forward progress.
Vol. 3B 27-27

VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
27-28 Vol. 3B

CHAPTER 28
VIRTUALIZATION OF SYSTEM RESOURCES

28.1 OVERVIEW
When a VMM is hosting multiple guest environments (VMs), it must monitor potential
interactions between software components using the same system resources. These
interactions can require the virtualization of resources. This chapter describes the
virtualization of system resources. These include: debugging facilities, address
translation, physical memory, and microcode update facilities.

28.2 VIRTUALIZATION SUPPORT FOR DEBUGGING
FACILITIES

The Intel 64 and IA-32 debugging facilities (see Chapter 16) provide breakpoint
instructions, exception conditions, register flags, debug registers, control registers
and storage buffers for functions related to debugging system and application soft-
ware. In VMX operation, a VMM can support debugging system and application soft-
ware from within virtual machines if the VMM properly virtualizes debugging
facilities. The following list describes features relevant to virtualizing these facilities.
• The VMM can program the exception-bitmap (see Section 21.6.3) to ensure it

gets control on debug functions (like breakpoint exceptions occurring while
executing guest code such as INT3 instructions). Normally, debug exceptions
modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug
exceptions cause VM exits, exiting occurs before register modification.

• The VMM may utilize the VM-entry event injection facilities described in Section
23.5 to inject debug or breakpoint exceptions to the guest. See Section 28.2.1
for a more detailed discussion.

• The MOV-DR exiting control bit in the processor-based VM-execution control field
(see Section 21.6.2) can be enabled by the VMM to cause VM exits on explicit
guest access of various processor debug registers (for example, MOV to/from
DR0-DR7). These exits would always occur on guest access of DR0-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches
cause VM exits, a VMM can control any indirect guest access or modification of
debug registers during guest task switches.

• Guest software access to debug-related model-specific registers (such as
IA32_DEBUGCTL MSR) can be trapped by the VMM through MSR access control
features (such as the MSR-bitmaps that are part of processor-based VM-
execution controls). See Section 27.10 for details on MSR virtualization.
Vol. 3B 28-1

VIRTUALIZATION OF SYSTEM RESOURCES
• Debug registers such as DR7 and the IA32_DEBUGCTL MSR may be explicitly
modified by the guest (through MOV-DR or WRMSR instructions) or modified
implicitly by the processor as part of generating debug exceptions. The current
values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of
VMCS on every VM exit. Pending debug exceptions are debug exceptions that are
recognized by the processor but not yet delivered. See Section 23.6.3 for details
on pending debug exceptions.

• DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area
of the VMCS on every VM entry. This allows the VMM to properly virtualize debug
registers when injecting debug exceptions to guest. Similarly, the RFLAGS1
register is loaded on every VM entry (or pushed to stack if injecting a virtual
event) from guest-state area of the VMCS. Pending debug exceptions are also
loaded from guest-state area of VMCS so that they may be delivered after VM
entry is completed.

28.2.1 Debug Exceptions
If a VMM emulates a guest instruction that would encounter a debug trap (single step
or data or I/O breakpoint), it should cause that trap to be delivered. The VMM should
not inject the debug exception using VM-entry event injection, but should set the
appropriate bits in the pending debug exceptions field. This method will give the trap
the right priority with respect to other events. (If the exception bitmap was
programmed to cause VM exits on debug exceptions, the debug trap will cause a VM
exit. At this point, the trap can be injected during VM entry with the proper priority.)

There is a valid pending debug exception if the BS bit (see Table 21-4) is set, regard-
less of the values of RFLAGS.TF or IA32_DEBUGCTL.BTF. The values of these bits do
not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR)
to IA32_DEBUGCTL to modify BTF if this is occurring with RFLAGS.TF = 1 and after a
MOV SS or POP SS instruction (for example: while debug exceptions are blocked).
Note the following:
• Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions

blocked, a single-step trap will occur after WRMSR. A VMM emulating such an
instruction should set the BS bit (see Table 21-4) in the pending debug
exceptions field before VM entry.

• Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions
blocked, neither a single-step trap nor a taken-branch trap can occur after
WRMSR. A VMM emulating such an instruction should clear the BS bit (see Table
21-4) in the pending debug exceptions field before VM entry.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
28-2 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
28.3 MEMORY VIRTUALIZATION
VMMs must control physical memory to ensure VM isolation and to remap guest
physical addresses in host physical address space for virtualization. Memory virtual-
ization allows the VMM to enforce control of physical memory and yet support guest
OSs’ expectation to manage memory address translation.

28.3.1 Processor Operating Modes & Memory Virtualization
Memory virtualization is required to support guest execution in various processor
operating modes. This includes: protected mode with paging, protected mode with
no paging, real-mode and any other transient execution modes. VMX allows guest
operation in protected-mode with paging enabled and in virtual-8086 mode (with
paging enabled) to support guest real-mode execution. Guest execution in transient
operating modes (such as in real mode with one or more segment limits greater than
64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging
(through CR0 and CR4 fixed bits), the VMM may utilize paging structures to support
memory virtualization. To support guest real-mode execution, the VMM may estab-
lish a simple flat page table for guest linear to host physical address mapping.
Memory virtualization algorithms may also need to capture other guest operating
conditions (such as guest performing A20M# address masking) to map the resulting
20-bit effective guest physical addresses.

28.3.2 Guest & Host Physical Address Spaces
Memory virtualization provides guest software with contiguous guest physical
address space starting zero and extending to the maximum address supported by
the guest virtual processor’s physical address width. The VMM utilizes guest physical
to host physical address mapping to locate all or portions of the guest physical
address space in host memory. The VMM is responsible for the policies and algo-
rithms for this mapping which may take into account the host system physical
memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest
memory uses (such as: accessing DRAM, accessing memory-mapped registers of
virtual devices or core logic functions and so forth). For example:
• To support guest DRAM access, the VMM needs to map DRAM-backed guest

physical addresses to host-DRAM regions. The VMM also requires the guest to
host memory mapping to be at page granularity.

• Virtual devices (I/O devices or platform core logic) emulated by the VMM may
claim specific regions in the guest physical address space to locate memory-
mapped registers. Guest access to these virtual registers may be configured to
cause page-fault induced VM-exits by marking these regions as always not
Vol. 3B 28-3

VIRTUALIZATION OF SYSTEM RESOURCES
present. The VMM may handle these VM exits by invoking appropriate virtual
device emulation code.

28.3.3 Virtualizing Virtual Memory by Brute Force
VMX provides the hardware features required to fully virtualize guest virtual memory
accesses. VMX allows the VMM to trap guest accesses to the PAT (Page Attribute
Table) MSR and the MTRR (Memory Type Range Registers). This control allows the
VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CR0.CRD and CR0.NW bits, as well as by trapping
guest execution of the INVD instruction. The VMM can trap guest CR3 loads and
stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control
over the processor’s address-translation mechanisms. Specifically, this means that
only the VMM can access CR3 (which contains the base of the page directory) and can
execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating
system will also expect to perform normal memory management functions. It will
access CR3, execute INVLPG, and modify (what it believes to be) page directories
and page tables. Virtualization of address translation must tolerate and support
guest attempts to control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access
address-translation hardware trap to the VMM where such operations can be properly
emulated. It must ensure that accesses to page directories and page tables also get
trapped. This may be done by protecting these in-memory structures with conven-
tional page-based protection. The VMM can do this because it can locate the page
directory because its base address is in CR3 and the VMM receives control on any
change to CR3; it can locate the page tables because their base addresses are in the
page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-
memory translation structures may be cumbersome. The VMM may maintain these
structures with different values (e.g., different page base addresses) than guest soft-
ware. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to
these reads. There must also be traps on modifications to these structures even if the
translations they effect are never used. All this implies considerable overhead that
should be avoided.

28.3.4 Alternate Approach to Memory Virtualization
Guest software is allowed to freely modify the guest page-table hierarchy without
causing traps to the VMM. Because of this, the active page-table hierarchy might not
always be consistent with the guest hierarchy. Any potential problems arising from
28-4 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely
access page directories and page tables. Traps occur on CR3 accesses and executions
of INVLPG. They also occur when necessary to ensure that guest modifications to the
translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the func-
tionality of the processor’s physical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB.
While the page-table hierarchy defines the relationship between physical to linear
address, it does not directly control the address translation of each memory access.
Instead, translation is controlled by the TLB, which is occasionally filled by the
processor with translations derived from the page-table hierarchy. With a virtual TLB,
the page-table hierarchy established by guest software (specifically, the guest oper-
ating system) does not control translation, either directly or indirectly. Instead,
translation is controlled by the processor (through its TLB) and by the VMM (through
a page-table hierarchy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively
caches translations derived from the hierarchy maintained by guest software. The
remainder of this document refers to the former as the active page-table hierarchy
(because it is referenced by CR3 and may be used by the processor to load its TLB)
and the latter as the guest page-table hierarchy (because it is maintained by guest
software). The entries in the active hierarchy may resemble the corresponding
entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without
causing VM exits to the VMM. Because of this, the active page-table hierarchy might
not always be consistent with the guest hierarchy. Any potential problems arising
from any inconsistencies can be solved using techniques analogous to those used by
the processor and its TLB. Note the following:
• Suppose the guest page-table hierarchy allows more access than active hierarchy

(for example: there is a translation for a linear address in the guest hierarchy but
not in the active hierarchy); this is analogous to a situation in which the TLB
allows less access than the page-table hierarchy. If an access occurs that would
be allowed by the guest hierarchy but not the active one, a page fault occurs; this
is analogous to a TLB miss. The VMM gains control (as it handles all page faults)
and can update the active page-table hierarchy appropriately; this corresponds
to a TLB fill.

• Suppose the guest page-table hierarchy allows less access than the active
hierarchy; this is analogous to a situation in which the TLB allows more access
than the page-table hierarchy. This situation can occur only if the guest operating
system has modified a page-table entry to reduce access (for example: by
marking it not-present). Because the older, more permissive translation may
have been cached in the TLB, the processor is architecturally permitted to use the
older translation and allow more access. Thus, the VMM may (through the active
page-table hierarchy) also allow greater access. For the new, less permissive
Vol. 3B 28-5

VIRTUALIZATION OF SYSTEM RESOURCES
translation to take effect, guest software should flush any older translations from
the TLB either by executing INVLPG or by loading CR3. Because both these
operations will cause a trap to the VMM, the VMM will gain control and can
remove from the active page-table hierarchy the translations indicated by guest
software (the translation of a specific linear address for INVLPG or all translations
for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache transla-
tions in the TLB. It also writes to the hierarchy to main the accessed (A) and dirty (D)
bits in the PDEs and PTEs. The virtual TLB emulates this behavior as follows:
• When a page is accessed by guest software, the A bit in the corresponding PTE

(or PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor (the same is true for PDEs when active page tables are accessed by the
processor). For guest software to operate properly, the VMM should update the A
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked not-present until it has set the A bit in the guest entry.

• When a page is written by guest software, the D bit in the corresponding PTE (or
PDE for a 4-MByte page) in the active page-table hierarchy will be set by the
processor. For guest software to operate properly, the VMM should update the D
bit in the guest entry at this time. It can do this reliably if it keeps the active PTE
(or PDE) marked read-only until it has set the D bit in the guest entry. This
solution is valid for guest software running at privilege level 3; support for more
privileged guest software is described in Section 28.3.5.

28.3.5 Details of Virtual TLB Operation
This section describes in more detail how a VMM could support a virtual TLB. It
explains how an active page-table hierarchy is initialized and how it is maintained in
response to page faults, uses of INVLPG, and accesses to CR3. The mechanisms
described here are the minimum necessary. They may not result in the best perfor-
mance.
28-6 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
As noted above, the VMM maintains an active page-table hierarchy for each virtual
machine that it supports. It also maintains, for each machine, values that the
machine expects for control registers CR0, CR2, CR3, and CR4 (they control address
translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest
software. The term guest address refers to an address installed by guest software in
the guest CR3, in a guest PDE (as a page table base address or a page base address),
or in a guest PTE (as a page base address). While guest software considers these to
be specific physical addresses, the VMM may map them differently.

28.3.5.1 Initialization of Virtual TLB
To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:
• All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in

CR0 and CR4 (using the CR0 and CR4 guest/host masks)
• Page-fault (#PF) exceptions
• Execution of INVLPG

Figure 28-1. Virtual TLB Scheme

refill on
TLB miss

CR3

PD

PT

PT

F

F

F

F

PD

"Virtual TLB"

Active Guest

INVLPG
MOV to CR3
task switch

refill on
page fault

set accessed
and dirty bits

TLB

PD = page directory
PT = page table
F = page frame

INVLPG
MOV to

CR3
task switch

Active Page-Table Hierarchy Guest Page-Table Hierarchy

PT

PT

F

F

F

F

CR3

set dirty
accessed

OM19040
Vol. 3B 28-7

VIRTUALIZATION OF SYSTEM RESOURCES
When guest software first enables paging, the VMM creates an aligned 4-KByte active
page directory that is invalid (all entries marked not-present). This invalid directory
is analogous to an empty TLB.

28.3.5.2 Response to Page Faults
Page faults can occur for a variety of reasons. In some cases, the page fault alerts the
VMM to an inconsistency between the active and guest page-table hierarchy. In such
cases, the VMM can update the former and re-execute the faulting instruction. In
other cases, the hierarchies are already consistent and the fault should be handled
by the guest operating system. The VMM can detect this and use an established
mechanism for raising a page fault to guest software.

The VMM can handle a page fault by following these steps (The steps below assume
the guest is operating in a paging mode without PAE. Analogous steps to handle
address translation using PAE or four-level paging mechanisms can be derived by
VMM developers according to the paging behavior defined in Chapter 3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A):

1. First consult the active PDE, which can be located using the upper 10 bits of the
faulting address and the current value of CR3. The active PDE is the source of the
fault if it is marked not present or if its R/W bit and U/S bits are inconsistent with
the attempted guest access (the guest privilege level and the values of CR0.WP
and CR4.SMEP should also be taken into account).

2. If the active PDE is the source of the fault, consult the corresponding guest PDE
using the same 10 bits from the faulting address and the physical address that
corresponds to the guest address in the guest CR3. If the guest PDE would cause
a page fault (for example: it is marked not present), then raise a page fault to the
guest operating system.
The following steps assume that the guest PDE would not have caused a page
fault.

3. If the active PDE is the source of the fault and the guest PDE contains, as page-
table base address (if PS = 0) or page base address (PS = 1), a guest address
that the VMM has chosen not to support; then raise a machine check (or some
other abort) to the guest operating system.
The following steps assume that the guest address in the guest PDE is supported
for the virtual machine.

4. If the active PDE is marked not-present, then set the active PDE to correspond to
guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then
allocate an aligned 4-KByte active page table marked completely invalid and
set the page-table base address in the active PDE to be the physical address
of the newly allocated page table.
28-8 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
b. If the active PDE contains a page base address (if PS = 1), then set the page
base address in the active PDE to be the physical page base address that
corresponds to the guest address in the guest PDE.

c. Set the P, U/S, and PS bits in the active PDE to be identical to those in the
guest PDE.

d. Set the PWT, PCD, and G bits according to the policy of the VMM.

e. Set A = 1 in the guest PDE.

f. If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page
table), then set the R/W bit in the active PDE as in the guest PDE.

g. If D = 0 in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted
access is a write; then set R/W in the active PDE as in the guest PDE and set
D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write;
then set R/W = 0 in the active PDE.

i. After modifying the active PDE, re-execute the faulting instruction.
The remaining steps assume that the active PDE is already marked present.

5. If the active PDE is the source of the fault, the active PDE refers to a 4-MByte
page (PS = 1), the attempted access is a write; D = 0 in the guest PDE, and the
active PDE has caused a fault solely because it has R/W = 0; then set R/W in the
active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the
faulting instruction.

6. If the active PDE is the source of the fault and none of the above cases apply,
then raise a page fault of the guest operating system.
The remaining steps assume that the source of the original page fault is not the
active PDE.

NOTE
It is possible that the active PDE might be causing a fault even
though the guest PDE would not. However, this can happen only if the
guest operating system increased access in the guest PDE and did
not take action to ensure that older translations were flushed from
the TLB. Such translations might have caused a page fault if the
guest software were running on bare hardware.

7. If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the
fault, then the fault resulted from an inconsistency between the active page-table
hierarchy and the processor’s TLB. Since the transition to the VMM caused an
address-space change and flushed the processor’s TLB, the VMM can simply re-
execute the faulting instruction.
The remaining steps assume that PS = 0 in the active and guest PDEs.
Vol. 3B 28-9

VIRTUALIZATION OF SYSTEM RESOURCES
8. Consult the active PTE, which can be located using the next 10 bits of the faulting
address (bits 21–12) and the physical page-table base address in the active PDE.
The active PTE is the source of the fault if it is marked not-present or if its R/W bit
and U/S bits are inconsistent with the attempted guest access (the guest
privilege level and the values of CR0.WP and CR4.SMEP should also be taken into
account).

9. If the active PTE is not the source of the fault, then the fault has resulted from an
inconsistency between the active page-table hierarchy and the processor’s TLB.
Since the transition to the VMM caused an address-space change and flushed the
processor’s TLB, the VMM simply re-executes the faulting instruction.
The remaining steps assume that the active PTE is the source of the fault.

10. Consult the corresponding guest PTE using the same 10 bits from the faulting
address and the physical address that correspond to the guest page-table base
address in the guest PDE. If the guest PTE would cause a page fault (it is marked
not-present), the raise a page fault to the guest operating system.
The following steps assume that the guest PTE would not have caused a page
fault.

11. If the guest PTE contains, as page base address, a physical address that is not
valid for the virtual machine being supported; then raise a machine check (or
some other abort) to the guest operating system.
The following steps assume that the address in the guest PTE is valid for the
virtual machine.

12. If the active PTE is marked not-present, then set the active PTE to correspond to
guest PTE:

a. Set the page base address in the active PTE to be the physical address that
corresponds to the guest page base address in the guest PTE.

b. Set the P, U/S, and PS bits in the active PTE to be identical to those in the
guest PTE.

c. Set the PWT, PCD, and G bits according to the policy of the VMM.

d. Set A = 1 in the guest PTE.

e. If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the
guest PTE.

f. If D = 0 in the guest PTE and the attempted access is a write, then set R/W in
the active PTE as in the guest PTE and set D = 1 in the guest PTE.

g. If D = 0 in the guest PTE and the attempted access is not a write, then set
R/W = 0 in the active PTE.

h. After modifying the active PTE, re-execute the faulting instruction.
The remaining steps assume that the active PTE is already marked present.

13. If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the
active PTE has caused a fault solely because it has R/W = 0 (read-only); then set
28-10 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
R/W in the active PTE as in the guest PTE, set D = 1 in the guest PTE and re-
execute the faulting instruction.

14. If none of the above cases apply, then raise a page fault of the guest operating
system.

28.3.5.3 Response to Uses of INVLPG
Operating-systems can use INVLPG to flush entries from the TLB. This instruction
takes a linear address as an operand and software expects any cached translations
for the address to be flushed. A VMM should set the processor-based VM-execution
control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute
INVLPG will trap to the VMM. The VMM can then modify the active page-table hier-
archy to emulate the desired effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the
guest invocation of INVLPG would not fault and only if the guest software is running
at privilege level 0:

1. Locate the relevant active PDE using the upper 10 bits of the operand address
and the current value of CR3. If the PDE refers to a 4-MByte page (PS = 1), then
set P = 0 in the PDE.

2. If the PDE is marked present and refers to a page table (PS = 0), locate the
relevant active PTE using the next 10 bits of the operand address (bits 21–12)
and the page-table base address in the PDE. Set P = 0 in the PTE. Examine all
PTEs in the page table; if they are now all marked not-present, de-allocate the
page table and set P = 0 in the PDE (this step may be optional).

28.3.5.4 Response to CR3 Writes
A guest operating system may attempt to write to CR3. Any write to CR3 implies a
TLB flush and a possible page table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and
emulates the write.

2. The VMM allocates a new PD page, with all invalid entries.

3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance
reasons.

28.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the oper-
ation of a platform. Typically, the BIOS invokes the facility on all processors during
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a
Vol. 3B 28-11

VIRTUALIZATION OF SYSTEM RESOURCES
microcode update more current than the system BIOS may be available, system soft-
ware should provide another mechanism for invoking the microcode update facility.
The implications of the microcode update mechanism on the design of the VMM are
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root
operation. Updates performed in VMX non-root operation may result
in unpredictable system behavior.

28.4.1 Early Load of Microcode Updates
The microcode update facility may be invoked early in the VMM or guest OS boot
process. Loading the microcode update early provides the opportunity to correct
errata affecting the boot process but the technique generally requires a reboot of the
software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such
image loaders do not run on every logical processor, so this method effects only one
logical processor. Later in the VMM or OS boot process, after bringing all application
processors on-line, the VMM or OS needs to invoke the microcode update facility for
all application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update
facility may be invoked by the VMM or the guest OS. For example, if the guest OS
boots first and then loads the VMM, the guest OS may invoke the microcode update
facility on all the logical processors. If a VMM boots before its guests, then the VMM
may invoke the microcode update facility during its boot process. In both cases, the
VMM or OS should invoke the microcode update facilities soon after performing the
multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS
image or, the VMM or OS may manage a separate database or file of microcode
updates. Maintaining a separate microcode update image database has the advan-
tage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

28.4.2 Late Load of Microcode Updates
A microcode update may be loaded during normal system operation. This allows
system software to activate the microcode update at anytime without requiring a
system reboot. This scenario does not allow the microcode update to correct errata
which affect the processor’s boot process but does allow high-availability systems to
activate microcode updates without interrupting the availability of the system. In this
late load scenario, either the VMM or a designated guest may load the microcode
update. If the guest is loading the microcode update, the VMM must make sure that
28-12 Vol. 3B

VIRTUALIZATION OF SYSTEM RESOURCES
the entire guest memory buffer (which contains the microcode update image) will not
cause a page fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the
current set of microcode updates. These updates could be part of the VMM image or
could be contained in a separate microcode update image database (for example: a
database file on disk or in memory). Again, maintaining a separate microcode update
image database has the advantage of reducing the number of required VMM or OS
releases as a result of microcode update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish
to support the microcode update requested by a guest using emulation (without
actually loading the microcode update). To prevent microcode update loading, the
VMM may return a microcode update signature value greater than the value of
IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older
microcode update. The VMM may also drop the guest attempts to write to
IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any microcode
updates. Later, when the guest queries IA32_BIOS_SIGN_ID MSR, the VMM could
emulate the microcode update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of
features that may be enhanced by a microcode update.
Vol. 3B 28-13

VIRTUALIZATION OF SYSTEM RESOURCES
28-14 Vol. 3B

CHAPTER 29
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL

MACHINE MONITOR

29.1 OVERVIEW
This chapter describes what a VMM must consider when handling exceptions, inter-
rupts, error conditions, and transitions between activity states.

29.2 INTERRUPT HANDLING IN VMX OPERATION
The following bullets summarize VMX support for handling interrupts:
• Control of processor exceptions. The VMM can get control on specific guest

exceptions through the exception-bitmap in the guest controlling VMCS. The
exception bitmap is a 32-bit field that allows the VMM to specify processor
behavior on specific exceptions (including traps, faults, and aborts). Setting a
specific bit in the exception bitmap implies VM exits will be generated when the
corresponding exception occurs. Any exceptions that are programmed not to
cause VM exits are delivered directly to the guest through the guest IDT. The
exception bitmap also controls execution of relevant instructions such as BOUND,
INTO and INT3. VM exits on page-faults are treated in such a way the page-fault
error code is qualified through the page-fault-error-code mask and match fields
in the VMCS.

• Control over triple faults. If a fault occurs while attempting to call a double-
fault handler in the guest and that fault is not configured to cause a VM exit in the
exception bitmap, the resulting triple fault causes a VM exit.

• Control of external interrupts. VMX allows both host and guest control of
external interrupts through the “external-interrupt exiting” VM execution control.
If the control is 0, external-interrupts do not cause VM exits and the interrupt
delivery is masked by the guest programmed RFLAGS.IF value.1 If the control is
1, external-interrupts causes VM exits and are not masked by RFLAGS.IF. The
VMM can identify VM exits due to external interrupts by checking the exit reason
for an “external interrupt” (value = 1).

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most
processors that support VMX operation also support Intel 64 architecture. For processors that do
not support Intel 64 architecture, this notation refers to the 32-bit forms of those registers
(EAX, EIP, ESP, EFLAGS, etc.).
Vol. 3B 29-1

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Control of other events. There is a pin-based VM-execution control that
controls system behavior (exit or no-exit) for NMI events. Most VMM usages will
need handling of NMI external events in the VMM and hence will specify host
control of these events.
Some processors also support a pin-based VM-execution control called “virtual
NMIs.” When this control is set, NMIs cause VM exits, but the processor tracks
guest readiness for virtual NMIs. This control interacts with the “NMI-window
exiting” VM-execution control (see below).
INIT and SIPI events always cause VM exits.

• Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit
control in the controlling VMCS controls processor behavior for external interrupt
acknowledgement. If the control is 1, the processor acknowledges the interrupt
controller to acquire the interrupt vector upon VM exit, and stores the vector in
the VM-exit interruption-information field. If the control is 0, the external
interrupt is not acknowledged during VM exit. Since RFLAGS.IF is automatically
cleared on VM exits due to external interrupts, VMM re-enabling of interrupts
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and
vectoring of the external interrupt through the monitor/host IDT.

• Event-masking Support. VMX captures the masking conditions of specific
events while in VMX non-root operation through the interruptibility-state field in
the guest-state area of the VMCS.
This feature allows proper virtualization of various interrupt blocking states, such
as: (a) blocking of external interrupts for the instruction following STI; (b)
blocking of interrupts for the instruction following a MOV-SS or POP-SS
instruction; (c) SMI blocking of subsequent SMIs until the next execution of RSM;
and (d) NMI/SMI blocking of NMIs until the next execution of IRET or RSM.
INIT and SIPI events are treated specially. INIT assertions are always blocked in
VMX root operation and while in SMM, and unblocked otherwise. SIPI events are
always blocked in VMX root operation.
The interruptibility state is loaded from the VMCS guest-state area on every
VM entry and saved into the VMCS on every VM exit.

• Event injection. VMX operation allows injecting interruptions to a guest virtual
machine through the use of VM-entry interrupt-information field in VMCS.
Injectable interruptions include external interrupts, NMI, processor exceptions,
software generated interrupts, and software traps. If the interrupt-information
field indicates a valid interrupt, exception or trap event upon the next VM entry;
the processor will use the information in the field to vector a virtual interruption
through the guest IDT after all guest state and MSRs are loaded. Delivery
through the guest IDT emulates vectoring in non-VMX operation by doing the
normal privilege checks and pushing appropriate entries to the guest stack
(entries may include RFLAGS, EIP and exception error code). A VMM with host
control of NMI and external interrupts can use the event-injection facility to
forward virtual interruptions to various guest virtual machines.
29-2 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
• Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-
execution control (Section 21.6.2) causes VM exits when guest RFLAGS.IF is 1
and no other conditions block external interrupts. A VM exit occurs at the
beginning of any instruction at which RFLAGS.IF = 1 and on which the interrupt-
ibility state of the guest would allow delivery of an interrupt. For example: when
the guest executes an STI instruction, RFLAGS = 1, and if at the completion of
next instruction the interruptibility state masking due to STI is removed; a
VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This
feature allows a VMM to queue a virtual interrupt to the guest when the guest is
not in an interruptible state. The VMM can set the “interrupt-window exiting” VM-
execution control for the guest and depend on a VM exit to know when the guest
becomes interruptible (and, therefore, when it can inject a virtual interrupt). The
VMM can detect such VM exits by checking for the basic exit reason “interrupt-
window” (value = 7). If this feature is not used, the VMM will need to poll and
check the interruptibility state of the guest to deliver virtual interrupts.

• NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor
tracks virtual-NMI blocking. The “NMI-window exiting” VM-execution control
(Section 21.6.2) causes VM exits when there is no virtual-NMI blocking. For
example, after execution of the IRET instruction, a VM exit occurs if the “NMI-
window exiting” VM-execution control is 1. This feature allows a VMM to queue a
virtual NMI to a guest when the guest is not ready to receive NMIs. The VMM can
set the “NMI-window exiting” VM-execution control for the guest and depend on
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when
it can inject a virtual NMI). The VMM can detect such VM exits by checking for the
basic exit reason “NMI window” (value = 8). If this feature is not used, the VMM
will need to poll and check the interruptibility state of the guest to deliver virtual
NMIs.

• VM-exit information. The VM-exit information fields provide details on VM exits
due to exceptions and interrupts. This information is provided through the exit-
qualification, VM-exit-interruption-information, instruction-length and inter-
ruption-error-code fields. Also, for VM exits that occur in the course of vectoring
through the guest IDT, information about the event that was being vectored
through the guest IDT is provided in the IDT-vectoring-information and IDT-
vectoring-error-code fields. These information fields allow the VMM to identify
the exception cause and to handle it properly.

29.3 EXTERNAL INTERRUPT VIRTUALIZATION
VMX operation allows both host and guest control of external interrupts. While guest
control of external interrupts might be suitable for partitioned usages (different CPU
cores/threads and I/O devices partitioned to independent virtual machines), most
VMMs built upon VMX are expected to utilize host control of external interrupts. The
rest of this section describes a general host-controlled interrupt virtualization archi-
tecture for standard PC platforms through the use of VMX supported features.
Vol. 3B 29-3

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
With host control of external interrupts, the VMM (or the host OS in a hosted VMM
model) manages the physical interrupt controllers in the platform and the interrupts
generated through them. The VMM exposes software-emulated virtual interrupt
controller devices (such as PIC and APIC) to each guest virtual machine instance.

29.3.1 Virtualization of Interrupt Vector Space
The Intel 64 and IA-32 architectures use 8-bit vectors of which 244 (20H – FFH) are
available for external interrupts. Vectors are used to select the appropriate entry in
the interrupt descriptor table (IDT). VMX operation allows each guest to control its
own IDT. Host vectors refer to vectors delivered by the platform to the processor
during the interrupt acknowledgement cycle. Guest vectors refer to vectors
programmed by a guest to select an entry in its guest IDT. Depending on the I/O
resource management models supported by the VMM design, the guest vector space
may or may not overlap with the underlying host vector space.
• Interrupts from virtual devices: Guest vector numbers for virtual interrupts

delivered to guests on behalf of emulated virtual devices have no direct relation
to the host vector numbers of interrupts from physical devices on which they are
emulated. A guest-vector assigned for a virtual device by the guest operating
environment is saved by the VMM and utilized when injecting virtual interrupts on
behalf of the virtual device.

• Interrupts from assigned physical devices: Hardware support for I/O device
assignment allows physical I/O devices in the host platform to be assigned
(direct-mapped) to VMs. Guest vectors for interrupts from direct-mapped
physical devices take up equivalent space from the host vector space, and
require the VMM to perform host-vector to guest-vector mapping for interrupts.

Figure 29-1 illustrates the functional relationship between host external interrupts
and guest virtual external interrupts. Device A is owned by the host and generates
external interrupts with host vector X. The host IDT is set up such that the interrupt
service routine (ISR) for device driver A is hooked to host vector X as normal. VMM
emulates (over device A) virtual device C in software which generates virtual inter-
rupts to the VM with guest expected vector P. Device B is assigned to a VM and gener-
ates external interrupts with host vector Y. The host IDT is programmed to hook the
VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM
handler injects virtual interrupt with guest vector Q to the VM. The guest operating
system programs the guest to hook appropriate guest driver’s ISR to vectors P
and Q.
29-4 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
29.3.2 Control of Platform Interrupts
To meet the interrupt virtualization requirements, the VMM needs to take ownership
of the physical interrupts and the various interrupt controllers in the platform. VMM
control of physical interrupts may be enabled through the host-control settings of the
“external-interrupt exiting” VM-execution control. To take ownership of the platform
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices
to the virtual machines and restrict guest access to the platform interrupt controllers.

Intel 64 and IA-32 platforms can support three types of external interrupt control
mechanisms: Programmable Interrupt Controllers (PIC), Advanced Programmable

Figure 29-1. Host External Interrupts and Guest Virtual Interrupts

Device Driver B

Device Driver C

Virtual Device C
Emulation

Device Driver A

Monitor Handler

Host IDTR

Device A Device B

Hardware

Platform Interrupt Platform Interrupt

Virtual Machine Monitor (VMM)

Host IDT

H
os

t

H
o

st

V
ec

to
r

X

V
e

ct
or

 Y

Guest IDTR

Guest IDT

Guest
Vector P

VM

Virtual Interrupt Virtual Interrupt

Guest
Vector Q

OM19041
Vol. 3B 29-5

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Interrupt Controllers (APIC), and Message Signaled Interrupts (MSI). The following
sections provide information on the virtualization of each of these mechanisms.

29.3.2.1 PIC Virtualization
Typical PIC-enabled platform implementations support dual 8259 interrupt control-
lers cascaded as master and slave controllers. They supporting up to 15 possible
interrupt inputs. The 8259 controllers are programmed through initialization
command words (ICWx) and operation command words (OCWx) accessed through
specific I/O ports. The various interrupt line states are captured in the PIC through
interrupt requests, interrupt service routines and interrupt mask registers.

Guest access to the PIC I/O ports can be restricted by activating I/O bitmaps in the
guest controlling-VMCS (activate-I/O-bitmap bit in VM-execution control field set
to 1) and pointing the I/O-bitmap physical addresses to valid bitmap regions. Bits
corresponding to the PIC I/O ports can be cleared to cause a VM exit on guest access
to these ports.

If the VMM is not supporting direct access to any I/O ports from a guest, it can set the
unconditional-I/O-exiting in the VM-execution control field instead of activating I/O
bitmaps. The exit-reason field in VM-exit information allows identification of VM exits
due to I/O access and can provide an exit-qualification to identify details about the
guest I/O operation that caused the VM exit.

The VMM PIC virtualization needs to emulate the platform PIC functionality including
interrupt priority, mask, request and service states, and specific guest programmed
modes of PIC operation.

29.3.2.2 xAPIC Virtualization
Most modern Intel 64 and IA-32 platforms include support for an APIC. While the
standard PIC is intended for use on uniprocessor systems, APIC can be used in either
uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt
acceptance unit (Local APIC) which is integrated with the processor, and the interrupt
delivery unit (I/O APIC) which is part of the I/O subsystem. APIC virtualization
involves protecting the platform’s local and I/O APICs and emulating them for the
guest.

29.3.2.3 Local APIC Virtualization
The local APIC is responsible for the local interrupt sources, interrupt acceptance,
dispensing interrupts to the logical processor, and generating inter-processor inter-
rupts. Software interacts with the local APIC by reading and writing its memory-
mapped registers residing within a 4-KByte uncached memory region with base
address stored in the IA32_APIC_BASE MSR. Since the local APIC registers are
memory-mapped, the VMM can utilize memory virtualization techniques (such as
29-6 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
page-table virtualization) to trap guest accesses to the page frame hosting the
virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC opera-
tions and registers, such as: APIC identification/format registers, the local vector
table (LVT), the interrupt command register (ICR), interrupt capture registers (TMR,
IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and
the APIC-timer register. Since local APICs are designed to operate with non-specific
EOI, local APIC emulation also needs to emulate broadcast of EOI to the guest’s
virtual I/O APICs for level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector
table entry for local interrupts and (2) raising processor priority through the TPR
registers for masking lower priority external interrupts. The VMM needs to compre-
hend these virtual local APIC mask settings as programmed by the guest in addition
to the guest virtual processor interruptibility state (when injecting APIC routed
external virtual interrupts to a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These
features allow many of guest TPR accesses (using CR8 only) to occur without VM
exits to the VMM:
• The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical

address of the 4-KByte virtual APIC page (4-KByte aligned). The virtual-APIC
page contains a TPR shadow, which is accessed by the MOV CR8 instruction. The
TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

• The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below
which the TPR shadow cannot fall. A VM exit will occur after an execution of MOV
CR8 that reduces the TPR shadow below this value.

• The processor-based VM-execution controls field contains a “use TPR shadow” bit
and a “CR8-store exiting” bit. If the “use TPR shadow” VM-execution control is 1
and the “CR8-store exiting” VM-execution control is 0, then a MOV from CR8
reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1,
then MOV from CR8 causes a VM exit; the “use TPR shadow” VM-execution
control is ignored in this case.

• The processor-based VM-execution controls field contains a “CR8-load exiting”
bit. If the “use TPR shadow” VM-execution control is set and the “CR8-load
exiting” VM-execution control is clear, then MOV to CR8 writes to the “TPR
shadow”. A VM exit will occur after this write if the value written is below the TPR
threshold. If the “CR8-load exiting” VM-execution control is set, then MOV to CR8
causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this
case.

29.3.2.4 I/O APIC Virtualization
The I/O APIC registers are typically mapped to a 1 MByte region where each I/O APIC
is allocated a 4K address window within this range. The VMM may utilize physical
memory virtualization to trap guest accesses to the virtual I/O APIC memory-
Vol. 3B 29-7

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
mapped registers. The I/O APIC virtualization needs to emulate the various I/O APIC
operations and registers such as identification/version registers, indirect-I/O-access
registers, EOI register, and the I/O redirection table. I/O APIC virtualization also
need to emulate various redirection table entry settings such as delivery mode,
destination mode, delivery status, polarity, masking, and trigger mode programmed
by the guest and track remote-IRR state on guest EOI writes to various virtual local
APICs.

29.3.2.5 Virtualization of Message Signaled Interrupts
The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message
signaled interrupts (MSI). MSI enable PCI devices to request service by writing a
system-specified message to a system specified address. The transaction address
specifies the message destination while the transaction data specifies the interrupt
vector, trigger mode and delivery mode. System software is expected to configure
the message data and address during MSI device configuration, allocating one or
more no-shared messages to MSI capable devices. Chapter 10, “Advanced Program-
mable Interrupt Controller (APIC),” specifies the MSI message address and data
register formats to be followed on Intel 64 and IA-32 platforms. While MSI is optional
for conventional PCI devices, it is the preferred interrupt mechanism for PCI-Express
devices.

Since the MSI address and data are configured through PCI configuration space, to
control these physical interrupts the VMM needs to assume ownership of PCI config-
uration space. This allows the VMM to capture the guest configuration of message
address and data for MSI-capable virtual and assigned guest devices. PCI configura-
tion transactions on PC-compatible systems are generated by software through two
different methods:

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism
(CFCH/CF8H ports) as defined in the PCI Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as
defined in the PCI-Express Base Specification (Rev. 1.0a.).

The CFCH/CF8H configuration access from guests can be trapped by the VMM
through use of I/O-bitmap VM-execution controls. The memory-mapped PCI-Express
MEMCFG guest configuration accesses can be trapped by VMM through physical
memory virtualization.

29.3.3 Examples of Handling of External Interrupts
The following sections illustrate interrupt processing in a VMM (when used to support
the external interrupt virtualization requirements).
29-8 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
29.3.3.1 Guest Setup
The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This
is done by setting the “external-interrupt exiting” VM-execution control in the guest
controlling-VMCS.

29.3.3.2 Processor Treatment of External Interrupt
Interrupts are automatically masked by hardware in the processor on VM exit by
clearing RFLAGS.IF. The exit-reason field in VMCS is set to 1 to indicate an external
interrupt as the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge
interrupt on exit” VM-exit control), the processor acknowledges the interrupt,
retrieves the host vector, and saves the interrupt in the VM-exit-interruption-infor-
mation field (in the VM-exit information region of the VMCS) before transitioning
control to the VMM.

29.3.3.3 Processing of External Interrupts by VMM
Upon VM exit, the VMM can determine the exit cause of an external interrupt by
checking the exit-reason field (value = 1) in VMCS. If the acknowledge-interrupt-on-
exit control (see Section 21.7.1) is enabled, the VMM can use the saved host vector
(in the exit-interruption-information field) to switch to the appropriate interrupt
handler. If the “acknowledge interrupt on exit” VM-exit control is 0, the VMM may re-
enable interrupts (by setting RFLAGS.IF) to allow vectoring of external interrupts
through the monitor/host IDT.

The following steps may need to be performed by the VMM to process an external
interrupt:
• Host Owned I/O Devices: For host-owned I/O devices, the interrupting device

is owned by the VMM (or hosting OS in a hosted VMM). In this model, the
interrupt service routine in the VMM/host driver is invoked and, upon ISR
completion, the appropriate write sequences (TPR updates, EOI etc.) to
respective interrupt controllers are performed as normal. If the work completion
indicated by the driver implies virtual device activity, the VMM runs the virtual
device emulation. Depending on the device class, physical device activity could
imply activity by multiple virtual devices mapped over the device. For each
affected virtual device, the VMM injects a virtual external interrupt event to
respective guest virtual machines. The guest driver interacts with the emulated
virtual device to process the virtual interrupt. The interrupt controller emulation
in the VMM supports various guest accesses to the VMM’s virtual interrupt
controller.

• Guest Assigned I/O Devices: For assigned I/O devices, either the VMM uses a
software proxy or it can directly map the physical device to the assigned VM. In
both cases, servicing of the interrupt condition on the physical device is initiated
by the driver running inside the guest VM. With host control of external
Vol. 3B 29-9

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
interrupts, interrupts from assigned physical devices cause VM exits to the VMM
and vectoring through the host IDT to the registered VMM interrupt handler. To
unblock delivery of other low priority platform interrupts, the VMM interrupt
handler must mask the interrupt source (for level triggered interrupts) and issue
the appropriate EOI write sequences.

Once the physical interrupt source is masked and the platform EOI generated, the
VMM can map the host vector to its corresponding guest vector to inject the virtual
interrupt into the assigned VM. The guest software does EOI write sequences to its
virtual interrupt controller after completing interrupt processing. For level triggered
interrupts, these EOI writes to the virtual interrupt controller may be trapped by the
VMM which may in turn unmask the previously masked interrupt source.

29.3.3.4 Generation of Virtual Interrupt Events by VMM
The following provides some of the general steps that need to be taken by VMM
designs when generating virtual interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility
state is reflected in the guest RFLAGS.IF flag and the processor interruptibility-
state saved in the guest state area of the controlling-VMCS. If RFLAGS.IF is set
and the interruptibility state indicates readiness to take external interrupts (STI-
masking and MOV-SS/POP-SS-masking bits are clear), the guest virtual
processor is ready to take external interrupts. If the VMM design supports non-
active guest sleep states, the VMM needs to make sure the current guest sleep
state allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may
utilize the “interrupt-window exiting” VM-execution to notify the VM (through a
VM exit) when the virtual processor state changes to interruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local
APIC, the current value of its processor priority register specifies if guest
software allows dispensing an external virtual interrupt with a specific priority to
the virtual processor. If the virtual interrupt is routed through the local vector
table (LVT) entry of the local APIC, the mask bits in the corresponding LVT entry
specifies if the interrupt is currently masked. Similarly, the virtual interrupt
controller’s current mask (IO-APIC or PIC) and priority settings reflect guest
state to accept specific external interrupts. The VMM needs to check both the
virtual processor and interrupt controller states to verify its guest interruptibility
state. If the guest is currently interruptible, the VMM can inject the virtual
interrupt. If the current guest state does not allow injecting a virtual interrupt,
the interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event
injection to deliver various virtual events (such as external interrupts,
exceptions, traps, and so forth). VMM designs may prioritize use of virtual-
interrupt injection between these event types. Since each VM entry allows
injection of one event, depending on the VMM event priority policies, the VMM
may need to queue the external virtual interrupt if a higher priority event is to be
29-10 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
delivered on the next VM entry. Since the VMM has masked this particular
interrupt source (if it was level triggered) and done EOI to the platform interrupt
controller, other platform interrupts can be serviced while this virtual interrupt
event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have
passed, before generating the virtual interrupt to the guest, the VMM updates the
virtual interrupt controller state (Local-APIC, IO-APIC and/or PIC) to reflect
assertion of the virtual interrupt. This involves updating the various interrupt
capture registers, and priority registers as done by the respective hardware
interrupt controllers. Updating the virtual interrupt controller state is required for
proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a
guest VM, the VMM sets up the VM-entry interruption-information field in the
guest controlling-VMCS before entry to guest using VMRESUME. Upon VM entry,
the processor will use this vector to access the gate in guest’s IDT and the value
of RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the
guest stack. If the guest RFLAGS.IF is clear, the STI-masking bit is set, or the
MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the processor will
load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 23.7).

29.4 ERROR HANDLING BY VMM
Error conditions may occur during VM entries and VM exits and a few other situa-
tions. This section describes how VMM should handle these error conditions,
including triple faults and machine check exceptions.

29.4.1 VM-Exit Failures
All VM exits load processor state from the host-state area of the VMCS that was the
controlling VMCS before the VM exit. This state is checked for consistency while being
loaded. Because the host-state is checked on VM entry, these checks will generally
succeed. Failure is possible only if host software is incorrect or if VMCS data in the
VMCS region in memory has been written by guest software (or by I/O DMA) since
the last VM entry. VM exits may fail for the following reasons:
• There was a failure on storing guest MSRs.
• There was failure in loading a PDPTR.
• The controlling VMCS has been corrupted (through writes to the corresponding

VMCS region) in such a way that the implementation cannot complete the VM
exit.

• There was a failure on loading host MSRs.
• A machine check occurred.
Vol. 3B 29-11

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
If one of these problems occurs on a VM exit, a VMX abort results.

29.4.2 Machine Check Considerations
The following sequence determine how machine check exceptions are handled during
VMXON, VMXOFF, VM entries, and VM exits:
• VMXOFF and VMXON:

If a machine check occurs during VMXOFF or VMXON and CR4.MCE = 1, a
machine-check exception (#MC) is generated. If CR4.MCE = 0, the processor
goes to shutdown state.

• VM entry:
If a machine check occurs during VM entry, one of the following two treatments
must occur:

a. Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception
(#MC) through the host IDT occurs. If CR4.MCE = 0, the processor goes to
shutdown state.

b. Load state from the host-state area of the working VMCS as if a VM exit had
occurred (see Section 23.7). The basic exit reason will be “VM-entry failure
due to machine check.”

If the machine check occurs after any guest state has been loaded, option b
above must be used. If the machine check occurs while checking host state and
VMX controls (or while reporting a failure due to such checks), option a should be
preferred; however, an implementation may use b, since software will not be able
to tell whether any guest state has been loaded.

• VM exit:
If a machine check occurs during VM exit, one of the following two treatments
must occur:

— Normal delivery. If CR4.MCE = 1, delivery of a machine-check exception
(#MC) through the guest IDT. If CR4.MCE = 0, the processor goes to
shutdown state.

— Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will
result; it will block events as done normally in VMX abort. The VMX abort
indicator will show a machine check has induced the abort operation.

If a machine check is induced by an action in VMX non-root operation before any
determination is made that the inducing action may cause a VM exit, that
machine check should be considered as happening during guest execution in VMX
non-root operation. This is the case even if the part of the action that caused the
machine check was VMX-specific (for example: the processor’s consulting an I/O
bitmap). A machine-check exception will occur. If bit 12H of the exception bitmap
is cleared to 0, a machine-check exception could be delivered to the guest
through gate 12H of its IDT; if the bit is set to 1, the machine-check exception will
cause a VM exit.
29-12 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
NOTE
The state saved in the guest-state area on VM exits due to machine-
check exceptions should be considered suspect. A VMM should
consult the RIPV and EIPV bits in the IA32_MCG_STATUS MSR before
resuming a guest that caused a VM exit due to a machine-check
exception.

29.4.3 MCA Error Handling Guidelines for VMM
Section 29.4.2 covers general requirements for VMMs to handle machine-check
exceptions, when normal operation of the guest machine and/or the VMM is no
longer possible. enhancements of machine check architecture in newer processors
may support software recovery of uncorrected MC errors (UCR) signaled through
either machine-check exceptions or corrected machine-check interrupt (CMCI).
Section 15.5 and Section 15.6 describes details of these more recent enhancements
of machine check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recom-
mendations for OS error handling described in Section 15.3, Section 15.6, Section
15.9, and Section 15.10. This section describes additional guidelines for hosted and
native hypervisor-based VMM implementations to support corrected MC errors and
recoverable uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing
standard host OS, the host OS controls platform hardware through the host OS
services such as the standard OS device drivers. In hosted VMMs. MCA errors will be
handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only
a limited set of platform services for guest VMs. Most platform services may instead
be provided by a “control OS”. In hypervisor-based VMMs, MCA errors will either be
delivered directly to the VMM MCA handler (when the error is signaled while in the
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA inter-
cept handler. There are two general approaches the hypervisor can use to handle the
MCA error: either within the hypervisor itself or by forwarding the error to the control
OS.

29.4.3.1 VMM Error Handling Strategies
Broadly speaking, there are two strategies that VMMs may take for error handling:
• Basic error handling: in this approach the guest VM is treated as any other thread

of execution. If the error recovery action does not support restarting the thread
after handling the error, the guest VM should be terminated.

• MCA virtualization: in this approach, the VMM virtualizes the MCA events and
hardware. This enables the VMM to intercept MCA events and inject an MCA into
Vol. 3B 29-13

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
the guest VM. The guest VM then has the opportunity to attempt error recovery
actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native
VMMs are discussed below.

29.4.3.2 Basic VMM MCA error recovery handling
The simplest approach is for the VMM to treat the guest VM as any other thread of
execution:
• MCE's that occur outside the stream of execution of a virtual machine guest will

cause an MCE abort and may be handled by the MCA error handler following the
recovery actions and guidelines described in Section 15.9, and Section 15.10.
This includes logging the error and taking appropriate recovery actions when
necessary. The VMM must not resume the interrupted thread of execution or
another VM until it has taken the appropriate recovery action or, in the case of
fatal MCAs, reset the system.

• MCE's that occur while executing in the context of a virtual machine will be
intercepted by the VMM. The MCA intercept handler may follow the error handling
guidelines listed in Section 15.9 and Section 15.10 for SRAO and SRAR errors.
For SRAR errors, terminating the thread of execution will involve terminating the
affected guest VM. For fatal errors the MCA handler should log the error and reset
the system -- the VMM should not resume execution of the interrupted VM.

29.4.3.3 Implementation Considerations for the Basic Model
For hosted VMMs, the host OS MCA error handling code will perform error analysis
and initiate the appropriate recovery actions. For the basic model this flow does not
change when terminating a guest VM although the specific actions needed to termi-
nate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the
VMM MCA handler (when the error is signaled while in the VMM context) or cause a
VM exit from a guest VM or be delivered to the MCA intercept handler. There are two
general approaches the hypervisor can use to handle the MCA error: either by
forwarding the error to the control OS or within the hypervisor itself. These
approaches are described in the following paragraphs.

The hypervisor may forward the error to the control OS for handling errors. This
approach simplifies the hypervisor error handling since it relies on the control OS to
implement the basic error handling model. The control OS error handling code will be
similar to the error handling code in the hosted VMM. Errors can be forwarded to the
control OS via an OS callback or by injecting an MCE event into the control OS.
Injecting an MCE will cause the control OS MCA error handler to be invoked. The
control OS is responsible for terminating the affected guest VM, if necessary, which
may require cooperation from the hypervisor.
29-14 Vol. 3B

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
Alternatively, the error may be handled completely in the hypervisor. The hypervisor
error handler is enhanced to implement the basic error handling model and the
hypervisor error handler has the capability to fully analyze the error information and
take recovery actions based on the guidelines. In this case error handling steps in the
hypervisor are similar to those for the hosted VMM described above (where the
hypervisor replaces the host OS actions). The hypervisor is responsible for termi-
nating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and
reset the system. The VMM error handler must ensure that guest VMs are not
resumed after a fatal error is detected to ensure error containment is maintained.

29.4.3.4 MCA Virtualization
A more sophisticated approach for handling errors is to virtualize the MCA. This
involves virtualizing the MCA hardware and intercepting the MCA event in the VMM
when a guest VM is interrupted by an MCA. After analyzing the error, the VMM error
handler may then decide to inject an MCE abort into the guest VM for attempted
guest VM error recovery. This would enable the guest OS the opportunity to take
recovery actions specific to that guest.

For MCA virtualization, the VMM must provide the guest physical address for memory
errors instead of the system physical address when reporting the errors to the guest
VM. To compute the guest physical address, the VMM needs to maintain a reverse
mapping of system physical page addresses to guest physical page addresses.

When the MCE is injected into the guest VM, the guest OS MCA handler would be
invoked. The guest OS implements the MCA handling guidelines and it could poten-
tially terminate the interrupted thread of execution within the guest instead of termi-
nating the VM. The guest OS may also disable use of the affected page by the guest.
When disabling the page the VMM error handler may handle the case where a page is
shared by the VMM and a guest or by two guests. In these cases the page use must
be disabled in both contexts to ensure no subsequent consumption errors are gener-
ated.

29.4.3.5 Implementation Considerations for the MCA Virtualization Model
MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs.
The error handling flow is similar to the flow described in the basic handling case. The
major difference is that the recovery action includes injecting the MCE abort into the
guest VM to enable recovery by the guest OS when the MCA interrupts the execution
of a guest VM.

29.5 HANDLING ACTIVITY STATES BY VMM
A VMM might place a logic processor in the wait-for-SIPI activity state if supporting
certain guest operating system using the multi-processor (MP) start-up algorithm. A
Vol. 3B 29-15

HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
guest with direct access to the physical local APIC and using the MP start-up algo-
rithm sends an INIT-SIPI-SIPI IPI sequence to start the application processor. In
order to trap the SIPIs, the VMM must start the logic processor which is the target of
the SIPIs in wait-for-SIPI mode.
29-16 Vol. 3B

CHAPTER 30
PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance.

30.1 PERFORMANCE MONITORING OVERVIEW
Performance monitoring was introduced in the Pentium processor with a set of
model-specific performance-monitoring counter MSRs. These counters permit selec-
tion of processor performance parameters to be monitored and measured. The infor-
mation obtained from these counters can be used for tuning system and compiler
performance.

In Intel P6 family of processors, the performance monitoring mechanism was
enhanced to permit a wider selection of events to be monitored and to allow greater
control events to be monitored. Next, Pentium 4 and Intel Xeon processors intro-
duced a new performance monitoring mechanism and new set of performance
events.

The performance monitoring mechanisms and performance events defined for the
Pentium, P6 family, Pentium 4, and Intel Xeon processors are not architectural. They
are all model specific (not compatible among processor families). Intel Core Solo and
Intel Core Duo processors support a set of architectural performance events and a
set of non-architectural performance events. Processors based on Intel Core
microarchitecture and Intel® Atom™ microarchitecture support enhanced architec-
tural performance events and non-architectural performance events.

Starting with Intel Core Solo and Intel Core Duo processors, there are two classes of
performance monitoring capabilities. The first class supports events for monitoring
performance using counting or sampling usage. These events are non-architectural
and vary from one processor model to another. They are similar to those available in
Pentium M processors. These non-architectural performance monitoring events are
specific to the microarchitecture and may change with enhancements. They are
discussed in Section 30.3, “Performance Monitoring (Intel® Core™ Solo and Intel®

Core™ Duo Processors).” Non-architectural events for a given microarchitecture can
not be enumerated using CPUID; and they are listed in Appendix A, “Performance-
Monitoring Events.”

The second class of performance monitoring capabilities is referred to as architec-
tural performance monitoring. This class supports the same counting and sampling
usages, with a smaller set of available events. The visible behavior of architectural
performance events is consistent across processor implementations. Availability of
architectural performance monitoring capabilities is enumerated using the
CPUID.0AH. These events are discussed in Section 30.2.

See also:
Vol. 3B 30-1

PERFORMANCE MONITORING
— Section 30.2, “Architectural Performance Monitoring”

— Section 30.3, “Performance Monitoring (Intel® Core™ Solo and Intel® Core™

Duo Processors)”

— Section 30.4, “Performance Monitoring (Processors Based on Intel® Core™
Microarchitecture)”

— Section 30.5, “Performance Monitoring (Processors Based on Intel® Atom™
Microarchitecture)”

— Section 30.6, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Nehalem”

— Section 30.7, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Westmere”

— Section 30.8, “Performance Monitoring for Processors Based on Intel®

Microarchitecture Code Name Sandy Bridge”

— Section 30.9, “Performance Monitoring (Processors Based on Intel NetBurst®
Microarchitecture)”

— Section 30.10, “Performance Monitoring and Intel Hyper-Threading
Technology in Processors Based on Intel NetBurst® Microarchitecture”

— Section 30.13, “Performance Monitoring and Dual-Core Technology”

— Section 30.14, “Performance Monitoring on 64-bit Intel Xeon Processor MP
with Up to 8-MByte L3 Cache”

— Section 30.16, “Performance Monitoring (P6 Family Processor)”

— Section 30.17, “Performance Monitoring (Pentium Processors)”

30.2 ARCHITECTURAL PERFORMANCE MONITORING
Performance monitoring events are architectural when they behave consistently
across microarchitectures. Intel Core Solo and Intel Core Duo processors introduced
architectural performance monitoring. The feature provides a mechanism for soft-
ware to enumerate performance events and provides configuration and counting
facilities for events.

Architectural performance monitoring does allow for enhancement across processor
implementations. The CPUID.0AH leaf provides version ID for each enhancement.
Intel Core Solo and Intel Core Duo processors support base level functionality identi-
fied by version ID of 1. Processors based on Intel Core microarchitecture support, at
a minimum, the base level functionality of architectural performance monitoring.
Intel Core 2 Duo processor T 7700 and newer processors based on Intel Core
microarchitecture support both the base level functionality and enhanced architec-
tural performance monitoring identified by version ID of 2.
30-2 Vol. 3B

PERFORMANCE MONITORING
Intel Atom processor family supports the base level functionality, enhanced architec-
tural performance monitoring identified by version ID of 2 and version ID of 3
(including two general-purpose performance counters, IA32_PMC0, IA32_PMC1).
Intel Core i7 processor family supports the base level functionality, enhanced archi-
tectural performance monitoring identified by version ID of 2 and version ID of 3,
(including four general-purpose performance counters, IA32_PMC0-IA32_PMC3).

30.2.1 Architectural Performance Monitoring Version 1
Configuring an architectural performance monitoring event involves programming
performance event select registers. There are a finite number of performance event
select MSRs (IA32_PERFEVTSELx MSRs). The result of a performance monitoring
event is reported in a performance monitoring counter (IA32_PMCx MSR). Perfor-
mance monitoring counters are paired with performance monitoring select registers.

Performance monitoring select registers and counters are architectural in the
following respects:
• Bit field layout of IA32_PERFEVTSELx is consistent across microarchitectures.
• Addresses of IA32_PERFEVTSELx MSRs remain the same across microarchitec-

tures.
• Addresses of IA32_PMC MSRs remain the same across microarchitectures.
• Each logical processor has its own set of IA32_PERFEVTSELx and IA32_PMCx

MSRs. Configuration facilities and counters are not shared between logical
processors sharing a processor core.

Architectural performance monitoring provides a CPUID mechanism for enumerating
the following information:
• Number of performance monitoring counters available in a logical processor

(each IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR)
• Number of bits supported in each IA32_PMCx
• Number of architectural performance monitoring events supported in a logical

processor

Software can use CPUID to discover architectural performance monitoring availability
(CPUID.0AH). The architectural performance monitoring leaf provides an identifier
corresponding to the version number of architectural performance monitoring avail-
able in the processor.

The version identifier is retrieved by querying CPUID.0AH:EAX[bits 7:0] (see
Chapter 3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A). If the version identifier is greater than
zero, architectural performance monitoring capability is supported. Software queries
the CPUID.0AH for the version identifier first; it then analyzes the value returned in
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.

In the initial implementation of architectural performance monitoring; software can
determine how many IA32_PERFEVTSELx/ IA32_PMCx MSR pairs are supported per
Vol. 3B 30-3

PERFORMANCE MONITORING
core, the bit-width of PMC, and the number of architectural performance monitoring
events available.

30.2.1.1 Architectural Performance Monitoring Version 1 Facilities
Architectural performance monitoring facilities include a set of performance moni-
toring counters and performance event select registers. These MSRs have the
following properties:
• IA32_PMCx MSRs start at address 0C1H and occupy a contiguous block of MSR

address space; the number of MSRs per logical processor is reported using
CPUID.0AH:EAX[15:8].

• IA32_PERFEVTSELx MSRs start at address 186H and occupy a contiguous block
of MSR address space. Each performance event select register is paired with a
corresponding performance counter in the 0C1H address block.

• The bit width of an IA32_PMCx MSR is reported using the
CPUID.0AH:EAX[23:16]. This the number of valid bits for read operation. On
write operations, the lower-order 32 bits of the MSR may be written with any
value, and the high-order bits are sign-extended from the value of bit 31.

• Bit field layout of IA32_PERFEVTSELx MSRs is defined architecturally.

See Figure 30-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields
are:
• Event select field (bits 0 through 7) — Selects the event logic unit used to

detect microarchitectural conditions (see Table 30-1, for a list of architectural
events and their 8-bit codes). The set of values for this field is defined architec-
turally; each value corresponds to an event logic unit for use with an architectural
performance event. The number of architectural events is queried using
CPUID.0AH:EAX. A processor may support only a subset of pre-defined values.
30-4 Vol. 3B

PERFORMANCE MONITORING
• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the
condition that the selected event logic unit detects. Valid UMASK values for each
event logic unit are specific to the unit. For each architectural performance event,
its corresponding UMASK value defines a specific microarchitectural condition.
A pre-defined microarchitectural condition associated with an architectural event
may not be applicable to a given processor. The processor then reports only a
subset of pre-defined architectural events. Pre-defined architectural events are
listed in Table 30-1; support for pre-defined architectural events is enumerated
using CPUID.0AH:EBX. Architectural performance events available in the initial
implementation are listed in Table A-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural
condition is counted only when the logical processor is operating at privilege
levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected
microarchitectural condition is counted only when the logical processor is
operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the
selected microarchitectural condition. The logical processor counts the number of
deasserted to asserted transitions for any condition that can be expressed by the
other fields. The mechanism does not permit back-to-back assertions to be
distinguished.
This mechanism allows software to measure not only the fraction of time spent in
a particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

Figure 30-1. Layout of IA32_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63
Vol. 3B 30-5

PERFORMANCE MONITORING
• PC (pin control) flag (bit 19) — When set, the logical processor toggles the
PMi pins and increments the counter when performance-monitoring events
occur; when clear, the processor toggles the PMi pins when the counter
overflows. The toggling of a pin is defined as assertion of the pin for a single bus
clock followed by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is
enabled in the corresponding performance-monitoring counter; when clear, the
corresponding counter is disabled. The event logic unit for a UMASK must be
disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to
IA32_PMCx.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

• Counter mask (CMASK) field (bits 24 through 31) — When this field is not
zero, a logical processor compares this mask to the events count of the detected
microarchitectural condition during a single cycle. If the event count is greater
than or equal to this mask, the counter is incremented by one. Otherwise the
counter is not incremented.
This mask is intended for software to characterize microarchitectural conditions
that can count multiple occurrences per cycle (for example, two or more instruc-
tions retired per clock; or bus queue occupations). If the counter-mask field is 0,
then the counter is incremented each cycle by the event count associated with
multiple occurrences.

30.2.2 Additional Architectural Performance Monitoring Extensions
The enhanced features provided by architectural performance monitoring version 2
include the following:
• Fixed-function performance counter register and associated control

register — Three of the architectural performance events are counted using
three fixed-function MSRs (IA32_FIXED_CTR0 through IA32_FIXED_CTR2). Each
of the fixed-function PMC can count only one architectural performance event.
Configuring the fixed-function PMCs is done by writing to bit fields in the MSR
(IA32_FIXED_CTR_CTRL) located at address 38DH. Unlike configuring
performance events for general-purpose PMCs (IA32_PMCx) via UMASK field in
(IA32_PERFEVTSELx), configuring, programming IA32_FIXED_CTR_CTRL for
fixed-function PMCs do not require any UMASK.

• Simplified event programming — Most frequent operation in programming
performance events are enabling/disabling event counting and checking the
status of counter overflows. Architectural performance event version 2 provides
three architectural MSRs:
30-6 Vol. 3B

PERFORMANCE MONITORING
— IA32_PERF_GLOBAL_CTRL allows software to enable/disable event counting
of all or any combination of fixed-function PMCs (IA32_FIXED_CTRx) or any
general-purpose PMCs via a single WRMSR.

— IA32_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via a single RDMSR.

— IA32_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs or general-purpose
PMCs via a single WRMSR.

30.2.2.1 Architectural Performance Monitoring Version 2 Facilities
The facilities provided by architectural performance monitoring version 2 can be
queried from CPUID leaf 0AH by examining the content of register EDX:
• Bits 0 through 4 of CPUID.0AH.EDX indicates the number of fixed-function

performance counters available per core,
• Bits 5 through 12 of CPUID.0AH.EDX indicates the bit-width of fixed-function

performance counters. Bits beyond the width of the fixed-function counter are
reserved and must be written as zeros.

NOTE
Early generation of processors based on Intel Core microarchitecture
may report in CPUID.0AH:EDX of support for version 2 but indicating
incorrect information of version 2 facilities.

The IA32_FIXED_CTR_CTRL MSR include multiple sets of 4-bit field, each 4 bit
field controls the operation of a fixed-function performance counter. Figure 30-2
shows the layout of 4-bit controls for each fixed-function PMC. Two sub-fields are
currently defined within each control. The definitions of the bit fields are:

Figure 30-2. Layout of IA32_FIXED_CTR_CTRL MSR

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for IA32_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
Vol. 3B 30-7

PERFORMANCE MONITORING
• Enable field (lowest 2 bits within each 4-bit control) — When bit 0 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring 0. When bit 1 is set,
performance counting is enabled in the corresponding fixed-function
performance counter to increment while the target condition associated with the
architecture performance event occurred at ring greater than 0. Writing 0 to both
bits stops the performance counter. Writing a value of 11B enables the counter to
increment irrespective of privilege levels.

• PMI field (the fourth bit within each 4-bit control) — When set, the logical
processor generates an exception through its local APIC on overflow condition of
the respective fixed-function counter.

IA32_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting of
each performance counter. Figure 30-3 shows the layout of
IA32_PERF_GLOBAL_CTRL. Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed
with the enable bits for all privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when
the result is false.

The fixed-function performance counters supported by architectural performance
version 2 is listed in Table 30-8, the pairing between each fixed-function perfor-
mance counter to an architectural performance event is also shown.

IA32_PERF_GLOBAL_STATUS MSR provides single-bit status for software to query
the overflow condition of each performance counter. The MSR also provides addi-
tional status bit to indicate overflow conditions when counters are programmed for
precise-event-based sampling (PEBS). IA32_PERF_GLOBAL_STATUS MSR also
provides a sticky bit to indicate changes to the state of performance monitoring hard-

Figure 30-3. Layout of IA32_PERF_GLOBAL_CTRL MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC1 enable

2 1 0

IA32_PMC0 enable

3132333435

Reserved

63
30-8 Vol. 3B

PERFORMANCE MONITORING
ware. Figure 30-4 shows the layout of IA32_PERF_GLOBAL_STATUS. A value of 1 in
bits 0, 1, 32 through 34 indicates a counter overflow condition has occurred in the
associated counter.

When a performance counter is configured for PEBS, overflow condition in the
counter generates a performance-monitoring interrupt signaling a PEBS event. On a
PEBS event, the processor stores data records into the buffer area (see Section
18.15.5), clears the counter overflow status., and sets the “OvfBuffer” bit in
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR. Software should
clear overflow indications when
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling.

The layout of IA32_PERF_GLOBAL_OVF_CTL is shown in Figure 30-5.

Figure 30-4. Layout of IA32_PERF_GLOBAL_STATUS MSR

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

2 1 0

IA32_PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer
Vol. 3B 30-9

PERFORMANCE MONITORING
30.2.2.2 Architectural Performance Monitoring Version 3 Facilities
The facilities provided by architectural performance monitoring version 1 and 2 are
also supported by architectural performance monitoring version 3. Additionally
version 3 provides enhancements to support a processor core comprising of more
than one logical processor, i.e. a processor core supporting Intel Hyper-Threading
Technology or simultaneous multi-threading capability. Specifically,
• CPUID leaf 0AH provides enumeration mechanisms to query:

— The number of general-purpose performance counters (IA32_PMCx) is
reported in CPUID.0AH:EAX[15:8], the bit width of general-purpose
performance counters (see also Section 30.2.1.1) is reported in
CPUID.0AH:EAX[23:16].

— The bit vector representing the set of architectural performance monitoring
events supported (see Section 30.2.3)

— The number of fixed-function performance counters, the bit width of fixed-
function performance counters (see also Section 30.2.2.1).

• Each general-purpose performance counter IA32_PMCx (starting at MSR address
0C1H) is associated with a corresponding IA32_PERFEVTSELx MSR (starting at
MSR address 186H). The Bit field layout of IA32_PERFEVTSELx MSRs is defined
architecturally in Figure 30-6.

Figure 30-5. Layout of IA32_PERF_GLOBAL_OVF_CTRL MSR

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

2 1 0

IA32_PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
30-10 Vol. 3B

PERFORMANCE MONITORING
Bit 21 (AnyThread) of IA32_PERFEVTSELx is supported in architectural
performance monitoring version 3. When set to 1, it enables counting the
associated event conditions (including matching the thread’s CPL with the
OS/USR setting of IA32_PERFEVTSELx) occurring across all logical processors
sharing a processor core. When bit 21 is 0, the counter only increments the
associated event conditions (including matching the thread’s CPL with the
OS/USR setting of IA32_PERFEVTSELx) occurring in the logical processor which
programmed the IA32_PERFEVTSELx MSR.

• Each fixed-function performance counter IA32_FIXED_CTRx (starting at MSR
address 309H) is configured by a 4-bit control block in the
IA32_PERF_FIXED_CTR_CTRL MSR. The control block also allow thread-
specificity configuration using an AnyThread bit. The layout of
IA32_PERF_FIXED_CTR_CTRL MSR is shown.

Figure 30-6. Layout of IA32_PERFEVTSELx MSRs Supporting Architectural
Performance Monitoring Version 3

31

INV—Invert counter mask
EN—Enable counters

INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)

63

ANY—Any Thread

A
N
Y

Vol. 3B 30-11

PERFORMANCE MONITORING
Each control block for a fixed-function performance counter provides a
AnyThread (bit position 2 + 4*N, N= 0, 1, etc.) bit. When set to 1, it enables
counting the associated event conditions (including matching the thread’s CPL
with the ENABLE setting of the corresponding control block of
IA32_PERF_FIXED_CTR_CTRL) occurring across all logical processors sharing a
processor core. When an AnyThread bit is 0 in IA32_PERF_FIXED_CTR_CTRL,
the corresponding fixed counter only increments the associated event conditions
occurring in the logical processor which programmed the
IA32_PERF_FIXED_CTR_CTRL MSR.

• The IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS,
IA32_PERF_GLOBAL_OVF_CTRL MSRs provide single-bit controls/status for each
general-purpose and fixed-function performance counter. Figure 30-8 shows the
layout of these MSR for N general-purpose performance counters (where N is
reported by CPUID.0AH:EAX[15:8]) and three fixed-function counters.
Note: Intel Atom processor family supports two general-purpose performance
monitoring counters (i.e. N =2 in Figure 30-8), other processor families in Intel
64 architecture may support a different value of N in Figure 30-8. The number N
is reported by CPUID.0AH:EAX[15:8]. Intel Core i7 processor family supports
four general-purpose performance monitoring counters (i.e. N =4 in Figure 30-8)

Figure 30-7. Layout of IA32_FIXED_CTR_CTRL MSR Supporting Architectural
Performance Monitoring Version 3

Cntr2 — Controls for IA32_FIXED_CTR2
Cntr1 — Controls for IA32_FIXED_CTR1
PMI — Enable PMI on overflow on IA32_FIXED_CTR0
AnyThread — AnyThread for IA32_FIXED_CTR0

8 7 0

ENABLE — IA32_FIXED_CTR0. 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II

A
N
Y

A
N
Y

A
N
Y

30-12 Vol. 3B

PERFORMANCE MONITORING
30.2.2.3 Full-Width Writes to Performance Counter Registers
The general-purpose performance counter registers IA32_PMCx are writable via
WRMSR instruction. However, the value written into IA32_PMCx by WRMSR is the
signed extended 64-bit value of the EAX[31:0] input of WRMSR.

A processor that supports full-width writes to the general-purpose performance
counters enumerated by CPUID.0AH:EAX[15:8] will set

Figure 30-8. Layout of Global Performance Monitoring Control MSR

IA32_FIXED_CTR2 enable
IA32_FIXED_CTR1 enable
IA32_FIXED_CTR0 enable
IA32_PMC(N-1) enable

.. 1 0

.................... enable

3132333435

Reserved

63 ..N

IA32_PMC1 enable
IA32_PMC0 enable

62

IA32_FIXED_CTR2 Overflow
IA32_FIXED_CTR1 Overflow
IA32_FIXED_CTR0 Overflow
IA32_PMC1 Overflow

.. 1 0

IA32_PMC0 Overflow

313233343563

CondChgd
OvfBuffer

..N

...................... Overflow
IA32_PMC(N-1) Overflow

Global Enable Controls IA32_PERF_GLOBAL_CTRL

Global Overflow Status IA32_PERF_GLOBAL_STATUS

62

IA32_FIXED_CTR2 ClrOverflow
IA32_FIXED_CTR1 ClrOverflow
IA32_FIXED_CTR0 ClrOverflow
IA32_PMC1 ClrOverflow

.. 1 0

IA32_PMC0 ClrOverflow

313233343563

ClrCondChgd
ClrOvfBuffer

Global Overflow Status IA32_PERF_GLOBAL_OVF_CTRL

........................ ClrOverflow
IA32_PMC(N-1) ClrOverflow

N ..
Vol. 3B 30-13

PERFORMANCE MONITORING
IA32_PERF_CAPABILITIES[13] to enumerate its full-width-write capability See
Figure 30-39.

If IA32_PERF_CAPABILITIES.FW_WRITE[bit 13] =1, each IA32_PMCi is accompa-
nied by a corresponding alias address starting at 4C1H for IA32_A_PMC0.

If IA32_A_PMCi is present, the 64-bit input value (EDX:EAX) of WRMSR to
IA32_A_PMCi will cause IA32_PMCi to be updated by:

IA32_PMCi[63:32] ← SignExtend(EDX[N-32:0]);

IA32_PMCi[31:0] ← EAX[31:0];

30.2.3 Pre-defined Architectural Performance Events
Table 30-1 lists architecturally defined events.

A processor that supports architectural performance monitoring may not support all
the predefined architectural performance events (Table 30-1). The non-zero bits in
CPUID.0AH:EBX indicate the events that are not available.

The behavior of each architectural performance event is expected to be consistent on
all processors that support that event. Minor variations between microarchitectures
are noted below:
• UnHalted Core Cycles — Event select 3CH, Umask 00H

This event counts core clock cycles when the clock signal on a specific core is
running (not halted). The counter does not advance in the following conditions:

— an ACPI C-state other than C0 for normal operation

— HLT

— STPCLK# pin asserted

— being throttled by TM1

Table 30-1. UMask and Event Select Encodings for Pre-Defined
Architectural Performance Events

Bit Position
CPUID.AH.EBX

Event Name UMask Event Select

0 UnHalted Core Cycles 00H 3CH

1 Instruction Retired 00H C0H

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

5 Branch Instruction Retired 00H C4H

6 Branch Misses Retired 00H C5H
30-14 Vol. 3B

PERFORMANCE MONITORING
— during the frequency switching phase of a performance state transition (see
Chapter 14, “Power and Thermal Management”)

The performance counter for this event counts across performance state
transitions using different core clock frequencies

• Instructions Retired — Event select C0H, Umask 00H
This event counts the number of instructions at retirement. For instructions that
consist of multiple micro-ops, this event counts the retirement of the last micro-
op of the instruction. An instruction with a REP prefix counts as one instruction
(not per iteration). Faults before the retirement of the last micro-op of a multi-
ops instruction are not counted.
This event does not increment under VM-exit conditions. Counters continue
counting during hardware interrupts, traps, and inside interrupt handlers.

• UnHalted Reference Cycles — Event select 3CH, Umask 01H
This event counts reference clock cycles while the clock signal on the core is
running. The reference clock operates at a fixed frequency, irrespective of core
frequency changes due to performance state transitions. Processors may
implement this behavior differently. See Table A-10 and Table A-12 in Appendix
A, “Performance-Monitoring Events.”

• Last Level Cache References — Event select 2EH, Umask 4FH
This event counts requests originating from the core that reference a cache line
in the last level cache. The event count includes speculation and cache line fills
due to the first-level cache hardware prefetcher, but may exclude cache line fills
due to other hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Last Level Cache Misses — Event select 2EH, Umask 41H
This event counts each cache miss condition for references to the last level cache.
The event count may include speculation and cache line fills due to the first-level
cache hardware prefetcher, but may exclude cache line fills due to other
hardware-prefetchers.
Because cache hierarchy, cache sizes and other implementation-specific charac-
teristics; value comparison to estimate performance differences is not recom-
mended.

• Branch Instructions Retired — Event select C4H, Umask 00H
This event counts branch instructions at retirement. It counts the retirement of
the last micro-op of a branch instruction.

• All Branch Mispredict Retired — Event select C5H, Umask 00H
This event counts mispredicted branch instructions at retirement. It counts the
retirement of the last micro-op of a branch instruction in the architectural path of
execution and experienced misprediction in the branch prediction hardware.
Vol. 3B 30-15

PERFORMANCE MONITORING
Branch prediction hardware is implementation-specific across microarchitec-
tures; value comparison to estimate performance differences is not recom-
mended.

NOTE
Programming decisions or software precisians on functionality should
not be based on the event values or dependent on the existence of
performance monitoring events.

30.3 PERFORMANCE MONITORING (INTEL® CORE™ SOLO
AND INTEL® CORE™ DUO PROCESSORS)

In Intel Core Solo and Intel Core Duo processors, non-architectural performance
monitoring events are programmed using the same facilities (see Figure 30-1) used
for architectural performance events.

Non-architectural performance events use event select values that are model-
specific. Event mask (Umask) values are also specific to event logic units. Some
microarchitectural conditions detectable by a Umask value may have specificity
related to processor topology (see Section 8.6, “Detecting Hardware Multi-Threading
Support and Topology,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A). As a result, the unit mask field (for example,
IA32_PERFEVTSELx[bits 15:8]) may contain sub-fields that specify topology infor-
mation of processor cores.

The sub-field layout within the Umask field may support two-bit encoding that quali-
fies the relationship between a microarchitectural condition and the originating core.
This data is shown in Table 30-2. The two-bit encoding for core-specificity is only
supported for a subset of Umask values (see Appendix A, “Performance Monitoring
Events”) and for Intel Core Duo processors. Such events are referred to as core-
specific events.

Some microarchitectural conditions allow detection specificity only at the boundary
of physical processors. Some bus events belong to this category, providing specificity
between the originating physical processor (a bus agent) versus other agents on the
bus. Sub-field encoding for agent specificity is shown in Table 30-3.

Table 30-2. Core Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 15:14 Encoding Description

11B All cores

10B Reserved

01B This core

00B Reserved
30-16 Vol. 3B

PERFORMANCE MONITORING
Some microarchitectural conditions are detectable only from the originating core. In
such cases, unit mask does not support core-specificity or agent-specificity encod-
ings. These are referred to as core-only conditions.

Some microarchitectural conditions allow detection specificity that includes or
excludes the action of hardware prefetches. A two-bit encoding may be supported to
qualify hardware prefetch actions. Typically, this applies only to some L2 or bus
events. The sub-field encoding for hardware prefetch qualification is shown in
Table 30-4.

Some performance events may (a) support none of the three event-specific qualifica-
tion encodings (b) may support core-specificity and agent specificity simultaneously
(c) or may support core-specificity and hardware prefetch qualification simulta-
neously. Agent-specificity and hardware prefetch qualification are mutually exclu-
sive.

In addition, some L2 events permit qualifications that distinguish cache coherent
states. The sub-field definition for cache coherency state qualification is shown in
Table 30-5. If no bits in the MESI qualification sub-field are set for an event that
requires setting MESI qualification bits, the event count will not increment.

Table 30-3. Agent Specificity Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13 Encoding Description

0 This agent

1 Include all agents

Table 30-4. HW Prefetch Qualification Encoding within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit 13:12 Encoding Description

11B All inclusive

10B Reserved

01B Hardware prefetch only

00B Exclude hardware prefetch

Table 30-5. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 Counts modified state

Bit 10 Counts exclusive state
Vol. 3B 30-17

PERFORMANCE MONITORING
30.4 PERFORMANCE MONITORING (PROCESSORS BASED
ON INTEL® CORE™ MICROARCHITECTURE)

In addition to architectural performance monitoring, processors based on the Intel
Core microarchitecture support non-architectural performance monitoring events.

Architectural performance events can be collected using general-purpose perfor-
mance counters. Non-architectural performance events can be collected using
general-purpose performance counters (coupled with two IA32_PERFEVTSELx MSRs
for detailed event configurations), or fixed-function performance counters (see
Section 30.4.1). IA32_PERFEVTSELx MSRs are architectural; their layout is shown in
Figure 30-1. Starting with Intel Core 2 processor T 7700, fixed-function performance
counters and associated counter control and status MSR becomes part of architec-
tural performance monitoring version 2 facilities (see also Section 30.2.2).

Non-architectural performance events in processors based on Intel Core microarchi-
tecture use event select values that are model-specific. Valid event mask (Umask)
bits are listed in Appendix A. The UMASK field may contain sub-fields identical to
those listed in Table 30-2, Table 30-3, Table 30-4, and Table 30-5. One or more of
these sub-fields may apply to specific events on an event-by-event basis. Details are
listed in Table A-10 in Appendix A, “Performance-Monitoring Events.”

In addition, the UMASK filed may also contain a sub-field that allows detection spec-
ificity related to snoop responses. Bits of the snoop response qualification sub-field
are defined in Table 30-6.

Bit 9 Counts shared state

Bit 8 Counts Invalid state

Table 30-6. Bus Snoop Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description

Bit 11 HITM response

Bit 10 Reserved

Bit 9 HIT response

Bit 8 CLEAN response

Table 30-5. MESI Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 11:8 Description
30-18 Vol. 3B

PERFORMANCE MONITORING
There are also non-architectural events that support qualification of different types of
snoop operation. The corresponding bit field for snoop type qualification are listed in
Table 30-7.

No more than one sub-field of MESI, snoop response, and snoop type qualification
sub-fields can be supported in a performance event.

NOTE
Software must write known values to the performance counters prior
to enabling the counters. The content of general-purpose counters
and fixed-function counters are undefined after INIT or RESET.

30.4.1 Fixed-function Performance Counters
Processors based on Intel Core microarchitecture provide three fixed-function perfor-
mance counters. Bits beyond the width of the fixed counter are reserved and must be
written as zeros. Model-specific fixed-function performance counters on processors
that support Architectural Perfmon version 1 are 40 bits wide.

Each of the fixed-function counter is dedicated to count a pre-defined performance
monitoring events. The performance monitoring events associated with fixed-func-
tion counters and the addresses of these counters are listed in Table 30-8.

Programming the fixed-function performance counters does not involve any of the

Table 30-7. Snoop Type Qualification Definitions within a Non-Architectural Umask
IA32_PERFEVTSELx MSRs

Bit Position 9:8 Description

Bit 9 CMP2I snoops

Bit 8 CMP2S snoops

Table 30-8. Association of Fixed-Function Performance Counters with
Architectural Performance Events

Event Name Fixed-Function PMC PMC Address

INST_RETIRED.ANY MSR_PERF_FIXED_CTR0/I
A32_FIXED_CTR0

309H

CPU_CLK_UNHALTED.CORE MSR_PERF_FIXED_CTR1//
IA32_FIXED_CTR1

30AH

CPU_CLK_UNHALTED.REF MSR_PERF_FIXED_CTR2//
IA32_FIXED_CTR2

30BH
Vol. 3B 30-19

PERFORMANCE MONITORING
IA32_PERFEVTSELx MSRs, and does not require specifying any event masks.
Instead, the MSR MSR_PERF_FIXED_CTR_CTRL provides multiple sets of 4-bit fields;
each 4-bit field controls the operation of a fixed-function performance counter (PMC).
See Figures 30-9. Two sub-fields are defined for each control. See Figure 30-9; bit
fields are:
• Enable field (low 2 bits in each 4-bit control) — When bit 0 is set,

performance counting is enabled in the corresponding fixed-function
performance counter to increment when the target condition associated with the
architecture performance event occurs at ring 0.
When bit 1 is set, performance counting is enabled in the corresponding fixed-
function performance counter to increment when the target condition associated
with the architecture performance event occurs at ring greater than 0.
Writing 0 to both bits stops the performance counter. Writing 11B causes the
counter to increment irrespective of privilege levels.

• PMI field (fourth bit in each 4-bit control) — When set, the logical processor
generates an exception through its local APIC on overflow condition of the
respective fixed-function counter.

30.4.2 Global Counter Control Facilities
Processors based on Intel Core microarchitecture provides simplified performance
counter control that simplifies the most frequent operations in programming perfor-
mance events, i.e. enabling/disabling event counting and checking the status of
counter overflows. This is done by the following three MSRs:
• MSR_PERF_GLOBAL_CTRL enables/disables event counting for all or any

combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx) or general-
purpose PMCs via a single WRMSR.

Figure 30-9. Layout of MSR_PERF_FIXED_CTR_CTRL MSR

Cntr2 — Controls for MSR_PERF_FIXED_CTR2
Cntr1 — Controls for MSR_PERF_FIXED_CTR1
PMI — Enable PMI on overflow
Cntr0 — Controls for MSR_PERF_FIXED_CTR0

8 7 0

ENABLE — 0: disable; 1: OS; 2: User; 3: All ring levels

E
N

P
M
I

11 312 1

Reserved

63 2

E
N

E
N

49 5

PP
MM
II
30-20 Vol. 3B

PERFORMANCE MONITORING
• MSR_PERF_GLOBAL_STATUS allows software to query counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single RDMSR.

• MSR_PERF_GLOBAL_OVF_CTRL allows software to clear counter overflow
conditions on any combination of fixed-function PMCs (MSR_PERF_FIXED_CTRx)
or general-purpose PMCs via a single WRMSR.

MSR_PERF_GLOBAL_CTRL MSR provides single-bit controls to enable counting in
each performance counter (see Figure 30-10). Each enable bit in
MSR_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all privilege levels in the
respective IA32_PERFEVTSELx or MSR_PERF_FIXED_CTR_CTRL MSRs to start/stop
the counting of respective counters. Counting is enabled if the AND’ed results is true;
counting is disabled when the result is false.

MSR_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to
query the overflow condition of each performance counter. The MSR also provides
additional status bit to indicate overflow conditions when counters are programmed
for precise-event-based sampling (PEBS). The MSR_PERF_GLOBAL_STATUS MSR
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring
hardware (see Figure 30-11). A value of 1 in bits 34:32, 1, 0 indicates an overflow
condition has occurred in the associated counter.

Figure 30-10. Layout of MSR_PERF_GLOBAL_CTRL MSR

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable
PMC1 enable

2 1 0

PMC0 enable

3132333435

Reserved

63
Vol. 3B 30-21

PERFORMANCE MONITORING
When a performance counter is configured for PEBS, an overflow condition in the
counter generates a performance-monitoring interrupt this signals a PEBS event. On
a PEBS event, the processor stores data records in the buffer area (see Section
16.4.9), clears the counter overflow status, and sets the OvfBuffer bit in
MSR_PERF_GLOBAL_STATUS.

MSR_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators
for general-purpose or fixed-function counters via a single WRMSR (see
Figure 30-12). Clear overflow indications when:
• Setting up new values in the event select and/or UMASK field for counting or

sampling
• Reloading counter values to continue sampling
• Disabling event counting or sampling

Figure 30-11. Layout of MSR_PERF_GLOBAL_STATUS MSR

Figure 30-12. Layout of MSR_PERF_GLOBAL_OVF_CTRL MSR

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC1 Overflow

2 1 0

PMC0 Overflow

3132333435

Reserved

63

CondChgd
OvfBuffer

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC1 ClrOverflow

2 1 0

PMC0 ClrOverflow

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer
30-22 Vol. 3B

PERFORMANCE MONITORING
30.4.3 At-Retirement Events
Many non-architectural performance events are impacted by the speculative nature
of out-of-order execution. A subset of non-architectural performance events on
processors based on Intel Core microarchitecture are enhanced with a tagging mech-
anism (similar to that found in Intel NetBurst® microarchitecture) that exclude
contributions that arise from speculative execution. The at-retirement events avail-
able in processors based on Intel Core microarchitecture does not require special
MSR programming control (see Section 30.9.6, “At-Retirement Counting”), but is
limited to IA32_PMC0. See Table 30-9 for a list of events available to processors
based on Intel Core microarchitecture.

30.4.4 Precise Event Based Sampling (PEBS)
Processors based on Intel Core microarchitecture also support precise event based
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to
store a set of architectural state information for the processor. The information
provides architectural state of the instruction executed after the instruction that
caused the event (See Section 30.4.4.2).

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is
processed before BTS are processed. The PMI request is held until the processor
completes processing of PEBS and BTS.

For processors based on Intel Core microarchitecture, events that support precise
sampling are listed in Table 30-10. The procedure for detecting availability of PEBS is
the same as described in Section 30.9.7.1.

Table 30-9. At-Retirement Performance Events for Intel Core Microarchitecture

Event Name UMask Event Select

ITLB_MISS_RETIRED 00H C9H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 30-10. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H
Vol. 3B 30-23

PERFORMANCE MONITORING
30.4.4.1 Setting up the PEBS Buffer
For processors based on Intel Core microarchitecture, PEBS is available using
IA32_PMC0 only. Use the following procedure to set up the processor and
IA32_PMC0 counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, precise event
interrupt threshold, and precise event counter reset fields of the DS buffer
management area. In processors based on Intel Core microarchitecture, PEBS
records consist of 64-bit address entries. See Figure 16-8 to set up the precise
event records buffer in memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE
MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an
event listed in Table 30-10.

30.4.4.2 PEBS Record Format
The PEBS record format may be extended across different processor implementa-
tions. The IA32_PERF_CAPABILITES MSR defines a mechanism for software to
handle the evolution of PEBS record format in processors that support architectural
performance monitoring with version id equals 2 or higher. The bit fields of
IA32_PERF_CAPABILITES are defined in Table B-2 of Appendix B, “Model-Specific
Registers (MSRs)”. The relevant bit fields that governs PEBS are:
• PEBSTrap [bit 6]: When set, PEBS recording is trap-like. After the PEBS-enabled

counter has overflowed, PEBS record is recorded for the next PEBS-able event at
the completion of the sampled instruction causing the PEBS event. When clear,
PEBS recording is fault-like. The PEBS record is recorded before the sampled
instruction causing the PEBS event.

• PEBSSaveArchRegs [bit 7]: When set, PEBS will save architectural register and
state information according to the encoded value of the PEBSRecordFormat field.
On processors based on Intel Core microarchitecture, this bit is always 1

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Table 30-10. PEBS Performance Events for Intel Core Microarchitecture (Contd.)
Event Name UMask Event Select
30-24 Vol. 3B

PERFORMANCE MONITORING
• PEBSRecordFormat [bits 11:8]: Valid encodings are:

— 0000B: Only general-purpose registers, instruction pointer and RFLAGS
registers are saved in each PEBS record (seeSection 30.9.7).

30.4.4.3 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 16.4.9.1, “DS Save Area and IA-32e Mode Operation,” for guidelines when
writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which
counter(s) caused of overflow condition. The service routine should clear overflow
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based
on Intel Core and Intel NetBurst microarchitectures is listed in Table 30-11.

Table 30-11. Requirements to Program PEBS

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture

Verify PEBS support of
processor/OS

• IA32_MISC_ENABLE.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLE.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in
disabled

On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR
(0x38F) with 0.

On subsequent entries:

• Clear all counters if “Counter
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is
enabled, counters are
automatically disabled.

Counters MUST be stopped before
writing.1

Optional

Disable PEBS. Clear ENABLE PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Optional

Check overflow
conditions.

Check
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) handle any overflow
conditions.

Check OVF flag of each CCCR for
overflow condition
Vol. 3B 30-25

PERFORMANCE MONITORING
30.4.4.4 Re-configuring PEBS Facilities
When software needs to reconfigure PEBS facilities, it should allow a quiescent period
between stopping the prior event counting and setting up a new PEBS event. The
quiescent period is to allow any latent residual PEBS records to complete its capture
at their previously specified buffer address (provided by IA32_DS_AREA).

Clear overflow status. Clear
MSR_PERF_GLOBAL_STATUS MSR
(0x 38E) using
IA32_PERF_GLOBAL_OVF_CTRL
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“
values.

Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter

PMI/INT bit, bit 20 - 0.
• Event programmed must be

PEBS capable.

• Set appropriate OVF_PMI bits -
1.

• Only CCCR for
MSR_IQ_COUNTER4 support
PEBS.

Allocate buffer for PEBS
states.

Allocate a buffer in memory for the precise information.

Program the
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in
IA32_PEBS_ENABLE MSR
(0x3F1).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as
needed.

Enable counters. Set Enable bits in
MSR_PERF_GLOBAL_CTRL MSR
(0x38F).

Set each CCCR enable bit 12 - 1.

NOTES:
1. Counters read while enabled are not guaranteed to be precise with event counts that occur in tim-

ing proximity to the RDMSR.

Table 30-11. Requirements to Program PEBS (Contd.)

For Processors based on Intel
Core microarchitecture

For Processors based on Intel
NetBurst microarchitecture
30-26 Vol. 3B

PERFORMANCE MONITORING
30.5 PERFORMANCE MONITORING (PROCESSORS BASED
ON INTEL® ATOM™ MICROARCHITECTURE)

Intel Atom processor family supports architectural performance monitoring capa-
bility with version ID 3 (see Section 30.2.2.2) and a host of non-architectural moni-
toring capabilities. The initial implementation of Intel Atom processor family provides
two general-purpose performance counters (IA32_PMC0, IA32_PMC1) and three
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2).

Non-architectural performance monitoring in Intel Atom processor family uses the
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance
counter. The list of non-architectural performance monitoring events is listed in Table
A-11.

Architectural and non-architectural performance monitoring events in Intel Atom
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx
MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 30-6 and
described in Section 30.2.1.1 and Section 30.2.2.2.

Valid event mask (Umask) bits are listed in Appendix A. The UMASK field may contain
sub-fields that provide the same qualifying actions like those listed in Table 30-2,
Table 30-3, Table 30-4, and Table 30-5. One or more of these sub-fields may apply to
specific events on an event-by-event basis. Details are listed in Table A-11 in
Appendix A, “Performance-Monitoring Events.” Precise Event Based Monitoring is
supported using IA32_PMC0 (see also Section 16.4.9, “BTS and DS Save Area”).

30.6 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Intel Core i7 processor family1 supports architectural performance monitoring capa-
bility with version ID 3 (see Section 30.2.2.2) and a host of non-architectural moni-
toring capabilities. The Intel Core i7 processor family is based on Intel®
microarchitecture code name Nehalem, and provides four general-purpose perfor-
mance counters (IA32_PMC0, IA32_PMC1, IA32_PMC2, IA32_PMC3) and three
fixed-function performance counters (IA32_FIXED_CTR0, IA32_FIXED_CTR1,
IA32_FIXED_CTR2) in the processor core.

1. Intel Xeon processor 5500 series and 3400 series are also based on Intel microarchitecture code
name Nehalem, so the performance monitoring facilities described in this section generally also
apply.
Vol. 3B 30-27

PERFORMANCE MONITORING
Non-architectural performance monitoring in Intel Core i7 processor family uses the
IA32_PERFEVTSELx MSR to configure a set of non-architecture performance moni-
toring events to be counted by the corresponding general-purpose performance
counter. The list of non-architectural performance monitoring events is listed in Table
A-11. Non-architectural performance monitoring events fall into two broad catego-
ries:
• Performance monitoring events in the processor core: These include many

events that are similar to performance monitoring events available to processor
based on Intel Core microarchitecture. Additionally, there are several enhance-
ments in the performance monitoring capability for detecting microarchitectural
conditions in the processor core or in the interaction of the processor core to the
off-core sub-systems in the physical processor package. The off-core sub-
systems in the physical processor package is loosely referred to as “uncore“.

• Performance monitoring events in the uncore: The uncore sub-system is shared
by more than one processor cores in the physical processor package. It provides
additional performance monitoring facility outside of IA32_PMCx and
performance monitoring events that are specific to the uncore sub-system.

Architectural and non-architectural performance monitoring events in Intel Core i7
processor family support thread qualification using bit 21 of IA32_PERFEVTSELx
MSR.

The bit fields within each IA32_PERFEVTSELx MSR are defined in Figure 30-6 and
described in Section 30.2.1.1 and Section 30.2.2.2.

Figure 30-13. IA32_PERF_GLOBAL_STATUS MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O), if CCNT>7
OVF_PC6 (R/O), if CCNT>6
OVF_PC5 (R/O), if CCNT>5
OVF_PC4 (R/O), if CCNT>4
OVF_PC3 (R/O)
OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

RESET Value — 0x00000000_00000000

OVF_FC2 (R/O)
OVF_FC1 (R/O)

353433

OVF_FC0 (R/O)

CCNT: CPUID.AH:EAX[15:8]
30-28 Vol. 3B

PERFORMANCE MONITORING
30.6.1 Enhancements of Performance Monitoring in the Processor
Core

The notable enhancements in the monitoring of performance events in the processor
core include:
• Four general purpose performance counters, IA32_PMCx, associated counter

configuration MSRs, IA32_PERFEVTSELx, and global counter control MSR
supporting simplified control of four counters. Each of the four performance
counter can support precise event based sampling (PEBS) and thread-qualifi-
cation of architectural and non-architectural performance events. Width of
IA32_PMCx supported by hardware has been increased. The width of counter
reported by CPUID.0AH:EAX[23:16] is 48 bits. The PEBS facility in Intel microar-
chitecture code name Nehalem has been enhanced to include new data format to
capture additional information, such as load latency.

• Load latency sampling facility. Average latency of memory load operation can be
sampled using load-latency facility in processors based on Intel microarchi-
tecture code name Nehalem. The facility can measure average latency of load
micro-operations from dispatch to when data is globally observable (GO). This
facility is used in conjunction with the PEBS facility.

• Off-core response counting facility. This facility in the processor core allows
software to count certain transaction responses between the processor core to
sub-systems outside the processor core (uncore). Counting off-core response
requires additional event qualification configuration facility in conjunction with
IA32_PERFEVTSELx. Two off-core response MSRs are provided to use in
conjunction with specific event codes that must be specified with
IA32_PERFEVTSELx.

30.6.1.1 Precise Event Based Sampling (PEBS)
All four general-purpose performance counters, IA32_PMCx, can be used for PEBS if
the performance event supports PEBS. Software uses IA32_MISC_ENABLE[7] and
IA32_MISC_ENABLE[12] to detect whether the performance monitoring facility and
PEBS functionality are supported in the processor. The MSR IA32_PEBS_ENABLE
provides 4 bits that software must use to enable which IA32_PMCx overflow condi-
tion will cause the PEBS record to be captured.

Additionally, the PEBS record is expanded to allow latency information to be
captured. The MSR IA32_PEBS_ENABLE provides 4 additional bits that software must
use to enable latency data recording in the PEBS record upon the respective
IA32_PMCx overflow condition. The layout of IA32_PEBS_ENABLE for processors
based on Intel microarchitecture code name Nehalem is shown in Figure 30-14.

When a counter is enabled to capture machine state (PEBS_EN_PMCx = 1), the
processor will write machine state information to a memory buffer specified by soft-
ware as detailed below. When the counter IA32_PMCx overflows from maximum
count to zero, the PEBS hardware is armed.
Vol. 3B 30-29

PERFORMANCE MONITORING
Upon occurrence of the next PEBS event, the PEBS hardware triggers an assist and
causes a PEBS record to be written. The format of the PEBS record is indicated by the
bit field IA32_PERF_CAPABILITIES[11:8] (see Figure 30-39).

The behavior of PEBS assists is reported by IA32_PERF_CAPABILITIES[6] (see
Figure 30-39). The return instruction pointer (RIP) reported in the PEBS record will
point to the instruction after (+1) the instruction that causes the PEBS assist. The
machine state reported in the PEBS record is the machine state after the instruction
that causes the PEBS assist is retired. For instance, if the instructions:

mov eax, [eax] ; causes PEBS assist

nop

are executed, the PEBS record will report the address of the nop, and the value of
EAX in the PEBS record will show the value read from memory, not the target address
of the read operation.

The PEBS record format is shown in Table 30-12, and each field in the PEBS record is
64 bits long. The PEBS record format, along with debug/store area storage format,
does not change regardless of IA-32e mode is active or not.
CPUID.01H:ECX.DTES64[bit 2] reports the processor’s support for 64-bit
debug/store area storage format is invariant to IA-32e mode.

Figure 30-14. Layout of IA32_PEBS_ENABLE MSR

Table 30-12. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field

0x0 R/EFLAGS 0x58 R9

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000
30-30 Vol. 3B

PERFORMANCE MONITORING
In IA-32e mode, the full 64-bit value is written to the register. If the processor is not
operating in IA-32e mode, 32-bit value is written to registers with bits 63:32 zeroed.
Registers not defined when the processor is not in IA-32e mode are written to zero.

Bytes 0xAF:0x90 are enhancement to the PEBS record format. Support for this
enhanced PEBS record format is indicated by IA32_PERF_CAPABILITIES[11:8]
encoding of 0001B.

The value written to bytes 0x97:0x90 is the state of the
IA32_PERF_GLOBAL_STATUS register before the PEBS assist occurred. This value is
written so software can determine which counters overflowed when this PEBS record
was written. Note that this field indicates the overflow status for all counters, regard-
less of whether they were programmed for PEBS or not.

Programming PEBS Facility

Only a subset of non-architectural performance events in the processor support
PEBS. The subset of precise events are listed in Table 30-10. In addition to using
IA32_PERFEVTSELx to specify event unit/mask settings and setting the EN_PMCx bit
in the IA32_PEBS_ENABLE register for the respective counter, the software must also
initialize the DS_BUFFER_MANAGEMENT_AREA data structure in memory to support
capturing PEBS records for precise events.

NOTE
PEBS events are only valid when the following fields of
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

The beginning linear address of the DS_BUFFER_MANAGEMENT_AREA data structure
must be programmed into the IA32_DS_AREA register. The layout of the
DS_BUFFER_MANAGEMENT_AREA is shown in Figure 30-15.

0x8 R/EIP 0x60 R10

0x10 R/EAX 0x68 R11

0x18 R/EBX 0x70 R12

0x20 R/ECX 0x78 R13

0x28 R/EDX 0x80 R14

0x30 R/ESI 0x88 R15

0x38 R/EDI 0x90 IA32_PERF_GLOBAL_STATUS

0x40 R/EBP 0x98 Data Linear Address

0x48 R/ESP 0xA0 Data Source Encoding

0x50 R8 0xA8 Latency value (core cycles)

Table 30-12. PEBS Record Format for Intel Core i7 Processor Family

Byte Offset Field Byte Offset Field
Vol. 3B 30-31

PERFORMANCE MONITORING
• PEBS Buffer Base: This field is programmed with the linear address of the first
byte of the PEBS buffer allocated by software. The processor reads this field to
determine the base address of the PEBS buffer. Software should allocate this
memory from the non-paged pool.

• PEBS Index: This field is initially programmed with the same value as the PEBS
Buffer Base field, or the beginning linear address of the PEBS buffer. The
processor reads this field to determine the location of the next PEBS record to
write to. After a PEBS record has been written, the processor also updates this
field with the address of the next PEBS record to be written. The figure above
illustrates the state of PEBS Index after the first PEBS record is written.

Figure 30-15. PEBS Programming Environment

BTS Buffer Base

BTS Index

BTS Absolute

BTS Interrupt

PEBS Absolute

PEBS Interrupt

PEBS

Maximum

Maximum

Threshold

PEBS Index

PEBS Buffer Base

Threshold

Counter0 Reset

Reserved

0H

8H

10H

18H

20H

28H

30H

38H

40H

48H

50H

Branch Record 0

Branch Record 1

Branch Record n

PEBS Record 0

PEBS Record 1

PEBS Record n

BTS Buffer

PEBS Buffer

DS Buffer Management Area

IA32_DS_AREA MSR

58H

60H

PEBS
Counter1 Reset

PEBS
Counter2 Reset

PEBS
Counter3 Reset
30-32 Vol. 3B

PERFORMANCE MONITORING
• PEBS Absolute Maximum: This field represents the absolute address of the
maximum length of the allocated PEBS buffer plus the starting address of the
PEBS buffer. The processor will not write any PEBS record beyond the end of
PEBS buffer, when PEBS Index equals PEBS Absolute Maximum. No signaling
is generated when PEBS buffer is full. Software must reset the PEBS Index field
to the beginning of the PEBS buffer address to continue capturing PEBS records.

• PEBS Interrupt Threshold: This field specifies the threshold value to trigger a
performance interrupt and notify software that the PEBS buffer is nearly full. This
field is programmed with the linear address of the first byte of the PEBS record
within the PEBS buffer that represents the threshold record. After the processor
writes a PEBS record and updates PEBS Index, if the PEBS Index reaches the
threshold value of this field, the processor will generate a performance interrupt.
This is the same interrupt that is generated by a performance counter overflow,
as programmed in the Performance Monitoring Counters vector in the Local
Vector Table of the Local APIC. When a performance interrupt due to PEBS buffer
full is generated, the IA32_PERF_GLOBAL_STATUS.PEBS_Ovf bit will be set.

• PEBS CounterX Reset: This field allows software to set up PEBS counter
overflow condition to occur at a rate useful for profiling workload, thereby
generating multiple PEBS records to facilitate characterizing the profile the
execution of test code. After each PEBS record is written, the processor checks
each counter to see if it overflowed and was enabled for PEBS (the corresponding
bit in IA32_PEBS_ENABLED was set). If these conditions are met, then the reset
value for each overflowed counter is loaded from the DS Buffer Management
Area. For example, if counter IA32_PMC0 caused a PEBS record to be written,
then the value of “PEBS Counter 0 Reset” would be written to counter
IA32_PMC0. If a counter is not enabled for PEBS, its value will not be modified by
the PEBS assist.

Performance Counter Prioritization

Performance monitoring interrupts are triggered by a counter transitioning from
maximum count to zero (assuming IA32_PerfEvtSelX.INT is set). This same transi-
tion will cause PEBS hardware to arm, but not trigger. PEBS hardware triggers upon
detection of the first PEBS event after the PEBS hardware has been armed (a 0 to 1
transition of the counter). At this point, a PEBS assist will be undertaken by the
processor.

Performance counters (fixed and general-purpose) are prioritized in index order. That
is, counter IA32_PMC0 takes precedence over all other counters. Counter
IA32_PMC1 takes precedence over counters IA32_PMC2 and IA32_PMC3, and so on.
This means that if simultaneous overflows or PEBS assists occur, the appropriate
action will be taken for the highest priority performance counter. For example, if
IA32_PMC1 cause an overflow interrupt and IA32_PMC2 causes an PEBS assist
simultaneously, then the overflow interrupt will be serviced first.

The PEBS threshold interrupt is triggered by the PEBS assist, and is by definition
prioritized lower than the PEBS assist. Hardware will not generate separate interrupts
for each counter that simultaneously overflows. General-purpose performance
counters are prioritized over fixed counters.
Vol. 3B 30-33

PERFORMANCE MONITORING
If a counter is programmed with a precise (PEBS-enabled) event and programmed to
generate a counter overflow interrupt, the PEBS assist is serviced before the counter
overflow interrupt is serviced. If in addition the PEBS interrupt threshold is met, the

threshold interrupt is generated after the PEBS assist completes, followed by the
counter overflow interrupt (two separate interrupts are generated).

Uncore counters may be programmed to interrupt one or more processor cores (see
Section 30.6.2). It is possible for interrupts posted from the uncore facility to occur
coincident with counter overflow interrupts from the processor core. Software must
check core and uncore status registers to determine the exact origin of counter over-
flow interrupts.

30.6.1.2 Load Latency Performance Monitoring Facility
The load latency facility provides software a means to characterize the average load
latency to different levels of cache/memory hierarchy. This facility requires processor
supporting enhanced PEBS record format in the PEBS buffer, see Table 30-12. The
facility measures latency from micro-operation (uop) dispatch to when data is
globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit

MEM_INST_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must
be specified (IA32_PerfEvtSelX[15:0] = 0x100H). The corresponding counter
IA32_PMCx will accumulate event counts for architecturally visible loads which
exceed the programmed latency threshold specified separately in a MSR. Stores
are ignored when this event is programmed. The CMASK or INV fields of the
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing
other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired
latency threshold in core clock cycles. Loads with latencies greater than this
value are eligible for counting and latency data reporting. The minimum value
that may be programmed in this register is 3 (the minimum detectable load
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register
must be programmed with the 64-bit value 0x00000001.00000001.

When the load-latency facility is enabled, load operations are randomly selected by
hardware and tagged to carry information related to data source locality and latency.
Latency and data source information of tagged loads are updated internally.

When a PEBS assist occurs, the last update of latency and data source information
are captured by the assist and written as part of the PEBS record. The PEBS sample
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV
30-34 Vol. 3B

PERFORMANCE MONITORING
controls the number of tagged loads with latency information that will be written into
the PEBS record field by the PEBS assists. The load latency data written to the PEBS
record will be for the last tagged load operation which retired just before the PEBS
assist was invoked.

The load-latency information written into a PEBS record (see Table 30-12, bytes
AFH:98H) consists of:
• Data Linear Address: This is the linear address of the target of the load

operation.
• Latency Value: This is the elapsed cycles of the tagged load operation between

dispatch to GO, measured in processor core clock domain.
• Data Source : The encoded value indicates the origin of the data obtained by the

load instruction. The encoding is shown in Table 30-13. In the descriptions local
memory refers to system memory physically attached to a processor package,
and remote memory referrals to system memory physically attached to another
processor package.

Table 30-13. Data Source Encoding for Load Latency Record

Encoding Description

0x0 Unknown L3 cache miss

0x1 Minimal latency core cache hit. This request was satisfied by the L1 data cache.

0x2 Pending core cache HIT. Outstanding core cache miss to same cache-line address
was already underway.

0x3 This data request was satisfied by the L2.

0x4 L3 HIT. Local or Remote home requests that hit L3 cache in the uncore with no
coherency actions required (snooping).

0x5 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by
another processor core with a cross core snoop where no modified copies were
found. (clean).

0x6 L3 HIT. Local or Remote home requests that hit the L3 cache and was serviced by
another processor core with a cross core snoop where modified copies were found.
(HITM).

0x7 Reserved

0x8 L3 MISS. Local homed requests that missed the L3 cache and was serviced by
forwarded data following a cross package snoop where no modified copies found.
(Remote home requests are not counted).

0x9 Reserved

0xA L3 MISS. Local home requests that missed the L3 cache and was serviced by local
DRAM (go to shared state).
Vol. 3B 30-35

PERFORMANCE MONITORING
The layout of MSR_PEBS_LD_LAT_THRESHOLD is shown in Figure 30-16.

Bits 15:0 specifies the threshold load latency in core clock cycles. Performance
events with latencies greater than this value are counted in IA32_PMCx and their
latency information is reported in the PEBS record. Otherwise, they are ignored. The
minimum value that may be programmed in this field is 3.

30.6.1.3 Off-core Response Performance Monitoring in the Processor Core
Performance an event using off-core response facility can program any of the four
IA32_PERFEVTSELx MSR with specific event codes and predefine mask bit value.
Each event code for off-core response monitoring requires programming an associ-
ated configuration MSR, MSR_OFFCORE_RSP_0. There is only one off-core response
configuration MSR. Table 30-14 lists the event code, mask value and additional off-
core configuration MSR that must be programmed to count off-core response events
using IA32_PMCx.

0xB L3 MISS. Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to shared state).

0xC L3 MISS. Local home requests that missed the L3 cache and was serviced by local
DRAM (go to exclusive state).

0xD L3 MISS. Remote home requests that missed the L3 cache and was serviced by
remote DRAM (go to exclusive state).

0xE I/O, Request of input/output operation

0xF The request was to un-cacheable memory.

Figure 30-16. Layout of MSR_PEBS_LD_LAT MSR

Table 30-13. Data Source Encoding for Load Latency Record (Contd.)

Encoding Description

1615 0

Reserved

63

THRHLD - Load latency threshold

RESET Value — 0x00000000_00000000
30-36 Vol. 3B

PERFORMANCE MONITORING
The layout of MSR_OFFCORE_RSP_0 is shown in Figure 30-17. Bits 7:0 specifies the
request type of a transaction request to the uncore. Bits 15:8 specifies the response
of the uncore subsystem.

Table 30-14. Off-Core Response Event Encoding

Event code in
IA32_PERFEVTSELx

Mask Value in
IA32_PERFEVTSELx Required Off-core Response MSR

0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

Figure 30-17. Layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 to
Configure Off-core Response Events

Table 30-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads
of full and partial cachelines as well as demand data page table
entry cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

RESPONSE TYPE — NON_DRAM (R/W)
RESPONSE TYPE — LOCAL_DRAM (R/W)
RESPONSE TYPE — REMOTE_DRAM (R/W)
RESPONSE TYPE — REMOTE_CACHE_FWD (R/W)

8 7 0

RESPONSE TYPE — RESERVED

11 312 1

Reserved

63 249 5610131415

RESPONSE TYPE — OTHER_CORE_HITM (R/W)
RESPONSE TYPE — OTHER_CORE_HIT_SNP (R/W)
RESPONSE TYPE — UNCORE_HIT (R/W)
REQUEST TYPE — OTHER (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000
Vol. 3B 30-37

PERFORMANCE MONITORING
DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for
ownership (RFO) requests generated by a write to data cacheline.
Does not count L2 RFO.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive)
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2
prefetchers.

OTHER 7 (R/W). Counts one of the following transaction types, including L3
invalidate, I/O, full or partial writes, WC or non-temporal stores,
CLFLUSH, Fences, lock, unlock, split lock.

UNCORE_HIT 8 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore with no coherency actions required (snooping).

OTHER_CORE_HI
T_SNP

9 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where no modified copies were found (clean).

OTHER_CORE_HI
TM

10 (R/W). L3 Hit: local or remote home requests that hit L3 cache in the
uncore and was serviced by another core with a cross core snoop
where modified copies were found (HITM).

Reserved 11 Reserved

REMOTE_CACHE_
FWD

12 (R/W). L3 Miss: local homed requests that missed the L3 cache and
was serviced by forwarded data following a cross package snoop
where no modified copies found. (Remote home requests are not
counted)

REMOTE_DRAM 13 (R/W). L3 Miss: remote home requests that missed the L3 cache and
were serviced by remote DRAM.

LOCAL_DRAM 14 (R/W). L3 Miss: local home requests that missed the L3 cache and
were serviced by local DRAM.

NON_DRAM 15 (R/W). Non-DRAM requests that were serviced by IOH.

Table 30-15. MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 Bit Field Definition

Bit Name Offset Description
30-38 Vol. 3B

PERFORMANCE MONITORING
30.6.2 Performance Monitoring Facility in the Uncore
The “uncore” in Intel microarchitecture code name Nehalem refers to subsystems in
the physical processor package that are shared by multiple processor cores. Some of
the sub-systems in the uncore include the L3 cache, Intel QuickPath Interconnect link
logic, and integrated memory controller. The performance monitoring facilities inside
the uncore operates in the same clock domain as the uncore (U-clock domain), which
is usually different from the processor core clock domain. The uncore performance
monitoring facilities described in this section apply to Intel Xeon processor 5500
series and processors with the following CPUID signatures: 06_1AH, 06_1EH,
06_1FH (see Appendix B). An overview of the uncore performance monitoring facili-
ties is described separately.

The performance monitoring facilities available in the U-clock domain consist of:
• Eight General-purpose counters (MSR_UNCORE_PerfCntr0 through

MSR_UNCORE_PerfCntr7). The counters are 48 bits wide. Each counter is
associated with a configuration MSR, MSR_UNCORE_PerfEvtSelx, to specify
event code, event mask and other event qualification fields. A set of global
uncore performance counter enabling/overflow/status control MSRs are also
provided for software.

• Performance monitoring in the uncore provides an address/opcode match MSR
that provides event qualification control based on address value or QPI command
opcode.

• One fixed-function counter, MSR_UNCORE_FixedCntr0. The fixed-function
uncore counter increments at the rate of the U-clock when enabled.
The frequency of the uncore clock domain can be determined from the uncore
clock ratio which is available in the PCI configuration space register at offset C0H
under device number 0 and Function 0.

30.6.2.1 Uncore Performance Monitoring Management Facility
MSR_UNCORE_PERF_GLOBAL_CTRL provides bit fields to enable/disable general-
purpose and fixed-function counters in the uncore. Figure 30-18 shows the layout of
MSR_UNCORE_PERF_GLOBAL_CTRL for an uncore that is shared by four processor
cores in a physical package.
• EN_PCn (bit n, n = 0, 7): When set, enables counting for the general-purpose

uncore counter MSR_UNCORE_PerfCntr n.
• EN_FC0 (bit 32): When set, enables counting for the fixed-function uncore

counter MSR_UNCORE_FixedCntr0.
• EN_PMI_COREn (bit n, n = 0, 3 if four cores are present): When set, processor

core n is programmed to receive an interrupt signal from any interrupt enabled
uncore counter. PMI delivery due to an uncore counter overflow is enabled by
setting IA32_DEBUG_CTL.Offcore_PMI_EN to 1.

• PMI_FRZ (bit 63): When set, all U-clock uncore counters are disabled when any
one of them signals a performance interrupt. Software must explicitly re-enable
Vol. 3B 30-39

PERFORMANCE MONITORING
the counter by setting the enable bits in MSR_UNCORE_PERF_GLOBAL_CTRL
upon exit from the ISR.

MSR_UNCORE_PERF_GLOBAL_STATUS provides overflow status of the U-clock
performance counters in the uncore. This is a read-only register. If an overflow status
bit is set the corresponding counter has overflowed. The register provides a condition
change bit (bit 63) which can be quickly checked by software to determine if a signif-
icant change has occurred since the last time the condition change status was
cleared. Figure 30-19 shows the layout of MSR_UNCORE_PERF_GLOBAL_STATUS.
• OVF_PCn (bit n, n = 0, 7): When set, indicates general-purpose uncore counter

MSR_UNCORE_PerfCntr n has overflowed.
• OVF_FC0 (bit 32): When set, indicates the fixed-function uncore counter

MSR_UNCORE_FixedCntr0 has overflowed.
• OVF_PMI (bit 61): When set indicates that an uncore counter overflowed and

generated an interrupt request.
• CHG (bit 63): When set indicates that at least one status bit in

MSR_UNCORE_PERF_GLOBAL_STATUS register has changed state.

MSR_UNCORE_PERF_GLOBAL_OVF_CTRL allows software to clear the status bits in
the UNCORE_PERF_GLOBAL_STATUS register. This is a write-only register, and indi-
vidual status bits in the global status register are cleared by writing a binary one to
the corresponding bit in this register. Writing zero to any bit position in this register
has no effect on the uncore PMU hardware.

Figure 30-18. Layout of MSR_UNCORE_PERF_GLOBAL_CTRL MSR

PMI_FRZ (R/W)
EN_PMI_CORE3 (R/W)
EN_PMI_CORE2 (R/W)
EN_PMI_CORE1 (R/W)

8 7 0

EN_PMI_CORE0 (R/W)

32 348 1

Reserved

63 2431 5662 495051

EN_PC7 (R/W)
EN_PC6 (R/W)
EN_PC5 (R/W)
EN_PC4 (R/W)
EN_PC3 (R/W)
EN_PC2 (R/W)
EN_PC1 (R/W)
EN_PC0 (R/W)

EN_FC0 (R/W)

RESET Value — 0x00000000_00000000
30-40 Vol. 3B

PERFORMANCE MONITORING
Figure 30-20 shows the layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL.

Figure 30-19. Layout of MSR_UNCORE_PERF_GLOBAL_STATUS MSR

Figure 30-20. Layout of MSR_UNCORE_PERF_GLOBAL_OVF_CTRL MSR

CHG (R/W)
OVF_PMI (R/W)

8 7 032 3 1

Reserved

63 2431 5662 6061

OVF_PC7 (R/O)
OVF_PC6 (R/O)
OVF_PC5 (R/O)
OVF_PC4 (R/O)
OVF_PC3 (R/O)

OVF_PC2 (R/O)
OVF_PC1 (R/O)
OVF_PC0 (R/O)

OVF_FC0 (R/O)

RESET Value — 0x00000000_00000000

CLR_CHG (WO1)
CLR_OVF_PMI (WO1)

8 7 032 3 1

Reserved

63 2431 5662 6061

CLR_OVF_PC7 (WO1)
CLR_OVF_PC6 (WO1)
CLR_OVF_PC5 (WO1)
CLR_OVF_PC4 (WO1)
CLR_OVF_PC3 (WO1)

CLR_OVF_PC2 (WO1)
CLR_OVF_PC1 (WO1)
CLR_OVF_PC0 (WO1)

CLR_OVF_FC0 (WO1)

RESET Value — 0x00000000_00000000
Vol. 3B 30-41

PERFORMANCE MONITORING
• CLR_OVF_PCn (bit n, n = 0, 7): Set this bit to clear the overflow status for
general-purpose uncore counter MSR_UNCORE_PerfCntr n. Writing a value other
than 1 is ignored.

• CLR_OVF_FC0 (bit 32): Set this bit to clear the overflow status for the fixed-
function uncore counter MSR_UNCORE_FixedCntr0. Writing a value other than 1
is ignored.

• CLR_OVF_PMI (bit 61): Set this bit to clear the OVF_PMI flag in
MSR_UNCORE_PERF_GLOBAL_STATUS. Writing a value other than 1 is ignored.

• CLR_CHG (bit 63): Set this bit to clear the CHG flag in
MSR_UNCORE_PERF_GLOBAL_STATUS register. Writing a value other than 1 is
ignored.

30.6.2.2 Uncore Performance Event Configuration Facility
MSR_UNCORE_PerfEvtSel0 through MSR_UNCORE_PerfEvtSel7 are used to select
performance event and configure the counting behavior of the respective uncore
performance counter. Each uncore PerfEvtSel MSR is paired with an uncore perfor-
mance counter. Each uncore counter must be locally configured using the corre-
sponding MSR_UNCORE_PerfEvtSelx and counting must be enabled using the
respective EN_PCx bit in MSR_UNCORE_PERF_GLOBAL_CTRL. Figure 30-21 shows
the layout of MSR_UNCORE_PERFEVTSELx.

• Event Select (bits 7:0): Selects the event logic unit used to detect uncore events.
• Unit Mask (bits 15:8) : Condition qualifiers for the event selection logic specified

in the Event Select field.
• OCC_CTR_RST (bit17): When set causes the queue occupancy counter

associated with this event to be cleared (zeroed). Writing a zero to this bit will be
ignored. It will always read as a zero.

Figure 30-21. Layout of MSR_UNCORE_PERFEVTSELx MSRs

31

INV—Invert counter mask
EN—Enable counters

E—Edge detect
OCC_CTR_RST—Rest Queue Occ

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
30-42 Vol. 3B

PERFORMANCE MONITORING
• Edge Detect (bit 18): When set causes the counter to increment when a
deasserted to asserted transition occurs for the conditions that can be expressed
by any of the fields in this register.

• PMI (bit 20): When set, the uncore will generate an interrupt request when this
counter overflowed. This request will be routed to the logical processors as
enabled in the PMI enable bits (EN_PMI_COREx) in the register
MSR_UNCORE_PERF_GLOBAL_CTRL.

• EN (bit 22): When clear, this counter is locally disabled. When set, this counter is
locally enabled and counting starts when the corresponding EN_PCx bit in
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• INV (bit 23): When clear, the Counter Mask field is interpreted as greater than or
equal to. When set, the Counter Mask field is interpreted as less than.

• Counter Mask (bits 31:24): When this field is clear, it has no effect on counting.
When set to a value other than zero, the logical processor compares this field to
the event counts on each core clock cycle. If INV is clear and the event counts are
greater than or equal to this field, the counter is incremented by one. If INV is set
and the event counts are less than this field, the counter is incremented by one.
Otherwise the counter is not incremented.

Figure 30-22 shows the layout of MSR_UNCORE_FIXED_CTR_CTRL.

• EN (bit 0): When clear, the uncore fixed-function counter is locally disabled.
When set, it is locally enabled and counting starts when the EN_FC0 bit in
MSR_UNCORE_PERF_GLOBAL_CTRL is set.

• PMI (bit 2): When set, the uncore will generate an interrupt request when the
uncore fixed-function counter overflowed. This request will be routed to the
logical processors as enabled in the PMI enable bits (EN_PMI_COREx) in the
register MSR_UNCORE_PERF_GLOBAL_CTRL.

Both the general-purpose counters (MSR_UNCORE_PerfCntr) and the fixed-function
counter (MSR_UNCORE_FixedCntr0) are 48 bits wide. They support both counting

Figure 30-22. Layout of MSR_UNCORE_FIXED_CTR_CTRL MSR

8 7 03 1

Reserved

63 2456

PMI - Generate PMI on overflow
EN - Enable

RESET Value — 0x00000000_00000000
Vol. 3B 30-43

PERFORMANCE MONITORING
and sampling usages. The event logic unit can filter event counts to specific regions
of code or transaction types incoming to the home node logic.

30.6.2.3 Uncore Address/Opcode Match MSR
The Event Select field [7:0] of MSR_UNCORE_PERFEVTSELx is used to select
different uncore event logic unit. When the event “ADDR_OPCODE_MATCH“ is
selected in the Event Select field, software can filter uncore performance events
according to transaction address and certain transaction responses. The address
filter and transaction response filtering requires the use of
MSR_UNCORE_ADDR_OPCODE_MATCH register. The layout is shown in
Figure 30-23.

• Addr (bits 39:3): The physical address to match if “MatchSel“ field is set to select
address match. The uncore performance counter will increment if the lowest 40-
bit incoming physical address (excluding bits 2:0) for a transaction request
matches bits 39:3.

• Opcode (bits 47:40) : Bits 47:40 allow software to filter uncore transactions
based on QPI link message class/packed header opcode. These bits are consists
two sub-fields:

— Bits 43:40 specify the QPI packet header opcode,

— Bits 47:44 specify the QPI message classes.
Table 30-16 lists the encodings supported in the opcode field.

Figure 30-23. Layout of MSR_UNCORE_ADDR_OPCODE_MATCH MSR

Table 30-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class

Home Request

[47:44] = 0000B

Snoop Response

[47:44] = 0001B

Data Response

[47:44] = 1110B

60

MatchSel—Select addr/Opcode
Opcode—Opcode and Message

3 2 040 394748

Reserved

ADDR

63

ADDR—Bits 39:4 of physical address

RESET Value — 0x00000000_00000000

Opcode
30-44 Vol. 3B

PERFORMANCE MONITORING
• MatchSel (bits 63:61): Software specifies the match criteria according to the
following encoding:

— 000B: Disable addr_opcode match hardware

— 100B: Count if only the address field matches,

— 010B: Count if only the opcode field matches

— 110B: Count if either opcode field matches or the address field matches

— 001B: Count only if both opcode and address field match

— Other encoding are reserved

30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring
Facility

The performance monitoring facility in the processor core of Intel Xeon processor
7500 series are the same as those supported in Intel Xeon processor 5500 series.
The uncore subsystem in Intel Xeon processor 7500 series are significantly different
The uncore performance monitoring facility consist of many distributed units associ-
ated with individual logic control units (referred to as boxes) within the uncore
subsystem. A high level block diagram of the various box units of the uncore is shown
in Figure 30-24.

Uncore PMUs are programmed via MSR interfaces. Each of the distributed uncore
PMU units have several general-purpose counters. Each counter requires an associ-
ated event select MSR, and may require additional MSRs to configure sub-event
conditions. The uncore PMU MSRs associated with each box can be categorized based
on its functional scope: per-counter, per-box, or global across the uncore. The
number counters available in each box type are different. Each box generally
provides a set of MSRs to enable/disable, check status/overflow of multiple counters
within each box.

1

DMND_IFETCH 2 2

WB 3 3

PF_DATA_RD 4 4

PF_RFO 5 5

PF_IFETCH 6 6

OTHER 7 7

NON_DRAM 15 15

Table 30-16. Opcode Field Encoding for MSR_UNCORE_ADDR_OPCODE_MATCH

Opcode [43:40] QPI Message Class
Vol. 3B 30-45

PERFORMANCE MONITORING
Table 30-17 summarizes the number MSRs for uncore PMU for each box.

Figure 30-24. Distributed Units of the Uncore of Intel Xeon Processor 7500 Series

Table 30-17. Uncore PMU MSR Summary

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 8 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes

R-Box 1 16 (2 port, 8 per
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

PBox

L3 Cache

PBoxPBox PBox UBoxWBox

RBox BBoxBBoxMBox MBox PBoxPBox

SBox SBox

CBox CBoxCBoxCBox CBoxCBox CBoxCBox

4 Intel QPI Links

SMI Channels

SMI Channels
30-46 Vol. 3B

PERFORMANCE MONITORING
The W-Box provides 4 general-purpose counters, each requiring an event select
configuration MSR, similar to the general-purpose counters in other boxes. There is
also a fixed-function counter that increments clockticks in the uncore clock domain.

For C,S,B,M,R, and W boxes, each box provides an MSR to enable/disable counting,
configuring PMI of multiple counters within the same box, this is somewhat similar
the “global control“ programming interface, IA32_PERF_GLOBAL_CTRL, offered in
the core PMU. Similarly status information and counter overflow control for multiple
counters within the same box are also provided in C,S,B,M,R, and W boxes.

In the U-Box, MSR_U_PMON_GLOBAL_CTL provides overall uncore PMU
enable/disable and PMI configuration control. The scope of status information in the
U-box is at per-box granularity, in contrast to the per-box status information MSR (in
the C,S,B,M,R, and W boxes) providing status information of individual counter over-
flow. The difference in scope also apply to the overflow control MSR in the U-Box
versus those in the other Boxes.

The individual MSRs that provide uncore PMU interfaces are listed in Appendix B.
Table B-7 under the general naming style of
MSR_%box#%_PMON_%scope_function%, where %box#% designates the type of
box and zero-based index if there are more the one box of the same type,
%scope_function% follows the examples below:
• Multi-counter enabling MSRs: MSR_U_PMON_GLOBAL_CTL,

MSR_S0_PMON_BOX_CTL, MSR_C7_PMON_BOX_CTL, etc.
• Multi-counter status MSRs: MSR_U_PMON_GLOBAL_STATUS,

MSR_S0_PMON_BOX_STATUS, MSR_C7_PMON_BOX_STATUS, etc.
• Multi-counter overflow control MSRs: MSR_U_PMON_GLOBAL_OVF_CTL,

MSR_S0_PMON_BOX_OVF_CTL, MSR_C7_PMON_BOX_OVF_CTL, etc.
• Performance counters MSRs: the scope is implicitly per counter, e.g.

MSR_U_PMON_CTR, MSR_S0_PMON_CTR0, MSR_C7_PMON_CTR5, etc
• Event select MSRs: the scope is implicitly per counter, e.g.

MSR_U_PMON_EVNT_SEL, MSR_S0_PMON_EVNT_SEL0,
MSR_C7_PMON_EVNT_SEL5, etc

• Sub-control MSRs: the scope is implicitly per-box granularity, e.g.
MSR_M0_PMON_TIMESTAMP, MSR_R0_PMON_IPERF0_P1, MSR_S1_PMON_MATCH.

Details of uncore PMU MSR bit field definitions can be found in a separate document
“Intel Xeon Processor 7500 Series Uncore Performance Monitoring Guide“.
Vol. 3B 30-47

PERFORMANCE MONITORING
30.7 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME WESTMERE

All of the performance monitoring programming interfaces (architectural and non-
architectural core PMU facilities, and uncore PMU) described in Section 30.6 also
apply to processors based on Intel® microarchitecture code name Westmere.

Table 30-14 describes a non-architectural performance monitoring event (event code
0B7H) and associated MSR_OFFCORE_RSP_0 (address 1A6H) in the core PMU. This
event and a second functionally equivalent offcore response event using event code
0BBH and MSR_OFFCORE_RSP_1 (address 1A7H) are supported in processors based
on Intel microarchitecture code name Westmere. The event code and event mask
definitions of Non-architectural performance monitoring events are listed in Table
A-11.

The load latency facility is the same as described in Section 30.6.1.2, but added
enhancement to provide more information in the data source encoding field of each
load latency record. The additional information relates to STLB_MISS and LOCK, see
Table 30-22.

30.7.1 Intel Xeon Processor E7 Family Performance Monitoring
Facility

The performance monitoring facility in the processor core of the Intel Xeon processor
E7 family is the same as those supported in the Intel Xeon processor 5600 series2.
The uncore subsystem in the Intel Xeon processor E7 family is similar to those of the
Intel Xeon processor 7500 series. The high level construction of the uncore sub-
system is similar to that shown in Figure 30-24, with the additional capability that up
to 10 C-Box units are supported.

Table 30-18 summarizes the number MSRs for uncore PMU for each box.

2. Exceptions are indicated for event code 0FH in .Table A-6; and valid bits of data source
encoding field of each load latency record is limited to bits 5:4 of Table 30-22.

Table 30-18. Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs

C-Box 10 6 48 Yes per-box None

S-Box 2 4 48 Yes per-box Match/Mask

B-Box 2 4 48 Yes per-box Match/Mask

M-Box 2 6 48 Yes per-box Yes
30-48 Vol. 3B

PERFORMANCE MONITORING
30.8 PERFORMANCE MONITORING FOR PROCESSORS
BASED ON INTEL® MICROARCHITECTURE CODE
NAME SANDY BRIDGE

Intel Core i7, i5, i3 processors 2xxx series are based on Intel microarchitecture code
name Sandy Bridge, this section describes the performance monitoring facilities
provided in the processor core. The core PMU supports architectural performance
monitoring capability with version ID 3 (see Section 30.2.2.2) and a host of non-
architectural monitoring capabilities.

Architectural performance monitoring events and non-architectural monitoring
events are programmed using fixed counters and programmable counters/event
select MSRS described in Section 30.2.2.2.

The core PMU’s capability is similar to those described in Section 30.6.1 and Section
30.7, with some differences and enhancements relative to Intel microarchitecture
code name Westmere summarized in Table 30-19.

R-Box 1 16 (2 port, 8 per
port)

48 Yes per-box Yes

W-Box 1 4 48 Yes per-box None

1 48 No per-box None

U-Box 1 1 48 Yes uncore None

Table 30-19. Core PMU Comparison

Box Sandy Bridge Westmere Comment

of Fixed counters
per thread

3 3 Use CPUID to enumerate
of counters

of general-purpose
counters per core

8 8

Counter width (R,W) R:48 , W: 32/48 R:48, W:32 see Section 30.2.2.3

of programmable
counters per thread

4 or (8 if a core not shared
by two threads)

4 Use CPUID to enumerate
of counters

PEBS Events See Table 30-21 See Table 30-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

Table 30-18. Uncore PMU MSR Summary for Intel Xeon Processor E7 Family

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Sub-control MSRs
Vol. 3B 30-49

PERFORMANCE MONITORING
30.8.1 Global Counter Control Facilities In Intel® microarchitecture
code name Sandy Bridge

The number of general-purpose performance counters visible to a logical processor
can vary across Processors based on Intel microarchitecture code name Sandy
Bridge. Software must use CPUID to determine the number performance
counters/event select registers (See Section 30.2.1.1).

Figure 30-10 depicts the layout of IA32_PERF_GLOBAL_CTRL MSR. The enable bits
(PMC4_EN, PMC5_EN, PMC6_EN, PMC7_EN) corresponding to IA32_PMC4-

PEBS-Load Latency Data source/ STLB/Lock
encoding; See Section
30.8.4.2

Data source
encoding

PEBS-Precise Store Section 30.8.4.3 No

PEBS-PDIR yes (using precise
INST_RETIRED.ALL)

No PDIR, no
INST_RETIRED.ALL

Off-core Response
Event

MSR 1A6H and 1A7H;
Extended request and
response types

MSR 1A6H and
1A7H, limited
types

Nehalem supports 1A6H
only.

Figure 30-25. IA32_PERF_GLOBAL_CTRL MSR in Intel microarchitecture code name
Sandy Bridge

Table 30-19. Core PMU Comparison

Box Sandy Bridge Westmere Comment

FIXED_CTR2 enable
FIXED_CTR1 enable
FIXED_CTR0 enable

PMC7_EN (if PMC7 present)

2 1 0

PMC6_EN (if PMC6 present)

3132333435

Reserved

63

PMC5_EN (if PMC5 present)
PMC4_EN (if PMC4 present)
PMC3_EN
PMC2_EN
PMC1_EN

Valid if CPUID.0AH:EAX[15:8] = 8, else reserved.

PMC0_EN

8 7 6 5 4 3
30-50 Vol. 3B

PERFORMANCE MONITORING
IA32_PMC7 are valid only if CPUID.0AH:EAX[15:8] reports a value of ‘8’. If
CPUID.0AH:EAX[15:8] = 4, attempts to set the invalid bits will cause #GP.

Each enable bit in IA32_PERF_GLOBAL_CTRL is AND’ed with the enable bits for all
privilege levels in the respective IA32_PERFEVTSELx or
IA32_PERF_FIXED_CTR_CTRL MSRs to start/stop the counting of respective
counters. Counting is enabled if the AND’ed results is true; counting is disabled when
the result is false.
IA32_PERF_GLOBAL_STATUS MSR provides single-bit status used by software to
query the overflow condition of each performance counter. The MSR also provides
additional status bit to indicate overflow conditions when counters are programmed
for precise-event-based sampling (PEBS). The IA32_PERF_GLOBAL_STATUS MSR
also provides a ‘sticky bit’ to indicate changes to the state of performance monitoring
hardware (see Figure 30-26). A value of 1 in each bit of the PMCx_OVF field indicates
an overflow condition has occurred in the associated counter.

When a performance counter is configured for PEBS, an overflow condition in the
counter generates a performance-monitoring interrupt this signals a PEBS event. On
a PEBS event, the processor stores data records in the buffer area (see Section
16.4.9), clears the counter overflow status, and sets the OvfBuffer bit in
IA32_PERF_GLOBAL_STATUS.

IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow the indicators
for general-purpose or fixed-function counters via a single WRMSR (see
Figure 30-27). Clear overflow indications when:

Figure 30-26. IA32_PERF_GLOBAL_STATUS MSR in Intel microarchitecture code
name Sandy Bridge

62

FIXED_CTR2 Overflow
FIXED_CTR1 Overflow
FIXED_CTR0 Overflow
PMC7_OVF (If PMC7 present)

2 1 0

PMC6_OVF (If PMC6 present)

3132333435

Reserved

63

CondChgd
OvfBuffer

8 7 6 5 4 3

PMC5_OVF (If PMC5 present)
PMC4_OVF (If PMC4 present)
PMC3_OVF
PMC2_OVF
PMC1_OVF
PMC0_OVF

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
Vol. 3B 30-51

PERFORMANCE MONITORING
• Setting up new values in the event select and/or UMASK field for counting or
sampling

• Reloading counter values to continue sampling
• Disabling event counting or sampling

30.8.2 Counter Coalescence
In processors based on Intel microarchitecture code name Sandy Bridge, each
processor core implements eight general-purpose counters. CPUID.0AH:EAX[15:8]
will report either 4 or 8 depending specific processor’s product features.

If a processor core is shared by two logical processors, each logical processors can
access 4 counters (IA32_PMC0-IA32_PMC3). This is the same as in the prior genera-
tion for processors based on Intel microarchitecture code name Nehalem.

If a processor core is not shared by two logical processors, all eight general-purpose
counters are visible, and CPUID.0AH:EAX[15:8] reports 8. IA32_PMC4-IA32_PMC7
occupy MSR addresses 0C5H through 0C8H. Each counter is accompanied by an
event select MSR (IA32_PERFEVTSEL4-IA32_PERFEVTSEL7).

If CPUID.0AH:EAX[15:8] report 4, access to IA32_PMC4-IA32_PMC7, IA32_PMC4-
IA32_PMC7 will cause #GP. Writing 1’s to bit position 7:4 of
IA32_PERF_GLOBAL_CTRL, IA32_PERF_GLOBAL_STATUS, or
IA32_PERF_GLOBAL_OVF_CTL will also cause #GP.

Figure 30-27. IA32_PERF_GLOBAL_OVF_CTRL MSR in Intel microarchitecture code
name Sandy Bridge

62

FIXED_CTR2 ClrOverflow
FIXED_CTR1 ClrOverflow
FIXED_CTR0 ClrOverflow
PMC7_ClrOvf (if PMC7 present)

2 1 0

PMC6_ClrOvf (if PMC6 present)

3132333435

Reserved

63

ClrCondChgd
ClrOvfBuffer

8 7 6 5 4 3

PMC5_ClrOvf (if PMC5 present)
PMC4_ClrOvf (if PMC4 present)
PMC3_ClrOvf
PMC2_ClrOvf
PMC1_ClrOvf
PMC0_ClrOvf

Valid if CPUID.0AH:EAX[15:8] = 8; else reserved
30-52 Vol. 3B

PERFORMANCE MONITORING
30.8.3 Full Width Writes to Performance Counters
Processors based on Intel microarchitecture code name Sandy Bridge support full-
width writes to the general-purpose counters, IA32_PMCx. Support of full-width
writes are enumerated by IA32_PERF_CAPABILITIES.FW_WRITES[13] (see Section
30.2.2.3).

The default behavior of IA32_PMCx is unchanged, i.e. WRMSR to IA32_PMCx results
in a sign-extended 32-bit value of the input EAX written into IA32_PMCx. Full-width
writes must issue WRMSR to a dedicated alias MSR address for each IA32_PMCx.

Software must check the presence of full-width write capability and the presence of
the alias address IA32_A_PMCx by testing IA32_PERF_CAPABILITIES[13].

30.8.4 PEBS Support in Intel® microarchitecture code name Sandy
Bridge

Processors based on Intel microarchitecture code name Sandy Bridge support PEBS,
similar to those offered in prior generation, with several enhanced features. The key
components and differences of PEBS facility relative to Intel microarchitecture code
name Westmere is summarized in Table 30-20.

Only IA32_PMC0 through IA32_PMC3 support PEBS.

Table 30-20. PEBS Facility Comparison

Box Sandy Bridge Westmere Comment

Valid IA32_PMCx PMC0-PMC3 PMC0-PMC3 No PEBS on PMC4-PMC7

PEBS Buffer
Programming

 Section 30.6.1.1 Section 30.6.1.1 Unchanged

IA32_PEBS_ENABLE
Layout

 Figure 30-28 Figure 30-14

PEBS record layout Physical Layout same
as Table 30-12

Table 30-12 Enhanced fields at
offsets 98H, A0H, A8H

PEBS Events See Table 30-21 See Table 30-10 IA32_PMC4-IA32_PMC7
do not support PEBS.

PEBS-Load Latency See Table 30-22 Table 30-13

PEBS-Precise Store yes; see Section
30.8.4.3

No IA32_PMC3 only

PEBS-PDIR yes No IA32_PMC1 only

SAMPLING
Restriction

Small SAV(CountDown) value incur higher
overhead than prior generation.
Vol. 3B 30-53

PERFORMANCE MONITORING
NOTE
PEBS events are only valid when the following fields of
IA32_PERFEVTSELx are all zero: AnyThread, Edge, Invert, CMask.

In IA32_PEBS_ENABLE MSR, bit 63 is defined as PS_ENABLE: When set, this enables
IA32_PMC3 to capture precise store information. Only IA32_PMC3 supports the
precise store facility.

30.8.4.1 PEBS Record Format
The layout of PEBS records physically identical to those shown in Table 30-12, but the
fields at offset 98H, A0H and A8H have been enhanced to support additional PEBS
capabilities.
• Load/Store Data Linear Address (Offset 98H): This field will contain the linear

address of the source of the load, or linear address of the destination of the store.
• Data Source /Store Status (Offset A0H):When load latency is enabled, this field

will contain three piece of information (including an encoded value indicating the
source which satisfied the load operation). The source field encodings are
detailed in Table 30-13. When precise store is enabled, this field will contain
information indicating the status of the store, as detailed in Table 19.

• Latency Value/0 (Offset A8H): When load latency is enabled, this field contains
the latency in cycles to service the load. This field is not meaningful when precise
store is enabled and will be written to zero in that case. Upon writing the PEBS
record, microcode clears the overflow status bits in the
IA32_PERF_GLOBAL_STATUS corresponding to those counters that both

Figure 30-28. Layout of IA32_PEBS_ENABLE MSR

LL_EN_PMC3 (R/W)
LL_EN_PMC2 (R/W)

8 7 0

LL_EN_PMC1 (R/W)

32 333 1

Reserved

63 2431 56343536

PEBS_EN_PMC3 (R/W)
PEBS_EN_PMC2 (R/W)
PEBS_EN_PMC1 (R/W)
PEBS_EN_PMC0 (R/W)

LL_EN_PMC0 (R/W)

RESET Value — 0x00000000_00000000

62

PS_EN (R/W)
30-54 Vol. 3B

PERFORMANCE MONITORING
overflowed and were enabled in the IA32_PEBS_ENABLE register. The status bits
of other counters remain unaffected.

The number PEBS events has expanded. The list of PEBS events supported in Intel
microarchitecture code name Sandy Bridge is shown in Table 30-21.

Table 30-21. PEBS Performance Events for Intel microarchitecture code name Sandy
Bridge

Event Name Event Select Sub-event UMask

INST_RETIRED C0H PREC_DIST 01H1

UOPS_RETIRED C2H All 01H

Retire_Slots 02H

BR_INST_RETIRED C4H Conditional 01H

Near_Call 02H

All_branches 04H

Near_Return 08H

Not_Taken 10H

Near_Taken 20H

Far_Branches 40H

BR_MISP_RETIRED C5H Conditional 01H

Near_Call 02H

All_branches 04H

Not_Taken 10H

Taken 20H

MEM_TRANS_RETIRED CDH Load_Latency 01H

Precise_Store 02H

MEM_UOP_RETIRED D0H Load 01H

Store 02H

STLB_Miss 10H

Lock 20H

SPLIT 40H

ALL 80H

MEM_LOAD_UOPS_RETIRED D1H L1_Hit 01H

L2_Hit 02H

L3_Hit 04H

Hit_LFB 40H
Vol. 3B 30-55

PERFORMANCE MONITORING
30.8.4.2 Load Latency Performance Monitoring Facility
The load latency facility in Intel microarchitecture code name Sandy Bridge is similar
to that in prior microarchitecture. It provides software a means to characterize the
average load latency to different levels of cache/memory hierarchy. This facility
requires processor supporting enhanced PEBS record format in the PEBS buffer, see
Table 30-12 and Section 30.8.4.1. The facility measures latency from micro-opera-
tion (uop) dispatch to when data is globally observable (GO).

To use this feature software must assure:
• One of the IA32_PERFEVTSELx MSR is programmed to specify the event unit

MEM_TRANS_RETIRED, and the LATENCY_ABOVE_THRESHOLD event mask must be
specified (IA32_PerfEvtSelX[15:0] = 0x1CDH). The corresponding counter
IA32_PMCx will accumulate event counts for architecturally visible loads which
exceed the programmed latency threshold specified separately in a MSR. Stores
are ignored when this event is programmed. The CMASK or INV fields of the
IA32_PerfEvtSelX register used for counting load latency must be 0. Writing
other values will result in undefined behavior.

• The MSR_PEBS_LD_LAT_THRESHOLD MSR is programmed with the desired
latency threshold in core clock cycles. Loads with latencies greater than this
value are eligible for counting and latency data reporting. The minimum value
that may be programmed in this register is 3 (the minimum detectable load
latency is 4 core clock cycles).

• The PEBS enable bit in the IA32_PEBS_ENABLE register is set for the corre-
sponding IA32_PMCx counter register. This means that both the PEBS_EN_CTRX
and LL_EN_CTRX bits must be set for the counter(s) of interest. For example, to
enable load latency on counter IA32_PMC0, the IA32_PEBS_ENABLE register
must be programmed with the 64-bit value 0x00000001.00000001.

• When Load latency event is enabled, no other PEBS event can be configured with
other counters.

MEM_LOAD_UOPS_LLC_HIT_RETIRED D2H XSNP_Miss 01H

XSNP_Hit 02H

XSNP_Hitm 04H

XSNP_None 08H

MEM_LOAD_UOPS_MISC_RETIRED D4H LLC_Miss 02H

NOTES:
1. Only available on IA32_PMC1.

Table 30-21. PEBS Performance Events for Intel microarchitecture (Contd.)code name
Sandy Bridge

Event Name Event Select Sub-event UMask
30-56 Vol. 3B

PERFORMANCE MONITORING
When the load-latency facility is enabled, load operations are randomly selected by
hardware and tagged to carry information related to data source locality and latency.
Latency and data source information of tagged loads are updated internally. The
MEM_TRANS_RETIRED event for load latency counts only tagged retired loads. If a
load is cancelled it will not be counted and the internal state of the load latency
facility will not be updated. In this case the hardware will tag the next available load.

When a PEBS assist occurs, the last update of latency and data source information
are captured by the assist and written as part of the PEBS record. The PEBS sample
after value (SAV), specified in PEBS CounterX Reset, operates orthogonally to the
tagging mechanism. Loads are randomly tagged to collect latency data. The SAV
controls the number of tagged loads with latency information that will be written into
the PEBS record field by the PEBS assists. The load latency data written to the PEBS
record will be for the last tagged load operation which retired just before the PEBS
assist was invoked.

The physical layout of the PEBS records is the same as shown in Table 30-12. The
specificity of Data Source entry at offset A0H has been enhanced to report three
piece of information.

The layout of MSR_PEBS_LD_LAT_THRESHOLD is the same as shown in
Figure 30-16.

30.8.4.3 Precise Store Facility
Processors based on Intel microarchitecture code name Sandy Bridge offer a precise
store capability that complements the load latency facility. It provides a means to
profile store memory references in the system.

Precise stores leverage the PEBS facility and provide additional information about
sampled stores. Having precise memory reference events with linear address infor-
mation for both loads and stores can help programmers improve data structure
layout, eliminate remote node references, and identify cache-line conflicts in NUMA
systems.

Table 30-22. Layout of Data Source Field of Load Latency Record

Field Position Description

Source 3:0 See Table 30-13

STLB_MISS 4 0: The load did not miss the STLB (hit the DTLB or STLB).

1: The load missed the STLB.

Lock 5 0: The load was not part of a locked transaction.

1: The load was part of a locked transaction.

Reserved 63:6
Vol. 3B 30-57

PERFORMANCE MONITORING
Only IA32_PMC3 can be used to capture precise store information. After enabling this
facility, counter overflows will initiate the generation of PEBS records as previously
described in PEBS. Upon counter overflow hardware captures the linear address and
other status information of the next store that retires. This information is then
written to the PEBS record.

To enable the precise store facility, software must complete the following steps.
Please note that the precise store facility relies on the PEBS facility, so the PEBS
configuration requirements must be completed before attempting to capture precise
store information.
• Complete the PEBS configuration steps.
• Program the MEM_TRANS_RETIRED.PRECISE_STORE event in

IA32_PERFEVTSEL3. Only counter 3 (IA32_PMC3) supports collection of precise
store information.

• Set IA32_PEBS_ENABLE[3] and IA32_PEBS_ENABLE[63]. This enables
IA32_PMC3 as a PEBS counter and enables the precise store facility, respectively.

The precise store information written into a PEBS record affects entries at offset 98H,
A0H and A8H of Table 30-12. The specificity of Data Source entry at offset A0H has
been enhanced to report three piece of information.

30.8.4.4 Precise Distribution of Instructions Retired (PDIR)
Upon triggering a PEBS assist, there will be a finite delay between the time the
counter overflows and when the microcode starts to carry out its data collection obli-
gations. INST_RETIRED is a very common event that is used to sample where perfor-
mance bottleneck happened and to help identify its location in instruction address
space. Even if the delay is constant in core clock space, it invariably manifest as vari-
able “skids” in instruction address space. This creates a challenge for programmers
to profile a workload and pinpoint the location of bottlenecks.

Table 30-23. Layout of Precise Store Information In PEBS Record

Field Offset Description

Store Data
Linear Address

98H The linear address of the destination of the store.

Store Status A0H DCU Hit (Bit 0): The store hit the data cache closest to the core (lowest
latency cache) if this bit is set, otherwise the store missed the data
cache.

STLB Miss (bit 4): The store missed the STLB if set, otherwise the store
hit the STLB

Locked Access (bit 5): The store was part of a locked access if set,
otherwise the store was not part of a locked access.

Reserved A8H Reserved
30-58 Vol. 3B

PERFORMANCE MONITORING
The core PMU in processors based on Intel microarchitecture code name Sandy
Bridge include a facility referred to as precise distribution of Instruction Retired
(PDIR).

The PDIR facility mitigates the “skid“ problem by providing an early indication of
when the INST_RETIRED counter is about to overflow, allowing the machine to more
precisely trap on the instruction that actually caused the counter overflow thus elim-
inating skid.

PDIR applies only to the INST_RETIRED.PREC_DIST precise event, and must use
IA32_PMC1 with PerfEvtSel1 property configured and bit 1 in the
IA32_PEBS_ENABLE set to 1. INST_RETIRED.PREC_DIST is a non-architectural
performance event, it is not supported in prior generation microarchitectures. Addi-
tionally, current implementation of PDIR limits tool to quiesce the rest of the
programmable counters in the core when PDIR is active.

30.8.5 Off-core Response Performance Monitoring
The core PMU in processors based on Intel microarchitecture code name Sandy
Bridge provides off-core response facility similar to prior generation. Off-core
response can be programed only with a specific pair of event select and counter MSR,
and with specific event codes and predefine mask bit value in a dedicated MSR to
specify attributes of the off-core transaction. Two event codes are dedicated for off-
core response event programming. Each event code for off-core response monitoring
requires programming an associated configuration MSR, MSR_OFFCORE_RSP_x.
Table 30-24 lists the event code, mask value and additional off-core configuration
MSR that must be programmed to count off-core response events using IA32_PMCx.

The layout of MSR_OFFCORE_RSP_0 and MSR_OFFCORE_RSP_1 are shown in
Figure 30-29 and Figure 30-30. Bits 15:0 specifies the request type of a transaction
request to the uncore. Bits 30:16 specifies supplier information, bits 37:31 specifies
snoop response information.

Table 30-24. Off-Core Response Event Encoding

Counter Event code UMask Required Off-core Response MSR

PMC0 0xB7 0x01 MSR_OFFCORE_RSP_0 (address 0x1A6)

PMC3 0xBB 0x01 MSR_OFFCORE_RSP_1 (address 0x1A7)
Vol. 3B 30-59

PERFORMANCE MONITORING
Figure 30-29. Request_Type Fields for MSR_OFFCORE_RSP_x

Table 30-25. MSR_OFFCORE_RSP_x Request_Type Field Definition

Bit Name Offset Description

DMND_DATA_RD 0 (R/W). Counts the number of demand and DCU prefetch data reads of
full and partial cachelines as well as demand data page table entry
cacheline reads. Does not count L2 data read prefetches or
instruction fetches.

DMND_RFO 1 (R/W). Counts the number of demand and DCU prefetch reads for
ownership (RFO) requests generated by a write to data cacheline.
Does not count L2 RFO prefetches.

DMND_IFETCH 2 (R/W). Counts the number of demand and DCU prefetch instruction
cacheline reads. Does not count L2 code read prefetches.

WB 3 (R/W). Counts the number of writeback (modified to exclusive)
transactions.

PF_DATA_RD 4 (R/W). Counts the number of data cacheline reads generated by L2
prefetchers.

PF_RFO 5 (R/W). Counts the number of RFO requests generated by L2
prefetchers.

PF_IFETCH 6 (R/W). Counts the number of code reads generated by L2 prefetchers.

RESPONSE TYPE — Other (R/W)
RESERVED

8 7 0

REQUEST TYPE — STRM_ST (R/W)

11 312 1

Reserved

63 249 5610131415

REQUEST TYPE — BUS_LOCKS (R/W)
REQUEST TYPE — PF_LLC_IFETCH (R/W)
REQUEST TYPE — PF_LLC_RFO (R/W)
REQUEST TYPE — PF_LLC_DATA_RD (R/W)
REQUEST TYPE — PF_IFETCH (R/W)
REQUEST TYPE — PF_RFO (R/W)
REQUEST TYPE — PF_DATA_RD (R/W)
REQUEST TYPE — WB (R/W)
REQUEST TYPE — DMND_IFETCH (R/W)
REQUEST TYPE — DMND_RFO (R/W)
REQUEST TYPE — DMND_DATA_RD (R/W)

RESET Value — 0x00000000_00000000

37

See Figure 3-30
30-60 Vol. 3B

PERFORMANCE MONITORING
To properly program this extra register, software must set at least one request type
bit and a valid response type pattern. Otherwise, the event count reported will be
zero. It is permissible and useful to set multiple request and response type bits in
order to obtain various classes of off-core response events.

PF_LLC_DATA_RD 7 (R/W). L2 prefetcher to L3 for loads.

PF_LLC_RFO 8 (R/W). RFO requests generated by L2 prefetcher

PF_LLC_IFETCH 9 (R/W). L2 prefetcher to L3 for instruction fetches.

BUS_LOCKS 10 (R/W). Bus lock and split lock requests

STRM_ST 11 (R/W). Streaming store requests

OTHER 15 (R/W). Any other request that crosses IDI, including I/O.

Figure 30-30. Response_Type Fields for MSR_OFFCORE_RSP_x

Table 30-26. MSR_OFFCORE_RSP_x Response Type Field Definition

Subtype Bit Name Offset Description

Common Any 16 (R/W). Catch all value for any response types.

Table 30-25. MSR_OFFCORE_RSP_x Request_Type Field Definition (Contd.)

Bit Name Offset Description

RESPONSE TYPE — NON_DRAM (R/W)
RSPNS_SNOOP — HITM (R/W)

23 16

RSPNS_SNOOP — HIT_FWD

11 1912 17

Reserved

63 18209 212210131415

RSPNS_SNOOP — HIT_NO_FWD (R/W)
RSPNS_SNOOP — SNP_MISS (R/W)
RSPNS_SNOOP — SNP_NOT_NEEDED (R/W)
RSPNS_SNOOP — SNPl_NONE (R/W)
RSPNS_SUPPLIER — RESERVED
RSPNS_SUPPLIER — LLC_HITF (R/W)
RSPNS_SUPPLIER — LLC_HITS (R/W)
RSPNS_SUPPLIER — LLC_HITE (R/W)
RSPNS_SUPPLIER — LLC_HITM (R/W)
RSPNS_SUPPLIER — No_SUPP (R/W)
RSPNS_SUPPLIER — ANY (R/W)

RESET Value — 0x00000000_00000000
Vol. 3B 30-61

PERFORMANCE MONITORING
Supplier
Info

NO_SUPP 17 (R/W). No Supplier Information available

LLC_HITM 18 (R/W). M-state initial lookup stat in L3.

LLC_HITE 19 (R/W). E-state

LLC_HITS 20 (R/W). S-state

LLC_HITF 21 (R/W). F-state

Reserved 30:22 Reserved

Snoop
Info

SNP_NONE 31 (R/W). No details on snoop-related information

SNP_NOT_NEEDED 32 (R/W). No snoop was needed to satisfy the request.

SNP_MISS 33 (R/W). A snoop was needed and it missed all snooped
caches:

-For LLC Hit, ReslHitl was returned by all cores

-For LLC Miss, Rspl was returned by all sockets and data
was returned from DRAM.

SNP_NO_FWD 34 (R/W). A snoop was needed and it hits in at least one
snooped cache. Hit denotes a cache-line was valid before
snoop effect. This includes:

-Snoop Hit w/ Invalidation (LLC Hit, RFO)

-Snoop Hit, Left Shared (LLC Hit/Miss, IFetch/Data_RD)

-Snoop Hit w/ Invalidation and No Forward (LLC Miss, RFO
Hit S)

In the LLC Miss case, data is returned from DRAM.

SNP_FWD 35 (R/W). A snoop was needed and data was forwarded
from a remote socket. This includes:

-Snoop Forward Clean, Left Shared (LLC Hit/Miss,
IFetch/Data_RD/RFT).

HITM 36 (R/W). A snoop was needed and it HitM-ed in local or
remote cache. HitM denotes a cache-line was in modified
state before effect as a results of snoop. This includes:

-Snoop HitM w/ WB (LLC miss, IFetch/Data_RD)

-Snoop Forward Modified w/ Invalidation (LLC Hit/Miss,
RFO)

-Snoop MtoS (LLC Hit, IFetch/Data_RD).

NON_DRAM 37 (R/W). Target was non-DRAM system address. This
includes MMIO transactions.

Table 30-26. MSR_OFFCORE_RSP_x Response Type Field Definition (Contd.)

Subtype Bit Name Offset Description
30-62 Vol. 3B

PERFORMANCE MONITORING
To specify a complete offcore response filter, software must properly program bits in
the request and response type fields. A valid request type must have at least one bit
set in the non-reserved bits of 15:0. A valid response type must be a non-zero value
of the following expression:

ANY | [(‘OR’ of Supplier Info Bits) & (‘OR’ of Snoop Info Bits)]

If “ANY“ bit is set, the supplier and snoop info bits are ignored.

30.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5,
i3 Processors 2xxx Series

The uncore sub-system in Intel Core i7, i5, i3 processors 2xxx Series provides a
unified L3 that can support up to four processor cores. The L3 cache consists multiple
slices, each slice interface with a processor via a coherence engine, referred to as a
C-Box. Each C-Box provides dedicated facility of MSRs to select uncore performance
monitoring events and each C-Box event select MSR is paired with a counter register,
similar in style as those described in Section 30.6.2.2. The layout of the event select
MSRs in the C-Boxes are shown in Figure 30-31.

At the uncore domain level, there is a master set of control MSRs that centrally
manages all the performance monitoring facility of uncore units. Figure 30-32 shows
the layout of the uncore domain global control

MSR bit 31 of MSR_UNC_PERF_GLOBAL_CTRL provides the capability to freeze all
uncore counters when an overflow condition in a unit counter. When set and upon a
counter overflow, the uncore PMU logic will clear the global enable bit, bit 29.

Figure 30-31. Layout of MSR_UNC_CBO_N_PERFEVTSELx MSR for C-Box N

28

INV—Invert counter mask
EN—Enable counters

E—Edge detect

8 7 0

Event Select
Counter Mask

19 1618 15172021222324

Reserved

Unit Mask (UMASK)(CMASK)

63

PMI—Enable PMI on overflow

RESET Value — 0x00000000_00000000
Vol. 3B 30-63

PERFORMANCE MONITORING
Additionally, there is also a fixed counter, counting uncore clockticks, for the uncore
domain. Table 30-27 summarizes the number MSRs for uncore PMU for each box.

30.8.6.1 Uncore Performance Monitoring Events
There are certain restrictions on the uncore performance counters in each C-Box.
Specifically,
• Occupancy events are supported only with counter 0 but not counter 1.

Other uncore C-Box events can be programmed with either counter 0 or 1.

The C-Box uncore performance events described in Table A-3 can collect perfor-
mance characteristics of transactions initiated by processor core. In that respect,
they are similar to various sub-events in the OFFCORE_RESPONSE family of perfor-
mance events in the core PMU. Information such as data supplier locality (LLC
HIT/MISS) and snoop responses can be collected via OFFCORE_RESPONSE and qual-
ified on a per-thread basis.

On the other hand, uncore performance event logic can not associate its counts with
the same level of per-thread qualification attributes as the core PMU events can.
Therefore, whenever similar event programming capabilities are available from both

Figure 30-32. Layout of MSR_UNC_PERF_GLOBAL_CTRL MSR for Uncore

Table 30-27. Uncore PMU MSR Summary

Box
of
Boxes Counters per Box

Counter
Width

General
Purpose

Global
Enable Comment

C-Box Up to 4 2 44 Yes Per-box

NCU 1 48 No Uncore

FREEZE—Freeze counters

EN—Enable all uncore counters

02829303132

Reserved

63

PMI—Wake cores on PMI

RESET Value — 0x00000000_00000000

4 3 2 1

Core Select — core 3 select
Core Select — core 2 select
Core Select — core 1select
Core Select — core 0 select
30-64 Vol. 3B

PERFORMANCE MONITORING
core PMU and uncore PMU, the recommendation is that utilizing the core PMU events
may be less affected by artifacts, complex interactions and other factors.

30.9 PERFORMANCE MONITORING (PROCESSORS
BASED ON INTEL NETBURST®
MICROARCHITECTURE)

The performance monitoring mechanism provided in Pentium 4 and Intel Xeon
processors is different from that provided in the P6 family and Pentium processors.
While the general concept of selecting, filtering, counting, and reading performance
events through the WRMSR, RDMSR, and RDPMC instructions is unchanged, the
setup mechanism and MSR layouts are incompatible with the P6 family and Pentium
processor mechanisms. Also, the RDPMC instruction has been enhanced to read the
the additional performance counters provided in the Pentium 4 and Intel Xeon
processors and to allow faster reading of counters.

The event monitoring mechanism provided with the Pentium 4 and Intel Xeon
processors (based on Intel NetBurst microarchitecture) consists of the following facil-
ities:
• The IA32_MISC_ENABLE MSR, which indicates the availability in an Intel 64 or

IA-32 processor of the performance monitoring and precise event-based
sampling (PEBS) facilities.

• Event selection control (ESCR) MSRs for selecting events to be monitored with
specific performance counters. The number available differs by family and model
(43 to 45).

• 18 performance counter MSRs for counting events.
• 18 counter configuration control (CCCR) MSRs, with one CCCR associated with

each performance counter. CCCRs sets up an associated performance counter for
a specific method of counting.

• A debug store (DS) save area in memory for storing PEBS records.
• The IA32_DS_AREA MSR, which establishes the location of the DS save area.
• The debug store (DS) feature flag (bit 21) returned by the CPUID instruction,

which indicates the availability of the DS mechanism.
• The MSR_PEBS_ENABLE MSR, which enables the PEBS facilities and replay

tagging used in at-retirement event counting.
• A set of predefined events and event metrics that simplify the setting up of the

performance counters to count specific events.

Table 30-28 lists the performance counters and their associated CCCRs, along with
the ESCRs that select events to be counted for each performance counter. Predefined
event metrics and events are listed in Appendix A, “Performance-Monitoring Events.”
Vol. 3B 30-65

PERFORMANCE MONITORING
Table 30-28. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr

MSR_BPU_COUNTER0 0 300H MSR_BPU_CCCR0 360H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER1 1 301H MSR_BPU_CCCR1 361H MSR_BSU_ESCR0
MSR_FSB_ESCR0
MSR_MOB_ESCR0
MSR_PMH_ESCR0
MSR_BPU_ESCR0
MSR_IS_ESCR0
MSR_ITLB_ESCR0
MSR_IX_ESCR0

7
6
2
4
0
1
3
5

3A0H
3A2H
3AAH
3ACH
3B2H
3B4H
3B6H
3C8H

MSR_BPU_COUNTER2 2 302H MSR_BPU_CCCR2 362H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_BPU_COUNTER3 3 303H MSR_BPU_CCCR3 363H MSR_BSU_ESCR1
MSR_FSB_ESCR1
MSR_MOB_ESCR1
MSR_PMH_ESCR1
MSR_BPU_ESCR1
MSR_IS_ESCR1
MSR_ITLB_ESCR1
MSR_IX_ESCR1

7
6
2
4
0
1
3
5

3A1H
3A3H
3ABH
3ADH
3B3H
3B5H
3B7H
3C9H

MSR_MS_COUNTER0 4 304H MSR_MS_CCCR0 364H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER1 5 305H MSR_MS_CCCR1 365H MSR_MS_ESCR0
MSR_TBPU_ESCR0
MSR_TC_ESCR0

0
2
1

3C0H
3C2H
3C4H

MSR_MS_COUNTER2 6 306H MSR_MS_CCCR2 366H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H

MSR_MS_COUNTER3 7 307H MSR_MS_CCCR3 367H MSR_MS_ESCR1
MSR_TBPU_ESCR1
MSR_TC_ESCR1

0
2
1

3C1H
3C3H
3C5H
30-66 Vol. 3B

PERFORMANCE MONITORING
MSR_FLAME_
COUNTER0

8 308H MSR_FLAME_CCCR0 368H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER1

9 309H MSR_FLAME_CCCR1 369H MSR_FIRM_ESCR0
MSR_FLAME_ESCR0
MSR_DAC_ESCR0
MSR_SAAT_ESCR0
MSR_U2L_ESCR0

1
0
5
2
3

3A4H
3A6H
3A8H
3AEH
3B0H

MSR_FLAME_
COUNTER2

10 30AH MSR_FLAME_CCCR2 36AH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_FLAME_
COUNTER3

11 30BH MSR_FLAME_CCCR3 36BH MSR_FIRM_ESCR1
MSR_FLAME_ESCR1
MSR_DAC_ESCR1
MSR_SAAT_ESCR1
MSR_U2L_ESCR1

1
0
5
2
3

3A5H
3A7H
3A9H
3AFH
3B1H

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER2 14 30EH MSR_IQ_CCCR2 36EH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

MSR_IQ_COUNTER3 15 30FH MSR_IQ_CCCR3 36FH MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6

 0
2
1

3B9H
3CDH
3E1H

3BBH
3BDH
3CBH

Table 30-28. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
Vol. 3B 30-67

PERFORMANCE MONITORING
The types of events that can be counted with these performance monitoring facilities
are divided into two classes: non-retirement events and at-retirement events.
• Non-retirement events (see Table A-13) are events that occur any time during

instruction execution (such as bus transactions or cache transactions).
• At-retirement events (see Table A-14) are events that are counted at the

retirement stage of instruction execution, which allows finer granularity in
counting events and capturing machine state.
The at-retirement counting mechanism includes facilities for tagging μops that
have encountered a particular performance event during instruction execution.
Tagging allows events to be sorted between those that occurred on an execution
path that resulted in architectural state being committed at retirement as well as
events that occurred on an execution path where the results were eventually
cancelled and never committed to architectural state (such as, the execution of a
mispredicted branch).

The Pentium 4 and Intel Xeon processor performance monitoring facilities support
the three usage models described below. The first two models can be used to count
both non-retirement and at-retirement events; the third model is used to count a
subset of at-retirement events:
• Event counting — A performance counter is configured to count one or more

types of events. While the counter is counting, software reads the counter at
selected intervals to determine the number of events that have been counted
between the intervals.

• Non-precise event-based sampling — A performance counter is configured to
count one or more types of events and to generate an interrupt when it

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
MSR_CRU_ESCR2
MSR_CRU_ESCR4
MSR_IQ_ESCR01

MSR_RAT_ESCR0
MSR_SSU_ESCR0
MSR_ALF_ESCR0

4
5
6
0
2
3
1

3B8H
3CCH
3E0H
3BAH
3BCH
3BEH
3CAH

MSR_IQ_COUNTER5 17 311H MSR_IQ_CCCR5 371H MSR_CRU_ESCR1
MSR_CRU_ESCR3
MSR_CRU_ESCR5
MSR_IQ_ESCR11

MSR_RAT_ESCR1
MSR_ALF_ESCR1

4
5
6
0
2
1

3B9H
3CDH
3E1H
3BBH
3BDH
3CBH

NOTES:
1. MSR_IQ_ESCR0 and MSR_IQ_ESCR1 are available only on early processor builds (family 0FH, mod-

els 01H-02H). These MSRs are not available on later versions.

Table 30-28. Performance Counter MSRs and Associated CCCR and
ESCR MSRs (Pentium 4 and Intel Xeon Processors) (Contd.)

Counter CCCR ESCR

Name No. Addr Name Addr Name No. Addr
30-68 Vol. 3B

PERFORMANCE MONITORING
overflows. To trigger an overflow, the counter is preset to a modulus value that
will cause the counter to overflow after a specific number of events have been
counted.
When the counter overflows, the processor generates a performance monitoring
interrupt (PMI). The interrupt service routine for the PMI then records the return
instruction pointer (RIP), resets the modulus, and restarts the counter. Code
performance can be analyzed by examining the distribution of RIPs with a tool
like the VTune™ Performance Analyzer.

• Precise event-based sampling (PEBS) — This type of performance
monitoring is similar to non-precise event-based sampling, except that a
memory buffer is used to save a record of the architectural state of the processor
whenever the counter overflows. The records of architectural state provide
additional information for use in performance tuning. Precise event-based
sampling can be used to count only a subset of at-retirement events.

The following sections describe the MSRs and data structures used for performance
monitoring in the Pentium 4 and Intel Xeon processors.

30.9.1 ESCR MSRs
The 45 ESCR MSRs (see Table 30-28) allow software to select specific events to be
countered. Each ESCR is usually associated with a pair of performance counters (see
Table 30-28) and each performance counter has several ESCRs associated with it
(allowing the events counted to be selected from a variety of events).

Figure 30-33 shows the layout of an ESCR MSR. The functions of the flags and fields
are:
• USR flag, bit 2 — When set, events are counted when the processor is operating

at a current privilege level (CPL) of 1, 2, or 3. These privilege levels are generally
used by application code and unprotected operating system code.

• OS flag, bit 3 — When set, events are counted when the processor is operating
at CPL of 0. This privilege level is generally reserved for protected operating
system code. (When both the OS and USR flags are set, events are counted at all
privilege levels.)
Vol. 3B 30-69

PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 30.9.6, “At-Retirement
Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

When setting up an ESCR, the event select field is used to select a specific class of
events to count, such as retired branches. The event mask field is then used to select
one or more of the specific events within the class to be counted. For example, when
counting retired branches, four different events can be counted: branch not taken
predicted, branch not taken mispredicted, branch taken predicted, and branch taken
mispredicted. The OS and USR flags allow counts to be enabled for events that occur
when operating system code and/or application code are being executed. If neither
the OS nor USR flag is set, no events will be counted.

The ESCRs are initialized to all 0s on reset. The flags and fields of an ESCR are config-
ured by writing to the ESCR using the WRMSR instruction. Table 30-28 gives the
addresses of the ESCR MSRs.

Writing to an ESCR MSR does not enable counting with its associated performance
counter; it only selects the event or events to be counted. The CCCR for the selected
performance counter must also be configured. Configuration of the CCCR includes
selecting the ESCR and enabling the counter.

Figure 30-33. Event Selection Control Register (ESCR) for Pentium 4
and Intel Xeon Processors without Intel HT Technology Support

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

USR
OS

5

Tag Enable

Tag
Value

Reserved
30-70 Vol. 3B

PERFORMANCE MONITORING
30.9.2 Performance Counters
The performance counters in conjunction with the counter configuration control
registers (CCCRs) are used for filtering and counting the events selected by the
ESCRs. The Pentium 4 and Intel Xeon processors provide 18 performance counters
organized into 9 pairs. A pair of performance counters is associated with a particular
subset of events and ESCR’s (see Table 30-28). The counter pairs are partitioned into
four groups:
• The BPU group, includes two performance counter pairs:

— MSR_BPU_COUNTER0 and MSR_BPU_COUNTER1.

— MSR_BPU_COUNTER2 and MSR_BPU_COUNTER3.
• The MS group, includes two performance counter pairs:

— MSR_MS_COUNTER0 and MSR_MS_COUNTER1.

— MSR_MS_COUNTER2 and MSR_MS_COUNTER3.
• The FLAME group, includes two performance counter pairs:

— MSR_FLAME_COUNTER0 and MSR_FLAME_COUNTER1.

— MSR_FLAME_COUNTER2 and MSR_FLAME_COUNTER3.
• The IQ group, includes three performance counter pairs:

— MSR_IQ_COUNTER0 and MSR_IQ_COUNTER1.

— MSR_IQ_COUNTER2 and MSR_IQ_COUNTER3.

— MSR_IQ_COUNTER4 and MSR_IQ_COUNTER5.

The MSR_IQ_COUNTER4 counter in the IQ group provides support for the PEBS.

Alternate counters in each group can be cascaded: the first counter in one pair can
start the first counter in the second pair and vice versa. A similar cascading is
possible for the second counters in each pair. For example, within the BPU group of
counters, MSR_BPU_COUNTER0 can start MSR_BPU_COUNTER2 and vice versa, and
MSR_BPU_COUNTER1 can start MSR_BPU_COUNTER3 and vice versa (see Section
30.9.5.6, “Cascading Counters”). The cascade flag in the CCCR register for the
performance counter enables the cascading of counters.

Each performance counter is 40-bits wide (see Figure 30-34). The RDPMC instruction
has been enhanced in the Pentium 4 and Intel Xeon processors to allow reading of
either the full counter-width (40-bits) or the low 32-bits of the counter. Reading the
low 32-bits is faster than reading the full counter width and is appropriate in situa-
tions where the count is small enough to be contained in 32 bits.

The RDPMC instruction can be used by programs or procedures running at any privi-
lege level and in virtual-8086 mode to read these counters. The PCE flag in control
register CR4 (bit 8) allows the use of this instruction to be restricted to only programs
and procedures running at privilege level 0.
Vol. 3B 30-71

PERFORMANCE MONITORING
The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

Some uses of the performance counters require the counters to be preset before
counting begins (that is, before the counter is enabled). This can be accomplished by
writing to the counter using the WRMSR instruction. To set a counter to a specified
number of counts before overflow, enter a 2s complement negative integer in the
counter. The counter will then count from the preset value up to -1 and overflow.
Writing to a performance counter in a Pentium 4 or Intel Xeon processor with the
WRMSR instruction causes all 40 bits of the counter to be written.

30.9.3 CCCR MSRs
Each of the 18 performance counters in a Pentium 4 or Intel Xeon processor has one
CCCR MSR associated with it (see Table 30-28). The CCCRs control the filtering and
counting of events as well as interrupt generation. Figure 30-35 shows the layout of
an CCCR MSR. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is

disabled. This flag is cleared on reset.
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to

select events to be counted with the counter associated with the CCCR.
• Compare flag, bit 18 — When set, enables filtering of the event count; when

clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance

Figure 30-34. Performance Counter (Pentium 4 and Intel Xeon Processors)

63 32

Reserved

31 0

Counter

39

Counter
30-72 Vol. 3B

PERFORMANCE MONITORING
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 30.9.5.2, “Filtering
Events”). The complement flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 30.9.5.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be generated when the counter overflows occurs; when clear, disables
PMI generation. Note that the PMI is generated on the next event count after the
counter has overflowed.

Figure 30-35. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Reserved: Must be set to 11B
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

Reserved
Vol. 3B 30-73

PERFORMANCE MONITORING
• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 30.9.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

The CCCRs are initialized to all 0s on reset.

The events that an enabled performance counter actually counts are selected and
filtered by the following flags and fields in the ESCR and CCCR registers and in the
qualification order given:

1. The event select and event mask fields in the ESCR select a class of events to be
counted and one or more event types within the class, respectively.

2. The OS and USR flags in the ESCR selected the privilege levels at which events
will be counted.

3. The ESCR select field of the CCCR selects the ESCR. Since each counter has
several ESCRs associated with it, one ESCR must be chosen to select the classes
of events that may be counted.

4. The compare and complement flags and the threshold field of the CCCR select an
optional threshold to be used in qualifying an event count.

5. The edge flag in the CCCR allows events to be counted only on rising-edge transi-
tions.

The qualification order in the above list implies that the filtered output of one “stage”
forms the input for the next. For instance, events filtered using the privilege level
flags can be further qualified by the compare and complement flags and the
threshold field, and an event that matched the threshold criteria, can be further qual-
ified by edge detection.

The uses of the flags and fields in the CCCRs are discussed in greater detail in Section
30.9.5, “Programming the Performance Counters for Non-Retirement Events.”

30.9.4 Debug Store (DS) Mechanism
The debug store (DS) mechanism was introduced in the Pentium 4 and Intel Xeon
processors to allow various types of information to be collected in memory-resident
buffers for use in debugging and tuning programs. For the Pentium 4 and Intel Xeon
processors, the DS mechanism is used to collect two types of information: branch
records and precise event-based sampling (PEBS) records. The availability of the DS
mechanism in a processor is indicated with the DS feature flag (bit 21) returned by
the CPUID instruction.

See Section 16.4.5, “Branch Trace Store (BTS),” and Section 30.9.7, “Precise Event-
Based Sampling (PEBS),” for a description of these facilities. Records collected with
the DS mechanism are saved in the DS save area. See Section 16.4.9, “BTS and DS
Save Area.”
30-74 Vol. 3B

PERFORMANCE MONITORING
30.9.5 Programming the Performance Counters
for Non-Retirement Events

The basic steps to program a performance counter and to count events include the
following:

1. Select the event or events to be counted.

2. For each event, select an ESCR that supports the event using the values in the
ESCR restrictions row in Table A-13, Appendix A.

3. Match the CCCR Select value and ESCR name in Table A-13 to a value listed in
Table 30-28; select a CCCR and performance counter.

4. Set up an ESCR for the specific event or events to be counted and the privilege
levels at which the are to be counted.

5. Set up the CCCR for the performance counter by selecting the ESCR and the
desired event filters.

6. Set up the CCCR for optional cascading of event counts, so that when the
selected counter overflows its alternate counter starts.

7. Set up the CCCR to generate an optional performance monitor interrupt (PMI)
when the counter overflows. If PMI generation is enabled, the local APIC must be
set up to deliver the interrupt to the processor and a handler for the interrupt
must be in place.

8. Enable the counter to begin counting.

30.9.5.1 Selecting Events to Count
Table A-14 in Appendix A lists a set of at-retirement events for the Pentium 4 and
Intel Xeon processors. For each event listed in Table A-14, setup information is
provided. Table 30-29 gives an example of one of the events.

Table 30-29. Event Example
Event Name Event Parameters Parameter Value Description

branch_retired Counts the retirement of a branch.
Specify one or more mask bits to
select any combination of branch
taken, not-taken, predicted and
mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 15-3 for the addresses of
the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be obtained
from Table 15-3.
Vol. 3B 30-75

PERFORMANCE MONITORING
For Table A-13 and Table A-14, Appendix A, the name of the event is listed in the
Event Name column and parameters that define the event and other information are
listed in the Event Parameters column. The Parameter Value and Description columns
give specific parameters for the event and additional description information. Entries
in the Event Parameters column are described below.
• ESCR restrictions — Lists the ESCRs that can be used to program the event.

Typically only one ESCR is needed to count an event.
• Counter numbers per ESCR — Lists which performance counters are

associated with each ESCR. Table 30-28 gives the name of the counter and CCCR
for each counter number. Typically only one counter is needed to count the event.

• ESCR event select — Gives the value to be placed in the event select field of the
ESCR to select the event.

• ESCR event mask — Gives the value to be placed in the Event Mask field of the
ESCR to select sub-events to be counted. The parameter value column defines
the documented bits with relative bit position offset starting from 0, where the
absolute bit position of relative offset 0 is bit 9 of the ESCR. All undocumented
bits are reserved and should be set to 0.

• CCCR select — Gives the value to be placed in the ESCR select field of the CCCR
associated with the counter to select the ESCR to be used to define the event.
This value is not the address of the ESCR; it is the number of the ESCR from the
Number column in Table 30-28.

• Event specific notes — Gives additional information about the event, such as
the name of the same or a similar event defined for the P6 family processors.

• Can support PEBS — Indicates if PEBS is supported for the event (only supplied
for at-retirement events listed in Table A-14.)

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit 0: MMNP

 1: MMNM

 2: MMTP

 3: MMTM

ESCR[24:9],

Branch Not-taken Predicted,

Branch Not-taken Mispredicted,

Branch Taken Predicted,

Branch Taken Mispredicted.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Requires Additional
MSRs for Tagging

No

Table 30-29. Event Example (Contd.)
Event Name Event Parameters Parameter Value Description
30-76 Vol. 3B

PERFORMANCE MONITORING
• Requires additional MSR for tagging — Indicates which if any additional
MSRs must be programmed to count the events (only supplied for the at-
retirement events listed in Table A-14.)

NOTE
The performance-monitoring events listed in Appendix A, “Perfor-
mance-Monitoring Events,” are intended to be used as guides for
performance tuning. The counter values reported are not guaranteed
to be absolutely accurate and should be used as a relative guide for
tuning. Known discrepancies are documented where applicable.

The following procedure shows how to set up a performance counter for basic
counting; that is, the counter is set up to count a specified event indefinitely, wrap-
ping around whenever it reaches its maximum count. This procedure is continued
through the following four sections.

Using information in Table A-13, Appendix A, an event to be counted can be selected
as follows:

1. Select the event to be counted.

2. Select the ESCR to be used to select events to be counted from the ESCRs field.

3. Select the number of the counter to be used to count the event from the Counter
Numbers Per ESCR field.

4. Determine the name of the counter and the CCCR associated with the counter,
and determine the MSR addresses of the counter, CCCR, and ESCR from Table
30-28.

5. Use the WRMSR instruction to write the ESCR Event Select and ESCR Event Mask
values into the appropriate fields in the ESCR. At the same time set or clear the
USR and OS flags in the ESCR as desired.

6. Use the WRMSR instruction to write the CCCR Select value into the appropriate
field in the CCCR.

NOTE
Typically all the fields and flags of the CCCR will be written with one
WRMSR instruction; however, in this procedure, several WRMSR
writes are used to more clearly demonstrate the uses of the various
CCCR fields and flags.

This setup procedure is continued in the next section, Section 30.9.5.2, “Filtering
Events.”

30.9.5.2 Filtering Events
Each counter receives up to 4 input lines from the processor hardware from which it
is counting events. The counter treats these inputs as binary inputs (input 0 has a
Vol. 3B 30-77

PERFORMANCE MONITORING
value of 1, input 1 has a value of 2, input 3 has a value of 4, and input 3 has a value
of 8). When a counter is enabled, it adds this binary input value to the counter value
on each clock cycle. For each clock cycle, the value added to the counter can then
range from 0 (no event) to 15.

For many events, only the 0 input line is active, so the counter is merely counting the
clock cycles during which the 0 input is asserted. However, for some events two or
more input lines are used. Here, the counters threshold setting can be used to filter
events. The compare, complement, threshold, and edge fields control the filtering of
counter increments by input value.

If the compare flag is set, then a “greater than” or a “less than or equal to” compar-
ison of the input value vs. a threshold value can be made. The complement flag
selects “less than or equal to” (flag set) or “greater than” (flag clear). The threshold
field selects a threshold value of from 0 to 15. For example, if the complement flag is
cleared and the threshold field is set to 6, than any input value of 7 or greater on the
4 inputs to the counter will cause the counter to be incremented by 1, and any value
less than 7 will cause an increment of 0 (or no increment) of the counter. Conversely,
if the complement flag is set, any value from 0 to 6 will increment the counter and
any value from 7 to 15 will not increment the counter. Note that when a threshold
condition has been satisfied, the input to the counter is always 1, not the input value
that is presented to the threshold filter.

The edge flag provides further filtering of the counter inputs when a threshold
comparison is being made. The edge flag is only active when the compare flag is set.
When the edge flag is set, the resulting output from the threshold filter (a value of 0
or 1) is used as an input to the edge filter. Each clock cycle, the edge filter examines
the last and current input values and sends a count to the counter only when it
detects a “rising edge” event; that is, a false-to-true transition. Figure 30-36 illus-
trates rising edge filtering.

The following procedure shows how to configure a CCCR to filter events using the
threshold filter and the edge filter. This procedure is a continuation of the setup
procedure introduced in Section 30.9.5.1, “Selecting Events to Count.”

7. (Optional) To set up the counter for threshold filtering, use the WRMSR
instruction to write values in the CCCR compare and complement flags and the
threshold field:

— Set the compare flag.

— Set or clear the complement flag for less than or equal to or greater than
comparisons, respectively.

— Enter a value from 0 to 15 in the threshold field.

8. (Optional) Select rising edge filtering by setting the CCCR edge flag.

This setup procedure is continued in the next section, Section 30.9.5.3, “Starting
Event Counting.”
30-78 Vol. 3B

PERFORMANCE MONITORING
30.9.5.3 Starting Event Counting
Event counting by a performance counter can be initiated in either of two ways. The
typical way is to set the enable flag in the counter’s CCCR. Following the instruction
to set the enable flag, event counting begins and continues until it is stopped (see
Section 30.9.5.5, “Halting Event Counting”).

The following procedural step shows how to start event counting. This step is a
continuation of the setup procedure introduced in Section 30.9.5.2, “Filtering
Events.”

9. To start event counting, use the WRMSR instruction to set the CCCR enable flag
for the performance counter.

This setup procedure is continued in the next section, Section 30.9.5.4, “Reading a
Performance Counter’s Count.”

The second way that a counter can be started by using the cascade feature. Here, the
overflow of one counter automatically starts its alternate counter (see Section
30.9.5.6, “Cascading Counters”).

30.9.5.4 Reading a Performance Counter’s Count
The Pentium 4 and Intel Xeon processors’ performance counters can be read using
either the RDPMC or RDMSR instructions. The enhanced functions of the RDPMC
instruction (including fast read) are described in Section 30.9.2, “Performance
Counters.” These instructions can be used to read a performance counter while it is
counting or when it is stopped.

The following procedural step shows how to read the event counter. This step is a
continuation of the setup procedure introduced in Section 30.9.5.3, “Starting Event
Counting.”

10. To read a performance counters current event count, execute the RDPMC
instruction with the counter number obtained from Table 30-28 used as an
operand.

Figure 30-36. Effects of Edge Filtering

Output from
Threshold Filter

Counter Increments
On Rising Edge
(False-to-True)

Processor Clock
Vol. 3B 30-79

PERFORMANCE MONITORING
This setup procedure is continued in the next section, Section 30.9.5.5, “Halting
Event Counting.”

30.9.5.5 Halting Event Counting
After a performance counter has been started (enabled), it continues counting indef-
initely. If the counter overflows (goes one count past its maximum count), it wraps
around and continues counting. When the counter wraps around, it sets its OVF flag
to indicate that the counter has overflowed. The OVF flag is a sticky flag that indi-
cates that the counter has overflowed at least once since the OVF bit was last
cleared.

To halt counting, the CCCR enable flag for the counter must be cleared.

The following procedural step shows how to stop event counting. This step is a
continuation of the setup procedure introduced in Section 30.9.5.4, “Reading a
Performance Counter’s Count.”

11. To stop event counting, execute a WRMSR instruction to clear the CCCR enable
flag for the performance counter.

To halt a cascaded counter (a counter that was started when its alternate counter
overflowed), either clear the Cascade flag in the cascaded counter’s CCCR MSR or
clear the OVF flag in the alternate counter’s CCCR MSR.

30.9.5.6 Cascading Counters
As described in Section 30.9.2, “Performance Counters,” eighteen performance
counters are implemented in pairs. Nine pairs of counters and associated CCCRs are
further organized as four blocks: BPU, MS, FLAME, and IQ (see Table 30-28). The first
three blocks contain two pairs each. The IQ block contains three pairs of counters (12
through 17) with associated CCCRs (MSR_IQ_CCCR0 through MSR_IQ_CCCR5).

The first 8 counter pairs (0 through 15) can be programmed using ESCRs to detect
performance monitoring events. Pairs of ESCRs in each of the four blocks allow many
different types of events to be counted. The cascade flag in the CCCR MSR allows
nested monitoring of events to be performed by cascading one counter to a second
counter located in another pair in the same block (see Figure 30-35 for the location
of the flag).

Counters 0 and 1 form the first pair in the BPU block. Either counter 0 or 1 can be
programmed to detect an event via MSR_MO B_ESCR0. Counters 0 and 2 can be
cascaded in any order, as can counters 1 and 3. It’s possible to set up 4 counters in
the same block to cascade on two pairs of independent events. The pairing described
also applies to subsequent blocks. Since the IQ PUB has two extra counters,
cascading operates somewhat differently if 16 and 17 are involved. In the IQ block,
counter 16 can only be cascaded from counter 14 (not from 12); counter 14 cannot
be cascaded from counter 16 using the CCCR cascade bit mechanism. Similar restric-
tions apply to counter 17.
30-80 Vol. 3B

PERFORMANCE MONITORING
Example 30-1. Counting Events

Assume a scenario where counter X is set up to count 200 occurrences of event A;
then counter Y is set up to count 400 occurrences of event B. Each counter is set up
to count a specific event and overflow to the next counter. In the above example,
counter X is preset for a count of -200 and counter Y for a count of -400; this setup
causes the counters to overflow on the 200th and 400th counts respectively.

Continuing this scenario, counter X is set up to count indefinitely and wraparound on
overflow. This is described in the basic performance counter setup procedure that
begins in Section 30.9.5.1, “Selecting Events to Count.” Counter Y is set up with the
cascade flag in its associated CCCR MSR set to 1 and its enable flag set to 0.

To begin the nested counting, the enable bit for the counter X is set. Once enabled,
counter X counts until it overflows. At this point, counter Y is automatically enabled
and begins counting. Thus counter X overflows after 200 occurrences of event A.
Counter Y then starts, counting 400 occurrences of event B before overflowing. When
performance counters are cascaded, the counter Y would typically be set up to
generate an interrupt on overflow. This is described in Section 30.9.5.8, “Generating
an Interrupt on Overflow.”

The cascading counters mechanism can be used to count a single event. The
counting begins on one counter then continues on the second counter after the first
counter overflows. This technique doubles the number of event counts that can be
recorded, since the contents of the two counters can be added together.

30.9.5.7 EXTENDED CASCADING
Extended cascading is a model-specific feature in the Intel NetBurst microarchitec-
ture. The feature is available to Pentium 4 and Xeon processor family with family
encoding of 15 and model encoding greater than or equal to 2. This feature uses bit
11 in CCCRs associated with the IQ block. See Table 30-30.

Table 30-30. CCR Names and Bit Positions

CCCR Name:Bit Position Bit Name Description

MSR_IQ_CCCR1|2:11 Reserved

MSR_IQ_CCCR0:11 CASCNT4INTO0 Allow counter 4 to cascade into
counter 0

MSR_IQ_CCCR3:11 CASCNT5INTO3 Allow counter 5 to cascade into
counter 3

MSR_IQ_CCCR4:11 CASCNT5INTO4 Allow counter 5 to cascade into
counter 4

MSR_IQ_CCCR5:11 CASCNT4INTO5 Allow counter 4 to cascade into
counter 5
Vol. 3B 30-81

PERFORMANCE MONITORING
The extended cascading feature can be adapted to the sampling usage model for
performance monitoring. However, it is known that performance counters do not
generate PMI in cascade mode or extended cascade mode due to an erratum. This
erratum applies to Pentium 4 and Intel Xeon processors with model encoding of 2.
For Pentium 4 and Intel Xeon processors with model encoding of 0 and 1, the erratum
applies to processors with stepping encoding greater than 09H.

Counters 16 and 17 in the IQ block are frequently used in precise event-based
sampling or at-retirement counting of events indicating a stalled condition in the
pipeline. Neither counter 16 or 17 can initiate the cascading of counter pairs using
the cascade bit in a CCCR.

Extended cascading permits performance monitoring tools to use counters 16 and 17
to initiate cascading of two counters in the IQ block. Extended cascading from
counter 16 and 17 is conceptually similar to cascading other counters, but instead of
using CASCADE bit of a CCCR, one of the four CASCNTxINTOy bits is used.

Example 30-2. Scenario for Extended Cascading

A usage scenario for extended cascading is to sample instructions retired on logical
processor 1 after the first 4096 instructions retired on logical processor 0. A proce-
dure to program extended cascading in this scenario is outlined below:

1. Write the value 0 to counter 12.

2. Write the value 04000603H to MSR_CRU_ESCR0 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 1).

3. Write the value 04038800H to MSR_IQ_CCCR0. This enables CASCNT4INTO0
and OVF_PMI. An ISR can sample on instruction addresses in this case (do not
set ENABLE, or CASCADE).

4. Write the value FFFFF000H into counter 16.1.

5. Write the value 0400060CH to MSR_CRU_ESCR2 (corresponding to selecting the
NBOGNTAG and NBOGTAG event masks with qualification restricted to logical
processor 0).

6. Write the value 00039000H to MSR_IQ_CCCR4 (set ENABLE bit, but not
OVF_PMI).

Another use for cascading is to locate stalled execution in a multithreaded applica-
tion. Assume MOB replays in thread B cause thread A to stall. Getting a sample of the
stalled execution in this scenario could be accomplished by:

1. Set up counter B to count MOB replays on thread B.

2. Set up counter A to count resource stalls on thread A; set its force overflow bit
and the appropriate CASCNTxINTOy bit.

3. Use the performance monitoring interrupt to capture the program execution data
of the stalled thread.
30-82 Vol. 3B

PERFORMANCE MONITORING
30.9.5.8 Generating an Interrupt on Overflow
Any performance counter can be configured to generate a performance monitor
interrupt (PMI) if the counter overflows. The PMI interrupt service routine can then
collect information about the state of the processor or program when overflow
occurred. This information can then be used with a tool like the Intel® VTune™
Performance Analyzer to analyze and tune program performance.

To enable an interrupt on counter overflow, the OVR_PMI flag in the counter’s associ-
ated CCCR MSR must be set. When overflow occurs, a PMI is generated through the
local APIC. (Here, the performance counter entry in the local vector table [LVT] is set
up to deliver the interrupt generated by the PMI to the processor.)

The PMI service routine can use the OVF flag to determine which counter overflowed
when multiple counters have been configured to generate PMIs. Also, note that these
processors mask PMIs upon receiving an interrupt. Clear this condition before leaving
the interrupt handler.

When generating interrupts on overflow, the performance counter being used should
be preset to value that will cause an overflow after a specified number of events are
counted plus 1. The simplest way to select the preset value is to write a negative
number into the counter, as described in Section 30.9.5.6, “Cascading Counters.”
Here, however, if an interrupt is to be generated after 100 event counts, the counter
should be preset to minus 100 plus 1 (-100 + 1), or -99. The counter will then over-
flow after it counts 99 events and generate an interrupt on the next (100th) event
counted. The difference of 1 for this count enables the interrupt to be generated
immediately after the selected event count has been reached, instead of waiting for
the overflow to be propagation through the counter.

Because of latency in the microarchitecture between the generation of events and
the generation of interrupts on overflow, it is sometimes difficult to generate an
interrupt close to an event that caused it. In these situations, the FORCE_OVF flag in
the CCCR can be used to improve reporting. Setting this flag causes the counter to
overflow on every counter increment, which in turn triggers an interrupt after every
counter increment.

30.9.5.9 Counter Usage Guideline
There are some instances where the user must take care to configure counting logic
properly, so that it is not powered down. To use any ESCR, even when it is being used
just for tagging, (any) one of the counters that the particular ESCR (or its paired
ESCR) can be connected to should be enabled. If this is not done, 0 counts may
result. Likewise, to use any counter, there must be some event selected in a corre-
sponding ESCR (other than no_event, which generally has a select value of 0).
Vol. 3B 30-83

PERFORMANCE MONITORING
30.9.6 At-Retirement Counting
At-retirement counting provides a means counting only events that represent work
committed to architectural state and ignoring work that was performed speculatively
and later discarded.

The Intel NetBurst microarchitecture used in the Pentium 4 and Intel Xeon proces-
sors performs many speculative activities in an attempt to increase effective
processing speeds. One example of this speculative activity is branch prediction. The
Pentium 4 and Intel Xeon processors typically predict the direction of branches and
then decode and execute instructions down the predicted path in anticipation of the
actual branch decision. When a branch misprediction occurs, the results of instruc-
tions that were decoded and executed down the mispredicted path are canceled. If a
performance counter was set up to count all executed instructions, the count would
include instructions whose results were canceled as well as those whose results
committed to architectural state.

To provide finer granularity in event counting in these situations, the performance
monitoring facilities provided in the Pentium 4 and Intel Xeon processors provide a
mechanism for tagging events and then counting only those tagged events that
represent committed results. This mechanism is called “at-retirement counting.”

Tables A-14 through A-18 list predefined at-retirement events and event metrics that
can be used to for tagging events when using at retirement counting. The following
terminology is used in describing at-retirement counting:
• Bogus, non-bogus, retire — In at-retirement event descriptions, the term

“bogus” refers to instructions or μops that must be canceled because they are on
a path taken from a mispredicted branch. The terms “retired” and “non-bogus”
refer to instructions or μops along the path that results in committed architec-
tural state changes as required by the program being executed. Thus instructions
and μops are either bogus or non-bogus, but not both. Several of the Pentium 4
and Intel Xeon processors’ performance monitoring events (such as,
Instruction_Retired and Uops_Retired in Table A-14) can count instructions or
μops that are retired based on the characterization of bogus” versus non-bogus.

• Tagging — Tagging is a means of marking μops that have encountered a
particular performance event so they can be counted at retirement. During the
course of execution, the same event can happen more than once per μop and a
direct count of the event would not provide an indication of how many μops
encountered that event.
The tagging mechanisms allow a μop to be tagged once during its lifetime and
thus counted once at retirement. The retired suffix is used for performance
metrics that increment a count once per μop, rather than once per event. For
example, a μop may encounter a cache miss more than once during its life time,
but a “Miss Retired” metric (that counts the number of retired μops that
encountered a cache miss) will increment only once for that μop. A “Miss Retired”
metric would be useful for characterizing the performance of the cache hierarchy
for a particular instruction sequence. Details of various performance metrics and
how these can be constructed using the Pentium 4 and Intel Xeon processors
30-84 Vol. 3B

PERFORMANCE MONITORING
performance events are provided in the Intel Pentium 4 Processor Optimization
Reference Manual (see Section 1.4, “Related Literature”).

• Replay — To maximize performance for the common case, the Intel NetBurst
microarchitecture aggressively schedules μops for execution before all the
conditions for correct execution are guaranteed to be satisfied. In the event that
all of these conditions are not satisfied, μops must be reissued. The mechanism
that the Pentium 4 and Intel Xeon processors use for this reissuing of μops is
called replay. Some examples of replay causes are cache misses, dependence
violations, and unforeseen resource constraints. In normal operation, some
number of replays is common and unavoidable. An excessive number of replays
is an indication of a performance problem.

• Assist — When the hardware needs the assistance of microcode to deal with
some event, the machine takes an assist. One example of this is an underflow
condition in the input operands of a floating-point operation. The hardware must
internally modify the format of the operands in order to perform the computation.
Assists clear the entire machine of μops before they begin and are costly.

30.9.6.1 Using At-Retirement Counting
The Pentium 4 and Intel Xeon processors allow counting both events and μops that
encountered a specified event. For a subset of the at-retirement events listed in Table
A-14, a μop may be tagged when it encounters that event. The tagging mechanisms
can be used in non-precise event-based sampling, and a subset of these mechanisms
can be used in PEBS. There are four independent tagging mechanisms, and each
mechanism uses a different event to count μops tagged with that mechanism:
• Front-end tagging — This mechanism pertains to the tagging of μops that

encountered front-end events (for example, trace cache and instruction counts)
and are counted with the Front_end_event event

• Execution tagging — This mechanism pertains to the tagging of μops that
encountered execution events (for example, instruction types) and are counted
with the Execution_Event event.

• Replay tagging — This mechanism pertains to tagging of μops whose
retirement is replayed (for example, a cache miss) and are counted with the
Replay_event event. Branch mispredictions are also tagged with this mechanism.

• No tags — This mechanism does not use tags. It uses the Instr_retired and the
Uops_ retired events.

Each tagging mechanism is independent from all others; that is, a μop that has been
tagged using one mechanism will not be detected with another mechanism’s tagged-
μop detector. For example, if μops are tagged using the front-end tagging mecha-
nisms, the Replay_event will not count those as tagged μops unless they are also
tagged using the replay tagging mechanism. However, execution tags allow up to
four different types of μops to be counted at retirement through execution tagging.

The independence of tagging mechanisms does not hold when using PEBS. When
using PEBS, only one tagging mechanism should be used at a time.
Vol. 3B 30-85

PERFORMANCE MONITORING
Certain kinds of μops that cannot be tagged, including I/O, uncacheable and locked
accesses, returns, and far transfers.

Table A-14 lists the performance monitoring events that support at-retirement
counting: specifically the Front_end_event, Execution_event, Replay_event,
Inst_retired and Uops_retired events. The following sections describe the tagging
mechanisms for using these events to tag μop and count tagged μops.

30.9.6.2 Tagging Mechanism for Front_end_event
The Front_end_event counts μops that have been tagged as encountering any of the
following events:
• μop decode events — Tagging μops for μop decode events requires specifying

bits in the ESCR associated with the performance-monitoring event, Uop_type.
• Trace cache events — Tagging μops for trace cache events may require

specifying certain bits in the MSR_TC_PRECISE_EVENT MSR (see Table A-16).

Table A-14 describes the Front_end_event and Table A-16 describes metrics that are
used to set up a Front_end_event count.

The MSRs specified in the Table A-14 that are supported by the front-end tagging
mechanism must be set and one or both of the NBOGUS and BOGUS bits in the
Front_end_event event mask must be set to count events. None of the events
currently supported requires the use of the MSR_TC_PRECISE_EVENT MSR.

30.9.6.3 Tagging Mechanism For Execution_event
Table A-14 describes the Execution_event and Table A-17 describes metrics that are
used to set up an Execution_event count.

The execution tagging mechanism differs from other tagging mechanisms in how it
causes tagging. One upstream ESCR is used to specify an event to detect and to
specify a tag value (bits 5 through 8) to identify that event. A second downstream
ESCR is used to detect μops that have been tagged with that tag value identifier using
Execution_event for the event selection.

The upstream ESCR that counts the event must have its tag enable flag (bit 4) set
and must have an appropriate tag value mask entered in its tag value field. The 4-bit
tag value mask specifies which of tag bits should be set for a particular μop. The
value selected for the tag value should coincide with the event mask selected in the
downstream ESCR. For example, if a tag value of 1 is set, then the event mask of
NBOGUS0 should be enabled, correspondingly in the downstream ESCR. The down-
stream ESCR detects and counts tagged μops. The normal (not tag value) mask bits
in the downstream ESCR specify which tag bits to count. If any one of the tag bits
selected by the mask is set, the related counter is incremented by one. This mecha-
nism is summarized in the Table A-17 metrics that are supported by the execution
tagging mechanism. The tag enable and tag value bits are irrelevant for the down-
stream ESCR used to select the Execution_event.
30-86 Vol. 3B

PERFORMANCE MONITORING
The four separate tag bits allow the user to simultaneously but distinctly count up to
four execution events at retirement. (This applies for non-precise event-based
sampling. There are additional restrictions for PEBS as noted in Section 30.9.7.3,
“Setting Up the PEBS Buffer.”) It is also possible to detect or count combinations of
events by setting multiple tag value bits in the upstream ESCR or multiple mask bits
in the downstream ESCR. For example, use a tag value of 3H in the upstream ESCR
and use NBOGUS0/NBOGUS1 in the downstream ESCR event mask.

30.9.6.4 Tagging Mechanism for Replay_event
Table A-14 describes the Replay_event and Table A-18 describes metrics that are
used to set up an Replay_event count.

The replay mechanism enables tagging of μops for a subset of all replays before
retirement. Use of the replay mechanism requires selecting the type of μop that may
experience the replay in the MSR_PEBS_MATRIX_VERT MSR and selecting the type of
event in the MSR_PEBS_ENABLE MSR. Replay tagging must also be enabled with the
UOP_Tag flag (bit 24) in the MSR_PEBS_ENABLE MSR.

The Table A-18 lists the metrics that are support the replay tagging mechanism and
the at-retirement events that use the replay tagging mechanism, and specifies how
the appropriate MSRs need to be configured. The replay tags defined in Table A-5
also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8). Each of these
replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in
IA_32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event
(see Table A-14) be used to count the tagged μops.

30.9.7 Precise Event-Based Sampling (PEBS)
The debug store (DS) mechanism in processors based on Intel NetBurst microarchi-
tecture allow two types of information to be collected for use in debugging and tuning
programs: PEBS records and BTS records. See Section 16.4.5, “Branch Trace Store
(BTS),” for a description of the BTS mechanism.

PEBS permits the saving of precise architectural information associated with one or
more performance events in the precise event records buffer, which is part of the DS
save area (see Section 16.4.9, “BTS and DS Save Area”). To use this mechanism, a
counter is configured to overflow after it has counted a preset number of events.
After the counter overflows, the processor copies the current state of the general-
purpose and EFLAGS registers and instruction pointer into a record in the precise
event records buffer. The processor then resets the count in the performance counter
and restarts the counter. When the precise event records buffer is nearly full, an
interrupt is generated, allowing the precise event records to be saved. A circular
buffer is not supported for precise event records.

PEBS is supported only for a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can only be carried out using the
one performance counter, the MSR_IQ_COUNTER4 MSR.
Vol. 3B 30-87

PERFORMANCE MONITORING
In processors based on Intel Core microarchitecture, a similar PEBS mechanism is
also supported using IA32_PMC0 and IA32_PERFEVTSEL0 MSRs (See Section
30.4.4).

30.9.7.1 Detection of the Availability of the PEBS Facilities
The DS feature flag (bit 21) returned by the CPUID instruction indicates (when set)
the availability of the DS mechanism in the processor, which supports the PEBS (and
BTS) facilities. When this bit is set, the following PEBS facilities are available:
• The PEBS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates (when

clear) the availability of the PEBS facilities, including the MSR_PEBS_ENABLE
MSR.

• The enable PEBS flag (bit 24) in the MSR_PEBS_ENABLE MSR allows PEBS to be
enabled (set) or disabled (clear).

• The IA32_DS_AREA MSR can be programmed to point to the DS save area.

30.9.7.2 Setting Up the DS Save Area
Section 16.4.9.2, “Setting Up the DS Save Area,” describes how to set up and enable
the DS save area. This procedure is common for PEBS and BTS.

30.9.7.3 Setting Up the PEBS Buffer
Only the MSR_IQ_COUNTER4 performance counter can be used for PEBS. Use the
following procedure to set up the processor and this counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event
buffer base, precise event index, precise event absolute maximum, and precise
event interrupt threshold, and precise event counter reset fields of the DS buffer
management area (see Figure 16-5) to set up the precise event records buffer in
memory.

2. Enable PEBS. Set the Enable PEBS flag (bit 24) in MSR_PEBS_ENABLE MSR.

3. Set up the MSR_IQ_COUNTER4 performance counter and its associated CCCR
and one or more ESCRs for PEBS as described in Tables A-14 through A-18.

30.9.7.4 Writing a PEBS Interrupt Service Routine
The PEBS facilities share the same interrupt vector and interrupt service routine
(called the DS ISR) with the non-precise event-based sampling and BTS facilities. To
handle PEBS interrupts, PEBS handler code must be included in the DS ISR. See
Section 16.4.9.5, “Writing the DS Interrupt Service Routine,” for guidelines for
writing the DS ISR.
30-88 Vol. 3B

PERFORMANCE MONITORING
30.9.7.5 Other DS Mechanism Implications
The DS mechanism is not available in the SMM. It is disabled on transition to the SMM
mode. Similarly the DS mechanism is disabled on the generation of a machine check
exception and is cleared on processor RESET and INIT.

The DS mechanism is available in real address mode.

30.9.8 Operating System Implications
The DS mechanism can be used by the operating system as a debugging extension to
facilitate failure analysis. When using this facility, a 25 to 30 times slowdown can be
expected due to the effects of the trace store occurring on every taken branch.

Depending upon intended usage, the instruction pointers that are part of the branch
records or the PEBS records need to have an association with the corresponding
process. One solution requires the ability for the DS specific operating system
module to be chained to the context switch. A separate buffer can then be main-
tained for each process of interest and the MSR pointing to the configuration area
saved and setup appropriately on each context switch.

If the BTS facility has been enabled, then it must be disabled and state stored on
transition of the system to a sleep state in which processor context is lost. The state
must be restored on return from the sleep state.

It is required that an interrupt gate be used for the DS interrupt as opposed to a trap
gate to prevent the generation of an endless interrupt loop.

Pages that contain buffers must have mappings to the same physical address for all
processes/logical processors, such that any change to CR3 will not change DS
addresses. If this requirement cannot be satisfied (that is, the feature is enabled on
a per thread/process basis), then the operating system must ensure that the feature
is enabled/disabled appropriately in the context switch code.

30.10 PERFORMANCE MONITORING AND INTEL HYPER-
THREADING TECHNOLOGY IN PROCESSORS BASED
ON INTEL NETBURST® MICROARCHITECTURE

The performance monitoring capability of processors based on Intel NetBurst
microarchitecture and supporting Intel Hyper-Threading Technology is similar to that
described in Section 30.9. However, the capability is extended so that:
• Performance counters can be programmed to select events qualified by logical

processor IDs.
• Performance monitoring interrupts can be directed to a specific logical processor

within the physical processor.
Vol. 3B 30-89

PERFORMANCE MONITORING
The sections below describe performance counters, event qualification by logical
processor ID, and special purpose bits in ESCRs/CCCRs. They also describe
MSR_PEBS_ENABLE, MSR_PEBS_MATRIX_VERT, and MSR_TC_PRECISE_EVENT.

30.10.1 ESCR MSRs
Figure 30-37 shows the layout of an ESCR MSR in processors supporting Intel Hyper-
Threading Technology.

The functions of the flags and fields are as follows:
• T1_USR flag, bit 0 — When set, events are counted when thread 1 (logical

processor 1) is executing at a current privilege level (CPL) of 1, 2, or 3. These
privilege levels are generally used by application code and unprotected operating
system code.

• T1_OS flag, bit 1 — When set, events are counted when thread 1 (logical
processor 1) is executing at CPL of 0. This privilege level is generally reserved for
protected operating system code. (When both the T1_OS and T1_USR flags are
set, thread 1 events are counted at all privilege levels.)

• T0_USR flag, bit 2 — When set, events are counted when thread 0 (logical
processor 0) is executing at a CPL of 1, 2, or 3.

• T0_OS flag, bit 3 — When set, events are counted when thread 0 (logical
processor 0) is executing at CPL of 0. (When both the T0_OS and T0_USR flags
are set, thread 0 events are counted at all privilege levels.)

Figure 30-37. Event Selection Control Register (ESCR) for the Pentium 4 Processor,
Intel Xeon Processor and Intel Xeon Processor MP Supporting Hyper-Threading

Technology

31 24 8 0123492530

63 32

Reserved

Event Mask
Event
Select

T0_USR
T0_OS

5

Tag Enable

Tag
Value

T1_USR
T1_OS

Reserved
30-90 Vol. 3B

PERFORMANCE MONITORING
• Tag enable, bit 4 — When set, enables tagging of μops to assist in at-retirement
event counting; when clear, disables tagging. See Section 30.9.6, “At-Retirement
Counting.”

• Tag value field, bits 5 through 8 — Selects a tag value to associate with a μop
to assist in at-retirement event counting.

• Event mask field, bits 9 through 24 — Selects events to be counted from the
event class selected with the event select field.

• Event select field, bits 25 through 30) — Selects a class of events to be
counted. The events within this class that are counted are selected with the event
mask field.

The T0_OS and T0_USR flags and the T1_OS and T1_USR flags allow event counting
and sampling to be specified for a specific logical processor (0 or 1) within an Intel
Xeon processor MP (See also: Section 8.4.5, “Identifying Logical Processors in an MP
System,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

Not all performance monitoring events can be detected within an Intel Xeon
processor MP on a per logical processor basis (see Section 30.10.4, “Performance
Monitoring Events”). Some sub-events (specified by an event mask bits) are counted
or sampled without regard to which logical processor is associated with the detected
event.

30.10.2 CCCR MSRs
Figure 30-38 shows the layout of a CCCR MSR in processors supporting Intel Hyper-
Threading Technology. The functions of the flags and fields are as follows:
• Enable flag, bit 12 — When set, enables counting; when clear, the counter is

disabled. This flag is cleared on reset
• ESCR select field, bits 13 through 15 — Identifies the ESCR to be used to

select events to be counted with the counter associated with the CCCR.
• Active thread field, bits 16 and 17 — Enables counting depending on which

logical processors are active (executing a thread). This field enables filtering of
events based on the state (active or inactive) of the logical processors. The
encodings of this field are as follows:
00 — None. Count only when neither logical processor is active.
01 — Single. Count only when one logical processor is active (either 0 or 1).
10 — Both. Count only when both logical processors are active.
11 — Any. Count when either logical processor is active.
A halted logical processor or a logical processor in the “wait for SIPI” state is
considered inactive.
Vol. 3B 30-91

PERFORMANCE MONITORING
• Compare flag, bit 18 — When set, enables filtering of the event count; when
clear, disables filtering. The filtering method is selected with the threshold,
complement, and edge flags.

• Complement flag, bit 19 — Selects how the incoming event count is compared
with the threshold value. When set, event counts that are less than or equal to
the threshold value result in a single count being delivered to the performance
counter; when clear, counts greater than the threshold value result in a count
being delivered to the performance counter (see Section 30.9.5.2, “Filtering
Events”). The compare flag is not active unless the compare flag is set.

• Threshold field, bits 20 through 23 — Selects the threshold value to be used
for comparisons. The processor examines this field only when the compare flag is
set, and uses the complement flag setting to determine the type of threshold
comparison to be made. The useful range of values that can be entered in this
field depend on the type of event being counted (see Section 30.9.5.2, “Filtering
Events”).

• Edge flag, bit 24 — When set, enables rising edge (false-to-true) edge
detection of the threshold comparison output for filtering event counts; when
clear, rising edge detection is disabled. This flag is active only when the compare
flag is set.

Figure 30-38. Counter Configuration Control Register (CCCR)

63 32

Reserved

Reserved

Active Thread
Compare

Enable

31 24 23 20 19 16 15 12 11 017182526272930

Edge
FORCE_OVF

OVF_PMI_T0

Threshold

Cascade
OVF

Complement

Reserved

13

ESCR
Select

OVF_PMI_T1

Reserved
30-92 Vol. 3B

PERFORMANCE MONITORING
• FORCE_OVF flag, bit 25 — When set, forces a counter overflow on every
counter increment; when clear, overflow only occurs when the counter actually
overflows.

• OVF_PMI_T0 flag, bit 26 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 0 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 0. Note that the PMI is
generate on the next event count after the counter has overflowed.

• OVF_PMI_T1 flag, bit 27 — When set, causes a performance monitor interrupt
(PMI) to be sent to logical processor 1 when the counter overflows occurs; when
clear, disables PMI generation for logical processor 1. Note that the PMI is
generate on the next event count after the counter has overflowed.

• Cascade flag, bit 30 — When set, enables counting on one counter of a counter
pair when its alternate counter in the other the counter pair in the same counter
group overflows (see Section 30.9.2, “Performance Counters,” for further
details); when clear, disables cascading of counters.

• OVF flag, bit 31 — Indicates that the counter has overflowed when set. This flag
is a sticky flag that must be explicitly cleared by software.

30.10.3 IA32_PEBS_ENABLE MSR
In a processor supporting Intel Hyper-Threading Technology and based on the Intel
NetBurst microarchitecture, PEBS is enabled and qualified with two bits in the
MSR_PEBS_ENABLE MSR: bit 25 (ENABLE_PEBS_MY_THR) and 26
(ENABLE_PEBS_OTH_THR) respectively. These bits do not explicitly identify a
specific logical processor by logic processor ID(T0 or T1); instead, they allow a soft-
ware agent to enable PEBS for subsequent threads of execution on the same logical
processor on which the agent is running (“my thread”) or for the other logical
processor in the physical package on which the agent is not running (“other thread”).

PEBS is supported for only a subset of the at-retirement events: Execution_event,
Front_end_event, and Replay_event. Also, PEBS can be carried out only with two
performance counters: MSR_IQ_CCCR4 (MSR address 370H) for logical processor 0
and MSR_IQ_CCCR5 (MSR address 371H) for logical processor 1.

Performance monitoring tools should use a processor affinity mask to bind the kernel
mode components that need to modify the ENABLE_PEBS_MY_THR and
ENABLE_PEBS_OTH_THR bits in the MSR_PEBS_ENABLE MSR to a specific logical
processor. This is to prevent these kernel mode components from migrating between
different logical processors due to OS scheduling.

30.10.4 Performance Monitoring Events
All of the events listed in Table A-13 and A-14 are available in an Intel Xeon processor
MP. When Intel Hyper-Threading Technology is active, many performance monitoring
events can be can be qualified by the logical processor ID, which corresponds to bit 0
Vol. 3B 30-93

PERFORMANCE MONITORING
of the initial APIC ID. This allows for counting an event in any or all of the logical
processors. However, not all the events have this logic processor specificity, or thread
specificity.

Here, each event falls into one of two categories:
• Thread specific (TS) — The event can be qualified as occurring on a specific

logical processor.
• Thread independent (TI) — The event cannot be qualified as being associated

with a specific logical processor.

Table A-19 gives logical processor specific information (TS or TI) for each of the
events described in Tables A-13 and A-14. If for example, a TS event occurred in
logical processor T0, the counting of the event (as shown in Table 30-31) depends
only on the setting of the T0_USR and T0_OS flags in the ESCR being used to set up
the event counter. The T1_USR and T1_OS flags have no effect on the count.

When a bit in the event mask field is TI, the effect of specifying bit-0-3 of the associ-
ated ESCR are described in Table 15-6. For events that are marked as TI in Appendix
A, the effect of selectively specifying T0_USR, T0_OS, T1_USR, T1_OS bits is shown
in Table 30-32.

Table 30-31. Effect of Logical Processor and CPL Qualification
for Logical-Processor-Specific (TS) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR
= 00

Zero count Counts while T1
in USR

Counts while T1
in OS or USR

Counts while T1
in OS

T0_OS/T0_USR
= 01

Counts while T0
in USR

Counts while T0
in USR or T1 in
USR

Counts while (a)
T0 in USR or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR
= 11

Counts while T0
in OS or USR

Counts while (a)
T0 in OS or (b) T0
in USR or (c) T1 in
USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) or
T0 in USR or (c)
T1 in OS

T0_OS/T0_USR
= 10

Counts T0 in OS Counts T0 in OS
or T1 in USR

Counts while
(a)T0 in Os or (b)
T1 in OS or (c) T1
in USR

Counts while (a)
T0 in OS or (b) T1
in OS
30-94 Vol. 3B

PERFORMANCE MONITORING
30.11 COUNTING CLOCKS
The count of cycles, also known as clockticks, forms a the basis for measuring how
long a program takes to execute. Clockticks are also used as part of efficiency ratios
like cycles per instruction (CPI). Processor clocks may stop ticking under circum-
stances like the following:
• The processor is halted when there is nothing for the CPU to do. For example, the

processor may halt to save power while the computer is servicing an I/O request.
When Intel Hyper-Threading Technology is enabled, both logical processors must
be halted for performance-monitoring counters to be powered down.

• The processor is asleep as a result of being halted or because of a power-
management scheme. There are different levels of sleep. In the some deep sleep
levels, the time-stamp counter stops counting.

In addition, processor core clocks may undergo transitions at different ratios relative
to the processor’s bus clock frequency. Some of the situations that can cause
processor core clock to undergo frequency transitions include:
• TM2 transitions
• Enhanced Intel SpeedStep Technology transitions (P-state transitions)

For Intel processors that support Intel Dynamic Acceleration or XE operation, the
processor core clocks may operate at a frequency that differs from the maximum
qualified frequency (as indicated by brand string information reported by CPUID
instruction). See Section 30.11.5 for more detail.

Table 30-32. Effect of Logical Processor and CPL Qualification
for Non-logical-Processor-specific (TI) Events

T1_OS/T1_USR =
00

T1_OS/T1_USR =
01

T1_OS/T1_USR =
11

T1_OS/T1_USR =
10

T0_OS/T0_USR =
00

Zero count Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS

T0_OS/T0_USR =
01

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts while (a)
T0 in USR or (b)
T1 in USR

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
11

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

T0_OS/T0_USR =
0

Counts while (a)
T0 in OS or (b) T1
in OS

Counts
irrespective of
CPL, T0, T1

Counts
irrespective of
CPL, T0, T1

Counts while (a)
T0 in OS or (b) T1
in OS
Vol. 3B 30-95

PERFORMANCE MONITORING
There are several ways to count processor clock cycles to monitor performance.
These are:
• Non-halted clockticks — Measures clock cycles in which the specified logical

processor is not halted and is not in any power-saving state. When Intel Hyper-
Threading Technology is enabled, ticks can be measured on a per-logical-
processor basis. There are also performance events on dual-core processors that
measure clockticks per logical processor when the processor is not halted.

• Non-sleep clockticks — Measures clock cycles in which the specified physical
processor is not in a sleep mode or in a power-saving state. These ticks cannot be
measured on a logical-processor basis.

• Time-stamp counter — Measures clock cycles in which the physical processor is
not in deep sleep. These ticks cannot be measured on a logical-processor basis.

• Reference clockticks — TM2 or Enhanced Intel SpeedStep technology are two
examples of processor features that can cause processor core clockticks to
represent non-uniform tick intervals due to change of bus ratios. Performance
events that counts clockticks of a constant reference frequency was introduced
Intel Core Duo and Intel Core Solo processors. The mechanism is further
enhanced on processors based on Intel Core microarchitecture.

Some processor models permit clock cycles to be measured when the physical
processor is not in deep sleep (by using the time-stamp counter and the RDTSC
instruction). Note that such ticks cannot be measured on a per-logical-processor
basis. See Section 16.12, “Time-Stamp Counter,” for detail on processor capabilities.

The first two methods use performance counters and can be set up to cause an inter-
rupt upon overflow (for sampling). They may also be useful where it is easier for a
tool to read a performance counter than to use a time stamp counter (the timestamp
counter is accessed using the RDTSC instruction).

For applications with a significant amount of I/O, there are two ratios of interest:
• Non-halted CPI — Non-halted clockticks/instructions retired measures the CPI

for phases where the CPU was being used. This ratio can be measured on a
logical-processor basis when Intel Hyper-Threading Technology is enabled.

• Nominal CPI — Time-stamp counter ticks/instructions retired measures the CPI
over the duration of a program, including those periods when the machine halts
while waiting for I/O.

30.11.1 Non-Halted Clockticks
Use the following procedure to program ESCRs and CCCRs to obtain non-halted
clockticks on processors based on Intel NetBurst microarchitecture:

1. Select an ESCR for the global_power_events and specify the RUNNING sub-event
mask and the desired T0_OS/T0_USR/T1_OS/T1_USR bits for the targeted
processor.
30-96 Vol. 3B

PERFORMANCE MONITORING
2. Select an appropriate counter.

3. Enable counting in the CCCR for that counter by setting the enable bit.

30.11.2 Non-Sleep Clockticks
Performance monitoring counters can be configured to count clockticks whenever the
performance monitoring hardware is not powered-down. To count Non-sleep Clock-
ticks with a performance-monitoring counter, do the following:

1. Select one of the 18 counters.

2. Select any of the ESCRs whose events the selected counter can count. Set its
event select to anything other than no_event. This may not seem necessary, but
the counter may be disabled if this is not done.

3. Turn threshold comparison on in the CCCR by setting the compare bit to 1.

4. Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can
exceed this threshold, the threshold condition is met every cycle and the counter
counts every cycle. Note that this overrides any qualification (e.g. by CPL)
specified in the ESCR.

5. Enable counting in the CCCR for the counter by setting the enable bit.

In most cases, the counts produced by the non-halted and non-sleep metrics are
equivalent if the physical package supports one logical processor and is not placed in
a power-saving state. Operating systems may execute an HLT instruction and place a
physical processor in a power-saving state.

On processors that support Intel Hyper-Threading Technology (Intel HT Technology),
each physical package can support two or more logical processors. Current imple-
mentation of Intel HT Technology provides two logical processors for each physical
processor. While both logical processors can execute two threads simultaneously,
one logical processor may halt to allow the other logical processor to execute without
sharing execution resources between two logical processors.

Non-halted Clockticks can be set up to count the number of processor clock cycles for
each logical processor whenever the logical processor is not halted (the count may
include some portion of the clock cycles for that logical processor to complete a tran-
sition to a halted state). Physical processors that support Intel HT Technology enter
into a power-saving state if all logical processors halt.

The Non-sleep Clockticks mechanism uses a filtering mechanism in CCCRs. The
mechanism will continue to increment as long as one logical processor is not halted
or in a power-saving state. Applications may cause a processor to enter into a power-
saving state by using an OS service that transfers control to an OS’s idle loop. The
idle loop then may place the processor into a power-saving state after an implemen-
tation-dependent period if there is no work for the processor.
Vol. 3B 30-97

PERFORMANCE MONITORING
30.11.3 Incrementing the Time-Stamp Counter
The time-stamp counter increments when the clock signal on the system bus is
active and when the sleep pin is not asserted. The counter value can be read with the
RDTSC instruction.

The time-stamp counter and the non-sleep clockticks count may not agree in all
cases and for all processors. See Section 16.12, “Time-Stamp Counter,” for more
information on counter operation.

30.11.4 Non-Halted Reference Clockticks
Software can use either processor-specific performance monitor events (for
example: CPU_CLK_UNHALTED.BUS on processors based on the Intel Core microar-
chitecture, and equivalent event specifications on the Intel Core Duo and Intel Core
Solo processors) to count non-halted reference clockticks.

These events count reference clock cycles whenever the specified processor is not
halted. The counter counts reference cycles associated with a fixed-frequency clock
source irrespective of P-state, TM2, or frequency transitions that may occur to the
processor.

30.11.5 Cycle Counting and Opportunistic Processor Operation
As a result of the state transitions due to opportunistic processor performance oper-
ation (see Chapter 14, “Power and Thermal Management”), a logical processor or a
processor core can operate at frequency different from that indicated by the
processor’s maximum qualified frequency.

The following items are expected to hold true irrespective of when opportunistic
processor operation causes state transitions:
• The time stamp counter operates at a fixed-rate frequency of the processor.
• The IA32_MPERF counter increments at the same TSC frequency irrespective of

any transitions caused by opportunistic processor operation.
• The IA32_FIXED_CTR2 counter increments at the same TSC frequency

irrespective of any transitions caused by opportunistic processor operation.
• The Local APIC timer operation is unaffected by opportunistic processor

operation.
• The TSC, IA32_MPERF, and IA32_FIXED_CTR2 operate at the same, maximum-

resolved frequency of the platform, which is equal to the product of scalable bus
frequency and maximum resolved bus ratio.

For processors based on Intel Core microarchitecture, the scalable bus frequency is
encoded in the bit field MSR_FSB_FREQ[2:0] at (0CDH), see Appendix B, “Model-
30-98 Vol. 3B

PERFORMANCE MONITORING
Specific Registers (MSRs)”. The maximum resolved bus ratio can be read from the
following bit field:
• If XE operation is disabled, the maximum resolved bus ratio can be read in

MSR_PLATFORM_ID[12:8]. It corresponds to the maximum qualified frequency.
• IF XE operation is enabled, the maximum resolved bus ratio is given in

MSR_PERF_STAT[44:40], it corresponds to the maximum XE operation
frequency configured by BIOS.

XE operation of an Intel 64 processor is implementation specific. XE operation can be
enabled only by BIOS. If MSR_PERF_STAT[31] is set, XE operation is enabled. The
MSR_PERF_STAT[31] field is read-only.

30.12 PERFORMANCE MONITORING, BRANCH PROFILING
AND SYSTEM EVENTS

When performance monitoring facilities and/or branch profiling facilities (see Section
16.5, “Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and
Intel® Atom™ Processor Family)”) are enabled, these facilities capture event counts,
branch records and branch trace messages occurring in a logical processor. The
occurrence of interrupts, instruction streams due to various interrupt handlers all
contribute to the results recorded by these facilities.

If CPUID.01H:ECX.PDCM[bit 15] is 1, the processor supports the
IA32_PERF_CAPABILITIES MSR. If
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] is 1, the processor supports
the ability for system software using performance monitoring and/or branch profiling
facilities to filter out the effects of servicing system management interrupts.

If the FREEZE_WHILE_SMM capability is enabled on a logical processor and after an
SMI is delivered, the processor will clear all the enable bits of
IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and
disable LBR, BTF, TR, and BTS fields of IA32_DEBUGCTL before transferring control to
the SMI handler.

The enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1, the saved copy of
IA32_DEBUGCTL prior to SMI delivery will be restored , after the SMI handler issues
RSM to complete its servicing.

It is the responsibility of the SMM code to ensure the state of the performance moni-
toring and branch profiling facilities are preserved upon entry or until prior to exiting
the SMM. If any of this state is modified due to actions by the SMM code, the SMM
code is required to restore such state to the values present at entry to the SMM
handler.

System software is allowed to set IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN[bit 14]
to 1 only supported as indicated by
IA32_PERF_CAPABILITIES.FREEZE_WHILE_SMM[Bit 12] reporting 1.
Vol. 3B 30-99

PERFORMANCE MONITORING
30.13 PERFORMANCE MONITORING AND DUAL-CORE
TECHNOLOGY

The performance monitoring capability of dual-core processors duplicates the
microarchitectural resources of a single-core processor implementation. Each
processor core has dedicated performance monitoring resources.

In the case of Pentium D processor, each logical processor is associated with dedi-
cated resources for performance monitoring. In the case of Pentium processor
Extreme edition, each processor core has dedicated resources, but two logical
processors in the same core share performance monitoring resources (see Section
30.10, “Performance Monitoring and Intel Hyper-Threading Technology in Processors
Based on Intel NetBurst® Microarchitecture”).

30.14 PERFORMANCE MONITORING ON 64-BIT INTEL XEON
PROCESSOR MP WITH UP TO 8-MBYTE L3 CACHE

The 64-bit Intel Xeon processor MP with up to 8-MByte L3 cache has a CPUID signa-
ture of family [0FH], model [03H or 04H]. Performance monitoring capabilities avail-
able to Pentium 4 and Intel Xeon processors with the same values (see Section 30.1
and Section 30.10) apply to the 64-bit Intel Xeon processor MP with an L3 cache.

The level 3 cache is connected between the system bus and IOQ through additional
control logic. See Figure 30-40.

Figure 30-39. Layout of IA32_PERF_CAPABILITIES MSR

SMM_FREEZE (R/O)
PEBS_REC_FMT (R/O)

8 7 012 3 1

Reserved

63 2411 56

PEBS_TRAP (R/O)
LBR_FMT (R/O) - 0: 32bit, 1: 64-bit LIP, 2: 64bit EIP

PEBS_ARCH_REG (R/O)

13

FW_WRITE (R/O)
30-100 Vol. 3B

PERFORMANCE MONITORING
Additional performance monitoring capabilities and facilities unique to 64-bit Intel
Xeon processor MP with an L3 cache are described in this section. The facility for
monitoring events consists of a set of dedicated model-specific registers (MSRs),
each dedicated to a specific event. Programming of these MSRs requires using
RDMSR/WRMSR instructions with 64-bit values.

The lower 32-bits of the MSRs at addresses 107CC through 107D3 are treated as 32
bit performance counter registers. These performance counters can be accessed
using RDPMC instruction with the index starting from 18 through 25. The EDX
register returns zero when reading these 8 PMCs.

The performance monitoring capabilities consist of four events. These are:
• IBUSQ event — This event detects the occurrence of micro-architectural

conditions related to the iBUSQ unit. It provides two MSRs: MSR_IFSB_IBUSQ0
and MSR_IFSB_IBUSQ1. Configure sub-event qualification and enable/disable
functions using the high 32 bits of these MSRs. The low 32 bits act as a 32-bit
event counter. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits. See Figure 30-41.

Figure 30-40. Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3
Vol. 3B 30-101

PERFORMANCE MONITORING
• ISNPQ event — This event detects the occurrence of microarchitectural
conditions related to the iSNPQ unit. It provides two MSRs: MSR_IFSB_ISNPQ0
and MSR_IFSB_ISNPQ1. Configure sub-event qualifications and enable/disable
functions using the high 32 bits of the MSRs. The low 32-bits act as a 32-bit event
counter. Counting starts after software writes a non-zero value to one or more of
the upper 32-bits. See Figure 30-42.

Figure 30-41. MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH

L3_state_match

46 3845 37 36 3334

Saturate
Fill_match
Eviction_match

Snoop_match
Type_match
T1_match
T0_match

Reserved

63 56 55 48 324957585960 35

1 1

32 bit event count

031

MSR_IFSB_IBUSQx, Addresses: 107CCH and 107CDH
30-102 Vol. 3B

PERFORMANCE MONITORING
• EFSB event — This event can detect the occurrence of micro-architectural
conditions related to the iFSB unit or system bus. It provides two MSRs:
MSR_EFSB_DRDY0 and MSR_EFSB_DRDY1. Configure sub-event qualifications
and enable/disable functions using the high 32 bits of the 64-bit MSR. The low
32-bit act as a 32-bit event counter. Counting starts after software writes a non-
zero value to one or more of the qualification bits in the upper 32-bits of the MSR.
See Figure 30-43.

Figure 30-42. MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH

L3_state_match

46 3845 37 36 3334

Saturate

Snoop_match
Type_match

T1_match
T0_match

Reserved

63 56 55 48 3257585960 3539

Agent_match

31 0

32 bit event count

MSR_IFSB_ISNPQx, Addresses: 107CEH and 107CFH
Vol. 3B 30-103

PERFORMANCE MONITORING
• IBUSQ Latency event — This event accumulates weighted cycle counts for
latency measurement of transactions in the iBUSQ unit. The count is enabled by
setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after software sets
MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event
counter for this event. See Figure 30-44.

Figure 30-43. MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Other

49 3850 37 36 3334

Saturate

Own

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H
30-104 Vol. 3B

PERFORMANCE MONITORING
30.15 PERFORMANCE MONITORING ON L3 AND CACHING
BUS CONTROLLER SUB-SYSTEMS

The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100
series employ a distinct L3/caching bus controller sub-system. These sub-system
have a unique set of performance monitoring capability and programming interfaces
that are largely common between these two processor families.

Intel Xeon processor 7400 series are based on 45nm enhanced Intel Core microar-
chitecture. The CPUID signature is indicated by DisplayFamily_DisplayModel value of
06_1DH (see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel
Xeon processor 7400 series have six processor cores that share an L3 cache.

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchi-
tecture, have a CPUID signature of family [0FH], model [06H] and a unified L3 cache
shared between two cores. Each core in an Intel Xeon processor 7100 series supports
Intel Hyper-Threading Technology, providing two logical processors per core.

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support
multi-processor configurations using system bus interfaces. In Intel Xeon processor
7400 series, the L3/caching bus controller sub-system provides three Simple Direct
Interface (SDI) to service transactions originated the XQ-replacement SDI logic in
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each
processor core is replaced with a Simple Direct Interface (SDI) logic. The L3 cache is

Figure 30-44. MSR_IFSB_CTL6, Address: 107D2H;
MSR_IFSB_CNTR7, Address: 107D3H

Reserved

MSR_IFSB_CTL6 Address: 107D2H

MSR_IFSB_CNTR7 Address: 107D3H

Enable

63 05759

63 0

64 bit event count
Vol. 3B 30-105

PERFORMANCE MONITORING
connected between the system bus and the SDI through additional control logic. See
Figure 30-45 for the block configuration of six processor cores and the L3/Caching
bus controller sub-system in Intel Xeon processor 7400 series. Figure 30-45 shows
the block configuration of two processor cores (four logical processors) and the
L3/Caching bus controller sub-system in Intel Xeon processor 7100 series.

Almost all of the performance monitoring capabilities available to processor cores
with the same CPUID signatures (see Section 30.1 and Section 30.10) apply to Intel
Xeon processor 7100 series. The MSRs used by performance monitoring interface are
shared between two logical processors in the same processor core.

The performance monitoring capabilities available to processor with
DisplayFamily_DisplayModel signature 06_17H also apply to Intel Xeon processor
7400 series. Each processor core provides its own set of MSRs for performance moni-
toring interface.

The IOQ_allocation and IOQ_active_entries events are not supported in Intel Xeon
processor 7100 series and 7400 series. Additional performance monitoring capabili-
ties applicable to the L3/caching bus controller sub-system are described in this
section.

Figure 30-45. Block Diagram of Intel Xeon Processor 7400 Series

SDI interface

L2

SDI interface

L2

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

SDI interface

L2

Core Core Core Core Core Core
30-106 Vol. 3B

PERFORMANCE MONITORING
30.15.1 Overview of Performance Monitoring with L3/Caching Bus
Controller

The facility for monitoring events consists of a set of dedicated model-specific
registers (MSRs). There are eight event select/counting MSRs that are dedicated to
counting events associated with specified microarchitectural conditions. Program-
ming of these MSRs requires using RDMSR/WRMSR instructions with 64-bit values.
In addition, an MSR MSR_EMON_L3_GL_CTL provides simplified interface to control
freezing, resetting, re-enabling operation of any combination of these event
select/counting MSRs.

The eight MSRs dedicated to count occurrences of specific conditions are further
divided to count three sub-classes of microarchitectural conditions:
• Two MSRs (MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1) are

dedicated to counting GBSQ events. Up to two GBSQ events can be programmed
and counted simultaneously.

• Two MSRs (MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3) are
dedicated to counting GSNPQ events. Up to two GBSQ events can be
programmed and counted simultaneously.

Figure 30-46. Block Diagram of Intel Xeon Processor 7100 Series

SDI interface

Processor core

SDI interface

Processor core

L3
GBSQ, GSNPQ,
GINTQ, ...

FSB

SDI

Logical
processor

Logical
processor

Logical
processor

Logical
processor
Vol. 3B 30-107

PERFORMANCE MONITORING
• Four MSRs (MSR_EMON_L3_CTR_CTL4, MSR_EMON_L3_CTR_CTL5,
MSR_EMON_L3_CTR_CTL6, and MSR_EMON_L3_CTR_CTL7) are dedicated to
counting external bus operations.

The bit fields in each of eight MSRs share the following common characteristics:
• Bits 63:32 is the event control field that includes an event mask and other bit

fields that control counter operation. The event mask field specifies details of the
microarchitectural condition, and its definition differs across GBSQ, GSNPQ, FSB.

• Bits 31:0 is the event count field. If the specified condition is met during each
relevant clock domain of the event logic, the matched condition signals the
counter logic to increment the associated event count field. The lower 32-bits of
these 8 MSRs at addresses 107CC through 107D3 are treated as 32 bit
performance counter registers.

In Dual-Core Intel Xeon processor 7100 series, the uncore performance counters can
be accessed using RDPMC instruction with the index starting from 18 through 25. The
EDX register returns zero when reading these 8 PMCs.

In Intel Xeon processor 7400 series, RDPMC with ECX between 2 and 9 can be used
to access the eight uncore performance counter/control registers.

30.15.2 GBSQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL0 and MSR_EMON_L3_CTR_CTL1 is given in
Figure 30-47. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following eight attributes:
• Agent_Select (bits 35:32): The definition of this field differs slightly between

Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series, each bit specifies a logical processor in the
physical package. The lower two bits corresponds to two logical processors in the
first processor core, the upper two bits corresponds to two logical processors in
the second processor core. 0FH encoding matches transactions from any logical
processor.
For Intel Xeon processor 7400 series, each bit of [34:32] specifies the SDI logic
of a dual-core module as the originator of the transaction. A value of 0111B in
bits [35:32] specifies transaction from any processor core.
30-108 Vol. 3B

PERFORMANCE MONITORING
• Data_Flow (bits 37:36): Bit 36 specifies demand transactions, bit 37 specifies
prefetch transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include all transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L3_State (bits 53:47): Each bit specifies an L2 coherency state.
• Core_Module_Select (bits 55:54): The valid encodings for L3 lookup differ

slightly between Intel Xeon processor 7100 and 7400.
For Intel Xeon processor 7100 series,

— 00B: Match transactions from any core in the physical package

— 01B: Match transactions from this core only

— 10B: Match transactions from the other core in the physical package

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series,

— 00B: Match transactions from any dual-core module in the physical package

Figure 30-47. MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

Core_module_select

44 3843 37 3654 53

Saturate
Cross_snoop
Fill_eviction

Snoop_match
Type_match
Data_flow
Agent_select

Reserved

63 56 55 46 324757585960 35

32 bit event count

031

MSR_EMON_L3_CTR_CTL0/1, Addresses: 107CCH/107CDH

L3_state
Vol. 3B 30-109

PERFORMANCE MONITORING
— 01B: Match transactions from this dual-core module only

— 10B: Match transactions from either one of the other two dual-core modules
in the physical package

— 11B: Match transaction from more than one dual-core modules in the
physical package

• Fill_Eviction (bits 57:56): The valid encodings are

— 00B: Match any transactions

— 01B: Match transactions that fill L3

— 10B: Match transactions that fill L3 without an eviction

— 11B: Match transaction fill L3 with an eviction
• Cross_Snoop (bit 58): The encodings are \

— 0B: Match any transactions

— 1B: Match cross snoop transactions

For each counting clock domain, if all eight attributes match, event logic signals to
increment the event count field.

30.15.3 GSNPQ Event Interface
The layout of MSR_EMON_L3_CTR_CTL2 and MSR_EMON_L3_CTR_CTL3 is given in
Figure 30-48. Counting starts after software writes a non-zero value to one or more
of the upper 32 bits.

The event mask field (bits 58:32) consists of the following six attributes:
• Agent_Select (bits 37:32): The definition of this field differs slightly between

Intel Xeon processor 7100 and 7400.
• For Intel Xeon processor 7100 series, each of the lowest 4 bits specifies a logical

processor in the physical package. The lowest two bits corresponds to two logical
processors in the first processor core, the next two bits corresponds to two logical
processors in the second processor core. Bit 36 specifies other symmetric agent
transactions. Bit 37 specifies central agent transactions. 3FH encoding matches
transactions from any logical processor.
For Intel Xeon processor 7400 series, each of the lowest 3 bits specifies a dual-
core module in the physical package. Bit 37 specifies central agent transactions.

• Type_Match (bits 43:38): Specifies transaction types. If all six bits are set, event
count will include any transaction types.

• Snoop_Match: (bits 46:44): The three bits specify (in ascending bit position)
clean snoop result, HIT snoop result, and HITM snoop results respectively.

• L2_State (bits 53:47): Each bit specifies an L3 coherency state.
• Core_Module_Select (bits 56:54): Bit 56 enables Core_Module_Select matching.

If bit 56 is clear, Core_Module_Select encoding is ignored. The valid encodings for
30-110 Vol. 3B

PERFORMANCE MONITORING
the lower two bits (bit 55, 54) differ slightly between Intel Xeon processor 7100
and 7400.
For Intel Xeon processor 7100 series, if bit 56 is set, the valid encodings for the
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one core (irrespective which core) in the
physical package

— 01B: Match transactions from this core and not the other core

— 10B: Match transactions from the other core in the physical package, but not
this core

— 11B: Match transaction from both cores in the physical package
For Intel Xeon processor 7400 series, if bit 56 is set, the valid encodings for the
lower two bits (bit 55, 54) are

— 00B: Match transactions from only one dual-core module (irrespective which
module) in the physical package

— 01B: Match transactions from one or more dual-core modules.

— 10B: Match transactions from two or more dual-core modules.

— 11B: Match transaction from all three dual-core modules in the physical
package

• Block_Snoop (bit 57): specifies blocked snoop.

For each counting clock domain, if all six attributes match, event logic signals to
increment the event count field.
Vol. 3B 30-111

PERFORMANCE MONITORING
30.15.4 FSB Event Interface
The layout of MSR_EMON_L3_CTR_CTL4 through MSR_EMON_L3_CTR_CTL7 is given
in Figure 30-49. Counting starts after software writes a non-zero value to one or
more of the upper 32 bits.

The event mask field (bits 58:32) is organized as follows:
• Bit 58: must set to 1.
• FSB_Submask (bits 57:32): Specifies FSB-specific sub-event mask.

The FSB sub-event mask defines a set of independent attributes. The event logic
signals to increment the associated event count field if one of the attribute matches.
Some of the sub-event mask bit counts durations. A duration event increments at
most once per cycle.

Figure 30-48. MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

L2_state

46 3844 37 364354

Saturate

Snoop_match
Type_match

Reserved

63 56 55 47 3257585960 53 39

Agent_match

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL2/3, Addresses: 107CEH/107CFH

Block_snoop
Core_select
30-112 Vol. 3B

PERFORMANCE MONITORING
30.15.4.1 FSB Sub-Event Mask Interface
• FSB_type (bit 37:32): Specifies different FSB transaction types originated from

this physical package
• FSB_L_clear (bit 38): Count clean snoop results from any source for transaction

originated from this physical package
• FSB_L_hit (bit 39): Count HIT snoop results from any source for transaction

originated from this physical package
• FSB_L_hitm (bit 40): Count HITM snoop results from any source for transaction

originated from this physical package
• FSB_L_defer (bit 41): Count DEFER responses to this processor’s transactions
• FSB_L_retry (bit 42): Count RETRY responses to this processor’s transactions
• FSB_L_snoop_stall (bit 43): Count snoop stalls to this processor’s transactions
• FSB_DBSY (bit 44): Count DBSY assertions by this processor (without a

concurrent DRDY)
• FSB_DRDY (bit 45): Count DRDY assertions by this processor
• FSB_BNR (bit 46): Count BNR assertions by this processor
• FSB_IOQ_empty (bit 47): Counts each bus clocks when the IOQ is empty
• FSB_IOQ_full (bit 48): Counts each bus clocks when the IOQ is full
• FSB_IOQ_active (bit 49): Counts each bus clocks when there is at least one entry

in the IOQ

Figure 30-49. MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H

1

49 3850 37 36 3334

Saturate

FSB submask

Reserved

63 56 55 48 3257585960 3539

31 0

32 bit event count

MSR_EMON_L3_CTR_CTL4/5/6/7, Addresses: 107D0H-107D3H
Vol. 3B 30-113

PERFORMANCE MONITORING
• FSB_WW_data (bit 50): Counts back-to-back write transaction’s data phase.
• FSB_WW_issue (bit 51): Counts back-to-back write transaction request pairs

issued by this processor.
• FSB_WR_issue (bit 52): Counts back-to-back write-read transaction request

pairs issued by this processor.
• FSB_RW_issue (bit 53): Counts back-to-back read-write transaction request

pairs issued by this processor.
• FSB_other_DBSY (bit 54): Count DBSY assertions by another agent (without a

concurrent DRDY)
• FSB_other_DRDY (bit 55): Count DRDY assertions by another agent
• FSB_other_snoop_stall (bit 56): Count snoop stalls on the FSB due to another

agent
• FSB_other_BNR (bit 57): Count BNR assertions from another agent

30.15.5 Common Event Control Interface
The MSR_EMON_L3_GL_CTL MSR provides simplified access to query overflow status
of the GBSQ, GSNPQ, FSB event counters. It also provides control bit fields to freeze,
unfreeze, or reset those counters. The following bit fields are supported:
• GL_freeze_cmd (bit 0): Freeze the event counters specified by the

GL_event_select field.
• GL_unfreeze_cmd (bit 1): Unfreeze the event counters specified by the

GL_event_select field.
• GL_reset_cmd (bit 2): Clear the event count field of the event counters specified

by the GL_event_select field. The event select field is not affected.
• GL_event_select (bit 23:16): Selects one or more event counters to subject to

specified command operations indicated by bits 2:0. Bit 16 corresponds to
MSR_EMON_L3_CTR_CTL0, bit 23 corresponds to MSR_EMON_L3_CTR_CTL7.

• GL_event_status (bit 55:48): Indicates the overflow status of each event
counters. Bit 48 corresponds to MSR_EMON_L3_CTR_CTL0, bit 55 corresponds
to MSR_EMON_L3_CTR_CTL7.

In the event control field (bits 63:32) of each MSR, if the saturate control (bit 59, see
Figure 30-47 for example) is set, the event logic forces the value FFFF_FFFFH into
the event count field instead of incrementing it.

30.16 PERFORMANCE MONITORING (P6 FAMILY
PROCESSOR)

The P6 family processors provide two 40-bit performance counters, allowing two
types of events to be monitored simultaneously. These can either count events or
30-114 Vol. 3B

PERFORMANCE MONITORING
measure duration. When counting events, a counter increments each time a speci-
fied event takes place or a specified number of events takes place. When measuring
duration, it counts the number of processor clocks that occur while a specified condi-
tion is true. The counters can count events or measure durations that occur at any
privilege level.

Table A-22, Appendix A, lists the events that can be counted with the P6 family
performance monitoring counters.

NOTE
The performance-monitoring events listed in Appendix A are
intended to be used as guides for performance tuning. Counter
values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are
documented where applicable.

The performance-monitoring counters are supported by four MSRs: the performance
event select MSRs (PerfEvtSel0 and PerfEvtSel1) and the performance counter MSRs
(PerfCtr0 and PerfCtr1). These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively. They can be accessed using these
instructions only when operating at privilege level 0. The PerfCtr0 and PerfCtr1 MSRs
can be read from any privilege level using the RDPMC (read performance-monitoring
counters) instruction.

NOTE
The PerfEvtSel0, PerfEvtSel1, PerfCtr0, and PerfCtr1 MSRs and the
events listed in Table A-22 are model-specific for P6 family
processors. They are not guaranteed to be available in other IA-32
processors.

30.16.1 PerfEvtSel0 and PerfEvtSel1 MSRs
The PerfEvtSel0 and PerfEvtSel1 MSRs control the operation of the performance-
monitoring counters, with one register used to set up each counter. They specify the
events to be counted, how they should be counted, and the privilege levels at which
counting should take place. Figure 30-50 shows the flags and fields in these MSRs.

The functions of the flags and fields in the PerfEvtSel0 and PerfEvtSel1 MSRs are as
follows:
• Event select field (bits 0 through 7) — Selects the event logic unit to detect

certain microarchitectural conditions (see Table A-22, for a list of events and their
8-bit codes).

• Unit mask (UMASK) field (bits 8 through 15) — Further qualifies the event
logic unit selected in the event select field to detect a specific microarchitectural
condition. For example, for some cache events, the mask is used as a MESI-
protocol qualifier of cache states (see Table A-22).
Vol. 3B 30-115

PERFORMANCE MONITORING
• USR (user mode) flag (bit 16) — Specifies that events are counted only when
the processor is operating at privilege levels 1, 2 or 3. This flag can be used in
conjunction with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that events are
counted only when the processor is operating at privilege level 0. This flag can be
used in conjunction with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of events.
The processor counts the number of deasserted to asserted transitions of any
condition that can be expressed by the other fields. The mechanism is limited in
that it does not permit back-to-back assertions to be distinguished. This
mechanism allows software to measure not only the fraction of time spent in a
particular state, but also the average length of time spent in such a state (for
example, the time spent waiting for an interrupt to be serviced).

• PC (pin control) flag (bit 19) — When set, the processor toggles the PMi pins
and increments the counter when performance-monitoring events occur; when
clear, the processor toggles the PMi pins when the counter overflows. The
toggling of a pin is defined as assertion of the pin for a single bus clock followed
by deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the processor
generates an exception through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — This flag is only present in the
PerfEvtSel0 MSR. When set, performance counting is enabled in both
performance-monitoring counters; when clear, both counters are disabled.

• INV (invert) flag (bit 23) — Inverts the result of the counter-mask comparison
when set, so that both greater than and less than comparisons can be made.

Figure 30-50. PerfEvtSel0 and PerfEvtSel1 MSRs

31

INV—Invert counter mask
EN—Enable counters*
INT—APIC interrupt enable
PC—Pin control

8 7 0

Event Select

E—Edge detect
OS—Operating system mode
USR—User Mode

* Only available in PerfEvtSel0.

Counter Mask
EE

N

I
N
T

19 1618 15172021222324

Reserved

I
N
V

P
C

U
S
R

O
S

Unit Mask (UMASK)(CMASK)
30-116 Vol. 3B

PERFORMANCE MONITORING
• Counter mask (CMASK) field (bits 24 through 31) — When nonzero, the
processor compares this mask to the number of events counted during a single
cycle. If the event count is greater than or equal to this mask, the counter is
incremented by one. Otherwise the counter is not incremented. This mask can be
used to count events only if multiple occurrences happen per clock (for example,
two or more instructions retired per clock). If the counter-mask field is 0, then
the counter is incremented each cycle by the number of events that occurred that
cycle.

30.16.2 PerfCtr0 and PerfCtr1 MSRs
The performance-counter MSRs (PerfCtr0 and PerfCtr1) contain the event or duration
counts for the selected events being counted. The RDPMC instruction can be used by
programs or procedures running at any privilege level and in virtual-8086 mode to
read these counters. The PCE flag in control register CR4 (bit 8) allows the use of this
instruction to be restricted to only programs and procedures running at privilege
level 0.

The RDPMC instruction is not serializing or ordered with other instructions. Thus, it
does not necessarily wait until all previous instructions have been executed before
reading the counter. Similarly, subsequent instructions may begin execution before
the RDPMC instruction operation is performed.

Only the operating system, executing at privilege level 0, can directly manipulate the
performance counters, using the RDMSR and WRMSR instructions. A secure oper-
ating system would clear the PCE flag during system initialization to disable direct
user access to the performance-monitoring counters, but provide a user-accessible
programming interface that emulates the RDPMC instruction.

The WRMSR instruction cannot arbitrarily write to the performance-monitoring
counter MSRs (PerfCtr0 and PerfCtr1). Instead, the lower-order 32 bits of each MSR
may be written with any value, and the high-order 8 bits are sign-extended according
to the value of bit 31. This operation allows writing both positive and negative values
to the performance counters.

30.16.3 Starting and Stopping the Performance-Monitoring Counters
The performance-monitoring counters are started by writing valid setup information
in the PerfEvtSel0 and/or PerfEvtSel1 MSRs and setting the enable counters flag in
the PerfEvtSel0 MSR. If the setup is valid, the counters begin counting following the
execution of a WRMSR instruction that sets the enable counter flag. The counters can
be stopped by clearing the enable counters flag or by clearing all the bits in the
PerfEvtSel0 and PerfEvtSel1 MSRs. Counter 1 alone can be stopped by clearing the
PerfEvtSel1 MSR.
Vol. 3B 30-117

PERFORMANCE MONITORING
30.16.4 Event and Time-Stamp Monitoring Software
To use the performance-monitoring counters and time-stamp counter, the operating
system needs to provide an event-monitoring device driver. This driver should
include procedures for handling the following operations:
• Feature checking
• Initialize and start counters
• Stop counters
• Read the event counters
• Read the time-stamp counter

The event monitor feature determination procedure must check whether the current
processor supports the performance-monitoring counters and time-stamp counter.
This procedure compares the family and model of the processor returned by the
CPUID instruction with those of processors known to support performance moni-
toring. (The Pentium and P6 family processors support performance counters.) The
procedure also checks the MSR and TSC flags returned to register EDX by the CPUID
instruction to determine if the MSRs and the RDTSC instruction are supported.

The initialize and start counters procedure sets the PerfEvtSel0 and/or PerfEvtSel1
MSRs for the events to be counted and the method used to count them and initializes
the counter MSRs (PerfCtr0 and PerfCtr1) to starting counts. The stop counters
procedure stops the performance counters (see Section 30.16.3, “Starting and Stop-
ping the Performance-Monitoring Counters”).

The read counters procedure reads the values in the PerfCtr0 and PerfCtr1 MSRs, and
a read time-stamp counter procedure reads the time-stamp counter. These proce-
dures would be provided in lieu of enabling the RDTSC and RDPMC instructions that
allow application code to read the counters.

30.16.5 Monitoring Counter Overflow
The P6 family processors provide the option of generating a local APIC interrupt when
a performance-monitoring counter overflows. This mechanism is enabled by setting
the interrupt enable flag in either the PerfEvtSel0 or the PerfEvtSel1 MSR. The
primary use of this option is for statistical performance sampling.

To use this option, the operating system should do the following things on the
processor for which performance events are required to be monitored:
• Provide an interrupt vector for handling the counter-overflow interrupt.
• Initialize the APIC PERF local vector entry to enable handling of performance-

monitor counter overflow events.
• Provide an entry in the IDT that points to a stub exception handler that returns

without executing any instructions.
• Provide an event monitor driver that provides the actual interrupt handler and

modifies the reserved IDT entry to point to its interrupt routine.
30-118 Vol. 3B

PERFORMANCE MONITORING
When interrupted by a counter overflow, the interrupt handler needs to perform the
following actions:
• Save the instruction pointer (EIP register), code-segment selector, TSS segment

selector, counter values and other relevant information at the time of the
interrupt.

• Reset the counter to its initial setting and return from the interrupt.

An event monitor application utility or another application program can read the
information collected for analysis of the performance of the profiled application.

30.17 PERFORMANCE MONITORING (PENTIUM
PROCESSORS)

The Pentium processor provides two 40-bit performance counters, which can be used
to count events or measure duration. The counters are supported by three MSRs: the
control and event select MSR (CESR) and the performance counter MSRs (CTR0 and
CTR1). These can be read from and written to using the RDMSR and WRMSR instruc-
tions, respectively. They can be accessed using these instructions only when oper-
ating at privilege level 0.

Each counter has an associated external pin (PM0/BP0 and PM1/BP1), which can be
used to indicate the state of the counter to external hardware.

NOTES
The CESR, CTR0, and CTR1 MSRs and the events listed in Table A-23
are model-specific for the Pentium processor.
The performance-monitoring events listed in Appendix A are
intended to be used as guides for performance tuning. Counter
values reported are not guaranteed to be accurate and should be
used as a relative guide for tuning. Known discrepancies are
documented where applicable.

30.17.1 Control and Event Select Register (CESR)
The 32-bit control and event select MSR (CESR) controls the operation of perfor-
mance-monitoring counters CTR0 and CTR1 and the associated pins (see
Figure 30-51). To control each counter, the CESR register contains a 6-bit event
select field (ES0 and ES1), a pin control flag (PC0 and PC1), and a 3-bit counter
control field (CC0 and CC1). The functions of these fields are as follows:
• ES0 and ES1 (event select) fields (bits 0-5, bits 16-21) — Selects (by

entering an event code in the field) up to two events to be monitored. See Table
A-23 for a list of available event codes.
Vol. 3B 30-119

PERFORMANCE MONITORING
• CC0 and CC1 (counter control) fields (bits 6-8, bits 22-24) — Controls the
operation of the counter. Control codes are as follows:

000 — Count nothing (counter disabled)

001 — Count the selected event while CPL is 0, 1, or 2

010 — Count the selected event while CPL is 3

011 — Count the selected event regardless of CPL

100 — Count nothing (counter disabled)

101 — Count clocks (duration) while CPL is 0, 1, or 2

110 — Count clocks (duration) while CPL is 3

111 — Count clocks (duration) regardless of CPL
The highest order bit selects between counting events and counting clocks
(duration); the middle bit enables counting when the CPL is 3; and the low-order
bit enables counting when the CPL is 0, 1, or 2.

• PC0 and PC1 (pin control) flags (bits 9, 25) — Selects the function of the
external performance-monitoring counter pin (PM0/BP0 and PM1/BP1). Setting
one of these flags to 1 causes the processor to assert its associated pin when the
counter has overflowed; setting the flag to 0 causes the pin to be asserted when
the counter has been incremented. These flags permit the pins to be individually
programmed to indicate the overflow or incremented condition. The external
signalling of the event on the pins will lag the internal event by a few clocks as the
signals are latched and buffered.

While a counter need not be stopped to sample its contents, it must be stopped and
cleared or preset before switching to a new event. It is not possible to set one
counter separately. If only one event needs to be changed, the CESR register must

Figure 30-51. CESR MSR (Pentium Processor Only)

31

PC1—Pin control 1
CC1—Counter control 1
ES1—Event select 1
PC0—Pin control 0

8 0

CC0—Counter control 0
ES0—Event select 0

16 15212224

Reserved

9 56

ESOCC0
P
C
0

ES1CC1
P
C
1

2526 10
30-120 Vol. 3B

PERFORMANCE MONITORING
be read, the appropriate bits modified, and all bits must then be written back to
CESR. At reset, all bits in the CESR register are cleared.

30.17.2 Use of the Performance-Monitoring Pins
When performance-monitor pins PM0/BP0 and/or PM1/BP1 are configured to indicate
when the performance-monitor counter has incremented and an “occurrence event”
is being counted, the associated pin is asserted (high) each time the event occurs.
When a “duration event” is being counted, the associated PM pin is asserted for the
entire duration of the event. When the performance-monitor pins are configured to
indicate when the counter has overflowed, the associated PM pin is asserted when
the counter has overflowed.

When the PM0/BP0 and/or PM1/BP1 pins are configured to signal that a counter has
incremented, it should be noted that although the counters may increment by 1 or 2
in a single clock, the pins can only indicate that the event occurred. Moreover, since
the internal clock frequency may be higher than the external clock frequency, a
single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to
signal an overflow of the counter. Because the counters are 40 bits, a carry out of bit
39 indicates an overflow. A counter may be preset to a specific value less then 240 −
1. After the counter has been enabled and the prescribed number of events has tran-
spired, the counter will overflow.

Approximately 5 clocks later, the overflow is indicated externally and appropriate
action, such as signaling an interrupt, may then be taken.

The PM0/BP0 and PM1/BP1 pins also serve to indicate breakpoint matches during in-
circuit emulation, during which time the counter increment or overflow function of
these pins is not available. After RESET, the PM0/BP0 and PM1/BP1 pins are config-
ured for performance monitoring, however a hardware debugger may reconfigure
these pins to indicate breakpoint matches.

30.17.3 Events Counted
Events that performance-monitoring counters can be set to count and record (using
CTR0 and CTR1) are divided in two categories: occurrence and duration:
• Occurrence events — Counts are incremented each time an event takes place.

If PM0/BP0 or PM1/BP1 pins are used to indicate when a counter increments, the
pins are asserted each clock counters increment. But if an event happens twice in
one clock, the counter increments by 2 (the pins are asserted only once).

• Duration events — Counters increment the total number of clocks that the
condition is true. When used to indicate when counters increment, PM0/BP0
and/or PM1/BP1 pins are asserted for the duration.
Vol. 3B 30-121

PERFORMANCE MONITORING
30-122 Vol. 3B

APPENDIX A
PERFORMANCE-MONITORING EVENTS

This appendix lists the performance-monitoring events that can be monitored with
the Intel 64 or IA-32 processors. The ability to monitor performance events and the
events that can be monitored in these processors are mostly model-specific, except
for architectural performance events, described in Section A.1.

Non-architectural performance events (i.e. model-specific events) are listed for each
generation of microarchitecture:
• Section A.2 - Processors based on Intel® microarchitecture code name Sandy

Bridge
• Section A.3 - Processors based on Intel® microarchitecture code name Nehalem
• Section A.4 - Processors based on Intel® microarchitecture code name Westmere
• Section A.5 - Processors based on Enhanced Intel® Core™ microarchitecture
• Section A.6 - Processors based on Intel® Core™ microarchitecture
• Section A.7 - Processors based on Intel® Atom™ microarchitecture
• Section A.8 - Intel® Core™ Solo and Intel® Core™ Duo processors
• Section A.9 - Processors based on Intel NetBurst® microarchitecture
• Section A.10 - Pentium® M family processors
• Section A.11 - P6 family processors
• Section A.12 - Pentium® processors

NOTE
These performance-monitoring events are intended to be used as
guides for performance tuning. The counter values reported by the
performance-monitoring events are approximate and believed to be
useful as relative guides for tuning software. Known discrepancies
are documented where applicable.

A.1 ARCHITECTURAL PERFORMANCE-MONITORING
EVENTS

Architectural performance events are introduced in Intel Core Solo and Intel Core
Duo processors. They are also supported on processors based on Intel Core microar-
chitecture. Table A-1 lists pre-defined architectural performance events that can be
configured using general-purpose performance counters and associated event-select
registers.
Vol. 3B A-1

PERFORMANCE-MONITORING EVENTS
A.2 PERFORMANCE MONITORING EVENTS FOR
INTEL® CORE™ PROCESSOR 2XXX SERIES

Second generation Intel® Core™ Processor 2xxx Series are based on the Intel
microarchitecture code name Sandy Bridge. They support the architectural and non-
architectural performance-monitoring events listed in Table A-1 and Table A-2. The
events in Table A-2 apply to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following values: 06_2AH.

Table A-1. Architectural Performance Events
Event
Num. Event Mask Mnemonic

Umask
Value Description Comment

3CH UnHalted Core Cycles 00H Unhalted core cycles

3CH UnHalted Reference
Cycles

01H Unhalted reference cycles Measures
bus cycle1

NOTES:
1. Implementation of this event in Intel Core 2 processor family, Intel Core Duo, and Intel Core Solo pro-

cessors measures bus clocks.

C0H Instruction Retired 00H Instruction retired

2EH LLC Reference 4FH Last level cache references

2EH LLC Misses 41H Last level cache misses

C4H Branch Instruction Retired 00H Branch instruction at retirement

C5H Branch Misses Retired 00H Mispredicted Branch Instruction at
retirement

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 01H LD_BLOCKS.DATA_U
NKNOWN

blocked loads due to store buffer
blocks with unknown data.

03H 02H LD_BLOCKS.STORE_F
ORWARD

loads blocked by overlapping with
store buffer that cannot be
forwarded .

03H 08H LD_BLOCKS.NO_SR # of Split loads blocked due to
resource not available.

03H 10H LD_BLOCKS.ALL_BLO
CK

Number of cases where any load is
blocked but has no DCU miss.
A-2 Vol. 3B

PERFORMANCE-MONITORING EVENTS
05H 01H MISALIGN_MEM_REF.
LOADS

Speculative cache-line split load
uops dispatched to L1D.

05H 02H MISALIGN_MEM_REF.
STORES

Speculative cache-line split Store-
address uops dispatched to L1D.

07H 01H LD_BLOCKS_PARTIA
L.ADDRESS_ALIAS

False dependencies in MOB due to
partial compare on address.

07H 08H LD_BLOCKS_PARTIA
L.ALL_STA_BLOCK

The number of times that load
operations are temporarily blocked
because of older stores, with
addresses that are not yet known. A
load operation may incur more than
one block of this type.

08H 01H DTLB_LOAD_MISSES.
MISS_CAUSES_A_WA
LK

Misses in all TLB levels that cause a
page walk of any page size.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Misses in all TLB levels that caused
page walk completed of any size.

08H 04H DTLB_LOAD_MISSES.
WALK_DURATION

Cycle PMH is busy with a walk.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits. No
page walk.

0DH 03H INT_MISC.RECOVERY
_CYCLES

Cycles waiting to recover after
Machine Clears or JEClear. Set
Cmask= 1.

Set Edge to
count
occurrences

0DH 40H INT_MISC.RAT_STALL
_CYCLES

Cycles RAT external stall is sent to
IDQ for this thread.

0EH 01H UOPS_ISSUED.ANY Increments each cycle the # of Uops
issued by the RAT to RS.

Set Cmask = 1, Inv = 1, Any= 1to
count stalled cycles of this core.

Set Cmask = 1,
Inv = 1to count
stalled cycles

10H 01H FP_COMP_OPS_EXE.
X87

Counts number of X87 uops
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED_DO
UBLE

Counts number of SSE* double
precision FP packed uops executed.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-3

PERFORMANCE-MONITORING EVENTS
10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR_SIN
GLE

Counts number of SSE* single
precision FP scalar uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_PACKED SINGLE

Counts number of SSE* single
precision FP packed uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_SCALAR_DOUBL
E

Counts number of SSE* double
precision FP scalar uops executed.

11H 01H SIMD_FP_256.PACKE
D_SINGLE

Counts 256-bit packed single-
precision floating-point instructions

11H 02H SIMD_FP_256.PACKE
D_DOUBLE

Counts 256-bit packed double-
precision floating-point instructions

14H 01H ARITH.FPU_DIV_ACT
IVE

Cycles that the divider is active,
includes INT and FP. Set 'edge =1,
cmask=1' to count the number of
divides.

17H 01H INSTS_WRITTEN_TO
_IQ.INSTS

Counts the number of instructions
written into the IQ every cycle.

24H 01H L2_RQSTS.DEMAND_
DATA_RD_HIT

Demand Data Read requests that
hit L2 cache

24H 03H L2_RQSTS.ALL_DEM
AND_DATA_RD

Counts any demand and L1 HW
prefetch data load requests to L2.

24H 04H L2_RQSTS.RFO_HITS Counts the number of store RFO
requests that hit the L2 cache.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache.

24H 0CH L2_RQSTS.ALL_RFO Counts all L2 store RFO requests.

24H 10H L2_RQSTS.CODE_RD
_HIT

Number of instruction fetches that
hit the L2 cache.

24H 20H L2_RQSTS.CODE_RD
_MISS

Number of instruction fetches that
missed the L2 cache.

24H 30H L2_RQSTS.ALL_COD
E_RD

Counts all L2 code requests.

24H 40H L2_RQSTS.PF_HIT Requests from L2 Hardware
prefetcher that hit L2.

24H 80H L2_RQSTS.PF_MISS Requests from L2 Hardware
prefetcher that missed L2.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-4 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H C0H L2_RQSTS.ALL_PF Any requests from L2 Hardware
prefetchers

27H 01H L2_STORE_LOCK_RQ
STS.MISS

RFOs that miss cache lines

27H 04H L2_STORE_LOCK_RQ
STS.HIT_E

RFOs that hit cache lines in E state

27H 08H L2_STORE_LOCK_RQ
STS.HIT_M

RFOs that hit cache lines in M state

27H 0FH L2_STORE_LOCK_RQ
STS.ALL

RFOs that access cache lines in any
state

28H 04H L2_L1D_WB_RQSTS.
HIT_E

Not rejected writebacks from L1D
to L2 cache lines in E state.

28H 08H L2_L1D_WB_RQSTS.
HIT_M

Not rejected writebacks from L1D
to L2 cache lines in M state.

2EH 4FH LONGEST_LAT_CACH
E.REFERENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache.

see Table A-1

2EH 41H LONGEST_LAT_CACH
E.MISS

This event counts each cache miss
condition for references to the last
level cache.

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table A-1

3CH 01H CPU_CLK_THREAD_
UNHALTED.REF_XCL
K

Increments at the frequency of
XCLK (100 MHz) when not halted.

see Table A-1

48H 01H L1D_PEND_MISS.PE
NDING

Increments the number of
outstanding L1D misses every cycle.
Set Cmaks = 1 and Edge =1 to count
occurrences.

Counter 2 only;

Set Cmask = 1 to
count cycles.

49H 01H DTLB_STORE_MISSE
S.MISS_CAUSES_A_
WALK

Miss in all TLB levels causes an page
walk of any page size
(4K/2M/4M/1G).

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-5

PERFORMANCE-MONITORING EVENTS
49H 02H DTLB_STORE_MISSE
S.WALK_COMPLETED

Miss in all TLB levels causes a page
walk that completes of any page
size (4K/2M/4M/1G).

49H 04H DTLB_STORE_MISSE
S.WALK_DURATION

Cycles PMH is busy with this walk.

49H 10H DTLB_STORE_MISSE
S.STLB_HIT

Store operations that miss the first
TLB level but hit the second and do
not cause page walks

4CH 01H LOAD_HIT_PRE.SW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for S/W
prefetch.

4CH 02H LOAD_HIT_PRE.HW_
PF

Not SW-prefetch load dispatches
that hit fill buffer allocated for H/W
prefetch.

4EH 02H HW_PRE_REQ.DL1_
MISS

Hardware Prefetch requests that
miss the L1D cache. A request is
being counted each time it access
the cache & miss it, including if a
block is applicable or if hit the Fill
Buffer for example.

This accounts for
both L1 streamer
and IP-based
(IPP) HW
prefetchers.

51H 01H L1D.REPLACEMENT Counts the number of lines brought
into the L1 data cache.

51H 02H L1D.ALLOCATED_IN_
M

Counts the number of allocations of
modified L1D cache lines.

51H 04H L1D.EVICTION Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

51H 08H L1D.ALL_M_REPLAC
EMENT

Cache lines in M state evicted out of
L1D due to Snoop HitM or dirty line
replacement

59H 20H PARTIAL_RAT_STALL
S.FLAGS_MERGE_UO
P

Increments the number of flags-
merge uops in flight each cycle.

Set Cmask = 1 to count cycles.

59H 40H PARTIAL_RAT_STALL
S.SLOW_LEA_WINDO
W

Cycles with at least one slow LEA
uop allocated.

59H 80H PARTIAL_RAT_STALL
S.MUL_SINGLE_UOP

Number of Multiply packed/scalar
single precision uops allocated.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-6 Vol. 3B

PERFORMANCE-MONITORING EVENTS
5BH 0CH RESOURCE_STALLS2.
ALL_FL_EMPTY

Cycles stalled due to free list empty

5BH 0FH RESOURCE_STALLS2.
ALL_PRF_CONTROL

Cycles stalled due to control
structures full for physical registers

5BH 40H RESOURCE_STALLS2.
BOB_FULL

Cycles Allocator is stalled due
Branch Order Buffer.

5BH 4FH RESOURCE_STALLS2.
OOO_RSRC

Cycles stalled due to out of order
resources full

5CH 01H CPL_CYCLES.RING0 Unhalted core cycles when the
thread is in ring 0

Use Edge to
count transition

5CH 02H CPL_CYCLES.RING12
3

Unhalted core cycles when the
thread is not in ring 0

5EH 01H RS_EVENTS.EMPTY_
CYCLES

Cycles the RS is empty for the
thread.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_DATA_RD

Offcore outstanding Demand Data
Read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND_RFO

Offcore outstanding RFO store
transactions in SQ to uncore. Set
Cmask=1 to count cycles.

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AL
L_DATA_RD

Offcore outstanding cacheable data
read transactions in SQ to uncore.
Set Cmask=1 to count cycles.

63H 01H LOCK_CYCLES.SPLIT_
LOCK_UC_LOCK_DUR
ATION

Cycles in which the L1D and L2 are
locked, due to a UC lock or split lock.

63H 02H LOCK_CYCLES.CACHE
_LOCK_DURATION

Cycles in which the L1D is locked.

79H 02H IDQ.EMPTY Counts cycles the IDQ is empty.

79H 04H IDQ.MITE_UOPS Increment each cycle # of uops
delivered to IDQ from MITE path.

Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 08H IDQ.DSB_UOPS Increment each cycle. # of uops
delivered to IDQ from DSB path.

Set Cmask = 1 to count cycles.

Can combine
Umask 08H and
10H

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-7

PERFORMANCE-MONITORING EVENTS
79H 10H IDQ.MS_DSB_UOPS Increment each cycle # of uops
delivered to IDQ when MS busy by
DSB. Set Cmask = 1 to count cycles
MS is busy. Set Cmask=1 and Edge
=1 to count MS activations.

Can combine
Umask 08H and
10H

79H 20H IDQ.MS_MITE_UOPS Increment each cycle # of uops
delivered to IDQ when MS is busy by
MITE. Set Cmask = 1 to count cycles.

Can combine
Umask 04H and
20H

79H 30H IDQ.MS_UOPS Increment each cycle # of uops
delivered to IDQ from MS by either
DSB or MITE. Set Cmask = 1 to count
cycles.

Can combine
Umask 04H, 08H
and 30H

80H 02H ICACHE.MISSES Number of Instruction Cache,
Streaming Buffer and Victim Cache
Misses. Includes UC accesses.

85H 01H ITLB_MISSES.MISS_C
AUSES_A_WALK

Misses in all ITLB levels that cause
page walks

85H 02H ITLB_MISSES.WALK_
COMPLETED

Misses in all ITLB levels that cause
completed page walks

85H 04H ITLB_MISSES.WALK_
DURATION

Cycle PMH is busy with a walk.

85H 10H ITLB_MISSES.STLB_H
IT

Number of cache load STLB hits. No
page walk.

87H 01H ILD_STALL.LCP Stalls caused by changing prefix
length of the instruction.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to IQ is full.

88H 01H BR_INST_EXEC.COND Qualify conditional near branch
instructions executed, but not
necessarily retired.

Must combine
with umask 40H,
80H

88H 02H BR_INST_EXEC.DIRE
CT_JMP

Qualify all unconditional near branch
instructions excluding calls and
indirect branches.

Must combine
with umask 80H

88H 04H BR_INST_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify executed indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Qualify indirect near branches that
have a return mnemonic.

Must combine
with umask 80H

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-8 Vol. 3B

PERFORMANCE-MONITORING EVENTS
88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Qualify unconditional near call
branch instructions, excluding non
call branch, executed.

Must combine
with umask 80H

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Qualify indirect near calls, including
both register and memory indirect,
executed.

Must combine
with umask 80H

88H 40H BR_INST_EXEC.NON
TAKEN

Qualify non-taken near branches
executed.

Applicable to
umask 01H only

88H 80H BR_INST_EXEC.TAKE
N

Qualify taken near branches
executed. Must combine with
01H,02H, 04H, 08H, 10H, 20H

88H FFH BR_INST_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

89H 01H BR_MISP_EXEC.CON
D

Qualify conditional near branch
instructions mispredicted.

Must combine
with umask 40H,
80H

89H 04H BR_MISP_EXEC.INDIR
ECT_JMP_NON_CALL
_RET

Qualify mispredicted indirect near
branch instructions that are not
calls nor returns.

Must combine
with umask 80H

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Qualify mispredicted indirect near
branches that have a return
mnemonic.

Must combine
with umask 80H

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Qualify mispredicted unconditional
near call branch instructions,
excluding non call branch, executed.

Must combine
with umask 80H

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Qualify mispredicted indirect near
calls, including both register and
memory indirect, executed.

Must combine
with umask 80H

89H 40H BR_MISP_EXEC.NON
TAKEN

Qualify mispredicted non-taken
near branches executed,.

Applicable to
umask 01H only

89H 80H BR_MISP_EXEC.TAKE
N

Qualify mispredicted taken near
branches executed. Must combine
with 01H,02H, 04H, 08H, 10H, 20H

89H FFH BR_MISP_EXEC.ALL_
BRANCHES

Counts all near executed branches
(not necessarily retired).

9CH 01H IDQ_UOPS_NOT_DEL
IVERED.CORE

Count number of non-delivered
uops to RAT per thread.

Use Cmask to
qualify uop b/w

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-9

PERFORMANCE-MONITORING EVENTS
A1H 01H UOPS_DISPATCHED_
PORT.PORT_0

Cycles which a Uop is dispatched on
port 0.

A1H 02H UOPS_DISPATCHED_
PORT.PORT_1

Cycles which a Uop is dispatched on
port 1.

A1H 04H UOPS_DISPATCHED_
PORT.PORT_2_LD

Cycles which a load uop is
dispatched on port 2.

A1H 08H UOPS_DISPATCHED_
PORT.PORT_2_STA

Cycles which a store address uop is
dispatched on port 2.

A1H 0CH UOPS_DISPATCHED_
PORT.PORT_2

Cycles which a Uop is dispatched on
port 2.

A1H 10H UOPS_DISPATCHED_
PORT.PORT_3_LD

Cycles which a load uop is
dispatched on port 3.

A1H 20H UOPS_DISPATCHED_
PORT.PORT_3_STA

Cycles which a store address uop is
dispatched on port 3.

A1H 30H UOPS_DISPATCHED_
PORT.PORT_3

Cycles which a Uop is dispatched on
port 3.

A1H 40H UOPS_DISPATCHED_
PORT.PORT_4

Cycles which a Uop is dispatched on
port 4.

A1H 80H UOPS_DISPATCHED_
PORT.PORT_5

Cycles which a Uop is dispatched on
port 5.

A2H 01H RESOURCE_STALLS.
ANY

Cycles Allocation is stalled due to
Resource Related reason.

A2H 02H RESOURCE_STALLS.L
B

Counts the cycles of stall due to lack
of load buffers.

A2H 04H RESOURCE_STALLS.R
S

Cycles stalled due to no eligible RS
entry available.

A2H 08H RESOURCE_STALLS.S
B

Cycles stalled due to no store
buffers available. (not including
draining form sync).

A2H 10H RESOURCE_STALLS.R
OB

Cycles stalled due to re-order buffer
full.

A2H 20H RESOURCE_STALLS.F
CSW

Cycles stalled due to writing the
FPU control word.

A2H 40H RESOURCE_STALLS.
MXCSR

Cycles stalled due to the MXCSR
register rename occurring to close
to a previous MXCSR rename.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-10 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A2H 80H RESOURCE_STALLS.
OTHER

Cycles stalled while execution was
stalled due to other resource issues.

ABH 01H DSB2MITE_SWITCHE
S.COUNT

Number of DSB to MITE switches.

ABH 02H DSB2MITE_SWITCHE
S.PENALTY_CYCLES

Cycles DSB to MITE switches caused
delay.

ACH 02H DSB_FILL.OTHER_CA
NCEL

Cases of cancelling valid DSB fill not
because of exceeding way limit

ACH 08H DSB_FILL.EXCEED_D
SB_LINES

DSB Fill encountered > 3 DSB lines.

ACH 0AH DSB_FILL.ALL_CANC
EL

Cases of cancelling valid Decode
Stream Buffer (DSB) fill not because
of exceeding way limit

AEH 01H ITLB.ITLB_FLUSH Counts the number of ITLB flushes,
includes 4k/2M/4M pages.

B0H 01H OFFCORE_REQUEST
S.DEMAND_DATA_RD

Demand data read requests sent to
uncore.

B0H 04H OFFCORE_REQUEST
S.DEMAND_RFO

Demand RFO read requests sent to
uncore., including regular RFOs,
locks, ItoM

B0H 08H OFFCORE_REQUEST
S.ALL_DATA_RD

Data read requests sent to uncore
(demand and prefetch).

B1H 01H UOPS_DISPATCHED.T
HREAD

Counts total number of uops to be
dispatched per-thread each cycle.
Set Cmask = 1, INV =1 to count stall
cycles.

B1H 02H UOPS_DISPATCHED.C
ORE

Counts total number of uops to be
dispatched per-core each cycle.

Do not need to
set ANY

B2H 01H OFFCORE_REQUEST
S_BUFFER.SQ_FULL

Offcore requests buffer cannot take
more entries for this thread core.

B6H 01H AGU_BYPASS_CANCE
L.COUNT

Counts executed load operations
with all the following traits: 1.
addressing of the format [base +
offset], 2. the offset is between 1
and 2047, 3. the address specified
in the base register is in one page
and the address [base+offset] is in
another page.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-11

PERFORMANCE-MONITORING EVENTS
B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.8.5, “Off-core
Response Performance Monitoring”;
PMC0 only.

Requires
programming
MSR 01A6H

BBH 01H OFF_CORE_RESPONS
E_1

See Section 30.8.5, “Off-core
Response Performance Monitoring”.
PMC3 only.

Requires
programming
MSR 01A7H

BDH 01H TLB_FLUSH.DTLB_T
HREAD

DTLB flush attempts of the thread-
specific entries

BDH 20H TLB_FLUSH.STLB_A
NY

Count number of STLB flush
attempts

BFH 05H L1D_BLOCKS.BANK_
CONFLICT_CYCLES

Cycles when dispatched loads are
cancelled due to L1D bank conflicts
with other load ports

cmask=1

C0H 00H INST_RETIRED.ANY_
P

Number of instructions at
retirement

See Table A-1

C0H 01H INST_RETIRED.PREC
_DIST

Precise instruction retired event
with HW to reduce effect of PEBS
shadow in IP distribution

PMC1 only; Must
quiesce other
PMCs.

C0H 02H INST_RETIRED.X87 X87 instruction retired event

C1H 02H OTHER_ASSISTS.ITL
B_MISS_RETIRED

Instructions that experienced an
ITLB miss.

C1H 08H OTHER_ASSISTS.AVX
_STORE

Number of assists associated with
256-bit AVX store operations.

C1H 10H OTHER_ASSISTS.AVX
_TO_SSE

Number of transitions from AVX-
256 to legacy SSE when penalty
applicable.

C1H 20H OTHER_ASSISTS.SSE
_TO_AVX

Number of transitions from SSE to
AVX-256 when penalty applicable.

C2H 01H UOPS_RETIRED.ALL Counts the number of micro-ops
retired, Use cmask=1 and invert to
count active cycles or stalled cycles.

Supports PEBS

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C3H 02H MACHINE_CLEARS.M
EMORY_ORDERING

Counts the number of machine
clears due to memory order
conflicts.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-12 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.

C3H 20H MACHINE_CLEARS.M
ASKMOV

Counts the number of executed
AVX masked load operations that
refer to an illegal address range
with the mask bits set to 0.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table A-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Supports PEBS

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Direct and indirect near call
instructions retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C4H 08H BR_INST_RETIRED.N
EAR_RETURN

Counts the number of near return
instructions retired.

C4H 10H BR_INST_RETIRED.N
OT_TAKEN

Counts the number of not taken
branch instructions retired.

C4H 20H BR_INST_RETIRED.N
EAR_TAKEN

Number of near taken branches
retired.

C4H 40H BR_INST_RETIRED.F
AR_BRANCH

Number of far branches retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table A-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Mispredicted conditional branch
instructions retired.

Supports PEBS

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Direct and indirect mispredicted
near call instructions retired.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted macro branch
instructions retired.

C5H 10H BR_MISP_RETIRED.N
OT_TAKEN

Mispredicted not taken branch
instructions retired.

C5H 20H BR_MISP_RETIRED.T
AKEN

Mispredicted taken branch
instructions retired.

CAH 02H FP_ASSIST.X87_OUT
PUT

Number of X87 assists due to
output value.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-13

PERFORMANCE-MONITORING EVENTS
CAH 04H FP_ASSIST.X87_INP
UT

Number of X87 assists due to input
value.

CAH 08H FP_ASSIST.SIMD_OU
TPUT

Number of SIMD FP assists due to
Output values

CAH 10H FP_ASSIST.SIMD_INP
UT

Number of SIMD FP assists due to
input values

CAH 1EH FP_ASSIST.ANY Cycles with any input/output SSE*
or FP assists

CCH 20H ROB_MISC_EVENTS.L
BR_INSERTS

Count cases of saving new LBR
records by hardware.

CDH 01H MEM_TRANS_RETIR
ED.LOAD_LATENCY

Sample loads with specified latency
threshold. PMC3 only.

Specify threshold
in MSR 0x3F6

CDH 02H MEM_TRANS_RETIR
ED.PRECISE_STORE

Sample stores and collect precise
store operation via PEBS record.
PMC3 only.

See Section
30.8.4.3

D0H 01H MEM_UOP_RETIRED.
LOADS

Qualify retired memory uops that
are loads. Combine with umask 10H,
20H, 40H, 80H.

Supports PEBS

D0H 02H MEM_UOP_RETIRED.
STORES

Qualify retired memory uops that
are stores. Combine with umask
10H, 20H, 40H, 80H.

D0H 10H MEM_UOP_RETIRED.
STLB_MISS

Qualify retired memory uops with
STLB miss. Must combine with
umask 01H, 02H, to produce counts.

D0H 20H MEM_UOP_RETIRED.
LOCK

Qualify retired memory uops with
lock. Must combine with umask 01H,
02H, to produce counts.

D0H 40H MEM_UOP_RETIRED.
SPLIT

Qualify retired memory uops with
line split. Must combine with umask
01H, 02H, to produce counts.

D0H 80H MEM_UOP_RETIRED.
ALL

Qualify any retired memory uops.
Must combine with umask 01H,
02H, to produce counts.

D1H 01H MEM_LOAD_UOPS_R
ETIRED.L1_HIT

Retired load uops with L1 cache hits
as data sources.

Supports PEBS

D1H 02H MEM_LOAD_UOPS_R
ETIRED.L2_HIT

Retired load uops with L2 cache hits
as data sources.

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-14 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D1H 04H MEM_LOAD_UOPS_R
ETIRED.LLC_HIT

Retired load uops which data
sources were data hits in LLC
without snoops required.

D1H 40H MEM_LOAD_UOPS_R
ETIRED.HIT_LFB

Retired load uops which data
sources were load uops missed L1
but hit FB due to preceding miss to
the same cache line with data not
ready.

D2H 01H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_MISS

Retired load uops which data
sources were LLC hit and cross-core
snoop missed in on-pkg core cache.

Supports PEBS

D2H 02H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HIT

Retired load uops which data
sources were LLC and cross-core
snoop hits in on-pkg core cache.

D2H 04H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_HITM

Retired load uops which data
sources were HitM responses from
shared LLC.

D2H 08H MEM_LOAD_UOPS_L
LC_HIT_RETIRED.XS
NP_NONE

Retired load uops which data
sources were hits in LLC without
snoops required.

D4H 02H MEM_LOAD_UOPS_M
ISC_RETIRED.LLC_MI
SS

Retired load uops with unknown
information as data source in cache
serviced the load.

Supports PEBS.

F0H 01H L2_TRANS.DEMAND_
DATA_RD

Demand Data Read requests that
access L2 cache

F0H 02H L2_TRANS.RFO RFO requests that access L2 cache

F0H 04H L2_TRANS.CODE_RD L2 cache accesses when fetching
instructions

F0H 08H L2_TRANS.ALL_PF L2 or LLC HW prefetches that
access L2 cache

including rejects.

F0H 10H L2_TRANS.L1D_WB L1D writebacks that access L2
cache

F0H 20H L2_TRANS.L2_FILL L2 fill requests that access L2 cache

F0H 40H L2_TRANS.L2_WB L2 writebacks that access L2 cache

F0H 80H L2_TRANS.ALL_REQ
UESTS

Transactions accessing L2 pipe

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-15

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors
based on Intel microarchitecture Sandy Bridge. Processors with CPUID signature of
DisplayFamily_DisplayModel 06_2AH support performance events listed in Table A-3.

F1H 01H L2_LINES_IN.I L2 cache lines in I state filling L2 Counting does
not cover rejects.

F1H 02H L2_LINES_IN.S L2 cache lines in S state filling L2 Counting does
not cover rejects.

F1H 04H L2_LINES_IN.E L2 cache lines in E state filling L2 Counting does
not cover rejects.

F1H 07H L2_LINES_IN.ALL L2 cache lines filling L2 Counting does
not cover rejects.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Clean L2 cache lines evicted by
demand

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Dirty L2 cache lines evicted by
demand

F2H 04H L2_LINES_OUT.PF_C
LEAN

Clean L2 cache lines evicted by L2
prefetch

F2H 08H L2_LINES_OUT.PF_DI
RTY

Dirty L2 cache lines evicted by L2
prefetch

F2H 0AH L2_LINES_OUT.DIRT
Y_ALL

Dirty L2 cache lines filling the L2 Counting does
not cover rejects.

F4H 10H SQ_MISC.SPLIT_LOCK Split locks in SQ

Table A-2. Non-Architectural Performance Events In the Processor Core for Intel Core
i7, i5, i3 Processors 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-16 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table A-3. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIHITI

Snoop responses received from
processor cores to requests initiated
by this Cbox.

Must combine
with one of the
umask values
of 20H, 40H,
80H

22H 02H UNC_CBO_XSNP_RE
SPONSE.RSPIHITFSE

22H 04H UNC_CBO_XSNP_RE
SPONSE.RSPSHITFSE

22H 08H UNC_CBO_XSNP_RE
SPONSE.RSPSFWDM

22H 01H UNC_CBO_XSNP_RE
SPONSE.RSPIFWDM

22H 20H UNC_CBO_XSNP_RE
SPONSE.AND_EXTER
NAL

Filter on cross-core snoops resulted in
external snoop request. Must combine
with at least one of 01H, 02H, 04H,
08H, 10H

22H 40H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in
core request. Must combine with at
least one of 01H, 02H, 04H, 08H, 10H

22H 80H UNC_CBO_XSNP_RE
SPONSE.AND_XCORE

Filter on cross-core snoops resulted in
LLC evictions. Must combine with at
least one of 01H, 02H, 04H, 08H, 10H

34H 01H UNC_CBO_CACHE_LO
OKUP.M

LLC lookup request that access cache
and found line in M-state.

Must combine
with one of the
umask values
of 10H, 20H,
40H, 80H

34H 02H UNC_CBO_CACHE_LO
OKUP.E

LLC lookup request that access cache
and found line in E-state.

34H 04H UNC_CBO_CACHE_LO
OKUP.S

LLC lookup request that access cache
and found line in S-state.

34H 08H UNC_CBO_CACHE_LO
OKUP.I

LLC lookup request that access cache
and found line in I-state.

34H 10H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated
cacheable read requests. Must
combine with at least one of 01H,
02H, 04H, 08H

34H 20H UNC_CBO_CACHE_LO
OKUP.AND_READ

Filter on processor core initiated
cacheable write requests. Must
combine with at least one of 01H,
02H, 04H, 08H
Vol. 3B A-17

PERFORMANCE-MONITORING EVENTS
A.3 PERFORMANCE MONITORING EVENTS FOR
INTEL® CORE™I7 PROCESSOR FAMILY AND XEON
PROCESSOR FAMILY

Processors based on the Intel microarchitecture code name Nehalem support the
architectural and non-architectural performance-monitoring events listed in Table
A-1 and Table A-4. The events in Table A-4 generally applies to processors with

34H 40H UNC_CBO_CACHE_LO
OKUP.AND_EXTSNP

Filter on external snoop requests.
Must combine with at least one of
01H, 02H, 04H, 08H

34H 80H UNC_CBO_CACHE_LO
OKUP.AND_ANY

Filter on any IRQ or IPQ initiated
requests including uncacheable, non-
coherent requests. Must combine with
at least one of 01H, 02H, 04H, 08H

80H 01H UNC_IMPH_CBO_TRK
_OCCUPANCY.ALL

Counts cycles weighted by the
number of core-outgoing valid entries.
Valid entries are between allocation
to the first of IDIO or DRSO messages.
Accounts for coherent and in-
coherent traffic

Counter 0 only

81H 01H UNC_IMPH_CBO_TRK
_REQUEST.ALL

Counts the number of core-outgoing
entries. Accounts for coherent and in-
coherent traffic

81H 20H UNC_IMPH_CBO_TRK
_REQUEST.WRITES

Counts the number of allocated write
entries, include full, partial, and
evictions.

81H 80H UNC_IMPH_CBO_TRK
_REQUEST.EVICTION
S

Counts the number of evictions
allocated.

83H 01H UNC_IMPH_COH_TR
K_OCCUPANCY.ALL

Counts cycles weighted by the
number of core-outgoing valid entries
in the coherent tracker queue.

Counter 0 only

84H 01H UNC_IMPH_COH_TR
K_REQUEST.ALL

Counts the number of core-outgoing
entries in the coherent tracker queue.

Table A-3. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7, i5, i3 Processor 2xxx Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-18 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CPUID signature of DisplayFamily_DisplayModel encoding with the following values:
06_1AH, 06_1EH, 06_1FH, and 06_2EH. However, Intel Xeon processors with CPUID
signature of DisplayFamily_DisplayModel 06_2EH have a small number of events that
are not supported in processors with CPUID signature 06_1AH, 06_1EH, and
06_1FH. These events are noted in the comment column.

In addition, these processors (CPUID signature of DisplayFamily_DisplayModel
06_1AH, 06_1EH, 06_1FH) also support the following non-architectural, product-
specific uncore performance-monitoring events listed in Table A-5.

Fixed counters in the core PMU support the architecture events defined in Table A-9.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

04H 07H SB_DRAIN.ANY Counts the number of store buffer
drains.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed
with at-Retirement block code. The
following loads need to be executed
at retirement and wait for all senior
stores on the same thread to be
drained: load splitting across 4K
boundary (page split), load
accessing uncacheable (UC or
USWC) memory, load lock, and load
with page table in UC or USWC
memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable loads delayed with L1D
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page
walks due to load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses
where the low part of the linear to
physical address translation was
missed.
Vol. 3B A-19

PERFORMANCE-MONITORING EVENTS
08H 80H DTLB_LOAD_MISSES.
LARGE_WALK_COMP
LETED

Counts number of completed large
page walks due to load miss in the
STLB.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions
with an architecturally-visible load
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions
with an architecturally-visible store
retired on the architected path.

0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions
exceeding the latency specified
with ld_lat facility.

In conjunction
with ld_lat
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of
retired stores that missed the DTLB.
The DTLB miss is not counted if the
store operation causes a fault. Does
not counter prefetches. Counts both
primary and secondary misses to
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued
by the Register Allocation Table to
the Reservation Station, i.e. the
UOPs issued from the front end to
the back end.

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no
Uops issued by the Register
Allocation Table to the Reservation
Station, i.e. the UOPs issued from
the front end to the back end.

set “invert=1,
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops
that were issued from the Register
Allocation Table to the Reservation
Station.

0FH 01H MEM_UNCORE_RETI
RED.L3_DATA_MISS_
UNKNOWN

Counts number of memory load
instructions retired where the
memory reference missed L3 and
data source is unknown.

Available only for
CPUID signature
06_2EH

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-20 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0FH 02H MEM_UNCORE_RETI
RED.OTHER_CORE_L
2_HITM

Counts number of memory load
instructions retired where the
memory reference hit modified data
in a sibling core residing on the
same socket.

0FH 08H MEM_UNCORE_RETI
RED.REMOTE_CACHE
_LOCAL_HOME_HIT

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and HIT in a
remote socket's cache. Only counts
locally homed lines.

0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and was remotely
homed. This includes both DRAM
access and HITM in a remote
socket's cache for remotely homed
lines.

0FH 20H MEM_UNCORE_RETI
RED.LOCAL_DRAM

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and required a
local socket memory reference. This
includes locally homed cachelines
that were in a modified state in
another socket.

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Counts number of memory load
instructions retired where the
memory reference missed the L1,
L2 and L3 caches and to perform
I/O.

Available only for
CPUID signature
06_2EH

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP
Computational Uops Executed. The
number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs,
FDIVs, FPREMs, FSQRTS, integer
DIVs, and IDIVs. This event does not
distinguish an FADD used in the
middle of a transcendental flow
from a separate FADD instruction.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-21

PERFORMANCE-MONITORING EVENTS
10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer
uops executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD
integer shift operations.

12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD
integer logical operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD
integer shuffle and move
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched
from the Reservation Station that
bypass the Memory Order Buffer.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-22 Vol. 3B

PERFORMANCE-MONITORING EVENTS
13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS
dispatches at the stage latch. If an
RS dispatch can not bypass to LB, it
has another chance to dispatch
from the one-cycle delayed staging
latch before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads
dispatched from the Reservation
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the
divider is busy executing divide or
square root operations. The divide
can be integer, X87 or Streaming
SIMD Extensions (SSE). The square
root operation can be either X87 or
SSE.

Set 'edge =1, invert=1, cmask=1' to
count the number of divides.

Count may be
incorrect When
SMT is on.

14H 02H ARITH.MUL Counts the number of multiply
operations executed. This includes
integer as well as floating point
multiply operations but excludes
DPPS mul and MPSAD.

Count may be
incorrect When
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions
written into the instruction queue
every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that
require decoder 0 to be decoded.
Usually, this means that the
instruction maps to more than 1
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two
uops was decoded.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-23

PERFORMANCE-MONITORING EVENTS
1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of
cycles during which instructions are
written to the instruction queue.
Dividing this counter by the number
of instructions written to the
instruction queue
(INST_QUEUE_WRITES) yields the
average number of instructions
decoded each cycle. If this number is
less than four and the pipe stalls,
this indicates that the decoder is
failing to decode enough
instructions per cycle to sustain the
4-wide pipeline.

If SSE*
instructions that
are 6 bytes or
longer arrive one
after another,
then front end
throughput may
limit execution
speed. In such
case,

20H 01H LSD_OVERFLOW Counts number of loops that can’t
stream from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the
L2 cache. L2 loads include both L1D
demand misses as well as L1D
prefetches. L2 loads can be
rejected for various reasons. Only
non rejected loads are counted.

24H 02H L2_RQSTS.LD_MISS Counts the number of loads that
miss the L2 cache. L2 loads include
both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads
include both L1D demand misses as
well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO
requests that hit the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches. Count includes WC
memory requests, where the data is
not fetched but the permission to
write the line is required.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-24 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction
fetches that hit the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction
fetches that miss the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are
both L1D demand misses and L1D
prefetches.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-25

PERFORMANCE-MONITORING EVENTS
26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the S (shared) state. L2
demand loads are both L1D demand
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the E (exclusive) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the M (modified) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss.

26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the S (shared) state. A
prefetch RFO will miss on an S state
line, while a prefetch read will hit on
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-26 Vol. 3B

PERFORMANCE-MONITORING EVENTS
27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e, a cache miss. The L1D prefetcher
does not issue a RFO prefetch.

This is a demand
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the S (shared) state. The
L1D prefetcher does not issue a
RFO prefetch,.

This is a demand
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the M (modified) state.
The L1D prefetcher does not issue a
RFO prefetch.

This is a demand
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO
requests where the cache line to be
loaded is in either the S, E or M
states. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO
requests.The L1D prefetcher does
not issue a RFO prefetch.

This is a demand
RFO request

27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e. a cache miss.

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO
requests where the cache line to be
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the E (exclusive)
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the M (modified)
state.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-27

PERFORMANCE-MONITORING EVENTS
27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in either the S, E, or
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the I (invalid) state, i.e.
a cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

2EH 4FH L3_LAT_CACHE.REFE
RENCE

This event counts requests
originating from the core that
reference a cache line in the last
level cache. The event count
includes speculative traffic but
excludes cache line fills due to a L2
hardware-prefetch. Because cache
hierarchy, cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table A-1

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-28 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2EH 41H L3_LAT_CACHE.MISS This event counts each cache miss
condition for references to the last
level cache. The event count may
include speculative traffic but
excludes cache line fills due to L2
hardware-prefetches. Because
cache hierarchy, cache sizes and
other implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table A-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC
when not halted.

see Table A-1

40H 01H L1D_CACHE_LD.I_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the I (invalid) state, i.e. the read
request missed the cache.

Counter 0, 1 only

40H 02H L1D_CACHE_LD.S_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the S (shared) state.

Counter 0, 1 only

40H 04H L1D_CACHE_LD.E_ST
ATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the E (exclusive) state.

Counter 0, 1 only

40H 08H L1D_CACHE_LD.M_S
TATE

Counts L1 data cache read requests
where the cache line to be loaded is
in the M (modified) state.

Counter 0, 1 only

40H 0FH L1D_CACHE_LD.MESI Counts L1 data cache read requests. Counter 0, 1 only

41H 02H L1D_CACHE_ST.S_ST
ATE

Counts L1 data cache store RFO
requests where the cache line to be
loaded is in the S (shared) state.

Counter 0, 1 only

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-29

PERFORMANCE-MONITORING EVENTS
41H 04H L1D_CACHE_ST.E_ST
ATE

Counts L1 data cache store RFO
requests where the cache line to be
loaded is in the E (exclusive) state.

Counter 0, 1 only

41H 08H L1D_CACHE_ST.M_S
TATE

Counts L1 data cache store RFO
requests where cache line to be
loaded is in the M (modified) state.

Counter 0, 1 only

42H 01H L1D_CACHE_LOCK.HI
T

Counts retired load locks that hit in
the L1 data cache or hit in an
already allocated fill buffer. The
lock portion of the load lock
transaction must hit in the L1D.

The initial load
will pull the lock
into the L1 data
cache. Counter 0,
1 only

42H 02H L1D_CACHE_LOCK.S_
STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the shared state.

Counter 0, 1 only

42H 04H L1D_CACHE_LOCK.E_
STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the exclusive state.

Counter 0, 1 only

42H 08H L1D_CACHE_LOCK.M
_STATE

Counts L1 data cache retired load
locks that hit the target cache line in
the modified state.

Counter 0, 1 only

43H 01H L1D_ALL_REF.ANY Counts all references (uncached,
speculated and retired) to the L1
data cache, including all loads and
stores with any memory types. The
event counts memory accesses only
when they are actually performed.
For example, a load blocked by
unknown store address and later
performed is only counted once.

The event does
not include non-
memory
accesses, such as
I/O accesses.
Counter 0, 1 only

43H 02H L1D_ALL_REF.CACHE
ABLE

Counts all data reads and writes
(speculated and retired) from
cacheable memory, including locked
operations.

Counter 0, 1 only

49H 01H DTLB_MISSES.ANY Counts the number of misses in the
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-30 Vol. 3B

PERFORMANCE-MONITORING EVENTS
49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first
level misses that hit in the second
level TLB. This event is only
relevant if the core contains
multiple DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by
low part of address, includes
references to 2M pages because 2M
pages do not use the PDE.

49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk for large pages.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the
L1 data cache while a previous SSE
prefetch instruction to the same
cache line has started prefetching
but has not yet finished.

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware
prefetch requests dispatched out of
the prefetch FIFO.

4EH 02H L1D_PREFETCH.MISS Counts number of hardware
prefetch requests that miss the
L1D. There are two prefetchers in
the L1D. A streamer, which predicts
lines sequentially after this one
should be fetched, and the IP
prefetcher that remembers access
patterns for the current instruction.
The streamer prefetcher stops on
an L1D hit, while the IP prefetcher
does not.

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests
triggered by the Finite State
Machine and pushed into the
prefetch FIFO. Some of the prefetch
requests are dropped due to
overwrites or competition between
the IP index prefetcher and
streamer prefetcher. The prefetch
FIFO contains 4 entries.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-31

PERFORMANCE-MONITORING EVENTS
51H 01H L1D.REPL Counts the number of lines brought
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines
brought into the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

Counter 0, 1 only

51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines
evicted from the L1 data cache due
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable
load lock speculated instructions
accepted into the fill buffer.

53H 01H L1D_CACHE_LOCK_F
B_HIT

Counts the number of cacheable
load lock speculated or retired
instructions accepted into the fill
buffer.

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D
and L2 are locked. A lock is
asserted when there is a locked
memory access, due to uncacheable
memory, a locked operation that
spans two cache lines, or a page
walk from an uncacheable page
table.

Counter 0, 1 only.
L1D and L2 locks
have a very high
performance
penalty and it is
highly
recommended to
avoid such
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that
cacheline in the L1 data cache unit
is locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O
transactions.

80H 01H L1I.HITS Counts all instruction fetches that
hit the L1 instruction cache.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-32 Vol. 3B

PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that
miss the L1I cache. This includes
instruction cache misses, streaming
buffer misses, victim cache misses
and uncacheable fetches. An
instruction fetch miss is counted
only once and not once for every
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches,
including uncacheable fetches that
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an
instruction fetch stalls due to a L1I
cache miss, ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all
levels of the ITLB which causes a
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all
levels of the ITLB which resulted in
a completed page walk.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder
stalls due to length changing
prefixes: 66, 67 or REX.W (for
EM64T) instructions which change
the length of the decoded
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall
cycles due to Brand Prediction Unit
(PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction
queue.

87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction
Length Decoder is stalled.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-33

PERFORMANCE-MONITORING EVENTS
88H 01H BR_INST_EXEC.COND Counts the number of conditional
near branch instructions executed,
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch
instructions excluding calls and
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
indirect near branch instructions
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch
instructions executed, but not
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call
branch instructions, excluding non
call branch, executed.

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including
both register and memory indirect,
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches
executed, but not necessarily
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches
executed, but not necessarily
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches
(not necessarily retired). This
includes only instructions and not
micro-op branches. Frequent
branching is not necessarily a major
performance issue. However
frequent branch mispredictions may
be a problem.

89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted
conditional near branch instructions
executed, but not necessarily
retired.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-34 Vol. 3B

PERFORMANCE-MONITORING EVENTS
89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro
unconditional near branch
instructions, excluding calls and
indirect branches (should always be
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
mispredicted indirect near branch
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near
branches executed, but not
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect
branches that have a rear return
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect
near calls executed, (should always
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near
calls exeucted, including both
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call
branches executed, but not
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near
branches that are taken, but not
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted
near branch instructions that were
executed, but not necessarily
retired.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-35

PERFORMANCE-MONITORING EVENTS
A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator
resource related stalls. Includes
register renaming buffer entries,
memory buffer entries. In addition
to resource related stalls, this event
counts some other events. Includes
stalls arising during branch
misprediction recovery, such as if
retirement of the mispredicted
branch is delayed and stalls arising
while store buffer is draining from
synchronizing operations.

Does not include
stalls due to
SuperQ (off core)
queue full, too
many cache
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of
cycles when the number of
instructions in the pipeline waiting
for execution reaches the limit the
processor can handle. A high count
of this event indicates that there
are long latency operations in the
pipe (possibly load and store
operations that miss the L2 cache,
or instructions dependent upon
instructions further down the
pipeline that have yet to retire.

When RS is full,
new instructions
can not enter the
reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of
cycles that a resource related stall
will occur due to the number of
store instructions reaching the limit
of the pipeline, (i.e. all store buffers
are used). The stall ends when a
store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while
execution was stalled due to writing
the floating-point unit (FPU) control
word.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-36 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register
rename occurring to close to a
previous MXCSR rename. The
MXCSR provides control and status
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while
execution was stalled due to other
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions
decoded that are macro-fused but
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR
was forced by the Instruction
Queue. The IQ is also responsible
for providing conditional branch
prediciton direction based on a
static scheme and dynamic data
provided by the L2 Branch
Prediction Unit. If the conditional
branch target is not found in the
Target Array and the IQ predicts
that the branch is taken, then the IQ
will force the Branch Address
Calculator to issue a BACLEAR. Each
BACLEAR asserted by the BAC
generates approximately an 8 cycle
bubble in the instruction fetch
pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops
delivered by loop stream detector.

Use cmask=1 and
invert to count
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks
to the uncore.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed
that were issued on port 0. Port 0
handles integer arithmetic, SIMD
and FP add Uops.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-37

PERFORMANCE-MONITORING EVENTS
B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed
that were issued on port 1. Port 1
handles integer arithmetic, SIMD,
integer shift, FP multiply and FP
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed
that were issued on port 2. Port 2
handles the load Uops. This is a core
count only and can not be collected
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed
that were issued on port 3. Port 3
handles store Uops. This is a core
count only and can not be collected
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed
that where issued on port 4. Port 4
handles the value to be stored for
the store Uops issued on port 3.
This is a core count only and can not
be collected per thread.

B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts cycles when the Uops
executed were issued from any
ports except port 5. Use Cmask=1
for active cycles; Cmask=0 for
weighted cycles; Use CMask=1,
Invert=1 to count P0-4 stalled
cycles Use Cmask=1, Edge=1,
Invert=1 to count P0-4 stalls.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed
that where issued on port 5.

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts cycles when the Uops are
executing . Use Cmask=1 for active
cycles; Cmask=0 for weighted
cycles; Use CMask=1, Invert=1 to
count P0-4 stalled cycles Use
Cmask=1, Edge=1, Invert=1 to
count P0-4 stalls.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-38 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed
that where issued on port 0, 1, or 5.

use cmask=1,
invert=1 to count
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is
full to handle off-core requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”.

Requires
programming
MSR 01A6H

B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by
this thread in response to a snoop
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent
by this thread in response to a
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent
by this thread in response to a
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

See Section 30.7, “Performance
Monitoring for Processors Based on
Intel® Microarchitecture Code
Name Westmere”.

Requires
programming
MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table A-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM
Exit/MWait will
not count as
retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of MMX
instructions retired.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-39

PERFORMANCE-MONITORING EVENTS
C0H 04H INST_RETIRED.MMX Counts the number of floating point
computational operations retired:
floating point computational
operations executed by the assist
handler and sub-operations of
complex floating point instructions
like transcendental instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count
of 8 per cycle). Most instructions are
composed of one or two micro-ops.
Some instructions are decoded into
longer sequences such as repeat
instructions, floating point
transcendental instructions, and
assists.

Use cmask=1 and
invert to count
active cycles or
stalled cycles

C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle.

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors. The modified cache line
is written back to the L2 and
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

 Branch instructions at retirement See Table A-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-40 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct &
indirect near unconditional calls
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table A-1

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct &
indirect near unconditional retired
calls.

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision
floating point Uops retired.

C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired
instructions that missed the ITLB
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that
hit the L1 data cache.

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that
hit their own, unshared lines in the
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that
hit in a sibling core's L2 (on die core).
Since the L3 is inclusive of all cores
on the package, this is an L3 hit.
This counts both clean or modified
hits.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-41

PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that
miss the L3 cache. The load was
satisfied by a remote socket, local
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that
miss the L1D and the address is
located in an allocated line fill buffer
and will soon be committed to
cache. This is counting secondary
L1D misses.

CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads
that missed the DTLB. The DTLB
miss is not counted if the load
operation causes a fault. This event
counts loads from cacheable
memory only. The event does not
count loads by software prefetches.
Counts both primary and secondary
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point
instruction following any MMX
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction
following a floating-point
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating
point to MMX instructions and from
MMX instructions to floating point
instructions. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-42 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions
decoded, (but not necessarily
executed or retired).

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded
by the Microcode Sequencer, MS.
The MS delivers uops when the
instruction is more than 4 uops long
or a microcode assist is occurring.

D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer
(ESP) instructions decoded: push ,
pop , call , ret, etc. ESP instructions
do not generate a Uop to increment
or decrement ESP. Instead, they
update an ESP_Offset register that
keeps track of the delta to the
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer
(ESP) sync operations where an ESP
instruction is corrected by adding
the ESP offset register to the
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during
which execution stalled due to
several reasons, one of which is a
partial flag register stall. A partial
register stall may occur when two
conditions are met: 1) an instruction
modifies some, but not all, of the
flags in the flag register and 2) the
next instruction, which depends on
flags, depends on flags that were
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of
cycles instruction execution latency
became longer than the defined
latency because the instruction
used a register that was partially
written by previous instruction.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-43

PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to
enter the out-of-order pipeline.
Note that, at this stage in the
pipeline, additional stalls may occur
at the same cycle and prevent the
stalled micro-ops from entering the
pipe. In such a case, micro-ops retry
entering the execution pipe in the
next cycle and the ROB-read port
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall
due to microarchitecturally required
serialization. Microcode
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table
stall cycles due to: Cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to
enter the execution pipe. Cycles
when partial register stalls occurred
Cycles when flag stalls occurred
Cycles floating-point unit (FPU)
status word stalls occurred. To
count each of these conditions
separately use the events:
RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL,
RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles
due to the lack of renaming
resources for the ES, DS, FS, and GS
segment registers. If a segment is
renamed but not retired and a
second update to the same
segment occurs, a stall occurs in the
front-end of the pipeline until the
renamed segment retires.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-44 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to
floating point exception to a fused
uop.

E0H 01H BR_INST_DECODED Counts the number of branch
instructions decoded.

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch
Prediciton Unit missed predicting a
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the
front end is resteered, mainly when
the Branch Prediction Unit cannot
provide a correct prediction and this
is corrected by the Branch Address
Calculator at the front end. This can
occur if the code has many branches
such that they cannot be consumed
by the BPU. Each BACLEAR asserted
by the BAC generates
approximately an 8 cycle bubble in
the instruction fetch pipeline. The
effect on total execution time
depends on the surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address
Calculator clears (BACLEAR)
asserted due to conditional branch
instructions in which there was a
target hit but the direction was
wrong. Each BACLEAR asserted by
the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch
Prediction Unit clears: BPU
predicted a taken branch after
incorrectly assuming that it was not
taken.

The BPU clear
leads to 2 cycle
bubble in the
Front End.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-45

PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit
clears due to Most Recently Used
conflicts. The PBU clear leads to a 3
cycle bubble in the Front End.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch
operations due to HW prefetch or
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations
due to load, RFO, L1D writeback or
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the S
(shared) state.

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the E
(exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines
allocated in the L2 cache.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted
by a prefetch request.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-46 Vol. 3B

PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for
any reason.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is
full. Neither of the threads on this
core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point
operations executed that required
micro-code assist intervention.
Assists are required in the following
cases: SSE instructions, (Denormal
input when the DAZ flag is off or
Underflow result when the FTZ flag
is off): x87 instructions, (NaN or
denormal are loaded to a register or
used as input from memory, Division
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point
micro-code assist when the output
value (destination register) is
invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point
micro-code assist when the input
value (one of the source operands
to an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit
unpack operations.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-47

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events that are located in the uncore sub-
system are implementation specific between different platforms using processors
based on Intel microarchitecture code name Nehalem. Processors with CPUID signa-
ture of DisplayFamily_DisplayModel 06_1AH, 06_1EH, and 06_1FH support perfor-
mance events listed in Table A-5.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit
shift or move operations.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer
probe tracker is full. The peer probe
tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue
write tracker has at least one valid
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer
probe tracker has at least one valid
entry. The peer probe tracker queue
tracks IOH and remote socket snoops.

Table A-4. Non-Architectural Performance Events In the Processor Core for Intel Core
i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-48 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker
allocate to deallocate entries. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker
entries for which a full cache line read
has missed the L3. The GQ read
tracker L3 miss to fill occupancy count
is divided by this count to obtain the
average cache line read L3 miss
latency. The latency represents the
time after which the L3 has
determined that the cache line has
missed. The time between a GQ read
tracker allocation and the L3
determining that the cache line has
missed is the average L3 hit latency.
The total L3 cache line read miss
latency is the hit latency + L3 miss
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker
entries that are allocated in the read
tracker queue that hit or miss the L3.
The GQ read tracker L3 hit occupancy
count is divided by this count to
obtain the average L3 hit latency.

03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker
entries that are allocated in the read
tracker, have missed in the L3 and
have not acquired a Request
Transaction ID. The GQ read tracker
L3 miss to RTID acquired occupancy
count is divided by this count to
obtain the average latency for a read
L3 miss to acquire an RTID.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-49

PERFORMANCE-MONITORING EVENTS
03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write
tracker entries that are allocated in
the write tracker, have missed in the
L3 and have not acquired a Request
Transaction ID. The GQ write tracker
L3 miss to RTID occupancy count is
divided by this count to obtain the
average latency for a write L3 miss to
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write
tracker entries that are allocated in
the write tracker queue that miss the
L3. The GQ write tracker occupancy
count is divided by the this count to
obtain the average L3 write miss
latency.

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe
tracker (snoop) entries that are
allocated in the peer probe tracker
queue that miss the L3. The GQ peer
probe occupancy count is divided by
this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath
Interface input data port is busy
importing data from the Quickpath
Interface. Each cycle the input port
can transfer 8 or 16 bytes of data.

04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath
Memory Interface input data port is
busy importing data from the
Quickpath Memory Interface. Each
cycle the input port can transfer 8 or
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy
importing data from the Last Level
Cache. Each cycle the input port can
transfer 32 bytes of data.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-50 Vol. 3B

PERFORMANCE-MONITORING EVENTS
04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data
port is busy importing data from
processor cores 0 and 2. Each cycle
the input port can transfer 32 bytes
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data
port is busy importing data from
processor cores 1 and 3. Each cycle
the input port can transfer 32 bytes
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data
port is busy sending data to the
Quickpath Interface or Quickpath
Memory Interface. Each cycle the
output port can transfer 32 bytes of
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy
sending data to the Last Level Cache.
Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is
busy sending data to the Cores. Each
cycle the output port can transfer 32
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the
local home that L3 does not have the
referenced cache line.

06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the
local home that L3 has the referenced
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the local home in the
S state.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-51

PERFORMANCE-MONITORING EVENTS
06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read
invalidate snoops to the local home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the local home in the M
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced line cached
in the M state.

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a
remote home that L3 does not have
the referenced cache line.

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a
remote home that L3 has the
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the remote home in
the S state.

07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read
invalidate snoops to a remote home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the remote home in the
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses
sent to the local home.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-52 Vol. 3B

PERFORMANCE-MONITORING EVENTS
07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced line cached
in the M state.

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that
hit in the L3. Writebacks from the
cores will always result in L3 hits due
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit
the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that
miss the L3. Should always be zero as
writebacks from the cores will always
result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss
the L3.

0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines
allocated in M state. The only time a
cache line is allocated in the M state is
when the line was forwarded in M
state is forwarded due to a Snoop
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines
allocated in S state.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-53

PERFORMANCE-MONITORING EVENTS
0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines
allocated in any state.

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines
victimized that were in the M state.
When the victim cache line is in M
state, the line is written to its home
cache agent which can be either local
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines
victimized in any state.

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home
Logic read requests from a remote
socket.

20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home
Logic write requests from a remote
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home
Logic read requests from the local
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home
Logic write requests from the local
socket.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-54 Vol. 3B

PERFORMANCE-MONITORING EVENTS
21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker is
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to
deallocate read occupancy.

24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
2 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
3 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-55

PERFORMANCE-MONITORING EVENTS
25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home
Logic IOH Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home
Logic Remote Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home
Logic Local Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the
Quickpath Memory Controller that
bypass the Quickpath Home Logic. All
local accesses can be bypassed. For
remote requests, only read requests
can be bypassed.

27H 01H UNC_QMC_NORMAL_
FULL.READ.CH0

Uncore cycles all the entries in the
DRAM channel 0 medium or low
priority queue are occupied with read
requests.

27H 02H UNC_QMC_NORMAL_
FULL.READ.CH1

Uncore cycles all the entries in the
DRAM channel 1 medium or low
priority queue are occupied with read
requests.

27H 04H UNC_QMC_NORMAL_
FULL.READ.CH2

Uncore cycles all the entries in the
DRAM channel 2 medium or low
priority queue are occupied with read
requests.

27H 08H UNC_QMC_NORMAL_
FULL.WRITE.CH0

Uncore cycles all the entries in the
DRAM channel 0 medium or low
priority queue are occupied with write
requests.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-56 Vol. 3B

PERFORMANCE-MONITORING EVENTS
27H 10H UNC_QMC_NORMAL_
FULL.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 medium or low
priority queue are occupied with write
requests.

27H 20H UNC_QMC_NORMAL_
FULL.WRITE.CH2

Uncore cycles all the entries in the
DRAM channel 2 medium or low
priority queue are occupied with write
requests.

28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the
DRAM channel 1high priority queue
are occupied with isochronous read
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous write
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 high priority queue
are occupied with isochronous write
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous write
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 0.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-57

PERFORMANCE-MONITORING EVENTS
29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 2.

29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request
occupancy.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-58 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 medium
and low priority read requests. The
QMC channel 0 normal read
occupancy divided by this count
provides the average QMC channel 0
read latency.

2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 medium
and low priority read requests. The
QMC channel 1 normal read
occupancy divided by this count
provides the average QMC channel 1
read latency.

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 medium
and low priority read requests. The
QMC channel 2 normal read
occupancy divided by this count
provides the average QMC channel 2
read latency.

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath
Memory Controller medium and low
priority read requests. The QMC
normal read occupancy divided by this
count provides the average QMC read
latency.

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 high
priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 high
priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 high
priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath
Memory Controller high priority
isochronous read requests.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-59

PERFORMANCE-MONITORING EVENTS
2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath
Memory Controller channel 0 critical
priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath
Memory Controller channel 1 critical
priority isochronous read requests.

2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath
Memory Controller channel 2 critical
priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath
Memory Controller critical priority
isochronous read requests.

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel
requests.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-60 Vol. 3B

PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority
updates. A priority update occurs
when an ISOC high or critical request
is received by the QHL and there is a
matching request with normal priority
that has already been issued to the
QMC. In this instance, the QHL will
send a priority update to QMC to
expedite the request.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the local
home.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-61

PERFORMANCE-MONITORING EVENTS
40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound
link 0 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound
link 0 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound
link 0 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound
link 1 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound
link 1 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-62 Vol. 3B

PERFORMANCE-MONITORING EVENTS
40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound
link 1 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-63

PERFORMANCE-MONITORING EVENTS
41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-64 Vol. 3B

PERFORMANCE-MONITORING EVENTS
41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is busy.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 0 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 1 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-65

PERFORMANCE-MONITORING EVENTS
60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges
(PRE) that were issued to DRAM
channel 0 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges
(PRE) that were issued to DRAM
channel 1 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-66 Vol. 3B

PERFORMANCE-MONITORING EVENTS
62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges
(PRE) that were issued to DRAM
channel 2 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0.

63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-67

PERFORMANCE-MONITORING EVENTS
64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-68 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Intel Xeon processors with CPUID signature of DisplayFamily_DisplayModel 06_2EH
have a distinct uncore sub-system that is significantly different from the uncore
found in processors with CPUID signature 06_1AH, 06_1EH, and 06_1FH. Non-archi-
tectural Performance monitoring events for its uncore will be available in future docu-
mentation.

A.4 PERFORMANCE MONITORING EVENTS FOR
PROCESSORS BASED ON
INTEL® MICROARCHITECTURE CODE NAME
WESTMERE

Intel 64 processors based on Intel® microarchitecture code name Westmere support
the architectural and non-architectural performance-monitoring events listed in
Table A-1 and Table A-6. Table A-6 applies to processors with CPUID signature of
DisplayFamily_DisplayModel encoding with the following values: 06_25H, 06_2CH.
In addition, these processors (CPUID signature of DisplayFamily_DisplayModel
06_25H, 06_2CH) also support the following non-architectural, product-specific
uncore performance-monitoring events listed in Table A-7. Fixed counters support
the architecture events defined in Table A-9.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

Table A-5. Non-Architectural Performance Events In the Processor Uncore for Intel
Core i7 Processor and Intel Xeon Processor 5500 Series

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-69

PERFORMANCE-MONITORING EVENTS
Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

03H 02H LOAD_BLOCK.OVERL
AP_STORE

Loads that partially overlap an
earlier store.

04H 07H SB_DRAIN.ANY All Store buffer stall cycles.

05H 02H MISALIGN_MEMORY.S
TORE

All store referenced with misaligned
address.

06H 04H STORE_BLOCKS.AT_
RET

Counts number of loads delayed
with at-Retirement block code. The
following loads need to be executed
at retirement and wait for all senior
stores on the same thread to be
drained: load splitting across 4K
boundary (page split), load accessing
uncacheable (UC or USWC) memory,
load lock, and load with page table in
UC or USWC memory region.

06H 08H STORE_BLOCKS.L1D
_BLOCK

Cacheable loads delayed with L1D
block code.

07H 01H PARTIAL_ADDRESS_
ALIAS

Counts false dependency due to
partial address aliasing.

08H 01H DTLB_LOAD_MISSES.
ANY

Counts all load misses that cause a
page walk.

08H 02H DTLB_LOAD_MISSES.
WALK_COMPLETED

Counts number of completed page
walks due to load miss in the STLB.

08H 04H DTLB_LOAD_MISSES.
WALK_CYCLES

Cycles PMH is busy with a page walk
due to a load miss in the STLB.

08H 10H DTLB_LOAD_MISSES.
STLB_HIT

Number of cache load STLB hits.

08H 20H DTLB_LOAD_MISSES.
PDE_MISS

Number of DTLB cache load misses
where the low part of the linear to
physical address translation was
missed.

0BH 01H MEM_INST_RETIRED.
LOADS

Counts the number of instructions
with an architecturally-visible load
retired on the architected path.

0BH 02H MEM_INST_RETIRED.
STORES

Counts the number of instructions
with an architecturally-visible store
retired on the architected path.
A-70 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0BH 10H MEM_INST_RETIRED.
LATENCY_ABOVE_T
HRESHOLD

Counts the number of instructions
exceeding the latency specified with
ld_lat facility.

In conjunction
with ld_lat
facility

0CH 01H MEM_STORE_RETIRE
D.DTLB_MISS

The event counts the number of
retired stores that missed the DTLB.
The DTLB miss is not counted if the
store operation causes a fault. Does
not counter prefetches. Counts both
primary and secondary misses to
the TLB.

0EH 01H UOPS_ISSUED.ANY Counts the number of Uops issued
by the Register Allocation Table to
the Reservation Station, i.e. the
UOPs issued from the front end to
the back end.

0EH 01H UOPS_ISSUED.STALL
ED_CYCLES

Counts the number of cycles no
Uops issued by the Register
Allocation Table to the Reservation
Station, i.e. the UOPs issued from
the front end to the back end.

set “invert=1,
cmask = 1“

0EH 02H UOPS_ISSUED.FUSED Counts the number of fused Uops
that were issued from the Register
Allocation Table to the Reservation
Station.

0FH 01H MEM_UNCORE_RETI
RED.UNKNOWN_SOU
RCE

Load instructions retired with
unknown LLC miss (Precise Event).

Applicable to one
and two sockets

0FH 02H MEM_UNCORE_RETI
RED.OHTER_CORE_L
2_HIT

Load instructions retired that HIT
modified data in sibling core (Precise
Event).

Applicable to one
and two sockets

0FH 04H MEM_UNCORE_RETI
RED.REMOTE_HITM

Load instructions retired that HIT
modified data in remote socket
(Precise Event).

Applicable to two
sockets only

0FH 08H MEM_UNCORE_RETI
RED.LOCAL_DRAM_A
ND_REMOTE_CACHE
_HIT

Load instructions retired local dram
and remote cache HIT data sources
(Precise Event).

Applicable to one
and two sockets

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-71

PERFORMANCE-MONITORING EVENTS
0FH 10H MEM_UNCORE_RETI
RED.REMOTE_DRAM

Load instructions retired remote
DRAM and remote home-remote
cache HITM (Precise Event).

Applicable to two
sockets only

0FH 20H MEM_UNCORE_RETI
RED.OTHER_LLC_MIS
S

Load instructions retired other LLC
miss (Precise Event).

Applicable to two
sockets only

0FH 80H MEM_UNCORE_RETI
RED.UNCACHEABLE

Load instructions retired I/O (Precise
Event).

Applicable to one
and two sockets

10H 01H FP_COMP_OPS_EXE.
X87

Counts the number of FP
Computational Uops Executed. The
number of FADD, FSUB, FCOM,
FMULs, integer MULsand IMULs,
FDIVs, FPREMs, FSQRTS, integer
DIVs, and IDIVs. This event does not
distinguish an FADD used in the
middle of a transcendental flow
from a separate FADD instruction.

10H 02H FP_COMP_OPS_EXE.
MMX

Counts number of MMX Uops
executed.

10H 04H FP_COMP_OPS_EXE.
SSE_FP

Counts number of SSE and SSE2 FP
uops executed.

10H 08H FP_COMP_OPS_EXE.
SSE2_INTEGER

Counts number of SSE2 integer uops
executed.

10H 10H FP_COMP_OPS_EXE.
SSE_FP_PACKED

Counts number of SSE FP packed
uops executed.

10H 20H FP_COMP_OPS_EXE.
SSE_FP_SCALAR

Counts number of SSE FP scalar
uops executed.

10H 40H FP_COMP_OPS_EXE.
SSE_SINGLE_PRECISI
ON

Counts number of SSE* FP single
precision uops executed.

10H 80H FP_COMP_OPS_EXE.
SSE_DOUBLE_PRECI
SION

Counts number of SSE* FP double
precision uops executed.

12H 01H SIMD_INT_128.PACK
ED_MPY

Counts number of 128 bit SIMD
integer multiply operations.

12H 02H SIMD_INT_128.PACK
ED_SHIFT

Counts number of 128 bit SIMD
integer shift operations.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-72 Vol. 3B

PERFORMANCE-MONITORING EVENTS
12H 04H SIMD_INT_128.PACK Counts number of 128 bit SIMD
integer pack operations.

12H 08H SIMD_INT_128.UNPA
CK

Counts number of 128 bit SIMD
integer unpack operations.

12H 10H SIMD_INT_128.PACK
ED_LOGICAL

Counts number of 128 bit SIMD
integer logical operations.

12H 20H SIMD_INT_128.PACK
ED_ARITH

Counts number of 128 bit SIMD
integer arithmetic operations.

12H 40H SIMD_INT_128.SHUF
FLE_MOVE

Counts number of 128 bit SIMD
integer shuffle and move
operations.

13H 01H LOAD_DISPATCH.RS Counts number of loads dispatched
from the Reservation Station that
bypass the Memory Order Buffer.

13H 02H LOAD_DISPATCH.RS_
DELAYED

Counts the number of delayed RS
dispatches at the stage latch. If an
RS dispatch can not bypass to LB, it
has another chance to dispatch from
the one-cycle delayed staging latch
before it is written into the LB.

13H 04H LOAD_DISPATCH.MO
B

Counts the number of loads
dispatched from the Reservation
Station to the Memory Order Buffer.

13H 07H LOAD_DISPATCH.ANY Counts all loads dispatched from the
Reservation Station.

14H 01H ARITH.CYCLES_DIV_
BUSY

Counts the number of cycles the
divider is busy executing divide or
square root operations. The divide
can be integer, X87 or Streaming
SIMD Extensions (SSE). The square
root operation can be either X87 or
SSE.

Set 'edge =1, invert=1, cmask=1' to
count the number of divides.

Count may be
incorrect When
SMT is on

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-73

PERFORMANCE-MONITORING EVENTS
14H 02H ARITH.MUL Counts the number of multiply
operations executed. This includes
integer as well as floating point
multiply operations but excludes
DPPS mul and MPSAD.

Count may be
incorrect When
SMT is on

17H 01H INST_QUEUE_WRITE
S

Counts the number of instructions
written into the instruction queue
every cycle.

18H 01H INST_DECODED.DEC0 Counts number of instructions that
require decoder 0 to be decoded.
Usually, this means that the
instruction maps to more than 1
uop.

19H 01H TWO_UOP_INSTS_D
ECODED

An instruction that generates two
uops was decoded.

1EH 01H INST_QUEUE_WRITE
_CYCLES

This event counts the number of
cycles during which instructions are
written to the instruction queue.
Dividing this counter by the number
of instructions written to the
instruction queue
(INST_QUEUE_WRITES) yields the
average number of instructions
decoded each cycle. If this number is
less than four and the pipe stalls,
this indicates that the decoder is
failing to decode enough
instructions per cycle to sustain the
4-wide pipeline.

If SSE*
instructions that
are 6 bytes or
longer arrive one
after another,
then front end
throughput may
limit execution
speed.

20H 01H LSD_OVERFLOW Number of loops that can not stream
from the instruction queue.

24H 01H L2_RQSTS.LD_HIT Counts number of loads that hit the
L2 cache. L2 loads include both L1D
demand misses as well as L1D
prefetches. L2 loads can be rejected
for various reasons. Only non
rejected loads are counted.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-74 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H 02H L2_RQSTS.LD_MISS Counts the number of loads that
miss the L2 cache. L2 loads include
both L1D demand misses as well as
L1D prefetches.

24H 03H L2_RQSTS.LOADS Counts all L2 load requests. L2 loads
include both L1D demand misses as
well as L1D prefetches.

24H 04H L2_RQSTS.RFO_HIT Counts the number of store RFO
requests that hit the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches. Count includes WC
memory requests, where the data is
not fetched but the permission to
write the line is required.

24H 08H L2_RQSTS.RFO_MISS Counts the number of store RFO
requests that miss the L2 cache. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches.

24H 0CH L2_RQSTS.RFOS Counts all L2 store RFO requests. L2
RFO requests include both L1D
demand RFO misses as well as L1D
RFO prefetches..

24H 10H L2_RQSTS.IFETCH_H
IT

Counts number of instruction
fetches that hit the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 20H L2_RQSTS.IFETCH_M
ISS

Counts number of instruction
fetches that miss the L2 cache. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

24H 30H L2_RQSTS.IFETCHES Counts all instruction fetches. L2
instruction fetches include both L1I
demand misses as well as L1I
instruction prefetches.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-75

PERFORMANCE-MONITORING EVENTS
24H 40H L2_RQSTS.PREFETC
H_HIT

Counts L2 prefetch hits for both
code and data.

24H 80H L2_RQSTS.PREFETC
H_MISS

Counts L2 prefetch misses for both
code and data.

24H C0H L2_RQSTS.PREFETC
HES

Counts all L2 prefetches for both
code and data.

24H AAH L2_RQSTS.MISS Counts all L2 misses for both code
and data.

24H FFH L2_RQSTS.REFEREN
CES

Counts all L2 requests for both code
and data.

26H 01H L2_DATA_RQSTS.DE
MAND.I_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss. L2 demand loads are
both L1D demand misses and L1D
prefetches.

26H 02H L2_DATA_RQSTS.DE
MAND.S_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the S (shared) state. L2
demand loads are both L1D demand
misses and L1D prefetches.

26H 04H L2_DATA_RQSTS.DE
MAND.E_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the E (exclusive) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 08H L2_DATA_RQSTS.DE
MAND.M_STATE

Counts number of L2 data demand
loads where the cache line to be
loaded is in the M (modified) state.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 0FH L2_DATA_RQSTS.DE
MAND.MESI

Counts all L2 data demand requests.
L2 demand loads are both L1D
demand misses and L1D prefetches.

26H 10H L2_DATA_RQSTS.PR
EFETCH.I_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the I (invalid) state, i.e. a
cache miss.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-76 Vol. 3B

PERFORMANCE-MONITORING EVENTS
26H 20H L2_DATA_RQSTS.PR
EFETCH.S_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the S (shared) state. A
prefetch RFO will miss on an S state
line, while a prefetch read will hit on
an S state line.

26H 40H L2_DATA_RQSTS.PR
EFETCH.E_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the E (exclusive) state.

26H 80H L2_DATA_RQSTS.PR
EFETCH.M_STATE

Counts number of L2 prefetch data
loads where the cache line to be
loaded is in the M (modified) state.

26H F0H L2_DATA_RQSTS.PR
EFETCH.MESI

Counts all L2 prefetch requests.

26H FFH L2_DATA_RQSTS.AN
Y

Counts all L2 data requests.

27H 01H L2_WRITE.RFO.I_STA
TE

Counts number of L2 demand store
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e, a cache miss. The L1D prefetcher
does not issue a RFO prefetch.

This is a demand
RFO request

27H 02H L2_WRITE.RFO.S_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the S (shared) state. The
L1D prefetcher does not issue a RFO
prefetch,.

This is a demand
RFO request

27H 08H L2_WRITE.RFO.M_ST
ATE

Counts number of L2 store RFO
requests where the cache line to be
loaded is in the M (modified) state.
The L1D prefetcher does not issue a
RFO prefetch.

This is a demand
RFO request

27H 0EH L2_WRITE.RFO.HIT Counts number of L2 store RFO
requests where the cache line to be
loaded is in either the S, E or M
states. The L1D prefetcher does not
issue a RFO prefetch.

This is a demand
RFO request

27H 0FH L2_WRITE.RFO.MESI Counts all L2 store RFO
requests.The L1D prefetcher does
not issue a RFO prefetch.

This is a demand
RFO request

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-77

PERFORMANCE-MONITORING EVENTS
27H 10H L2_WRITE.LOCK.I_ST
ATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the I (invalid) state,
i.e. a cache miss.

27H 20H L2_WRITE.LOCK.S_S
TATE

Counts number of L2 lock RFO
requests where the cache line to be
loaded is in the S (shared) state.

27H 40H L2_WRITE.LOCK.E_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the E (exclusive)
state.

27H 80H L2_WRITE.LOCK.M_S
TATE

Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in the M (modified)
state.

27H E0H L2_WRITE.LOCK.HIT Counts number of L2 demand lock
RFO requests where the cache line
to be loaded is in either the S, E, or
M state.

27H F0H L2_WRITE.LOCK.MESI Counts all L2 demand lock RFO
requests.

28H 01H L1D_WB_L2.I_STATE Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the I (invalid) state, i.e. a
cache miss.

28H 02H L1D_WB_L2.S_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the S state.

28H 04H L1D_WB_L2.E_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the E (exclusive) state.

28H 08H L1D_WB_L2.M_STAT
E

Counts number of L1 writebacks to
the L2 where the cache line to be
written is in the M (modified) state.

28H 0FH L1D_WB_L2.MESI Counts all L1 writebacks to the L2 .

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-78 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2EH 02H L3_LAT_CACHE.REFE
RENCE

Counts uncore Last Level Cache
references. Because cache
hierarchy, cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table A-1

2EH 01H L3_LAT_CACHE.MISS Counts uncore Last Level Cache
misses. Because cache hierarchy,
cache sizes and other
implementation-specific
characteristics; value comparison to
estimate performance differences is
not recommended.

see Table A-1

3CH 00H CPU_CLK_UNHALTED
.THREAD_P

Counts the number of thread cycles
while the thread is not in a halt
state. The thread enters the halt
state when it is running the HLT
instruction. The core frequency may
change from time to time due to
power or thermal throttling.

see Table A-1

3CH 01H CPU_CLK_UNHALTED
.REF_P

Increments at the frequency of TSC
when not halted.

see Table A-1

49H 01H DTLB_MISSES.ANY Counts the number of misses in the
STLB which causes a page walk.

49H 02H DTLB_MISSES.WALK_
COMPLETED

Counts number of misses in the
STLB which resulted in a completed
page walk.

49H 04H DTLB_MISSES.WALK_
CYCLES

Counts cycles of page walk due to
misses in the STLB.

49H 10H DTLB_MISSES.STLB_
HIT

Counts the number of DTLB first
level misses that hit in the second
level TLB. This event is only
relevant if the core contains multiple
DTLB levels.

49H 20H DTLB_MISSES.PDE_M
ISS

Number of DTLB misses caused by
low part of address, includes
references to 2M pages because 2M
pages do not use the PDE.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-79

PERFORMANCE-MONITORING EVENTS
49H 80H DTLB_MISSES.LARGE
_WALK_COMPLETED

Counts number of completed large
page walks due to misses in the
STLB.

4CH 01H LOAD_HIT_PRE Counts load operations sent to the
L1 data cache while a previous SSE
prefetch instruction to the same
cache line has started prefetching
but has not yet finished.

Counter 0, 1 only

4EH 01H L1D_PREFETCH.REQ
UESTS

Counts number of hardware
prefetch requests dispatched out of
the prefetch FIFO.

Counter 0, 1 only

4EH 02H L1D_PREFETCH.MISS Counts number of hardware
prefetch requests that miss the L1D.
There are two prefetchers in the
L1D. A streamer, which predicts
lines sequentially after this one
should be fetched, and the IP
prefetcher that remembers access
patterns for the current instruction.
The streamer prefetcher stops on an
L1D hit, while the IP prefetcher
does not.

Counter 0, 1 only

4EH 04H L1D_PREFETCH.TRIG
GERS

Counts number of prefetch requests
triggered by the Finite State
Machine and pushed into the
prefetch FIFO. Some of the prefetch
requests are dropped due to
overwrites or competition between
the IP index prefetcher and
streamer prefetcher. The prefetch
FIFO contains 4 entries.

Counter 0, 1 only

4FH 10H EPT.WALK_CYCLES Counts Extended Page walk cycles.

51H 01H L1D.REPL Counts the number of lines brought
into the L1 data cache.

Counter 0, 1 only

51H 02H L1D.M_REPL Counts the number of modified lines
brought into the L1 data cache.

Counter 0, 1 only

51H 04H L1D.M_EVICT Counts the number of modified lines
evicted from the L1 data cache due
to replacement.

Counter 0, 1 only

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-80 Vol. 3B

PERFORMANCE-MONITORING EVENTS
51H 08H L1D.M_SNOOP_EVIC
T

Counts the number of modified lines
evicted from the L1 data cache due
to snoop HITM intervention.

Counter 0, 1 only

52H 01H L1D_CACHE_PREFET
CH_LOCK_FB_HIT

Counts the number of cacheable
load lock speculated instructions
accepted into the fill buffer.

60H 01H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_DATA

Counts weighted cycles of offcore
demand data read requests. Does
not include L2 prefetch requests.

counter 0

60H 02H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.READ_CODE

Counts weighted cycles of offcore
demand code read requests. Does
not include L2 prefetch requests.

counter 0

60H 04H OFFCORE_REQUEST
S_OUTSTANDING.DE
MAND.RFO

Counts weighted cycles of offcore
demand RFO requests. Does not
include L2 prefetch requests.

counter 0

60H 08H OFFCORE_REQUEST
S_OUTSTANDING.AN
Y.READ

Counts weighted cycles of offcore
read requests of any kind. Include L2
prefetch requests.

counter 0

63H 01H CACHE_LOCK_CYCLE
S.L1D_L2

Cycle count during which the L1D
and L2 are locked. A lock is asserted
when there is a locked memory
access, due to uncacheable memory,
a locked operation that spans two
cache lines, or a page walk from an
uncacheable page table. This event
does not cause locks, it merely
detects them.

Counter 0, 1 only.
L1D and L2 locks
have a very high
performance
penalty and it is
highly
recommended to
avoid such
accesses.

63H 02H CACHE_LOCK_CYCLE
S.L1D

Counts the number of cycles that
cacheline in the L1 data cache unit is
locked.

Counter 0, 1 only.

6CH 01H IO_TRANSACTIONS Counts the number of completed I/O
transactions.

80H 01H L1I.HITS Counts all instruction fetches that
hit the L1 instruction cache.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-81

PERFORMANCE-MONITORING EVENTS
80H 02H L1I.MISSES Counts all instruction fetches that
miss the L1I cache. This includes
instruction cache misses, streaming
buffer misses, victim cache misses
and uncacheable fetches. An
instruction fetch miss is counted
only once and not once for every
cycle it is outstanding.

80H 03H L1I.READS Counts all instruction fetches,
including uncacheable fetches that
bypass the L1I.

80H 04H L1I.CYCLES_STALLED Cycle counts for which an instruction
fetch stalls due to a L1I cache miss,
ITLB miss or ITLB fault.

82H 01H LARGE_ITLB.HIT Counts number of large ITLB hits.

85H 01H ITLB_MISSES.ANY Counts the number of misses in all
levels of the ITLB which causes a
page walk.

85H 02H ITLB_MISSES.WALK_
COMPLETED

Counts number of misses in all levels
of the ITLB which resulted in a
completed page walk.

85H 04H ITLB_MISSES.WALK_
CYCLES

Counts ITLB miss page walk cycles.

85H 80H ITLB_MISSES.LARGE_
WALK_COMPLETED

Counts number of completed large
page walks due to misses in the
STLB.

87H 01H ILD_STALL.LCP Cycles Instruction Length Decoder
stalls due to length changing
prefixes: 66, 67 or REX.W (for
EM64T) instructions which change
the length of the decoded
instruction.

87H 02H ILD_STALL.MRU Instruction Length Decoder stall
cycles due to Brand Prediction Unit
(PBU) Most Recently Used (MRU)
bypass.

87H 04H ILD_STALL.IQ_FULL Stall cycles due to a full instruction
queue.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-82 Vol. 3B

PERFORMANCE-MONITORING EVENTS
87H 08H ILD_STALL.REGEN Counts the number of regen stalls.

87H 0FH ILD_STALL.ANY Counts any cycles the Instruction
Length Decoder is stalled.

88H 01H BR_INST_EXEC.COND Counts the number of conditional
near branch instructions executed,
but not necessarily retired.

88H 02H BR_INST_EXEC.DIRE
CT

Counts all unconditional near branch
instructions excluding calls and
indirect branches.

88H 04H BR_INST_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
indirect near branch instructions
that are not calls.

88H 07H BR_INST_EXEC.NON
_CALLS

Counts all non call near branch
instructions executed, but not
necessarily retired.

88H 08H BR_INST_EXEC.RETU
RN_NEAR

Counts indirect near branches that
have a return mnemonic.

88H 10H BR_INST_EXEC.DIRE
CT_NEAR_CALL

Counts unconditional near call
branch instructions, excluding non
call branch, executed.

88H 20H BR_INST_EXEC.INDIR
ECT_NEAR_CALL

Counts indirect near calls, including
both register and memory indirect,
executed.

88H 30H BR_INST_EXEC.NEAR
_CALLS

Counts all near call branches
executed, but not necessarily
retired.

88H 40H BR_INST_EXEC.TAKE
N

Counts taken near branches
executed, but not necessarily
retired.

88H 7FH BR_INST_EXEC.ANY Counts all near executed branches
(not necessarily retired). This
includes only instructions and not
micro-op branches. Frequent
branching is not necessarily a major
performance issue. However
frequent branch mispredictions may
be a problem.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-83

PERFORMANCE-MONITORING EVENTS
89H 01H BR_MISP_EXEC.CON
D

Counts the number of mispredicted
conditional near branch instructions
executed, but not necessarily
retired.

89H 02H BR_MISP_EXEC.DIRE
CT

Counts mispredicted macro
unconditional near branch
instructions, excluding calls and
indirect branches (should always be
0).

89H 04H BR_MISP_EXEC.INDIR
ECT_NON_CALL

Counts the number of executed
mispredicted indirect near branch
instructions that are not calls.

89H 07H BR_MISP_EXEC.NON
_CALLS

Counts mispredicted non call near
branches executed, but not
necessarily retired.

89H 08H BR_MISP_EXEC.RETU
RN_NEAR

Counts mispredicted indirect
branches that have a rear return
mnemonic.

89H 10H BR_MISP_EXEC.DIRE
CT_NEAR_CALL

Counts mispredicted non-indirect
near calls executed, (should always
be 0).

89H 20H BR_MISP_EXEC.INDIR
ECT_NEAR_CALL

Counts mispredicted indirect near
calls exeucted, including both
register and memory indirect.

89H 30H BR_MISP_EXEC.NEA
R_CALLS

Counts all mispredicted near call
branches executed, but not
necessarily retired.

89H 40H BR_MISP_EXEC.TAKE
N

Counts executed mispredicted near
branches that are taken, but not
necessarily retired.

89H 7FH BR_MISP_EXEC.ANY Counts the number of mispredicted
near branch instructions that were
executed, but not necessarily
retired.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-84 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A2H 01H RESOURCE_STALLS.
ANY

Counts the number of Allocator
resource related stalls. Includes
register renaming buffer entries,
memory buffer entries. In addition
to resource related stalls, this event
counts some other events. Includes
stalls arising during branch
misprediction recovery, such as if
retirement of the mispredicted
branch is delayed and stalls arising
while store buffer is draining from
synchronizing operations.

Does not include
stalls due to
SuperQ (off core)
queue full, too
many cache
misses, etc.

A2H 02H RESOURCE_STALLS.L
OAD

Counts the cycles of stall due to lack
of load buffer for load operation.

A2H 04H RESOURCE_STALLS.R
S_FULL

This event counts the number of
cycles when the number of
instructions in the pipeline waiting
for execution reaches the limit the
processor can handle. A high count
of this event indicates that there are
long latency operations in the pipe
(possibly load and store operations
that miss the L2 cache, or
instructions dependent upon
instructions further down the
pipeline that have yet to retire.

When RS is full,
new instructions
can not enter the
reservation
station and start
execution.

A2H 08H RESOURCE_STALLS.S
TORE

This event counts the number of
cycles that a resource related stall
will occur due to the number of
store instructions reaching the limit
of the pipeline, (i.e. all store buffers
are used). The stall ends when a
store instruction commits its data to
the cache or memory.

A2H 10H RESOURCE_STALLS.R
OB_FULL

Counts the cycles of stall due to re-
order buffer full.

A2H 20H RESOURCE_STALLS.F
PCW

Counts the number of cycles while
execution was stalled due to writing
the floating-point unit (FPU) control
word.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-85

PERFORMANCE-MONITORING EVENTS
A2H 40H RESOURCE_STALLS.
MXCSR

Stalls due to the MXCSR register
rename occurring to close to a
previous MXCSR rename. The
MXCSR provides control and status
for the MMX registers.

A2H 80H RESOURCE_STALLS.
OTHER

Counts the number of cycles while
execution was stalled due to other
resource issues.

A6H 01H MACRO_INSTS.FUSIO
NS_DECODED

Counts the number of instructions
decoded that are macro-fused but
not necessarily executed or retired.

A7H 01H BACLEAR_FORCE_IQ Counts number of times a BACLEAR
was forced by the Instruction
Queue. The IQ is also responsible
for providing conditional branch
prediciton direction based on a static
scheme and dynamic data provided
by the L2 Branch Prediction Unit. If
the conditional branch target is not
found in the Target Array and the IQ
predicts that the branch is taken,
then the IQ will force the Branch
Address Calculator to issue a
BACLEAR. Each BACLEAR asserted
by the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline.

A8H 01H LSD.UOPS Counts the number of micro-ops
delivered by loop stream detector.

Use cmask=1 and
invert to count
cycles

AEH 01H ITLB_FLUSH Counts the number of ITLB flushes.

B0H 01H OFFCORE_REQUEST
S.DEMAND.READ_DA
TA

Counts number of offcore demand
data read requests. Does not count
L2 prefetch requests.

B0H 02H OFFCORE_REQUEST
S.DEMAND.READ_CO
DE

Counts number of offcore demand
code read requests. Does not count
L2 prefetch requests.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-86 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B0H 04H OFFCORE_REQUEST
S.DEMAND.RFO

Counts number of offcore demand
RFO requests. Does not count L2
prefetch requests.

B0H 08H OFFCORE_REQUEST
S.ANY.READ

Counts number of offcore read
requests. Includes L2 prefetch
requests.

B0H 10H OFFCORE_REQUEST
S.ANY.RFO

Counts number of offcore RFO
requests. Includes L2 prefetch
requests.

B0H 40H OFFCORE_REQUEST
S.L1D_WRITEBACK

Counts number of L1D writebacks to
the uncore.

B0H 80H OFFCORE_REQUEST
S.ANY

Counts all offcore requests.

B1H 01H UOPS_EXECUTED.PO
RT0

Counts number of Uops executed
that were issued on port 0. Port 0
handles integer arithmetic, SIMD and
FP add Uops.

B1H 02H UOPS_EXECUTED.PO
RT1

Counts number of Uops executed
that were issued on port 1. Port 1
handles integer arithmetic, SIMD,
integer shift, FP multiply and FP
divide Uops.

B1H 04H UOPS_EXECUTED.PO
RT2_CORE

Counts number of Uops executed
that were issued on port 2. Port 2
handles the load Uops. This is a core
count only and can not be collected
per thread.

B1H 08H UOPS_EXECUTED.PO
RT3_CORE

Counts number of Uops executed
that were issued on port 3. Port 3
handles store Uops. This is a core
count only and can not be collected
per thread.

B1H 10H UOPS_EXECUTED.PO
RT4_CORE

Counts number of Uops executed
that where issued on port 4. Port 4
handles the value to be stored for
the store Uops issued on port 3. This
is a core count only and can not be
collected per thread.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-87

PERFORMANCE-MONITORING EVENTS
B1H 1FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES_
NO_PORT5

Counts number of cycles there are
one or more uops being executed
and were issued on ports 0-4. This is
a core count only and can not be
collected per thread.

B1H 20H UOPS_EXECUTED.PO
RT5

Counts number of Uops executed
that where issued on port 5.

B1H 3FH UOPS_EXECUTED.CO
RE_ACTIVE_CYCLES

Counts number of cycles there are
one or more uops being executed on
any ports. This is a core count only
and can not be collected per thread.

B1H 40H UOPS_EXECUTED.PO
RT015

Counts number of Uops executed
that where issued on port 0, 1, or 5.

use cmask=1,
invert=1 to count
stall cycles

B1H 80H UOPS_EXECUTED.PO
RT234

Counts number of Uops executed
that where issued on port 2, 3, or 4.

B2H 01H OFFCORE_REQUEST
S_SQ_FULL

Counts number of cycles the SQ is
full to handle off-core requests.

B3H 01H SNOOPQ_REQUESTS
_OUTSTANDING.DAT
A

Counts weighted cycles of snoopq
requests for data. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B3H 02H SNOOPQ_REQUESTS
_OUTSTANDING.INVA
LIDATE

Counts weighted cycles of snoopq
invalidate requests. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B3H 04H SNOOPQ_REQUESTS
_OUTSTANDING.COD
E

Counts weighted cycles of snoopq
requests for code. Counter 0 only.

Use cmask=1 to
count cycles not
empty.

B4H 01H SNOOPQ_REQUESTS.
CODE

Counts the number of snoop code
requests.

B4H 02H SNOOPQ_REQUESTS.
DATA

Counts the number of snoop data
requests.

B4H 04H SNOOPQ_REQUESTS.
INVALIDATE

Counts the number of snoop
invalidate requests.

B7H 01H OFF_CORE_RESPONS
E_0

see Section 30.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”

Requires
programming
MSR 01A6H

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-88 Vol. 3B

PERFORMANCE-MONITORING EVENTS
B8H 01H SNOOP_RESPONSE.H
IT

Counts HIT snoop response sent by
this thread in response to a snoop
request.

B8H 02H SNOOP_RESPONSE.H
ITE

Counts HIT E snoop response sent
by this thread in response to a
snoop request.

B8H 04H SNOOP_RESPONSE.H
ITM

Counts HIT M snoop response sent
by this thread in response to a
snoop request.

BBH 01H OFF_CORE_RESPONS
E_1

see Section 30.6.1.3, “Off-core
Response Performance Monitoring
in the Processor Core”

Use MSR 01A7H

C0H 01H INST_RETIRED.ANY_
P

See Table A-1
Notes: INST_RETIRED.ANY is
counted by a designated fixed
counter. INST_RETIRED.ANY_P is
counted by a programmable counter
and is an architectural performance
event. Event is supported if
CPUID.A.EBX[1] = 0.

Counting:
Faulting
executions of
GETSEC/VM
entry/VM
Exit/MWait will
not count as
retired
instructions.

C0H 02H INST_RETIRED.X87 Counts the number of floating point
computational operations retired:
floating point computational
operations executed by the assist
handler and sub-operations of
complex floating point instructions
like transcendental instructions.

C0H 04H INST_RETIRED.MMX Counts the number of retired: MMX
instructions.

C2H 01H UOPS_RETIRED.ANY Counts the number of micro-ops
retired, (macro-fused=1, micro-
fused=2, others=1; maximum count
of 8 per cycle). Most instructions are
composed of one or two micro-ops.
Some instructions are decoded into
longer sequences such as repeat
instructions, floating point
transcendental instructions, and
assists.

Use cmask=1 and
invert to count
active cycles or
stalled cycles

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-89

PERFORMANCE-MONITORING EVENTS
C2H 02H UOPS_RETIRED.RETI
RE_SLOTS

Counts the number of retirement
slots used each cycle

C2H 04H UOPS_RETIRED.MAC
RO_FUSED

Counts number of macro-fused uops
retired.

C3H 01H MACHINE_CLEARS.CY
CLES

Counts the cycles machine clear is
asserted.

C3H 02H MACHINE_CLEARS.M
EM_ORDER

Counts the number of machine
clears due to memory order
conflicts.

C3H 04H MACHINE_CLEARS.S
MC

Counts the number of times that a
program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors. The modified cache line
is written back to the L2 and
L3caches.

C4H 00H BR_INST_RETIRED.A
LL_BRANCHES

Branch instructions at retirement See Table A-1

C4H 01H BR_INST_RETIRED.C
ONDITIONAL

Counts the number of conditional
branch instructions retired.

C4H 02H BR_INST_RETIRED.N
EAR_CALL

Counts the number of direct &
indirect near unconditional calls
retired.

C4H 04H BR_INST_RETIRED.A
LL_BRANCHES

Counts the number of branch
instructions retired.

C5H 00H BR_MISP_RETIRED.A
LL_BRANCHES

Mispredicted branch instructions at
retirement

See Table A-1

C5H 01H BR_MISP_RETIRED.C
ONDITIONAL

Counts mispredicted conditional
retired calls.

C5H 02H BR_MISP_RETIRED.N
EAR_CALL

Counts mispredicted direct &
indirect near unconditional retired
calls.

C5H 04H BR_MISP_RETIRED.A
LL_BRANCHES

Counts all mispredicted retired calls.

C7H 01H SSEX_UOPS_RETIRE
D.PACKED_SINGLE

Counts SIMD packed single-precision
floating point Uops retired.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-90 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C7H 02H SSEX_UOPS_RETIRE
D.SCALAR_SINGLE

Counts SIMD calar single-precision
floating point Uops retired.

C7H 04H SSEX_UOPS_RETIRE
D.PACKED_DOUBLE

Counts SIMD packed double-
precision floating point Uops retired.

C7H 08H SSEX_UOPS_RETIRE
D.SCALAR_DOUBLE

Counts SIMD scalar double-precision
floating point Uops retired.

C7H 10H SSEX_UOPS_RETIRE
D.VECTOR_INTEGER

Counts 128-bit SIMD vector integer
Uops retired.

C8H 20H ITLB_MISS_RETIRED Counts the number of retired
instructions that missed the ITLB
when the instruction was fetched.

CBH 01H MEM_LOAD_RETIRED
.L1D_HIT

Counts number of retired loads that
hit the L1 data cache.

CBH 02H MEM_LOAD_RETIRED
.L2_HIT

Counts number of retired loads that
hit the L2 data cache.

CBH 04H MEM_LOAD_RETIRED
.L3_UNSHARED_HIT

Counts number of retired loads that
hit their own, unshared lines in the
L3 cache.

CBH 08H MEM_LOAD_RETIRED
.OTHER_CORE_L2_HI
T_HITM

Counts number of retired loads that
hit in a sibling core's L2 (on die core).
Since the L3 is inclusive of all cores
on the package, this is an L3 hit. This
counts both clean or modified hits.

CBH 10H MEM_LOAD_RETIRED
.L3_MISS

Counts number of retired loads that
miss the L3 cache. The load was
satisfied by a remote socket, local
memory or an IOH.

CBH 40H MEM_LOAD_RETIRED
.HIT_LFB

Counts number of retired loads that
miss the L1D and the address is
located in an allocated line fill buffer
and will soon be committed to cache.
This is counting secondary L1D
misses.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-91

PERFORMANCE-MONITORING EVENTS
CBH 80H MEM_LOAD_RETIRED
.DTLB_MISS

Counts the number of retired loads
that missed the DTLB. The DTLB
miss is not counted if the load
operation causes a fault. This event
counts loads from cacheable
memory only. The event does not
count loads by software prefetches.
Counts both primary and secondary
misses to the TLB.

CCH 01H FP_MMX_TRANS.TO
_FP

Counts the first floating-point
instruction following any MMX
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 02H FP_MMX_TRANS.TO
_MMX

Counts the first MMX instruction
following a floating-point
instruction. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

CCH 03H FP_MMX_TRANS.AN
Y

Counts all transitions from floating
point to MMX instructions and from
MMX instructions to floating point
instructions. You can use this event
to estimate the penalties for the
transitions between floating-point
and MMX technology states.

D0H 01H MACRO_INSTS.DECO
DED

Counts the number of instructions
decoded, (but not necessarily
executed or retired).

D1H 01H UOPS_DECODED.STA
LL_CYCLES

Counts the cycles of decoder stalls.
INV=1, Cmask= 1

D1H 02H UOPS_DECODED.MS Counts the number of Uops decoded
by the Microcode Sequencer, MS.
The MS delivers uops when the
instruction is more than 4 uops long
or a microcode assist is occurring.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-92 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D1H 04H UOPS_DECODED.ESP
_FOLDING

Counts number of stack pointer
(ESP) instructions decoded: push ,
pop , call , ret, etc. ESP instructions
do not generate a Uop to increment
or decrement ESP. Instead, they
update an ESP_Offset register that
keeps track of the delta to the
current value of the ESP register.

D1H 08H UOPS_DECODED.ESP
_SYNC

Counts number of stack pointer
(ESP) sync operations where an ESP
instruction is corrected by adding
the ESP offset register to the
current value of the ESP register.

D2H 01H RAT_STALLS.FLAGS Counts the number of cycles during
which execution stalled due to
several reasons, one of which is a
partial flag register stall. A partial
register stall may occur when two
conditions are met: 1) an instruction
modifies some, but not all, of the
flags in the flag register and 2) the
next instruction, which depends on
flags, depends on flags that were
not modified by this instruction.

D2H 02H RAT_STALLS.REGIST
ERS

This event counts the number of
cycles instruction execution latency
became longer than the defined
latency because the instruction
used a register that was partially
written by previous instruction.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-93

PERFORMANCE-MONITORING EVENTS
D2H 04H RAT_STALLS.ROB_RE
AD_PORT

Counts the number of cycles when
ROB read port stalls occurred, which
did not allow new micro-ops to enter
the out-of-order pipeline. Note that,
at this stage in the pipeline,
additional stalls may occur at the
same cycle and prevent the stalled
micro-ops from entering the pipe. In
such a case, micro-ops retry
entering the execution pipe in the
next cycle and the ROB-read port
stall is counted again.

D2H 08H RAT_STALLS.SCOREB
OARD

Counts the cycles where we stall
due to microarchitecturally required
serialization. Microcode
scoreboarding stalls.

D2H 0FH RAT_STALLS.ANY Counts all Register Allocation Table
stall cycles due to: Cycles when ROB
read port stalls occurred, which did
not allow new micro-ops to enter
the execution pipe. Cycles when
partial register stalls occurred
Cycles when flag stalls occurred
Cycles floating-point unit (FPU)
status word stalls occurred. To count
each of these conditions separately
use the events:
RAT_STALLS.ROB_READ_PORT,
RAT_STALLS.PARTIAL,
RAT_STALLS.FLAGS, and
RAT_STALLS.FPSW.

D4H 01H SEG_RENAME_STALL
S

Counts the number of stall cycles
due to the lack of renaming
resources for the ES, DS, FS, and GS
segment registers. If a segment is
renamed but not retired and a
second update to the same segment
occurs, a stall occurs in the front-
end of the pipeline until the
renamed segment retires.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-94 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D5H 01H ES_REG_RENAMES Counts the number of times the ES
segment register is renamed.

DBH 01H UOP_UNFUSION Counts unfusion events due to
floating point exception to a fused
uop.

E0H 01H BR_INST_DECODED Counts the number of branch
instructions decoded.

E5H 01H BPU_MISSED_CALL_
RET

Counts number of times the Branch
Prediciton Unit missed predicting a
call or return branch.

E6H 01H BACLEAR.CLEAR Counts the number of times the
front end is resteered, mainly when
the Branch Prediction Unit cannot
provide a correct prediction and this
is corrected by the Branch Address
Calculator at the front end. This can
occur if the code has many branches
such that they cannot be consumed
by the BPU. Each BACLEAR asserted
by the BAC generates approximately
an 8 cycle bubble in the instruction
fetch pipeline. The effect on total
execution time depends on the
surrounding code.

E6H 02H BACLEAR.BAD_TARG
ET

Counts number of Branch Address
Calculator clears (BACLEAR)
asserted due to conditional branch
instructions in which there was a
target hit but the direction was
wrong. Each BACLEAR asserted by
the BAC generates approximately an
8 cycle bubble in the instruction
fetch pipeline.

E8H 01H BPU_CLEARS.EARLY Counts early (normal) Branch
Prediction Unit clears: BPU predicted
a taken branch after incorrectly
assuming that it was not taken.

The BPU clear
leads to 2 cycle
bubble in the
Front End.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-95

PERFORMANCE-MONITORING EVENTS
E8H 02H BPU_CLEARS.LATE Counts late Branch Prediction Unit
clears due to Most Recently Used
conflicts. The PBU clear leads to a 3
cycle bubble in the Front End.

ECH 01H THREAD_ACTIVE Counts cycles threads are active.

F0H 01H L2_TRANSACTIONS.L
OAD

Counts L2 load operations due to
HW prefetch or demand loads.

F0H 02H L2_TRANSACTIONS.
RFO

Counts L2 RFO operations due to
HW prefetch or demand RFOs.

F0H 04H L2_TRANSACTIONS.I
FETCH

Counts L2 instruction fetch
operations due to HW prefetch or
demand ifetch.

F0H 08H L2_TRANSACTIONS.
PREFETCH

Counts L2 prefetch operations.

F0H 10H L2_TRANSACTIONS.L
1D_WB

Counts L1D writeback operations to
the L2.

F0H 20H L2_TRANSACTIONS.
FILL

Counts L2 cache line fill operations
due to load, RFO, L1D writeback or
prefetch.

F0H 40H L2_TRANSACTIONS.
WB

Counts L2 writeback operations to
the L3.

F0H 80H L2_TRANSACTIONS.
ANY

Counts all L2 cache operations.

F1H 02H L2_LINES_IN.S_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the S
(shared) state.

F1H 04H L2_LINES_IN.E_STAT
E

Counts the number of cache lines
allocated in the L2 cache in the E
(exclusive) state.

F1H 07H L2_LINES_IN.ANY Counts the number of cache lines
allocated in the L2 cache.

F2H 01H L2_LINES_OUT.DEMA
ND_CLEAN

Counts L2 clean cache lines evicted
by a demand request.

F2H 02H L2_LINES_OUT.DEMA
ND_DIRTY

Counts L2 dirty (modified) cache
lines evicted by a demand request.

F2H 04H L2_LINES_OUT.PREF
ETCH_CLEAN

Counts L2 clean cache line evicted
by a prefetch request.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-96 Vol. 3B

PERFORMANCE-MONITORING EVENTS
F2H 08H L2_LINES_OUT.PREF
ETCH_DIRTY

Counts L2 modified cache line
evicted by a prefetch request.

F2H 0FH L2_LINES_OUT.ANY Counts all L2 cache lines evicted for
any reason.

F4H 04H SQ_MISC.LRU_HINTS Counts number of Super Queue LRU
hints sent to L3.

F4H 10H SQ_MISC.SPLIT_LOCK Counts the number of SQ lock splits
across a cache line.

F6H 01H SQ_FULL_STALL_CY
CLES

Counts cycles the Super Queue is
full. Neither of the threads on this
core will be able to access the
uncore.

F7H 01H FP_ASSIST.ALL Counts the number of floating point
operations executed that required
micro-code assist intervention.
Assists are required in the following
cases: SSE instructions, (Denormal
input when the DAZ flag is off or
Underflow result when the FTZ flag
is off): x87 instructions, (NaN or
denormal are loaded to a register or
used as input from memory, Division
by 0 or Underflow output).

F7H 02H FP_ASSIST.OUTPUT Counts number of floating point
micro-code assist when the output
value (destination register) is invalid.

F7H 04H FP_ASSIST.INPUT Counts number of floating point
micro-code assist when the input
value (one of the source operands to
an FP instruction) is invalid.

FDH 01H SIMD_INT_64.PACKE
D_MPY

Counts number of SID integer 64 bit
packed multiply operations.

FDH 02H SIMD_INT_64.PACKE
D_SHIFT

Counts number of SID integer 64 bit
packed shift operations.

FDH 04H SIMD_INT_64.PACK Counts number of SID integer 64 bit
pack operations.

FDH 08H SIMD_INT_64.UNPAC
K

Counts number of SID integer 64 bit
unpack operations.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-97

PERFORMANCE-MONITORING EVENTS
Non-architectural Performance monitoring events of the uncore sub-system for
Processors with CPUID signature of DisplayFamily_DisplayModel 06_25H, 06_2CH,
and 06_1FH support performance events listed in Table A-7.

FDH 10H SIMD_INT_64.PACKE
D_LOGICAL

Counts number of SID integer 64 bit
logical operations.

FDH 20H SIMD_INT_64.PACKE
D_ARITH

Counts number of SID integer 64 bit
arithmetic operations.

FDH 40H SIMD_INT_64.SHUFF
LE_MOVE

Counts number of SID integer 64 bit
shift or move operations.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

00H 01H UNC_GQ_CYCLES_FU
LL.READ_TRACKER

Uncore cycles Global Queue read
tracker is full.

00H 02H UNC_GQ_CYCLES_FU
LL.WRITE_TRACKER

Uncore cycles Global Queue write
tracker is full.

00H 04H UNC_GQ_CYCLES_FU
LL.PEER_PROBE_TR
ACKER

Uncore cycles Global Queue peer
probe tracker is full. The peer probe
tracker queue tracks snoops from the
IOH and remote sockets.

01H 01H UNC_GQ_CYCLES_NO
T_EMPTY.READ_TRA
CKER

Uncore cycles were Global Queue read
tracker has at least one valid entry.

01H 02H UNC_GQ_CYCLES_NO
T_EMPTY.WRITE_TR
ACKER

Uncore cycles were Global Queue
write tracker has at least one valid
entry.

01H 04H UNC_GQ_CYCLES_NO
T_EMPTY.PEER_PRO
BE_TRACKER

Uncore cycles were Global Queue peer
probe tracker has at least one valid
entry. The peer probe tracker queue
tracks IOH and remote socket snoops.

Table A-6. Non-Architectural Performance Events In the Processor Core for Processors
Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-98 Vol. 3B

PERFORMANCE-MONITORING EVENTS
02H 01H UNC_GQ_OCCUPANC
Y.READ_TRACKER

Increments the number of queue
entries (code read, data read, and
RFOs) in the tread tracker. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 01H UNC_GQ_ALLOC.REA
D_TRACKER

Counts the number of tread tracker
allocate to deallocate entries. The GQ
read tracker allocate to deallocate
occupancy count is divided by the
count to obtain the average read
tracker latency.

03H 02H UNC_GQ_ALLOC.RT_
L3_MISS

Counts the number GQ read tracker
entries for which a full cache line read
has missed the L3. The GQ read
tracker L3 miss to fill occupancy count
is divided by this count to obtain the
average cache line read L3 miss
latency. The latency represents the
time after which the L3 has
determined that the cache line has
missed. The time between a GQ read
tracker allocation and the L3
determining that the cache line has
missed is the average L3 hit latency.
The total L3 cache line read miss
latency is the hit latency + L3 miss
latency.

03H 04H UNC_GQ_ALLOC.RT_
TO_L3_RESP

Counts the number of GQ read tracker
entries that are allocated in the read
tracker queue that hit or miss the L3.
The GQ read tracker L3 hit occupancy
count is divided by this count to
obtain the average L3 hit latency.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-99

PERFORMANCE-MONITORING EVENTS
03H 08H UNC_GQ_ALLOC.RT_
TO_RTID_ACQUIRED

Counts the number of GQ read tracker
entries that are allocated in the read
tracker, have missed in the L3 and
have not acquired a Request
Transaction ID. The GQ read tracker
L3 miss to RTID acquired occupancy
count is divided by this count to
obtain the average latency for a read
L3 miss to acquire an RTID.

03H 10H UNC_GQ_ALLOC.WT_
TO_RTID_ACQUIRED

Counts the number of GQ write
tracker entries that are allocated in
the write tracker, have missed in the
L3 and have not acquired a Request
Transaction ID. The GQ write tracker
L3 miss to RTID occupancy count is
divided by this count to obtain the
average latency for a write L3 miss to
acquire an RTID.

03H 20H UNC_GQ_ALLOC.WRI
TE_TRACKER

Counts the number of GQ write
tracker entries that are allocated in
the write tracker queue that miss the
L3. The GQ write tracker occupancy
count is divided by the this count to
obtain the average L3 write miss
latency.

03H 40H UNC_GQ_ALLOC.PEE
R_PROBE_TRACKER

Counts the number of GQ peer probe
tracker (snoop) entries that are
allocated in the peer probe tracker
queue that miss the L3. The GQ peer
probe occupancy count is divided by
this count to obtain the average L3
peer probe miss latency.

04H 01H UNC_GQ_DATA.FROM
_QPI

Cycles Global Queue Quickpath
Interface input data port is busy
importing data from the Quickpath
Interface. Each cycle the input port
can transfer 8 or 16 bytes of data.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-100 Vol. 3B

PERFORMANCE-MONITORING EVENTS
04H 02H UNC_GQ_DATA.FROM
_QMC

Cycles Global Queue Quickpath
Memory Interface input data port is
busy importing data from the
Quickpath Memory Interface. Each
cycle the input port can transfer 8 or
16 bytes of data.

04H 04H UNC_GQ_DATA.FROM
_L3

Cycles GQ L3 input data port is busy
importing data from the Last Level
Cache. Each cycle the input port can
transfer 32 bytes of data.

04H 08H UNC_GQ_DATA.FROM
_CORES_02

Cycles GQ Core 0 and 2 input data
port is busy importing data from
processor cores 0 and 2. Each cycle
the input port can transfer 32 bytes
of data.

04H 10H UNC_GQ_DATA.FROM
_CORES_13

Cycles GQ Core 1 and 3 input data
port is busy importing data from
processor cores 1 and 3. Each cycle
the input port can transfer 32 bytes
of data.

05H 01H UNC_GQ_DATA.TO_Q
PI_QMC

Cycles GQ QPI and QMC output data
port is busy sending data to the
Quickpath Interface or Quickpath
Memory Interface. Each cycle the
output port can transfer 32 bytes of
data.

05H 02H UNC_GQ_DATA.TO_L
3

Cycles GQ L3 output data port is busy
sending data to the Last Level Cache.
Each cycle the output port can
transfer 32 bytes of data.

05H 04H UNC_GQ_DATA.TO_C
ORES

Cycles GQ Core output data port is
busy sending data to the Cores. Each
cycle the output port can transfer 32
bytes of data.

06H 01H UNC_SNP_RESP_TO_
LOCAL_HOME.I_STAT
E

Number of snoop responses to the
local home that L3 does not have the
referenced cache line.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-101

PERFORMANCE-MONITORING EVENTS
06H 02H UNC_SNP_RESP_TO_
LOCAL_HOME.S_STA
TE

Number of snoop responses to the
local home that L3 has the referenced
line cached in the S state.

06H 04H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_S
_STATE

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the local home in the
S state.

06H 08H UNC_SNP_RESP_TO_
LOCAL_HOME.FWD_I
_STATE

Number of responses to read
invalidate snoops to the local home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the local home in the M
state.

06H 10H UNC_SNP_RESP_TO_
LOCAL_HOME.CONFLI
CT

Number of conflict snoop responses
sent to the local home.

06H 20H UNC_SNP_RESP_TO_
LOCAL_HOME.WB

Number of responses to code or data
read snoops to the local home that
the L3 has the referenced line cached
in the M state.

07H 01H UNC_SNP_RESP_TO_
REMOTE_HOME.I_ST
ATE

Number of snoop responses to a
remote home that L3 does not have
the referenced cache line.

07H 02H UNC_SNP_RESP_TO_
REMOTE_HOME.S_ST
ATE

Number of snoop responses to a
remote home that L3 has the
referenced line cached in the S state.

07H 04H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_S_STATE

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced cache line
in the E state. The L3 cache line state
is changed to the S state and the line
is forwarded to the remote home in
the S state.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-102 Vol. 3B

PERFORMANCE-MONITORING EVENTS
07H 08H UNC_SNP_RESP_TO_
REMOTE_HOME.FWD
_I_STATE

Number of responses to read
invalidate snoops to a remote home
that the L3 has the referenced cache
line in the M state. The L3 cache line
state is invalidated and the line is
forwarded to the remote home in the
M state.

07H 10H UNC_SNP_RESP_TO_
REMOTE_HOME.CON
FLICT

Number of conflict snoop responses
sent to the local home.

07H 20H UNC_SNP_RESP_TO_
REMOTE_HOME.WB

Number of responses to code or data
read snoops to a remote home that
the L3 has the referenced line cached
in the M state.

07H 24H UNC_SNP_RESP_TO_
REMOTE_HOME.HITM

Number of HITM snoop responses to a
remote home

08H 01H UNC_L3_HITS.READ Number of code read, data read and
RFO requests that hit in the L3

08H 02H UNC_L3_HITS.WRITE Number of writeback requests that
hit in the L3. Writebacks from the
cores will always result in L3 hits due
to the inclusive property of the L3.

08H 04H UNC_L3_HITS.PROBE Number of snoops from IOH or remote
sockets that hit in the L3.

08H 03H UNC_L3_HITS.ANY Number of reads and writes that hit
the L3.

09H 01H UNC_L3_MISS.READ Number of code read, data read and
RFO requests that miss the L3.

09H 02H UNC_L3_MISS.WRITE Number of writeback requests that
miss the L3. Should always be zero as
writebacks from the cores will always
result in L3 hits due to the inclusive
property of the L3.

09H 04H UNC_L3_MISS.PROBE Number of snoops from IOH or remote
sockets that miss the L3.

09H 03H UNC_L3_MISS.ANY Number of reads and writes that miss
the L3.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-103

PERFORMANCE-MONITORING EVENTS
0AH 01H UNC_L3_LINES_IN.M
_STATE

Counts the number of L3 lines
allocated in M state. The only time a
cache line is allocated in the M state is
when the line was forwarded in M
state is forwarded due to a Snoop
Read Invalidate Own request.

0AH 02H UNC_L3_LINES_IN.E_
STATE

Counts the number of L3 lines
allocated in E state.

0AH 04H UNC_L3_LINES_IN.S_
STATE

Counts the number of L3 lines
allocated in S state.

0AH 08H UNC_L3_LINES_IN.F_
STATE

Counts the number of L3 lines
allocated in F state.

0AH 0FH UNC_L3_LINES_IN.A
NY

Counts the number of L3 lines
allocated in any state.

0BH 01H UNC_L3_LINES_OUT.
M_STATE

Counts the number of L3 lines
victimized that were in the M state.
When the victim cache line is in M
state, the line is written to its home
cache agent which can be either local
or remote.

0BH 02H UNC_L3_LINES_OUT.
E_STATE

Counts the number of L3 lines
victimized that were in the E state.

0BH 04H UNC_L3_LINES_OUT.
S_STATE

Counts the number of L3 lines
victimized that were in the S state.

0BH 08H UNC_L3_LINES_OUT.
I_STATE

Counts the number of L3 lines
victimized that were in the I state.

0BH 10H UNC_L3_LINES_OUT.
F_STATE

Counts the number of L3 lines
victimized that were in the F state.

0BH 1FH UNC_L3_LINES_OUT.
ANY

Counts the number of L3 lines
victimized in any state.

0CH 01H UNC_GQ_SNOOP.GOT
O_S

Counts the number of remote snoops
that have requested a cache line be
set to the S state.

0CH 02H UNC_GQ_SNOOP.GOT
O_I

Counts the number of remote snoops
that have requested a cache line be
set to the I state.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-104 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_E

Counts the number of remote snoops
that have requested a cache line be
set to the S state from E state.

Requires
writing MSR
301H with
mask = 2H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_F

Counts the number of remote snoops
that have requested a cache line be
set to the S state from F (forward)
state.

Requires
writing MSR
301H with
mask = 8H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_M

Counts the number of remote snoops
that have requested a cache line be
set to the S state from M state.

Requires
writing MSR
301H with
mask = 1H

0CH 04H UNC_GQ_SNOOP.GOT
O_S_HIT_S

Counts the number of remote snoops
that have requested a cache line be
set to the S state from S state.

Requires
writing MSR
301H with
mask = 4H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_E

Counts the number of remote snoops
that have requested a cache line be
set to the I state from E state.

Requires
writing MSR
301H with
mask = 2H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_F

Counts the number of remote snoops
that have requested a cache line be
set to the I state from F (forward)
state.

Requires
writing MSR
301H with
mask = 8H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_M

Counts the number of remote snoops
that have requested a cache line be
set to the I state from M state.

Requires
writing MSR
301H with
mask = 1H

0CH 08H UNC_GQ_SNOOP.GOT
O_I_HIT_S

Counts the number of remote snoops
that have requested a cache line be
set to the I state from S state.

Requires
writing MSR
301H with
mask = 4H

20H 01H UNC_QHL_REQUEST
S.IOH_READS

Counts number of Quickpath Home
Logic read requests from the IOH.

20H 02H UNC_QHL_REQUEST
S.IOH_WRITES

Counts number of Quickpath Home
Logic write requests from the IOH.

20H 04H UNC_QHL_REQUEST
S.REMOTE_READS

Counts number of Quickpath Home
Logic read requests from a remote
socket.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-105

PERFORMANCE-MONITORING EVENTS
20H 08H UNC_QHL_REQUEST
S.REMOTE_WRITES

Counts number of Quickpath Home
Logic write requests from a remote
socket.

20H 10H UNC_QHL_REQUEST
S.LOCAL_READS

Counts number of Quickpath Home
Logic read requests from the local
socket.

20H 20H UNC_QHL_REQUEST
S.LOCAL_WRITES

Counts number of Quickpath Home
Logic write requests from the local
socket.

21H 01H UNC_QHL_CYCLES_F
ULL.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH are full.

21H 02H UNC_QHL_CYCLES_F
ULL.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
are full.

21H 04H UNC_QHL_CYCLES_F
ULL.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker
are full.

22H 01H UNC_QHL_CYCLES_N
OT_EMPTY.IOH

Counts uclk cycles all entries in the
Quickpath Home Logic IOH is busy.

22H 02H UNC_QHL_CYCLES_N
OT_EMPTY.REMOTE

Counts uclk cycles all entries in the
Quickpath Home Logic remote tracker
is busy.

22H 04H UNC_QHL_CYCLES_N
OT_EMPTY.LOCAL

Counts uclk cycles all entries in the
Quickpath Home Logic local tracker is
busy.

23H 01H UNC_QHL_OCCUPAN
CY.IOH

QHL IOH tracker allocate to deallocate
read occupancy.

23H 02H UNC_QHL_OCCUPAN
CY.REMOTE

QHL remote tracker allocate to
deallocate read occupancy.

23H 04H UNC_QHL_OCCUPAN
CY.LOCAL

QHL local tracker allocate to
deallocate read occupancy.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-106 Vol. 3B

PERFORMANCE-MONITORING EVENTS
24H 02H UNC_QHL_ADDRESS
_CONFLICTS.2WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
2 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

24H 04H UNC_QHL_ADDRESS
_CONFLICTS.3WAY

Counts number of QHL Active Address
Table (AAT) entries that saw a max of
3 conflicts. The AAT is a structure that
tracks requests that are in conflict.
The requests themselves are in the
home tracker entries. The count is
reported when an AAT entry
deallocates.

25H 01H UNC_QHL_CONFLICT
_CYCLES.IOH

Counts cycles the Quickpath Home
Logic IOH Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 02H UNC_QHL_CONFLICT
_CYCLES.REMOTE

Counts cycles the Quickpath Home
Logic Remote Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be in
conflict.

25H 04H UNC_QHL_CONFLICT
_CYCLES.LOCAL

Counts cycles the Quickpath Home
Logic Local Tracker contains two or
more requests with an address
conflict. A max of 3 requests can be
in conflict.

26H 01H UNC_QHL_TO_QMC_
BYPASS

Counts number or requests to the
Quickpath Memory Controller that
bypass the Quickpath Home Logic. All
local accesses can be bypassed. For
remote requests, only read requests
can be bypassed.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-107

PERFORMANCE-MONITORING EVENTS
28H 01H UNC_QMC_ISOC_FUL
L.READ.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous read
requests.

28H 02H UNC_QMC_ISOC_FUL
L.READ.CH1

Counts cycles all the entries in the
DRAM channel 1high priority queue
are occupied with isochronous read
requests.

28H 04H UNC_QMC_ISOC_FUL
L.READ.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous read
requests.

28H 08H UNC_QMC_ISOC_FUL
L.WRITE.CH0

Counts cycles all the entries in the
DRAM channel 0 high priority queue
are occupied with isochronous write
requests.

28H 10H UNC_QMC_ISOC_FUL
L.WRITE.CH1

Counts cycles all the entries in the
DRAM channel 1 high priority queue
are occupied with isochronous write
requests.

28H 20H UNC_QMC_ISOC_FUL
L.WRITE.CH2

Counts cycles all the entries in the
DRAM channel 2 high priority queue
are occupied with isochronous write
requests.

29H 01H UNC_QMC_BUSY.REA
D.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 0.

29H 02H UNC_QMC_BUSY.REA
D.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 1.

29H 04H UNC_QMC_BUSY.REA
D.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding read request to DRAM
channel 2.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-108 Vol. 3B

PERFORMANCE-MONITORING EVENTS
29H 08H UNC_QMC_BUSY.WRI
TE.CH0

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 0.

29H 10H UNC_QMC_BUSY.WRI
TE.CH1

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 1.

29H 20H UNC_QMC_BUSY.WRI
TE.CH2

Counts cycles where Quickpath
Memory Controller has at least 1
outstanding write request to DRAM
channel 2.

2AH 01H UNC_QMC_OCCUPAN
CY.CH0

IMC channel 0 normal read request
occupancy.

2AH 02H UNC_QMC_OCCUPAN
CY.CH1

IMC channel 1 normal read request
occupancy.

2AH 04H UNC_QMC_OCCUPAN
CY.CH2

IMC channel 2 normal read request
occupancy.

2AH 07H UNC_QMC_OCCUPAN
CY.ANY

Normal read request occupancy for
any channel.

2BH 01H UNC_QMC_ISSOC_OC
CUPANCY.CH0

IMC channel 0 issoc read request
occupancy.

2BH 02H UNC_QMC_ISSOC_OC
CUPANCY.CH1

IMC channel 1 issoc read request
occupancy.

2BH 04H UNC_QMC_ISSOC_OC
CUPANCY.CH2

IMC channel 2 issoc read request
occupancy.

2BH 07H UNC_QMC_ISSOC_RE
ADS.ANY

IMC issoc read request occupancy.

2CH 01H UNC_QMC_NORMAL_
READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 medium
and low priority read requests. The
QMC channel 0 normal read
occupancy divided by this count
provides the average QMC channel 0
read latency.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-109

PERFORMANCE-MONITORING EVENTS
2CH 02H UNC_QMC_NORMAL_
READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 medium
and low priority read requests. The
QMC channel 1 normal read
occupancy divided by this count
provides the average QMC channel 1
read latency.

2CH 04H UNC_QMC_NORMAL_
READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 medium
and low priority read requests. The
QMC channel 2 normal read
occupancy divided by this count
provides the average QMC channel 2
read latency.

2CH 07H UNC_QMC_NORMAL_
READS.ANY

Counts the number of Quickpath
Memory Controller medium and low
priority read requests. The QMC
normal read occupancy divided by this
count provides the average QMC read
latency.

2DH 01H UNC_QMC_HIGH_PRI
ORITY_READS.CH0

Counts the number of Quickpath
Memory Controller channel 0 high
priority isochronous read requests.

2DH 02H UNC_QMC_HIGH_PRI
ORITY_READS.CH1

Counts the number of Quickpath
Memory Controller channel 1 high
priority isochronous read requests.

2DH 04H UNC_QMC_HIGH_PRI
ORITY_READS.CH2

Counts the number of Quickpath
Memory Controller channel 2 high
priority isochronous read requests.

2DH 07H UNC_QMC_HIGH_PRI
ORITY_READS.ANY

Counts the number of Quickpath
Memory Controller high priority
isochronous read requests.

2EH 01H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
0

Counts the number of Quickpath
Memory Controller channel 0 critical
priority isochronous read requests.

2EH 02H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
1

Counts the number of Quickpath
Memory Controller channel 1 critical
priority isochronous read requests.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-110 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2EH 04H UNC_QMC_CRITICAL_
PRIORITY_READS.CH
2

Counts the number of Quickpath
Memory Controller channel 2 critical
priority isochronous read requests.

2EH 07H UNC_QMC_CRITICAL_
PRIORITY_READS.AN
Y

Counts the number of Quickpath
Memory Controller critical priority
isochronous read requests.

2FH 01H UNC_QMC_WRITES.F
ULL.CH0

Counts number of full cache line
writes to DRAM channel 0.

2FH 02H UNC_QMC_WRITES.F
ULL.CH1

Counts number of full cache line
writes to DRAM channel 1.

2FH 04H UNC_QMC_WRITES.F
ULL.CH2

Counts number of full cache line
writes to DRAM channel 2.

2FH 07H UNC_QMC_WRITES.F
ULL.ANY

Counts number of full cache line
writes to DRAM.

2FH 08H UNC_QMC_WRITES.P
ARTIAL.CH0

Counts number of partial cache line
writes to DRAM channel 0.

2FH 10H UNC_QMC_WRITES.P
ARTIAL.CH1

Counts number of partial cache line
writes to DRAM channel 1.

2FH 20H UNC_QMC_WRITES.P
ARTIAL.CH2

Counts number of partial cache line
writes to DRAM channel 2.

2FH 38H UNC_QMC_WRITES.P
ARTIAL.ANY

Counts number of partial cache line
writes to DRAM.

30H 01H UNC_QMC_CANCEL.C
H0

Counts number of DRAM channel 0
cancel requests.

30H 02H UNC_QMC_CANCEL.C
H1

Counts number of DRAM channel 1
cancel requests.

30H 04H UNC_QMC_CANCEL.C
H2

Counts number of DRAM channel 2
cancel requests.

30H 07H UNC_QMC_CANCEL.A
NY

Counts number of DRAM cancel
requests.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-111

PERFORMANCE-MONITORING EVENTS
31H 01H UNC_QMC_PRIORITY
_UPDATES.CH0

Counts number of DRAM channel 0
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 02H UNC_QMC_PRIORITY
_UPDATES.CH1

Counts number of DRAM channel 1
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 04H UNC_QMC_PRIORITY
_UPDATES.CH2

Counts number of DRAM channel 2
priority updates. A priority update
occurs when an ISOC high or critical
request is received by the QHL and
there is a matching request with
normal priority that has already been
issued to the QMC. In this instance,
the QHL will send a priority update to
QMC to expedite the request.

31H 07H UNC_QMC_PRIORITY
_UPDATES.ANY

Counts number of DRAM priority
updates. A priority update occurs
when an ISOC high or critical request
is received by the QHL and there is a
matching request with normal priority
that has already been issued to the
QMC. In this instance, the QHL will
send a priority update to QMC to
expedite the request.

32H 01H UNC_IMC_RETRY.CH
0

Counts number of IMC DRAM channel
0 retries. DRAM retry only occurs
when configured in RAS mode.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-112 Vol. 3B

PERFORMANCE-MONITORING EVENTS
32H 02H UNC_IMC_RETRY.CH
1

Counts number of IMC DRAM channel
1 retries. DRAM retry only occurs
when configured in RAS mode.

32H 04H UNC_IMC_RETRY.CH
2

Counts number of IMC DRAM channel
2 retries. DRAM retry only occurs
when configured in RAS mode.

32H 07H UNC_IMC_RETRY.AN
Y

Counts number of IMC DRAM retries
from any channel. DRAM retry only
occurs when configured in RAS mode.

33H 01H UNC_QHL_FRC_ACK_
CNFLTS.IOH

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the IOH.

33H 02H UNC_QHL_FRC_ACK_
CNFLTS.REMOTE

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the remote
home.

33H 04H UNC_QHL_FRC_ACK_
CNFLTS.LOCAL

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic to the local
home.

33H 07H UNC_QHL_FRC_ACK_
CNFLTS.ANY

Counts number of Force Acknowledge
Conflict messages sent by the
Quickpath Home Logic.

34H 01H UNC_QHL_SLEEPS.IO
H_ORDER

Counts number of occurrences a
request was put to sleep due to IOH
ordering (write after read) conflicts.
While in the sleep state, the request is
not eligible to be scheduled to the
QMC.

34H 02H UNC_QHL_SLEEPS.R
EMOTE_ORDER

Counts number of occurrences a
request was put to sleep due to
remote socket ordering (write after
read) conflicts. While in the sleep
state, the request is not eligible to be
scheduled to the QMC.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-113

PERFORMANCE-MONITORING EVENTS
34H 04H UNC_QHL_SLEEPS.L
OCAL_ORDER

Counts number of occurrences a
request was put to sleep due to local
socket ordering (write after read)
conflicts. While in the sleep state, the
request is not eligible to be scheduled
to the QMC.

34H 08H UNC_QHL_SLEEPS.IO
H_CONFLICT

Counts number of occurrences a
request was put to sleep due to IOH
address conflicts. While in the sleep
state, the request is not eligible to be
scheduled to the QMC.

34H 10H UNC_QHL_SLEEPS.R
EMOTE_CONFLICT

Counts number of occurrences a
request was put to sleep due to
remote socket address conflicts. While
in the sleep state, the request is not
eligible to be scheduled to the QMC.

34H 20H UNC_QHL_SLEEPS.L
OCAL_CONFLICT

Counts number of occurrences a
request was put to sleep due to local
socket address conflicts. While in the
sleep state, the request is not eligible
to be scheduled to the QMC.

35H 01H UNC_ADDR_OPCODE
_MATCH.IOH

Counts number of requests from the
IOH, address/opcode of request is
qualified by mask value written to
MSR 396H. The following mask values
are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-114 Vol. 3B

PERFORMANCE-MONITORING EVENTS
35H 02H UNC_ADDR_OPCODE
_MATCH.REMOTE

Counts number of requests from the
remote socket, address/opcode of
request is qualified by mask value
written to MSR 396H. The following
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

35H 04H UNC_ADDR_OPCODE
_MATCH.LOCAL

Counts number of requests from the
local socket, address/opcode of
request is qualified by mask value
written to MSR 396H. The following
mask values are supported:

0: NONE

40000000_00000000H:RSPFWDI

40001A00_00000000H:RSPFWDS

40001D00_00000000H:RSPIWB

Match
opcode/addres
s by writing
MSR 396H
with mask
supported
mask value

40H 01H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_0

Counts cycles the Quickpath outbound
link 0 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 02H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_0

Counts cycles the Quickpath outbound
link 0 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-115

PERFORMANCE-MONITORING EVENTS
40H 04H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_0

Counts cycles the Quickpath outbound
link 0 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 08H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.HO
ME.LINK_1

Counts cycles the Quickpath outbound
link 1 HOME virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 10H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.SNO
OP.LINK_1

Counts cycles the Quickpath outbound
link 1 SNOOP virtual channel is stalled
due to lack of a VNA and VN0 credit.
Note that this event does not filter
out when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

40H 20H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.NDR
.LINK_1

Counts cycles the Quickpath outbound
link 1 non-data response virtual
channel is stalled due to lack of a VNA
and VN0 credit. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

40H 07H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-116 Vol. 3B

PERFORMANCE-MONITORING EVENTS
40H 38H UNC_QPI_TX_STALL
ED_SINGLE_FLIT.LIN
K_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of a VNA and VN0 credit. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 01H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

41H 02H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 04H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_0

Counts cycles the Quickpath outbound
link 0 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 08H UNC_QPI_TX_STALL
ED_MULTI_FLIT.DRS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Data ResponSe virtual channel
is stalled due to lack of VNA and VN0
credits. Note that this event does not
filter out when a flit would not have
been selected for arbitration because
another virtual channel is getting
arbitrated.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-117

PERFORMANCE-MONITORING EVENTS
41H 10H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCB.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Bypass virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 20H UNC_QPI_TX_STALL
ED_MULTI_FLIT.NCS.
LINK_1

Counts cycles the Quickpath outbound
link 1 Non-Coherent Standard virtual
channel is stalled due to lack of VNA
and VN0 credits. Note that this event
does not filter out when a flit would
not have been selected for arbitration
because another virtual channel is
getting arbitrated.

41H 07H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_0

Counts cycles the Quickpath outbound
link 0 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

41H 38H UNC_QPI_TX_STALL
ED_MULTI_FLIT.LINK
_1

Counts cycles the Quickpath outbound
link 1 virtual channels are stalled due
to lack of VNA and VN0 credits. Note
that this event does not filter out
when a flit would not have been
selected for arbitration because
another virtual channel is getting
arbitrated.

42H 01H UNC_QPI_TX_HEADE
R.FULL.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is full.

42H 02H UNC_QPI_TX_HEADE
R.BUSY.LINK_0

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 0 is busy.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-118 Vol. 3B

PERFORMANCE-MONITORING EVENTS
42H 04H UNC_QPI_TX_HEADE
R.FULL.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is full.

42H 08H UNC_QPI_TX_HEADE
R.BUSY.LINK_1

Number of cycles that the header
buffer in the Quickpath Interface
outbound link 1 is busy.

43H 01H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_0

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 0 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

43H 02H UNC_QPI_RX_NO_PP
T_CREDIT.STALLS.LIN
K_1

Number of cycles that snoop packets
incoming to the Quickpath Interface
link 1 are stalled and not sent to the
GQ because the GQ Peer Probe
Tracker (PPT) does not have any
available entries.

60H 01H UNC_DRAM_OPEN.C
H0

Counts number of DRAM Channel 0
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 02H UNC_DRAM_OPEN.C
H1

Counts number of DRAM Channel 1
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

60H 04H UNC_DRAM_OPEN.C
H2

Counts number of DRAM Channel 2
open commands issued either for read
or write. To read or write data, the
referenced DRAM page must first be
opened.

61H 01H UNC_DRAM_PAGE_C
LOSE.CH0

DRAM channel 0 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-119

PERFORMANCE-MONITORING EVENTS
61H 02H UNC_DRAM_PAGE_C
LOSE.CH1

DRAM channel 1 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

61H 04H UNC_DRAM_PAGE_C
LOSE.CH2

DRAM channel 2 command issued to
CLOSE a page due to page idle timer
expiration. Closing a page is done by
issuing a precharge.

62H 01H UNC_DRAM_PAGE_M
ISS.CH0

Counts the number of precharges
(PRE) that were issued to DRAM
channel 0 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 02H UNC_DRAM_PAGE_M
ISS.CH1

Counts the number of precharges
(PRE) that were issued to DRAM
channel 1 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

62H 04H UNC_DRAM_PAGE_M
ISS.CH2

Counts the number of precharges
(PRE) that were issued to DRAM
channel 2 because there was a page
miss. A page miss refers to a situation
in which a page is currently open and
another page from the same bank
needs to be opened. The new page
experiences a page miss. Closing of
the old page is done by issuing a
precharge.

63H 01H UNC_DRAM_READ_C
AS.CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-120 Vol. 3B

PERFORMANCE-MONITORING EVENTS
63H 02H UNC_DRAM_READ_C
AS.AUTOPRE_CH0

Counts the number of times a read
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

63H 04H UNC_DRAM_READ_C
AS.CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1.

63H 08H UNC_DRAM_READ_C
AS.AUTOPRE_CH1

Counts the number of times a read
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

63H 10H UNC_DRAM_READ_C
AS.CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2.

63H 20H UNC_DRAM_READ_C
AS.AUTOPRE_CH2

Counts the number of times a read
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

64H 01H UNC_DRAM_WRITE_
CAS.CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0.

64H 02H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH0

Counts the number of times a write
CAS command was issued on DRAM
channel 0 where the command issued
used the auto-precharge (auto page
close) mode.

64H 04H UNC_DRAM_WRITE_
CAS.CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1.

64H 08H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH1

Counts the number of times a write
CAS command was issued on DRAM
channel 1 where the command issued
used the auto-precharge (auto page
close) mode.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-121

PERFORMANCE-MONITORING EVENTS
64H 10H UNC_DRAM_WRITE_
CAS.CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2.

64H 20H UNC_DRAM_WRITE_
CAS.AUTOPRE_CH2

Counts the number of times a write
CAS command was issued on DRAM
channel 2 where the command issued
used the auto-precharge (auto page
close) mode.

65H 01H UNC_DRAM_REFRES
H.CH0

Counts number of DRAM channel 0
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 02H UNC_DRAM_REFRES
H.CH1

Counts number of DRAM channel 1
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

65H 04H UNC_DRAM_REFRES
H.CH2

Counts number of DRAM channel 2
refresh commands. DRAM loses data
content over time. In order to keep
correct data content, the data values
have to be refreshed periodically.

66H 01H UNC_DRAM_PRE_AL
L.CH0

Counts number of DRAM Channel 0
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

66H 02H UNC_DRAM_PRE_AL
L.CH1

Counts number of DRAM Channel 1
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-122 Vol. 3B

PERFORMANCE-MONITORING EVENTS
66H 04H UNC_DRAM_PRE_AL
L.CH2

Counts number of DRAM Channel 2
precharge-all (PREALL) commands
that close all open pages in a rank.
PREALL is issued when the DRAM
needs to be refreshed or needs to go
into a power down mode.

67H 01H UNC_DRAM_THERM
AL_THROTTLED

Uncore cycles DRAM was throttled
due to its temperature being above
the thermal throttling threshold.

80H 01H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_0

Cycles that the PCU records that core
0 is above the thermal throttling
threshold temperature.

80H 02H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_1

Cycles that the PCU records that core
1 is above the thermal throttling
threshold temperature.

80H 04H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_2

Cycles that the PCU records that core
2 is above the thermal throttling
threshold temperature.

80H 08H UNC_THERMAL_THR
OTTLING_TEMP.CORE
_3

Cycles that the PCU records that core
3 is above the thermal throttling
threshold temperature.

81H 01H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_0

Cycles that the PCU records that core
0 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 02H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_1

Cycles that the PCU records that core
1 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 04H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_2

Cycles that the PCU records that core
2 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

81H 08H UNC_THERMAL_THR
OTTLED_TEMP.CORE
_3

Cycles that the PCU records that core
3 is in the power throttled state due
to core’s temperature being above the
thermal throttling threshold.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
Vol. 3B A-123

PERFORMANCE-MONITORING EVENTS
82H 01H UNC_PROCHOT_ASS
ERTION

Number of system assertions of
PROCHOT indicating the entire
processor has exceeded the thermal
limit.

83H 01H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_0

Cycles that the PCU records that core
0 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 02H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_1

Cycles that the PCU records that core
1 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 04H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_2

Cycles that the PCU records that core
2 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

83H 08H UNC_THERMAL_THR
OTTLING_PROCHOT.C
ORE_3

Cycles that the PCU records that core
3 is a low power state due to the
system asserting PROCHOT the entire
processor has exceeded the thermal
limit.

84H 01H UNC_TURBO_MODE.
CORE_0

Uncore cycles that core 0 is operating
in turbo mode.

84H 02H UNC_TURBO_MODE.
CORE_1

Uncore cycles that core 1 is operating
in turbo mode.

84H 04H UNC_TURBO_MODE.
CORE_2

Uncore cycles that core 2 is operating
in turbo mode.

84H 08H UNC_TURBO_MODE.
CORE_3

Uncore cycles that core 3 is operating
in turbo mode.

85H 02H UNC_CYCLES_UNHAL
TED_L3_FLL_ENABL
E

Uncore cycles that at least one core is
unhalted and all L3 ways are enabled.

86H 01H UNC_CYCLES_UNHAL
TED_L3_FLL_DISABL
E

Uncore cycles that at least one core is
unhalted and all L3 ways are disabled.

Table A-7. Non-Architectural Performance Events In the Processor Uncore for
Processors Based on Intel Microarchitecture Code Name Westmere

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment
A-124 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A.5 PERFORMANCE MONITORING EVENTS FOR
INTEL® XEON® PROCESSOR 5200, 5400 SERIES
AND INTEL® CORE™2 EXTREME PROCESSORS QX
9000 SERIES

Processors based on the Enhanced Intel Core microarchitecture support the architec-
tural and non-architectural performance-monitoring events listed in Table A-1 and
Table A-10. In addition, they also support the following non-architectural perfor-
mance-monitoring events listed in Table A-8. Fixed counters support the architecture
events defined in Table A-9.

A.6 PERFORMANCE MONITORING EVENTS FOR
INTEL® XEON® PROCESSOR 3000, 3200, 5100,
5300 SERIES AND INTEL® CORE™2 DUO
PROCESSORS

Processors based on the Intel Core microarchitecture support architectural and non-
architectural performance-monitoring events.

Fixed-function performance counters are introduced first on processors based on
Intel Core microarchitecture. Table A-9 lists pre-defined performance events that can
be counted using fixed-function performance counters.

Table A-8. Non-Architectural Performance Events for Processors Based on Enhanced
Intel Core Microarchitecture

Event
Num.

Umask
Value

Event Mask
Mnemonic Description Comment

C0H 08H INST_RETIRED.VM_H
OST

Instruction retired while in VMX
root operations.

D2H 10H RAT_STAALS.OTHER
_SERIALIZATION_ST
ALLS

This events counts the number of
stalls due to other RAT resource
serialization not counted by Umask
value 0FH.
Vol. 3B A-125

PERFORMANCE-MONITORING EVENTS
Table A-10 lists general-purpose non-architectural performance-monitoring events
supported in processors based on Intel Core microarchitecture. For convenience,

Table A-9. Fixed-Function Performance Counter
and Pre-defined Performance Events

Fixed-Function
Performance
Counter Address

Event Mask
Mnemonic Description

MSR_PERF_FIXED_
CTR0/IA32_PERF_FIX
ED_CTR0

309H Inst_Retired.Any This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers.

MSR_PERF_FIXED_
CTR1/IA32_PERF_FIX
ED_CTR1

30AH CPU_CLK_UNHALT
ED.CORE

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change from time
to time due to transitions associated with
Enhanced Intel SpeedStep Technology or
TM2. For this reason this event may have
a changing ratio with regards to time.

When the core frequency is constant, this
event can approximate elapsed time while
the core was not in halt state.

MSR_PERF_FIXED_
CTR2/IA32_PERF_FIX
ED_CTR2

30BH CPU_CLK_UNHALT
ED.REF

This event counts the number of
reference cycles when the core is not in a
halt state and not in a TM stop-clock state.
The core enters the halt state when it is
running the HLT instruction or the MWAIT
instruction.

This event is not affected by core
frequency changes (e.g., P states) but
counts at the same frequency as the time
stamp counter. This event can
approximate elapsed time while the core
was not in halt state and not in a TM stop-
clock state.

This event has a constant ratio with the
CPU_CLK_UNHALTED.BUS event.
A-126 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table A-10 also includes architectural events and describes minor model-specific
behavior where applicable. Software must use a general-purpose performance
counter to count events listed in Table A-10.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture

Event
Num

Umask
Value Event Name Definition

Description and
Comment

03H 02H LOAD_BLOCK.STA Loads blocked
by a preceding
store with
unknown
address

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to an
address that is not yet calculated. The
number of events is greater or equal to
the number of load operations that were
blocked.

If the load and the store are always to
different addresses, check why the
memory disambiguation mechanism is not
working. To avoid such blocks, increase the
distance between the store and the
following load so that the store address is
known at the time the load is dispatched.

03H 04H LOAD_BLOCK.STD Loads blocked
by a preceding
store with
unknown data

This event indicates that loads are blocked
by preceding stores. A load is blocked
when there is a preceding store to the
same address and the stored data value is
not yet known. The number of events is
greater or equal to the number of load
operations that were blocked.

To avoid such blocks, increase the distance
between the store and the dependant
load, so that the store data is known at
the time the load is dispatched.

03H 08H LOAD_BLOCK.
OVERLAP_STORE

Loads that
partially
overlap an
earlier store, or
4-Kbyte aliased
with a previous
store

This event indicates that loads are blocked
due to a variety of reasons. Some of the
triggers for this event are when a load is
blocked by a preceding store, in one of the
following:

• Some of the loaded byte locations are
written by the preceding store and
some are not.

• The load is from bytes written by the
preceding store, the store is aligned to
its size and either:
Vol. 3B A-127

PERFORMANCE-MONITORING EVENTS
• The load’s data size is one or two bytes
and it is not aligned to the store.

• The load’s data size is of four or eight
bytes and the load is misaligned.

• The load is from bytes written by the
preceding store, the store is misaligned
and the load is not aligned on the
beginning of the store.

• The load is split over an eight byte
boundary (excluding 16-byte loads).

• The load and store have the same
offset relative to the beginning of
different 4-KByte pages. This case is
also called 4-KByte aliasing.

• In all these cases the load is blocked
until after the blocking store retires and
the stored data is committed to the
cache hierarchy.

03H 10H LOAD_BLOCK.
UNTIL_RETIRE

Loads blocked
until retirement

This event indicates that load operations
were blocked until retirement. The number
of events is greater or equal to the
number of load operations that were
blocked.
This includes mainly uncacheable loads
and split loads (loads that cross the cache
line boundary) but may include other cases
where loads are blocked until retirement.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-128 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H 20H LOAD_BLOCK.L1D Loads blocked
by the L1 data
cache

This event indicates that loads are blocked
due to one or more reasons. Some
triggers for this event are:

• The number of L1 data cache misses
exceeds the maximum number of
outstanding misses supported by the
processor. This includes misses
generated as result of demand fetches,
software prefetches or hardware
prefetches.

• Cache line split loads.
• Partial reads, such as reads to un-

cacheable memory, I/O instructions and
more.

• A locked load operation is in progress.
The number of events is greater or
equal to the number of load operations
that were blocked.

04H 01H SB_DRAIN_
CYCLES

Cycles while
stores are
blocked due to
store buffer
drain

This event counts every cycle during
which the store buffer is draining. This
includes:

• Serializing operations such as CPUID
• Synchronizing operations such as XCHG
• Interrupt acknowledgment
• Other conditions, such as cache flushing

04H 02H STORE_BLOCK.
ORDER

Cycles while
store is waiting
for a preceding
store to be
globally
observed

This event counts the total duration, in
number of cycles, which stores are waiting
for a preceding stored cache line to be
observed by other cores.
This situation happens as a result of the
strong store ordering behavior, as defined
in “Memory Ordering,” Chapter 8, Intel® 64
and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The stall may occur and be noticeable if
there are many cases when a store either
misses the L1 data cache or hits a cache
line in the Shared state. If the store
requires a bus transaction to read the
cache line then the stall ends when snoop
response for the bus transaction arrives.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-129

PERFORMANCE-MONITORING EVENTS
04H 08H STORE_BLOCK.
SNOOP

A store is
blocked due to
a conflict with
an external or
internal snoop.

This event counts the number of cycles
the store port was used for snooping the
L1 data cache and a store was stalled by
the snoop. The store is typically
resubmitted one cycle later.

06H 00H SEGMENT_REG_
LOADS

Number of
segment
register loads

This event counts the number of segment
register load operations. Instructions that
load new values into segment registers
cause a penalty.

This event indicates performance issues in
16-bit code. If this event occurs
frequently, it may be useful to calculate
the number of instructions retired per
segment register load. If the resulting
calculation is low (on average a small
number of instructions are executed
between segment register loads), then the
code’s segment register usage should be
optimized.

As a result of branch misprediction, this
event is speculative and may include
segment register loads that do not
actually occur. However, most segment
register loads are internally serialized and
such speculative effects are minimized.

07H 00H SSE_PRE_EXEC.
NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
executed

This event counts the number of times the
SSE instruction prefetchNTA is executed.

This instruction prefetches the data to the
L1 data cache.

07H 01H SSE_PRE_EXEC.L1 Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
executed

This event counts the number of times the
SSE instruction prefetchT0 is executed.
This instruction prefetches the data to the
L1 data cache and L2 cache.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-130 Vol. 3B

PERFORMANCE-MONITORING EVENTS
07H 02H SSE_PRE_EXEC.L2 Streaming
SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
executed

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 are executed. These
instructions prefetch the data to the L2
cache.

07H 03H SSE_PRE_
EXEC.STORES

Streaming SIMD
Extensions
(SSE) Weakly-
ordered store
instructions
executed

This event counts the number of times
SSE non-temporal store instructions are
executed.

08H 01H DTLB_MISSES.
ANY

Memory
accesses that
missed the
DTLB

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses. The
count includes misses detected as a result
of speculative accesses.

Typically a high count for this event
indicates that the code accesses a large
number of data pages.

08H 02H DTLB_MISSES
.MISS_LD

DTLB misses
due to load
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to load operations.

This count includes misses detected as a
result of speculative accesses.

08H 04H DTLB_MISSES.L0_
MISS_LD

L0 DTLB misses
due to load
operations

This event counts the number of level 0
Data Table Lookaside Buffer (DTLB0)
misses due to load operations.

This count includes misses detected as a
result of speculative accesses. Loads that
miss that DTLB0 and hit the DTLB1 can
incur two-cycle penalty.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-131

PERFORMANCE-MONITORING EVENTS
08H 08H DTLB_MISSES.
MISS_ST

TLB misses due
to store
operations

This event counts the number of Data
Table Lookaside Buffer (DTLB) misses due
to store operations.

This count includes misses detected as a
result of speculative accesses. Address
translation for store operations is
performed in the DTLB1.

09H 01H MEMORY_
DISAMBIGUATION.
RESET

Memory
disambiguation
reset cycles

This event counts the number of cycles
during which memory disambiguation
misprediction occurs. As a result the
execution pipeline is cleaned and
execution of the mispredicted load
instruction and all succeeding instructions
restarts.

This event occurs when the data address
accessed by a load instruction, collides
infrequently with preceding stores, but
usually there is no collision. It happens
rarely, and may have a penalty of about 20
cycles.

09H 02H MEMORY_DISAMBI
GUATION.SUCCESS

Number of
loads
successfully
disambiguated.

This event counts the number of load
operations that were successfully
disambiguated. Loads are preceded by a
store with an unknown address, but they
are not blocked.

0CH 01H PAGE_WALKS
.COUNT

Number of
page-walks
executed

This event counts the number of page-
walks executed due to either a DTLB or
ITLB miss.

The page walk duration,
PAGE_WALKS.CYCLES, divided by number
of page walks is the average duration of a
page walk. The average can hint whether
most of the page-walks are satisfied by
the caches or cause an L2 cache miss.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-132 Vol. 3B

PERFORMANCE-MONITORING EVENTS
0CH 02H PAGE_WALKS.
CYCLES

Duration of
page-walks in
core cycles

This event counts the duration of page-
walks in core cycles. The paging mode in
use typically affects the duration of page
walks.

Page walk duration divided by number of
page walks is the average duration of
page-walks. The average can hint at
whether most of the page-walks are
satisfied by the caches or cause an L2
cache miss.

10H 00H FP_COMP_OPS
_EXE

Floating point
computational
micro-ops
executed

This event counts the number of floating
point computational micro-ops executed.

Use IA32_PMC0 only.

11H 00H FP_ASSIST Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. Assists are
required in the following cases:

• Streaming SIMD Extensions (SSE)
instructions:

• Denormal input when the DAZ
(Denormals Are Zeros) flag is off

• Underflow result when the FTZ (Flush
To Zero) flag is off

• X87 instructions:
• NaN or denormal are loaded to a

register or used as input from memory
• Division by 0
• Underflow output
Use IA32_PMC1 only.

12H 00H MUL Multiply
operations
executed

This event counts the number of multiply
operations executed. This includes integer
as well as floating point multiply
operations.

Use IA32_PMC1 only.

13H 00H DIV Divide
operations
executed

This event counts the number of divide
operations executed. This includes integer
divides, floating point divides and square-
root operations executed.

Use IA32_PMC1 only.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-133

PERFORMANCE-MONITORING EVENTS
14H 00H CYCLES_DIV
_BUSY

Cycles the
divider busy

This event counts the number of cycles
the divider is busy executing divide or
square root operations. The divide can be
integer, X87 or Streaming SIMD
Extensions (SSE). The square root
operation can be either X87 or SSE.

Use IA32_PMC0 only.

18H 00H IDLE_DURING
_DIV

Cycles the
divider is busy
and all other
execution units
are idle.

This event counts the number of cycles
the divider is busy (with a divide or a
square root operation) and no other
execution unit or load operation is in
progress.

Load operations are assumed to hit the L1
data cache. This event considers only
micro-ops dispatched after the divider
started operating.

Use IA32_PMC0 only.

19H 00H DELAYED_
BYPASS.FP

Delayed bypass
to FP operation

This event counts the number of times
floating point operations use data
immediately after the data was generated
by a non-floating point execution unit.
Such cases result in one penalty cycle due
to data bypass between the units.

Use IA32_PMC1 only.

19H 01H DELAYED_
BYPASS.SIMD

Delayed bypass
to SIMD
operation

This event counts the number of times
SIMD operations use data immediately
after the data was generated by a non-
SIMD execution unit. Such cases result in
one penalty cycle due to data bypass
between the units.

Use IA32_PMC1 only.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-134 Vol. 3B

PERFORMANCE-MONITORING EVENTS
19H 02H DELAYED_
BYPASS.LOAD

Delayed bypass
to load
operation

This event counts the number of delayed
bypass penalty cycles that a load
operation incurred.

When load operations use data
immediately after the data was generated
by an integer execution unit, they may
(pending on certain dynamic internal
conditions) incur one penalty cycle due to
delayed data bypass between the units.

Use IA32_PMC1 only.

21H See
Table
30-2

L2_ADS.(Core) Cycles L2
address bus is
in use

This event counts the number of cycles
the L2 address bus is being used for
accesses to the L2 cache or bus queue. It
can count occurrences for this core or both
cores.

23H See
Table
30-2

L2_DBUS_BUSY
_RD.(Core)

Cycles the L2
transfers data
to the core

This event counts the number of cycles
during which the L2 data bus is busy
transferring data from the L2 cache to the
core. It counts for all L1 cache misses (data
and instruction) that hit the L2 cache.

This event can count occurrences for this
core or both cores.

24H Com-
bined
mask
from
Table
30-2
and
Table
30-4

L2_LINES_IN.
(Core, Prefetch)

L2 cache
misses

This event counts the number of cache
lines allocated in the L2 cache. Cache lines
are allocated in the L2 cache as a result of
requests from the L1 data and instruction
caches and the L2 hardware prefetchers
to cache lines that are missing in the L2
cache.

This event can count occurrences for this
core or both cores. It can also count
demand requests and L2 hardware
prefetch requests together or separately.

25H See
Table
30-2

L2_M_LINES_IN.
(Core)

L2 cache line
modifications

This event counts whenever a modified
cache line is written back from the L1 data
cache to the L2 cache.

This event can count occurrences for this
core or both cores.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-135

PERFORMANCE-MONITORING EVENTS
26H See
Table
30-2
and
Table
30-4

L2_LINES_OUT.
(Core, Prefetch)

L2 cache lines
evicted

This event counts the number of L2 cache
lines evicted.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

27H See
Table
30-2
and
Table
30-4

L2_M_LINES_OUT.(
Core, Prefetch)

Modified lines
evicted from
the L2 cache

This event counts the number of L2
modified cache lines evicted. These lines
are written back to memory unless they
also exist in a modified-state in one of the
L1 data caches.

This event can count occurrences for this
core or both cores. It can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

28H Com-
bined
mask
from
Table
30-2
and
Table
30-5

L2_IFETCH.(Core,
Cache Line State)

L2 cacheable
instruction
fetch requests

This event counts the number of
instruction cache line requests from the
IFU. It does not include fetch requests
from uncacheable memory. It does not
include ITLB miss accesses.

This event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

29H Combin
ed mask
from
Table
30-2,
Table
30-4,
and
Table
30-5

L2_LD.(Core,
Prefetch, Cache
Line State)

L2 cache reads This event counts L2 cache read requests
coming from the L1 data cache and L2
prefetchers.

The event can count occurrences:

• for this core or both cores
• due to demand requests and L2

hardware prefetch requests together or
separately

• of accesses to cache lines at different
MESI states

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-136 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2AH See
Table
30-2
and
Table
30-5

L2_ST.(Core, Cache
Line State)

L2 store
requests

This event counts all store operations that
miss the L1 data cache and request the
data from the L2 cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2BH See
Table
30-2
and
Table
30-5

L2_LOCK.(Core,
Cache Line State)

L2 locked
accesses

This event counts all locked accesses to
cache lines that miss the L1 data cache.

The event can count occurrences for this
core or both cores. It can also count
accesses to cache lines at different MESI
states.

2EH See
Table
30-2,
Table
30-4,
and
Table
30-5

L2_RQSTS.(Core,
Prefetch, Cache
Line State)

L2 cache
requests

This event counts all completed L2 cache
requests. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, instruction fetches, and
all L2 hardware prefetch requests.

This event can count occurrences:

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately

• of accesses to cache lines at different
MESI states

2EH 41H L2_RQSTS.SELF.
DEMAND.I_STATE

L2 cache
demand
requests from
this core that
missed the L2

This event counts all completed L2 cache
demand requests from this core that miss
the L2 cache. This includes L1 data cache
reads, writes, and locked accesses, L1 data
prefetch requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache
demand
requests from
this core

This event counts all completed L2 cache
demand requests from this core. This
includes L1 data cache reads, writes, and
locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-137

PERFORMANCE-MONITORING EVENTS
30H See
Table
30-2,
Table
30-4,
and
Table
30-5

L2_REJECT_BUSQ.(
Core, Prefetch,
Cache Line State)

Rejected L2
cache requests

This event indicates that a pending L2
cache request that requires a bus
transaction is delayed from moving to the
bus queue. Some of the reasons for this
event are:

• The bus queue is full.
• The bus queue already holds an entry

for a cache line in the same set.
The number of events is greater or equal
to the number of requests that were
rejected.

• for this core or both cores.
• due to demand requests and L2

hardware prefetch requests together,
or separately.

• of accesses to cache lines at different
MESI states.

32H See
Table
30-2

L2_NO_REQ.(Core) Cycles no L2
cache requests
are pending

This event counts the number of cycles
that no L2 cache requests were pending
from a core. When using the BOTH_CORE
modifier, the event counts only if none of
the cores have a pending request. The
event counts also when one core is halted
and the other is not halted.

The event can count occurrences for this
core or both cores.

3AH 00H EIST_TRANS Number of
Enhanced Intel
SpeedStep
Technology
(EIST)
transitions

This event counts the number of
transitions that include a frequency
change, either with or without voltage
change. This includes Enhanced Intel
SpeedStep Technology (EIST) and TM2
transitions.

The event is incremented only while the
counting core is in C0 state. Since
transitions to higher-numbered CxE states
and TM2 transitions include a frequency
change or voltage transition, the event is
incremented accordingly.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-138 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3BH C0H THERMAL_TRIP Number of
thermal trips

This event counts the number of thermal
trips. A thermal trip occurs whenever the
processor temperature exceeds the
thermal trip threshold temperature.

Following a thermal trip, the processor
automatically reduces frequency and
voltage. The processor checks the
temperature every millisecond and returns
to normal when the temperature falls
below the thermal trip threshold
temperature.

3CH 00H CPU_CLK_
UNHALTED.
CORE_P

Core cycles
when core is
not halted

This event counts the number of core
cycles while the core is not in a halt state.
The core enters the halt state when it is
running the HLT instruction. This event is a
component in many key event ratios.

The core frequency may change due to
transitions associated with Enhanced Intel
SpeedStep Technology or TM2. For this
reason, this event may have a changing
ratio in regard to time.

When the core frequency is constant, this
event can give approximate elapsed time
while the core not in halt state.

This is an architectural performance event.

3CH 01H CPU_CLK_
UNHALTED.BUS

Bus cycles
when core is
not halted

This event counts the number of bus
cycles while the core is not in the halt
state. This event can give a measurement
of the elapsed time while the core was not
in the halt state. The core enters the halt
state when it is running the HLT
instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is
the maximum bus to processor frequency
ratio.

Non-halted bus cycles are a component in
many key event ratios.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-139

PERFORMANCE-MONITORING EVENTS
3CH 02H CPU_CLK_
UNHALTED.NO
_OTHER

Bus cycles
when core is
active and the
other is halted

This event counts the number of bus
cycles during which the core remains non-
halted and the other core on the processor
is halted.

This event can be used to determine the
amount of parallelism exploited by an
application or a system. Divide this event
count by the bus frequency to determine
the amount of time that only one core was
in use.

40H See
Table
30-5

L1D_CACHE_LD.
(Cache Line State)

L1 cacheable
data reads

This event counts the number of data
reads from cacheable memory. Locked
reads are not counted.

41H See
Table
30-5

L1D_CACHE_ST.
(Cache Line State)

L1 cacheable
data writes

This event counts the number of data
writes to cacheable memory. Locked
writes are not counted.

42H See
Table
30-5

L1D_CACHE_
LOCK.(Cache Line
State)

L1 data
cacheable
locked reads

This event counts the number of locked
data reads from cacheable memory.

42H 10H L1D_CACHE_
LOCK_DURATION

Duration of L1
data cacheable
locked
operation

This event counts the number of cycles
during which any cache line is locked by
any locking instruction.

Locking happens at retirement and
therefore the event does not occur for
instructions that are speculatively
executed. Locking duration is shorter than
locked instruction execution duration.

43H 01H L1D_ALL_REF All references
to the L1 data
cache

This event counts all references to the L1
data cache, including all loads and stores
with any memory types.

The event counts memory accesses only
when they are actually performed. For
example, a load blocked by unknown store
address and later performed is only
counted once.

The event includes non-cacheable
accesses, such as I/O accesses.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-140 Vol. 3B

PERFORMANCE-MONITORING EVENTS
43H 02H L1D_ALL_
CACHE_REF

L1 Data
cacheable
reads and
writes

This event counts the number of data
reads and writes from cacheable memory,
including locked operations.

This event is a sum of:

• L1D_CACHE_LD.MESI
• L1D_CACHE_ST.MESI
• L1D_CACHE_LOCK.MESI

45H 0FH L1D_REPL Cache lines
allocated in the
L1 data cache

This event counts the number of lines
brought into the L1 data cache.

46H 00H L1D_M_REPL Modified cache
lines allocated
in the L1 data
cache

This event counts the number of modified
lines brought into the L1 data cache.

47H 00H L1D_M_EVICT Modified cache
lines evicted
from the L1
data cache

This event counts the number of modified
lines evicted from the L1 data cache,
whether due to replacement or by snoop
HITM intervention.

48H 00H L1D_PEND_
MISS

Total number of
outstanding L1
data cache
misses at any
cycle

This event counts the number of
outstanding L1 data cache misses at any
cycle. An L1 data cache miss is
outstanding from the cycle on which the
miss is determined until the first chunk of
data is available. This event counts:

• all cacheable demand requests
• L1 data cache hardware prefetch

requests
• requests to write through memory
• requests to write combine memory
Uncacheable requests are not counted.
The count of this event divided by the
number of L1 data cache misses,
L1D_REPL, is the average duration in core
cycles of an L1 data cache miss.

49H 01H L1D_SPLIT.LOADS Cache line split
loads from the
L1 data cache

This event counts the number of load
operations that span two cache lines. Such
load operations are also called split loads.
Split load operations are executed at
retirement.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-141

PERFORMANCE-MONITORING EVENTS
49H 02H L1D_SPLIT.
STORES

Cache line split
stores to the
L1 data cache

This event counts the number of store
operations that span two cache lines.

4BH 00H SSE_PRE_
MISS.NTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchNTA were
executed and missed all cache levels.

Due to speculation an executed instruction
might not retire. This instruction
prefetches the data to the L1 data cache.

4BH 01H SSE_PRE_
MISS.L1

Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT0 were
executed and missed all cache levels.

Due to speculation executed instruction
might not retire. The prefetchT0
instruction prefetches data to the L2
cache and L1 data cache.

4BH 02H SSE_PRE_
MISS.L2

Streaming SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
missing all
cache levels

This event counts the number of times the
SSE instructions prefetchT1 and
prefetchT2 were executed and missed all
cache levels.

Due to speculation, an executed
instruction might not retire. The
prefetchT1 and PrefetchNT2 instructions
prefetch data to the L2 cache.

4CH 00H LOAD_HIT_PRE Load
operations
conflicting with
a software
prefetch to the
same address

This event counts load operations sent to
the L1 data cache while a previous
Streaming SIMD Extensions (SSE) prefetch
instruction to the same cache line has
started prefetching but has not yet
finished.

4EH 10H L1D_PREFETCH.
REQUESTS

L1 data cache
prefetch
requests

This event counts the number of times the
L1 data cache requested to prefetch a
data cache line. Requests can be rejected
when the L2 cache is busy and
resubmitted later or lost.

All requests are counted, including those
that are rejected.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-142 Vol. 3B

PERFORMANCE-MONITORING EVENTS
60H See
Table
30-2
and
Table
30-3

BUS_REQUEST_
OUTSTANDING.
(Core and Bus
Agents)

Outstanding
cacheable data
read bus
requests
duration

This event counts the number of pending
full cache line read transactions on the bus
occurring in each cycle. A read transaction
is pending from the cycle it is sent on the
bus until the full cache line is received by
the processor.

The event counts only full-line cacheable
read requests from either the L1 data
cache or the L2 prefetchers. It does not
count Read for Ownership transactions,
instruction byte fetch transactions, or any
other bus transaction.

61H See
Table
30-3.

BUS_BNR_DRV.
(Bus Agents)

Number of Bus
Not Ready
signals
asserted

This event counts the number of Bus Not
Ready (BNR) signals that the processor
asserts on the bus to suspend additional
bus requests by other bus agents.

A bus agent asserts the BNR signal when
the number of data and snoop
transactions is close to the maximum that
the bus can handle. To obtain the number
of bus cycles during which the BNR signal
is asserted, multiply the event count by
two.

While this signal is asserted, new
transactions cannot be submitted on the
bus. As a result, transaction latency may
have higher impact on program
performance.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-143

PERFORMANCE-MONITORING EVENTS
62H See
Table
30-3

BUS_DRDY_
CLOCKS.(Bus
Agents)

Bus cycles
when data is
sent on the bus

This event counts the number of bus
cycles during which the DRDY (Data
Ready) signal is asserted on the bus. The
DRDY signal is asserted when data is sent
on the bus. With the 'THIS_AGENT' mask
this event counts the number of bus
cycles during which this agent (the
processor) writes data on the bus back to
memory or to other bus agents. This
includes all explicit and implicit data
writebacks, as well as partial writes.

With the 'ALL_AGENTS' mask, this event
counts the number of bus cycles during
which any bus agent sends data on the
bus. This includes all data reads and writes
on the bus.

63H See
Table
30-2
and
Table
30-3

BUS_LOCK_
CLOCKS.(Core and
Bus Agents)

Bus cycles
when a LOCK
signal asserted

This event counts the number of bus
cycles, during which the LOCK signal is
asserted on the bus. A LOCK signal is
asserted when there is a locked memory
access, due to:

• uncacheable memory
• locked operation that spans two cache

lines
• page-walk from an uncacheable page

table
Bus locks have a very high performance
penalty and it is highly recommended to
avoid such accesses.

64H See
Table
30-2

BUS_DATA_
RCV.(Core)

Bus cycles
while processor
receives data

This event counts the number of bus
cycles during which the processor is busy
receiving data.

65H See
Table
30-2
and
Table
30-3

BUS_TRANS_BRD.(
Core and Bus
Agents)

Burst read bus
transactions

This event counts the number of burst
read transactions including:

• L1 data cache read misses (and L1 data
cache hardware prefetches)

• L2 hardware prefetches by the DPL and
L2 streamer

• IFU read misses of cacheable lines.
It does not include RFO transactions.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-144 Vol. 3B

PERFORMANCE-MONITORING EVENTS
66H See
Table
30-2
and
Table
30-3.

BUS_TRANS_RFO.(
Core and Bus
Agents)

RFO bus
transactions

This event counts the number of Read For
Ownership (RFO) bus transactions, due to
store operations that miss the L1 data
cache and the L2 cache. It also counts RFO
bus transactions due to locked operations.

67H See
Table
30-2
and
Table
30-3.

BUS_TRANS_WB.
(Core and Bus
Agents)

Explicit
writeback bus
transactions

This event counts all explicit writeback bus
transactions due to dirty line evictions. It
does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
30-2
and
Table
30-3

BUS_TRANS_
IFETCH.(Core and
Bus Agents)

Instruction-
fetch bus
transactions

This event counts all instruction fetch full
cache line bus transactions.

69H See
Table
30-2
and
Table
30-3

BUS_TRANS_
INVAL.(Core and
Bus Agents)

Invalidate bus
transactions

This event counts all invalidate
transactions. Invalidate transactions are
generated when:

• A store operation hits a shared line in
the L2 cache.

• A full cache line write misses the L2
cache or hits a shared line in the L2
cache.

6AH See
Table
30-2
and
Table
30-3

BUS_TRANS_
PWR.(Core and Bus
Agents)

Partial write
bus transaction

This event counts partial write bus
transactions.

6BH See
Table
30-2
and
Table
30-3

BUS_TRANS
_P.(Core and Bus
Agents)

Partial bus
transactions

This event counts all (read and write)
partial bus transactions.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-145

PERFORMANCE-MONITORING EVENTS
6CH See
Table
30-2
and
Table
30-3

BUS_TRANS_IO.(C
ore and Bus
Agents)

IO bus
transactions

This event counts the number of
completed I/O bus transactions as a result
of IN and OUT instructions. The count does
not include memory mapped IO.

6DH See
Table
30-2
and
Table
30-3

BUS_TRANS_
DEF.(Core and Bus
Agents)

Deferred bus
transactions

This event counts the number of deferred
transactions.

6EH See
Table
30-2
and
Table
30-3

BUS_TRANS_
BURST.(Core and
Bus Agents)

Burst (full
cache-line) bus
transactions

This event counts burst (full cache line)
transactions including:

• Burst reads
• RFOs
• Explicit writebacks
• Write combine lines

6FH See
Table
30-2
and
Table
30-3

BUS_TRANS_
MEM.(Core and Bus
Agents)

Memory bus
transactions

This event counts all memory bus
transactions including:

• Burst transactions
• Partial reads and writes - invalidate

transactions
The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_IVAL.

70H See
Table
30-2
and
Table
30-3

BUS_TRANS_
ANY.(Core and Bus
Agents)

All bus
transactions

This event counts all bus transactions. This
includes:

• Memory transactions
• IO transactions (non memory-mapped)
• Deferred transaction completion
• Other less frequent transactions, such

as interrupts

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-146 Vol. 3B

PERFORMANCE-MONITORING EVENTS
77H See
Table
30-2
and
Table
30-6

EXT_SNOOP.
(Bus Agents, Snoop
Response)

External
snoops

This event counts the snoop responses to
bus transactions. Responses can be
counted separately by type and by bus
agent.

With the 'THIS_AGENT' mask, the event
counts snoop responses from this
processor to bus transactions sent by this
processor. With the 'ALL_AGENTS' mask
the event counts all snoop responses seen
on the bus.

78H See
Table
30-2
and
Table
30-7

CMP_SNOOP.(Core,
Snoop Type)

L1 data cache
snooped by
other core

This event counts the number of times the
L1 data cache is snooped for a cache line
that is needed by the other core in the
same processor. The cache line is either
missing in the L1 instruction or data
caches of the other core, or is available for
reading only and the other core wishes to
write the cache line.

The snoop operation may change the
cache line state. If the other core issued a
read request that hit this core in E state,
typically the state changes to S state in
this core. If the other core issued a read
for ownership request (due a write miss or
hit to S state) that hits this core's cache
line in E or S state, this typically results in
invalidation of the cache line in this core. If
the snoop hits a line in M state, the state is
changed at a later opportunity.

These snoops are performed through the
L1 data cache store port. Therefore,
frequent snoops may conflict with
extensive stores to the L1 data cache,
which may increase store latency and
impact performance.

7AH See
Table
30-3

BUS_HIT_DRV.

(Bus Agents)

HIT signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HIT# pin to signal HIT snoop response.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-147

PERFORMANCE-MONITORING EVENTS
7BH See
Table
30-3

BUS_HITM_DRV.

(Bus Agents)

HITM signal
asserted

This event counts the number of bus
cycles during which the processor drives
the HITM# pin to signal HITM snoop
response.

7DH See
Table
30-2

BUSQ_EMPTY.

(Core)

Bus queue
empty

This event counts the number of cycles
during which the core did not have any
pending transactions in the bus queue. It
also counts when the core is halted and
the other core is not halted.

This event can count occurrences for this
core or both cores.

7EH See
Table
30-2
and
Table
30-3

SNOOP_STALL_
DRV.(Core and Bus
Agents)

Bus stalled for
snoops

This event counts the number of times
that the bus snoop stall signal is asserted.
To obtain the number of bus cycles during
which snoops on the bus are prohibited,
multiply the event count by two.

During the snoop stall cycles, no new bus
transactions requiring a snoop response
can be initiated on the bus. A bus agent
asserts a snoop stall signal if it cannot
response to a snoop request within three
bus cycles.

7FH See
Table
30-2

BUS_IO_WAIT.
(Core)

IO requests
waiting in the
bus queue

This event counts the number of core
cycles during which IO requests wait in the
bus queue. With the SELF modifier this
event counts IO requests per core.

With the BOTH_CORE modifier, this event
increments by one for any cycle for which
there is a request from either core.

80H 00H L1I_READS Instruction
fetches

This event counts all instruction fetches,
including uncacheable fetches that bypass
the Instruction Fetch Unit (IFU).

81H 00H L1I_MISSES Instruction
Fetch Unit
misses

This event counts all instruction fetches
that miss the Instruction Fetch Unit (IFU)
or produce memory requests. This
includes uncacheable fetches.

An instruction fetch miss is counted only
once and not once for every cycle it is
outstanding.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-148 Vol. 3B

PERFORMANCE-MONITORING EVENTS
82H 02H ITLB.SMALL_MISS ITLB small page
misses

This event counts the number of
instruction fetches from small pages that
miss the ITLB.

82H 10H ITLB.LARGE_MISS ITLB large page
misses

This event counts the number of
instruction fetches from large pages that
miss the ITLB.

82H 40H ITLB.FLUSH ITLB flushes This event counts the number of ITLB
flushes. This usually happens upon CR3 or
CR0 writes, which are executed by the
operating system during process switches.

82H 12H ITLB.MISSES ITLB misses This event counts the number of
instruction fetches from either small or
large pages that miss the ITLB.

83H 02H INST_QUEUE.FULL Cycles during
which the
instruction
queue is full

This event counts the number of cycles
during which the instruction queue is full.
In this situation, the core front-end stops
fetching more instructions. This is an
indication of very long stalls in the back-
end pipeline stages.

86H 00H CYCLES_L1I_
MEM_STALLED

Cycles during
which
instruction
fetches stalled

This event counts the number of cycles for
which an instruction fetch stalls, including
stalls due to any of the following reasons:

• instruction Fetch Unit cache misses
• instruction TLB misses
• instruction TLB faults

87H 00H ILD_STALL Instruction
Length Decoder
stall cycles due
to a length
changing prefix

This event counts the number of cycles
during which the instruction length
decoder uses the slow length decoder.
Usually, instruction length decoding is
done in one cycle. When the slow decoder
is used, instruction decoding requires 6
cycles.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-149

PERFORMANCE-MONITORING EVENTS
The slow decoder is used in the following
cases:

• operand override prefix (66H)
preceding an instruction with
immediate data

• address override prefix (67H) preceding
an instruction with a modr/m in real, big
real, 16-bit protected or 32-bit
protected modes

To avoid instruction length decoding stalls,
generate code using imm8 or imm32
values instead of imm16 values. If you
must use an imm16 value, store the value
in a register using “mov reg, imm32” and
use the register format of the instruction.

88H 00H BR_INST_EXEC Branch
instructions
executed

This event counts all executed branches
(not necessarily retired). This includes only
instructions and not micro-op branches.

Frequent branching is not necessarily a
major performance issue. However
frequent branch mispredictions may be a
problem.

89H 00H BR_MISSP_EXEC Mispredicted
branch
instructions
executed

This event counts the number of
mispredicted branch instructions that
were executed.

8AH 00H BR_BAC_
MISSP_EXEC

Branch
instructions
mispredicted at
decoding

This event counts the number of branch
instructions that were mispredicted at
decoding.

8BH 00H BR_CND_EXEC Conditional
branch
instructions
executed.

This event counts the number of
conditional branch instructions executed,
but not necessarily retired.

8CH 00H BR_CND_
MISSP_EXEC

Mispredicted
conditional
branch
instructions
executed

This event counts the number of
mispredicted conditional branch
instructions that were executed.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-150 Vol. 3B

PERFORMANCE-MONITORING EVENTS
8DH 00H BR_IND_EXEC Indirect branch
instructions
executed

This event counts the number of indirect
branch instructions that were executed.

8EH 00H BR_IND_MISSP
_EXEC

Mispredicted
indirect branch
instructions
executed

This event counts the number of
mispredicted indirect branch instructions
that were executed.

8FH 00H BR_RET_EXEC RET
instructions
executed

This event counts the number of RET
instructions that were executed.

90H 00H BR_RET_
MISSP_EXEC

Mispredicted
RET
instructions
executed

This event counts the number of
mispredicted RET instructions that were
executed.

91H 00H BR_RET_BAC_
MISSP_EXEC

RET
instructions
executed
mispredicted at
decoding

This event counts the number of RET
instructions that were executed and were
mispredicted at decoding.

92H 00H BR_CALL_EXEC CALL
instructions
executed

This event counts the number of CALL
instructions executed.

93H 00H BR_CALL_
MISSP_EXEC

Mispredicted
CALL
instructions
executed

This event counts the number of
mispredicted CALL instructions that were
executed.

94H 00H BR_IND_CALL_
EXEC

Indirect CALL
instructions
executed

This event counts the number of indirect
CALL instructions that were executed.

97H 00H BR_TKN_
BUBBLE_1

Branch
predicted taken
with bubble 1

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-151

PERFORMANCE-MONITORING EVENTS
98H 00H BR_TKN_
BUBBLE_2

Branch
predicted taken
with bubble 2

The events BR_TKN_BUBBLE_1 and
BR_TKN_BUBBLE_2 together count the
number of times a taken branch prediction
incurred a one-cycle penalty. The penalty
incurs when:

• Too many taken branches are placed
together. To avoid this, unroll loops and
add a non-taken branch in the middle of
the taken sequence.

• The branch target is unaligned. To avoid
this, align the branch target.

A0H 00H RS_UOPS_
DISPATCHED

Micro-ops
dispatched for
execution

This event counts the number of micro-
ops dispatched for execution. Up to six
micro-ops can be dispatched in each cycle.

A1H 01H RS_UOPS_
DISPATCHED.PORT
0

Cycles micro-
ops dispatched
for execution
on port 0

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Issue Ports are
described in Intel® 64 and IA-32
Architectures Optimization Reference
Manual. Use IA32_PMC0 only.

A1H 02H RS_UOPS_
DISPATCHED.PORT
1

Cycles micro-
ops dispatched
for execution
on port 1

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 04H RS_UOPS_
DISPATCHED.PORT
2

Cycles micro-
ops dispatched
for execution
on port 2

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 08H RS_UOPS_
DISPATCHED.PORT
3

Cycles micro-
ops dispatched
for execution
on port 3

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-152 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A1H 10H RS_UOPS_
DISPATCHED.PORT
4

Cycles micro-
ops dispatched
for execution
on port 4

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

A1H 20H RS_UOPS_
DISPATCHED.PORT
5

Cycles micro-
ops dispatched
for execution
on port 5

This event counts the number of cycles for
which micro-ops dispatched for execution.
Each cycle, at most one micro-op can be
dispatched on the port. Use IA32_PMC0
only.

AAH 01H MACRO_INSTS.
DECODED

Instructions
decoded

This event counts the number of
instructions decoded (but not necessarily
executed or retired).

AAH 08H MACRO_INSTS.
CISC_DECODED

CISC
Instructions
decoded

This event counts the number of complex
instructions decoded. Complex instructions
usually have more than four micro-ops.
Only one complex instruction can be
decoded at a time.

ABH 01H ESP.SYNCH ESP register
content
synchron-
ization

This event counts the number of times
that the ESP register is explicitly used in
the address expression of a load or store
operation, after it is implicitly used, for
example by a push or a pop instruction.

ESP synch micro-op uses resources from
the rename pipe-stage and up to
retirement. The expected ratio of this
event divided by the number of ESP
implicit changes is 0,2. If the ratio is
higher, consider rearranging your code to
avoid ESP synchronization events.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-153

PERFORMANCE-MONITORING EVENTS
ABH 02H ESP.ADDITIONS ESP register
automatic
additions

This event counts the number of ESP
additions performed automatically by the
decoder. A high count of this event is good,
since each automatic addition performed
by the decoder saves a micro-op from the
execution units.

To maximize the number of ESP additions
performed automatically by the decoder,
choose instructions that implicitly use the
ESP, such as PUSH, POP, CALL, and RET
instructions whenever possible.

B0H 00H SIMD_UOPS_EXEC SIMD micro-ops
executed
(excluding
stores)

This event counts all the SIMD micro-ops
executed. It does not count MOVQ and
MOVD stores from register to memory.

B1H 00H SIMD_SAT_UOP_
EXEC

SIMD saturated
arithmetic
micro-ops
executed

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B3H 01H SIMD_UOP_
TYPE_EXEC.MUL

SIMD packed
multiply micro-
ops executed

This event counts the number of SIMD
packed multiply micro-ops executed.

B3H 02H SIMD_UOP_TYPE_
EXEC.SHIFT

SIMD packed
shift micro-ops
executed

This event counts the number of SIMD
packed shift micro-ops executed.

B3H 04H SIMD_UOP_TYPE_
EXEC.PACK

SIMD pack
micro-ops
executed

This event counts the number of SIMD
pack micro-ops executed.

B3H 08H SIMD_UOP_TYPE_
EXEC.UNPACK

SIMD unpack
micro-ops
executed

This event counts the number of SIMD
unpack micro-ops executed.

B3H 10H SIMD_UOP_TYPE_
EXEC.LOGICAL

SIMD packed
logical micro-
ops executed

This event counts the number of SIMD
packed logical micro-ops executed.

B3H 20H SIMD_UOP_TYPE_
EXEC.ARITHMETIC

SIMD packed
arithmetic
micro-ops
executed

This event counts the number of SIMD
packed arithmetic micro-ops executed.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-154 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions
retired

This event counts the number of
instructions that retire execution. For
instructions that consist of multiple micro-
ops, this event counts the retirement of
the last micro-op of the instruction. The
counter continue counting during
hardware interrupts, traps, and inside
interrupt handlers.

INST_RETIRED.ANY_P is an architectural
performance event.

C0H 01H INST_RETIRED.
LOADS

Instructions
retired, which
contain a load

This event counts the number of
instructions retired that contain a load
operation.

C0H 02H INST_RETIRED.
STORES

Instructions
retired, which
contain a store

This event counts the number of
instructions retired that contain a store
operation.

C0H 04H INST_RETIRED.
OTHER

Instructions
retired, with no
load or store
operation

This event counts the number of
instructions retired that do not contain a
load or a store operation.

C1H 01H X87_OPS_
RETIRED.FXCH

FXCH
instructions
retired

This event counts the number of FXCH
instructions retired. Modern compilers
generate more efficient code and are less
likely to use this instruction. If you obtain a
high count for this event consider
recompiling the code.

C1H FEH X87_OPS_
RETIRED.ANY

Retired
floating-point
computational
operations
(precise event)

This event counts the number of floating-
point computational operations retired. It
counts:

• floating point computational operations
executed by the assist handler

• sub-operations of complex floating-
point instructions like transcendental
instructions

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-155

PERFORMANCE-MONITORING EVENTS
This event does not count:

• floating-point computational operations
that cause traps or assists.

• floating-point loads and stores.
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C2H 01H UOPS_RETIRED.
LD_IND_BR

Fused load+op
or load+indirect
branch retired

This event counts the number of retired
micro-ops that fused a load with another
operation. This includes:

• Fusion of a load and an arithmetic
operation, such as with the following
instruction: ADD EAX, [EBX] where the
content of the memory location
specified by EBX register is loaded,
added to EXA register, and the result is
stored in EAX.

• Fusion of a load and a branch in an
indirect branch operation, such as with
the following instructions:

• JMP [RDI+200]
• RET
• Fusion decreases the number of micro-

ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor
resources effectively.

C2H 02H UOPS_RETIRED.
STD_STA

Fused store
address + data
retired

This event counts the number of store
address calculations that are fused with
store data emission into one micro-op.
Traditionally, each store operation
required two micro-ops.

This event counts fusion of retired micro-
ops only. Fusion decreases the number of
micro-ops in the processor pipeline. A high
value for this event count indicates that
the code is using the processor resources
effectively.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-156 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C2H 04H UOPS_RETIRED.
MACRO_FUSION

Retired
instruction
pairs fused into
one micro-op

This event counts the number of times
CMP or TEST instructions were fused with
a conditional branch instruction into one
micro-op. It counts fusion by retired micro-
ops only.

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code
uses the processor resources more
effectively.

C2H 07H UOPS_RETIRED.
FUSED

Fused micro-
ops retired

This event counts the total number of
retired fused micro-ops. The counts
include the following fusion types:

• Fusion of load operation with an
arithmetic operation or with an indirect
branch (counted by event
UOPS_RETIRED.LD_IND_BR)

• Fusion of store address and data
(counted by event
UOPS_RETIRED.STD_STA)

• Fusion of CMP or TEST instruction with
a conditional branch instruction
(counted by event
UOPS_RETIRED.MACRO_FUSION)

Fusion decreases the number of micro-ops
in the processor pipeline. A high value for
this event count indicates that the code is
using the processor resources effectively.

C2H 08H UOPS_RETIRED.
NON_FUSED

Non-fused
micro-ops
retired

This event counts the number of micro-
ops retired that were not fused.

C2H 0FH UOPS_RETIRED.
ANY

Micro-ops
retired

This event counts the number of micro-
ops retired. The processor decodes
complex macro instructions into a
sequence of simpler micro-ops. Most
instructions are composed of one or two
micro-ops.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-157

PERFORMANCE-MONITORING EVENTS
Some instructions are decoded into longer
sequences such as repeat instructions,
floating point transcendental instructions,
and assists. In some cases micro-op
sequences are fused or whole instructions
are fused into one micro-op.

See other UOPS_RETIRED events for
differentiating retired fused and non-
fused micro-ops.

C3H 01H MACHINE_
NUKES.SMC

Self-Modifying
Code detected

This event counts the number of times
that a program writes to a code section.
Self-modifying code causes a sever
penalty in all Intel 64 and IA-32
processors.

C3H 04H MACHINE_NUKES.
MEM_ORDER

Execution
pipeline restart
due to memory
ordering
conflict or
memory
disambiguation
misprediction

This event counts the number of times the
pipeline is restarted due to either multi-
threaded memory ordering conflicts or
memory disambiguation misprediction.

A multi-threaded memory ordering conflict
occurs when a store, which is executed in
another core, hits a load that is executed
out of order in this core but not yet retired.
As a result, the load needs to be restarted
to satisfy the memory ordering model.

See Chapter 8, “Multiple-Processor
Management” in the Intel® 64 and IA-32
Architectures Software Developer’s
Manual, Volume 3A.

To count memory disambiguation
mispredictions, use the event
MEMORY_DISAMBIGUATION.RESET.

C4H 00H BR_INST_RETIRED.
ANY

Retired branch
instructions

This event counts the number of branch
instructions retired. This is an architectural
performance event.

C4H 01H BR_INST_RETIRED.
PRED_NOT_
TAKEN

Retired branch
instructions
that were
predicted not-
taken

This event counts the number of branch
instructions retired that were correctly
predicted to be not-taken.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-158 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIRED.
MISPRED_NOT_
TAKEN

Retired branch
instructions
that were
mispredicted
not-taken

This event counts the number of branch
instructions retired that were
mispredicted and not-taken.

C4H 04H BR_INST_RETIRED.
PRED_TAKEN

Retired branch
instructions
that were
predicted taken

This event counts the number of branch
instructions retired that were correctly
predicted to be taken.

C4H 08H BR_INST_RETIRED.
MISPRED_TAKEN

Retired branch
instructions
that were
mispredicted
taken

This event counts the number of branch
instructions retired that were
mispredicted and taken.

C4H 0CH BR_INST_RETIRED.
TAKEN

Retired taken
branch
instructions

This event counts the number of branches
retired that were taken.

C5H 00H BR_INST_RETIRED.
MISPRED

Retired
mispredicted
branch
instructions.
(precise event)

This event counts the number of retired
branch instructions that were
mispredicted by the processor. A branch
misprediction occurs when the processor
predicts that the branch would be taken,
but it is not, or vice-versa.

This is an architectural performance event.

C6H 01H CYCLES_INT_
MASKED

Cycles during
which
interrupts are
disabled

This event counts the number of cycles
during which interrupts are disabled.

C6H 02H CYCLES_INT_
PENDING_AND
_MASKED

Cycles during
which
interrupts are
pending and
disabled

This event counts the number of cycles
during which there are pending interrupts
but interrupts are disabled.

C7H 01H SIMD_INST_
RETIRED.PACKED_
SINGLE

Retired SSE
packed-single
instructions

This event counts the number of SSE
packed-single instructions retired.

C7H 02H SIMD_INST_
RETIRED.SCALAR_
SINGLE

Retired SSE
scalar-single
instructions

This event counts the number of SSE
scalar-single instructions retired.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-159

PERFORMANCE-MONITORING EVENTS
C7H 04H SIMD_INST_
RETIRED.PACKED_
DOUBLE

Retired SSE2
packed-double
instructions

This event counts the number of SSE2
packed-double instructions retired.

C7H 08H SIMD_INST_
RETIRED.SCALAR_
DOUBLE

Retired SSE2
scalar-double
instructions

This event counts the number of SSE2
scalar-double instructions retired.

C7H 10H SIMD_INST_
RETIRED.VECTOR

Retired SSE2
vector integer
instructions

This event counts the number of SSE2
vector integer instructions retired.

C7H 1FH SIMD_INST_
RETIRED.ANY

Retired
Streaming SIMD
instructions
(precise event)

This event counts the overall number of
retired SIMD instructions that use XMM
registers. To count each type of SIMD
instruction separately, use the following
events:

• SIMD_INST_RETIRED.PACKED_SINGLE
• SIMD_INST_RETIRED.SCALAR_SINGLE
• SIMD_INST_RETIRED.PACKED_DOUBLE
• SIMD_INST_RETIRED.SCALAR_DOUBLE
• and SIMD_INST_RETIRED.VECTOR
When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

C8H 00H HW_INT_RCV Hardware
interrupts
received

This event counts the number of hardware
interrupts received by the processor.

C9H 00H ITLB_MISS_
RETIRED

Retired
instructions
that missed the
ITLB

This event counts the number of retired
instructions that missed the ITLB when
they were fetched.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-160 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_
INST_RETIRED.
PACKED_SINGLE

Retired
computational
SSE packed-
single
instructions

This event counts the number of
computational SSE packed-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_
INST_RETIRED.
SCALAR_SINGLE

Retired
computational
SSE scalar-
single
instructions

This event counts the number of
computational SSE scalar-single
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_
INST_RETIRED.
PACKED_DOUBLE

Retired
computational
SSE2 packed-
double
instructions

This event counts the number of
computational SSE2 packed-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

CAH 08H SIMD_COMP_INST_
RETIRED.SCALAR_
DOUBLE

Retired
computational
SSE2 scalar-
double
instructions

This event counts the number of
computational SSE2 scalar-double
instructions retired. Computational
instructions perform arithmetic
computations (for example: add, multiply
and divide).

Instructions that perform load and store
operations or logical operations, like XOR,
OR, and AND are not counted by this
event.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-161

PERFORMANCE-MONITORING EVENTS
CBH 01H MEM_LOAD_
RETIRED.L1D
_MISS

Retired loads
that miss the
L1 data cache
(precise event)

This event counts the number of retired
load operations that missed the L1 data
cache. This includes loads from cache lines
that are currently being fetched, due to a
previous L1 data cache miss to the same
cache line.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CBH 02H MEM_LOAD_
RETIRED.L1D_
LINE_MISS

L1 data cache
line missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L1 data cache
and send a request to the L2 cache to
fetch the missing cache line. That is the
missing cache line fetching has not yet
started.

The event count is equal to the number of
cache lines fetched from the L2 cache by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-162 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_
RETIRED.L2_MISS

Retired loads
that miss the
L2 cache
(precise event)

This event counts the number of retired
load operations that missed the L2 cache.

This event counts loads from cacheable
memory only. It does not count loads by
software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CBH 08H MEM_LOAD_
RETIRED.L2_LINE_
MISS

L2 cache line
missed by
retired loads
(precise event)

This event counts the number of load
operations that miss the L2 cache and
result in a bus request to fetch the missing
cache line. That is the missing cache line
fetching has not yet started.

This event count is equal to the number of
cache lines fetched from memory by
retired loads.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

The event might not be counted if the load
is blocked (see LOAD_BLOCK events).

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-163

PERFORMANCE-MONITORING EVENTS
CBH 10H MEM_LOAD_
RETIRED.DTLB_
MISS

Retired loads
that miss the
DTLB (precise
event)

This event counts the number of retired
loads that missed the DTLB. The DTLB
miss is not counted if the load operation
causes a fault.

This event counts loads from cacheable
memory only. The event does not count
loads by software prefetches.

When this event is captured with the
precise event mechanism, the collected
samples contain the address of the
instruction that was executed immediately
after the instruction that caused the
event.

Use IA32_PMC0 only.

CCH 01H FP_MMX_TRANS_
TO_MMX

Transitions
from Floating
Point to MMX
Instructions

This event counts the first MMX
instructions following a floating-point
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CCH 02H FP_MMX_TRANS_
TO_FP

Transitions
from MMX
Instructions to
Floating Point
Instructions

This event counts the first floating-point
instructions following any MMX
instruction. Use this event to estimate the
penalties for the transitions between
floating-point and MMX states.

CDH 00H SIMD_ASSIST SIMD assists
invoked

This event counts the number of SIMD
assists invoked. SIMD assists are invoked
when an EMMS instruction is executed,
changing the MMX state in the floating
point stack.

CEH 00H SIMD_INSTR_
RETIRED

SIMD
Instructions
retired

This event counts the number of retired
SIMD instructions that use MMX registers.

CFH 00H SIMD_SAT_INSTR_
RETIRED

Saturated
arithmetic
instructions
retired

This event counts the number of saturated
arithmetic SIMD instructions that retired.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-164 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D2H 01H RAT_STALLS.
ROB_READ_PORT

ROB read port
stalls cycles

This event counts the number of cycles
when ROB read port stalls occurred, which
did not allow new micro-ops to enter the
out-of-order pipeline.

Note that, at this stage in the pipeline,
additional stalls may occur at the same
cycle and prevent the stalled micro-ops
from entering the pipe. In such a case,
micro-ops retry entering the execution
pipe in the next cycle and the ROB-read-
port stall is counted again.

D2H 02H RAT_STALLS.
PARTIAL_CYCLES

Partial register
stall cycles

This event counts the number of cycles
instruction execution latency became
longer than the defined latency because
the instruction uses a register that was
partially written by previous instructions.

D2H 04H RAT_STALLS.
FLAGS

Flag stall cycles This event counts the number of cycles
during which execution stalled due to
several reasons, one of which is a partial
flag register stall.

A partial register stall may occur when
two conditions are met:

• an instruction modifies some, but not
all, of the flags in the flag register

• the next instruction, which depends on
flags, depends on flags that were not
modified by this instruction

D2H 08H RAT_STALLS.
FPSW

FPU status
word stall

This event indicates that the FPU status
word (FPSW) is written. To obtain the
number of times the FPSW is written
divide the event count by 2.

The FPSW is written by instructions with
long latency; a small count may indicate a
high penalty.

D2H 0FH RAT_STALLS.
ANY

All RAT stall
cycles

This event counts the number of stall
cycles due to conditions described by:

• RAT_STALLS.ROB_READ_PORT
• RAT_STALLS.PARTIAL
• RAT_STALLS.FLAGS
• RAT_STALLS.FPSW.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-165

PERFORMANCE-MONITORING EVENTS
D4H 01H SEG_RENAME_
STALLS.ES

Segment
rename stalls -
ES

This event counts the number of stalls due
to the lack of renaming resources for the
ES segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 02H SEG_RENAME_
STALLS.DS

Segment
rename stalls -
DS

This event counts the number of stalls due
to the lack of renaming resources for the
DS segment register. If a segment is
renamed, but not retired and a second
update to the same segment occurs, a stall
occurs in the front-end of the pipeline until
the renamed segment retires.

D4H 04H SEG_RENAME_
STALLS.FS

Segment
rename stalls -
FS

This event counts the number of stalls due
to the lack of renaming resources for the
FS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 08H SEG_RENAME_
STALLS.GS

Segment
rename stalls -
GS

This event counts the number of stalls due
to the lack of renaming resources for the
GS segment register.

If a segment is renamed, but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D4H 0FH SEG_RENAME_
STALLS.ANY

Any
(ES/DS/FS/GS)
segment
rename stall

This event counts the number of stalls due
to the lack of renaming resources for the
ES, DS, FS, and GS segment registers.

If a segment is renamed but not retired
and a second update to the same segment
occurs, a stall occurs in the front-end of
the pipeline until the renamed segment
retires.

D5H 01H SEG_REG_
RENAMES.ES

Segment
renames - ES

This event counts the number of times the
ES segment register is renamed.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-166 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D5H 02H SEG_REG_
RENAMES.DS

Segment
renames - DS

This event counts the number of times the
DS segment register is renamed.

D5H 04H SEG_REG_
RENAMES.FS

Segment
renames - FS

This event counts the number of times the
FS segment register is renamed.

D5H 08H SEG_REG_
RENAMES.GS

Segment
renames - GS

This event counts the number of times the
GS segment register is renamed.

D5H 0FH SEG_REG_
RENAMES.ANY

Any
(ES/DS/FS/GS)
segment
rename

This event counts the number of times
any of the four segment registers
(ES/DS/FS/GS) is renamed.

DCH 01H RESOURCE_
STALLS.ROB_FULL

Cycles during
which the ROB
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for retirement reaches
the limit the processor can handle.

A high count for this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

DCH 02H RESOURCE_
STALLS.RS_FULL

Cycles during
which the RS
full

This event counts the number of cycles
when the number of instructions in the
pipeline waiting for execution reaches the
limit the processor can handle.

A high count of this event indicates that
there are long latency operations in the
pipe (possibly load and store operations
that miss the L2 cache, and other
instructions that depend on these cannot
execute until the former instructions
complete execution). In this situation new
instructions can not enter the pipe and
start execution.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-167

PERFORMANCE-MONITORING EVENTS
DCH 04 RESOURCE_
STALLS.LD_ST

Cycles during
which the
pipeline has
exceeded load
or store limit or
waiting to
commit all
stores

This event counts the number of cycles
while resource-related stalls occur due to:

• The number of load instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
loading instruction retires.

• The number of store instructions in the
pipeline reached the limit the processor
can handle. The stall ends when a
storing instruction commits its data to
the cache or memory.

• There is an instruction in the pipe that
can be executed only when all previous
stores complete and their data is
committed in the caches or memory.
For example, the SFENCE and MFENCE
instructions require this behavior.

DCH 08H RESOURCE_
STALLS.FPCW

Cycles stalled
due to FPU
control word
write

This event counts the number of cycles
while execution was stalled due to writing
the floating-point unit (FPU) control word.

DCH 10H RESOURCE_
STALLS.BR_MISS_C
LEAR

Cycles stalled
due to branch
misprediction

This event counts the number of cycles
after a branch misprediction is detected at
execution until the branch and all older
micro-ops retire. During this time new
micro-ops cannot enter the out-of-order
pipeline.

DCH 1FH RESOURCE_
STALLS.ANY

Resource
related stalls

This event counts the number of cycles
while resource-related stalls occurs for
any conditions described by the following
events:

• RESOURCE_STALLS.ROB_FULL
• RESOURCE_STALLS.RS_FULL
• RESOURCE_STALLS.LD_ST
• RESOURCE_STALLS.FPCW
• RESOURCE_STALLS.BR_MISS_CLEAR

E0H 00H BR_INST_
DECODED

Branch
instructions
decoded

This event counts the number of branch
instructions decoded.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
A-168 Vol. 3B

PERFORMANCE-MONITORING EVENTS
E4H 00H BOGUS_BR Bogus branches This event counts the number of byte
sequences that were mistakenly detected
as taken branch instructions.

This results in a BACLEAR event. This
occurs mainly after task switches.

E6H 00H BACLEARS BACLEARS
asserted

This event counts the number of times the
front end is resteered, mainly when the
BPU cannot provide a correct prediction
and this is corrected by other branch
handling mechanisms at the front and.
This can occur if the code has many
branches such that they cannot be
consumed by the BPU.

Each BACLEAR asserted costs
approximately 7 cycles of instruction
fetch. The effect on total execution time
depends on the surrounding code.

F0 00H PREF_RQSTS_UP Upward
prefetches
issued from
DPL

This event counts the number of upward
prefetches issued from the Data Prefetch
Logic (DPL) to the L2 cache. A prefetch
request issued to the L2 cache cannot be
cancelled and the requested cache line is
fetched to the L2 cache.

F8 00H PREF_RQSTS_DN Downward
prefetches
issued from
DPL.

This event counts the number of
downward prefetches issued from the
Data Prefetch Logic (DPL) to the L2 cache.
A prefetch request issued to the L2 cache
cannot be cancelled and the requested
cache line is fetched to the L2 cache.

Table A-10. Non-Architectural Performance Events
in Processors Based on Intel Core Microarchitecture (Contd.)

Event
Num

Umask
Value Event Name Definition

Description and
Comment
Vol. 3B A-169

PERFORMANCE-MONITORING EVENTS
A.7 PERFORMANCE MONITORING EVENTS FOR
INTEL® ATOM™ PROCESSORS

Processors based on the Intel Atom microarchitecture support the architectural and
non-architectural performance-monitoring events listed in Table A-1 and Table A-10.
In addition, they also support the following non-architectural performance-moni-
toring events listed in Table A-11.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment

02H 81H STORe_FORWA
RDS.GOOD

Good store
forwards

This event counts the number of times store
data was forwarded directly to a load.

06H 00H SEGMENT_REG_
LOADS.ANY

Number of
segment
register loads

This event counts the number of segment
register load operations. Instructions that
load new values into segment registers cause
a penalty. This event indicates performance
issues in 16-bit code. If this event occurs
frequently, it may be useful to calculate the
number of instructions retired per segment
register load. If the resulting calculation is low
(on average a small number of instructions
are executed between segment register
loads), then the code’s segment register
usage should be optimized.

As a result of branch misprediction, this event
is speculative and may include segment
register loads that do not actually occur.
However, most segment register loads are
internally serialized and such speculative
effects are minimized.

07H 01H PREFETCH.PREF
ETCHT0

Streaming SIMD
Extensions
(SSE)
PrefetchT0
instructions
executed.

This event counts the number of times the
SSE instruction prefetchT0 is executed. This
instruction prefetches the data to the L1
data cache and L2 cache.

07H 06H PREFETCH.SW_
L2

Streaming SIMD
Extensions
(SSE)
PrefetchT1 and
PrefetchT2
instructions
executed

This event counts the number of times the
SSE instructions prefetchT1 and prefetchT2
are executed. These instructions prefetch the
data to the L2 cache.
A-170 Vol. 3B

PERFORMANCE-MONITORING EVENTS
07H 08H PREFETCH.PREF
ETCHNTA

Streaming SIMD
Extensions
(SSE) Prefetch
NTA
instructions
executed

This event counts the number of times the
SSE instruction prefetchNTA is executed. This
instruction prefetches the data to the L1
data cache.

08H 07H DATA_TLB_MIS
SES.DTLB_MISS

Memory
accesses that
missed the
DTLB

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses. The count
includes misses detected as a result of
speculative accesses. Typically a high count
for this event indicates that the code
accesses a large number of data pages.

08H 05H DATA_TLB_MIS
SES.DTLB_MISS
_LD

DTLB misses
due to load
operations

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses due to load
operations. This count includes misses
detected as a result of speculative accesses.

08H 09H DATA_TLB_MIS
SES.L0_DTLB_M
ISS_LD

L0_DTLB misses
due to load
operations

This event counts the number of L0_DTLB
misses due to load operations. This count
includes misses detected as a result of
speculative accesses.

08H 06H DATA_TLB_MIS
SES.DTLB_MISS
_ST

DTLB misses
due to store
operations

This event counts the number of Data Table
Lookaside Buffer (DTLB) misses due to store
operations. This count includes misses
detected as a result of speculative accesses.

0CH 03H PAGE_WALKS.W
ALKS

Number of
page-walks
executed

This event counts the number of page-walks
executed due to either a DTLB or ITLB miss.
The page walk duration,
PAGE_WALKS.CYCLES, divided by number of
page walks is the average duration of a page
walk. This can hint to whether most of the
page-walks are satisfied by the caches or
cause an L2 cache miss.

Edge trigger bit must be set.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-171

PERFORMANCE-MONITORING EVENTS
0CH 03H PAGE_WALKS.C
YCLES

Duration of
page-walks in
core cycles

This event counts the duration of page-walks
in core cycles. The paging mode in use
typically affects the duration of page walks.
Page walk duration divided by number of
page walks is the average duration of page-
walks. This can hint at whether most of the
page-walks are satisfied by the caches or
cause an L2 cache miss.

Edge trigger bit must be cleared.

10H 01H X87_COMP_OP
S_EXE.ANY.S

Floating point
computational
micro-ops
executed

This event counts the number of x87 floating
point computational micro-ops executed.

10H 81H X87_COMP_OP
S_EXE.ANY.AR

Floating point
computational
micro-ops
retired

This event counts the number of x87 floating
point computational micro-ops retired.

11H 01H FP_ASSIST Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. These assists
are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or
used as input from memory

2. Division by 0

3. Underflow output

11H 81H FP_ASSIST.AR Floating point
assists

This event counts the number of floating
point operations executed that required
micro-code assist intervention. These assists
are required in the following cases:

X87 instructions:

1. NaN or denormal are loaded to a register or
used as input from memory

2. Division by 0

3. Underflow output

12H 01H MUL.S Multiply
operations
executed

This event counts the number of multiply
operations executed. This includes integer as
well as floating point multiply operations.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-172 Vol. 3B

PERFORMANCE-MONITORING EVENTS
12H 81H MUL.AR Multiply
operations
retired

This event counts the number of multiply
operations retired. This includes integer as
well as floating point multiply operations.

13H 01H DIV.S Divide
operations
executed

This event counts the number of divide
operations executed. This includes integer
divides, floating point divides and square-root
operations executed.

13H 81H DIV.AR Divide
operations
retired

This event counts the number of divide
operations retired. This includes integer
divides, floating point divides and square-root
operations executed.

14H 01H CYCLES_DIV_BU
SY

Cycles the
driver is busy

This event counts the number of cycles the
divider is busy executing divide or square
root operations. The divide can be integer,
X87 or Streaming SIMD Extensions (SSE). The
square root operation can be either X87 or
SSE.

21H See
Table
30-2

L2_ADS Cycles L2
address bus is in
use

This event counts the number of cycles the
L2 address bus is being used for accesses to
the L2 cache or bus queue.

This event can count occurrences for this
core or both cores.

22H See
Table
30-2

L2_DBUS_BUSY Cycles the L2
cache data bus
is busy

This event counts core cycles during which
the L2 cache data bus is busy transferring
data from the L2 cache to the core. It counts
for all L1 cache misses (data and instruction)
that hit the L2 cache. The count will
increment by two for a full cache-line
request.

24H See
Table
30-2
and
Table
30-4

L2_LINES_IN L2 cache misses This event counts the number of cache lines
allocated in the L2 cache. Cache lines are
allocated in the L2 cache as a result of
requests from the L1 data and instruction
caches and the L2 hardware prefetchers to
cache lines that are missing in the L2 cache.

This event can count occurrences for this
core or both cores. This event can also count
demand requests and L2 hardware prefetch
requests together or separately.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-173

PERFORMANCE-MONITORING EVENTS
25H See
Table
30-2

L2_M_LINES_IN L2 cache line
modifications

This event counts whenever a modified
cache line is written back from the L1 data
cache to the L2 cache.

This event can count occurrences for this
core or both cores.

26H See
Table
30-2
and
Table
30-4

L2_LINES_OUT L2 cache lines
evicted

This event counts the number of L2 cache
lines evicted.

This event can count occurrences for this
core or both cores. This event can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

27H See
Table
30-2
and
Table
30-4

L2_M_LINES_O
UT

Modified lines
evicted from
the L2 cache

This event counts the number of L2 modified
cache lines evicted. These lines are written
back to memory unless they also exist in a
shared-state in one of the L1 data caches.

This event can count occurrences for this
core or both cores. This event can also count
evictions due to demand requests and L2
hardware prefetch requests together or
separately.

28H See
Table
30-2
and
Table
30-5

L2_IFETCH L2 cacheable
instruction
fetch requests

This event counts the number of instruction
cache line requests from the ICache. It does
not include fetch requests from uncacheable
memory. It does not include ITLB miss
accesses.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-174 Vol. 3B

PERFORMANCE-MONITORING EVENTS
29H See
Table
30-2,
Table
30-4
and
Table
30-5

L2_LD L2 cache reads This event counts L2 cache read requests
coming from the L1 data cache and L2
prefetchers.

This event can count occurrences for this
core or both cores. This event can count
occurrences

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together or separately.

- of accesses to cache lines at different MESI
states.

2AH See
Table
30-2
and
Table
30-5

L2_ST L2 store
requests

This event counts all store operations that
miss the L1 data cache and request the data

from the L2 cache.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

2BH See
Table
30-2
and
Table
30-5

L2_LOCK L2 locked
accesses

This event counts all locked accesses to
cache lines that miss the L1 data cache.

This event can count occurrences for this
core or both cores. This event can also count
accesses to cache lines at different MESI
states.

2EH See
Table
30-2,
Table
30-4
and
Table
30-5

L2_RQSTS L2 cache
requests

This event counts all completed L2 cache
requests. This includes L1 data cache reads,
writes, and locked accesses, L1 data prefetch
requests, instruction fetches, and all L2
hardware prefetch requests.

This event can count occurrences

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together, or separately.

- of accesses to cache lines at different MESI
states.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-175

PERFORMANCE-MONITORING EVENTS
2EH 41H L2_RQSTS.SELF.
DEMAND.I_STAT
E

L2 cache
demand
requests from
this core that
missed the L2

This event counts all completed L2 cache
demand requests from this core that miss the
L2 cache. This includes L1 data cache reads,
writes, and locked accesses, L1 data prefetch
requests, and instruction fetches.

This is an architectural performance event.

2EH 4FH L2_RQSTS.SELF.
DEMAND.MESI

L2 cache
demand
requests from
this core

This event counts all completed L2 cache
demand requests from this core. This includes
L1 data cache reads, writes, and locked
accesses, L1 data prefetch requests, and
instruction fetches.

This is an architectural performance event.

30H See
Table
30-2,
Table
30-4
and
Table
30-5

L2_REJECT_BUS
Q

Rejected L2
cache requests

This event indicates that a pending L2 cache
request that requires a bus transaction is
delayed from moving to the bus queue. Some
of the reasons for this event are:

- The bus queue is full.

- The bus queue already holds an entry for a
cache line in the same set.

The number of events is greater or equal to
the number of requests that were rejected.

- for this core or both cores.

- due to demand requests and L2 hardware
prefetch requests together, or separately.

- of accesses to cache lines at different MESI
states.

32H See
Table
30-2

L2_NO_REQ Cycles no L2
cache requests
are pending

This event counts the number of cycles that
no L2 cache requests are pending.

3AH 00H EIST_TRANS Number of
Enhanced Intel
SpeedStep(R)
Technology
(EIST)
transitions

This event counts the number of Enhanced
Intel SpeedStep(R) Technology (EIST)
transitions that include a frequency change,
either with or without VID change. This event
is incremented only while the counting core is
in C0 state. Since the CxE states include an
EIST transition, the event will be incremented
accordingly.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-176 Vol. 3B

PERFORMANCE-MONITORING EVENTS
EIST transitions are commonly initiated by
OS, but can be initiated by HW internally. For
example: CxE states are C-states (C1,C2,C3…)
which not only place the CPU into a sleep
state by turning off the clock and other
components, but also lower the voltage
(which reduces the leakage power
consumption). The same is true for thermal
throttling transition which uses EIST
internally.

3BH C0H THERMAL_TRIP Number of
thermal trips

This event counts the number of thermal
trips. A thermal trip occurs whenever the
processor temperature exceeds the thermal
trip threshold temperature. Following a
thermal trip, the processor automatically
reduces frequency and voltage. The
processor checks the temperature every
millisecond, and returns to normal when the
temperature falls below the thermal trip
threshold temperature.

3CH 00H CPU_CLK_UNH
ALTED.CORE_P

Core cycles
when core is not
halted

This event counts the number of core cycles
while the core is not in a halt state. The core
enters the halt state when it is running the
HLT instruction. This event is a component in
many key event ratios.

In mobile systems the core frequency may
change from time to time. For this reason this
event may have a changing ratio with regards
to time. In systems with a constant core
frequency, this event can give you a
measurement of the elapsed time while the
core was not in halt state by dividing the
event count by the core frequency.

-This is an architectural performance event.

- The event CPU_CLK_UNHALTED.CORE_P is
counted by a programmable counter.

- The event CPU_CLK_UNHALTED.CORE is
counted by a designated fixed counter,
leaving the two programmable counters
available for other events.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-177

PERFORMANCE-MONITORING EVENTS
3CH 01H CPU_CLK_UNH
ALTED.BUS

Bus cycles
when core is not
halted

This event counts the number of bus cycles
while the core is not in the halt state. This
event can give you a measurement of the
elapsed time while the core was not in the
halt state, by dividing the event count by the
bus frequency. The core enters the halt state
when it is running the HLT instruction.

The event also has a constant ratio with
CPU_CLK_UNHALTED.REF event, which is the
maximum bus to processor frequency ratio.

Non-halted bus cycles are a component in
many key event ratios.

3CH 02H CPU_CLK_UNH
ALTED.NO_OTH
ER

Bus cycles
when core is
active and the
other is halted

This event counts the number of bus cycles
during which the core remains non-halted,
and the other core on the processor is halted.

This event can be used to determine the
amount of parallelism exploited by an
application or a system. Divide this event
count by the bus frequency to determine the
amount of time that only one core was in use.

40H 21H L1D_CACHE.LD L1 Cacheable
Data Reads

This event counts the number of data reads
from cacheable memory.

40H 22H L1D_CACHE.ST L1 Cacheable
Data Writes

This event counts the number of data writes
to cacheable memory.

60H See
Table
30-2
and
Table
30-3

BUS_REQUEST_
OUTSTANDING

Outstanding
cacheable data
read bus
requests
duration

This event counts the number of pending full
cache line read transactions on the bus
occurring in each cycle. A read transaction is
pending from the cycle it is sent on the bus
until the full cache line is received by the
processor. NOTE: This event is thread-
independent and will not provide a count per
logical processor when AnyThr is disabled.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-178 Vol. 3B

PERFORMANCE-MONITORING EVENTS
61H See
Table
30-3

BUS_BNR_DRV Number of Bus
Not Ready
signals asserted

This event counts the number of Bus Not
Ready (BNR) signals that the processor
asserts on the bus to suspend additional bus
requests by other bus agents. A bus agent
asserts the BNR signal when the number of
data and snoop transactions is close to the
maximum that the bus can handle.

While this signal is asserted, new
transactions cannot be submitted on the bus.
As a result, transaction latency may have
higher impact on program performance.
NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

62H See
Table
30-3

BUS_DRDY_CLO
CKS

Bus cycles
when data is
sent on the bus

This event counts the number of bus cycles
during which the DRDY (Data Ready) signal is
asserted on the bus. The DRDY signal is
asserted when data is sent on the bus.

This event counts the number of bus cycles
during which this agent (the processor)
writes data on the bus back to memory or to
other bus agents. This includes all explicit and
implicit data writebacks, as well as partial
writes.
NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

63H See
Table
30-2
and
Table
30-3

BUS_LOCK_CLO
CKS

Bus cycles
when a LOCK
signal is
asserted.

This event counts the number of bus cycles,
during which the LOCK signal is asserted on
the bus. A LOCK signal is asserted when
there is a locked memory access, due to:

- Uncacheable memory

- Locked operation that spans two cache lines

- Page-walk from an uncacheable page table.

Bus locks have a very high performance
penalty and it is highly recommended to avoid
such accesses. NOTE: This event is thread-
independent and will not provide a count per
logical processor when AnyThr is disabled.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-179

PERFORMANCE-MONITORING EVENTS
64H See
Table
30-2

BUS_DATA_RCV Bus cycles while
processor
receives data

This event counts the number of cycles
during which the processor is busy receiving
data. NOTE: This event is thread-independent
and will not provide a count per logical
processor when AnyThr is disabled.

65H See
Table
30-2
and
Table
30-3

BUS_TRANS_B
RD

Burst read bus
transactions

This event counts the number of burst read
transactions including:

- L1 data cache read misses (and L1 data
cache hardware prefetches)

- L2 hardware prefetches by the DPL and L2
streamer

- IFU read misses of cacheable lines.

It does not include RFO transactions.

66H See
Table
30-2
and
Table
30-3

BUS_TRANS_RF
O

RFO bus
transactions

This event counts the number of Read For
Ownership (RFO) bus transactions, due to
store operations that miss the L1 data cache
and the L2 cache. This event also counts RFO
bus transactions due to locked operations.

67H See
Table
30-2
and
Table
30-3

BUS_TRANS_W
B

Explicit
writeback bus
transactions

This event counts all explicit writeback bus
transactions due to dirty line evictions. It
does not count implicit writebacks due to
invalidation by a snoop request.

68H See
Table
30-2
and
Table
30-3

BUS_TRANS_IF
ETCH

Instruction-
fetch bus
transactions.

This event counts all instruction fetch full
cache line bus transactions.

69H See
Table
30-2
and
Table
30-3

BUS_TRANS_IN
VAL

Invalidate bus
transactions

This event counts all invalidate transactions.
Invalidate transactions are generated when:

- A store operation hits a shared line in the L2
cache.

- A full cache line write misses the L2 cache
or hits a shared line in the L2 cache.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-180 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6AH See
Table
30-2
and
Table
30-3

BUS_TRANS_P
WR

Partial write bus
transaction.

This event counts partial write bus
transactions.

6BH See
Table
30-2
and
Table
30-3

BUS_TRANS_P Partial bus
transactions

This event counts all (read and write) partial
bus transactions.

6CH See
Table
30-2
and
Table
30-3

BUS_TRANS_IO IO bus
transactions

This event counts the number of completed
I/O bus transactions as a result of IN and OUT
instructions. The count does not include
memory mapped IO.

6DH See
Table
30-2
and
Table
30-3

BUS_TRANS_D
EF

Deferred bus
transactions

This event counts the number of deferred
transactions.

6EH See
Table
30-2
and
Table
30-3

BUS_TRANS_B
URST

Burst (full
cache-line) bus
transactions.

This event counts burst (full cache line)
transactions including:

- Burst reads

- RFOs

- Explicit writebacks

- Write combine lines

6FH See
Table
30-2
and
Table
30-3

BUS_TRANS_M
EM

Memory bus
transactions

This event counts all memory bus
transactions including:

- burst transactions

- partial reads and writes

- invalidate transactions

The BUS_TRANS_MEM count is the sum of
BUS_TRANS_BURST, BUS_TRANS_P and
BUS_TRANS_INVAL.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-181

PERFORMANCE-MONITORING EVENTS
70H See
Table
30-2
and
Table
30-3

BUS_TRANS_A
NY

All bus
transactions

This event counts all bus transactions. This
includes:

- Memory transactions

- IO transactions (non memory-mapped)

- Deferred transaction completion

- Other less frequent transactions, such as
interrupts

77H See
Table
30-2
and
Table
30-5

EXT_SNOOP External snoops This event counts the snoop responses to
bus transactions. Responses can be counted
separately by type and by bus agent. NOTE:
This event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7AH See
Table
30-3

BUS_HIT_DRV HIT signal
asserted

This event counts the number of bus cycles
during which the processor drives the HIT#
pin to signal HIT snoop response. NOTE: This
event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7BH See
Table
30-3

BUS_HITM_DRV HITM signal
asserted

This event counts the number of bus cycles
during which the processor drives the HITM#
pin to signal HITM snoop response. NOTE:
This event is thread-independent and will not
provide a count per logical processor when
AnyThr is disabled.

7DH See
Table
30-2

BUSQ_EMPTY Bus queue is
empty

This event counts the number of cycles
during which the core did not have any
pending transactions in the bus queue.

NOTE: This event is thread-independent and
will not provide a count per logical processor
when AnyThr is disabled.

7EH See
Table
30-2
and
Table
30-3

SNOOP_STALL_
DRV

Bus stalled for
snoops

This event counts the number of times that
the bus snoop stall signal is asserted. During
the snoop stall cycles no new bus
transactions requiring a snoop response can
be initiated on the bus. NOTE: This event is
thread-independent and will not provide a
count per logical processor when AnyThr is
disabled.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-182 Vol. 3B

PERFORMANCE-MONITORING EVENTS
7FH See
Table
30-2

BUS_IO_WAIT IO requests
waiting in the
bus queue

This event counts the number of core cycles
during which IO requests wait in the bus
queue. This event counts IO requests from
the core.

80H 03H ICACHE.ACCESS
ES

Instruction
fetches

This event counts all instruction fetches,
including uncacheable fetches.

80H 02H ICACHE.MISSES Icache miss This event counts all instruction fetches that
miss the Instruction cache or produce
memory requests. This includes uncacheable
fetches. An instruction fetch miss is counted
only once and not once for every cycle it is
outstanding.

82H 04H ITLB.FLUSH ITLB flushes This event counts the number of ITLB
flushes.

82H 02H ITLB.MISSES ITLB misses This event counts the number of instruction
fetches that miss the ITLB.

AAH 02H MACRO_INSTS.C
ISC_DECODED

CISC macro
instructions
decoded

This event counts the number of complex
instructions decoded, but not necessarily
executed or retired. Only one complex
instruction can be decoded at a time.

AAH 03H MACRO_INSTS.
ALL_DECODED

All Instructions
decoded

This event counts the number of instructions
decoded.

B0H 00H SIMD_UOPS_EX
EC.S

SIMD micro-ops
executed
(excluding
stores)

This event counts all the SIMD micro-ops
executed. This event does not count MOVQ
and MOVD stores from register to memory.

B0H 80H SIMD_UOPS_EX
EC.AR

SIMD micro-ops
retired
(excluding
stores)

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B1H 00H SIMD_SAT_UOP
_EXEC.S

SIMD saturated
arithmetic
micro-ops
executed

This event counts the number of SIMD
saturated arithmetic micro-ops executed.

B1H 80H SIMD_SAT_UOP
_EXEC.AR

SIMD saturated
arithmetic
micro-ops
retired

This event counts the number of SIMD
saturated arithmetic micro-ops retired.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-183

PERFORMANCE-MONITORING EVENTS
B3H 01H SIMD_UOP_TYP
E_EXEC.MUL.S

SIMD packed
multiply micro-
ops executed

This event counts the number of SIMD packed
multiply micro-ops executed.

B3H 81H SIMD_UOP_TYP
E_EXEC.MUL.AR

SIMD packed
multiply micro-
ops retired

This event counts the number of SIMD packed
multiply micro-ops retired.

B3H 02H SIMD_UOP_TYP
E_EXEC.SHIFT.S

SIMD packed
shift micro-ops
executed

This event counts the number of SIMD packed
shift micro-ops executed.

B3H 82H SIMD_UOP_TYP
E_EXEC.SHIFT.A
R

SIMD packed
shift micro-ops
retired

This event counts the number of SIMD packed
shift micro-ops retired.

B3H 04H SIMD_UOP_TYP
E_EXEC.PACK.S

SIMD pack
micro-ops
executed

This event counts the number of SIMD pack
micro-ops executed.

B3H 84H SIMD_UOP_TYP
E_EXEC.PACK.A
R

SIMD pack
micro-ops
retired

This event counts the number of SIMD pack
micro-ops retired.

B3H 08H SIMD_UOP_TYP
E_EXEC.UNPAC
K.S

SIMD unpack
micro-ops
executed

This event counts the number of SIMD
unpack micro-ops executed.

B3H 88H SIMD_UOP_TYP
E_EXEC.UNPAC
K.AR

SIMD unpack
micro-ops
retired

This event counts the number of SIMD
unpack micro-ops retired.

B3H 10H SIMD_UOP_TYP
E_EXEC.LOGICA
L.S

SIMD packed
logical micro-
ops executed

This event counts the number of SIMD packed
logical micro-ops executed.

B3H 90H SIMD_UOP_TYP
E_EXEC.LOGICA
L.AR

SIMD packed
logical micro-
ops retired

This event counts the number of SIMD packed
logical micro-ops retired.

B3H 20H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.S

SIMD packed
arithmetic
micro-ops
executed

This event counts the number of SIMD packed
arithmetic micro-ops executed.

B3H A0H SIMD_UOP_TYP
E_EXEC.ARITHM
ETIC.AR

SIMD packed
arithmetic
micro-ops
retired

This event counts the number of SIMD packed
arithmetic micro-ops retired.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-184 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C0H 00H INST_RETIRED.
ANY_P

Instructions
retired (precise
event).

This event counts the number of instructions
that retire execution. For instructions that
consist of multiple micro-ops, this event
counts the retirement of the last micro-op of
the instruction. The counter continues
counting during hardware interrupts, traps,
and inside interrupt handlers.

N/A 00H INST_RETIRED.
ANY

Instructions
retired

This event counts the number of instructions
that retire execution. For instructions that
consist of multiple micro-ops, this event
counts the retirement of the last micro-op of
the instruction. The counter continues
counting during hardware interrupts, traps,
and inside interrupt handlers.

C2H 10H UOPS_RETIRED.
ANY

Micro-ops
retired

This event counts the number of micro-ops
retired. The processor decodes complex
macro instructions into a sequence of simpler
micro-ops. Most instructions are composed of
one or two micro-ops. Some instructions are
decoded into longer sequences such as
repeat instructions, floating point
transcendental instructions, and assists. In
some cases micro-op sequences are fused or
whole instructions are fused into one micro-
op. See other UOPS_RETIRED events for
differentiating retired fused and non-fused
micro-ops.

C3H 01H MACHINE_CLEA
RS.SMC

Self-Modifying
Code detected

This event counts the number of times that a
program writes to a code section. Self-
modifying code causes a severe penalty in all
Intel® architecture processors.

C4H 00H BR_INST_RETIR
ED.ANY

Retired branch
instructions

This event counts the number of branch
instructions retired.

This is an architectural performance event.

C4H 01H BR_INST_RETIR
ED.PRED_NOT_
TAKEN

Retired branch
instructions
that were
predicted not-
taken

This event counts the number of branch
instructions retired that were correctly
predicted to be not-taken.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-185

PERFORMANCE-MONITORING EVENTS
C4H 02H BR_INST_RETIR
ED.MISPRED_N
OT_TAKEN

Retired branch
instructions
that were
mispredicted
not-taken

This event counts the number of branch
instructions retired that were mispredicted
and not-taken.

C4H 04H BR_INST_RETIR
ED.PRED_TAKE
N

Retired branch
instructions
that were
predicted taken

This event counts the number of branch
instructions retired that were correctly
predicted to be taken.

C4H 08H BR_INST_RETIR
ED.MISPRED_TA
KEN

Retired branch
instructions
that were
mispredicted
taken

This event counts the number of branch
instructions retired that were mispredicted
and taken.

C4H 0AH BR_INST_RETIR
ED.MISPRED

Retired
mispredicted
branch
instructions
(precise event)

This event counts the number of retired
branch instructions that were mispredicted
by the processor. A branch misprediction
occurs when the processor predicts that the
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the
performance because the processor starts
executing instructions along a wrong path it
predicts. When the misprediction is
discovered, all the instructions executed in
the wrong path must be discarded, and the
processor must start again on the correct
path.

Using the Profile-Guided Optimization (PGO)
features of the Intel® C++ compiler may help
reduce branch mispredictions. See the
compiler documentation for more information
on this feature.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-186 Vol. 3B

PERFORMANCE-MONITORING EVENTS
To determine the branch misprediction ratio,
divide the BR_INST_RETIRED.MISPRED event
count by the number of
BR_INST_RETIRED.ANY event count. To
determine the number of mispredicted
branches per instruction, divide the number
of mispredicted branches by the
INST_RETIRED.ANY event count. To measure
the impact of the branch mispredictions use
the event
RESOURCE_STALLS.BR_MISS_CLEAR.

Tips

- See the optimization guide for tips on
reducing branch mispredictions.

- PGO's purpose is to have straight line code
for the most frequent execution paths,
reducing branches taken and increasing the
"basic block" size, possibly also reducing the
code footprint or working-set.

C4H 0CH BR_INST_RETIR
ED.TAKEN

Retired taken
branch
instructions

This event counts the number of branches
retired that were taken.

C4H 0FH BR_INST_RETIR
ED.ANY1

Retired branch
instructions

This event counts the number of branch
instructions retired that were mispredicted.
This event is a duplicate of
BR_INST_RETIRED.MISPRED.

C5H 00H BR_INST_RETIR
ED.MISPRED

Retired
mispredicted
branch
instructions
(precise event).

This event counts the number of retired
branch instructions that were mispredicted
by the processor. A branch misprediction
occurs when the processor predicts that the
branch would be taken, but it is not, or vice-
versa. Mispredicted branches degrade the
performance because the processor starts
executing instructions along a wrong path it
predicts. When the misprediction is
discovered, all the instructions executed in
the wrong path must be discarded, and the
processor must start again on the correct
path.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-187

PERFORMANCE-MONITORING EVENTS
Using the Profile-Guided Optimization (PGO)
features of the Intel® C++ compiler may help
reduce branch mispredictions. See the
compiler documentation for more information
on this feature.

To determine the branch misprediction ratio,
divide the BR_INST_RETIRED.MISPRED event
count by the number of
BR_INST_RETIRED.ANY event count. To
determine the number of mispredicted
branches per instruction, divide the number
of mispredicted branches by the
INST_RETIRED.ANY event count. To measure
the impact of the branch mispredictions use
the event
RESOURCE_STALLS.BR_MISS_CLEAR.

Tips

- See the optimization guide for tips on
reducing branch mispredictions.

- PGO's purpose is to have straight line code
for the most frequent execution paths,
reducing branches taken and increasing the
"basic block" size, possibly also reducing the
code footprint or working-set.

C6H 01H CYCLES_INT_M
ASKED.CYCLES_I
NT_MASKED

Cycles during
which interrupts
are disabled

This event counts the number of cycles
during which interrupts are disabled.

C6H 02H CYCLES_INT_M
ASKED.CYCLES_I
NT_PENDING_A
ND_MASKED

Cycles during
which interrupts
are pending and
disabled

This event counts the number of cycles
during which there are pending interrupts but
interrupts are disabled.

C7H 01H SIMD_INST_RET
IRED.PACKED_SI
NGLE

Retired
Streaming SIMD
Extensions
(SSE) packed-
single
instructions

This event counts the number of SSE packed-
single instructions retired.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-188 Vol. 3B

PERFORMANCE-MONITORING EVENTS
C7H 02H SIMD_INST_RET
IRED.SCALAR_SI
NGLE

Retired
Streaming SIMD
Extensions
(SSE) scalar-
single
instructions

This event counts the number of SSE scalar-
single instructions retired.

C7H 04H SIMD_INST_RET
IRED.PACKED_D
OUBLE

Retired
Streaming SIMD
Extensions 2
(SSE2) packed-
double
instructions

This event counts the number of SSE2
packed-double instructions retired.

C7H 08H SIMD_INST_RET
IRED.SCALAR_D
OUBLE

Retired
Streaming SIMD
Extensions 2
(SSE2) scalar-
double
instructions.

This event counts the number of SSE2 scalar-
double instructions retired.

C7H 10H SIMD_INST_RET
IRED.VECTOR

Retired
Streaming SIMD
Extensions 2
(SSE2) vector
instructions.

This event counts the number of SSE2 vector
instructions retired.

C7H 1FH SIMD_INST_RET
IRED.ANY

Retired
Streaming SIMD
instructions

This event counts the overall number of SIMD
instructions retired. To count each type of
SIMD instruction separately, use the following
events:

SIMD_INST_RETIRED.PACKED_SINGLE,
SIMD_INST_RETIRED.SCALAR_SINGLE,
SIMD_INST_RETIRED.PACKED_DOUBLE,
SIMD_INST_RETIRED.SCALAR_DOUBLE, and
SIMD_INST_RETIRED.VECTOR.

C8H 00H HW_INT_RCV Hardware
interrupts
received

This event counts the number of hardware
interrupts received by the processor. This
event will count twice for dual-pipe micro-
ops.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-189

PERFORMANCE-MONITORING EVENTS
CAH 01H SIMD_COMP_IN
ST_RETIRED.PA
CKED_SINGLE

Retired
computational
Streaming SIMD
Extensions
(SSE) packed-
single
instructions.

This event counts the number of
computational SSE packed-single instructions
retired. Computational instructions perform
arithmetic computations, like add, multiply
and divide. Instructions that perform load and
store operations or logical operations, like
XOR, OR, and AND are not counted by this
event.

CAH 02H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_SINGLE

Retired
computational
Streaming SIMD
Extensions
(SSE) scalar-
single
instructions.

This event counts the number of
computational SSE scalar-single instructions
retired. Computational instructions perform
arithmetic computations, like add, multiply
and divide. Instructions that perform load and
store operations or logical operations, like
XOR, OR, and AND are not counted by this
event.

CAH 04H SIMD_COMP_IN
ST_RETIRED.PA
CKED_DOUBLE

Retired
computational
Streaming SIMD
Extensions 2
(SSE2) packed-
double
instructions.

This event counts the number of
computational SSE2 packed-double
instructions retired. Computational
instructions perform arithmetic
computations, like add, multiply and divide.
Instructions that perform load and store
operations or logical operations, like XOR, OR,
and AND are not counted by this event.

CAH 08H SIMD_COMP_IN
ST_RETIRED.SC
ALAR_DOUBLE

Retired
computational
Streaming SIMD
Extensions 2
(SSE2) scalar-
double
instructions

This event counts the number of
computational SSE2 scalar-double
instructions retired. Computational
instructions perform arithmetic
computations, like add, multiply and divide.
Instructions that perform load and store
operations or logical operations, like XOR, OR,
and AND are not counted by this event.

CBH 01H MEM_LOAD_RE
TIRED.L2_HIT

Retired loads
that hit the L2
cache (precise
event)

This event counts the number of retired load
operations that missed the L1 data cache and
hit the L2 cache.

CBH 02H MEM_LOAD_RE
TIRED.L2_MISS

Retired loads
that miss the L2
cache (precise
event)

This event counts the number of retired load
operations that missed the L2 cache.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-190 Vol. 3B

PERFORMANCE-MONITORING EVENTS
CBH 04H MEM_LOAD_RE
TIRED.DTLB_MI
SS

Retired loads
that miss the
DTLB (precise
event)

This event counts the number of retired loads
that missed the DTLB. The DTLB miss is not
counted if the load operation causes a fault.

CDH 00H SIMD_ASSIST SIMD assists
invoked

This event counts the number of SIMD assists
invoked. SIMD assists are invoked when an
EMMS instruction is executed after MMX™
technology code has changed the MMX state
in the floating point stack. For example, these
assists are required in the following cases:

Streaming SIMD Extensions (SSE)
instructions:

1. Denormal input when the DAZ (Denormals
Are Zeros) flag is off

2. Underflow result when the FTZ (Flush To
Zero) flag is off

CEH 00H SIMD_INSTR_RE
TIRED

SIMD
Instructions
retired

This event counts the number of SIMD
instructions that retired.

CFH 00H SIMD_SAT_INST
R_RETIRED

Saturated
arithmetic
instructions
retired

This event counts the number of saturated
arithmetic SIMD instructions that retired.

E0H 01H BR_INST_DECO
DED

Branch
instructions
decoded

This event counts the number of branch
instructions decoded.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
Vol. 3B A-191

PERFORMANCE-MONITORING EVENTS
E4H 01H BOGUS_BR Bogus branches This event counts the number of byte
sequences that were mistakenly detected as
taken branch instructions. This results in a
BACLEAR event and the BTB is flushed. This
occurs mainly after task switches.

E6H 01H BACLEARS.ANY BACLEARS
asserted

This event counts the number of times the
front end is redirected for a branch
prediction, mainly when an early branch
prediction is corrected by other branch
handling mechanisms in the front-end. This
can occur if the code has many branches such
that they cannot be consumed by the branch
predictor. Each Baclear asserted costs
approximately 7 cycles. The effect on total
execution time depends on the surrounding
code.

Table A-11. Non-Architectural Performance Events for Intel Atom Processors
Event
Num.

Umask
Value Event Name Definition Description and Comment
A-192 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A.8 PERFORMANCE MONITORING EVENTS FOR INTEL®
CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS

Table A-12 lists non-architectural performance events for Intel Core Duo processors.
If a non-architectural event requires qualification in core specificity, it is indicated in
the comment column. Table A-12 also applies to Intel Core Solo processors; bits in
the unit mask corresponding to core-specificity are reserved and should be 00B.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment

03H LD_Blocks 00H Load operations delayed due to
store buffer blocks.

The preceding store may be
blocked due to unknown address,
unknown data, or conflict due to
partial overlap between the load
and store.

04H SD_Drains 00H Cycles while draining store buffers.

05H Misalign_Mem_Ref 00H Misaligned data memory
references (MOB splits of loads
and stores).

06H Seg_Reg_Loads 00H Segment register loads.

07H SSE_PrefNta_Ret 00H SSE software prefetch instruction
PREFETCHNTA retired.

07H SSE_PrefT1_Ret 01H SSE software prefetch instruction
PREFETCHT1 retired.

07H SSE_PrefT2_Ret 02H SSE software prefetch instruction
PREFETCHT2 retired.

07H SSE_NTStores_Ret 03H SSE streaming store instruction
retired.

10H FP_Comps_Op_Exe 00H FP computational Instruction
executed. FADD, FSUB, FCOM,
FMULs, MUL, IMUL, FDIVs, DIV, IDIV,
FPREMs, FSQRT are included; but
exclude FADD or FMUL used in the
middle of a transcendental
instruction.

11H FP_Assist 00H FP exceptions experienced
microcode assists.

IA32_PMC1
only.
Vol. 3B A-193

PERFORMANCE-MONITORING EVENTS
12H Mul 00H Multiply operations (a speculative
count, including FP and integer
multiplies).

IA32_PMC1
only.

13H Div 00H Divide operations (a speculative
count, including FP and integer
divisions).

IA32_PMC1
only.

14H Cycles_Div_Busy 00H Cycles the divider is busy. IA32_PMC0
only.

21H L2_ADS 00H L2 Address strobes. Requires core-
specificity

22H Dbus_Busy 00H Core cycle during which data bus
was busy (increments by 4).

Requires core-
specificity

23H Dbus_Busy_Rd 00H Cycles data bus is busy
transferring data to a core
(increments by 4).

Requires core-
specificity

24H L2_Lines_In 00H L2 cache lines allocated. Requires core-
specificity and
HW prefetch
qualification

25H L2_M_Lines_In 00H L2 Modified-state cache lines
allocated.

Requires core-
specificity

26H L2_Lines_Out 00H L2 cache lines evicted. Requires core-
specificity and
HW prefetch
qualification

27H L2_M_Lines_Out 00H L2 Modified-state cache lines
evicted.

28H L2_IFetch Requires
MESI
qualification

L2 instruction fetches from
instruction fetch unit (includes
speculative fetches).

Requires core-
specificity

29H L2_LD Requires
MESI
qualification

L2 cache reads. Requires core-
specificity

2AH L2_ST Requires
MESI
qualification

L2 cache writes (includes
speculation).

Requires core-
specificity

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-194 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2EH L2_Rqsts Requires
MESI
qualification

L2 cache reference requests. Requires core-
specificity, HW
prefetch
qualification30H L2_Reject_Cycles Requires

MESI
qualification

Cycles L2 is busy and rejecting
new requests.

32H L2_No_Request_
Cycles

Requires
MESI
qualification

Cycles there is no request to
access L2.

3AH EST_Trans_All 00H Any Intel Enhanced SpeedStep(R)
Technology transitions.

3AH EST_Trans_All 10H Intel Enhanced SpeedStep
Technology frequency transitions.

3BH Thermal_Trip C0H Duration in a thermal trip based on
the current core clock.

Use edge
trigger to count
occurrence

3CH NonHlt_Ref_Cycles 01H Non-halted bus cycles.

3CH Serial_Execution_
Cycles

02H Non-halted bus cycles of this core
executing code while the other
core is halted.

40H DCache_Cache_LD Requires
MESI
qualification

L1 cacheable data read operations.

41H DCache_Cache_ST Requires
MESI
qualification

L1 cacheable data write
operations.

42H DCache_Cache_
Lock

Requires
MESI
qualification

L1 cacheable lock read operations
to invalid state.

43H Data_Mem_Ref 01H L1 data read and writes of
cacheable and non-cacheable
types.

44H Data_Mem_Cache_
Ref

02H L1 data cacheable read and write
operations.

45H DCache_Repl 0FH L1 data cache line replacements.

46H DCache_M_Repl 00H L1 data M-state cache line
allocated.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B A-195

PERFORMANCE-MONITORING EVENTS
47H DCache_M_Evict 00H L1 data M-state cache line evicted.

48H DCache_Pend_Miss 00H Weighted cycles of L1 miss
outstanding.

Use Cmask =1
to count
duration.

49H Dtlb_Miss 00H Data references that missed TLB.

4BH SSE_PrefNta_Miss 00H PREFETCHNTA missed all caches.

4BH SSE_PrefT1_Miss 01H PREFETCHT1 missed all caches.

4BH SSE_PrefT2_Miss 02H PREFETCHT2 missed all caches.

4BH SSE_NTStores_
Miss

03H SSE streaming store instruction
missed all caches.

4FH L1_Pref_Req 00H L1 prefetch requests due to DCU
cache misses.

May overcount
if request re-
submitted

60H Bus_Req_
Outstanding

00; Requires
core-
specificity,
and agent
specificity

Weighted cycles of cacheable bus
data read requests. This event
counts full-line read request from
DCU or HW prefetcher, but not
RFO, write, instruction fetches, or
others.

Use Cmask =1
to count
duration.

Use Umask bit
12 to include
HWP or exclude
HWP separately.

61H Bus_BNR_Clocks 00H External bus cycles while BNR
asserted.

62H Bus_DRDY_Clocks 00H External bus cycles while DRDY
asserted.

Requires agent
specificity

63H Bus_Locks_Clocks 00H External bus cycles while bus lock
signal asserted.

Requires core
specificity

64H Bus_Data_Rcv 40H Number of data chunks received
by this processor.

65H Bus_Trans_Brd See comment. Burst read bus transactions (data
or code).

Requires core
specificity

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-196 Vol. 3B

PERFORMANCE-MONITORING EVENTS
66H Bus_Trans_RFO See comment. Completed read for ownership
(RFO) transactions.

Requires agent
specificity

Requires core
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

68H Bus_Trans_Ifetch See comment. Completed instruction fetch
transactions.

69H Bus_Trans_Inval See comment. Completed invalidate transactions.

6AH Bus_Trans_Pwr See comment. Completed partial write
transactions.

6BH Bus_Trans_P See comment. Completed partial transactions
(include partial read + partial write
+ line write).

6CH Bus_Trans_IO See comment. Completed I/O transactions (read
and write).

6DH Bus_Trans_Def 20H Completed defer transactions. Requires core
specificity

Retried
transaction may
be counted
more than once

67H Bus_Trans_WB C0H Completed writeback transactions
from DCU (does not include L2
writebacks).

Requires agent
specificity

Each
transaction
counts its
address strobe

Retried
transaction may
be counted
more than once

6EH Bus_Trans_Burst C0H Completed burst transactions (full
line transactions include reads,
write, RFO, and writebacks).

6FH Bus_Trans_Mem C0H Completed memory transactions.
This includes Bus_Trans_Burst +
Bus_Trans_P+Bus_Trans_Inval.

70H Bus_Trans_Any C0H Any completed bus transactions.

77H Bus_Snoops 00H Counts any snoop on the bus. Requires MESI
qualification

Requires agent
specificity

78H DCU_Snoop_To_
Share

01H DCU snoops to share-state L1
cache line due to L1 misses.

Requires core
specificity

7DH Bus_Not_In_Use 00H Number of cycles there is no
transaction from the core.

Requires core
specificity

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B A-197

PERFORMANCE-MONITORING EVENTS
7EH Bus_Snoop_Stall 00H Number of bus cycles while bus
snoop is stalled.

80H ICache_Reads 00H Number of instruction fetches
from ICache, streaming buffers
(both cacheable and uncacheable
fetches).

81H ICache_Misses 00H Number of instruction fetch misses
from ICache, streaming buffers.

85H ITLB_Misses 00H Number of iITLB misses.

86H IFU_Mem_Stall 00H Cycles IFU is stalled while waiting
for data from memory.

87H ILD_Stall 00H Number of instruction length
decoder stalls (Counts number of
LCP stalls).

88H Br_Inst_Exec 00H Branch instruction executed
(includes speculation).

89H Br_Missp_Exec 00H Branch instructions executed and
mispredicted at execution
(includes branches that do not
have prediction or mispredicted).

8AH Br_BAC_Missp_
Exec

00H Branch instructions executed that
were mispredicted at front end.

8BH Br_Cnd_Exec 00H Conditional branch instructions
executed.

8CH Br_Cnd_Missp_
Exec

00H Conditional branch instructions
executed that were mispredicted.

8DH Br_Ind_Exec 00H Indirect branch instructions
executed.

8EH Br_Ind_Missp_Exec 00H Indirect branch instructions
executed that were mispredicted.

8FH Br_Ret_Exec 00H Return branch instructions
executed.

90H Br_Ret_Missp_Exec 00H Return branch instructions
executed that were mispredicted.

91H Br_Ret_BAC_Missp_
Exec

00H Return branch instructions
executed that were mispredicted
at the front end.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-198 Vol. 3B

PERFORMANCE-MONITORING EVENTS
92H Br_Call_Exec 00H Return call instructions executed.

93H Br_Call_Missp_Exec 00H Return call instructions executed
that were mispredicted.

94H Br_Ind_Call_Exec 00H Indirect call branch instructions
executed.

A2H Resource_Stall 00H Cycles while there is a resource
related stall (renaming, buffer
entries) as seen by allocator.

B0H MMX_Instr_Exec 00H Number of MMX instructions
executed (does not include MOVQ
and MOVD stores).

B1H SIMD_Int_Sat_Exec 00H Number of SIMD Integer saturating
instructions executed.

B3H SIMD_Int_Pmul_
Exec

01H Number of SIMD Integer packed
multiply instructions executed.

B3H SIMD_Int_Psft_Exec 02H Number of SIMD Integer packed
shift instructions executed.

B3H SIMD_Int_Pck_Exec 04H Number of SIMD Integer pack
operations instruction executed.

B3H SIMD_Int_Upck_
Exec

08H Number of SIMD Integer unpack
instructions executed.

B3H SIMD_Int_Plog_
Exec

10H Number of SIMD Integer packed
logical instructions executed.

B3H SIMD_Int_Pari_Exec 20H Number of SIMD Integer packed
arithmetic instructions executed.

C0H Instr_Ret 00H Number of instruction retired
(Macro fused instruction count
as 2).

C1H FP_Comp_Instr_Ret 00H Number of FP compute
instructions retired (X87
instruction or instruction that
contain X87 operations).

Use IA32_PMC0
only.

C2H Uops_Ret 00H Number of micro-ops retired
(include fused uops).

C3H SMC_Detected 00H Number of times self-modifying
code condition detected.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B A-199

PERFORMANCE-MONITORING EVENTS
C4H Br_Instr_Ret 00H Number of branch instructions
retired.

C5H Br_MisPred_Ret 00H Number of mispredicted branch
instructions retired.

C6H Cycles_Int_Masked 00H Cycles while interrupt is disabled.

C7H Cycles_Int_Pedning_
Masked

00H Cycles while interrupt is disabled
and interrupts are pending.

C8H HW_Int_Rx 00H Number of hardware interrupts
received.

C9H Br_Taken_Ret 00H Number of taken branch
instruction retired.

CAH Br_MisPred_Taken_
Ret

00H Number of taken and mispredicted
branch instructions retired.

CCH MMX_FP_Trans 00H Number of transitions from MMX
to X87.

CCH FP_MMX_Trans 01H Number of transitions from X87 to
MMX.

CDH MMX_Assist 00H Number of EMMS executed.

CEH MMX_Instr_Ret 00H Number of MMX instruction
retired.

D0H Instr_Decoded 00H Number of instruction decoded.

D7H ESP_Uops 00H Number of ESP folding instruction
decoded.

D8H SIMD_FP_SP_Ret 00H Number of SSE/SSE2 single
precision instructions retired
(packed and scalar).

D8H SIMD_FP_SP_S_
Ret

01H Number of SSE/SSE2 scalar single
precision instructions retired.

D8H SIMD_FP_DP_P_
Ret

02H Number of SSE/SSE2 packed
double precision instructions
retired.

D8H SIMD_FP_DP_S_
Ret

03H Number of SSE/SSE2 scalar double
precision instructions retired.

D8H SIMD_Int_128_Ret 04H Number of SSE2 128 bit integer
instructions retired.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
A-200 Vol. 3B

PERFORMANCE-MONITORING EVENTS
D9H SIMD_FP_SP_P_
Comp_Ret

00H Number of SSE/SSE2 packed single
precision compute instructions
retired (does not include AND, OR,
XOR).

D9H SIMD_FP_SP_S_
Comp_Ret

01H Number of SSE/SSE2 scalar single
precision compute instructions
retired (does not include AND, OR,
XOR).

D9H SIMD_FP_DP_P_
Comp_Ret

02H Number of SSE/SSE2 packed
double precision compute
instructions retired (does not
include AND, OR, XOR).

D9H SIMD_FP_DP_S_
Comp_Ret

03H Number of SSE/SSE2 scalar double
precision compute instructions
retired (does not include AND, OR,
XOR).

DAH Fused_Uops_Ret 00H All fused uops retired.

DAH Fused_Ld_Uops_
Ret

01H Fused load uops retired.

DAH Fused_St_Uops_Ret 02H Fused store uops retired.

DBH Unfusion 00H Number of unfusion events in the
ROB (due to exception).

E0H Br_Instr_Decoded 00H Branch instructions decoded.

E2H BTB_Misses 00H Number of branches the BTB did
not produce a prediction.

E4H Br_Bogus 00H Number of bogus branches.

E6H BAClears 00H Number of BAClears asserted.

F0H Pref_Rqsts_Up 00H Number of hardware prefetch
requests issued in forward
streams.

F8H Pref_Rqsts_Dn 00H Number of hardware prefetch
requests issued in backward
streams.

Table A-12. Non-Architectural Performance Events
in Intel Core Solo and Intel Core Duo Processors (Contd.)

Event
Num.

Event Mask
Mnemonic

Umask
Value Description Comment
Vol. 3B A-201

PERFORMANCE-MONITORING EVENTS
A.9 PENTIUM 4 AND INTEL XEON PROCESSOR
PERFORMANCE-MONITORING EVENTS

Tables A-13, A-14 and list performance-monitoring events that can be counted or
sampled on processors based on Intel NetBurst® microarchitecture. Table A-13 lists
the non-retirement events, and Table A-14 lists the at-retirement events. Tables
A-16, A-17, and A-18 describes three sets of parameters that are available for three
of the at-retirement counting events defined in Table A-14. Table A-19 shows which
of the non-retirement and at retirement events are logical processor specific (TS)
(see Section 30.10.4, “Performance Monitoring Events”) and which are non-logical
processor specific (TI).

Some of the Pentium 4 and Intel Xeon processor performance-monitoring events
may be available only to specific models. The performance-monitoring events listed
in Tables A-13 and A-14 apply to processors with CPUID signature that matches
family encoding 15, model encoding 0, 1, 2 3, 4, or 6. Table applies to processors
with a CPUID signature that matches family encoding 15, model encoding 3, 4 or 6.

The functionality of performance-monitoring events in Pentium 4 and Intel Xeon
processors is also available when IA-32e mode is enabled.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting

Event Name Event Parameters Parameter Value Description

TC_deliver_mode This event counts the duration (in
clock cycles) of the operating
modes of the trace cache and
decode engine in the processor
package. The mode is specified by
one or more of the event mask
bits.

ESCR restrictions MSR_TC_ESCR0

MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 01H ESCR[31:25]
A-202 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: DD

1: DB

2: DI

ESCR[24:9]

Both logical processors are in
deliver mode.

Logical processor 0 is in deliver
mode and logical processor 1 is in
build mode.

Logical processor 0 is in deliver
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.

3: BD

4: BB

Logical processor 0 is in build
mode and logical processor 1 is in
deliver mode.

Both logical processors are in build
mode.

5: BI Logical processor 0 is in build
mode and logical processor 1 is
either halted, under a machine
clear condition or transitioning to
a long microcode flow.

6: ID

7: IB

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in deliver mode.

Logical processor 0 is either
halted, under a machine clear
condition or transitioning to a long
microcode flow. Logical processor
1 is in build mode.

CCCR Select 01H CCCR[15:13]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-203

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

If only one logical processor is
available from a physical
processor package, the event
mask should be interpreted as
logical processor 1 is halted. Event
mask bit 2 was previously known
as “DELIVER”, bit 5 was previously
known as “BUILD”.

BPU_fetch_
request

This event counts instruction
fetch requests of specified
request type by the Branch
Prediction unit. Specify one or
more mask bits to qualify the
request type(s).

ESCR restrictions MSR_BPU_ESCR0
MSR_BPU_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: TCMISS

ESCR[24:9]

Trace cache lookup miss

CCCR Select 00H CCCR[15:13]

ITLB_reference This event counts translations
using the Instruction Translation
Look-aside Buffer (ITLB).

ESCR restrictions MSR_ITLB_ESCR0

MSR_ITLB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 18H ESCR[31:25]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-204 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: HIT

1: MISS

2: HIT_UC

ESCR[24:9]

ITLB hit

ITLB miss

Uncacheable ITLB hit

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

All page references regardless of
the page size are looked up as
actual 4-KByte pages. Use the
page_walk_type event with the
ITMISS mask for a more
conservative count.

memory_cancel This event counts the canceling of
various type of request in the
Data cache Address Control unit
(DAC). Specify one or more mask
bits to select the type of requests
that are canceled.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

2: ST_RB_FULL

3: 64K_CONF

ESCR[24:9]

Replayed because no store
request buffer is available

Conflicts due to 64-KByte aliasing

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

All_CACHE_MISS includes
uncacheable memory in count.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-205

PERFORMANCE-MONITORING EVENTS
memory_
complete

This event counts the completion
of a load split, store split,
uncacheable (UC) split, or UC load.
Specify one or more mask bits to
select the operations to be
counted.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: LSC

1: SSC

ESCR[24:9]

Load split completed, excluding
UC/WC loads

Any split stores completed

CCCR Select 02H CCCR[15:13]

load_port_replay This event counts replayed events
at the load port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_LD

ESCR[24:9]

Split load.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-206 Vol. 3B

PERFORMANCE-MONITORING EVENTS
store_port_replay This event counts replayed events
at the store port. Specify one or
more mask bits to select the
cause of the replay.

ESCR restrictions MSR_SAAT_ESCR0

MSR_SAAT_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask

Bit 1: SPLIT_ST

ESCR[24:9]

Split store

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Must use ESCR1 for at-retirement
counting.

MOB_load_replay This event triggers if the memory
order buffer (MOB) caused a load
operation to be replayed. Specify
one or more mask bits to select
the cause of the replay.

ESCR restrictions MSR_MOB_ESCR0

MSR_MOB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

1: NO_STA

3: NO_STD

ESCR[24:9]

Replayed because of unknown
store address.

Replayed because of unknown
store data.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-207

PERFORMANCE-MONITORING EVENTS
4: PARTIAL_DATA

5: UNALGN_ADDR

Replayed because of partially
overlapped data access between
the load and store operations.

Replayed because the lower 4 bits
of the linear address do not match
between the load and store
operations.

CCCR Select 02H CCCR[15:13]

page_walk_type This event counts various types
of page walks that the page miss
handler (PMH) performs.

ESCR restrictions MSR_PMH_
ESCR0

MSR_PMH_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: DTMISS

1: ITMISS

ESCR[24:9]

Page walk for a data TLB miss
(either load or store).

Page walk for an instruction TLB
miss.

CCCR Select 04H CCCR[15:13]

BSQ_cache
_reference

This event counts cache
references (2nd level cache or 3rd
level cache) as seen by the bus
unit.

Specify one or more mask bit to
select an access according to the
access type (read type includes
both load and RFO, write type
includes writebacks and evictions)
and the access result (hit, misses).

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-208 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_
ESCR0

MSR_BSU_
ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 0CH ESCR[31:25]

Bit

0: RD_2ndL_HITS

1: RD_2ndL_HITE

2: RD_2ndL_HITM

3: RD_3rdL_HITS

ESCR[24:9]

Read 2nd level cache hit Shared
(includes load and RFO)

Read 2nd level cache hit Exclusive
(includes load and RFO)

Read 2nd level cache hit Modified
(includes load and RFO)

Read 3rd level cache hit Shared
(includes load and RFO)

4: RD_3rdL_HITE

5: RD_3rdL_HITM

Read 3rd level cache hit Exclusive
(includes load and RFO)

Read 3rd level cache hit Modified
(includes load and RFO)

ESCR Event Mask 8: RD_2ndL_MISS

9: RD_3rdL_MISS

10: WR_2ndL_MISS

Read 2nd level cache miss
(includes load and RFO)

Read 3rd level cache miss
(includes load and RFO)

A Writeback lookup from DAC
misses the 2nd level cache
(unlikely to happen)

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: The implementation of this
event in current Pentium 4 and
Xeon processors treats either
a load operation or a request
for ownership (RFO) request as
a “read” type operation.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-209

PERFORMANCE-MONITORING EVENTS
2: Currently this event causes
both over and undercounting
by as much as a factor of two
due to an erratum.

3: It is possible for a transaction
that is started as a prefetch to
change the transaction's
internal status, making it no
longer a prefetch. or change
the access result status (hit,
miss) as seen by this event.

IOQ_allocation This event counts the various
types of transactions on the bus.
A count is generated each time a
transaction is allocated into the
IOQ that matches the specified
mask bits. An allocated entry can
be a sector (64 bytes) or a chunks
of 8 bytes.

Requests are counted once per
retry. The event mask bits
constitute 4 bit fields. A
transaction type is specified by
interpreting the values of each bit
field.

Specify one or more event mask
bits in a bit field to select the
value of the bit field.

Each field (bits 0-4 are one field)
are independent of and can be
ORed with the others. The
request type field is further
combined with bit 5 and 6 to form
a binary expression. Bits 7 and 8
form a bit field to specify the
memory type of the target
address.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-210 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Bits 13 and 14 form a bit field to
specify the source agent of the
request. Bit 15 affects read
operation only. The event is
triggered by evaluating the logical
expression: (((Request type) OR
Bit 5 OR Bit 6) OR (Memory type))
AND (Source agent).

ESCR restrictions MSR_FSB_ESCR0,
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1;

ESCR1: 2, 3

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bits

0-4 (single field)

 5: ALL_READ

 6: ALL_WRITE

 7: MEM_UC

 8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default)

Count read entries

Count write entries

Count UC memory access entries

Count WC memory access entries

 9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-211

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: If PREFETCH bit is cleared,
sectors fetched using prefetch
are excluded in the counts. If
PREFETCH bit is set, all sectors
or chunks read are counted.

2: Specify the edge trigger in
CCCR to avoid double counting.

3: The mapping of interpreted bit
field values to transaction
types may differ with different
processor model
implementations of the
Pentium 4 processor family.
Applications that program
performance monitoring
events should use CPUID to
determine processor models
when using this event. The
logic equations that trigger the
event are model-specific (see
4a and 4b below).

4a:For Pentium 4 and Xeon
Processors starting with CPUID
Model field encoding equal to 2
or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-212 Vol. 3B

PERFORMANCE-MONITORING EVENTS
4b:For Pentium 4 and Xeon
Processors with CPUID Model
field encoding less than 2, this
event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent). Note
that event mask bits for
memory type are ignored if
either ALL_READ or
ALL_WRITE is specified.

5: This event is known to ignore
CPL in early implementations
of Pentium 4 and Xeon
Processors. Both user requests
and OS requests are included in
the count. This behavior is
fixed starting with Pentium 4
and Xeon Processors with
CPUID signature 0xF27 (Family
15, Model 2, Stepping 7).

6: For write-through (WT) and
write-protected (WP) memory
types, this event counts reads
as the number of 64-byte
sectors. Writes are counted by
individual chunks.

7: For uncacheable (UC) memory
types, this events counts the
number of 8-byte chunks
allocated.

8: For Pentium 4 and Xeon
Processors with CPUID
Signature less than 0xf27, only
MSR_FSB_ESCR0 is available.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-213

PERFORMANCE-MONITORING EVENTS
IOQ_active_
entries

This event counts the number of
entries (clipped at 15) in the IOQ
that are active. An allocated entry
can be a sector (64 bytes) or a
chunks of 8 bytes.

The event must be programmed in
conjunction with IOQ_allocation.
Specify one or more event mask
bits to select the transactions
that is counted.

ESCR restrictions MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 01AH ESCR[30:25]

ESCR Event Mask

Bits

0-4 (single field)

5: ALL_READ

6: ALL_WRITE

7: MEM_UC

8: MEM_WC

ESCR[24:9]

Bus request type (use 00001 for
invalid or default).

Count read entries.

Count write entries.

Count UC memory access entries.

Count WC memory access entries.

9: MEM_WT

10: MEM_WP

Count write-through (WT)
memory access entries.

Count write-protected (WP)
memory access entries.

11: MEM_WB

13: OWN

Count WB memory access entries.

Count all store requests driven by
processor, as opposed to other
processor or DMA.

14: OTHER

15: PREFETCH

Count all requests driven by other
processors or DMA.

Include HW and SW prefetch
requests in the count.

CCCR Select 06H CCCR[15:13]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-214 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the ioq_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

4: The mapping of interpreted bit
field values to transaction
types may differ across
different processor model
implementations of the
Pentium 4 processor family.
Applications that programs
performance monitoring
events should use the CPUID
instruction to detect processor
models when using this event.
The logical expression that
triggers this event as describe
below:

5a:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding equal to
2 or greater, this event is
triggered by evaluating the
logical expression ((Request
type) and (Bit 5 or Bit 6) and
(Memory type) and (Source
agent)).

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-215

PERFORMANCE-MONITORING EVENTS
5b:For Pentium 4 and Xeon
Processors starting with CPUID
MODEL field encoding less than
2, this event is triggered by
evaluating the logical
expression [((Request type) or
Bit 5 or Bit 6) or (Memory
type)] and (Source agent).
Event mask bits for memory
type are ignored if either
ALL_READ or ALL_WRITE is
specified.

5c:This event is known to ignore
CPL in the current
implementations of Pentium 4
and Xeon Processors Both user
requests and OS requests are
included in the count.

6: An allocated entry can be a full
line (64 bytes) or in individual
chunks of 8 bytes.

FSB_data_
activity

This event increments once for
each DRDY or DBSY event that
occurs on the front side bus. The
event allows selection of a
specific DRDY or DBSY event.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 17H ESCR[31:25]

ESCR Event Mask

Bit 0:

ESCR[24:9]

DRDY_DRV Count when this processor drives
data onto the bus - includes
writes and implicit writebacks.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-216 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Asserted two processor clock
cycles for partial writes and 4
processor clocks (usually in
consecutive bus clocks) for full
line writes.

1: DRDY_OWN Count when this processor reads
data from the bus - includes loads
and some PIC transactions.
Asserted two processor clock
cycles for partial reads and 4
processor clocks (usually in
consecutive bus clocks) for full
line reads.

Count DRDY events that we drive.

Count DRDY events sampled that
we own.

2: DRDY_OTHER Count when data is on the bus but
not being sampled by the
processor. It may or may not be
being driven by this processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

3: DBSY_DRV Count when this processor
reserves the bus for use in the
next bus cycle in order to drive
data. Asserted for two processor
clock cycles for full line writes and
not at all for partial line writes.

May be asserted multiple times (in
consecutive bus clocks) if we stall
the bus waiting for a cache lock to
complete.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-217

PERFORMANCE-MONITORING EVENTS
4: DBSY_OWN Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will sample.

Asserted for two processor clock
cycles for full line writes and not
at all for partial line writes. May be
asserted multiple times (all one
bus clock apart) if we stall the bus
for some reason.

5:DBSY_OTHER Count when some agent reserves
the bus for use in the next bus
cycle to drive data that this
processor will NOT sample. It may
or may not be being driven by this
processor.

Asserted two processor clock
cycles for partial transactions and
4 processor clocks (usually in
consecutive bus clocks) for full
line transactions.

CCCR Select 06H CCCR[15:13]

Event Specific
Notes

Specify edge trigger in the CCCR
MSR to avoid double counting.

DRDY_OWN and DRDY_OTHER are
mutually exclusive; similarly for
DBSY_OWN and DBSY_OTHER.

BSQ_allocation This event counts allocations in
the Bus Sequence Unit (BSQ)
according to the specified mask
bit encoding. The event mask bits
consist of four sub-groups:

• request type,
• request length
• memory type
• and sub-group consisting

mostly of independent bits
(bits 5, 6, 7, 8, 9, and 10)

Specify an encoding for each sub-
group.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-218 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_BSU_ESCR0

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR Event Select 05H ESCR[31:25]

ESCR Event Mask Bit

0: REQ_TYPE0
1: REQ_TYPE1

ESCR[24:9]

Request type encoding (bit 0 and
1) are:

0 – Read (excludes read
invalidate)
1 – Read invalidate
2 – Write (other than
writebacks)
3 – Writeback (evicted from
cache). (public)

2: REQ_LEN0
3: REQ_LEN1

Request length encoding (bit 2, 3)
are:

0 – 0 chunks
1 – 1 chunks
3 – 8 chunks

5: REQ_IO_TYPE

6: REQ_LOCK_
 TYPE

7: REQ_CACHE_
 TYPE

Request type is input or output.

Request type is bus lock.

Request type is cacheable.

8: REQ_SPLIT_
 TYPE

9: REQ_DEM_TYPE

10: REQ_ORD_
 TYPE

Request type is a bus 8-byte
chunk split across 8-byte
boundary.

Request type is a demand if set.
Request type is HW.SW prefetch
if 0.

Request is an ordered type.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-219

PERFORMANCE-MONITORING EVENTS
11: MEM_TYPE0
12: MEM_TYPE1
13: MEM_TYPE2

Memory type encodings (bit
11-13) are:

0 – UC
1 – WC
4 – WT
5 – WP
6 – WB

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specify edge trigger in CCCR to
avoid double counting.

2: A writebacks to 3rd level cache
from 2nd level cache counts as
a separate entry, this is in
additional to the entry
allocated for a request to the
bus.

3: A read request to WB memory
type results in a request to the
64-byte sector, containing the
target address, followed by a
prefetch request to an
adjacent sector.

4: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 0 and
1, an allocated BSQ entry
includes both the demand
sector and prefetched 2nd
sector.

5: An allocated BSQ entry for a
data chunk is any request less
than 64 bytes.

6a:This event may undercount for
requests of split type
transactions if the data
address straddled across
modulo-64 byte boundary.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-220 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6b:This event may undercount for
requests of read request of
16-byte operands from WC or
UC address.

6c: This event may undercount WC
partial requests originated
from store operands that are
dwords.

bsq_active_
entries

This event represents the number
of BSQ entries (clipped at 15)
currently active (valid) which meet
the subevent mask criteria during
allocation in the BSQ. Active
request entries are allocated on
the BSQ until de-allocated.

De-allocation of an entry does not
necessarily imply the request is
filled. This event must be
programmed in conjunction with
BSQ_allocation. Specify one or
more event mask bits to select
the transactions that is counted.

ESCR restrictions ESCR1

Counter numbers
per ESCR

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

ESCR Event Mask ESCR[24:9]

CCCR Select 07H CCCR[15:13]

Event Specific
Notes

1: Specified desired mask bits in
ESCR0 and ESCR1.

2: See the BSQ_allocation event
for descriptions of the mask
bits.

3: Edge triggering should not be
used when counting cycles.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-221

PERFORMANCE-MONITORING EVENTS
4: This event can be used to
estimate the latency of a
transaction from allocation to
de-allocation in the BSQ. The
latency observed by
BSQ_allocation includes the
latency of FSB, plus additional
overhead.

5: Additional overhead may
include the time it takes to
issue two requests (the sector
by demand and the adjacent
sector via prefetch). Since
adjacent sector prefetches
have lower priority that
demand fetches, on a heavily
used system there is a high
probability that the adjacent
sector prefetch will have to
wait until the next bus
arbitration.

6: For Pentium 4 and Xeon
processors with CPUID model
encoding value less than 3, this
event is updated every clock.

7: For Pentium 4 and Xeon
processors with CPUID model
encoding value equals to 3 or 4,
this event is updated every
other clock.

SSE_input_assist This event counts the number of
times an assist is requested to
handle problems with input
operands for SSE/SSE2/SSE3
operations; most notably
denormal source operands when
the DAZ bit is not set. Set bit 15
of the event mask to use this
event.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-222 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 34H ESCR[31:25]

ESCR Event Mask

15: ALL

ESCR[24:9]

Count assists for SSE/SSE2/SSE3
μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: Not all requests for assists are
actually taken. This event is
known to overcount in that it
counts requests for assists
from instructions on the non-
retired path that do not incur a
performance penalty. An assist
is actually taken only for non-
bogus μops. Any appreciable
counts for this event are an
indication that the DAZ or FTZ
bit should be set and/or the
source code should be changed
to eliminate the condition.

2: Two common situations for an
SSE/SSE2/SSE3 operation
needing an assist are: (1) when
a denormal constant is used as
an input and the Denormals-
Are-Zero (DAZ) mode is not
set, (2) when the input operand
uses the underflowed result of
a previous SSE/SSE2/SSE3
operation and neither the DAZ
nor Flush-To-Zero (FTZ) modes
are set.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-223

PERFORMANCE-MONITORING EVENTS
3: Enabling the DAZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the first situation.
Enabling the FTZ mode
prevents SSE/SSE2/SSE3
operations from needing
assists in the second situation.

packed_SP_uop This event increments for each
packed single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more
than one packed SP μops, each
packed SP μop that is specified
by the event mask will be
counted.

2: This metric counts instances of
packed memory μops in a
repeat move string.

packed_DP_uop This event increments for each
packed double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-224 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0CH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on
packed double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one packed DP μops, each
packed DP μop that is specified by
the event mask will be counted.

scalar_SP_uop This event increments for each
scalar single-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
single-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar SP μops, each
scalar SP μop that is specified by
the event mask will be counted.

scalar_DP_uop This event increments for each
scalar double-precision μop,
specified through the event mask
for detection.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-225

PERFORMANCE-MONITORING EVENTS
Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 0EH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on scalar
double-precision operands.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one scalar DP μops, each
scalar DP μop that is specified by
the event mask is counted.

64bit_MMX_uop This event increments for each
MMX instruction, which operate
on 64-bit SIMD operands.

ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 64-
bit SIMD integer operands in
memory or MMX registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 64-bit MMX μops, each
64-bit MMX μop that is specified
by the event mask will be
counted.

128bit_MMX_uop This event increments for each
integer SIMD SSE2 instruction,
which operate on 128-bit SIMD
operands.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-226 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR restrictions MSR_FIRM_ESCR0

MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 1AH ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all μops operating on 128-
bit SIMD integer operands in
memory or XMM registers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

If an instruction contains more
than one 128-bit MMX μops, each
128-bit MMX μop that is specified
by the event mask will be
counted.

x87_FP_uop This event increments for each
x87 floating-point μop, specified
through the event mask for
detection.

ESCR restrictions MSR_FIRM_ESCR0
MSR_FIRM_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 04H ESCR[31:25]

ESCR Event Mask

Bit 15: ALL

ESCR[24:9]

Count all x87 FP μops.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

1: If an instruction contains more
than one x87 FP μops, each
x87 FP μop that is specified by
the event mask will be counted.

2: This event does not count x87
FP μop for load, store, move
between registers.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-227

PERFORMANCE-MONITORING EVENTS
TC_misc This event counts miscellaneous
events detected by the TC. The
counter will count twice for each
occurrence.

ESCR restrictions MSR_TC_ESCR0
MSR_TC_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 06H ESCR[31:25]

CCCR Select 01H CCCR[15:13]

ESCR Event Mask

Bit 4: FLUSH

ESCR[24:9]

Number of flushes

global_power
_events

This event accumulates the time
during which a processor is not
stopped.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 013H ESCR[31:25]

ESCR Event Mask Bit 0: Running ESCR[24:9]

The processor is active (includes
the handling of HLT STPCLK and
throttling.

CCCR Select 06H CCCR[15:13]

tc_ms_xfer This event counts the number of
times that uop delivery changed
from TC to MS ROM.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[31:25]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-228 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit 0: CISC

ESCR[24:9]

A TC to MS transfer occurred.

CCCR Select 0H CCCR[15:13]

uop_queue_
writes

This event counts the number of
valid uops written to the uop
queue. Specify one or more mask
bits to select the source type of
writes.

ESCR restrictions MSR_MS_ESCR0

MSR_MS_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 09H ESCR[31:25]

ESCR Event Mask

Bit

0: FROM_TC_
BUILD

ESCR[24:9]

The uops being written are from
TC build mode.

1: FROM_TC_
DELIVER

2: FROM_ROM

The uops being written are from
TC deliver mode.

The uops being written are from
microcode ROM.

CCCR Select 0H CCCR[15:13]

retired_mispred

_branch_type

This event counts retiring
mispredicted branches by type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 05H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Indirect call branches.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-229

PERFORMANCE-MONITORING EVENTS
3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if:

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

retired_branch

_type

This event counts retiring
branches by type. Specify one or
more mask bits to qualify the
branch by its type.

ESCR restrictions MSR_TBPU_ESCR0

MSR_TBPU_ESCR1

Counter numbers
per ESCR

ESCR0: 4, 5

ESCR1: 6, 7

ESCR Event Select 04H ESCR[30:25]

ESCR Event Mask

Bit

1: CONDITIONAL

2: CALL

ESCR[24:9]

Conditional jumps.

Direct or indirect calls.

3: RETURN

4: INDIRECT

Return branches.

Returns, indirect calls, or indirect
jumps.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

This event may overcount
conditional branches if :

• Mispredictions cause the trace
cache and delivery engine to
build new traces.

• When the processor's pipeline
is being cleared.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-230 Vol. 3B

PERFORMANCE-MONITORING EVENTS
resource_stall This event monitors the
occurrence or latency of stalls in
the Allocator.

ESCR restrictions MSR_ALF_ESCR0

MSR_ALF_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16
ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

5: SBFULL A Stall due to lack of store buffers.

CCCR Select 01H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

WC_Buffer This event counts Write
Combining Buffer operations that
are selected by the event mask.

ESCR restrictions MSR_DAC_ESCR0

MSR_DAC_ESCR1

Counter numbers
per ESCR

ESCR0: 8, 9

ESCR1: 10, 11

ESCR Event Select 05H ESCR[30:25]

Event Masks

Bit

ESCR[24:9]

0: WCB_EVICTS WC Buffer evictions of all causes.

1: WCB_FULL_
 EVICT

WC Buffer eviction: no WC buffer
is available.

CCCR Select 05H CCCR[15:13]

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-231

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

This event is useful for detecting
the subset of 64K aliasing cases
that are more costly (i.e. 64K
aliasing cases involving stores) as
long as there are no significant
contributions due to write
combining buffer full or hit-
modified conditions.

b2b_cycles This event can be configured to
count the number back-to-back
bus cycles using sub-event mask
bits 1 through 6.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 016H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

bnr This event can be configured to
count bus not ready conditions
using sub-event mask bits 0
through 2.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 08H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-232 Vol. 3B

PERFORMANCE-MONITORING EVENTS
snoop This event can be configured to
count snoop hit modified bus
traffic using sub-event mask bits
2, 6 and 7.

ESCR restrictions MSR_FSB_ESCR0
MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 06H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Response This event can be configured to
count different types of
responses using sub-event mask
bits 1,2, 8, and 9.

ESCR restrictions MSR_FSB_ESCR0

MSR_FSB_ESCR1

Counter numbers
per ESCR

ESCR0: 0, 1

ESCR1: 2, 3

ESCR Event Select 04H ESCR[30:25]

Event Masks Bit ESCR[24:9]

CCCR Select 03H CCCR[15:13]

Event Specific
Notes

This event may not be supported
in all models of the processor
family.

Table A-13. Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-233

PERFORMANCE-MONITORING EVENTS
Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting

Event Name Event Parameters Parameter Value Description

front_end_event This event counts the retirement
of tagged μops, which are
specified through the front-end
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 08H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Can Support PEBS Yes

Require Additional
MSRs for tagging

Selected ESCRs
and/or MSR_TC_
PRECISE_EVENT

See list of metrics supported by
Front_end tagging in Table A-3

execution_event This event counts the retirement
of tagged μops, which are
specified through the execution
tagging mechanism.

The event mask allows from one
to four types of μops to be
specified as either bogus or non-
bogus μops to be tagged.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 0CH ESCR[31:25]
A-234 Vol. 3B

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: NBOGUS0

1: NBOGUS1

2: NBOGUS2

3: NBOGUS3

4: BOGUS0

5: BOGUS1

6: BOGUS2

7: BOGUS3

ESCR[24:9]

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are not bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Each of the 4 slots to specify the
bogus/non-bogus μops must be
coordinated with the 4 TagValue
bits in the ESCR (for example,
NBOGUS0 must accompany a ‘1’ in
the lowest bit of the TagValue
field in ESCR, NBOGUS1 must
accompany a ‘1’ in the next but
lowest bit of the TagValue field).

Can Support PEBS Yes

Require Additional
MSRs for tagging

An ESCR for an
upstream event

See list of metrics supported by
execution tagging in Table A-4.

replay_event This event counts the retirement
of tagged μops, which are
specified through the replay
tagging mechanism. The event
mask specifies bogus or non-bogus
μops.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 09H ESCR[31:25]

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-235

PERFORMANCE-MONITORING EVENTS
ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

Supports counting tagged μops
with additional MSRs.

Can Support PEBS Yes

Require Additional
MSRs for tagging

IA32_PEBS_
ENABLE

MSR_PEBS_
MATRIX_VERT

Selected ESCR

See list of metrics supported by
replay tagging in Table A-5.

instr_retired This event counts instructions that
are retired during a clock cycle.

Mask bits specify bogus or non-
bogus (and whether they are
tagged using the front-end
tagging mechanism).

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUSNTAG

1: NBOGUSTAG

ESCR[24:9]

Non-bogus instructions that are
not tagged.

Non-bogus instructions that are
tagged.

2: BOGUSNTAG

3: BOGUSTAG

Bogus instructions that are not
tagged.

Bogus instructions that are
tagged.

CCCR Select 04H CCCR[15:13]

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-236 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Event Specific
Notes

1: The event count may vary
depending on the
microarchitectural states of the
processor when the event
detection is enabled.

2: The event may count more
than once for some instructions
with complex uop flows and
were interrupted before
retirement.

Can Support PEBS No

uops_retired This event counts μops that are
retired during a clock cycle. Mask
bits specify bogus or non-bogus.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 01H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

The marked μops are not bogus.

The marked μops are bogus.

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

P6: EMON_UOPS_RETIRED

Can Support PEBS No

uop_type This event is used in conjunction
with the front-end at-retirement
mechanism to tag load and store
μops.

ESCR restrictions MSR_RAT_ESCR0

MSR_RAT_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-237

PERFORMANCE-MONITORING EVENTS
ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

1: TAGLOADS

2: TAGSTORES

ESCR[24:9]

The μop is a load operation.

The μop is a store operation.

CCCR Select 02H CCCR[15:13]

Event Specific
Notes

Setting the TAGLOADS and
TAGSTORES mask bits does not
cause a counter to increment.
They are only used to tag uops.

Can Support PEBS No

branch_retired This event counts the retirement
of a branch. Specify one or more
mask bits to select any
combination of taken, not-taken,
predicted and mispredicted.

ESCR restrictions MSR_CRU_ESCR2
MSR_CRU_ESCR3

See Table 30-28 for the addresses
of the ESCR MSRs

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

The counter numbers associated
with each ESCR are provided. The
performance counters and
corresponding CCCRs can be
obtained from Table 30-28.

ESCR Event Select 06H ESCR[31:25]

ESCR Event Mask

Bit

0: MMNP

1: MMNM

2: MMTP

3: MMTM

ESCR[24:9]

Branch not-taken predicted

Branch not-taken mispredicted

Branch taken predicted

Branch taken mispredicted

CCCR Select 05H CCCR[15:13]

Event Specific
Notes

P6: EMON_BR_INST_RETIRED

Can Support PEBS No

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-238 Vol. 3B

PERFORMANCE-MONITORING EVENTS
mispred_branch_
retired

This event represents the
retirement of mispredicted branch
instructions.

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit 0: NBOGUS

ESCR[24:9]

The retired instruction is not
bogus.

CCCR Select 04H CCCR[15:13]

Can Support PEBS No

x87_assist This event counts the retirement
of x87 instructions that required
special handling.

Specifies one or more event mask
bits to select the type of
assistance.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 03H ESCR[31:25]

ESCR Event Mask

Bit

0: FPSU

1: FPSO

ESCR[24:9]

Handle FP stack underflow

Handle FP stack overflow

2: POAO

3: POAU

4: PREA

Handle x87 output overflow

Handle x87 output underflow

Handle x87 input assist

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
Vol. 3B A-239

PERFORMANCE-MONITORING EVENTS
machine_clear This event increments according to
the mask bit specified while the
entire pipeline of the machine is
cleared. Specify one of the mask
bit to select the cause.

ESCR restrictions MSR_CRU_ESCR2

MSR_CRU_ESCR3

Counter numbers
per ESCR

ESCR2: 12, 13, 16

ESCR3: 14, 15, 17

ESCR Event Select 02H ESCR[31:25]

ESCR Event Mask

Bit

0: CLEAR

ESCR[24:9]

Counts for a portion of the many
cycles while the machine is cleared
for any cause. Use Edge triggering
for this bit only to get a count of
occurrence versus a duration.

2: MOCLEAR

6: SMCLEAR

Increments each time the machine
is cleared due to memory ordering
issues.

Increments each time the machine
is cleared due to self-modifying
code issues.

CCCR Select 05H CCCR[15:13]

Can Support PEBS No

Table A-14. Performance Monitoring Events For Intel NetBurst
Microarchitecture for At-Retirement Counting (Contd.)

Event Name Event Parameters Parameter Value Description
A-240 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table A-15. Intel NetBurst Microarchitecture Model-Specific Performance Monitoring
Events (For Model Encoding 3, 4 or 6)

Event Name Event Parameters Parameter Value Description

instr_completed This event counts instructions that
have completed and retired during
a clock cycle. Mask bits specify
whether the instruction is bogus
or non-bogus and whether they
are:

ESCR restrictions MSR_CRU_ESCR0

MSR_CRU_ESCR1

Counter numbers
per ESCR

ESCR0: 12, 13, 16

ESCR1: 14, 15, 17

ESCR Event Select 07H ESCR[31:25]

ESCR Event Mask

Bit

0: NBOGUS

1: BOGUS

ESCR[24:9]

Non-bogus instructions

Bogus instructions

CCCR Select 04H CCCR[15:13]

Event Specific
Notes

This metric differs from
instr_retired, since it counts
instructions completed, rather
than the number of times that
instructions started.

Can Support PEBS No
Vol. 3B A-241

PERFORMANCE-MONITORING EVENTS
Table A-16. List of Metrics Available for Front_end Tagging
(For Front_end Event Only)

Front-end
metric1

MSR_
TC_PRECISE_EVEN
T MSR Bit field

 Additional MSR Event mask value for
Front_end_event

memory_loads None Set TAGLOADS bit
in ESCR
corresponding to
event Uop_Type.

NBOGUS

memory_stores None Set TAGSTORES bit
in the ESCR
corresponding to
event Uop_Type.

NBOGUS

NOTES:
1. There may be some undercounting of front end events when there is an overflow or underflow of

the floating point stack.

Table A-17. List of Metrics Available for Execution Tagging
(For Execution Event Only)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event

packed_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_SP_uop.

1 NBOGUS0

packed_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
packed_DP_uop.

1 NBOGUS0

scalar_SP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_SP_uop.

1 NBOGUS0

scalar_DP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
128_bit_MMX_uop.

1 NBOGUS0
A-242 Vol. 3B

PERFORMANCE-MONITORING EVENTS
64_bit_MMX_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set ALL bit in event
mask, TagUop bit in
ESCR of
x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_m
oves_retired

Set ALLP0, ALLP2
bits in event mask,
TagUop bit in ESCR
of X87_SIMD_
moves_uop.

1 NBOGUS0

Table A-18. List of Metrics Available for Replay Tagging
(For Replay Event Only)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event

1stL_cache_load
_miss_retired

Bit 0, Bit 24,
Bit 25

Bit 0 None NBOGUS

2ndL_cache_load
_miss_retired2

Bit 1, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_load_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0 None NBOGUS

DTLB_store_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 1 None NBOGUS

DTLB_all_miss
_retired

Bit 2, Bit 24,
Bit 25

Bit 0, Bit 1 None NBOGUS

Tagged_mispred_
branch

Bit 15, Bit 16,
Bit 24, Bit 25

Bit 4 None NBOGUS

MOB_load
_replay_retired3

Bit 9, Bit 24,
Bit 25

Bit 0 Select
MOB_load_replay
event and set
PARTIAL_DATA and
UNALGN_ADDR bit.

NBOGUS

Table A-17. List of Metrics Available for Execution Tagging
(For Execution Event Only) (Contd.)

Execution metric Upstream ESCR TagValue in
Upstream ESCR

Event mask value for
execution_event
Vol. 3B A-243

PERFORMANCE-MONITORING EVENTS
split_load_retired Bit 10, Bit 24,
Bit 25

Bit 0 Select
load_port_replay
event with the
MSR_SAAT_ESCR1
MSR and set the
SPLIT_LD mask bit.

NBOGUS

split_store_retired Bit 10, Bit 24,
Bit 25

Bit 1 Select
store_port_replay
event with the
MSR_SAAT_ESCR0
MSR and set the
SPLIT_ST mask bit.

NBOGUS

NOTES:
1. Certain kinds of μops cannot be tagged. These include I/O operations, UC and locked accesses,

returns, and far transfers.
2. 2nd-level misses retired does not count all 2nd-level misses. It only includes those references that

are found to be misses by the fast detection logic and not those that are later found to be misses.
3. While there are several causes for a MOB replay, the event counted with this event mask setting is

the case where the data from a load that would otherwise be forwarded is not an aligned subset of
the data from a preceding store.

Table A-18. List of Metrics Available for Replay Tagging
(For Replay Event Only) (Contd.)

Replay metric1

IA32_PEBS_
ENABLE Field
to Set

MSR_PEBS_
MATRIX_VERT
Bit Field to Set

Additional MSR/
Event

Event Mask
Value for
Replay_event
A-244 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table A-19. Event Mask Qualification for Logical Processors

Event Type Event Name Event Masks, ESCR[24:9] TS or TI

Non-Retirement BPU_fetch_request Bit 0: TCMISS TS

Non-Retirement BSQ_allocation Bit

0: REQ_TYPE0 TS

1: REQ_TYPE1 TS

2: REQ_LEN0 TS

3: REQ_LEN1 TS

5: REQ_IO_TYPE TS

6: REQ_LOCK_TYPE TS

7: REQ_CACHE_TYPE TS

8: REQ_SPLIT_TYPE TS

9: REQ_DEM_TYPE TS

10: REQ_ORD_TYPE TS

11: MEM_TYPE0 TS

12: MEM_TYPE1 TS

13: MEM_TYPE2 TS

Non-Retirement BSQ_cache_reference Bit

0: RD_2ndL_HITS TS

1: RD_2ndL_HITE TS

2: RD_2ndL_HITM TS

3: RD_3rdL_HITS TS

4: RD_3rdL_HITE TS

5: RD_3rdL_HITM TS

6: WR_2ndL_HIT TS

7: WR_3rdL_HIT TS

8: RD_2ndL_MISS TS

9: RD_3rdL_MISS TS

10: WR_2ndL_MISS TS

11: WR_3rdL_MISS TS
Vol. 3B A-245

PERFORMANCE-MONITORING EVENTS
Non-Retirement memory_cancel Bit

2: ST_RB_FULL TS

3: 64K_CONF TS

Non-Retirement SSE_input_assist Bit 15: ALL TI

Non-Retirement 64bit_MMX_uop Bit 15: ALL TI

Non-Retirement packed_DP_uop Bit 15: ALL TI

Non-Retirement packed_SP_uop Bit 15: ALL TI

Non-Retirement scalar_DP_uop Bit 15: ALL TI

Non-Retirement scalar_SP_uop Bit 15: ALL TI

Non-Retirement 128bit_MMX_uop Bit 15: ALL TI

Non-Retirement x87_FP_uop Bit 15: ALL TI

Non-Retirement x87_SIMD_moves_uop Bit

3: ALLP0 TI

4: ALLP2 TI

Non-Retirement FSB_data_activity Bit

0: DRDY_DRV TI

1: DRDY_OWN TI

2: DRDY_OTHER TI

3: DBSY_DRV TI

4: DBSY_OWN TI

5: DBSY_OTHER TI

Non-Retirement IOQ_allocation Bit

0: ReqA0 TS

1: ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-246 Vol. 3B

PERFORMANCE-MONITORING EVENTS
9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement IOQ_active_entries Bit

0: ReqA0

TS

1:ReqA1 TS

2: ReqA2 TS

3: ReqA3 TS

4: ReqA4 TS

5: ALL_READ TS

6: ALL_WRITE TS

7: MEM_UC TS

8: MEM_WC TS

9: MEM_WT TS

10: MEM_WP TS

11: MEM_WB TS

13: OWN TS

14: OTHER TS

15: PREFETCH TS

Non-Retirement global_power_events Bit 0: RUNNING TS

Non-Retirement ITLB_reference Bit

0: HIT TS

1: MISS TS

2: HIT_UC TS

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B A-247

PERFORMANCE-MONITORING EVENTS
Non-Retirement MOB_load_replay Bit

1: NO_STA TS

3: NO_STD TS

4: PARTIAL_DATA TS

5: UNALGN_ADDR TS

Non-Retirement page_walk_type Bit

0: DTMISS TI

1: ITMISS TI

Non-Retirement uop_type Bit

1: TAGLOADS TS

2: TAGSTORES TS

Non-Retirement load_port_replay Bit 1: SPLIT_LD TS

Non-Retirement store_port_replay Bit 1: SPLIT_ST TS

Non-Retirement memory_complete Bit

0: LSC TS

1: SSC TS

2: USC TS

3: ULC TS

Non-Retirement retired_mispred_branch_
type

Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Non-Retirement retired_branch_type Bit

0: UNCONDITIONAL TS

1: CONDITIONAL TS

2: CALL TS

3: RETURN TS

4: INDIRECT TS

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-248 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Non-Retirement tc_ms_xfer Bit

0: CISC TS

Non-Retirement tc_misc Bit

4: FLUSH TS

Non-Retirement TC_deliver_mode Bit

0: DD TI

1: DB TI

2: DI TI

3: BD TI

4: BB TI

5: BI TI

6: ID TI

7: IB TI

Non-Retirement uop_queue_writes Bit

0: FROM_TC_BUILD TS

1: FROM_TC_DELIVER TS

2: FROM_ROM TS

Non-Retirement resource_stall Bit 5: SBFULL TS

Non-Retirement WC_Buffer Bit TI

0: WCB_EVICTS TI

1: WCB_FULL_EVICT TI

2: WCB_HITM_EVICT TI

At Retirement instr_retired Bit

0: NBOGUSNTAG TS

1: NBOGUSTAG TS

2: BOGUSNTAG TS

3: BOGUSTAG TS

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B A-249

PERFORMANCE-MONITORING EVENTS
At Retirement machine_clear Bit

0: CLEAR TS

2: MOCLEAR TS

6: SMCCLEAR TS

At Retirement front_end_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement replay_event Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement execution_event Bit

0: NONBOGUS0 TS

1: NONBOGUS1 TS

2: NONBOGUS2 TS

3: NONBOGUS3 TS

4: BOGUS0 TS

5: BOGUS1 TS

6: BOGUS2 TS

7: BOGUS3 TS

At Retirement x87_assist Bit

0: FPSU TS

1: FPSO TS

2: POAO TS

3: POAU TS

4: PREA TS

At Retirement branch_retired Bit

0: MMNP TS

1: MMNM TS

2: MMTP TS

3: MMTM TS

At Retirement mispred_branch_retired Bit 0: NBOGUS TS

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
A-250 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A.10 PERFORMANCE MONITORING EVENTS FOR
INTEL® PENTIUM® M PROCESSORS

The Pentium M processor’s performance-monitoring events are based on monitoring
events for the P6 family of processors. All of these performance events are model
specific for the Pentium M processor and are not available in this form in other
processors. Table A-20 lists the Performance-Monitoring events that were added in
the Pentium M processor.

At Retirement uops_retired Bit

0: NBOGUS TS

1: BOGUS TS

At Retirement instr_completed Bit

0: NBOGUS TS

1: BOGUS TS

Table A-20. Performance Monitoring Events on Intel® Pentium® M
Processors

Name Hex Values Descriptions

Power Management

EMON_EST_TRANS 58H Number of Enhanced Intel SpeedStep
technology transitions:

Mask = 00H - All transitions

Mask = 02H - Only Frequency
transitions

EMON_THERMAL_TRIP 59H Duration/Occurrences in thermal trip; to
count number of thermal trips: bit 22 in
PerfEvtSel0/1 needs to be set to enable
edge detect.

BPU

BR_INST_EXEC 88H Branch instructions that were executed
(not necessarily retired).

BR_MISSP_EXEC 89H Branch instructions executed that were
mispredicted at execution.

Table A-19. Event Mask Qualification for Logical Processors (Contd.)

Event Type Event Name Event Masks, ESCR[24:9] TS or TI
Vol. 3B A-251

PERFORMANCE-MONITORING EVENTS
BR_BAC_MISSP_EXEC 8AH Branch instructions executed that were
mispredicted at front end (BAC).

BR_CND_EXEC 8BH Conditional branch instructions that
were executed.

BR_CND_MISSP_EXEC 8CH Conditional branch instructions
executed that were mispredicted.

BR_IND_EXEC 8DH Indirect branch instructions executed.

BR_IND_MISSP_EXEC 8EH Indirect branch instructions executed
that were mispredicted.

BR_RET_EXEC 8FH Return branch instructions executed.

BR_RET_MISSP_EXEC 90H Return branch instructions executed
that were mispredicted at execution.

BR_RET_BAC_MISSP_EXEC 91H Return branch instructions executed
that were mispredicted at front end
(BAC).

BR_CALL_EXEC 92H CALL instruction executed.

BR_CALL_MISSP_EXEC 93H CALL instruction executed and miss
predicted.

BR_IND_CALL_EXEC 94H Indirect CALL instructions executed.

Decoder

EMON_SIMD_INSTR_RETIRED CEH Number of retired MMX instructions.

EMON_SYNCH_UOPS D3H Sync micro-ops

EMON_ESP_UOPS D7H Total number of micro-ops

EMON_FUSED_UOPS_RET DAH Number of retired fused micro-ops:

Mask = 0 - Fused micro-ops

Mask = 1 - Only load+Op micro-ops

Mask = 2 - Only std+sta micro-ops

EMON_UNFUSION DBH Number of unfusion events in the ROB,
happened on a FP exception to a fused
µop.

Table A-20. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
A-252 Vol. 3B

PERFORMANCE-MONITORING EVENTS
A number of P6 family processor performance monitoring events are modified for the
Pentium M processor. Table A-21 lists the performance monitoring events that were
changed in the Pentium M processor, and differ from performance monitoring events
for the P6 family of processors.

Prefetcher

EMON_PREF_RQSTS_UP F0H Number of upward prefetches issued

EMON_PREF_RQSTS_DN F8H Number of downward prefetches issued

Table A-21. Performance Monitoring Events Modified on Intel® Pentium® M
Processors

Name Hex
Values

Descriptions

CPU_CLK_UNHALTED 79H Number of cycles during which the processor is not
halted, and not in a thermal trip.

EMON_SSE_SSE2_INST_
RETIRED

D8H Streaming SIMD Extensions Instructions Retired:

Mask = 0 – SSE packed single and scalar single

Mask = 1 – SSE scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

EMON_SSE_SSE2_COMP_INST_
RETIRED

D9H Computational SSE Instructions Retired:

Mask = 0 – SSE packed single

Mask = 1 – SSE Scalar-single

Mask = 2 – SSE2 packed-double

Mask = 3 – SSE2 scalar-double

Table A-20. Performance Monitoring Events on Intel® Pentium® M
Processors (Contd.)

Name Hex Values Descriptions
Vol. 3B A-253

PERFORMANCE-MONITORING EVENTS
A.11 P6 FAMILY PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-22 lists the events that can be counted with the performance-monitoring
counters and read with the RDPMC instruction for the P6 family processors. The unit
column gives the microarchitecture or bus unit that produces the event; the event
number column gives the hexadecimal number identifying the event; the mnemonic
event name column gives the name of the event; the unit mask column gives the unit
mask required (if any); the description column describes the event; and the
comments column gives additional information about the event.

All of these performance events are model specific for the P6 family processors and
are not available in this form in the Pentium 4 processors or the Pentium processors.
Some events (such as those added in later generations of the P6 family processors)
are only available in specific processors in the P6 family. All performance event
encodings not listed in Table A-22 are reserved and their use will result in undefined
counter results.

See the end of the table for notes related to certain entries in the table.

L2_LD 29H L2 data loads Mask[0] = 1 – count I state lines

Mask[1] = 1 – count S state
lines

Mask[2] = 1 – count E state
lines

Mask[3] = 1 – count M state
lines

Mask[5:4]:

00H – Excluding hardware-
prefetched lines

01H - Hardware-prefetched
lines only

02H/03H – All (HW-prefetched
lines and non HW --Prefetched
lines)

L2_LINES_IN 24H L2 lines
allocated

L2_LINES_OUT 26H L2 lines evicted

L2_M_LINES_OUT 27H Lw M-state lines
evicted

Table A-21. Performance Monitoring Events Modified on Intel® Pentium® M
Processors (Contd.)

Name Hex
Values

Descriptions
A-254 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_REFS 00H All loads from any
memory type. All stores
to any memory type.
Each part of a split is
counted separately. The
internal logic counts not
only memory loads and
stores, but also internal
retries.

80-bit floating-point
accesses are double
counted, since they are
decomposed into a 16-bit
exponent load and a
64-bit mantissa load.
Memory accesses are
only counted when they
are actually performed
(such as a load that gets
squashed because a
previous cache miss is
outstanding to the same
address, and which finally
gets performed, is only
counted once).

Does not include I/O
accesses, or other
nonmemory accesses.

45H DCU_LINES_IN 00H Total lines allocated in
DCU.

46H DCU_M_LINES_IN 00H Number of M state lines
allocated in DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines
evicted from DCU.

This includes evictions
via snoop HITM,
intervention or
replacement.
Vol. 3B A-255

PERFORMANCE-MONITORING EVENTS
48H DCU_MISS_
OUTSTANDING

00H Weighted number of
cycles while a DCU miss is
outstanding, incremented
by the number of
outstanding cache
misses at any particular
time.

Cacheable read requests
only are considered.

Uncacheable requests
are excluded.

Read-for-ownerships are
counted, as well as line
fills, invalidates, and
stores.

An access that also
misses the L2 is
short-changed by 2
cycles (i.e., if counts
N cycles, should be
N+2 cycles).

Subsequent loads
to the same cache
line will not result in
any additional
counts.

Count value not
precise, but still
useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction
fetches, both cacheable
and noncacheable,
including UC fetches.

81H IFU_IFETCH_
MISS

00H Number of instruction
fetch misses

All instruction fetches
that do not hit the IFU
(i.e., that produce
memory requests). This
includes UC accesses.

85H ITLB_MISS 00H Number of ITLB misses.

86H IFU_MEM_STALL 00H Number of cycles
instruction fetch is
stalled, for any reason.

Includes IFU cache
misses, ITLB misses, ITLB
faults, and other minor
stalls.

87H ILD_STALL 00H Number of cycles that
the instruction length
decoder is stalled.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-256 Vol. 3B

PERFORMANCE-MONITORING EVENTS
L2 Cache1 28H L2_IFETCH MESI
0FH

Number of L2 instruction
fetches.

This event indicates that
a normal instruction
fetch was received by
the L2.

The count includes only
L2 cacheable instruction
fetches; it does not
include UC instruction
fetches.

It does not include ITLB
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data loads.

This event indicates that
a normal, unlocked, load
memory access was
received by the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It does include L2
cacheable TLB miss
memory accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores.

This event indicates that
a normal, unlocked, store
memory access was
received by the L2.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-257

PERFORMANCE-MONITORING EVENTS
it indicates that the DCU
sent a read-for-
ownership request to the
L2. It also includes Invalid
to Modified requests sent
by the DCU to the L2.

It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as UC/WT
memory accesses.

It includes TLB miss
memory accesses.

24H L2_LINES_IN 00H Number of lines allocated
in the L2.

26H L2_LINES_OUT 00H Number of lines removed
from the L2 for any
reason.

25H L2_M_LINES_INM 00H Number of modified lines
allocated in the L2.

27H L2_M_LINES_
OUTM

00H Number of modified lines
removed from the L2 for
any reason.

2EH L2_RQSTS MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during
which the L2 cache data
bus was busy.

23H L2_DBUS_BUSY_
RD

00H Number of cycles during
which the data bus was
busy transferring read
data from L2 to the
processor.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-258 Vol. 3B

PERFORMANCE-MONITORING EVENTS
External
Bus Logic
(EBL)2

62H BUS_DRDY_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which DRDY# is asserted.

Utilization of the external
system data bus during
data transfers.

Unit Mask = 00H
counts bus clocks
when the processor
is driving DRDY#.

Unit Mask = 20H
counts in processor
clocks when any
agent is driving
DRDY#.

63H BUS_LOCK_
CLOCKS

00H
(Self)

20H
(Any)

Number of clocks during
which LOCK# is asserted
on the external system
bus.3

Always counts in
processor clocks.

60H BUS_REQ_
OUTSTANDING

00H
(Self)

Number of bus requests
outstanding.

This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any given
cycle.

Counts only DCU
full-line cacheable
reads, not RFOs,
writes, instruction
fetches, or anything
else. Counts
“waiting for bus to
complete” (last data
chunk received).

65H BUS_TRAN_BRD 00H
(Self)

20H
(Any)

Number of burst read
transactions.

66H BUS_TRAN_RFO 00H
(Self)

20H
(Any)

Number of completed
read for ownership
transactions.

67H BUS_TRANS_WB 00H
(Self)

20H
(Any)

Number of completed
write back transactions.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-259

PERFORMANCE-MONITORING EVENTS
68H BUS_TRAN_
IFETCH

00H
(Self)

20H
(Any)

Number of completed
instruction fetch
transactions.

69H BUS_TRAN_INVA
L

00H
(Self)

20H
(Any)

Number of completed
invalidate transactions.

6AH BUS_TRAN_PWR 00H
(Self)

20H
(Any)

Number of completed
partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)

20H
(Any)

Number of completed
partial transactions.

6CH BUS_TRANS_IO 00H
(Self)

20H
(Any)

Number of completed I/O
transactions.

6DH BUS_TRAN_DEF 00H
(Self)

20H
(Any)

Number of completed
deferred transactions.

6EH BUS_TRAN_
BURST

00H
(Self)

20H
(Any)

Number of completed
burst transactions.

70H BUS_TRAN_ANY 00H
(Self)

20H
(Any)

Number of all completed
bus transactions.

Address bus utilization
can be calculated
knowing the minimum
address bus occupancy.

Includes special cycles,
etc.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-260 Vol. 3B

PERFORMANCE-MONITORING EVENTS
6FH BUS_TRAN_MEM 00H
(Self)

20H
(Any)

Number of completed
memory transactions.

64H BUS_DATA_RCV 00H
(Self)

Number of bus clock
cycles during which this
processor is receiving
data.

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
BNR# pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HIT# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-261

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the BPMi
pins when the
counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7BH BUS_HITM_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HITM# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but BPMi
(breakpoint
monitor) pins
function as follows
based on the
setting of the PC
bits (bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers):

• If the core-clock-
to- bus-clock
ratio is 2:1 or 3:1,
and a PC bit is
set, the BPMi
pins will be
asserted for a
single clock when
the counters
overflow.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-262 Vol. 3B

PERFORMANCE-MONITORING EVENTS
• If the PC bit is
clear, the
processor
toggles the
BPMipins when
the counter
overflows.

• If the clock ratio
is not 2:1 or 3:1,
the BPMi pins
will not function
for these
performance-
monitoring
counter events.

7EH BUS_SNOOP_
STALL

00H
(Self)

Number of clock cycles
during which the bus is
snoop stalled.

Floating-
Point Unit

C1H FLOPS 00H Number of computational
floating-point operations
retired.

Excludes floating-point
computational operations
that cause traps or
assists.

Includes floating-point
computational operations
executed by the assist
handler.

Includes internal sub-
operations for complex
floating-point
instructions like
transcendentals.

Excludes floating-point
loads and stores.

Counter 0 only.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-263

PERFORMANCE-MONITORING EVENTS
10H FP_COMP_OPS_
EXE

00H Number of computational
floating-point operations
executed.

The number of FADD,
FSUB, FCOM, FMULs,
integer MULs and IMULs,
FDIVs, FPREMs, FSQRTS,
integer DIVs, and IDIVs.

This number does not
include the number of
cycles, but the number of
operations.

This event does not
distinguish an FADD used
in the middle of a
transcendental flow from
a separate FADD
instruction.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point
exception cases handled
by microcode.

Counter 1 only.

This event includes
counts due to
speculative
execution.

12H MUL 00H Number of multiplies.

This count includes
integer as well as FP
multiplies and is
speculative.

Counter 1 only.

13H DIV 00H Number of divides.

This count includes
integer as well as FP
divides and is
speculative.

Counter 1 only.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-264 Vol. 3B

PERFORMANCE-MONITORING EVENTS
14H CYCLES_DIV_
BUSY

00H Number of cycles during
which the divider is busy,
and cannot accept new
divides.

This includes integer and
FP divides, FPREM,
FPSQRT, etc. and is
speculative.

Counter 0 only.

Memory
Ordering

03H LD_BLOCKS 00H Number of load
operations delayed due
to store buffer blocks.

Includes counts caused
by preceding stores
whose addresses are
unknown, preceding
stores whose addresses
are known but whose
data is unknown, and
preceding stores that
conflicts with the load
but which incompletely
overlap the load.

04H SB_DRAINS 00H Number of store buffer
drain cycles.

Incremented every cycle
the store buffer is
draining.

Draining is caused by
serializing operations like
CPUID, synchronizing
operations like XCHG,
interrupt
acknowledgment, as well
as other conditions (such
as cache flushing).

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-265

PERFORMANCE-MONITORING EVENTS
05H MISALIGN_
MEM_REF

00H Number of misaligned
data memory references.

Incremented by 1 every
cycle, during which either
the processor’s load or
store pipeline dispatches
a misaligned μop.

Counting is performed if
it is the first or second
half, or if it is blocked,
squashed, or missed.

In this context,
misaligned means
crossing a 64-bit
boundary.

MISALIGN_MEM_
REF is only an
approximation to
the true number of
misaligned memory
references.

The value returned
is roughly
proportional to the
number of
misaligned memory
accesses (the size
of the problem).

07H EMON_KNI_PREF
_DISPATCHED

Number of Streaming
SIMD extensions
prefetch/weakly-ordered
instructions dispatched
(speculative prefetches
are included in counting):

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

4BH EMON_KNI_PREF
_MISS

Number of
prefetch/weakly-ordered
instructions that miss all
caches:

Counters 0 and 1.
Pentium III
processor only.

00H

01H

02H

03H

0: prefetch NTA

1: prefetch T1

2: prefetch T2

3: weakly ordered stores

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-266 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Instruction
Decoding
and
Retirement

C0H INST_RETIRED 00H Number of instructions
retired.

A hardware
interrupt received
during/after the
last iteration of the
REP STOS flow
causes the counter
to undercount by 1
instruction.

An SMI received
while executing a
HLT instruction will
cause the
performance
counter to not
count the RSM
instruction and
undercount by 1.

C2H UOPS_RETIRED 00H Number of μops retired.

D0H INST_DECODED 00H Number of instructions
decoded.

D8H EMON_KNI_INST_
RETIRED

00H

01H

Number of Streaming
SIMD extensions retired:

0: packed & scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

D9H EMON_KNI_
COMP_
INST_RET

00H

01H

Number of Streaming
SIMD extensions
computation instructions
retired:

0: packed and scalar

1: scalar

Counters 0 and 1.
Pentium III
processor only.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-267

PERFORMANCE-MONITORING EVENTS
Interrupts C8H HW_INT_RX 00H Number of hardware
interrupts received.

C6H CYCLES_INT_
MASKED

00H Number of processor
cycles for which
interrupts are disabled.

C7H CYCLES_INT_
PENDING_
AND_MASKED

00H Number of processor
cycles for which
interrupts are disabled
and interrupts are
pending.

Branches C4H BR_INST_
RETIRED

00H Number of branch
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00H Number of mispredicted
branches retired.

C9H BR_TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_PRED_
TAKEN_RET

00H Number of taken
mispredictions branches
retired.

E0H BR_INST_
DECODED

00H Number of branch
instructions decoded.

E2H BTB_MISSES 00H Number of branches for
which the BTB did not
produce a prediction.

E4H BR_BOGUS 00H Number of bogus
branches.

E6H BACLEARS 00H Number of times
BACLEAR is asserted.

This is the number of
times that a static branch
prediction was made, in
which the branch
decoder decided to make
a branch prediction
because the BTB did not.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-268 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Stalls A2H RESOURCE_
STALLS

00H Incremented by 1 during
every cycle for which
there is a resource
related stall.

Includes register
renaming buffer entries,
memory buffer entries.

Does not include stalls
due to bus queue full, too
many cache misses, etc.

In addition to resource
related stalls, this event
counts some other
events.

Includes stalls arising
during branch
misprediction recovery,
such as if retirement of
the mispredicted branch
is delayed and stalls
arising while store buffer
is draining from
synchronizing operations.

D2H PARTIAL_RAT_
STALLS

00H Number of cycles or
events for partial stalls.
This includes flag partial
stalls.

Segment
Register
Loads

06H SEGMENT_REG_
LOADS

00H Number of segment
register loads.

Clocks 79H CPU_CLK_
UNHALTED

00H Number of cycles during
which the processor is
not halted.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-269

PERFORMANCE-MONITORING EVENTS
MMX Unit B0H MMX_INSTR_
EXEC

00H Number of MMX
Instructions Executed.

Available in Intel
Celeron, Pentium II
and Pentium II Xeon
processors only.

Does not account
for MOVQ and
MOVD stores from
register to memory.

B1H MMX_SAT_
INSTR_EXEC

00H Number of MMX
Saturating Instructions
Executed.

Available in Pentium

II and Pentium III
processors only.

B2H MMX_UOPS_
EXEC

0FH Number of MMX μops
Executed.

Available in Pentium

II and Pentium III
processors only.

B3H MMX_INSTR_
TYPE_EXEC

01H

02H

04H

MMX packed multiply
instructions executed.

MMX packed shift
instructions executed.

MMX pack operation
instructions executed.

Available in Pentium

II and Pentium III
processors only.

08H

10H

20H

MMX unpack operation
instructions executed.

MMX packed logical
instructions executed.

MMX packed arithmetic
instructions executed.

CCH FP_MMX_TRANS 00H

01H

Transitions from MMX
instruction to floating-
point instructions.

Transitions from floating-
point instructions to
MMX instructions.

Available in Pentium

II and Pentium III
processors only.

CDH MMX_ASSIST 00H Number of MMX Assists
(that is, the number of
EMMS instructions
executed).

Available in Pentium

II and Pentium III
processors only.

CEH MMX_INSTR_RET 00H Number of MMX
Instructions Retired.

Available in Pentium

II processors only.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
A-270 Vol. 3B

PERFORMANCE-MONITORING EVENTS
Segment
Register
Renaming

D4H SEG_RENAME_
STALLS

Number of Segment
Register Renaming Stalls:

Available in Pentium

II and Pentium III
processors only.

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D5H SEG_REG_
RENAMES

Number of Segment
Register Renames:

Available in Pentium

II and Pentium III
processors only.

01H

02H

04H

08H

0FH

Segment register ES

Segment register DS

Segment register FS

Segment register FS

Segment registers
ES + DS + FS + GS

D6H RET_SEG_
RENAMES

00H Number of segment
register rename events
retired.

Available in Pentium

II and Pentium III
processors only.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field

in the PerfEvtSel0 and PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in
conjunction with L2 events to indicate the cache state or cache states involved.
The P6 family processors identify cache states using the “MESI” protocol and consequently each
bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI” (FH) should be
used to collect data for all states; UMSK = 0H, for the applicable events, will result in nothing
being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the
Unit Mask (UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers.
Bit 5 of the UMSK field is used in conjunction with the EBL events to indicate whether the pro-
cessor should count transactions that are self- generated (UMSK[5] = 0) or transactions that
result from any processor on the bus (UMSK[5] = 1).

3. L2 cache locks, so it is possible to have a zero count.

Table A-22. Events That Can Be Counted with the P6 Family Performance-
Monitoring Counters (Contd.)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments
Vol. 3B A-271

PERFORMANCE-MONITORING EVENTS
A.12 PENTIUM PROCESSOR PERFORMANCE-
MONITORING EVENTS

Table A-23 lists the events that can be counted with the performance-monitoring
counters for the Pentium processor. The Event Number column gives the hexadec-
imal code that identifies the event and that is entered in the ES0 or ES1 (event
select) fields of the CESR MSR. The Mnemonic Event Name column gives the name of
the event, and the Description and Comments columns give detailed descriptions of
the events. Most events can be counted with either counter 0 or counter 1; however,
some events can only be counted with only counter 0 or only counter 1 (as noted).

NOTE
The events in the table that are shaded are implemented only in the
Pentium processor with MMX technology.

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters

Event
Num.

Mnemonic Event
Name Description Comments

00H DATA_READ Number of memory data
reads (internal data
cache hit and miss
combined).

Split cycle reads are counted
individually. Data Memory Reads that
are part of TLB miss processing are
not included. These events may
occur at a maximum of two per clock.
I/O is not included.

01H DATA_WRITE Number of memory data
writes (internal data
cache hit and miss
combined); I/O not
included.

Split cycle writes are counted
individually. These events may occur
at a maximum of two per clock. I/O is
not included.

0H2 DATA_TLB_MISS Number of misses to the
data cache translation
look-aside buffer.
A-272 Vol. 3B

PERFORMANCE-MONITORING EVENTS
03H DATA_READ_MISS Number of memory read
accesses that miss the
internal data cache
whether or not the
access is cacheable or
noncacheable.

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

04H DATA WRITE MISS Number of memory
write accesses that miss
the internal data cache
whether or not the
access is cacheable or
noncacheable.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

05H WRITE_HIT_TO_
M-_OR_E-
STATE_LINES

Number of write hits to
exclusive or modified
lines in the data cache.

These are the writes that may be
held up if EWBE# is inactive. These
events may occur a maximum of two
per clock.

06H DATA_CACHE_
LINES_
WRITTEN_BACK

Number of dirty lines
(all) that are written
back, regardless of the
cause.

Replacements and internal and
external snoops can all cause
writeback and are counted.

07H EXTERNAL_
SNOOPS

Number of accepted
external snoops
whether they hit in the
code cache or data
cache or neither.

Assertions of EADS# outside of the
sampling interval are not counted,
and no internal snoops are counted.

08H EXTERNAL_DATA_
CACHE_SNOOP_
HITS

Number of external
snoops to the data
cache.

Snoop hits to a valid line in either the
data cache, the data line fill buffer, or
one of the write back buffers are all
counted as hits.

09H MEMORY ACCESSES
IN BOTH PIPES

Number of data memory
reads or writes that are
paired in both pipes of
the pipeline.

These accesses are not necessarily
run in parallel due to cache misses,
bank conflicts, etc.

0AH BANK CONFLICTS Number of actual bank
conflicts.

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-273

PERFORMANCE-MONITORING EVENTS
0BH MISALIGNED DATA
MEMORY OR I/O
REFERENCES

Number of memory or
I/O reads or writes that
are misaligned.

A 2- or 4-byte access is misaligned
when it crosses a 4-byte boundary;
an 8-byte access is misaligned when
it crosses an 8-byte boundary. Ten
byte accesses are treated as two
separate accesses of 8 and 2 bytes
each.

0CH CODE READ Number of instruction
reads; whether the read
is cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0DH CODE TLB MISS Number of instruction
reads that miss the code
TLB whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0EH CODE CACHE MISS Number of instruction
reads that miss the
internal code cache;
whether the read is
cacheable or
noncacheable.

Individual 8-byte noncacheable
instruction reads are counted.

0FH ANY SEGMENT
REGISTER LOADED

Number of writes into
any segment register in
real or protected mode
including the LDTR,
GDTR, IDTR, and TR.

Segment loads are caused by explicit
segment register load instructions,
far control transfers, and task
switches. Far control transfers and
task switches causing a privilege
level change will signal this event
twice. Interrupts and exceptions may
initiate a far control transfer.

10H Reserved

11H Reserved

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-274 Vol. 3B

PERFORMANCE-MONITORING EVENTS
12H Branches Number of taken and
not taken branches,
including: conditional
branches, jumps, calls,
returns, software
interrupts, and interrupt
returns.

 Also counted as taken branches are
serializing instructions, VERR and
VERW instructions, some segment
descriptor loads, hardware interrupts
(including FLUSH#), and
programmatic exceptions that invoke
a trap or fault handler. The pipe is
not necessarily flushed.

The number of branches actually
executed is measured, not the
number of predicted branches.

13H BTB_HITS Number of BTB hits that
occur.

Hits are counted only for those
instructions that are actually
executed.

14H TAKEN_BRANCH_
OR_BTB_HIT

Number of taken
branches or BTB hits
that occur.

This event type is a logical OR of
taken branches and BTB hits. It
represents an event that may cause
a hit in the BTB. Specifically, it is
either a candidate for a space in the
BTB or it is already in the BTB.

15H PIPELINE FLUSHES Number of pipeline
flushes that occur

Pipeline flushes are
caused by BTB misses
on taken branches,
mispredictions,
exceptions, interrupts,
and some segment
descriptor loads.

The counter will not be incremented
for serializing instructions (serializing
instructions cause the prefetch
queue to be flushed but will not
trigger the Pipeline Flushed event
counter) and software interrupts
(software interrupts do not flush the
pipeline).

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-275

PERFORMANCE-MONITORING EVENTS
16H INSTRUCTIONS_
EXECUTED

Number of instructions
executed (up to two per
clock).

Invocations of a fault handler are
considered instructions. All hardware
and software interrupts and
exceptions will also cause the count
to be incremented. Repeat prefixed
string instructions will only
increment this counter once despite
the fact that the repeat loop
executes the same instruction
multiple times until the loop criteria
is satisfied.

This applies to all the Repeat string
instruction prefixes (i.e., REP, REPE,
REPZ, REPNE, and REPNZ). This
counter will also only increment once
per each HLT instruction executed
regardless of how many cycles the
processor remains in the HALT state.

17H INSTRUCTIONS_
EXECUTED_ V PIPE

Number of instructions
executed in the V_pipe.

The event indicates the
number of instructions
that were paired.

This event is the same as the 16H
event except it only counts the
number of instructions actually
executed in the V-pipe.

18H BUS_CYCLE_
DURATION

Number of clocks while
a bus cycle is in
progress.

This event measures
bus use.

The count includes HLDA, AHOLD,
and BOFF# clocks.

19H WRITE_BUFFER_
FULL_STALL_
DURATION

Number of clocks while
the pipeline is stalled
due to full write buffers.

Full write buffers stall data memory
read misses, data memory write
misses, and data memory write hits
to S-state lines. Stalls on I/O
accesses are not included.

1AH WAITING_FOR_
DATA_MEMORY_
READ_STALL_
DURATION

Number of clocks while
the pipeline is stalled
while waiting for data
memory reads.

Data TLB Miss processing is also
included in the count. The pipeline
stalls while a data memory read is in
progress including attempts to read
that are not bypassed while a line is
being filled.

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-276 Vol. 3B

PERFORMANCE-MONITORING EVENTS
1BH STALL ON WRITE
TO AN E- OR M-
STATE LINE

Number of stalls on
writes to E- or M-state
lines.

1CH LOCKED BUS CYCLE Number of locked bus
cycles that occur as the
result of the LOCK prefix
or LOCK instruction,
page-table updates, and
descriptor table
updates.

Only the read portion of the locked
read-modify-write is counted. Split
locked cycles (SCYC active) count as
two separate accesses. Cycles
restarted due to BOFF# are not re-
counted.

1DH I/O READ OR WRITE
CYCLE

Number of bus cycles
directed to I/O space.

Misaligned I/O accesses will generate
two bus cycles. Bus cycles restarted
due to BOFF# are not re-counted.

1EH NONCACHEABLE_
MEMORY_READS

Number of
noncacheable
instruction or data
memory read bus cycles.

The count includes read
cycles caused by TLB
misses, but does not
include read cycles to
I/O space.

Cycles restarted due to BOFF# are
not re-counted.

1FH PIPELINE_AGI_
STALLS

Number of address
generation interlock
(AGI) stalls.

An AGI occurring in both
the U- and V- pipelines
in the same clock signals
this event twice.

An AGI occurs when the instruction
in the execute stage of either of U-
or V-pipelines is writing to either the
index or base address register of an
instruction in the D2 (address
generation) stage of either the U- or
V- pipelines.

20H Reserved

21H Reserved

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-277

PERFORMANCE-MONITORING EVENTS
22H FLOPS Number of floating-
point operations that
occur.

Number of floating-point adds,
subtracts, multiplies, divides,
remainders, and square roots are
counted. The transcendental
instructions consist of multiple adds
and multiplies and will signal this
event multiple times. Instructions
generating the divide-by-zero,
negative square root, special
operand, or stack exceptions will not
be counted.

Instructions generating all other
floating-point exceptions will be
counted. The integer multiply
instructions and other instructions
which use the x87 FPU will be
counted.

23H BREAKPOINT
MATCH ON DR0
REGISTER

Number of matches on
register DR0 breakpoint.

The counters is incremented
regardless if the breakpoints are
enabled or not. However, if
breakpoints are not enabled, code
breakpoint matches will not be
checked for instructions executed in
the V-pipe and will not cause this
counter to be incremented. (They are
checked on instruction executed in
the U-pipe only when breakpoints
are not enabled.)

These events correspond to the
signals driven on the BP[3:0] pins.
Refer to Chapter 16, “Debugging,
Profiling Branches and Time-Stamp
Counter” for more information.

24H BREAKPOINT
MATCH ON DR1
REGISTER

Number of matches on
register DR1 breakpoint.

See comment for 23H event.

25H BREAKPOINT
MATCH ON DR2
REGISTER

Number of matches on
register DR2 breakpoint.

See comment for 23H event.

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-278 Vol. 3B

PERFORMANCE-MONITORING EVENTS
26H BREAKPOINT
MATCH ON DR3
REGISTER

Number of matches on
register DR3 breakpoint.

See comment for 23H event.

27H HARDWARE
INTERRUPTS

Number of taken INTR
and NMI interrupts.

28H DATA_READ_OR_
WRITE

Number of memory data
reads and/or writes
(internal data cache hit
and miss combined).

Split cycle reads and writes are
counted individually. Data Memory
Reads that are part of TLB miss
processing are not included. These
events may occur at a maximum of
two per clock. I/O is not included.

29H DATA_READ_MISS
OR_WRITE MISS

Number of memory read
and/or write accesses
that miss the internal
data cache, whether or
not the access is
cacheable or
noncacheable.

Additional reads to the same cache
line after the first BRDY# of the
burst line fill is returned but before
the final (fourth) BRDY# has been
returned, will not cause the counter
to be incremented additional times.

Data accesses that are part of TLB
miss processing are not included.
Accesses directed to I/O space are
not included.

2AH BUS_OWNERSHIP_
LATENCY
(Counter 0)

The time from LRM bus
ownership request to
bus ownership granted
(that is, the time from
the earlier of a PBREQ
(0), PHITM# or HITM#
assertion to a PBGNT
assertion)

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2AH BUS OWNERSHIP
TRANSFERS
(Counter 1)

The number of buss
ownership transfers
(that is, the number of
PBREQ (0) assertions

The ratio of the 2AH events counted
on counter 0 and counter 1 is the
average stall time due to bus
ownership conflict.

2BH MMX_
INSTRUCTIONS_
EXECUTED_
U-PIPE (Counter 0)

Number of MMX
instructions executed in
the U-pipe

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-279

PERFORMANCE-MONITORING EVENTS
2BH MMX_
INSTRUCTIONS_
EXECUTED_
V-PIPE (Counter 1)

Number of MMX
instructions executed in
the V-pipe

2CH CACHE_M-
STATE_LINE_
SHARING
(Counter 0)

Number of times a
processor identified a
hit to a modified line due
to a memory access in
the other processor
(PHITM (O))

If the average memory latencies of
the system are known, this event
enables the user to count the Write
Backs on PHITM(O) penalty and the
Latency on Hit Modified(I) penalty.

2CH CACHE_LINE_
SHARING
(Counter 1)

Number of shared data
lines in the L1 cache
(PHIT (O))

2DH EMMS_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of EMMS
instructions executed

2DH TRANSITIONS_
BETWEEN_MMX_
AND_FP_
INSTRUCTIONS
(Counter 1)

Number of transitions
between MMX and
floating-point
instructions or vice
versa

An even count indicates
the processor is in MMX
state. an odd count
indicates it is in FP state.

This event counts the first floating-
point instruction following an MMX
instruction or first MMX instruction
following a floating-point instruction.

The count may be used to estimate
the penalty in transitions between
floating-point state and MMX state.

2EH BUS_UTILIZATION_
DUE_TO_
PROCESSOR_
ACTIVITY
(Counter 0)

Number of clocks the
bus is busy due to the
processor’s own activity
(the bus activity that is
caused by the
processor)

2EH WRITES_TO_
NONCACHEABLE_
MEMORY
(Counter 1)

Number of write
accesses to
noncacheable memory

The count includes write cycles
caused by TLB misses and I/O write
cycles.

Cycles restarted due to BOFF# are
not re-counted.

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-280 Vol. 3B

PERFORMANCE-MONITORING EVENTS
2FH SATURATING_
MMX_
INSTRUCTIONS_
EXECUTED (Counter
0)

Number of saturating
MMX instructions
executed,
independently of
whether they actually
saturated.

2FH SATURATIONS_
PERFORMED
(Counter 1)

Number of MMX
instructions that used
saturating arithmetic
when at least one of its
results actually
saturated

If an MMX instruction operating on 4
doublewords saturated in three out
of the four results, the counter will
be incremented by one only.

30H NUMBER_OF_
CYCLES_NOT_IN_
HALT_STATE
(Counter 0)

Number of cycles the
processor is not idle due
to HLT instruction

This event will enable the user to
calculate “net CPI”. Note that during
the time that the processor is
executing the HLT instruction, the
Time-Stamp Counter is not disabled.
Since this event is controlled by the
Counter Controls CC0, CC1 it can be
used to calculate the CPI at CPL=3,
which the TSC cannot provide.

30H DATA_CACHE_
TLB_MISS_
STALL_DURATION
(Counter 1)

Number of clocks the
pipeline is stalled due to
a data cache translation
look-aside buffer (TLB)
miss

31H MMX_
INSTRUCTION_
DATA_READS
(Counter 0)

Number of MMX
instruction data reads

31H MMX_
INSTRUCTION_
DATA_READ_
MISSES
(Counter 1)

Number of MMX
instruction data read
misses

32H FLOATING_POINT_S
TALLS_DURATION
(Counter 0)

Number of clocks while
pipe is stalled due to a
floating-point freeze

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-281

PERFORMANCE-MONITORING EVENTS
32H TAKEN_BRANCHES
(Counter 1)

Number of taken
branches

33H D1_STARVATION_
AND_FIFO_IS_
EMPTY
(Counter 0)

Number of times D1
stage cannot issue ANY
instructions since the
FIFO buffer is empty

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

33H D1_STARVATION_
AND_ONLY_ONE_
INSTRUCTION_IN_
FIFO
(Counter 1)

Number of times the D1
stage issues a single
instruction (since the
FIFO buffer had just one
instruction ready)

The D1 stage can issue 0, 1, or 2
instructions per clock if those are
available in an instructions FIFO
buffer.

When combined with the previously
defined events, Instruction Executed
(16H) and Instruction Executed in
the V-pipe (17H), this event enables
the user to calculate the numbers of
time pairing rules prevented issuing
of two instructions.

34H MMX_
INSTRUCTION_
DATA_WRITES
(Counter 0)

Number of data writes
caused by MMX
instructions

34H MMX_
INSTRUCTION_
DATA_WRITE_
MISSES
(Counter 1)

Number of data write
misses caused by MMX
instructions

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-282 Vol. 3B

PERFORMANCE-MONITORING EVENTS
35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS
(Counter 0)

Number of pipeline
flushes due to wrong
branch predictions
resolved in either the E-
stage or the WB-stage

The count includes any pipeline flush
due to a branch that the pipeline did
not follow correctly. It includes cases
where a branch was not in the BTB,
cases where a branch was in the BTB
but was mispredicted, and cases
where a branch was correctly
predicted but to the wrong address.

Branches are resolved in either the
Execute stage (E-stage) or the
Writeback stage (WB-stage). In the
later case, the misprediction penalty
is larger by one clock. The difference
between the 35H event count in
counter 0 and counter 1 is the
number of E-stage resolved
branches.

35H PIPELINE_
FLUSHES_DUE_
TO_WRONG_
BRANCH_
PREDICTIONS_
RESOLVED_IN_
WB-STAGE
(Counter 1)

Number of pipeline
flushes due to wrong
branch predictions
resolved in the WB-
stage

See note for event 35H (Counter 0).

36H MISALIGNED_
DATA_MEMORY_
REFERENCE_ON_
MMX_
INSTRUCTIONS
(Counter 0)

Number of misaligned
data memory references
when executing MMX
instructions

36H PIPELINE_
ISTALL_FOR_MMX_
INSTRUCTION_
DATA_MEMORY_
READS
(Counter 1)

Number clocks during
pipeline stalls caused by
waits form MMX
instruction data memory
reads

T3:

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-283

PERFORMANCE-MONITORING EVENTS
37H MISPREDICTED_
OR_
UNPREDICTED_
RETURNS
(Counter 1)

Number of returns
predicted incorrectly or
not predicted at all

The count is the difference between
the total number of executed returns
and the number of returns that were
correctly predicted. Only RET
instructions are counted (for
example, IRET instructions are not
counted).

37H PREDICTED_
RETURNS
(Counter 1)

Number of predicted
returns (whether they
are predicted correctly
and incorrectly

Only RET instructions are counted
(for example, IRET instructions are
not counted).

38H MMX_MULTIPLY_
UNIT_INTERLOCK
(Counter 0)

Number of clocks the
pipe is stalled since the
destination of previous
MMX multiply
instruction is not ready
yet

The counter will not be incremented
if there is another cause for a stall.
For each occurrence of a multiply
interlock, this event will be counted
twice (if the stalled instruction
comes on the next clock after the
multiply) or by once (if the stalled
instruction comes two clocks after
the multiply).

38H MOVD/MOVQ_
STORE_STALL_
DUE_TO_
PREVIOUS_MMX_
OPERATION
(Counter 1)

Number of clocks a
MOVD/MOVQ instruction
store is stalled in D2
stage due to a previous
MMX operation with a
destination to be used in
the store instruction.

39H RETURNS
(Counter 0)

Number or returns
executed.

Only RET instructions are counted;
IRET instructions are not counted.
Any exception taken on a RET
instruction and any interrupt
recognized by the processor on the
instruction boundary prior to the
execution of the RET instruction will
also cause this counter to be
incremented.

39H Reserved

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
A-284 Vol. 3B

PERFORMANCE-MONITORING EVENTS
3AH BTB_FALSE_
ENTRIES
(Counter 0)

Number of false entries
in the Branch Target
Buffer

False entries are causes for
misprediction other than a wrong
prediction.

3AH BTB_MISS_
PREDICTION_ON_
NOT-TAKEN_
BRANCH
(Counter 1)

Number of times the
BTB predicted a not-
taken branch as taken

3BH FULL_WRITE_
BUFFER_STALL_
DURATION_
WHILE_
EXECUTING_MMX_I
NSTRUCTIONS
(Counter 0)

Number of clocks while
the pipeline is stalled
due to full write buffers
while executing MMX
instructions

3BH STALL_ON_MMX_
INSTRUCTION_
WRITE_TO E-_OR_
M-STATE_LINE
(Counter 1)

Number of clocks during
stalls on MMX
instructions writing to
E- or M-state lines

Table A-23. Events That Can Be Counted with Pentium Processor
Performance-Monitoring Counters (Contd.)

Event
Num.

Mnemonic Event
Name Description Comments
Vol. 3B A-285

PERFORMANCE-MONITORING EVENTS
A-286 Vol. 3B

APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)

This appendix lists MSRs provided in Intel® Core™ 2 processor family, Intel® Atom™,
Intel® Core™ Duo, Intel® Core™ Solo, Pentium® 4 and Intel® Xeon® processors, P6
family processors, and Pentium® processors in Tables B-13, B-18, and B-19, respec-
tively. All MSRs listed can be read with the RDMSR and written with the WRMSR
instructions.

Register addresses are given in both hexadecimal and decimal. The register name is
the mnemonic register name and the bit description describes individual bits in
registers.

Model specific registers and its bit-fields may be supported for a finite range of
processor families/models. To distinguish between different processor family and/or
models, software must use CPUID.01H leaf function to query the combination of
DisplayFamily and DisplayModel to determine model-specific availability of MSRs
(see CPUID instruction in Chapter 3, “Instruction Set Reference, A-M” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Table B-1 lists
the signature values of DisplayFamily and DisplayModel for various processor fami-
lies or processor number series.

Table B-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_2DH Next Generation Intel Xeon processor

06_2FH Intel Xeon processor E7 family

06_2AH Intel Xeon processor E3 family; Second Generation Intel Core i7, i5,
i3 Processors 2xxx Series

06_2EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3
Processors

06_1EH, 06_1FH Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon Processor 3400, 3500, 5500
series

06_1DH Intel Xeon Processor MP 7400 series

06_17H Intel Xeon Processor 3100, 3300, 5200, 5400 series, Intel Core 2
Quad processors 8000, 9000 series

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad processor 6000 series, Intel Core 2 Extreme 6000
series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors,
Intel Pentium dual-core processors
Vol. 3B B-1

MODEL-SPECIFIC REGISTERS (MSRS)
B.1 ARCHITECTURAL MSRS
Many MSRs have carried over from one generation of IA-32 processors to the next
and to Intel 64 processors. A subset of MSRs and associated bit fields, which do not
change on future processor generations, are now considered architectural MSRs. For
historical reasons (beginning with the Pentium 4 processor), these “architectural
MSRs” were given the prefix “IA32_”. Table B-2 lists the architectural MSRs, their
addresses, their current names, their names in previous IA-32 processors, and bit
fields that are considered architectural. MSR addresses outside Table B-2 and certain
bitfields in an MSR address that may overlap with architectural MSR addresses are
model-specific. Code that accesses a machine specified MSR and that is executed on
a processor that does not support that MSR will generate an exception.

Architectural MSR or individual bit fields in an architectural MSR may be introduced or
transitioned at the granularity of certain processor family/model or the presence of
certain CPUID feature flags. The right-most column of Table B-2 provides information
on the introduction of each architectural MSR or its individual fields. This information
is expressed either as signature values of “DF_DM“ (see Table B-1) or via CPUID
flags.

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_1CH Intel Atom processor

0F_06H Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP,
Intel Pentium 4, Pentium D processors

0F_03H, 0F_04H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4,
Pentium D processors

06_09H Intel Pentium M processor

0F_02H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

0F_0H, 0F_01H Intel Xeon Processor, Intel Xeon Processor MP, Intel Pentium 4
processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor

05_01H, 05_02H, 05_04H Intel Pentium Processor, Intel Pentium Processor with MMX
Technology

Table B-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
B-2 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
Certain bit field position may be related to the maximum physical address width, the
value of which is expressed as “MAXPHYWID“ in Table B-2. “MAXPHYWID“ is reported by
CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially
reserved range. All existing and future processors will not implement any features
using any MSR in this range.

Table B-2. IA-32 Architectural MSRs

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal

0H 0 IA32_P5_MC_ADDR
(P5_MC_ADDR)

See Appendix B.12, “MSRs in
Pentium Processors.”

Pentium
Processor
(05_01H)

1H 1 IA32_P5_MC_TYPE
(P5_MC_TYPE)

See Appendix B.12, “MSRs in
Pentium Processors.”

DF_DM = 05_01H

6H 6 IA32_MONITOR_FILTER_S
IZE

See Section 8.10.5,
“Monitor/Mwait Address
Range Determination.”

0F_03H

10H 16 IA32_TIME_STAMP_
COUNTER (TSC)

See Section 16.12, “Time-
Stamp Counter.”

05_01H

17H 23 IA32_PLATFORM_ID
(MSR_PLATFORM_ID)

Platform ID. (RO)
The operating system can use
this MSR to determine “slot”
information for the processor
and the proper microcode
update to load.

06_01H

49:0 Reserved.

52:50 Platform Id. (RO)

Contains information
concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

63:53 Reserved.
Vol. 3B B-3

MODEL-SPECIFIC REGISTERS (MSRS)
1BH 27 IA32_APIC_BASE
(APIC_BASE)

06_01H

7:0 Reserved

8 BSP flag (R/W)

9 Reserved

10 Enable x2APIC mode 06_1AH

11 APIC Global Enable (R/W)

(MAXPHYWID - 1):12 APIC Base (R/W)

63: MAXPHYWID Reserved

3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64
Processor. (R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

0 Lock bit (R/WO): (1 = locked).
When set, locks this MSR from
being written, writes to this
bit will result in GP(0).

Note: Once the Lock bit is set,
the contents of this register
cannot be modified.
Therefore the lock bit must
be set after configuring
support

for Intel Virtualization
Technology and prior to
transferring control to an
option ROM or the OS. Hence,
once the Lock bit is set, the
entire

IA32_FEATURE_CONTROL_M
SR contents are preserved
across RESET when
PWRGOOD is not deasserted.

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-4 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1 Enable VMX inside SMX
operation (R/WL): This bit
enables a system executive
to use VMX in conjunction
with SMX to support Intel®
Trusted Execution
Technology.

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag and
SMX feature flag set (ECX bits
5 and 6 respectively).

If
CPUID.01H:ECX[bi
t 5 and bit 6] are
set to 1

2 Enable VMX outside SMX
operation (R/WL): This bit
enables VMX for system
executive that do not require
SMX..

BIOS must set this bit only
when the CPUID function 1
returns VMX feature flag set
(ECX bit 5).

If
CPUID.01H:ECX[bi
t 5 or bit 6] = 1

7:3 Reserved

14:8 SENTER Local Function
Enables (R/WL): When set,
each bit in the field
represents an enable control
for a corresponding SENTER
function. This bit is supported
only if CPUID.1:ECX.[bit 6] is
set

If
CPUID.01H:ECX[bi
t 6] = 1

15 SENTER Global Enable (R/WL):
This bit must be set to enable
SENTER leaf functions. This
bit is supported only if
CPUID.1:ECX.[bit 6] is set

If
CPUID.01H:ECX[bi
t 6] = 1

63:16 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-5

MODEL-SPECIFIC REGISTERS (MSRS)
79H 121 IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR
instruction to this MSR causes
a microcode update to be
loaded into the processor. See
Section 9.11.6, “Microcode
Update Loader.”

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

8BH 139 IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR
_D3)

BIOS Update Signature (RO)

Returns the microcode update
signature following the
execution of CPUID.01H.

A processor may prevent
writing to this MSR when
loading guest states on VM
entries or saving guest states
on VM exits.

06_01H

31:0 Reserved

63:32 It is recommended that this
field be pre-loaded with 0
prior to executing CPUID.

If the field remains 0
following the execution of
CPUID; this indicates that no
microcode update is loaded.
Any non-zero value is the
microcode update signature.

9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration
(R/W)

If CPUID.01H:
ECX[bit 5 or bit 6]
= 1

0 Valid (R/W)

1 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-6 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
2 Controls SMI unblocking by
VMXOFF (see Section
26.14.4)

If
IA32_VMX_MISC[
bit 28])

11:3 Reserved

31:12 MSEG Base (R/W)

63:32 Reserved

C1H 193 IA32_PMC0 (PERFCTR0) General Performance Counter
0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

C2H 194 IA32_PMC1 (PERFCTR1) General Performance Counter
1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

C3H 195 IA32_PMC2 General Performance Counter
2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

C4H 196 IA32_PMC3 General Performance Counter
3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

C5H 197 IA32_PMC4 General Performance Counter
4 (R/W)

If CPUID.0AH:
EAX[15:8] > 4

C6H 198 IA32_PMC5 General Performance Counter
5 (R/W)

If CPUID.0AH:
EAX[15:8] > 5

C7H 199 IA32_PMC6 General Performance Counter
6 (R/W)

If CPUID.0AH:
EAX[15:8] > 6

C8H 200 IA32_PMC7 General Performance Counter
7 (R/W)

If CPUID.0AH:
EAX[15:8] > 7

E7H 231 IA32_MPERF Maximum Qualified
Performance Clock Counter
(R/Write to clear)

If CPUID.06H:
ECX[0] = 1

63:0 C0_MCNT: C0 Maximum
Frequency Clock Count.

Increments at fixed interval
(relative to TSC freq.) when
the logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_APERF.

E8H 232 IA32_APERF Actual Performance Clock
Counter (R/Write to clear)

If CPUID.06H:
ECX[0] = 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-7

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 C0_ACNT: C0 Actual
Frequency Clock Count.

Accumulates core clock
counts at the coordinated
clock frequency, when the
logical processor is in C0.

Cleared upon overflow /
wrap-around of IA32_MPERF.

FEH 254 IA32_MTRRCAP
(MTRRcap)

MTRR Capability (RO) Section
11.11.2.1,
“IA32_MTRR_DEF_TYPE
MSR.”

06_01H

7:0 VCNT: The number of variable
memory type ranges in the
processor

8 Fixed range MTRRs are
supported when set.

9 Reserved

10 WC Supported when set

11 SMRR Supported when set

63:12 Reserved

174H 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H

15:0 CS Selector

63:16 Reserved

175H 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H

176H 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H

179H 377 IA32_MCG_CAP
(MCG_CAP)

Global Machine Check
Capability (RO)

06_01H

7:0 Count: Number of reporting
banks

8 MCG_CTL_P: IA32_MCG_CTL
is present if this bit is set

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-8 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
9 MCG_EXT_P: Extended
machine check state registers
are present if this bit is set

10 MCP_CMCI_P: Support for
corrected MC error event is
present.

06_1AH

11 MCG_TES_P: Threshold-based
error status register are
present if this bit is set.

15:12 Reserved

23:16 MCG_EXT_CNT: Number of
extended machine check
state registers present.

24 MCG_SER_P: The processor
supports software error
recovery if this bit is set.

63:25 Reserved

17AH 378 IA32_MCG_STATUS
(MCG_STATUS)

Global Machine Check Status
(RO)

06_01H

17BH 379 IA32_MCG_CTL
(MCG_CTL)

Global Machine Check Control
(R/W)

06_01H

180H-
185H

384-
389

Reserved 06_0EH1

186H 390 IA32_PERFEVTSEL0
(PERFEVTSEL0)

Performance Event Select
Register 0 (R/W)

If CPUID.0AH:
EAX[15:8] > 0

7:0 Event Select: Selects a
performance event logic unit

15:8 UMask: Qualifies the
microarchitectural condition
to detect on the selected
event logic.

16 USR: Counts while in privilege
level is not ring 0.

17 OS: Counts while in privilege
level is ring 0.

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-9

MODEL-SPECIFIC REGISTERS (MSRS)
18 Edge: Enables edge detection
if set

19 PC: enables pin control

20 INT: enables interrupt on
counter overflow

21 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

22 EN: enables the
corresponding performance
counter to commence
counting when this bit is set

23 INV: invert the CMASK

31:24 CMASK: When CMASK is not
zero, the corresponding
performance counter
increments each cycle if the
event count is greater than or
equal to the CMASK.

63:32 Reserved

187H 391 IA32_PERFEVTSEL1
(PERFEVTSEL1)

Performance Event Select
Register 1 (R/W)

If CPUID.0AH:
EAX[15:8] > 1

188H 392 IA32_PERFEVTSEL2 Performance Event Select
Register 2 (R/W)

If CPUID.0AH:
EAX[15:8] > 2

189H 393 IA32_PERFEVTSEL3 Performance Event Select
Register 3 (R/W)

If CPUID.0AH:
EAX[15:8] > 3

18AH-
197H

394-
407

Reserved 06_0EH2

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-10 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
198H 408 IA32_PERF_STATUS (RO) 0F_03H

15:0 Current performance State
Value

63:16 Reserved

199H 409 IA32_PERF_CTL (R/W) 0F_03H

15:0 Target performance State
Value

31:16 Reserved

32 IDA Engage. (R/W)

When set to 1: disengages
IDA

06_0FH (Mobile)

63:33 Reserved

19AH 410 IA32_CLOCK_MODULATIO
N

Clock Modulation Control
(R/W)

See Section 14.5.3, “Software
Controlled Clock Modulation.”

0F_0H

0 Extended On-Demand Clock
Modulation Duty Cycle:

If
CPUID.06H:EAX[5]
= 1

3:1 On-Demand Clock Modulation
Duty Cycle: Specific encoded
values for target duty cycle
modulation

4 On-Demand Clock Modulation
Enable: Set 1 to enable
modulation

63:5 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-11

MODEL-SPECIFIC REGISTERS (MSRS)
19BH 411 IA32_THERM_INTERRUPT Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the processor’s
thermal sensors and thermal
monitor.

See Section 14.5.2, “Thermal
Monitor.”

0F_0H

0 High-Temperature Interrupt
Enable

1 Low-Temperature Interrupt
Enable

2 PROCHOT# Interrupt Enable

3 FORCEPR# Interrupt Enable

4 Critical Temperature Interrupt
Enable

7:5 Reserved

14:8 Threshold #1 Value

15 Threshold #1 Interrupt
Enable

22:16 Threshold #2 Value

23 Threshold #2 Interrupt
Enable

24 Power Limit Notification
Enable

If
CPUID.06H:EAX[4]
= 1

63:25 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-12 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
19CH 412 IA32_THERM_STATUS Thermal Status Information
(RO)

Contains status information
about the processor’s thermal
sensor and automatic thermal
monitoring facilities.

See Section 14.5.2, “Thermal
Monitor”

0F_0H

0 Thermal Status (RO):

1 Thermal Status Log (R/W):

2 PROCHOT # or FORCEPR#
event (RO)

3 PROCHOT # or FORCEPR# log
(R/WC0)

4 Critical Temperature Status
(RO)

5 Critical Temperature Status
log (R/WC0)

6 Thermal Threshold #1 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

7 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

8 Thermal Threshold #2 Status
(RO)

If
CPUID.01H:ECX[8]
= 1

9 Thermal Threshold #1 log
(R/WC0)

If
CPUID.01H:ECX[8]
= 1

10 Power Limitation Status (RO) If
CPUID.06H:EAX[4]
= 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-13

MODEL-SPECIFIC REGISTERS (MSRS)
11 Power Limitation log (R/WC0) If
CPUID.06H:EAX[4]
= 1

15:12 Reserved

22:16 Digital Readout (RO) If
CPUID.06H:EAX[0]
= 1

26:23 Reserved

30:27 Resolution in Degrees Celsius
(RO)

If
CPUID.06H:EAX[0]
= 1

31 Reading Valid (RO) If
CPUID.06H:EAX[0]
= 1

63:32 Reserved

1A0H 416 IA32_MISC_ENABLE Enable Misc. Processor
Features. (R/W)

Allows a variety of processor
functions to be enabled and
disabled.

0 Fast-Strings Enable.

When set, the fast-strings
feature (for REP MOVS and
REP STORS) is enabled
(default); when clear, fast-
strings are disabled.

0F_0H

2:1 Reserved.

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-14 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
3 Automatic Thermal Control
Circuit Enable. (R/W)

1 = Setting this bit enables
the thermal control
circuit (TCC) portion of
the Intel Thermal
Monitor feature. This
allows the processor to
automatically reduce
power consumption in
response to TCC
activation.

0 = Disabled (default).
Note: In some products
clearing this bit might be
ignored in critical thermal
conditions, and TM1, TM2 and
adaptive thermal throttling
will still be activated.

0F_0H

6:4 Reserved

7 Performance Monitoring
Available. (R)

1 = Performance monitoring
enabled

0 = Performance monitoring
disabled

0F_0H

10:8 Reserved

11 Branch Trace Storage
Unavailable. (RO)

1 = Processor doesn’t
support branch trace
storage (BTS)

0 = BTS is supported

0F_0H

12 Precise Event Based
Sampling (PEBS)
Unavailable. (RO)

1 = PEBS is not supported;
0 = PEBS is supported.

06_0FH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-15

MODEL-SPECIFIC REGISTERS (MSRS)
15:13 Reserved

16 Enhanced Intel SpeedStep
Technology Enable. (R/W)

0= Enhanced Intel
SpeedStep Technology
disabled

1 = Enhanced Intel
SpeedStep Technology
enabled

06_0DH

17 Reserved

18 ENABLE MONITOR FSM. (R/W)

When this bit is set to 0, the
MONITOR feature flag is not
set (CPUID.01H:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not
supported.

Software attempts to
execute MONITOR/MWAIT will
cause #UD when this bit is 0.

When this bit is set to 1
(default), MONITOR/MWAIT
are supported
(CPUID.01H:ECX[bit 3] = 1).

If the SSE3 feature flag
ECX[0] is not set
(CPUID.01H:ECX[bit 0] = 0),
the OS must not attempt to
alter this bit. BIOS must leave
it in the default state. Writing
this bit when the SSE3
feature flag is set to 0 may
generate a #GP exception.

0F_03H

21:19 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-16 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
22 Limit CPUID Maxval. (R/W)

When this bit is set to 1,
CPUID.00H returns a
maximum value in EAX[7:0] of
3.

BIOS should contain a setup
question that allows users to
specify when the installed OS
does not support CPUID
functions greater than 3.

Before setting this bit, BIOS
must execute the CPUID.0H
and examine the maximum
value returned in EAX[7:0]. If
the maximum value is greater
than 3, the bit is supported.

Otherwise, the bit is not
supported. Writing to this bit
when the maximum value is
greater than 3 may generate
a #GP exception.

Setting this bit may cause
unexpected behavior in
software that depends on the
availability of CPUID leaves
greater than 3.

0F_03H

23 xTPR Message Disable.
(R/W)

When set to 1, xTPR
messages are disabled. xTPR
messages are optional
messages that allow the
processor to inform the
chipset of its priority.

if
CPUID.01H:ECX[1
4] = 1

33:24 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-17

MODEL-SPECIFIC REGISTERS (MSRS)
34 XD Bit Disable. (R/W)

When set to 1, the Execute
Disable Bit feature (XD Bit) is
disabled and the XD Bit
extended feature flag will be
clear (CPUID.80000001H:
EDX[20]=0).

When set to a 0 (default), the
Execute Disable Bit feature (if
available) allows the OS to
enable PAE paging and take
advantage of data only pages.

BIOS must not alter the
contents of this bit location, if
XD bit is not supported..
Writing this bit to 1 when the
XD Bit extended feature flag
is set to 0 may generate a
#GP exception.

if
CPUID.80000001
H:EDX[20] = 1

63:35 Reserved

1B0H 432 IA32_ENERGY_PERF_BIA
S

Performance Energy Bias Hint
(R/W)

if
CPUID.6H:ECX[3]
= 1

3:0 Power Policy Preference:

0 indicates preference to
highest performance.

15 indicates preference to
maximize energy saving.

63:4 Reserved

1B1H 433 IA32_PACKAGE_THERM_S
TATUS

Package Thermal Status
Information (RO)

Contains status information
about the package’s thermal
sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-18 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log
(R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WC0)

4 Pkg Critical Temperature
Status (RO)

5 Pkg Critical Temperature
Status log (R/WC0)

6 Pkg Thermal Threshold #1
Status (RO)

7 Pkg Thermal Threshold #1 log
(R/WC0)

8 Pkg Thermal Threshold #2
Status (RO)

9 Pkg Thermal Threshold #1 log
(R/WC0)

10 Pkg Power Limitation Status
(RO)

11 Pkg Power Limitation log
(R/WC0)

15:12 Reserved

22:16 Pkg Digital Readout (RO)

63:23 Reserved

1B2H 434 IA32_PACKAGE_THERM_I
NTERRUPT

Pkg Thermal Interrupt Control
(R/W)

Enables and disables the
generation of an interrupt on
temperature transitions
detected with the package’s
thermal sensor.

See Section 14.6, “Package
Level Thermal Management.”

06_2AH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-19

MODEL-SPECIFIC REGISTERS (MSRS)
0 Pkg High-Temperature
Interrupt Enable

1 Pkg Low-Temperature
Interrupt Enable

2 Pkg PROCHOT# Interrupt
Enable

3 Reserved

4 Pkr Overheat Interrupt Enable

7:5 Reserved

14:8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt
Enable

22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt
Enable

24 Pkg Power Limit Notification
Enable

63:25 Reserved

1D9H 473 IA32_DEBUGCTL
(MSR_DEBUGCTLA,
MSR_DEBUGCTLB)

Trace/Profile Resource
Control (R/W)

06_0EH

0 LBR: Setting this bit to 1
enables the processor to
record a running trace of the
most recent branches taken
by the processor in the LBR
stack.

06_01H

1 BTF: Setting this bit to 1
enables the processor to
treat EFLAGS.TF as single-
step on branches instead of
single-step on instructions.

06_01H

5:2 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-20 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
6 TR: Setting this bit to 1
enables branch trace
messages to be sent.

06_0EH

7 BTS: Setting this bit enables
branch trace messages
(BTMs) to be logged in a BTS
buffer.

06_0EH

8 BTINT: When clear, BTMs are
logged in a BTS buffer in
circular fashion. When this bit
is set, an interrupt is
generated by the BTS facility
when the BTS buffer is full.

06_0EH

9 1: BTS_OFF_OS: When set,
BTS or BTM is skipped if
CPL = 0.

06_0FH

10 BTS_OFF_USR: When set, BTS
or BTM is skipped if CPL > 0.

06_0FH

11 FREEZE_LBRS_ON_PMI: When
set, the LBR stack is frozen on
a PMI request.

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

12 FREEZE_PERFMON_ON_PMI:
When set, each ENABLE bit of
the global counter control
MSR are frozen (address
3BFH) on a PMI request

If CPUID.01H:
ECX[15] = 1 and
CPUID.0AH:
EAX[7:0] > 1

13 ENABLE_UNCORE_PMI: When
set, enables the logical
processor to receive and
generate PMI on behalf of the
uncore.

06_1AH

14 FREEZE_WHILE_SMM: When
set, freezes perfmon and
trace messages while in SMM.

if
IA32_PERF_CAPA
BILITIES[12] = '1

63:15 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-21

MODEL-SPECIFIC REGISTERS (MSRS)
1F2H 498 IA32_SMRR_PHYSBASE SMRR Base Address.
(Writeable only in SMM)

Base address of SMM memory
range.

06_1AH

7:0 Type. Specifies memory type
of the range.

11:8 Reserved.

31:12 PhysBase.

SMRR physical Base Address.

63:32 Reserved.

1F3H 499 IA32_SMRR_PHYSMASK SMRR Range Mask.
(Writeable only in SMM)

Range Mask of SMM memory
range.

06_1AH

10:0 Reserved.

11 Valid.

Enable range mask

31:12 PhysMask.

SMRR address range mask.

63:32 Reserved.

1F8H 504 IA32_PLATFORM_DCA_CA
P

DCA Capability (R) 06_0FH

1F9H 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-
Hint type.

1FAH 506 IA32_DCA_0_CAP DCA type 0 Status and
Control register

06_2EH

0 DCA_ACTIVE: Set by HW
when DCA is fuse-enabled
and no defeatures are set.

06_2EH

2:1 TRANSACTION 06_2EH

6:3 DCA_TYPE 06_2EH

10:7 DCA_QUEUE_SIZE 06_2EH

12:11 Reserved. 06_2EH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-22 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
16:13 DCA_DELAY: Writes will
update the register but have
no HW side-effect.

06_2EH

23:17 Reserved. 06_2EH

24 SW_BLOCK: SW can request
DCA block by setting this bit.

06_2EH

25 Reserved. 06_2EH

26 HW_BLOCK: Set when DCA is
blocked by HW (e.g. CR0.CD =
1).

06_2EH

31:27 Reserved. 06_2EH

200H 512 IA32_MTRR_PHYSBASE0
(MTRRphysBase0)

See Section 11.11.2.3,
“Variable Range MTRRs.”

06_01H

201H 513 IA32_MTRR_PHYSMASK0 MTRRphysMask0 06_01H

202H 514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 06_01H

203H 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 06_01H

204H 516 IA32_MTRR_PHYSBASE2 MTRRphysBase2 06_01H

205H 517 IA32_MTRR_PHYSMASK2 MTRRphysMask2 06_01H

206H 518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 06_01H

207H 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 06_01H

208H 520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 06_01H

209H 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 06_01H

20AH 522 IA32_MTRR_PHYSBASE5 MTRRphysBase5 06_01H

20BH 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 06_01H

20CH 524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 06_01H

20DH 525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 06_01H

20EH 526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 06_01H

20FH 527 IA32_MTRR_PHYSMASK7 MTRRphysMask7 06_01H

210H 528 IA32_MTRR_PHYSBASE8 MTRRphysBase8 if
IA32_MTRR_CAP[
7:0] > 8

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-23

MODEL-SPECIFIC REGISTERS (MSRS)
211H 529 IA32_MTRR_PHYSMASK8 MTRRphysMask8 if
IA32_MTRR_CAP[
7:0] > 8

212H 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if
IA32_MTRR_CAP[
7:0] > 9

213H 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if
IA32_MTRR_CAP[
7:0] > 9

250H 592 IA32_MTRR_FIX64K_000
00

MTRRfix64K_00000 06_01H

258H 600 IA32_MTRR_FIX16K_800
00

MTRRfix16K_80000 06_01H

259H 601 IA32_MTRR_FIX16K_A00
00

MTRRfix16K_A0000 06_01H

268H 616 IA32_MTRR_FIX4K_C000
0 (MTRRfix4K_C0000)

See Section 11.11.2.2, “Fixed
Range MTRRs.”

06_01H

269H 617 IA32_MTRR_FIX4K_C800
0

MTRRfix4K_C8000 06_01H

26AH 618 IA32_MTRR_FIX4K_D000
0

MTRRfix4K_D0000 06_01H

26BH 619 IA32_MTRR_FIX4K_D800
0

MTRRfix4K_D8000 06_01H

26CH 620 IA32_MTRR_FIX4K_E000
0

MTRRfix4K_E0000 06_01H

26DH 621 IA32_MTRR_FIX4K_E800
0

MTRRfix4K_E8000 06_01H

26EH 622 IA32_MTRR_FIX4K_F000
0

MTRRfix4K_F0000 06_01H

26FH 623 IA32_MTRR_FIX4K_F800
0

MTRRfix4K_F8000 06_01H

277H 631 IA32_PAT IA32_PAT (R/W) 06_05H

2:0 PA0

7:3 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-24 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
10:8 PA1

15:11 Reserved

18:16 PA2

23:19 Reserved

26:24 PA3

31:27 Reserved

34:32 PA4

39:35 Reserved

42:40 PA5

47:43 Reserved

50:48 PA6

55:51 Reserved

58:56 PA7

63:59 Reserved

280H 640 IA32_MC0_CTL2 (R/W) 06_1AH

14:0 Corrected error count
threshold

29:15 Reserved

30 CMCI_EN

63:31 Reserved

281H 641 IA32_MC1_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

282H 642 IA32_MC2_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

283H 643 IA32_MC3_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

284H 644 IA32_MC4_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

285H 645 IA32_MC5_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-25

MODEL-SPECIFIC REGISTERS (MSRS)
286H 646 IA32_MC6_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

287H 647 IA32_MC7_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

288H 648 IA32_MC8_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_1AH

289H 649 IA32_MC9_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28AH 650 IA32_MC10_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28BH 651 IA32_MC11_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28CH 652 IA32_MC12_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28DH 653 IA32_MC13_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28EH 654 IA32_MC14_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

28FH 655 IA32_MC15_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

290H 656 IA32_MC16_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

291H 657 IA32_MC17_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

292H 658 IA32_MC18_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

293H 659 IA32_MC19_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

294H 660 IA32_MC20_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

295H 661 IA32_MC21_CTL2 (R/W) same fields as
IA32_MC0_CTL2

06_2EH

2FFH 767 IA32_MTRR_DEF_TYPE MTRRdefType (R/W) 06_01H

2:0 Default Memory Type

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-26 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
9:3 Reserved

10 Fixed Range MTRR Enable

11 MTRR Enable

63:12 Reserved

309H 777 IA32_FIXED_CTR0
(MSR_PERF_FIXED_CTR0)

Fixed-Function Performance
Counter 0 (R/W): Counts
Instr_Retired.Any

If CPUID.0AH:
EDX[4:0] > 0

30AH 778 IA32_FIXED_CTR1
(MSR_PERF_FIXED_CTR1)

Fixed-Function Performance
Counter 1 0 (R/W): Counts
CPU_CLK_Unhalted.Core

If CPUID.0AH:
EDX[4:0] > 1

30BH 779 IA32_FIXED_CTR2
(MSR_PERF_FIXED_CTR2)

Fixed-Function Performance
Counter 0 0 (R/W): Counts
CPU_CLK_Unhalted.Ref

If CPUID.0AH:
EDX[4:0] > 2

345H 837 IA32_PERF_CAPABILITIES RO If CPUID.01H:
ECX[15] = 1

5:0 LBR format

6 PEBS Trap

7 PEBSSaveArchRegs

11:8 PEBS Record Format

12 1: Freeze while SMM is
supported

13 1: Full width of counter
writable via IA32_A_PMCx

63:14 Reserved

38DH 909 IA32_FIXED_CTR_CTRL
(MSR_PERF_FIXED_CTR_C
TRL)

Fixed-Function Performance
Counter Control (R/W)

Counter increments while the
results of ANDing respective
enable bit in
IA32_PERF_GLOBAL_CTRL
with the corresponding OS or
USR bits in this MSR is true.

If CPUID.0AH:
EAX[7:0] > 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-27

MODEL-SPECIFIC REGISTERS (MSRS)
0 EN0_OS: Enable Fixed
Counter 0 to count while CPL
= 0

1 EN0_Usr: Enable Fixed
Counter 0 to count while CPL
> 0

2 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

3 EN0_PMI: Enable PMI when
fixed counter 0 overflows

4 EN1_OS: Enable Fixed
Counter 1to count while CPL
= 0

5 EN1_Usr: Enable Fixed
Counter 1to count while CPL
> 0

6 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

7 EN1_PMI: Enable PMI when
fixed counter 1 overflows

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-28 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
8 EN2_OS: Enable Fixed
Counter 2 to count while CPL
= 0

9 EN2_Usr: Enable Fixed
Counter 2 to count while CPL
> 0

10 AnyThread: When set to 1, it
enables counting the
associated event conditions
occurring across all logical
processors sharing a
processor core. When set to 0,
the counter only increments
the associated event
conditions occurring in the
logical processor which
programmed the MSR.

If CPUID.0AH:

EAX[7:0] > 2

11 EN2_PMI: Enable PMI when
fixed counter 2 overflows

63:12 Reserved

38EH 910 IA32_PERF_GLOBAL_STA
TUS
(MSR_PERF_GLOBAL_STA
TUS)

Global Performance Counter
Status (RO)

If CPUID.0AH:
EAX[7:0] > 0

0 Ovf_PMC0: Overflow status
of IA32_PMC0

If CPUID.0AH:
EAX[7:0] > 0

1 Ovf_PMC1: Overflow status
of IA32_PMC1

If CPUID.0AH:
EAX[7:0] > 0

2 Ovf_PMC2: Overflow status
of IA32_PMC2

06_2EH

3 Ovf_PMC3: Overflow status
of IA32_PMC3

06_2EH

31:4 Reserved

32 Ovf_FixedCtr0: Overflow
status of IA32_FIXED_CTR0

If CPUID.0AH:
EAX[7:0] > 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-29

MODEL-SPECIFIC REGISTERS (MSRS)
33 Ovf_FixedCtr1: Overflow
status of IA32_FIXED_CTR1

If CPUID.0AH:
EAX[7:0] > 1

34 Ovf_FixedCtr2: Overflow
status of IA32_FIXED_CTR2

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Ovf_Uncore: Uncore counter
overflow status

06_2EH

62 OvfBuf: DS SAVE area Buffer
overflow status

If CPUID.0AH:
EAX[7:0] > 0

63 CondChg: status bits of this
register has changed

If CPUID.0AH:
EAX[7:0] > 0

38FH 911 IA32_PERF_GLOBAL_CTR
L
(MSR_PERF_GLOBAL_CTR
L)

Global Performance Counter
Control (R/W)

Counter increments while the
result of ANDing respective
enable bit in this MSR with
the corresponding OS or USR
bits in the general-purpose or
fixed counter control MSR is
true.

If CPUID.0AH:
EAX[7:0] > 0

0 EN_PMC0 If CPUID.0AH:
EAX[7:0] > 0

1 EN_PMC1 If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 EN_FIXED_CTR0 If CPUID.0AH:
EAX[7:0] > 1

33 EN_FIXED_CTR1 If CPUID.0AH:
EAX[7:0] > 1

34 EN_FIXED_CTR2 If CPUID.0AH:
EAX[7:0] > 1

63:35 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-30 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 IA32_PERF_GLOBAL_OVF
_CTRL
(MSR_PERF_GLOBAL_OVF
_CTRL)

Global Performance Counter
Overflow Control (R/W)

If CPUID.0AH:
EAX[7:0] > 0

0 Set 1 to Clear Ovf_PMC0 bit If CPUID.0AH:
EAX[7:0] > 0

1 Set 1 to Clear Ovf_PMC1 bit If CPUID.0AH:
EAX[7:0] > 0

31:2 Reserved

32 Set 1 to Clear
Ovf_FIXED_CTR0 bit

If CPUID.0AH:
EAX[7:0] > 1

33 Set 1 to Clear
Ovf_FIXED_CTR1 bit

If CPUID.0AH:
EAX[7:0] > 1

34 Set 1 to Clear
Ovf_FIXED_CTR2 bit

If CPUID.0AH:
EAX[7:0] > 1

60:35 Reserved

61 Set 1 to Clear Ovf_Uncore: bit 06_2EH

62 Set 1 to Clear OvfBuf: bit If CPUID.0AH:
EAX[7:0] > 0

63 Set to 1to clear CondChg: bit If CPUID.0AH:
EAX[7:0] > 0

3F1H 1009 IA32_PEBS_ENABLE PEBS Control (R/W)

0 Enable PEBS on IA32_PMC0 06_0FH

1-3 Reserved or Model specific

31:4 Reserved

35-32 Reserved or Model specific

63:36 Reserved

400H 1024 IA32_MC0_CTL MC0_CTL P6 Family
Processors

401H 1025 IA32_MC0_STATUS MC0_STATUS P6 Family
Processors

402H 1026 IA32_MC0_ADDR1 MC0_ADDR P6 Family
Processors

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-31

MODEL-SPECIFIC REGISTERS (MSRS)
403H 1027 IA32_MC0_MISC MC0_MISC P6 Family
Processors

404H 1028 IA32_MC1_CTL MC1_CTL P6 Family
Processors

405H 1029 IA32_MC1_STATUS MC1_STATUS P6 Family
Processors

406H 1030 IA32_MC1_ADDR2 MC1_ADDR P6 Family
Processors

407H 1031 IA32_MC1_MISC MC1_MISC P6 Family
Processors

408H 1032 IA32_MC2_CTL MC2_CTL P6 Family
Processors

409H 1033 IA32_MC2_STATUS MC2_STATUS P6 Family
Processors

40AH 1034 IA32_MC2_ADDR1 MC2_ADDR P6 Family
Processors

40BH 1035 IA32_MC2_MISC MC2_MISC P6 Family
Processors

40CH 1036 IA32_MC3_CTL MC3_CTL P6 Family
Processors

40DH 1037 IA32_MC3_STATUS MC3_STATUS P6 Family
Processors

40EH 1038 IA32_MC3_ADDR1 MC3_ADDR P6 Family
Processors

40FH 1039 IA32_MC3_MISC MC3_MISC P6 Family
Processors

410H 1040 IA32_MC4_CTL MC4_CTL P6 Family
Processors

411H 1041 IA32_MC4_STATUS MC4_STATUS P6 Family
Processors

412H 1042 IA32_MC4_ADDR1 MC4_ADDR P6 Family
Processors

413H 1043 IA32_MC4_MISC MC4_MISC P6 Family
Processors

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-32 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
414H 1044 IA32_MC5_CTL MC5_CTL 06_0FH

415H 1045 IA32_MC5_STATUS MC5_STATUS 06_0FH

416H 1046 IA32_MC5_ADDR1 MC5_ADDR 06_0FH

417H 1047 IA32_MC5_MISC MC5_MISC 06_0FH

418H 1048 IA32_MC6_CTL MC6_CTL 06_1DH

419H 1049 IA32_MC6_STATUS MC6_STATUS 06_1DH

41AH 1050 IA32_MC6_ADDR1 MC6_ADDR 06_1DH

41BH 1051 IA32_MC6_MISC MC6_MISC 06_1DH

41CH 1052 IA32_MC7_CTL MC7_CTL 06_1AH

41DH 1053 IA32_MC7_STATUS MC7_STATUS 06_1AH

41EH 1054 IA32_MC7_ADDR1 MC7_ADDR 06_1AH

41FH 1055 IA32_MC7_MISC MC7_MISC 06_1AH

420H 1056 IA32_MC8_CTL MC8_CTL 06_1AH

421H 1057 IA32_MC8_STATUS MC8_STATUS 06_1AH

422H 1058 IA32_MC8_ADDR1 MC8_ADDR 06_1AH

423H 1059 IA32_MC8_MISC MC8_MISC 06_1AH

424H 1060 IA32_MC9_CTL MC9_CTL 06_2EH

425H 1061 IA32_MC9_STATUS MC9_STATUS 06_2EH

426H 1062 IA32_MC9_ADDR1 MC9_ADDR 06_2EH

427H 1063 IA32_MC9_MISC MC9_MISC 06_2EH

428H 1064 IA32_MC10_CTL MC10_CTL 06_2EH

429H 1065 IA32_MC10_STATUS MC10_STATUS 06_2EH

42AH 1066 IA32_MC10_ADDR1 MC10_ADDR 06_2EH

42BH 1067 IA32_MC10_MISC MC10_MISC 06_2EH

42CH 1068 IA32_MC11_CTL MC11_CTL 06_2EH

42DH 1069 IA32_MC11_STATUS MC11_STATUS 06_2EH

42EH 1070 IA32_MC11_ADDR1 MC11_ADDR 06_2EH

42FH 1071 IA32_MC11_MISC MC11_MISC 06_2EH

430H 1072 IA32_MC12_CTL MC12_CTL 06_2EH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-33

MODEL-SPECIFIC REGISTERS (MSRS)
431H 1073 IA32_MC12_STATUS MC12_STATUS 06_2EH

432H 1074 IA32_MC12_ADDR1 MC12_ADDR 06_2EH

433H 1075 IA32_MC12_MISC MC12_MISC 06_2EH

434H 1076 IA32_MC13_CTL MC13_CTL 06_2EH

435H 1077 IA32_MC13_STATUS MC13_STATUS 06_2EH

436H 1078 IA32_MC13_ADDR1 MC13_ADDR 06_2EH

437H 1079 IA32_MC13_MISC MC13_MISC 06_2EH

438H 1080 IA32_MC14_CTL MC14_CTL 06_2EH

439H 1081 IA32_MC14_STATUS MC14_STATUS 06_2EH

43AH 1082 IA32_MC14_ADDR1 MC14_ADDR 06_2EH

43BH 1083 IA32_MC14_MISC MC14_MISC 06_2EH

43CH 1084 IA32_MC15_CTL MC15_CTL 06_2EH

43DH 1085 IA32_MC15_STATUS MC15_STATUS 06_2EH

43EH 1086 IA32_MC15_ADDR1 MC15_ADDR 06_2EH

43FH 1087 IA32_MC15_MISC MC15_MISC 06_2EH

440H 1088 IA32_MC16_CTL MC16_CTL 06_2EH

441H 1089 IA32_MC16_STATUS MC16_STATUS 06_2EH

442H 1090 IA32_MC16_ADDR1 MC16_ADDR 06_2EH

443H 1091 IA32_MC16_MISC MC16_MISC 06_2EH

444H 1092 IA32_MC17_CTL MC17_CTL 06_2EH

445H 1093 IA32_MC17_STATUS MC17_STATUS 06_2EH

446H 1094 IA32_MC17_ADDR1 MC17_ADDR 06_2EH

447H 1095 IA32_MC17_MISC MC17_MISC 06_2EH

448H 1096 IA32_MC18_CTL MC18_CTL 06_2EH

449H 1097 IA32_MC18_STATUS MC18_STATUS 06_2EH

44AH 1098 IA32_MC18_ADDR1 MC18_ADDR 06_2EH

44BH 1099 IA32_MC18_MISC MC18_MISC 06_2EH

44CH 1100 IA32_MC19_CTL MC19_CTL 06_2EH

44DH 1101 IA32_MC19_STATUS MC19_STATUS 06_2EH

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-34 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
44EH 1102 IA32_MC19_ADDR1 MC19_ADDR 06_2EH

44FH 1103 IA32_MC19_MISC MC19_MISC 06_2EH

450H 1104 IA32_MC20_CTL MC20_CTL 06_2EH

451H 1105 IA32_MC20_STATUS MC20_STATUS 06_2EH

452H 1106 IA32_MC20_ADDR1 MC20_ADDR 06_2EH

453H 1107 IA32_MC20_MISC MC20_MISC 06_2EH

454H 1108 IA32_MC21_CTL MC21_CTL 06_2EH

455H 1109 IA32_MC21_STATUS MC21_STATUS 06_2EH

456H 1110 IA32_MC21_ADDR1 MC21_ADDR 06_2EH

457H 1111 IA32_MC21_MISC MC21_MISC 06_2EH

480H 1152 IA32_VMX_BASIC Reporting Register of Basic
VMX Capabilities. (R/O)

See Appendix G.1, “Basic VMX
Information”

If
CPUID.01H:ECX.[bi
t 5] = 1

481H 1153 IA32_VMX_PINBASED_CT
LS

Capability Reporting
Register of Pin-based
VM-execution Controls.
(R/O)

See Appendix G.3.1, “Pin-
Based VM-Execution Controls”

If
CPUID.01H:ECX.[bi
t 5] = 1

482H 1154 IA32_VMX_PROCBASED_
CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Controls.
(R/O)

See Appendix G.3.2, “Primary
Processor-Based VM-
Execution Controls”

If
CPUID.01H:ECX.[bi
t 5] = 1

483H 1155 IA32_VMX_EXIT_CTLS Capability Reporting
Register of VM-exit
Controls. (R/O)

See Appendix G.4, “VM-Exit
Controls”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-35

MODEL-SPECIFIC REGISTERS (MSRS)
484H 1156 IA32_VMX_ENTRY_CTLS Capability Reporting
Register of VM-entry
Controls. (R/O)

See Appendix G.5, “VM-Entry
Controls”

If
CPUID.01H:ECX.[bi
t 5] = 1

485H 1157 IA32_VMX_MISC Reporting Register of
Miscellaneous VMX
Capabilities. (R/O)

See Appendix G.6,
“Miscellaneous Data”

If
CPUID.01H:ECX.[bi
t 5] = 1

486H 1158 IA32_VMX_CRO_FIXED0 Capability Reporting
Register of CR0 Bits Fixed
to 0. (R/O)

See Appendix G.7, “VMX-
Fixed Bits in CR0”

If
CPUID.01H:ECX.[bi
t 5] = 1

487H 1159 IA32_VMX_CRO_FIXED1 Capability Reporting
Register of CR0 Bits Fixed
to 1. (R/O)

See Appendix G.7, “VMX-
Fixed Bits in CR0”

If
CPUID.01H:ECX.[bi
t 5] = 1

488H 1160 IA32_VMX_CR4_FIXED0 Capability Reporting
Register of CR4 Bits Fixed
to 0. (R/O)

See Appendix G.8, “VMX-
Fixed Bits in CR4”

If
CPUID.01H:ECX.[bi
t 5] = 1

489H 1161 IA32_VMX_CR4_FIXED1 Capability Reporting
Register of CR4 Bits Fixed
to 1. (R/O)

See Appendix G.8, “VMX-
Fixed Bits in CR4”

If
CPUID.01H:ECX.[bi
t 5] = 1

48AH 1162 IA32_VMX_VMCS_ENUM Capability Reporting
Register of VMCS Field
Enumeration. (R/O).

See Appendix G.9, “VMCS
Enumeration”

If
CPUID.01H:ECX.[bi
t 5] = 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-36 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
48BH 1163 IA32_VMX_PROCBASED_
CTLS2

Capability Reporting
Register of Secondary
Processor-based
VM-execution Controls.
(R/O)

See Appendix G.3.3,
“Secondary Processor-Based
VM-Execution Controls”

If (
CPUID.01H:ECX.[bi
t 5] and
IA32_VMX_PROC
BASED_CTLS[bit 6
3])

48CH 1164 IA32_VMX_EPT_VPID_CA
P

Capability Reporting
Register of EPT and VPID.
(R/O)

See Appendix G.10, “VPID and
EPT Capabilities”

If (
CPUID.01H:ECX.[bi
t 5],
IA32_VMX_PROC
BASED_CTLS[bit 6
3], and either
IA32_VMX_PROC
BASED_CTLS2[bit
33] or
IA32_VMX_PROC
BASED_CTLS2[bit
37])

48DH 1165 IA32_VMX_TRUE_PINBAS
ED_CTLS

Capability Reporting
Register of Pin-based
VM-execution Flex Controls.
(R/O)

See Appendix G.3.1, “Pin-
Based VM-Execution Controls”

If (
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

48EH 1166 IA32_VMX_TRUE_PROCB
ASED_CTLS

Capability Reporting
Register of Primary
Processor-based
VM-execution Flex Controls.
(R/O)

See Appendix G.3.2, “Primary
Processor-Based VM-
Execution Controls”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

48FH 1167 IA32_VMX_TRUE_EXIT_C
TLS

Capability Reporting
Register of VM-exit Flex
Controls. (R/O)

See Appendix G.4, “VM-Exit
Controls”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-37

MODEL-SPECIFIC REGISTERS (MSRS)
490H 1168 IA32_VMX_TRUE_ENTRY
_CTLS

Capability Reporting
Register of VM-entry Flex
Controls. (R/O)

See Appendix G.5, “VM-Entry
Controls”

If(
CPUID.01H:ECX.[bi
t 5] = 1 and
IA32_VMX_BASIC
[bit 55])

4C1H 1217 IA32_A_PMC0 Full Width Writable
IA32_PMC0 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 0) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C2H 1218 IA32_A_PMC1 Full Width Writable
IA32_PMC1 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 1) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C3H 1219 IA32_A_PMC2 Full Width Writable
IA32_PMC2 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 2) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C4H 1220 IA32_A_PMC3 Full Width Writable
IA32_PMC3 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 3) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C5H 1221 IA32_A_PMC4 Full Width Writable
IA32_PMC4 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 4) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C6H 1222 IA32_A_PMC5 Full Width Writable
IA32_PMC5 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 5) &

IA32_PERF_CAPA
BILITIES[13] = 1

4C7H 1223 IA32_A_PMC6 Full Width Writable
IA32_PMC6 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 6) &

IA32_PERF_CAPA
BILITIES[13] = 1

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-38 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
4C8H 1224 IA32_A_PMC7 Full Width Writable
IA32_PMC7 Alias (R/W)

(If CPUID.0AH:
EAX[15:8] > 7) &

IA32_PERF_CAPA
BILITIES[13] = 1

600H 1536 IA32_DS_AREA DS Save Area. (R/W)

Points to the linear address of
the first byte of the DS buffer
management area, which is
used to manage the BTS and
PEBS buffers.

See Section 30.9.4, “Debug
Store (DS) Mechanism.”

0F_0H

63:0 The linear address of the first
byte of the DS buffer
management area, if IA-32e
mode is active.

31:0 The linear address of the first
byte of the DS buffer
management area, if not in IA-
32e mode.

63:32 Reserved iff not in IA-32e
mode.

6E0H 1760 IA32_TSC_DEADLINE TSC Target of Local APIC’s
TSC Deadline Mode. (R/W)

If(
CPUID.01H:ECX.[bi
t 25] = 1

802H 2050 IA32_X2APIC_APICID x2APIC ID Register. (R/O)

See x2APIC Specification

If (
CPUID.01H:ECX.[bi
t 21] = 1)

803H 2051 IA32_X2APIC_VERSION x2APIC Version Register.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

808H 2056 IA32_X2APIC_TPR x2APIC Task Priority
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80AH 2058 IA32_X2APIC_PPR x2APIC Processor Priority
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-39

MODEL-SPECIFIC REGISTERS (MSRS)
80BH 2059 IA32_X2APIC_EOI x2APIC EOI Register. (W/O) If (
CPUID.01H:ECX.[bi
t 21] = 1)

80DH 2061 IA32_X2APIC_LDR x2APIC Logical Destination
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

80FH 2063 IA32_X2APIC_SIVR x2APIC Spurious Interrupt
Vector Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

810H 2064 IA32_X2APIC_ISR0 x2APIC In-Service Register
Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

811H 2065 IA32_X2APIC_ISR1 x2APIC In-Service Register
Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

812H 2066 IA32_X2APIC_ISR2 x2APIC In-Service Register
Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

813H 2067 IA32_X2APIC_ISR3 x2APIC In-Service Register
Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

814H 2068 IA32_X2APIC_ISR4 x2APIC In-Service Register
Bits 159:128. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

815H 2069 IA32_X2APIC_ISR5 x2APIC In-Service Register
Bits 191:160. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

816H 2070 IA32_X2APIC_ISR6 x2APIC In-Service Register
Bits 223:192. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

817H 2071 IA32_X2APIC_ISR7 x2APIC In-Service Register
Bits 255:224. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

818H 2072 IA32_X2APIC_TMR0 x2APIC Trigger Mode
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-40 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
819H 2073 IA32_X2APIC_TMR1 x2APIC Trigger Mode
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81AH 2074 IA32_X2APIC_TMR2 x2APIC Trigger Mode
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81BH 2075 IA32_X2APIC_TMR3 x2APIC Trigger Mode
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81CH 2076 IA32_X2APIC_TMR4 x2APIC Trigger Mode
Register Bits 159:128 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81DH 2077 IA32_X2APIC_TMR5 x2APIC Trigger Mode
Register Bits 191:160 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81EH 2078 IA32_X2APIC_TMR6 x2APIC Trigger Mode
Register Bits 223:192 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

81FH 2079 IA32_X2APIC_TMR7 x2APIC Trigger Mode
Register Bits 255:224 (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

820H 2080 IA32_X2APIC_IRR0 x2APIC Interrupt Request
Register Bits 31:0. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

821H 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request
Register Bits 63:32. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

822H 2082 IA32_X2APIC_IRR2 x2APIC Interrupt Request
Register Bits 95:64. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

823H 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request
Register Bits 127:96. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

824H 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request
Register Bits 159:128.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-41

MODEL-SPECIFIC REGISTERS (MSRS)
825H 2085 IA32_X2APIC_IRR5 x2APIC Interrupt Request
Register Bits 191:160.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

826H 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request
Register Bits 223:192.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

827H 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request
Register Bits 255:224.
(R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

828H 2088 IA32_X2APIC_ESR x2APIC Error Status
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

82FH 2095 IA32_X2APIC_LVT_CMCI x2APIC LVT Corrected
Machine Check Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

830H 2096 IA32_X2APIC_ICR x2APIC Interrupt Command
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

832H 2098 IA32_X2APIC_LVT_TIMER x2APIC LVT Timer Interrupt
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

833H 2099 IA32_X2APIC_LVT_THER
MAL

x2APIC LVT Thermal Sensor
Interrupt Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

834H 2100 IA32_X2APIC_LVT_PMI x2APIC LVT Performance
Monitor Interrupt Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

835H 2101 IA32_X2APIC_LVT_LINT0 x2APIC LVT LINT0 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

836H 2102 IA32_X2APIC_LVT_LINT1 x2APIC LVT LINT1 Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

837H 2103 IA32_X2APIC_LVT_ERRO
R

x2APIC LVT Error Register.
(R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-42 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
838H 2104 IA32_X2APIC_INIT_COUN
T

x2APIC Initial Count
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

839H 2105 IA32_X2APIC_CUR_COUN
T

x2APIC Current Count
Register. (R/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83EH 2110 IA32_X2APIC_DIV_CONF x2APIC Divide Configuration
Register. (R/W)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

83FH 2111 IA32_X2APIC_SELF_IPI x2APIC Self IPI Register.
(W/O)

If (
CPUID.01H:ECX.[bi
t 21] = 1)

4000_
0000H
-
4000_
00FFH

Reserved MSR Address
Space

All existing and future
processors will not
implement MSR in this
range

C000_
0080H

IA32_EFER Extended Feature Enables. If (
CPUID.80000001.
EDX.[bit 20] or
CPUID.80000001.
EDX.[bit29])

0 SYSCALL Enable. (R/W)

Enables SYSCALL/SYSRET
instructions in 64-bit mode.

7:1 Reserved.

8 IA-32e Mode Enable. (R/W)

Enables IA-32e mode
operation.

9 Reserved.

10 IA-32e Mode Active. (R)

Indicates IA-32e mode is
active when set.

11 Execute Disable Bit Enable.
(R)

63:12 Reserved

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
Vol. 3B B-43

MODEL-SPECIFIC REGISTERS (MSRS)
B.2 MSRS IN THE INTEL® CORE™ 2 PROCESSOR FAMILY
Table B-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and
for Intel Xeon processors based on Intel Core microarchitecture, architectural MSR

C000_
0081H

IA32_STAR System Call Target Address.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0082H

IA32_LSTAR IA-32e Mode System Call
Target Address. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0084H

IA32_FMASK System Call Flag Mask.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0100H

IA32_FS_BASE Map of BASE Address of FS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0101H

IA32_GS_BASE Map of BASE Address of GS.
(R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0102H

IA32_KERNEL_GS_BASE Swap Target of BASE
Address of GS. (R/W)

If
CPUID.80000001.
EDX.[bit 29] = 1

C000_
0103H

IA32_TSC_AUX Auxiliary TSC (RW) If
CPUID.80000001
H: EDX[27] = 1

31:0 AUX: Auxiliary signature of
TSC

63:32 Reserved

NOTES:
1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are sup-

ported, software must treat them as model-specific. Starting with Intel Core Duo processors, MSR
addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS.
See Section 15.3.2.3 and Section 15.3.2.4 for more information.

Table B-2. IA-32 Architectural MSRs (Contd.)

Register
Address

Architectural MSR Name
and bit fields

(Former MSR Name) MSR/Bit Description

Introduced as
Architectural

MSRHex Decimal
B-44 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
addresses are also included in Table B-3. These processors have a CPUID signature
with DisplayFamily_DisplayModel of 06_0FH, see Table B-1.

MSRs listed in Table B-2 and Table B-3 are also supported by processors based on the
Enhanced Intel Core microarchitecture. Processors based on the Enhanced Intel Core
microarchitecture have the CPUID signature DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core
microarchitecture. “Unique” means each processor core has a separate MSR, or a bit
field in an MSR governs only a core independently. “Shared” means the MSR or the
bit field in an MSR address governs the operation of both processor cores.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Unique See Appendix B.12, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Unique See Appendix B.12, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 16.12, “Time-Stamp Counter.” and
see Table B-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table B-2.

17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

49:13 Reserved.

52:50 See Table B-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location.” and Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.
Vol. 3B B-45

MODEL-SPECIFIC REGISTERS (MSRS)
0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Intel TXT Capable Chipset. (R/O)

1 = Present; 0 = Not Present

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-46 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 N/2 Non-Integer Bus Ratio. (R/O)

0 = Integer ratio; 1 = Non-integer ratio

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

see Table B-2

3 Unique SMRR Enable. (R/WL).

When this bit is set and the lock bit is set
makes the SMRR_PHYS_BASE and
SMRR_PHYS_MASK registers read visible and
writeable while in SMM.

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-47

MODEL-SPECIFIC REGISTERS (MSRS)
42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of four pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last four
branches, exceptions, or interrupts taken by
the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

see Table B-2

A0H 160 MSR_SMRR_PHYS
BASE

Unique System Management Mode Base Address
register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM.

11:0 Reserved

31:12 PhysBase. SMRR physical Base Address.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-48 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:32 Reserved

A1H 161 MSR_SMRR_PHYS
MASK

Unique System Management Mode Physical
Address Mask register. (WO in SMM)

Model-specific implementation of SMRR-like
interface, read visible and write only in SMM..

10:0 Reserved

11 Valid. Physical address base and range mask
are valid

31:12 PhysMask. SMRR physical address range mask.

63:32 Reserved

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel Core
microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 000B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 100B.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-49

MODEL-SPECIFIC REGISTERS (MSRS)
63:3 Reserved

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Enhanced
Intel Core microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)
• 010B: 200 MHz (FSB 800)
• 000B: 267 MHz (FSB 1067)
• 100B: 333 MHz (FSB 1333)
• 110B: 400 MHz (FSB 1600)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

266.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 110B.

333.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 111B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Unique see Table B-2

11 Unique SMRR Capability Using MSR 0A0H and
0A1H. (R)

11EH 281 MSR_BBL_CR_
CTL3

Shared

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-50 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique see Table B-2

175H 373 IA32_SYSENTER_E
SP

Unique see Table B-2

176H 374 IA32_SYSENTER_E
IP

Unique see Table B-2

179H 377 IA32_MCG_CAP Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-51

MODEL-SPECIFIC REGISTERS (MSRS)
1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

30:16 Reserved.

31 XE Operation (R/O).

If set, XE operation is enabled. Default is
cleared.

39:32 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

45 Reserved

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-52 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
46 Non-Integer Bus Ratio (R/O)

Indicates non-integer bus ratio is enabled.
Applies processors based on Enhanced Intel
Core microarchitecture.

63:47 Reserved.

199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

see Table B-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

see Table B-2

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

see Table B-2

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-53

MODEL-SPECIFIC REGISTERS (MSRS)
0 Fast-Strings Enable. see Table B-2

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) see Table B-2

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) see
Table B-2

8 Reserved.

9 Hardware Prefetcher Disable. (R/W)

When set, disables the hardware prefetcher
operation on streams of data. When clear
(default), enables the prefetch queue.

Disabling of the hardware prefetcher may
impact processor performance.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) see
Table B-2

12 Shared Precise Event Based Sampling Unavailable.
(RO) see Table B-2

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-54 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) see Table B-2

18 Shared ENABLE MONITOR FSM. (R/W) see Table B-2

19 Shared Adjacent Cache Line Prefetch Disable.
(R/W)

When set to 1, the processor fetches the
cache line that contains data currently
required by the processor. When set to 0, the
processor fetches cache lines that comprise a
cache line pair (128 bytes).

Single processor platforms should not set this
bit. Server platforms should set or clear this
bit based on platform performance observed
in validation and testing.

BIOS may contain a setup option that controls
the setting of this bit.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-55

MODEL-SPECIFIC REGISTERS (MSRS)
20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

22 Shared Limit CPUID Maxval. (R/W) see Table B-2

23 Shared xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) see Table B-2

36:35 Reserved.

37 Unique DCU Prefetcher Disable. (R/W)

When set to 1, The DCU L1 data cache
prefetcher is disabled. The default value after
reset is 0. BIOS may write ‘1’ to disable this
feature.

The DCU prefetcher is an L1 data cache
prefetcher. When the DCU prefetcher detects
multiple loads from the same line done within
a time limit, the DCU prefetcher assumes the
next line will be required. The next line is
prefetched in to the L1 data cache from
memory or L2.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-56 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
38 Shared IDA Disable. (R/W)

When set to 1 on processors that support IDA,
the Intel Dynamic Acceleration feature (IDA) is
disabled and the IDA_Enable feature flag will
be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of IDA is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of IDA. If
power-on default value is 1, IDA is available in
the processor. If power-on default value is 0,
IDA is not available.

39 Unique IP Prefetcher Disable. (R/W)

When set to 1, The IP prefetcher is disabled.
The default value after reset is 0. BIOS may
write ‘1’ to disable this feature.

The IP prefetcher is an L1 data cache
prefetcher. The IP prefetcher looks for
sequential load history to determine whether
to prefetch the next expected data into the
L1 cache from memory or L2.

63:40 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-57

MODEL-SPECIFIC REGISTERS (MSRS)
1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Unique see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Unique see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Unique see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Unique see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Unique see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Unique see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Unique see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Unique see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Unique see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Unique see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Unique see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Unique see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Unique see Table B-2

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-58 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
20DH 525 IA32_MTRR_PHYS
MASK6

Unique see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Unique see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Unique see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Unique see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Unique see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Unique see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Unique see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Unique see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Unique see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Unique see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Unique see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Unique see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Unique see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Unique see Table B-2

277H 631 IA32_PAT Unique see Table B-2

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W) see Table B-2

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-59

MODEL-SPECIFIC REGISTERS (MSRS)
309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) see Table B-2

309H 777 MSR_PERF_FIXED
_CTR0

Unique Fixed-Function Performance Counter
Register 0. (R/W)

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) see Table B-2

30AH 778 MSR_PERF_FIXED
_CTR1

Unique Fixed-Function Performance Counter
Register 1. (R/W)

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) see Table B-2

30BH 779 MSR_PERF_FIXED
_CTR2

Unique Fixed-Function Performance Counter
Register 2. (R/W)

345H 837 IA32_PERF_CAPA
BILITIES

Unique see Table B-2. See Section 16.4.1,
“IA32_DEBUGCTL MSR.”

345H 837 MSR_PERF_CAPAB
ILITIES

Unique RO. This applies to processors that do not
support architectural perfmon version 2.

5:0 LBR Format. see Table B-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. see Table B-2.

63:8 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) see Table B-2

38DH 909 MSR_PERF_FIXED
_CTR_CTRL

Unique Fixed-Function-Counter Control Register.
(R/W)

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Unique See Section 30.4.2, “Global Counter Control
Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

38FH 911 MSR_PERF_
GLOBAL_CTRL

Unique See Section 30.4.2, “Global Counter Control
Facilities.”

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-60 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Unique See Section 30.4.2, “Global Counter Control
Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table B-2. See Section 30.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-61

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-62 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

419H 1045 MSR_MC6_
STATUS

Unique Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
15.3.2.2, “IA32_MCi_STATUS MSRS.” and
Appendix E.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-63

MODEL-SPECIFIC REGISTERS (MSRS)
488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS)
Mechanism.”

107CC
H

MSR_EMON_L3_C
TR_CTL0

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107CD
H

MSR_EMON_L3_C
TR_CTL1

Unique GBUSQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107CE
H

MSR_EMON_L3_C
TR_CTL2

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-64 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
107CF
H

MSR_EMON_L3_C
TR_CTL3

Unique GSNPQ Event Control/Counter Register.
(R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107D0
H

MSR_EMON_L3_C
TR_CTL4

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107D1
H

MSR_EMON_L3_C
TR_CTL5

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107D2
H

MSR_EMON_L3_C
TR_CTL6

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107D3
H

MSR_EMON_L3_C
TR_CTL7

Unique FSB Event Control/Counter Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

107D8
H

MSR_EMON_L3
_GL_CTL

Unique L3/FSB Common Control Register. (R/W).

Apply to Intel Xeon processor 7400 series
(processor signature 06_1D) only. See Section
16.2.2

C000_
0080H

IA32_EFER Unique Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). see
Table B-2

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). see Table B-2

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-65

MODEL-SPECIFIC REGISTERS (MSRS)
B.3 MSRS IN THE INTEL® ATOM™ PROCESSOR FAMILY
Table B-4 lists model-specific registers (MSRs) for Intel Atom processor family, archi-
tectural MSR addresses are also included in Table B-4. These processors have a
CPUID signature with DisplayFamily_DisplayModel of 06_1CH, see Table B-1.

The column “Shared/Unique” applies to logical processors sharing the same core in
processors based on the Intel Atom microarchitecture. “Unique” means each logical
processor has a separate MSR, or a bit field in an MSR governs only a logical
processor. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both logical processors in the same core.

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). see
Table B-2

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). see
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
see Table B-2

Table B-4. MSRs in Intel Atom Processor Family

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Shared See Appendix B.12, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Shared See Appendix B.12, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Shared See Section 16.12, “Time-Stamp Counter.” and
see Table B-2

17H 23 IA32_PLATFORM_I
D

Shared Platform ID. (R)
See Table B-2.

Table B-3. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-66 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
17H 23 MSR_PLATFORM_I
D

Shared Model Specific Platform ID. (R)

7:0 Reserved.

12:8 Maximum Qualified Ratio. (R)

The maximum allowed bus ratio.

63:13 Reserved.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location.” and Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved

1 Data Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

2 Response Error Checking Enable. (R/W)
1 = Enabled; 0 = Disabled
Always 0.

3 AERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.

4 BERR# Enable for initiator bus requests.
(R/W)

1 = Enabled; 0 = Disabled
Always 0.

5 Reserved

6 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Always 0.

8 Reserved

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-67

MODEL-SPECIFIC REGISTERS (MSRS)
9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 AERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

Always 00B.

19: 18 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B.

26:22 Integer Bus Frequency Ratio. (R/O)

3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in Intel 64Processor.
(R/W).

see Table B-2

40H 64 MSR_
LASTBRANCH_0_F
ROM_IP

Unique Last Branch Record 0 From IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last eight
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-68 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
41H 65 MSR_
LASTBRANCH_1_F
ROM_IP

Unique Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

42H 66 MSR_
LASTBRANCH_2_F
ROM_IP

Unique Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

43H 67 MSR_
LASTBRANCH_3_F
ROM_IP

Unique Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

44H 68 MSR_
LASTBRANCH_4_F
ROM_IP

Unique Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

45H 69 MSR_
LASTBRANCH_5_F
ROM_IP

Unique Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

46H 70 MSR_
LASTBRANCH_6_F
ROM_IP

Unique Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

47H 71 MSR_
LASTBRANCH_7_F
ROM_IP

Unique Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

60H 96 MSR_
LASTBRANCH_0_
TO_LIP

Unique Last Branch Record 0 To IP. (R/W)

One of eight pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
eight branches, exceptions, or interrupts
taken by the processor.

61H 97 MSR_
LASTBRANCH_1_
TO_LIP

Unique Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

62H 98 MSR_
LASTBRANCH_2_
TO_LIP

Unique Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-69

MODEL-SPECIFIC REGISTERS (MSRS)
63H 99 MSR_
LASTBRANCH_3_
TO_LIP

Unique Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

64H 100 MSR_
LASTBRANCH_4_
TO_LIP

Unique Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

65H 101 MSR_
LASTBRANCH_5_
TO_LIP

Unique Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

66H 102 MSR_
LASTBRANCH_6_
TO_LIP

Unique Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

67H 103 MSR_
LASTBRANCH_7_
TO_LIP

Unique Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register. (W)

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed(RO).

This field indicates the intended scaleable bus
clock speed for processors based on Intel
Atom microarchitecture:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 011B.

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-70 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW) see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Shared Memory Type Range Register. (R) see
Table B-2

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER_C
S

Unique see Table B-2

175H 373 IA32_SYSENTER_E
SP

Unique see Table B-2

176H 374 IA32_SYSENTER_E
IP

Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-71

MODEL-SPECIFIC REGISTERS (MSRS)
0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

198H 408 MSR_PERF_STATU
S

Shared

15:0 Current Performance State Value.

39:16 Reserved.

44:40 Maximum Bus Ratio (R/O)

Indicates maximum bus ratio configured for
the processor.

63:45 Reserved.

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-72 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

see Table B-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

see Table B-2

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

see Table B-2

19DH 413 MSR_THERM2_
CTL

Shared

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 are enabled.

63:17 Reserved.

1A0 416 IA32_MISC_
ENABLE

Unique Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Fast-Strings Enable. see Table B-2

2:1 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W) see Table B-2

6:4 Reserved.

7 Shared Performance Monitoring Available. (R) see
Table B-2

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-73

MODEL-SPECIFIC REGISTERS (MSRS)
8 Reserved.

9 Reserved.

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO) see
Table B-2

12 Shared Precise Event Based Sampling Unavailable.
(RO) see Table B-2

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermally managed state.

The BIOS must enable this feature if the TM2
feature flag (CPUID.1:ECX[8]) is set; if the TM2
feature flag is not set, this feature is not
supported and BIOS must not alter the
contents of the TM2 bit location.

The processor is operating out of specification
if both this bit and the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W) see Table B-2

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-74 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
18 Shared ENABLE MONITOR FSM. (R/W) see Table B-2

19 Reserved.

20 Shared Enhanced Intel SpeedStep Technology
Select Lock. (R/WO)

When set, this bit causes the following bits to
become read-only:

• Enhanced Intel SpeedStep Technology
Select Lock (this bit),

• Enhanced Intel SpeedStep Technology
Enable bit.

The bit must be set before an Enhanced Intel
SpeedStep Technology transition is requested.
This bit is cleared on reset.

21 Reserved.

22 Unique Limit CPUID Maxval. (R/W) see Table B-2

23 Shared xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Unique XD Bit Disable. (R/W) see Table B-2

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-2) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H).

1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-75

MODEL-SPECIFIC REGISTERS (MSRS)
1DEH 478 MSR_LER_TO_
LIP

Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

200H 512 IA32_MTRR_PHYS
BASE0

Shared see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Shared see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Shared see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Shared see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Shared see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Shared see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Shared see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Shared see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Shared see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Shared see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Shared see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Shared see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Shared see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Shared see Table B-2

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-76 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
20EH 526 IA32_MTRR_PHYS
BASE7

Shared see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Shared see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Shared see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Shared see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Shared see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Shared see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Shared see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Shared see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Shared see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Shared see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Shared see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Shared see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Shared see Table B-2

277H 631 IA32_PAT Unique see Table B-2

309H 777 IA32_FIXED_CTR0 Unique Fixed-Function Performance Counter
Register 0. (R/W) see Table B-2

30AH 778 IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter
Register 2. (R/W) see Table B-2

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-77

MODEL-SPECIFIC REGISTERS (MSRS)
345H 837 IA32_PERF_CAPA
BILITIES

Shared see Table B-2. See Section 16.4.1,
“IA32_DEBUGCTL MSR.”

38DH 909 IA32_FIXED_CTR_
CTRL

Unique Fixed-Function-Counter Control Register.
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Unique see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

3F1H 1009 MSR_PEBS_
ENABLE

Unique see Table B-2. See Section 30.4.4, “Precise
Event Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

400H 1024 IA32_MC0_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

404H 1028 IA32_MC1_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

408H 1032 IA32_MC2_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-78 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40CH 1036 MSR_MC3_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

4OEH 1038 MSR_MC3_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

410H 1040 MSR_MC4_CTL Shared See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Shared See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC4_ADDR Shared See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-79

MODEL-SPECIFIC REGISTERS (MSRS)
482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-80 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.4 MSRS IN THE INTEL® MICROARCHITECTURE CODE
NAME NEHALEM

Table B-5 lists model-specific registers (MSRs) that are common for Intel® microar-
chitecture code name Nehalem. These include Intel Core i7 and i5 processor family.
Architectural MSR addresses are also included in Table B-5. These processors have a
CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH, 06_1FH,
06_2EH, see Table B-1. Additional MSRs specific to 06_1AH, 06_1EH, 06_1FH are
listed in Table B-6. Some MSRs listed in these tables are used by BIOS. More informa-
tion about these MSR can be found at http://biosbits.org.

The column “Scope” represents the package/core/thread scope of individual bit field
of an MSR. “Thread” means this bit field must be programmed on each logical
processor independently. “Core” means the bit field must be programmed on each
processor core independently, logical processors in the same core will be affected by
change of this bit on the other logical processor in the same core. “Package“ means
the bit field must be programmed once for each physical package. Change of a bit
filed with a package scope will affect all logical processors in that physical package.

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS)
Mechanism.”

C000_
0080H

IA32_EFER Unique Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Unique System Call Target Address. (R/W). see
Table B-2

C000_
0082H

IA32_LSTAR Unique IA-32e Mode System Call Target Address.
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Unique System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Unique Map of BASE Address of FS. (R/W). see
Table B-2

C000_
0101H

IA32_GS_BASE Unique Map of BASE Address of GS. (R/W). see
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Unique Swap Target of BASE Address of GS. (R/W).
see Table B-2

Table B-4. MSRs in Intel Atom Processor Family (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-81

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Appendix B.12, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Appendix B.12, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 16.12, “Time-Stamp Counter.” and
see Table B-2

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table B-2.

17H 23 MSR_PLATFORM_I
D

Package Model Specific Platform ID. (R)

49:0 Reserved.

52:50 See Table B-2.

63:53 Reserved.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location.” and Table B-2

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

see Table B-2

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Thread Performance counter register. see Table B-2
B-82 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
C2H 194 IA32_PMC1 Thread Performance counter register. see Table B-2

C3H 195 IA32_PMC2 Thread Performance counter register. see Table B-2

C4H 196 IA32_PMC3 Thread Performance counter register. see Table B-2

CEH 206 MSR_PLATFORM_I
NFO

Package see http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. The invariant TSC frequency can
be computed by multiplying this ratio by
133.33 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDC-TDP Limit for Turbo
Mode. (R/O)

When set to 1, indicates that TDC/TDP Limits
for Turbo mode are programmable, and when
set to 0, indicates TDC and TDP Limits for
Turbo mode are not programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 133.33MHz.

63:48 Reserved.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-83

MODEL-SPECIFIC REGISTERS (MSRS)
E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States. See http://biosbits.org.

2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0 (no package C-sate support)

001b: C1 (Behavior is the same as 000b)

010b: C3

011b: C6

100b: C7

101b and 110b: Reserved

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions

14:11 Reserved.

15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset

23:16 Reserved.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-84 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
24 Interrupt filtering enable. (R/W)

When set, processor cores in a deep C-State
will wake only when the event message is
destined for that core. When 0, all processor
cores in a deep C-State will wake for an event
message

25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information

26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information

63:27 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software

18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-85

MODEL-SPECIFIC REGISTERS (MSRS)
E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) see Table B-2

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) see Table B-2

FEH 254 IA32_MTRRCAP Thread see Table B-2

174H 372 IA32_SYSENTER_C
S

Thread see Table B-2

175H 373 IA32_SYSENTER_E
SP

Thread see Table B-2

176H 374 IA32_SYSENTER_E
IP

Thread see Table B-2

179H 377 IA32_MCG_CAP Thread see Table B-2

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-86 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
186H 390 IA32_
PERFEVTSEL0

Thread see Table B-2

187H 391 IA32_
PERFEVTSEL1

Thread see Table B-2

188H 392 IA32_
PERFEVTSEL2

Thread see Table B-2

189H 393 IA32_
PERFEVTSEL3

Thread see Table B-2

198H 408 IA32_PERF_STAT
US

Core see Table B-2

15:0 Current Performance State Value.

63:16 Reserved.

199H 409 IA32_PERF_CTL Thread see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

see Table B-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

0 Reserved

3:1 On demand Clock Modulation Duty Cycle (R/W).

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

see Table B-2

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

see Table B-2

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. see Table B-2

2:1 Reserved.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-87

MODEL-SPECIFIC REGISTERS (MSRS)
3 Thread Automatic Thermal Control Circuit Enable.
(R/W) see Table B-2

6:4 Reserved.

7 Thread Performance Monitoring Available. (R) see
Table B-2

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) see
Table B-2

12 Thread Precise Event Based Sampling Unavailable.
(RO) see Table B-2

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) see Table B-2

18 Thread ENABLE MONITOR FSM. (R/W) see Table B-2

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) see Table B-2

23 Thread xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) see Table B-2

37:35 Reserved.

38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-88 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Thread

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

63:24 Reserved

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

0 Package EIST Hardware Coordination Disable (R/W).

When 0, enables hardware coordination of
EIST request from processor cores; When 1,
disables hardware coordination of EIST
requests.

1 Thread Energy/Performance Bias Enable. (R/W)

This bit makes the IA32_ENERGY_PERF_BIAS
register (MSR 1B0h) visible to software with
Ring 0 privileges. This bit’s status (1 or 0) is
also reflected by CPUID.(EAX=06h):ECX[3].

63:2 Reserved

1ACH 428 MSR_TURBO_POW
ER_CURRENT_LIMI
T

See http://biosbits.org.

14:0 Package TDP Limit (R/W)

TDP limit in 1/8 Watt granularity

15 Package TDP Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-89

MODEL-SPECIFIC REGISTERS (MSRS)
30:16 Package TDC Limit (R/W)

TDC limit in 1/8 Amp granularity

31 Package TDC Limit Override Enable (R/W)

A value = 0 indicates override is not active,
and a value = 1 indicates active

63:32 Reserved

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

1C8H 456 MSR_LBR_SELECT Core Last Branch Record Filtering Select Register
(R/W) see Section 16.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-90 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core see Table B-2

1F3H 499 IA32_SMRR_PHYS
MASK

Core see Table B-2

1FCH 508 MSR_POWER_CTL Core Power Control Register. See
http://biosbits.org.

0 Reserved.

1 Package C1E Enable. (R/W)

When set to ‘1’, will enable the CPU to switch
to the Minimum Enhanced Intel SpeedStep
Technology operating point when all
execution cores enter MWAIT (C1).

63:2 Reserved

200H 512 IA32_MTRR_PHYS
BASE0

Thread see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Thread see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Thread see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Thread see Table B-2

204H 516 IA32_MTRR_PHYS
BASE2

Thread see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Thread see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Thread see Table B-2

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-91

MODEL-SPECIFIC REGISTERS (MSRS)
207H 519 IA32_MTRR_PHYS
MASK3

Thread see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Thread see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Thread see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Thread see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Thread see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Thread see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Thread see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Thread see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Thread see Table B-2

210H 528 IA32_MTRR_PHYS
BASE8

Thread see Table B-2

211H 529 IA32_MTRR_PHYS
MASK8

Thread see Table B-2

212H 530 IA32_MTRR_PHYS
BASE9

Thread see Table B-2

213H 531 IA32_MTRR_PHYS
MASK9

Thread see Table B-2

250H 592 IA32_MTRR_FIX6
4K_00000

Thread see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Thread see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread see Table B-2

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-92 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
268H 616 IA32_MTRR_FIX4
K_C0000

Thread see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Thread see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread see Table B-2

277H 631 IA32_PAT Thread see Table B-2

280H 640 IA32_MC0_CTL2 Package see Table B-2

281H 641 IA32_MC1_CTL2 Package see Table B-2

282H 642 IA32_MC2_CTL2 Core see Table B-2

283H 643 IA32_MC3_CTL2 Core see Table B-2

284H 644 IA32_MC4_CTL2 Core see Table B-2

285H 645 IA32_MC5_CTL2 Core see Table B-2

286H 646 IA32_MC6_CTL2 Package see Table B-2

287H 647 IA32_MC7_CTL2 Package see Table B-2

288H 648 IA32_MC8_CTL2 Package see Table B-2

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) see Table B-2

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) see Table B-2

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-93

MODEL-SPECIFIC REGISTERS (MSRS)
30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) see Table B-2

345H 837 IA32_PERF_CAPA
BILITIES

Thread see Table B-2. See Section 16.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. see Table B-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. see Table B-2.

11:8 PEBS_REC_FORMAT. see Table B-2.

12 SMM_FREEZE. see Table B-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

38EH 910 MSR_PERF_
GLOBAL_STAUS

Thread (RO)

61 UNC_Ovf. Uncore overflowed if 1.

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

390H 912 MSR_PERF_
GLOBAL_OVF_
CTRL

Thread (R/W)

61 CLR_UNC_Ovf. Set 1 to clear UNC_Ovf.

3F1H 1009 MSR_PEBS_
ENABLE

Thread see See Section 30.6.1.1, “Precise Event
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-94 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved

3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 30.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-95

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

403H 1027 MSR_MC0_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-96 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
405H 1029 IA32_MC1_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

407H 1031 MSR_MC1_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

40BH 1035 MSR_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 MSR_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40EH 1038 MSR_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-97

MODEL-SPECIFIC REGISTERS (MSRS)
40FH 1039 MSR_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC4_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear.

When not implemented in the processor, all
reads and writes to this MSR will cause a
general-protection exception.

413H 1043 MSR_MC4_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

414H 1044 MSR_MC5_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

416H 1046 MSR_MC5_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-98 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-99

MODEL-SPECIFIC REGISTERS (MSRS)
48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS)
Mechanism.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-100 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-101

MODEL-SPECIFIC REGISTERS (MSRS)
6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-102 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

802H 2050 IA32_X2APIC_API
CID

Thread x2APIC ID register (R/O) see x2APIC
specification

803H 2051 IA32_X2APIC_VER
SION

Thread x2APIC Version register (R/O)

808H 2056 IA32_X2APIC_TPR Thread x2APIC Task Priority register (R/W)

80AH 2058 IA32_X2APIC_PPR Thread x2APIC Processor Priority register (R/O)

80BH 2059 IA32_X2APIC_EOI Thread x2APIC EOI register (W/O)

80DH 2061 IA32_X2APIC_LDR Thread x2APIC Logical Destination register (R/O)

80FH 2063 IA32_X2APIC_SIV
R

Thread x2APIC Spurious Interrupt Vector register
(R/W)

810H 2064 IA32_X2APIC_ISR
0

Thread x2APIC In-Service register bits [31:0] (R/O)

811H 2065 IA32_X2APIC_ISR
1

Thread x2APIC In-Service register bits [63:32] (R/O)

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-103

MODEL-SPECIFIC REGISTERS (MSRS)
812H 2066 IA32_X2APIC_ISR
2

Thread x2APIC In-Service register bits [95:64] (R/O)

813H 2067 IA32_X2APIC_ISR
3

Thread x2APIC In-Service register bits [127:96] (R/O)

814H 2068 IA32_X2APIC_ISR
4

Thread x2APIC In-Service register bits [159:128]
(R/O)

815H 2069 IA32_X2APIC_ISR
5

Thread x2APIC In-Service register bits [191:160]
(R/O)

816H 2070 IA32_X2APIC_ISR
6

Thread x2APIC In-Service register bits [223:192]
(R/O)

817H 2071 IA32_X2APIC_ISR
7

Thread x2APIC In-Service register bits [255:224]
(R/O)

818H 2072 IA32_X2APIC_TM
R0

Thread x2APIC Trigger Mode register bits [31:0] (R/O)

819H 2073 IA32_X2APIC_TM
R1

Thread x2APIC Trigger Mode register bits [63:32]
(R/O)

81AH 2074 IA32_X2APIC_TM
R2

Thread x2APIC Trigger Mode register bits [95:64]
(R/O)

81BH 2075 IA32_X2APIC_TM
R3

Thread x2APIC Trigger Mode register bits [127:96]
(R/O)

81CH 2076 IA32_X2APIC_TM
R4

Thread x2APIC Trigger Mode register bits [159:128]
(R/O)

81DH 2077 IA32_X2APIC_TM
R5

Thread x2APIC Trigger Mode register bits [191:160]
(R/O)

81EH 2078 IA32_X2APIC_TM
R6

Thread x2APIC Trigger Mode register bits [223:192]
(R/O)

81FH 2079 IA32_X2APIC_TM
R7

Thread x2APIC Trigger Mode register bits [255:224]
(R/O)

820H 2080 IA32_X2APIC_IRR
0

Thread x2APIC Interrupt Request register bits [31:0]
(R/O)

821H 2081 IA32_X2APIC_IRR
1

Thread x2APIC Interrupt Request register bits [63:32]
(R/O)

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-104 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
822H 2082 IA32_X2APIC_IRR
2

Thread x2APIC Interrupt Request register bits [95:64]
(R/O)

823H 2083 IA32_X2APIC_IRR
3

Thread x2APIC Interrupt Request register bits
[127:96] (R/O)

824H 2084 IA32_X2APIC_IRR
4

Thread x2APIC Interrupt Request register bits
[159:128] (R/O)

825H 2085 IA32_X2APIC_IRR
5

Thread x2APIC Interrupt Request register bits
[191:160] (R/O)

826H 2086 IA32_X2APIC_IRR
6

Thread x2APIC Interrupt Request register bits
[223:192] (R/O)

827H 2087 IA32_X2APIC_IRR
7

Thread x2APIC Interrupt Request register bits
[255:224] (R/O)

828H 2088 IA32_X2APIC_ESR Thread x2APIC Error Status register (R/W)

82FH 2095 IA32_X2APIC_LVT
_CMCI

Thread x2APIC LVT Corrected Machine Check
Interrupt register (R/W)

830H 2096 IA32_X2APIC_ICR Thread x2APIC Interrupt Command register (R/W)

832H 2098 IA32_X2APIC_LVT
_TIMER

Thread x2APIC LVT Timer Interrupt register (R/W)

833H 2099 IA32_X2APIC_LVT
_THERMAL

Thread x2APIC LVT Thermal Sensor Interrupt register
(R/W)

834H 2100 IA32_X2APIC_LVT
_PMI

Thread x2APIC LVT Performance Monitor register
(R/W)

835H 2101 IA32_X2APIC_LVT
_LINT0

Thread x2APIC LVT LINT0 register (R/W)

836H 2102 IA32_X2APIC_LVT
_LINT1

Thread x2APIC LVT LINT1 register (R/W)

837H 2103 IA32_X2APIC_LVT
_ERROR

Thread x2APIC LVT Error register (R/W)

838H 2104 IA32_X2APIC_INIT
_COUNT

Thread x2APIC Initial Count register (R/W)

839H 2105 IA32_X2APIC_CUR
_COUNT

Thread x2APIC Current Count register (R/O)

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-105

MODEL-SPECIFIC REGISTERS (MSRS)
B.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and
3400 Series

Intel Xeon Processor 5500 and 3400 series support additional model-specific regis-
ters listed in Table B-6. These MSRs also apply to Intel Core i7 and i5 processor family
CPUID signature with DisplayFamily_DisplayModel of 06_1AH, 06_1EH and 06_1FH,
see Table B-1.

83EH 2110 IA32_X2APIC_DIV
_CONF

Thread x2APIC Divide Configuration register (R/W)

83FH 2111 IA32_X2APIC_SEL
F_IPI

Thread x2APIC Self IPI register (W/O)

C000_
0080H

IA32_EFER Thread Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). see
Table B-2

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). see
Table B-2

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). see
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
see Table B-2

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). see
Table B-2 and Section 16.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table B-5. MSRs in Processors Based on Intel Microarchitecture Code Name Nehalem
(Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-106 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Actual maximum turbo frequency is multiplied
by 133.33MHz. (not available to model
06_2EH)

7:0 Maximum Turbo Ratio Limit 1C. (R/O)

maximum Turbo mode ratio limit with 1 core
active.

15:8 Maximum Turbo Ratio Limit 2C. (R/O)

maximum Turbo mode ratio limit with 2cores
active.

23:16 Maximum Turbo Ratio Limit 3C. (R/O)

maximum Turbo mode ratio limit with 3cores
active.

31:24 Maximum Turbo Ratio Limit 4C. (R/O)

maximum Turbo mode ratio limit with 4 cores
active.

63:32 Reserved.

301H 769 MSR_GQ_SNOOP_
MESF

Package

0 From M to S (R/W).

1 From E to S (R/W).

2 From S to S (R/W).

3 From F to S (R/W).

4 From M to I (R/W).

5 From E to I (R/W).

6 From S to I (R/W).

7 From F to I (R/W).

63:8 Reserved

391H 913 MSR_UNCORE_PE
RF_GLOBAL_CTRL

Package See Section 30.6.2.1, “Uncore Performance
Monitoring Management Facility.”

392H 914 MSR_UNCORE_PE
RF_GLOBAL_STAT
US

Package See Section 30.6.2.1, “Uncore Performance
Monitoring Management Facility.”
Vol. 3B B-107

MODEL-SPECIFIC REGISTERS (MSRS)
393H 915 MSR_UNCORE_PE
RF_GLOBAL_OVF_
CTRL

Package See Section 30.6.2.1, “Uncore Performance
Monitoring Management Facility.”

394H 916 MSR_UNCORE_FIX
ED_CTR0

Package See Section 30.6.2.1, “Uncore Performance
Monitoring Management Facility.”

395H 917 MSR_UNCORE_FIX
ED_CTR_CTRL

Package See Section 30.6.2.1, “Uncore Performance
Monitoring Management Facility.”

396H 918 MSR_UNCORE_AD
DR_OPCODE_MAT
CH

Package See Section 30.6.2.3, “Uncore Address/Opcode
Match MSR.”

3B0H 960 MSR_UNCORE_PM
C0

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B1H 961 MSR_UNCORE_PM
C1

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B2H 962 MSR_UNCORE_PM
C2

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B3H 963 MSR_UNCORE_PM
C3

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B4H 964 MSR_UNCORE_PM
C4

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B6H 966 MSR_UNCORE_PM
C6

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3B7H 967 MSR_UNCORE_PM
C7

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C0H 944 MSR_UNCORE_PE
RFEVTSEL0

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C1H 945 MSR_UNCORE_PE
RFEVTSEL1

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C2H 946 MSR_UNCORE_PE
RFEVTSEL2

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C3H 947 MSR_UNCORE_PE
RFEVTSEL3

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table B-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-108 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series
Intel Xeon Processor 7500 series support MSRs listed in Table B-5 (except MSR
address 1ADH) and additional model-specific registers listed in Table B-7.

3C4H 948 MSR_UNCORE_PE
RFEVTSEL4

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C5H 949 MSR_UNCORE_PE
RFEVTSEL5

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C6H 950 MSR_UNCORE_PE
RFEVTSEL6

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

3C7H 951 MSR_UNCORE_PE
RFEVTSEL7

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

289H 649 IA32_MC9_CTL2 Package see Table B-2

28AH 650 IA32_MC10_CTL2 Package see Table B-2

28BH 651 IA32_MC11_CTL2 Package see Table B-2

28CH 652 IA32_MC12_CTL2 Package see Table B-2

28DH 653 IA32_MC13_CTL2 Package see Table B-2

28EH 654 IA32_MC14_CTL2 Package see Table B-2

28FH 655 IA32_MC15_CTL2 Package see Table B-2

290H 656 IA32_MC16_CTL2 Package see Table B-2

291H 657 IA32_MC17_CTL2 Package see Table B-2

292H 658 IA32_MC18_CTL2 Package see Table B-2

293H 659 IA32_MC19_CTL2 Package see Table B-2

294H 660 IA32_MC20_CTL2 Package see Table B-2

Table B-6. Additional MSRs in Intel Xeon Processor 5500 and 3400 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-109

MODEL-SPECIFIC REGISTERS (MSRS)
295H 661 IA32_MC21_CTL2 Package see Table B-2

394H 816 MSR_W_PMON_FI
XED_CTR

Package Uncore W-box perfmon fixed counter

395H 817 MSR_W_PMON_FI
XED_CTR_CTL

Package Uncore U-box perfmon fixed counter control
MSR

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-110 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

450H 1104 MSR_MC20_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-111

MODEL-SPECIFIC REGISTERS (MSRS)
451H 1105 MSR_MC20_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

452H 1106 MSR_MC20_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

453H 1107 MSR_MC20_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

454H 1108 MSR_MC21_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

455H 1109 MSR_MC21_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

456H 1110 MSR_MC21_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

457H 1111 MSR_MC21_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

C00H 3072 MSR_U_PMON_GL
OBAL_CTRL

Package Uncore U-box perfmon global control MSR

C01H 3073 MSR_U_PMON_GL
OBAL_STATUS

Package Uncore U-box perfmon global status MSR

C02H 3074 MSR_U_PMON_GL
OBAL_OVF_CTRL

Package Uncore U-box perfmon global overflow control
MSR

C10H 3088 MSR_U_PMON_EV
NT_SEL

Package Uncore U-box perfmon event select MSR

C11H 3089 MSR_U_PMON_CT
R

Package Uncore U-box perfmon counter MSR

C20H 3104 MSR_B0_PMON_B
OX_CTRL

Package Uncore B-box 0 perfmon local box control MSR

C21H 3105 MSR_B0_PMON_B
OX_STATUS

Package Uncore B-box 0 perfmon local box status MSR

C22H 3106 MSR_B0_PMON_B
OX_OVF_CTRL

Package Uncore B-box 0 perfmon local box overflow
control MSR

C30H 3120 MSR_B0_PMON_E
VNT_SEL0

Package Uncore B-box 0 perfmon event select MSR

C31H 3121 MSR_B0_PMON_C
TR0

Package Uncore B-box 0 perfmon counter MSR

C32H 3122 MSR_B0_PMON_E
VNT_SEL1

Package Uncore B-box 0 perfmon event select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-112 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
C33H 3123 MSR_B0_PMON_C
TR1

Package Uncore B-box 0 perfmon counter MSR

C34H 3124 MSR_B0_PMON_E
VNT_SEL2

Package Uncore B-box 0 perfmon event select MSR

C35H 3125 MSR_B0_PMON_C
TR2

Package Uncore B-box 0 perfmon counter MSR

C36H 3126 MSR_B0_PMON_E
VNT_SEL3

Package Uncore B-box 0 perfmon event select MSR

C37H 3127 MSR_B0_PMON_C
TR3

Package Uncore B-box 0 perfmon counter MSR

C40H 3136 MSR_S0_PMON_B
OX_CTRL

Package Uncore S-box 0 perfmon local box control MSR

C41H 3137 MSR_S0_PMON_B
OX_STATUS

Package Uncore S-box 0 perfmon local box status MSR

C42H 3138 MSR_S0_PMON_B
OX_OVF_CTRL

Package Uncore S-box 0 perfmon local box overflow
control MSR

C50H 3152 MSR_S0_PMON_E
VNT_SEL0

Package Uncore S-box 0 perfmon event select MSR

C51H 3153 MSR_S0_PMON_C
TR0

Package Uncore S-box 0 perfmon counter MSR

C52H 3154 MSR_S0_PMON_E
VNT_SEL1

Package Uncore S-box 0 perfmon event select MSR

C53H 3155 MSR_S0_PMON_C
TR1

Package Uncore S-box 0 perfmon counter MSR

C54H 3156 MSR_S0_PMON_E
VNT_SEL2

Package Uncore S-box 0 perfmon event select MSR

C55H 3157 MSR_S0_PMON_C
TR2

Package Uncore S-box 0 perfmon counter MSR

C56H 3158 MSR_S0_PMON_E
VNT_SEL3

Package Uncore S-box 0 perfmon event select MSR

C57H 3159 MSR_S0_PMON_C
TR3

Package Uncore S-box 0 perfmon counter MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-113

MODEL-SPECIFIC REGISTERS (MSRS)
C60H 3168 MSR_B1_PMON_B
OX_CTRL

Package Uncore B-box 1 perfmon local box control MSR

C61H 3169 MSR_B1_PMON_B
OX_STATUS

Package Uncore B-box 1 perfmon local box status MSR

C62H 3170 MSR_B1_PMON_B
OX_OVF_CTRL

Package Uncore B-box 1 perfmon local box overflow
control MSR

C70H 3184 MSR_B1_PMON_E
VNT_SEL0

Package Uncore B-box 1 perfmon event select MSR

C71H 3185 MSR_B1_PMON_C
TR0

Package Uncore B-box 1 perfmon counter MSR

C72H 3186 MSR_B1_PMON_E
VNT_SEL1

Package Uncore B-box 1 perfmon event select MSR

C73H 3187 MSR_B1_PMON_C
TR1

Package Uncore B-box 1 perfmon counter MSR

C74H 3188 MSR_B1_PMON_E
VNT_SEL2

Package Uncore B-box 1 perfmon event select MSR

C75H 3189 MSR_B1_PMON_C
TR2

Package Uncore B-box 1 perfmon counter MSR

C76H 3190 MSR_B1_PMON_E
VNT_SEL3

Package Uncore B-box 1vperfmon event select MSR

C77H 3191 MSR_B1_PMON_C
TR3

Package Uncore B-box 1 perfmon counter MSR

C80H 3120 MSR_W_PMON_BO
X_CTRL

Package Uncore W-box perfmon local box control MSR

C81H 3121 MSR_W_PMON_BO
X_STATUS

Package Uncore W-box perfmon local box status MSR

C82H 3122 MSR_W_PMON_BO
X_OVF_CTRL

Package Uncore W-box perfmon local box overflow
control MSR

C90H 3136 MSR_W_PMON_EV
NT_SEL0

Package Uncore W-box perfmon event select MSR

C91H 3137 MSR_W_PMON_CT
R0

Package Uncore W-box perfmon counter MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-114 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
C92H 3138 MSR_W_PMON_EV
NT_SEL1

Package Uncore W-box perfmon event select MSR

C93H 3139 MSR_W_PMON_CT
R1

Package Uncore W-box perfmon counter MSR

C94H 3140 MSR_W_PMON_EV
NT_SEL2

Package Uncore W-box perfmon event select MSR

C95H 3141 MSR_W_PMON_CT
R2

Package Uncore W-box perfmon counter MSR

C96H 3142 MSR_W_PMON_EV
NT_SEL3

Package Uncore W-box perfmon event select MSR

C97H 3143 MSR_W_PMON_CT
R3

Package Uncore W-box perfmon counter MSR

CA0H 3232 MSR_M0_PMON_B
OX_CTRL

Package Uncore M-box 0 perfmon local box control MSR

CA1H 3233 MSR_M0_PMON_B
OX_STATUS

Package Uncore M-box 0 perfmon local box status MSR

CA2H 3234 MSR_M0_PMON_B
OX_OVF_CTRL

Package Uncore M-box 0 perfmon local box overflow
control MSR

CA4H 3236 MSR_M0_PMON_T
IMESTAMP

Package Uncore M-box 0 perfmon time stamp unit
select MSR

CA5H 3237 MSR_M0_PMON_D
SP

Package Uncore M-box 0 perfmon DSP unit select MSR

CA6H 3238 MSR_M0_PMON_I
SS

Package Uncore M-box 0 perfmon ISS unit select MSR

CA7H 3239 MSR_M0_PMON_M
AP

Package Uncore M-box 0 perfmon MAP unit select MSR

CA8H 3240 MSR_M0_PMON_M
SC_THR

Package Uncore M-box 0 perfmon MIC THR select MSR

CA9H 3241 MSR_M0_PMON_P
GT

Package Uncore M-box 0 perfmon PGT unit select MSR

CAAH 3242 MSR_M0_PMON_P
LD

Package Uncore M-box 0 perfmon PLD unit select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-115

MODEL-SPECIFIC REGISTERS (MSRS)
CABH 3243 MSR_M0_PMON_Z
DP

Package Uncore M-box 0 perfmon ZDP unit select MSR

CB0H 3248 MSR_M0_PMON_E
VNT_SEL0

Package Uncore M-box 0 perfmon event select MSR

CB1H 3249 MSR_M0_PMON_C
TR0

Package Uncore M-box 0 perfmon counter MSR

CB2H 3250 MSR_M0_PMON_E
VNT_SEL1

Package Uncore M-box 0 perfmon event select MSR

CB3H 3251 MSR_M0_PMON_C
TR1

Package Uncore M-box 0 perfmon counter MSR

CB4H 3252 MSR_M0_PMON_E
VNT_SEL2

Package Uncore M-box 0 perfmon event select MSR

CB5H 3253 MSR_M0_PMON_C
TR2

Package Uncore M-box 0 perfmon counter MSR

CB6H 3254 MSR_M0_PMON_E
VNT_SEL3

Package Uncore M-box 0 perfmon event select MSR

CB7H 3255 MSR_M0_PMON_C
TR3

Package Uncore M-box 0 perfmon counter MSR

CB8H 3256 MSR_M0_PMON_E
VNT_SEL4

Package Uncore M-box 0 perfmon event select MSR

CB9H 3257 MSR_M0_PMON_C
TR4

Package Uncore M-box 0 perfmon counter MSR

CBAH 3258 MSR_M0_PMON_E
VNT_SEL5

Package Uncore M-box 0 perfmon event select MSR

CBBH 3259 MSR_M0_PMON_C
TR5

Package Uncore M-box 0 perfmon counter MSR

CC0H 3264 MSR_S1_PMON_B
OX_CTRL

Package Uncore S-box 1 perfmon local box control MSR

CC1H 3265 MSR_S1_PMON_B
OX_STATUS

Package Uncore S-box 1 perfmon local box status MSR

CC2H 3266 MSR_S1_PMON_B
OX_OVF_CTRL

Package Uncore S-box 1 perfmon local box overflow
control MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-116 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
CD0H 3280 MSR_S1_PMON_E
VNT_SEL0

Package Uncore S-box 1 perfmon event select MSR

CD1H 3281 MSR_S1_PMON_C
TR0

Package Uncore S-box 1 perfmon counter MSR

CD2H 3282 MSR_S1_PMON_E
VNT_SEL1

Package Uncore S-box 1 perfmon event select MSR

CD3H 3283 MSR_S1_PMON_C
TR1

Package Uncore S-box 1 perfmon counter MSR

CD4H 3284 MSR_S1_PMON_E
VNT_SEL2

Package Uncore S-box 1 perfmon event select MSR

CD5H 3285 MSR_S1_PMON_C
TR2

Package Uncore S-box 1 perfmon counter MSR

CD6H 3286 MSR_S1_PMON_E
VNT_SEL3

Package Uncore S-box 1 perfmon event select MSR

CD7H 3287 MSR_S1_PMON_C
TR3

Package Uncore S-box 1 perfmon counter MSR

CE0H 3296 MSR_M1_PMON_B
OX_CTRL

Package Uncore M-box 1 perfmon local box control MSR

CE1H 3297 MSR_M1_PMON_B
OX_STATUS

Package Uncore M-box 1 perfmon local box status MSR

CE2H 3298 MSR_M1_PMON_B
OX_OVF_CTRL

Package Uncore M-box 1 perfmon local box overflow
control MSR

CE4H 3300 MSR_M1_PMON_T
IMESTAMP

Package Uncore M-box 1 perfmon time stamp unit
select MSR

CE5H 3301 MSR_M1_PMON_D
SP

Package Uncore M-box 1 perfmon DSP unit select MSR

CE6H 3302 MSR_M1_PMON_I
SS

Package Uncore M-box 1 perfmon ISS unit select MSR

CE7H 3303 MSR_M1_PMON_M
AP

Package Uncore M-box 1 perfmon MAP unit select MSR

CE8H 3304 MSR_M1_PMON_M
SC_THR

Package Uncore M-box 1 perfmon MIC THR select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-117

MODEL-SPECIFIC REGISTERS (MSRS)
CE9H 3305 MSR_M1_PMON_P
GT

Package Uncore M-box 1 perfmon PGT unit select MSR

CEAH 3306 MSR_M1_PMON_P
LD

Package Uncore M-box 1 perfmon PLD unit select MSR

CEBH 3307 MSR_M1_PMON_Z
DP

Package Uncore M-box 1 perfmon ZDP unit select MSR

CF0H 3312 MSR_M1_PMON_E
VNT_SEL0

Package Uncore M-box 1 perfmon event select MSR

CF1H 3313 MSR_M1_PMON_C
TR0

Package Uncore M-box 1 perfmon counter MSR

CF2H 3314 MSR_M1_PMON_E
VNT_SEL1

Package Uncore M-box 1 perfmon event select MSR

CF3H 3315 MSR_M1_PMON_C
TR1

Package Uncore M-box 1 perfmon counter MSR

CF4H 3316 MSR_M1_PMON_E
VNT_SEL2

Package Uncore M-box 1 perfmon event select MSR

CF5H 3317 MSR_M1_PMON_C
TR2

Package Uncore M-box 1 perfmon counter MSR

CF6H 3318 MSR_M1_PMON_E
VNT_SEL3

Package Uncore M-box 1 perfmon event select MSR

CF7H 3319 MSR_M1_PMON_C
TR3

Package Uncore M-box 1 perfmon counter MSR

CF8H 3320 MSR_M1_PMON_E
VNT_SEL4

Package Uncore M-box 1 perfmon event select MSR

CF9H 3321 MSR_M1_PMON_C
TR4

Package Uncore M-box 1 perfmon counter MSR

CFAH 3322 MSR_M1_PMON_E
VNT_SEL5

Package Uncore M-box 1 perfmon event select MSR

CFBH 3323 MSR_M1_PMON_C
TR5

Package Uncore M-box 1 perfmon counter MSR

D00H 3328 MSR_C0_PMON_B
OX_CTRL

Package Uncore C-box 0 perfmon local box control MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-118 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
D01H 3329 MSR_C0_PMON_B
OX_STATUS

Package Uncore C-box 0 perfmon local box status MSR

D02H 3330 MSR_C0_PMON_B
OX_OVF_CTRL

Package Uncore C-box 0 perfmon local box overflow
control MSR

D10H 3344 MSR_C0_PMON_E
VNT_SEL0

Package Uncore C-box 0 perfmon event select MSR

D11H 3345 MSR_C0_PMON_C
TR0

Package Uncore C-box 0 perfmon counter MSR

D12H 3346 MSR_C0_PMON_E
VNT_SEL1

Package Uncore C-box 0 perfmon event select MSR

D13H 3347 MSR_C0_PMON_C
TR1

Package Uncore C-box 0 perfmon counter MSR

D14H 3348 MSR_C0_PMON_E
VNT_SEL2

Package Uncore C-box 0 perfmon event select MSR

D15H 3349 MSR_C0_PMON_C
TR2

Package Uncore C-box 0 perfmon counter MSR

D16H 3350 MSR_C0_PMON_E
VNT_SEL3

Package Uncore C-box 0 perfmon event select MSR

D17H 3351 MSR_C0_PMON_C
TR3

Package Uncore C-box 0 perfmon counter MSR

D18H 3352 MSR_C0_PMON_E
VNT_SEL4

Package Uncore C-box 0 perfmon event select MSR

D19H 3353 MSR_C0_PMON_C
TR4

Package Uncore C-box 0 perfmon counter MSR

D1AH 3354 MSR_C0_PMON_E
VNT_SEL5

Package Uncore C-box 0 perfmon event select MSR

D1BH 3355 MSR_C0_PMON_C
TR5

Package Uncore C-box 0 perfmon counter MSR

D20H 3360 MSR_C4_PMON_B
OX_CTRL

Package Uncore C-box 4 perfmon local box control MSR

D21H 3361 MSR_C4_PMON_B
OX_STATUS

Package Uncore C-box 4 perfmon local box status MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-119

MODEL-SPECIFIC REGISTERS (MSRS)
D22H 3362 MSR_C4_PMON_B
OX_OVF_CTRL

Package Uncore C-box 4 perfmon local box overflow
control MSR

D30H 3376 MSR_C4_PMON_E
VNT_SEL0

Package Uncore C-box 4 perfmon event select MSR

D31H 3377 MSR_C4_PMON_C
TR0

Package Uncore C-box 4 perfmon counter MSR

D32H 3378 MSR_C4_PMON_E
VNT_SEL1

Package Uncore C-box 4 perfmon event select MSR

D33H 3379 MSR_C4_PMON_C
TR1

Package Uncore C-box 4 perfmon counter MSR

D34H 3380 MSR_C4_PMON_E
VNT_SEL2

Package Uncore C-box 4 perfmon event select MSR

D35H 3381 MSR_C4_PMON_C
TR2

Package Uncore C-box 4 perfmon counter MSR

D36H 3382 MSR_C4_PMON_E
VNT_SEL3

Package Uncore C-box 4 perfmon event select MSR

D37H 3383 MSR_C4_PMON_C
TR3

Package Uncore C-box 4 perfmon counter MSR

D38H 3384 MSR_C4_PMON_E
VNT_SEL4

Package Uncore C-box 4 perfmon event select MSR

D39H 3385 MSR_C4_PMON_C
TR4

Package Uncore C-box 4 perfmon counter MSR

D3AH 3386 MSR_C4_PMON_E
VNT_SEL5

Package Uncore C-box 4 perfmon event select MSR

D3BH 3387 MSR_C4_PMON_C
TR5

Package Uncore C-box 4 perfmon counter MSR

D40H 3392 MSR_C2_PMON_B
OX_CTRL

Package Uncore C-box 2 perfmon local box control MSR

D41H 3393 MSR_C2_PMON_B
OX_STATUS

Package Uncore C-box 2 perfmon local box status MSR

D42H 3394 MSR_C2_PMON_B
OX_OVF_CTRL

Package Uncore C-box 2 perfmon local box overflow
control MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-120 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
D50H 3408 MSR_C2_PMON_E
VNT_SEL0

Package Uncore C-box 2 perfmon event select MSR

D51H 3409 MSR_C2_PMON_C
TR0

Package Uncore C-box 2 perfmon counter MSR

D52H 3410 MSR_C2_PMON_E
VNT_SEL1

Package Uncore C-box 2 perfmon event select MSR

D53H 3411 MSR_C2_PMON_C
TR1

Package Uncore C-box 2 perfmon counter MSR

D54H 3412 MSR_C2_PMON_E
VNT_SEL2

Package Uncore C-box 2 perfmon event select MSR

D55H 3413 MSR_C2_PMON_C
TR2

Package Uncore C-box 2 perfmon counter MSR

D56H 3414 MSR_C2_PMON_E
VNT_SEL3

Package Uncore C-box 2 perfmon event select MSR

D57H 3415 MSR_C2_PMON_C
TR3

Package Uncore C-box 2 perfmon counter MSR

D58H 3416 MSR_C2_PMON_E
VNT_SEL4

Package Uncore C-box 2 perfmon event select MSR

D59H 3417 MSR_C2_PMON_C
TR4

Package Uncore C-box 2 perfmon counter MSR

D5AH 3418 MSR_C2_PMON_E
VNT_SEL5

Package Uncore C-box 2 perfmon event select MSR

D5BH 3419 MSR_C2_PMON_C
TR5

Package Uncore C-box 2 perfmon counter MSR

D60H 3424 MSR_C6_PMON_B
OX_CTRL

Package Uncore C-box 6 perfmon local box control MSR

D61H 3425 MSR_C6_PMON_B
OX_STATUS

Package Uncore C-box 6 perfmon local box status MSR

D62H 3426 MSR_C6_PMON_B
OX_OVF_CTRL

Package Uncore C-box 6 perfmon local box overflow
control MSR

D70H 3440 MSR_C6_PMON_E
VNT_SEL0

Package Uncore C-box 6 perfmon event select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-121

MODEL-SPECIFIC REGISTERS (MSRS)
D71H 3441 MSR_C6_PMON_C
TR0

Package Uncore C-box 6 perfmon counter MSR

D72H 3442 MSR_C6_PMON_E
VNT_SEL1

Package Uncore C-box 6 perfmon event select MSR

D73H 3443 MSR_C6_PMON_C
TR1

Package Uncore C-box 6 perfmon counter MSR

D74H 3444 MSR_C6_PMON_E
VNT_SEL2

Package Uncore C-box 6 perfmon event select MSR

D75H 3445 MSR_C6_PMON_C
TR2

Package Uncore C-box 6 perfmon counter MSR

D76H 3446 MSR_C6_PMON_E
VNT_SEL3

Package Uncore C-box 6 perfmon event select MSR

D77H 3447 MSR_C6_PMON_C
TR3

Package Uncore C-box 6 perfmon counter MSR

D78H 3448 MSR_C6_PMON_E
VNT_SEL4

Package Uncore C-box 6 perfmon event select MSR

D79H 3449 MSR_C6_PMON_C
TR4

Package Uncore C-box 6 perfmon counter MSR

D7AH 3450 MSR_C6_PMON_E
VNT_SEL5

Package Uncore C-box 6 perfmon event select MSR

D7BH 3451 MSR_C6_PMON_C
TR5

Package Uncore C-box 6 perfmon counter MSR

D80H 3456 MSR_C1_PMON_B
OX_CTRL

Package Uncore C-box 1 perfmon local box control MSR

D81H 3457 MSR_C1_PMON_B
OX_STATUS

Package Uncore C-box 1 perfmon local box status MSR

D82H 3458 MSR_C1_PMON_B
OX_OVF_CTRL

Package Uncore C-box 1 perfmon local box overflow
control MSR

D90H 3472 MSR_C1_PMON_E
VNT_SEL0

Package Uncore C-box 1 perfmon event select MSR

D91H 3473 MSR_C1_PMON_C
TR0

Package Uncore C-box 1 perfmon counter MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-122 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
D92H 3474 MSR_C1_PMON_E
VNT_SEL1

Package Uncore C-box 1 perfmon event select MSR

D93H 3475 MSR_C1_PMON_C
TR1

Package Uncore C-box 1 perfmon counter MSR

D94H 3476 MSR_C1_PMON_E
VNT_SEL2

Package Uncore C-box 1 perfmon event select MSR

D95H 3477 MSR_C1_PMON_C
TR2

Package Uncore C-box 1 perfmon counter MSR

D96H 3478 MSR_C1_PMON_E
VNT_SEL3

Package Uncore C-box 1 perfmon event select MSR

D97H 3479 MSR_C1_PMON_C
TR3

Package Uncore C-box 1 perfmon counter MSR

D98H 3480 MSR_C1_PMON_E
VNT_SEL4

Package Uncore C-box 1 perfmon event select MSR

D99H 3481 MSR_C1_PMON_C
TR4

Package Uncore C-box 1 perfmon counter MSR

D9AH 3482 MSR_C1_PMON_E
VNT_SEL5

Package Uncore C-box 1 perfmon event select MSR

D9BH 3483 MSR_C1_PMON_C
TR5

Package Uncore C-box 1 perfmon counter MSR

DA0H 3488 MSR_C5_PMON_B
OX_CTRL

Package Uncore C-box 5 perfmon local box control MSR

DA1H 3489 MSR_C5_PMON_B
OX_STATUS

Package Uncore C-box 5 perfmon local box status MSR

DA2H 3490 MSR_C5_PMON_B
OX_OVF_CTRL

Package Uncore C-box 5 perfmon local box overflow
control MSR

DB0H 3504 MSR_C5_PMON_E
VNT_SEL0

Package Uncore C-box 5 perfmon event select MSR

DB1H 3505 MSR_C5_PMON_C
TR0

Package Uncore C-box 5 perfmon counter MSR

DB2H 3506 MSR_C5_PMON_E
VNT_SEL1

Package Uncore C-box 5 perfmon event select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-123

MODEL-SPECIFIC REGISTERS (MSRS)
DB3H 3507 MSR_C5_PMON_C
TR1

Package Uncore C-box 5 perfmon counter MSR

DB4H 3508 MSR_C5_PMON_E
VNT_SEL2

Package Uncore C-box 5 perfmon event select MSR

DB5H 3509 MSR_C5_PMON_C
TR2

Package Uncore C-box 5 perfmon counter MSR

DB6H 3510 MSR_C5_PMON_E
VNT_SEL3

Package Uncore C-box 5 perfmon event select MSR

DB7H 3511 MSR_C5_PMON_C
TR3

Package Uncore C-box 5 perfmon counter MSR

DB8H 3512 MSR_C5_PMON_E
VNT_SEL4

Package Uncore C-box 5 perfmon event select MSR

DB9H 3513 MSR_C5_PMON_C
TR4

Package Uncore C-box 5 perfmon counter MSR

DBAH 3514 MSR_C5_PMON_E
VNT_SEL5

Package Uncore C-box 5 perfmon event select MSR

DBBH 3515 MSR_C5_PMON_C
TR5

Package Uncore C-box 5 perfmon counter MSR

DC0H 3520 MSR_C3_PMON_B
OX_CTRL

Package Uncore C-box 3 perfmon local box control MSR

DC1H 3521 MSR_C3_PMON_B
OX_STATUS

Package Uncore C-box 3 perfmon local box status MSR

DC2H 3522 MSR_C3_PMON_B
OX_OVF_CTRL

Package Uncore C-box 3 perfmon local box overflow
control MSR

DD0H 3536 MSR_C3_PMON_E
VNT_SEL0

Package Uncore C-box 3 perfmon event select MSR

DD1H 3537 MSR_C3_PMON_C
TR0

Package Uncore C-box 3 perfmon counter MSR

DD2H 3538 MSR_C3_PMON_E
VNT_SEL1

Package Uncore C-box 3 perfmon event select MSR

DD3H 3539 MSR_C3_PMON_C
TR1

Package Uncore C-box 3 perfmon counter MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-124 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
DD4H 3540 MSR_C3_PMON_E
VNT_SEL2

Package Uncore C-box 3 perfmon event select MSR

DD5H 3541 MSR_C3_PMON_C
TR2

Package Uncore C-box 3 perfmon counter MSR

DD6H 3542 MSR_C3_PMON_E
VNT_SEL3

Package Uncore C-box 3 perfmon event select MSR

DD7H 3543 MSR_C3_PMON_C
TR3

Package Uncore C-box 3 perfmon counter MSR

DD8H 3544 MSR_C3_PMON_E
VNT_SEL4

Package Uncore C-box 3 perfmon event select MSR

DD9H 3545 MSR_C3_PMON_C
TR4

Package Uncore C-box 3 perfmon counter MSR

DDAH 3546 MSR_C3_PMON_E
VNT_SEL5

Package Uncore C-box 3 perfmon event select MSR

DDBH 3547 MSR_C3_PMON_C
TR5

Package Uncore C-box 3 perfmon counter MSR

DE0H 3552 MSR_C7_PMON_B
OX_CTRL

Package Uncore C-box 7 perfmon local box control MSR

DE1H 3553 MSR_C7_PMON_B
OX_STATUS

Package Uncore C-box 7 perfmon local box status MSR

DE2H 3554 MSR_C7_PMON_B
OX_OVF_CTRL

Package Uncore C-box 7 perfmon local box overflow
control MSR

DF0H 3568 MSR_C7_PMON_E
VNT_SEL0

Package Uncore C-box 7 perfmon event select MSR

DF1H 3569 MSR_C7_PMON_C
TR0

Package Uncore C-box 7 perfmon counter MSR

DF2H 3570 MSR_C7_PMON_E
VNT_SEL1

Package Uncore C-box 7 perfmon event select MSR

DF3H 3571 MSR_C7_PMON_C
TR1

Package Uncore C-box 7 perfmon counter MSR

DF4H 3572 MSR_C7_PMON_E
VNT_SEL2

Package Uncore C-box 7 perfmon event select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-125

MODEL-SPECIFIC REGISTERS (MSRS)
DF5H 3573 MSR_C7_PMON_C
TR2

Package Uncore C-box 7 perfmon counter MSR

DF6H 3574 MSR_C7_PMON_E
VNT_SEL3

Package Uncore C-box 7 perfmon event select MSR

DF7H 3575 MSR_C7_PMON_C
TR3

Package Uncore C-box 7 perfmon counter MSR

DF8H 3576 MSR_C7_PMON_E
VNT_SEL4

Package Uncore C-box 7 perfmon event select MSR

DF9H 3577 MSR_C7_PMON_C
TR4

Package Uncore C-box 7 perfmon counter MSR

DFAH 3578 MSR_C7_PMON_E
VNT_SEL5

Package Uncore C-box 7 perfmon event select MSR

DFBH 3579 MSR_C7_PMON_C
TR5

Package Uncore C-box 7 perfmon counter MSR

E00H 3584 MSR_R0_PMON_B
OX_CTRL

Package Uncore R-box 0 perfmon local box control MSR

E01H 3585 MSR_R0_PMON_B
OX_STATUS

Package Uncore R-box 0 perfmon local box status MSR

E02H 3586 MSR_R0_PMON_B
OX_OVF_CTRL

Package Uncore R-box 0 perfmon local box overflow
control MSR

E04H 3588 MSR_R0_PMON_IP
ERF0_P0

Package Uncore R-box 0 perfmon IPERF0 unit Port 0
select MSR

E05H 3589 MSR_R0_PMON_IP
ERF0_P1

Package Uncore R-box 0 perfmon IPERF0 unit Port 1
select MSR

E06H 3590 MSR_R0_PMON_IP
ERF0_P2

Package Uncore R-box 0 perfmon IPERF0 unit Port 2
select MSR

E07H 3591 MSR_R0_PMON_IP
ERF0_P3

Package Uncore R-box 0 perfmon IPERF0 unit Port 3
select MSR

E08H 3592 MSR_R0_PMON_IP
ERF0_P4

Package Uncore R-box 0 perfmon IPERF0 unit Port 4
select MSR

E09H 3593 MSR_R0_PMON_IP
ERF0_P5

Package Uncore R-box 0 perfmon IPERF0 unit Port 5
select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-126 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
E0AH 3594 MSR_R0_PMON_IP
ERF0_P6

Package Uncore R-box 0 perfmon IPERF0 unit Port 6
select MSR

E0BH 3595 MSR_R0_PMON_IP
ERF0_P7

Package Uncore R-box 0 perfmon IPERF0 unit Port 7
select MSR

E0CH 3596 MSR_R0_PMON_Q
LX_P0

Package Uncore R-box 0 perfmon QLX unit Port 0
select MSR

E0DH 3597 MSR_R0_PMON_Q
LX_P1

Package Uncore R-box 0 perfmon QLX unit Port 1
select MSR

E0EH 3598 MSR_R0_PMON_Q
LX_P2

Package Uncore R-box 0 perfmon QLX unit Port 2
select MSR

E0FH 3599 MSR_R0_PMON_Q
LX_P3

Package Uncore R-box 0 perfmon QLX unit Port 3
select MSR

E10H 3600 MSR_R0_PMON_E
VNT_SEL0

Package Uncore R-box 0 perfmon event select MSR

E11H 3601 MSR_R0_PMON_C
TR0

Package Uncore R-box 0 perfmon counter MSR

E12H 3602 MSR_R0_PMON_E
VNT_SEL1

Package Uncore R-box 0 perfmon event select MSR

E13H 3603 MSR_R0_PMON_C
TR1

Package Uncore R-box 0 perfmon counter MSR

E14H 3604 MSR_R0_PMON_E
VNT_SEL2

Package Uncore R-box 0 perfmon event select MSR

E15H 3605 MSR_R0_PMON_C
TR2

Package Uncore R-box 0 perfmon counter MSR

E16H 3606 MSR_R0_PMON_E
VNT_SEL3

Package Uncore R-box 0 perfmon event select MSR

E17H 3607 MSR_R0_PMON_C
TR3

Package Uncore R-box 0 perfmon counter MSR

E18H 3608 MSR_R0_PMON_E
VNT_SEL4

Package Uncore R-box 0 perfmon event select MSR

E19H 3609 MSR_R0_PMON_C
TR4

Package Uncore R-box 0 perfmon counter MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-127

MODEL-SPECIFIC REGISTERS (MSRS)
E1AH 3610 MSR_R0_PMON_E
VNT_SEL5

Package Uncore R-box 0 perfmon event select MSR

E1BH 3611 MSR_R0_PMON_C
TR5

Package Uncore R-box 0 perfmon counter MSR

E1CH 3612 MSR_R0_PMON_E
VNT_SEL6

Package Uncore R-box 0 perfmon event select MSR

E1DH 3613 MSR_R0_PMON_C
TR6

Package Uncore R-box 0 perfmon counter MSR

E1EH 3614 MSR_R0_PMON_E
VNT_SEL7

Package Uncore R-box 0 perfmon event select MSR

E1FH 3615 MSR_R0_PMON_C
TR7

Package Uncore R-box 0 perfmon counter MSR

E20H 3616 MSR_R1_PMON_B
OX_CTRL

Package Uncore R-box 1 perfmon local box control MSR

E21H 3617 MSR_R1_PMON_B
OX_STATUS

Package Uncore R-box 1 perfmon local box status MSR

E22H 3618 MSR_R1_PMON_B
OX_OVF_CTRL

Package Uncore R-box 1 perfmon local box overflow
control MSR

E24H 3620 MSR_R1_PMON_IP
ERF1_P8

Package Uncore R-box 1 perfmon IPERF1 unit Port 8
select MSR

E25H 3621 MSR_R1_PMON_IP
ERF1_P9

Package Uncore R-box 1 perfmon IPERF1 unit Port 9
select MSR

E26H 3622 MSR_R1_PMON_IP
ERF1_P10

Package Uncore R-box 1 perfmon IPERF1 unit Port 10
select MSR

E27H 3623 MSR_R1_PMON_IP
ERF1_P11

Package Uncore R-box 1 perfmon IPERF1 unit Port 11
select MSR

E28H 3624 MSR_R1_PMON_IP
ERF1_P12

Package Uncore R-box 1 perfmon IPERF1 unit Port 12
select MSR

E29H 3625 MSR_R1_PMON_IP
ERF1_P13

Package Uncore R-box 1 perfmon IPERF1 unit Port 13
select MSR

E2AH 3626 MSR_R1_PMON_IP
ERF1_P14

Package Uncore R-box 1 perfmon IPERF1 unit Port 14
select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-128 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
E2BH 3627 MSR_R1_PMON_IP
ERF1_P15

Package Uncore R-box 1 perfmon IPERF1 unit Port 15
select MSR

E2CH 3628 MSR_R1_PMON_Q
LX_P4

Package Uncore R-box 1 perfmon QLX unit Port 4
select MSR

E2DH 3629 MSR_R1_PMON_Q
LX_P5

Package Uncore R-box 1 perfmon QLX unit Port 5
select MSR

E2EH 3630 MSR_R1_PMON_Q
LX_P6

Package Uncore R-box 1 perfmon QLX unit Port 6
select MSR

E2FH 3631 MSR_R1_PMON_Q
LX_P7

Package Uncore R-box 1 perfmon QLX unit Port 7
select MSR

E30H 3632 MSR_R1_PMON_E
VNT_SEL8

Package Uncore R-box 1 perfmon event select MSR

E31H 3633 MSR_R1_PMON_C
TR8

Package Uncore R-box 1 perfmon counter MSR

E32H 3634 MSR_R1_PMON_E
VNT_SEL9

Package Uncore R-box 1 perfmon event select MSR

E33H 3635 MSR_R1_PMON_C
TR9

Package Uncore R-box 1 perfmon counter MSR

E34H 3636 MSR_R1_PMON_E
VNT_SEL10

Package Uncore R-box 1 perfmon event select MSR

E35H 3637 MSR_R1_PMON_C
TR10

Package Uncore R-box 1 perfmon counter MSR

E36H 3638 MSR_R1_PMON_E
VNT_SEL11

Package Uncore R-box 1 perfmon event select MSR

E37H 3639 MSR_R1_PMON_C
TR11

Package Uncore R-box 1 perfmon counter MSR

E38H 3640 MSR_R1_PMON_E
VNT_SEL12

Package Uncore R-box 1 perfmon event select MSR

E39H 3641 MSR_R1_PMON_C
TR12

Package Uncore R-box 1 perfmon counter MSR

E3AH 3642 MSR_R1_PMON_E
VNT_SEL13

Package Uncore R-box 1 perfmon event select MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-129

MODEL-SPECIFIC REGISTERS (MSRS)
E3BH 3643 MSR_R1_PMON_C
TR13

Package Uncore R-box 1perfmon counter MSR

E3CH 3644 MSR_R1_PMON_E
VNT_SEL14

Package Uncore R-box 1 perfmon event select MSR

E3DH 3645 MSR_R1_PMON_C
TR14

Package Uncore R-box 1 perfmon counter MSR

E3EH 3646 MSR_R1_PMON_E
VNT_SEL15

Package Uncore R-box 1 perfmon event select MSR

E3FH 3647 MSR_R1_PMON_C
TR15

Package Uncore R-box 1 perfmon counter MSR

E45H 3653 MSR_B0_PMON_M
ATCH

Package Uncore B-box 0 perfmon local box match MSR

E46H 3654 MSR_B0_PMON_M
ASK

Package Uncore B-box 0 perfmon local box mask MSR

E49H 3657 MSR_S0_PMON_M
ATCH

Package Uncore S-box 0 perfmon local box match MSR

E4AH 3658 MSR_S0_PMON_M
ASK

Package Uncore S-box 0 perfmon local box mask MSR

E4DH 3661 MSR_B1_PMON_M
ATCH

Package Uncore B-box 1 perfmon local box match MSR

E4EH 3662 MSR_B1_PMON_M
ASK

Package Uncore B-box 1 perfmon local box mask MSR

E54H 3668 MSR_M0_PMON_M
M_CONFIG

Package Uncore M-box 0 perfmon local box address
match/mask config MSR

E55H 3669 MSR_M0_PMON_A
DDR_MATCH

Package Uncore M-box 0 perfmon local box address
match MSR

E56H 3670 MSR_M0_PMON_A
DDR_MASK

Package Uncore M-box 0 perfmon local box address
mask MSR

E59H 3673 MSR_S1_PMON_M
ATCH

Package Uncore S-box 1 perfmon local box match MSR

E5AH 3674 MSR_S1_PMON_M
ASK

Package Uncore S-box 1 perfmon local box mask MSR

E5CH 3676 MSR_M1_PMON_M
M_CONFIG

Package Uncore M-box 1 perfmon local box address
match/mask config MSR

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-130 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.5 MSRS IN THE INTEL XEON PROCESSOR 5600 SERIES
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor 5600 series (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table B-5, Table B-6, plus additional MSR listed
in Table B-8. These MSRs also apply to Intel Core i7, i5 and i3 processor family with
CPUID signature DisplayFamily_DisplayModel of 06_25H and 06_2CH, see Table B-1.

E5DH 3677 MSR_M1_PMON_A
DDR_MATCH

Package Uncore M-box 1 perfmon local box address
match MSR

E5EH 3678 MSR_M1_PMON_A
DDR_MASK

Package Uncore M-box 1 perfmon local box address
mask MSR

3B5H 965 MSR_UNCORE_PM
C5

Package See Section 30.6.2.2, “Uncore Performance
Event Configuration Facility.”

Table B-8. Additional MSRs Supported by Intel Processors (Intel Microarchitecture
Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

Table B-7. Additional MSRs in Intel Xeon Processor 7500 Series (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-131

MODEL-SPECIFIC REGISTERS (MSRS)
B.6 MSRS IN THE INTEL XEON PROCESSOR E7 FAMILY
(INTEL® MICROARCHITECTURE CODE NAME
WESTMERE)

Intel Xeon processor E7 family (Intel® microarchitecture code name Westmere)
supports the MSR interfaces listed in Table B-5 (except MSR address 1ADH), Table
B-6, plus additional MSR listed in Table B-9.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

39:32 Package Maximum Ratio Limit for 5C.

Maximum turbo ratio limit of 5 core active.

47:40 Package Maximum Ratio Limit for 6C.

Maximum turbo ratio limit of 6 core active.

63:48 Reserved.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

Table B-9. Additional MSRs Supported by Intel Xeon Processor E7 Family

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1A7H 423 MSR_OFFCORE_RS
P_1

Thread Offcore Response Event Select Register (R/W)

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Reserved.

Attempt to read/write will cause #UD

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

F40H 3904 MSR_C8_PMON_B
OX_CTRL

Package Uncore C-box 8 perfmon local box control MSR

Table B-8. Additional MSRs Supported by Intel Processors (Contd.)(Intel
Microarchitecture Code Name Westmere)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-132 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
F41H 3905 MSR_C8_PMON_B
OX_STATUS

Package Uncore C-box 8 perfmon local box status MSR

F42H 3906 MSR_C8_PMON_B
OX_OVF_CTRL

Package Uncore C-box 8 perfmon local box overflow
control MSR

F50H 3920 MSR_C8_PMON_E
VNT_SEL0

Package Uncore C-box 8 perfmon event select MSR

F51H 3921 MSR_C8_PMON_C
TR0

Package Uncore C-box 8 perfmon counter MSR

F52H 3922 MSR_C8_PMON_E
VNT_SEL1

Package Uncore C-box 8 perfmon event select MSR

F53H 3923 MSR_C8_PMON_C
TR1

Package Uncore C-box 8 perfmon counter MSR

F54H 3924 MSR_C8_PMON_E
VNT_SEL2

Package Uncore C-box 8 perfmon event select MSR

F55H 3925 MSR_C8_PMON_C
TR2

Package Uncore C-box 8 perfmon counter MSR

F56H 3926 MSR_C8_PMON_E
VNT_SEL3

Package Uncore C-box 8 perfmon event select MSR

F57H 3927 MSR_C8_PMON_C
TR3

Package Uncore C-box 8 perfmon counter MSR

F58H 3928 MSR_C8_PMON_E
VNT_SEL4

Package Uncore C-box 8 perfmon event select MSR

F59H 3929 MSR_C8_PMON_C
TR4

Package Uncore C-box 8 perfmon counter MSR

F5AH 3930 MSR_C8_PMON_E
VNT_SEL5

Package Uncore C-box 8 perfmon event select MSR

F5BH 3931 MSR_C8_PMON_C
TR5

Package Uncore C-box 8 perfmon counter MSR

FC0H 4032 MSR_C9_PMON_B
OX_CTRL

Package Uncore C-box 9 perfmon local box control MSR

FC1H 4033 MSR_C9_PMON_B
OX_STATUS

Package Uncore C-box 9 perfmon local box status MSR

Table B-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-133

MODEL-SPECIFIC REGISTERS (MSRS)
B.7 MSRS IN INTEL® PROCESSOR FAMILY (INTEL®
MICROARCHITECTURE CODE NAME SANDY BRIDGE)

Table B-10 lists model-specific registers (MSRs) that are common to Intel® processor
family based on Intel® microarchitecture (Sandy Bridge). All architectural MSRs
listed in Table B-2 are supported. These processors have a CPUID signature with

FC2H 4034 MSR_C9_PMON_B
OX_OVF_CTRL

Package Uncore C-box 9 perfmon local box overflow
control MSR

FD0H 4048 MSR_C9_PMON_E
VNT_SEL0

Package Uncore C-box 9 perfmon event select MSR

FD1H 4049 MSR_C9_PMON_C
TR0

Package Uncore C-box 9 perfmon counter MSR

FD2H 4050 MSR_C9_PMON_E
VNT_SEL1

Package Uncore C-box 9 perfmon event select MSR

FD3H 4051 MSR_C9_PMON_C
TR1

Package Uncore C-box 9 perfmon counter MSR

FD4H 4052 MSR_C9_PMON_E
VNT_SEL2

Package Uncore C-box 9 perfmon event select MSR

FD5H 4053 MSR_C9_PMON_C
TR2

Package Uncore C-box 9 perfmon counter MSR

FD6H 4054 MSR_C9_PMON_E
VNT_SEL3

Package Uncore C-box 9 perfmon event select MSR

FD7H 4055 MSR_C9_PMON_C
TR3

Package Uncore C-box 9 perfmon counter MSR

FD8H 4056 MSR_C9_PMON_E
VNT_SEL4

Package Uncore C-box 9 perfmon event select MSR

FD9H 4057 MSR_C9_PMON_C
TR4

Package Uncore C-box 9 perfmon counter MSR

FDAH 4058 MSR_C9_PMON_E
VNT_SEL5

Package Uncore C-box 9 perfmon event select MSR

FDBH 4059 MSR_C9_PMON_C
TR5

Package Uncore C-box 9 perfmon counter MSR

Table B-9. Additional MSRs Supported by Intel Xeon Processor E7 Family (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-134 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
DisplayFamily_DisplayModel of 06_2AH, 06_2DH, see Table B-1. Additional MSRs
specific to 06_2AH are listed in Table B-11.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge

Register
Address Register Name

Scope
Bit Description

 Hex Dec

0H 0 IA32_P5_MC_
ADDR

Thread See Appendix B.12, “MSRs in Pentium
Processors.”

1H 1 IA32_P5_MC_
TYPE

Thread See Appendix B.12, “MSRs in Pentium
Processors.”

6H 6 IA32_MONITOR_
FILTER_SIZE

Thread See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” andTable B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Thread See Section 16.12, “Time-Stamp Counter.” and
see Table B-2

17H 23 IA32_PLATFORM_I
D

Package Platform ID. (R)
See Table B-2.

1BH 27 IA32_APIC_BASE Thread See Section 10.4.4, “Local APIC Status and
Location.” and Table B-2

34H 52 MSR_SMI_
COUNT

Thread SMI Counter. (R/O).

31:0 SMI Count. (R/O)

Count SMIs

63:32 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

Thread Control Features in Intel 64Processor.
(R/W).

see Table B-2

79H 121 IA32_BIOS_
UPDT_TRIG

Core BIOS Update Trigger Register. (W)

see Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Thread BIOS Update Signature ID. (RO)

see Table B-2

C1H 193 IA32_PMC0 Thread Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Thread Performance counter register. see Table B-2

C3H 195 IA32_PMC2 Thread Performance counter register. see Table B-2

C4H 196 IA32_PMC3 Thread Performance counter register. see Table B-2

C5H 197 IA32_PMC4 Core Performance counter register. see Table B-2
Vol. 3B B-135

MODEL-SPECIFIC REGISTERS (MSRS)
C6H 198 IA32_PMC5 Core Performance counter register. see Table B-2

C7H 199 IA32_PMC6 Core Performance counter register. see Table B-2

C8H 200 IA32_PMC7 Core Performance counter register. see Table B-2

CEH 206 MSR_PLATFORM_I
NFO

Package See http://biosbits.org.

7:0 Reserved.

15:8 Package Maximum Non-Turbo Ratio. (R/O)

The is the ratio of the frequency that invariant
TSC runs at. Frequency = ratio * 100 MHz.

27:16 Reserved.

28 Package Programmable Ratio Limit for Turbo Mode.
(R/O)

When set to 1, indicates that Programmable
Ratio Limits for Turbo mode is enabled, and
when set to 0, indicates Programmable Ratio
Limits for Turbo mode is disabled.

29 Package Programmable TDP Limit for Turbo Mode.
(R/O)

When set to 1, indicates that TDP Limits for
Turbo mode are programmable, and when set
to 0, indicates TDP Limit for Turbo mode is not
programmable.

39:30 Reserved.

47:40 Package Maximum Efficiency Ratio. (R/O)

The is the minimum ratio (maximum
efficiency) that the processor can operates, in
units of 100MHz.

63:48 Reserved.

E2H 226 MSR_PKG_CST_CO
NFIG_CONTROL

Core C-State Configuration Control (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

See http://biosbits.org.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-136 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Package C-State limit. (R/W)

Specifies the lowest processor-specific C-
state code name (consuming the least power).
for the package. The default is set as factory-
configured package C-state limit.

The following C-state code name encodings
are supported:

000b: C0/C1 (no package C-sate support)

001b: C2

010b: C6 no retention

011b: C6 retention

100b: C7

101b: C7s

111: No package C-state limit.

Note: This field cannot be used to limit
package C-state to C3.

9:3 Reserved.

10 I/O MWAIT Redirection Enable. (R/W)

When set, will map IO_read instructions sent
to IO register specified by
MSR_PMG_IO_CAPTURE_BASE to MWAIT
instructions

14:11 Reserved.

15 CFG Lock. (R/WO)

When set, lock bits 15:0 of this register until
next reset

24:16 Reserved.

25 C3 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C6/C7 requests to C3 based on uncore
auto-demote information

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-137

MODEL-SPECIFIC REGISTERS (MSRS)
26 C1 state auto demotion enable. (R/W)

When set, the processor will conditionally
demote C3/C6/C7 requests to C1 based on
uncore auto-demote information

27 Enable C3 undemotion (R/W)

When set, enables undemotion from demoted
C3

28 Enable C1 undemotion (R/W)

When set, enables undemotion from demoted
C1

63:29 Reserved.

E4H 228 MSR_PMG_IO_CAP
TURE_BASE

Core Power Management IO Redirection in C-state
(R/W) See http://biosbits.org.

15:0 LVL_2 Base Address. (R/W)

Specifies the base address visible to software
for IO redirection. If IO MWAIT Redirection is
enabled, reads to this address will be
consumed by the power management logic
and decoded to MWAIT instructions. When IO
port address redirection is enabled, this is the
IO port address reported to the OS/software

18:16 C-state Range. (R/W)

Specifies the encoding value of the maximum
C-State code name to be included when IO
read to MWAIT redirection is enabled by
MSR_PMG_CST_CONFIG_CONTROL[bit10]:

000b - C3 is the max C-State to include

001b - C6 is the max C-State to include

010b - C7 is the max C-State to include

63:19 Reserved.

E7H 231 IA32_MPERF Thread Maximum Performance Frequency Clock
Count. (RW) see Table B-2

E8H 232 IA32_APERF Thread Actual Performance Frequency Clock Count.
(RW) see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-138 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
FEH 254 IA32_MTRRCAP Thread see Table B-2

174H 372 IA32_SYSENTER_C
S

Thread see Table B-2

175H 373 IA32_SYSENTER_E
SP

Thread see Table B-2

176H 374 IA32_SYSENTER_E
IP

Thread see Table B-2

179H 377 IA32_MCG_CAP Thread see Table B-2

17AH 378 IA32_MCG_
STATUS

Thread

0 RIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) can be used to restart the
program. If cleared, the program cannot be
reliably restarted

1 EIPV.

When set, bit indicates that the instruction
addressed by the instruction pointer pushed
on the stack (when the machine check was
generated) is directly associated with the
error.

2 MCIP.

When set, bit indicates that a machine check
has been generated. If a second machine
check is detected while this bit is still set, the
processor enters a shutdown state. Software
should write this bit to 0 after processing a
machine check exception.

63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Thread see Table B-2

187H 391 IA32_
PERFEVTSEL1

Thread see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-139

MODEL-SPECIFIC REGISTERS (MSRS)
188H 392 IA32_
PERFEVTSEL2

Thread see Table B-2

189H 393 IA32_
PERFEVTSEL3

Thread see Table B-2

18AH 394 IA32_
PERFEVTSEL4

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18BH 395 IA32_
PERFEVTSEL5

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18CH 396 IA32_
PERFEVTSEL6

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

18DH 397 IA32_
PERFEVTSEL7

Core see Table B-2; If CPUID.0AH:EAX[15:8] = 8

198H 408 IA32_PERF_STAT
US

Package see Table B-2

15:0 Current Performance State Value.

63:16 Reserved.

198H 408 MSR_PERF_STATU
S

Package

47:32 Core Voltage (R/O)

P-state core voltage can be computed by

MSR_PERF_STATUS[37:32] * (float) 1/(2^13).

199H 409 IA32_PERF_CTL Thread see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Thread Clock Modulation. (R/W)

see Table B-2

IA32_CLOCK_MODULATION MSR was
originally named IA32_THERM_CONTROL
MSR.

3:0 On demand Clock Modulation Duty Cycle (R/W).

In 6.25% increment

4 On demand Clock Modulation Enable (R/W).

63:5 Reserved.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-140 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
19BH 411 IA32_THERM_
INTERRUPT

Core Thermal Interrupt Control. (R/W)

see Table B-2

19CH 412 IA32_THERM_
STATUS

Core Thermal Monitor Status. (R/W)

see Table B-2

1A0 416 IA32_MISC_
ENABLE

Enable Misc. Processor Features. (R/W)

Allows a variety of processor functions to be
enabled and disabled.

0 Thread Fast-Strings Enable. see Table B-2

6:1 Reserved.

7 Thread Performance Monitoring Available. (R) see
Table B-2

10:8 Reserved.

11 Thread Branch Trace Storage Unavailable. (RO) see
Table B-2

12 Thread Precise Event Based Sampling Unavailable.
(RO) see Table B-2

15:13 Reserved.

16 Package Enhanced Intel SpeedStep Technology
Enable. (R/W) see Table B-2

18 Thread ENABLE MONITOR FSM. (R/W) see Table B-2

21:19 Reserved.

22 Thread Limit CPUID Maxval. (R/W) see Table B-2

23 Thread xTPR Message Disable. (R/W) see Table B-2

33:24 Reserved.

34 Thread XD Bit Disable. (R/W) see Table B-2

37:35 Reserved.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-141

MODEL-SPECIFIC REGISTERS (MSRS)
38 Package Turbo Mode Disable. (R/W)

When set to 1 on processors that support Intel
Turbo Boost Technology, the turbo mode
feature is disabled and the IDA_Enable feature
flag will be clear (CPUID.06H: EAX[1]=0).

When set to a 0 on processors that support
IDA, CPUID.06H: EAX[1] reports the
processor’s support of turbo mode is enabled.

Note: the power-on default value is used by
BIOS to detect hardware support of turbo
mode. If power-on default value is 1, turbo
mode is available in the processor. If power-on
default value is 0, turbo mode is not available.

63:39 Reserved.

1A2H 418 MSR_
TEMPERATURE_TA
RGET

Unique

15:0 Reserved.

23:16 Temperature Target. (R)

The minimum temperature at which
PROCHOT# will be asserted. The value is
degree C.

63:24 Reserved

1A6H 422 MSR_OFFCORE_RS
P_0

Thread Offcore Response Event Select Register (R/W)

1AAH 426 MSR_MISC_PWR_
MGMT

See http://biosbits.org.

1ACH 428 MSR_TURBO_PWR
_CURRENT_LIMIT

See http://biosbits.org.

1B0H 432 IA32_ENERGY_PE
RF_BIAS

Package see Table B-2

1B1H 433 IA32_PACKAGE_T
HERM_STATUS

Package see Table B-2

1B2H 434 IA32_PACKAGE_T
HERM_INTERRUPT

Package see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-142 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1C8H 456 MSR_LBR_SELECT Thread Last Branch Record Filtering Select Register
(R/W) see Section 16.6.2, “Filtering of Last
Branch Records.”

1C9H 457 MSR_
LASTBRANCH_
TOS

Thread Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at
680H).

1D9H 473 IA32_DEBUGCTL Thread Debug Control. (R/W) see Table B-2

1DDH 477 MSR_LER_FROM_
LIP

Thread Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_
LIP

Thread Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1F2H 498 IA32_SMRR_PHYS
BASE

Core see Table B-2

1F3H 499 IA32_SMRR_PHYS
MASK

Core see Table B-2

1FCH 508 MSR_POWER_CTL Core See http://biosbits.org.

200H 512 IA32_MTRR_PHYS
BASE0

Thread see Table B-2

201H 513 IA32_MTRR_PHYS
MASK0

Thread see Table B-2

202H 514 IA32_MTRR_PHYS
BASE1

Thread see Table B-2

203H 515 IA32_MTRR_PHYS
MASK1

Thread see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-143

MODEL-SPECIFIC REGISTERS (MSRS)
204H 516 IA32_MTRR_PHYS
BASE2

Thread see Table B-2

205H 517 IA32_MTRR_PHYS
MASK2

Thread see Table B-2

206H 518 IA32_MTRR_PHYS
BASE3

Thread see Table B-2

207H 519 IA32_MTRR_PHYS
MASK3

Thread see Table B-2

208H 520 IA32_MTRR_PHYS
BASE4

Thread see Table B-2

209H 521 IA32_MTRR_PHYS
MASK4

Thread see Table B-2

20AH 522 IA32_MTRR_PHYS
BASE5

Thread see Table B-2

20BH 523 IA32_MTRR_PHYS
MASK5

Thread see Table B-2

20CH 524 IA32_MTRR_PHYS
BASE6

Thread see Table B-2

20DH 525 IA32_MTRR_PHYS
MASK6

Thread see Table B-2

20EH 526 IA32_MTRR_PHYS
BASE7

Thread see Table B-2

20FH 527 IA32_MTRR_PHYS
MASK7

Thread see Table B-2

210H 528 IA32_MTRR_PHYS
BASE8

Thread see Table B-2

211H 529 IA32_MTRR_PHYS
MASK8

Thread see Table B-2

212H 530 IA32_MTRR_PHYS
BASE9

Thread see Table B-2

213H 531 IA32_MTRR_PHYS
MASK9

Thread see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-144 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 IA32_MTRR_FIX6
4K_00000

Thread see Table B-2

258H 600 IA32_MTRR_FIX1
6K_80000

Thread see Table B-2

259H 601 IA32_MTRR_FIX1
6K_A0000

Thread see Table B-2

268H 616 IA32_MTRR_FIX4
K_C0000

Thread see Table B-2

269H 617 IA32_MTRR_FIX4
K_C8000

Thread see Table B-2

26AH 618 IA32_MTRR_FIX4
K_D0000

Thread see Table B-2

26BH 619 IA32_MTRR_FIX4
K_D8000

Thread see Table B-2

26CH 620 IA32_MTRR_FIX4
K_E0000

Thread see Table B-2

26DH 621 IA32_MTRR_FIX4
K_E8000

Thread see Table B-2

26EH 622 IA32_MTRR_FIX4
K_F0000

Thread see Table B-2

26FH 623 IA32_MTRR_FIX4
K_F8000

Thread see Table B-2

277H 631 IA32_PAT Thread see Table B-2

280H 640 IA32_MC0_CTL2 Core see B-2

281H 641 IA32_MC1_CTL2 Core see B-2

282H 642 IA32_MC2_CTL2 Core see B-2

283H 643 IA32_MC3_CTL2 Core see B-2

284H 644 MSR_MC4_CTL2 Package Always 0 (CMCI not supported)

2FFH 767 IA32_MTRR_DEF_
TYPE

Thread Default Memory Types. (R/W) see Table B-2

309H 777 IA32_FIXED_CTR0 Thread Fixed-Function Performance Counter
Register 0. (R/W) see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-145

MODEL-SPECIFIC REGISTERS (MSRS)
30AH 778 IA32_FIXED_CTR1 Thread Fixed-Function Performance Counter
Register 1. (R/W) see Table B-2

30BH 779 IA32_FIXED_CTR2 Thread Fixed-Function Performance Counter
Register 2. (R/W) see Table B-2

345H 837 IA32_PERF_CAPA
BILITIES

Thread see Table B-2. See Section 16.4.1,
“IA32_DEBUGCTL MSR.”

5:0 LBR Format. see Table B-2.

6 PEBS Record Format.

7 PEBSSaveArchRegs. see Table B-2.

11:8 PEBS_REC_FORMAT. see Table B-2.

12 SMM_FREEZE. see Table B-2.

63:13 Reserved.

38DH 909 IA32_FIXED_CTR_
CTRL

Thread Fixed-Function-Counter Control Register.
(R/W) see Table B-2

38EH 910 IA32_PERF_
GLOBAL_STAUS

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

38FH 911 IA32_PERF_
GLOBAL_CTRL

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

390H 912 IA32_PERF_
GLOBAL_OVF_
CTRL

Thread see Table B-2. See Section 30.4.2, “Global
Counter Control Facilities.”

391H 913 MSR_UNC_PERF_
GLOBAL_CTRL

Package Uncore PMU global control

0 Core 0 select

1 Core 1 select

2 Core 2 select

3 Core 3 select

18:4 Reserved

29 Enable all uncore counters

30 Enable PMI on overflow

31 Enable Freezing counter when overflow

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-146 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:32 Reserved.

392H 914 MSR_UNC_PERF_
GLOBAL_STATUS

Package Uncore PMU main status

0 Fixed counter overflowed

1 CBox counter overflowed

63:2 Reserved.

394H 916 MSR_UNC_PERF_
FIXED_CTRL

Package Uncore fixed counter control (R/W)

19:0 Reserved

20 Enable overflow

21 Reserved

22 Enable counting

63:23 Reserved.

395H 917 MSR_UNC_PERF_
FIXED_CTR

Package Uncore fixed counter

47:0 Current count

63:48 Reserved.

3F1H 1009 MSR_PEBS_
ENABLE

Thread see See Section 30.6.1.1, “Precise Event
Based Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

1 Enable PEBS on IA32_PMC1. (R/W)

2 Enable PEBS on IA32_PMC2. (R/W)

3 Enable PEBS on IA32_PMC3. (R/W)

31:4 Reserved

32 Enable Load Latency on IA32_PMC0. (R/W)

33 Enable Load Latency on IA32_PMC1. (R/W)

34 Enable Load Latency on IA32_PMC2. (R/W)

35 Enable Load Latency on IA32_PMC3. (R/W)

63:36 Reserved

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-147

MODEL-SPECIFIC REGISTERS (MSRS)
3F6H 1014 MSR_PEBS_
LD_LAT

Thread see See Section 30.6.1.2, “Load Latency
Performance Monitoring Facility.”

15:0 Minimum threshold latency value of tagged
load operation that will be counted. (R/W)

63:36 Reserved

3F8H 1016 MSR_PKG_C3_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C3 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3F9H 1017 MSR_PKG_C6_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C6 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FAH 1018 MSR_PKG_C7_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 Package C7 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C7 states. Count at the
same frequency as the TSC.

3FCH 1020 MSR_CORE_C3_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-148 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 CORE C3 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C3 states. Count at the
same frequency as the TSC.

3FDH 1021 MSR_CORE_C6_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C6 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C6 states. Count at the
same frequency as the TSC.

3FEH 1022 MSR_CORE_C7_RE
SIDENCY

Core Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

63:0 CORE C7 Residency Counter. (R/O)

Value since last reset that this core is in
processor-specific C7 states. Count at the
same frequency as the TSC.

400H 1024 IA32_MC0_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

402H 1026 IA32_MC0_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

403H 1027 IA32_MC0_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

404H 1028 IA32_MC1_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

406H 1030 IA32_MC1_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

407H 1031 IA32_MC1_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

408H 1032 IA32_MC2_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-149

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40BH 1035 IA32_MC2_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

40CH 1036 IA32_MC3_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

40EH 1038 IA32_MC3_ADDR Core See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

40FH 1039 IA32_MC3_MISC Core See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

410H 1040 MSR_MC4_CTL Core See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

0 PCU Hardware Error. (R/W)

When set, enables signaling of PCU hardware
detected errors.

1 PCU Controller Error. (R/W)

When set, enables signaling of PCU controller
detected errors

2 PCU Firmware Error. (R/W)

When set, enables signaling of PCU firmware
detected errors

63:2 Reserved.

411H 1041 IA32_MC4_
STATUS

Core See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

480H 1152 IA32_VMX_BASIC Thread Reporting Register of Basic VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.1, “Basic VMX Information”

481H 1153 IA32_VMX_PINBA
SED_CTLS

Thread Capability Reporting Register of Pin-based
VM-execution Controls. (R/O) see Table B-2.

See Appendix G.3, “VM-Execution Controls”

482H 1154 IA32_VMX_PROCB
ASED_CTLS

Thread Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-150 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
483H 1155 IA32_VMX_EXIT_
CTLS

Thread Capability Reporting Register of VM-exit
Controls. (R/O) see Table B-2.

See Appendix G.4, “VM-Exit Controls”

484H 1156 IA32_VMX_
ENTRY_CTLS

Thread Capability Reporting Register of VM-entry
Controls. (R/O) see Table B-2.

See Appendix G.5, “VM-Entry Controls”

485H 1157 IA32_VMX_MISC Thread Reporting Register of Miscellaneous VMX
Capabilities. (R/O) see Table B-2.

See Appendix G.6, “Miscellaneous Data”

486H 1158 IA32_VMX_CR0_
FIXED0

Thread Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

487H 1159 IA32_VMX_CR0_
FIXED1

Thread Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.7, “VMX-Fixed Bits in CR0”

488H 1160 IA32_VMX_CR4_FI
XED0

Thread Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

489H 1161 IA32_VMX_CR4_FI
XED1

Thread Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O) see Table B-2.

See Appendix G.8, “VMX-Fixed Bits in CR4”

48AH 1162 IA32_VMX_
VMCS_ENUM

Thread Capability Reporting Register of VMCS Field
Enumeration. (R/O). see Table B-2.

See Appendix G.9, “VMCS Enumeration”

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Thread Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

4C1H 1217 IA32_A_PMC0 Thread see Table B-2

4C2H 1218 IA32_A_PMC1 Thread see Table B-2

4C3H 1219 IA32_A_PMC2 Thread see Table B-2

4C4H 1220 IA32_A_PMC3 Thread see Table B-2

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-151

MODEL-SPECIFIC REGISTERS (MSRS)
4C5H 1221 IA32_A_PMC4 Core see Table B-2

4C6H 1222 IA32_A_PMC5 Core see Table B-2

4C7H 1223 IA32_A_PMC6 Core see Table B-2

C8H 200 IA32_A_PMC7 Core see Table B-2

600H 1536 IA32_DS_AREA Thread DS Save Area. (R/W). see Table B-2

See Section 30.9.4, “Debug Store (DS)
Mechanism.”

606H 1542 MSR_RAPL_POWE
R_UNIT

Package Unit Multipliers used in RAPL Interfaces (R/O)
See Section 14.7.1, “RAPL Interfaces.”

60AH 1546 MSR_PKGC3_IRTL Package Package C3 Interrupt Response Limit (R/W)

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C3 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-152 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:16 Reserved.

60BH 1547 MSR_PKGC6_IRTL Package Package C6 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C6 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C6 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-153

MODEL-SPECIFIC REGISTERS (MSRS)
60CH 1548 MSR_PKGC7_IRTL Package Package C7 Interrupt Response Limit (R/W)

This MSR defines the budget allocated for the
package to exit from C7 to a C0 state, where
interrupt request can be delivered to the core
and serviced. Additional core-exit latency amy
be applicable depending on the actual C-state
the core is in.

Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

9:0 Interrupt response time limit. (R/W)

Specifies the limit that should be used to
decide if the package should be put into a
package C7 state.

12:10 Time Unit. (R/W)

Specifies the encoding value of time unit of
the interrupt response time limit. The
following time unit encodings are supported:

000b: 1 ns

001b: 32 ns

010b: 1024 ns

011b: 32768 ns

100b: 1048576 ns

101b: 33554432 ns

14:13 Reserved.

15 Valid. (R/W)

Indicates whether the values in bits 12:0 are
valid and can be used by the processor for
package C-sate management.

63:16 Reserved.

60DH 1549 MSR_PKG_C2_RES
IDENCY

Package Note: C-state values are processor specific C-
state code names, unrelated to MWAIT
extension C-state parameters or ACPI C-
States.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-154 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Package C2 Residency Counter. (R/O)

Value since last reset that this package is in
processor-specific C2 states. Count at the
same frequency as the TSC.

610H 1552 MSR_PKG_RAPL_P
OWER_LIMIT

Package PKG RAPL Power Limit Control (R/W) See
Section 14.7.3, “Package RAPL Domain.”

611H 1553 MSR_PKG_ENERY_
STATUS

Package PKG Energy Status (R/O) See Section 14.7.3,
“Package RAPL Domain.”

613H 1555 MSR_PKG_PERF_S
TATUS

Package PKG Performance Throttling Status (R/O) See
Section 14.7.3, “Package RAPL Domain.”

614H 1556 MSR_PKG_POWER
_INFO

Package PKG RAPL Parameters (R/W) See Section
14.7.3, “Package RAPL Domain.”

638H 1592 MSR_PP0_POWER
_LIMIT

Package PP0 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

639H 1593 MSR_PP0_ENERY_
STATUS

Package PP0 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63AH 1594 MSR_PP0_POLICY Package PP0 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

63BH 1595 MSR_PP0_PERF_S
TATUS

Package PP0 Performance Throttling Status (R/O) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

680H 1664 MSR_
LASTBRANCH_0_F
ROM_IP

Thread Last Branch Record 0 From IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
source instruction for one of the last sixteen
branches, exceptions, or interrupts taken by
the processor. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.6.1, “LBR Stack.”

681H 1665 MSR_
LASTBRANCH_1_F
ROM_IP

Thread Last Branch Record 1 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-155

MODEL-SPECIFIC REGISTERS (MSRS)
682H 1666 MSR_
LASTBRANCH_2_F
ROM_IP

Thread Last Branch Record 2 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

683H 1667 MSR_
LASTBRANCH_3_F
ROM_IP

Thread Last Branch Record 3 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

684H 1668 MSR_
LASTBRANCH_4_F
ROM_IP

Thread Last Branch Record 4 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

685H 1669 MSR_
LASTBRANCH_5_F
ROM_IP

Thread Last Branch Record 5 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

686H 1670 MSR_
LASTBRANCH_6_F
ROM_IP

Thread Last Branch Record 6 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

687H 1671 MSR_
LASTBRANCH_7_F
ROM_IP

Thread Last Branch Record 7 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

688H 1672 MSR_
LASTBRANCH_8_F
ROM_IP

Thread Last Branch Record 8 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

689H 1673 MSR_
LASTBRANCH_9_F
ROM_IP

Thread Last Branch Record 9 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68AH 1674 MSR_
LASTBRANCH_10_
FROM_IP

Thread Last Branch Record 10 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68BH 1675 MSR_
LASTBRANCH_11_
FROM_IP

Thread Last Branch Record 11 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68CH 1676 MSR_
LASTBRANCH_12_
FROM_IP

Thread Last Branch Record 12 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-156 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
68DH 1677 MSR_
LASTBRANCH_13_
FROM_IP

Thread Last Branch Record 13 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68EH 1678 MSR_
LASTBRANCH_14_
FROM_IP

Thread Last Branch Record 14 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

68FH 1679 MSR_
LASTBRANCH_15_
FROM_IP

Thread Last Branch Record 15 From IP. (R/W)

See description of
MSR_LASTBRANCH_0_FROM_IP.

6C0H 1728 MSR_
LASTBRANCH_0_
TO_LIP

Thread Last Branch Record 0 To IP. (R/W)

One of sixteen pairs of last branch record
registers on the last branch record stack. This
part of the stack contains pointers to the
destination instruction for one of the last
sixteen branches, exceptions, or interrupts
taken by the processor.

6C1H 1729 MSR_
LASTBRANCH_1_
TO_LIP

Thread Last Branch Record 1 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C2H 1730 MSR_
LASTBRANCH_2_
TO_LIP

Thread Last Branch Record 2 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C3H 1731 MSR_
LASTBRANCH_3_
TO_LIP

Thread Last Branch Record 3 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C4H 1732 MSR_
LASTBRANCH_4_
TO_LIP

Thread Last Branch Record 4 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C5H 1733 MSR_
LASTBRANCH_5_
TO_LIP

Thread Last Branch Record 5 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C6H 1734 MSR_
LASTBRANCH_6_
TO_LIP

Thread Last Branch Record 6 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-157

MODEL-SPECIFIC REGISTERS (MSRS)
6C7H 1735 MSR_
LASTBRANCH_7_
TO_LIP

Thread Last Branch Record 7 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C8H 1736 MSR_
LASTBRANCH_8_
TO_LIP

Thread Last Branch Record 8 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6C9H 1737 MSR_
LASTBRANCH_9_
TO_LIP

Thread Last Branch Record 9 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CAH 1738 MSR_
LASTBRANCH_10_
TO_LIP

Thread Last Branch Record 10 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CBH 1739 MSR_
LASTBRANCH_11_
TO_LIP

Thread Last Branch Record 11 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CCH 1740 MSR_
LASTBRANCH_12_
TO_LIP

Thread Last Branch Record 12 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CDH 1741 MSR_
LASTBRANCH_13_
TO_LIP

Thread Last Branch Record 13 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CEH 1742 MSR_
LASTBRANCH_14_
TO_LIP

Thread Last Branch Record 14 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6CFH 1743 MSR_
LASTBRANCH_15_
TO_LIP

Thread Last Branch Record 15 To IP. (R/W)

See description of
MSR_LASTBRANCH_0_TO_LIP.

6E0H 1760 IA32_TSC_DEADLI
NE

Thread See Table B-2.

700H 1792 MSR_UNC_CBO_0_
PERFEVTSEL0

Package Uncore C-Box 0, counter 0 event select MSR

701H 1793 MSR_UNC_CBO_0_
PERFEVTSEL1

Package Uncore C-Box 0, counter 1 event select MSR

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-158 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
705H 1797 MSR_UNC_CBO_0_
UNIT_STATUS

Package Uncore C-Box 0, Overflow Status

706H 1798 MSR_UNC_CBO_0_
PER_CTR0

Package Uncore C-Box 0, performance counter 0

707H 1799 MSR_UNC_CBO_0_
PER_CTR1

Package Uncore C-Box 0, performance counter 1

710H 1808 MSR_UNC_CBO_1_
PERFEVTSEL0

Package Uncore C-Box 1, counter 0 event select MSR

711H 1809 MSR_UNC_CBO_1_
PERFEVTSEL1

Package Uncore C-Box 1, counter 1 event select MSR

715H 1813 MSR_UNC_CBO_1_
UNIT_STATUS

Package Uncore C-Box 1, Overflow Status

716H 1814 MSR_UNC_CBO_1_
PER_CTR0

Package Uncore C-Box 1, performance counter 0

717H 1815 MSR_UNC_CBO_1_
PER_CTR1

Package Uncore C-Box 1, performance counter 1

720H 1824 MSR_UNC_CBO_2_
PERFEVTSEL0

Package Uncore C-Box 2, counter 0 event select MSR

721H 1824 MSR_UNC_CBO_2_
PERFEVTSEL1

Package Uncore C-Box 2, counter 1 event select MSR

725H 1829 MSR_UNC_CBO_2_
UNIT_STATUS

Package Uncore C-Box 2, Overflow Status

726H 1830 MSR_UNC_CBO_2_
PER_CTR0

Package Uncore C-Box 2, performance counter 0

727H 1831 MSR_UNC_CBO_2_
PER_CTR1

Package Uncore C-Box 2, performance counter 1

730H 1840 MSR_UNC_CBO_3_
PERFEVTSEL0

Package Uncore C-Box 3, counter 0 event select MSR

731H 1841 MSR_UNC_CBO_3_
PERFEVTSEL1

Package Uncore C-Box 3, counter 1 event select MSR

725H 1845 MSR_UNC_CBO_3_
UNIT_STATUS

Package Uncore C-Box 3, Overflow Status

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-159

MODEL-SPECIFIC REGISTERS (MSRS)
B.7.1 MSRs In Second Generation Intel® Core Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table B-11 lists model-specific registers (MSRs) that are specific to second genera-
tion for Intel® Core processor family (Intel® microarchitecture code name Sandy
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2AH, see Table B-1.

736H 1846 MSR_UNC_CBO_3_
PER_CTR0

Package Uncore C-Box 3, performance counter 0

737H 1847 MSR_UNC_CBO_3_
PER_CTR1

Package Uncore C-Box 3, performance counter 1

C000_
0080H

IA32_EFER Thread Extended Feature Enables. see Table B-2

C000_
0081H

IA32_STAR Thread System Call Target Address. (R/W). see
Table B-2

C000_
0082H

IA32_LSTAR Thread IA-32e Mode System Call Target Address.
(R/W). see Table B-2

C000_
0084H

IA32_FMASK Thread System Call Flag Mask. (R/W). see Table B-2

C000_
0100H

IA32_FS_BASE Thread Map of BASE Address of FS. (R/W). see
Table B-2

C000_
0101H

IA32_GS_BASE Thread Map of BASE Address of GS. (R/W). see
Table B-2

C000_
0102H

IA32_KERNEL_GS
BASE

Thread Swap Target of BASE Address of GS. (R/W).
see Table B-2

C000_
0103H

IA32_TSC_AUX Thread AUXILIARY TSC Signature. (R/W). see
Table B-2 and Section 16.12.2,
“IA32_TSC_AUX Register and RDTSCP
Support.”

Table B-10. MSRs Supported by Intel Processors Based on Intel Microarchitecture
Code Name Sandy Bridge (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-160 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.7.2 MSRs In Next Generation Intel® Xeon Processor Family
(Intel® Microarchitecture Code Name Sandy Bridge)

Table B-12 lists selected model-specific registers (MSRs) that are specific to the next
generation Intel® Xeon processor family (Intel® microarchitecture code name Sandy
Bridge). These processors have a CPUID signature with DisplayFamily_DisplayModel
of 06_2DH, see Table B-1.

Table B-11. MSRs Supported by Second Generation Intel Core Processors (Intel
Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

1ADH 429 MSR_TURBO_RATI
O_LIMIT

Package Maximum Ratio Limit of Turbo Mode.

RO if MSR_PLATFORM_INFO.[28] = 0,

RW if MSR_PLATFORM_INFO.[28] = 1

7:0 Package Maximum Ratio Limit for 1C.

Maximum turbo ratio limit of 1 core active.

15:8 Package Maximum Ratio Limit for 2C.

Maximum turbo ratio limit of 2 core active.

23:16 Package Maximum Ratio Limit for 3C.

Maximum turbo ratio limit of 3 core active.

31:24 Package Maximum Ratio Limit for 4C.

Maximum turbo ratio limit of 4 core active.

63:32 Reserved.

640H 1600 MSR_PP1_POWER
_LIMIT

Package PP1 RAPL Power Limit Control (R/W) See
Section 14.7.4, “PP0/PP1 RAPL Domains.”

641H 1601 MSR_PP1_ENERY_
STATUS

Package PP1 Energy Status (R/O) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”

642H 1602 MSR_PP1_POLICY Package PP1 Balance Policy (R/W) See Section 14.7.4,
“PP0/PP1 RAPL Domains.”
Vol. 3B B-161

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge)

Register
Address Register Name

Scope
Bit Description

 Hex Dec

285H 645 IA32_MC5_CTL2 Package see Table B-2

286H 646 IA32_MC6_CTL2 Package see Table B-2

287H 647 IA32_MC7_CTL2 Package see Table B-2

288H 648 IA32_MC8_CTL2 Package see Table B-2

289H 649 IA32_MC9_CTL2 Package see Table B-2

28AH 650 IA32_MC10_CTL2 Package see Table B-2

28BH 651 IA32_MC11_CTL2 Package see Table B-2

28CH 652 IA32_MC12_CTL2 Package see Table B-2

28DH 653 IA32_MC13_CTL2 Package see Table B-2

28EH 654 IA32_MC14_CTL2 Package see Table B-2

28FH 655 IA32_MC15_CTL2 Package see Table B-2

290H 656 IA32_MC16_CTL2 Package see Table B-2

291H 657 IA32_MC17_CTL2 Package see Table B-2

292H 658 IA32_MC18_CTL2 Package see Table B-2

293H 659 IA32_MC19_CTL2 Package see Table B-2

414H 1044 MSR_MC5_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

415H 1045 MSR_MC5_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

416H 1046 MSR_MC5_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

417H 1047 MSR_MC5_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

418H 1048 MSR_MC6_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

419H 1049 MSR_MC6_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

41AH 1050 MSR_MC6_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41BH 1051 MSR_MC6_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

41CH 1052 MSR_MC7_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

41DH 1053 MSR_MC7_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.
B-162 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
41EH 1054 MSR_MC7_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

41FH 1055 MSR_MC7_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

420H 1056 MSR_MC8_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

421H 1057 MSR_MC8_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

422H 1058 MSR_MC8_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

423H 1059 MSR_MC8_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

424H 1060 MSR_MC9_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

425H 1061 MSR_MC9_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

426H 1062 MSR_MC9_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

427H 1063 MSR_MC9_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

428H 1064 MSR_MC10_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

429H 1065 MSR_MC10_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42AH 1066 MSR_MC10_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42BH 1067 MSR_MC10_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

42CH 1068 MSR_MC11_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

42DH 1069 MSR_MC11_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

42EH 1070 MSR_MC11_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

42FH 1071 MSR_MC11_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

430H 1072 MSR_MC12_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

431H 1073 MSR_MC12_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

432H 1074 MSR_MC12_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

433H 1075 MSR_MC12_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

434H 1076 MSR_MC13_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

435H 1077 MSR_MC13_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

Table B-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-163

MODEL-SPECIFIC REGISTERS (MSRS)
436H 1078 MSR_MC13_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

437H 1079 MSR_MC13_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

438H 1080 MSR_MC14_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

439H 1081 MSR_MC14_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43AH 1082 MSR_MC14_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43BH 1083 MSR_MC14_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

43CH 1084 MSR_MC15_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

43DH 1085 MSR_MC15_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

43EH 1086 MSR_MC15_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

43FH 1087 MSR_MC15_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

440H 1088 MSR_MC16_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

441H 1089 MSR_MC16_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

442H 1090 MSR_MC16_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

443H 1091 MSR_MC16_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

444H 1092 MSR_MC17_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

445H 1093 MSR_MC17_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

446H 1094 MSR_MC17_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

447H 1095 MSR_MC17_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

448H 1096 MSR_MC18_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

449H 1097 MSR_MC18_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

44AH 1098 MSR_MC18_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44BH 1099 MSR_MC18_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

44CH 1100 MSR_MC19_CTL Package See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

44DH 1101 MSR_MC19_
STATUS

Package See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.” and Appendix E.

Table B-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
B-164 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.8 MSRS IN THE PENTIUM® 4 AND INTEL® XEON®
PROCESSORS

Table B-13 lists MSRs (architectural and model-specific) that are defined across
processor generations based on Intel NetBurst microarchitecture. The processor can
be identified by its CPUID signatures of DisplayFamily encoding of 0FH, see
Table B-1.
• MSRs with an “IA32_” prefix are designated as “architectural.” This means that

the functions of these MSRs and their addresses remain the same for succeeding
families of IA-32 processors.

• MSRs with an “MSR_” prefix are model specific with respect to address function-
alities. The column “Model Availability” lists the model encoding value(s) within
the Pentium 4 and Intel Xeon processor family at the specified register address.
The model encoding value of a processor can be queried using CPUID. See
“CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.

44EH 1102 MSR_MC19_ADDR Package See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

44FH 1103 MSR_MC19_MISC Package See Section 15.3.2.4, “IA32_MCi_MISC MSRs.”

618H 1560 MSR_DRAM_POWE
R_LIMIT

Package DRAM RAPL Power Limit Control (R/W) See
Section 14.7.5, “DRAM RAPL Domain.”

619H 1561 MSR_DRAM_ENER
Y_STATUS

Package DRAM Energy Status (R/O) See Section 14.7.5,
“DRAM RAPL Domain.”

61BH 1563 MSR_DRAM_PERF
_STATUS

Package DRAM Performance Throttling Status (R/O)
See Section 14.7.5, “DRAM RAPL Domain.”

61CH 1564 MSR_DRAM_POWE
R_INFO

Package DRAM RAPL Parameters (R/W) See Section
14.7.5, “DRAM RAPL Domain.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec

0H 0 IA32_P5_MC_ADDR 0, 1, 2,
3, 4, 6

Shared See Appendix B.12, “MSRs in
Pentium Processors.”

Table B-12. Selected MSRs Supported by Next Generation Intel Xeon Processors
(Intel Microarchitecture Code Name Sandy Bridge) (Contd.)

Register
Address Register Name

Scope
Bit Description

 Hex Dec
Vol. 3B B-165

MODEL-SPECIFIC REGISTERS (MSRS)
1H 1 IA32_P5_MC_TYPE 0, 1, 2,
3, 4, 6

Shared See Appendix B.12, “MSRs in
Pentium Processors.”

6H 6 IA32_MONITOR_
FILTER_LINE_SIZE

3, 4, 6 Shared See Section 8.10.5,
“Monitor/Mwait Address Range
Determination.”

10H 16 IA32_TIME_STAMP_
COUNTER

0, 1, 2,
3, 4, 6

Unique Time Stamp Counter.

see Table B-2

On earlier processors, only the
lower 32 bits are writable. On any
write to the lower 32 bits, the
upper 32 bits are cleared. For
processor family 0FH, models 3
and 4: all 64 bits are writable.

17H 23 IA32_PLATFORM_ID 0, 1, 2,
3, 4, 6

Shared Platform ID. (R). see Table B-2

The operating system can use this
MSR to determine “slot”
information for the processor and
the proper microcode update to
load.

1BH 27 IA32_APIC_BASE 0, 1, 2,
3, 4, 6

Unique APIC Location and Status. (R/W)

see Table B-2. See Section 10.4.4,
“Local APIC Status and Location.”

2AH 42 MSR_EBC_HARD_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Hard Power-On
Configuration.

(R/W) Enables and disables
processor features; (R) indicates
current processor configuration.

0 Output Tri-state Enabled. (R)

Indicates whether tri-state output
is enabled (1) or disabled (0) as set
by the strapping of SMI#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-166 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1 Execute BIST. (R)

Indicates whether the execution
of the BIST is enabled (1) or
disabled (0) as set by the
strapping of INIT#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

2 In Order Queue Depth. (R)

Indicates whether the in order
queue depth for the system bus is
1 (1) or up to 12 (0) as set by the
strapping of A7#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

3 MCERR# Observation Disabled.
(R)

Indicates whether MCERR#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A9#. The value in this
bit is written on the deassertion of
RESET#; the bit is set to 1 when
the address bus signal is asserted.

4 BINIT# Observation Enabled. (R)

Indicates whether BINIT#
observation is enabled (0) or
disabled (1) as determined by the
strapping of A10#. The value in
this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-167

MODEL-SPECIFIC REGISTERS (MSRS)
6:5 APIC Cluster ID. (R)

Contains the logical APIC cluster ID
value as set by the strapping of
A12# and A11#. The logical
cluster ID value is written into the
field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

7 Bus Park Disable. (R)

Indicates whether bus park is
enabled (0) or disabled (1) as set
by the strapping of A15#. The
value in this bit is written on the
deassertion of RESET#; the bit is
set to 1 when the address bus
signal is asserted.

11:8 Reserved.

13:12 Agent ID. (R)

Contains the logical agent ID value
as set by the strapping of BR[3:0].
The logical ID value is written into
the field on the deassertion of
RESET#; the field is set to 1 when
the address bus signal is asserted.

63:14 Reserved.

2BH 43 MSR_EBC_SOFT_
POWERON

0, 1, 2,
3, 4, 6

Shared Processor Soft Power-On
Configuration. (R/W)

Enables and disables processor
features.

0 RCNT/SCNT On Request
Encoding Enable. (R/W)

Controls the driving of RCNT/SCNT
on the request encoding. Set to
enable (1); clear to disabled (0,
default).

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-168 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1 Data Error Checking Disable.
(R/W)

Set to disable system data bus
parity checking; clear to enable
parity checking.

2 Response Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

3 Address/Request Error Checking
Disable. (R/W)

Set to disable (default); clear to
enable.

4 Initiator MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator bus requests (default);
clear to enable.

5 Internal MCERR# Disable. (R/W)

Set to disable MCERR# driving for
initiator internal errors (default);
clear to enable.

6 BINIT# Driver Disable. (R/W)

Set to disable BINIT# driver
(default); clear to enable driver.

63:7 Reserved.

2CH 44 MSR_EBC_
FREQUENCY_ID

2,3, 4,
6

Shared Processor Frequency
Configuration.

The bit field layout of this MSR
varies according to the MODEL
value in the CPUID version
information. The following bit field
layout applies to Pentium 4 and
Xeon Processors with MODEL
encoding equal or greater than 2.

(R) The field Indicates the current
processor frequency configuration.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-169

MODEL-SPECIFIC REGISTERS (MSRS)
15:0 Reserved.

18:16 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz (Model 2)
000B 266 MHz (Model 3 or 4)
001B 133 MHz
010B 200 MHz
011B 166 MHz
100B 333 MHz (Model 6)

133.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 001B.

166.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 011B.

266.67 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 000B and model encoding = 3
or 4.

333.33 MHz should be utilized if
performing calculation with
System Bus Speed when encoding
is 100B and model encoding = 6.

All other values are reserved.

23:19 Reserved

31:24 Core Clock Frequency to System
Bus Frequency Ratio. (R)

The processor core clock
frequency to system bus
frequency ratio observed at the
de-assertion of the reset pin.

63:25 Reserved.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-170 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
2CH 44 MSR_EBC_
FREQUENCY_ID

0, 1 Shared Processor Frequency
Configuration. (R)

The bit field layout of this MSR
varies according to the MODEL
value of the CPUID version
information. This bit field layout
applies to Pentium 4 and Xeon
Processors with MODEL encoding
less than 2.

Indicates current processor
frequency configuration.

20:0 Reserved.

23:21 Scalable Bus Speed. (R/W)

Indicates the intended scalable
bus speed:
Encoding Scalable Bus Speed
000B 100 MHz

All others values reserved.

63:24 Reserved.

3AH 58 IA32_FEATURE_
CONTROL

3, 4, 6 Unique Control Features in IA-32
Processor. (R/W). see Table B-2

(If CPUID.01H:ECX.[bit 5])

79H 121 IA32_BIOS_UPDT_
TRIG

0, 1, 2,
3, 4, 6

Shared BIOS Update Trigger Register.
(W) see Table B-2

8BH 139 IA32_BIOS_SIGN_ID 0, 1, 2,
3, 4, 6

Unique BIOS Update Signature ID. (R/W)

see Table B-2

9BH 155 IA32_SMM_MONITOR_
CTL

3, 4, 6 Unique SMM Monitor Configuration.
(R/W). see Table B-2

FEH 254 IA32_MTRRCAP 0, 1, 2,
3, 4, 6

Unique MTRR Information.

See Section 11.11.1, “MTRR
Feature Identification.”.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-171

MODEL-SPECIFIC REGISTERS (MSRS)
174H 372 IA32_SYSENTER_CS 0, 1, 2,
3, 4, 6

Unique CS register target for CPL 0
code. (R/W). see Table B-2

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

175H 373 IA32_SYSENTER_ESP 0, 1, 2,
3, 4, 6

Unique Stack pointer for CPL 0 stack.
(R/W). see Table B-2

See Section 5.8.7, “Performing
Fast Calls to System Procedures
with the SYSENTER and SYSEXIT
Instructions.”

176H 374 IA32_SYSENTER_EIP 0, 1, 2,
3, 4, 6

Unique CPL 0 code entry point. (R/W).

see Table B-2. See Section 5.8.7,
“Performing Fast Calls to System
Procedures with the SYSENTER
and SYSEXIT Instructions.”

179H 377 IA32_MCG_CAP 0, 1, 2,
3, 4, 6

Unique Machine Check Capabilities. (R)

see Table B-2. See Section
15.3.1.1, “IA32_MCG_CAP MSR.”

17AH 378 IA32_MCG_STATUS 0, 1, 2,
3, 4, 6

Unique Machine Check Status. (R). see
Table B-2. See Section 15.3.1.2,
“IA32_MCG_STATUS MSR.”

17BH 379 IA32_MCG_CTL Machine Check Feature Enable.
(R/W). see Table B-2

See Section 15.3.1.3,
“IA32_MCG_CTL MSR.”

180H 384 MSR_MCG_RAX 0, 1, 2,
3, 4, 6

Unique Machine Check EAX/RAX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-172 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
181H 385 MSR_MCG_RBX 0, 1, 2,
3, 4, 6

Unique Machine Check EBX/RBX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

182H 386 MSR_MCG_RCX 0, 1, 2,
3, 4, 6

Unique Machine Check ECX/RCX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

183H 387 MSR_MCG_RDX 0, 1, 2,
3, 4, 6

Unique Machine Check EDX/RDX Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

184H 388 MSR_MCG_RSI 0, 1, 2,
3, 4, 6

Unique Machine Check ESI/RSI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-173

MODEL-SPECIFIC REGISTERS (MSRS)
63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

185H 389 MSR_MCG_RDI 0, 1, 2,
3, 4, 6

Unique Machine Check EDI/RDI Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

186H 390 MSR_MCG_RBP 0, 1, 2,
3, 4, 6

Unique Machine Check EBP/RBP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

187H 391 MSR_MCG_RSP 0, 1, 2,
3, 4, 6

Unique Machine Check ESP/RSP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-174 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
188H 392 MSR_MCG_RFLAGS 0, 1, 2,
3, 4, 6

Unique Machine Check EFLAGS/RFLAG
Save State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

189H 393 MSR_MCG_RIP 0, 1, 2,
3, 4, 6

Unique Machine Check EIP/RIP Save
State.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63:0 Contains register state at time of
machine check error. When in non-
64-bit modes at the time of the
error, bits 63-32 do not contain
valid data.

18AH 394 MSR_MCG_MISC 0, 1, 2,
3, 4, 6

Unique Machine Check Miscellaneous.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

0 DS.

When set, the bit indicates that a
page assist or page fault occurred
during DS normal operation. The
processors response is to shut
down.

The bit is used as an aid for
debugging DS handling code. It is
the responsibility of the user (BIOS
or operating system) to clear this
bit for normal operation.

63:1 Reserved.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-175

MODEL-SPECIFIC REGISTERS (MSRS)
18BH -
18FH

395 MSR_MCG_
RESERVED1 -
MSR_MCG_
RESERVED5

Reserved.

190H 400 MSR_MCG_R8 0, 1, 2,
3, 4, 6

Unique Machine Check R8.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

191H 401 MSR_MCG_R9 0, 1, 2,
3, 4, 6

Unique Machine Check R9D/R9.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

192H 402 MSR_MCG_R10 0, 1, 2,
3, 4, 6

Unique Machine Check R10.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-176 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
193H 403 MSR_MCG_R11 0, 1, 2,
3, 4, 6

Unique Machine Check R11.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

194H 404 MSR_MCG_R12 0, 1, 2,
3, 4, 6

Unique Machine Check R12.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

195H 405 MSR_MCG_R13 0, 1, 2,
3, 4, 6

Unique Machine Check R13.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

196H 406 MSR_MCG_R14 0, 1, 2,
3, 4, 6

Unique Machine Check R14.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-177

MODEL-SPECIFIC REGISTERS (MSRS)
63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

197H 407 MSR_MCG_R15 0, 1, 2,
3, 4, 6

Unique Machine Check R15.

See Section 15.3.2.6, “IA32_MCG
Extended Machine Check State
MSRs.”

63-0 Registers R8-15 (and the
associated state-save MSRs) exist
only in Intel 64 processors. These
registers contain valid information
only when the processor is
operating in 64-bit mode at the
time of the error.

198H 408 IA32_PERF_STATUS 3, 4, 6 Unique see Table B-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

199H 409 IA32_PERF_CTL 3, 4, 6 Unique see Table B-2. See Section 14.1,
“Enhanced Intel Speedstep®
Technology.”

19AH 410 IA32_CLOCK_
MODULATION

0, 1, 2,
3, 4, 6

Unique Thermal Monitor Control. (R/W)

see Table B-2.

See Section 14.5.3, “Software
Controlled Clock Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

0, 1, 2,
3, 4, 6

Unique Thermal Interrupt Control. (R/W)

See Section 14.5.2, “Thermal
Monitor.” and see Table B-2

19CH 412 IA32_THERM_STATUS 0, 1, 2,
3, 4, 6

Shared Thermal Monitor Status. (R/W)

See Section 14.5.2, “Thermal
Monitor.” and see Table B-2

19DH 413 MSR_THERM2_CTL Thermal Monitor 2 Control.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-178 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
3, Shared For Family F, Model 3 processors:
When read, specifies the value of
the target TM2 transition last
written. When set, it sets the next
target value for TM2 transition.

4, 6 Shared For Family F, Model 4 and Model 6
processors: When read, specifies
the value of the target TM2
transition last written. Writes may
cause #GP exceptions.

1A0H 416 IA32_MISC_ENABLE 0, 1, 2,
3, 4, 6

Shared Enable Miscellaneous Processor
Features. (R/W)

0 Fast-Strings Enable. see Table B-2

1 Reserved.

2 x87 FPU Fopcode Compatibility
Mode Enable.

3 Thermal Monitor 1 Enable.

See Section 14.5.2, “Thermal
Monitor.” and see Table B-2.

4 Split-Lock Disable.

When set, the bit causes an #AC
exception to be issued instead of a
split-lock cycle. Operating systems
that set this bit must align system
structures to avoid split-lock
scenarios.

When the bit is clear (default),
normal split-locks are issued to the
bus.

This debug feature is specific to
the Pentium 4 processor.

5 Reserved.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-179

MODEL-SPECIFIC REGISTERS (MSRS)
6 Third-Level Cache Disable. (R/W)

When set, the third-level cache is
disabled; when clear (default) the
third-level cache is enabled. This
flag is reserved for processors
that do not have a third-level
cache.

Note that the bit controls only the
third-level cache; and only if
overall caching is enabled through
the CD flag of control register CR0,
the page-level cache controls,
and/or the MTRRs.

See Section 11.5.4, “Disabling and
Enabling the L3 Cache.”

7 Performance Monitoring
Available. (R). see Table B-2

8 Suppress Lock Enable.

When set, assertion of LOCK on
the bus is suppressed during a
Split Lock access. When clear
(default), LOCK is not suppressed.

9 Prefetch Queue Disable.

When set, disables the prefetch
queue. When clear (default),
enables the prefetch queue.

10 FERR# Interrupt Reporting
Enable. (R/W)

When set, interrupt reporting
through the FERR# pin is enabled;
when clear, this interrupt
reporting function is disabled.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-180 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
When this flag is set and the
processor is in the stop-clock state
(STPCLK# is asserted), asserting
the FERR# pin signals to the
processor that an interrupt (such
as, INIT#, BINIT#, INTR, NMI, SMI#,
or RESET#) is pending and that
the processor should return to
normal operation to handle the
interrupt.

This flag does not affect the
normal operation of the FERR# pin
(to indicate an unmasked floating-
point error) when the STPCLK#
pin is not asserted.

11 Branch Trace Storage
Unavailable (BTS_UNAVILABLE).
(R). see Table B-2

When set, the processor does not
support branch trace storage
(BTS); when clear, BTS is
supported.

12 PEBS_UNAVILABLE: Precise
Event Based Sampling
Unavailable. (R). see Table B-2

When set, the processor does not
support precise event-based
sampling (PEBS); when clear, PEBS
is supported.

13 3 TM2 Enable. (R/W)

When this bit is set (1) and the
thermal sensor indicates that the
die temperature is at the pre-
determined threshold, the
Thermal Monitor 2 mechanism is
engaged. TM2 will reduce the bus
to core ratio and voltage according
to the value last written to
MSR_THERM2_CTL bits 15:0.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-181

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default),
the processor does not change the
VID signals or the bus to core ratio
when the processor enters a
thermal managed state.

If the TM2 feature flag (ECX[8]) is
not set to 1 after executing CPUID
with EAX = 1, then this feature is
not supported and BIOS must not
alter the contents of this bit
location. The processor is
operating out of spec if both this
bit and the TM1 bit are set to
disabled states.

17:14 Reserved.

18 3, 4, 6 ENABLE MONITOR FSM. (R/W)

see Table B-2

19 Adjacent Cache Line Prefetch
Disable. (R/W)

When set to 1, the processor
fetches the cache line of the 128-
byte sector containing currently
required data. When set to 0, the
processor fetches both cache lines
in the sector.

Single processor platforms should
not set this bit. Server platforms
should set or clear this bit based
on platform performance
observed in validation and testing.

BIOS may contain a setup option
that controls the setting of this bit.

21:20 Reserved.

22 3, 4, 6 Limit CPUID MAXVAL. (R/W)

see Table B-2

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-182 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
Setting this can cause unexpected
behavior to software that
depends on the availability of
CPUID leaves greater than 3.

23 Shared xTPR Message Disable. (R/W)

see Table B-2.

24 L1 Data Cache Context Mode.
(R/W)

When set, the L1 data cache is
placed in shared mode; when clear
(default), the cache is placed in
adaptive mode. This bit is only
enabled for IA-32 processors that
support Intel Hyper-Threading
Technology. See Section 11.5.6,
“L1 Data Cache Context Mode.”

When L1 is running in adaptive
mode and CR3s are identical, data
in L1 is shared across logical
processors. Otherwise, L1 is not
shared and cache use is
competitive.

If the Context ID feature flag
(ECX[10]) is set to 0 after
executing CPUID with EAX = 1, the
ability to switch modes is not
supported. BIOS must not alter the
contents of
IA32_MISC_ENABLE[24].

33:25 Reserved.

34 Unique XD Bit Disable. (R/W)

see Table B-2.

63:35 Reserved.

1A1H 417 MSR_PLATFORM_BRV 3, 4, 6 Shared Platform Feature Requirements.
(R)

17:0 Reserved.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-183

MODEL-SPECIFIC REGISTERS (MSRS)
18 PLATFORM Requirements.

When set to 1, indicates the
processor has specific platform
requirements. The details of the
platform requirements are listed in
the respective data sheets of the
processor.

63:19 Reserved.

1D7H 471 MSR_LER_FROM_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record From
Linear IP. (R)

Contains a pointer to the last
branch instruction that the
processor executed prior to the
last exception that was generated
or the last interrupt that was
handled.

See Section 16.8.3, “Last
Exception Records.”

31:0 From Linear IP.

Linear address of the last branch
instruction.

63:32 Reserved.

1D7H 471 63:0 Unique From Linear IP.

Linear address of the last branch
instruction (If IA-32e mode is
active).

1D8H 472 MSR_LER_TO_LIP 0, 1, 2,
3, 4, 6

Unique Last Exception Record To Linear
IP. (R)

This area contains a pointer to the
target of the last branch
instruction that the processor
executed prior to the last
exception that was generated or
the last interrupt that was
handled.

See Section 16.8.3, “Last
Exception Records.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-184 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
31:0 From Linear IP.

Linear address of the target of the
last branch instruction.

63:32 Reserved.

1D8H 472 63:0 Unique From Linear IP.

Linear address of the target of the
last branch instruction (If IA-32e
mode is active).

1D9H 473 MSR_DEBUGCTLA 0, 1, 2,
3, 4, 6

Unique Debug Control. (R/W)

Controls how several debug
features are used. Bit definitions
are discussed in the referenced
section.

See Section 16.8.1,
“MSR_DEBUGCTLA MSR.”

1DAH 474 MSR_LASTBRANCH
_TOS

0, 1, 2,
3, 4, 6

Unique Last Branch Record Stack TOS.
(R)

Contains an index (0-3 or 0-15)
that points to the top of the last
branch record stack (that is, that
points the index of the MSR
containing the most recent branch
record).

See Section 16.8.2, “LBR Stack for
Processors Based on Intel
NetBurst® Microarchitecture”; and
addresses 1DBH-1DEH and 680H-
68FH.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-185

MODEL-SPECIFIC REGISTERS (MSRS)
1DBH 475 MSR_LASTBRANCH_0 0, 1, 2 Unique Last Branch Record 0. (R/W)

One of four last branch record
registers on the last branch record
stack. It contains pointers to the
source and destination instruction
for one of the last four branches,
exceptions, or interrupts that the
processor took.

MSR_LASTBRANCH_0 through
MSR_LASTBRANCH_3 at 1DBH-
1DEH are available only on family
0FH, models 0H-02H. They have
been replaced by the MSRs at
680H-68FH and 6C0H-6CFH.

See Section 16.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

1DDH 477 MSR_LASTBRANCH_2 0, 1, 2 Unique Last Branch Record 2.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

1DEH 478 MSR_LASTBRANCH_3 0, 1, 2 Unique Last Branch Record 3.

See description of the
MSR_LASTBRANCH_0 MSR at
1DBH.

200H 512 IA32_MTRR_PHYS
BASE0

0, 1, 2,
3, 4, 6

Shared Variable Range Base MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

201H 513 IA32_MTRR_
PHYSMASK0

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

202H 514 IA32_MTRR_
PHYSBASE1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-186 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
203H 515 IA32_MTRR_
PHYSMASK1

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

204H 516 IA32_MTRR_
PHYSBASE2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

205H 517 IA32_MTRR_
PHYSMASK2

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs”.

206H 518 IA32_MTRR_
PHYSBASE3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

207H 519 IA32_MTRR_
PHYSMASK3

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

208H 520 IA32_MTRR_
PHYSBASE4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

209H 521 IA32_MTRR_
PHYSMASK4

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20AH 522 IA32_MTRR_
PHYSBASE5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20BH 523 IA32_MTRR_
PHYSMASK5

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20CH 524 IA32_MTRR_
PHYSBASE6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20DH 525 IA32_MTRR_
PHYSMASK6

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-187

MODEL-SPECIFIC REGISTERS (MSRS)
20EH 526 IA32_MTRR_
PHYSBASE7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

20FH 527 IA32_MTRR_
PHYSMASK7

0, 1, 2,
3, 4, 6

Shared Variable Range Mask MTRR.

See Section 11.11.2.3, “Variable
Range MTRRs.”

250H 592 IA32_MTRR_FIX64K_
00000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

258H 600 IA32_MTRR_FIX16K_
80000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

259H 601 IA32_MTRR_FIX16K_
A0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

268H 616 IA32_MTRR_FIX4K_
C0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

269H 617 IA32_MTRR_FIX4K_
C8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26AH 618 IA32_MTRR_FIX4K_
D0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs”.

26BH 619 IA32_MTRR_FIX4K_
D8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26CH 620 IA32_MTRR_FIX4K_
E0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26DH 621 IA32_MTRR_FIX4K_
E8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-188 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
26EH 622 IA32_MTRR_FIX4K_
F0000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

26FH 623 IA32_MTRR_FIX4K_
F8000

0, 1, 2,
3, 4, 6

Shared Fixed Range MTRR.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

277H 631 IA32_PAT 0, 1, 2,
3, 4, 6

Unique Page Attribute Table.

See Section 11.11.2.2, “Fixed
Range MTRRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

0, 1, 2,
3, 4, 6

Shared Default Memory Types. (R/W)

see Table B-2

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

300H 768 MSR_BPU_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

301H 769 MSR_BPU_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

302H 770 MSR_BPU_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

303H 771 MSR_BPU_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

304H 772 MSR_MS_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

305H 773 MSR_MS_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

306H 774 MSR_MS_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

307H 775 MSR_MS_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

308H 776 MSR_FLAME_
COUNTER0

0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

309H 777 MSR_FLAME_
COUNTER1

0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-189

MODEL-SPECIFIC REGISTERS (MSRS)
30AH 778 MSR_FLAME_
COUNTER2

0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

30BH 779 MSR_FLAME_
COUNTER3

0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

3OCH 780 MSR_IQ_COUNTER0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

3ODH 781 MSR_IQ_COUNTER1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

3OEH 782 MSR_IQ_COUNTER2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

3OFH 783 MSR_IQ_COUNTER3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

310H 784 MSR_IQ_COUNTER4 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

311H 785 MSR_IQ_COUNTER5 0, 1, 2,
3, 4, 6

Shared See Section 30.9.2, “Performance
Counters.”

360H 864 MSR_BPU_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

361H 865 MSR_BPU_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

362H 866 MSR_BPU_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

363H 867 MSR_BPU_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

364H 868 MSR_MS_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

365H 869 MSR_MS_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

366H 870 MSR_MS_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

367H 871 MSR_MS_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

368H 872 MSR_FLAME_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-190 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
369H 873 MSR_FLAME_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36AH 874 MSR_FLAME_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36BH 875 MSR_FLAME_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36CH 876 MSR_IQ_CCCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36DH 877 MSR_IQ_CCCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36EH 878 MSR_IQ_CCCR2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

36FH 879 MSR_IQ_CCCR3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

370H 880 MSR_IQ_CCCR4 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

371H 881 MSR_IQ_CCCR5 0, 1, 2,
3, 4, 6

Shared See Section 30.9.3, “CCCR MSRs.”

3A0H 928 MSR_BSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A1H 929 MSR_BSU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A2H 930 MSR_FSB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A3H 931 MSR_FSB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A4H 932 MSR_FIRM_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A5H 933 MSR_FIRM_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A6H 934 MSR_FLAME_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A7H 935 MSR_FLAME_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-191

MODEL-SPECIFIC REGISTERS (MSRS)
3A8H 936 MSR_DAC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3A9H 937 MSR_DAC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AAH 938 MSR_MOB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ABH 939 MSR_MOB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ACH 940 MSR_PMH_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3ADH 941 MSR_PMH_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AEH 942 MSR_SAAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3AFH 943 MSR_SAAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B0H 944 MSR_U2L_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B1H 945 MSR_U2L_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B2H 946 MSR_BPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B3H 947 MSR_BPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B4H 948 MSR_IS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B5H 949 MSR_IS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B6H 950 MSR_ITLB_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B7H 951 MSR_ITLB_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3B8H 952 MSR_CRU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-192 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
3B9H 953 MSR_CRU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BAH 954 MSR_IQ_ESCR0 0, 1, 2 Shared See Section 30.9.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BBH 955 MSR_IQ_ESCR1 0, 1, 2 Shared See Section 30.9.1, “ESCR MSRs.”

This MSR is not available on later
processors. It is only available on
processor family 0FH, models
01H-02H.

3BCH 956 MSR_RAT_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BDH 957 MSR_RAT_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3BEH 958 MSR_SSU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C0H 960 MSR_MS_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C1H 961 MSR_MS_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C2H 962 MSR_TBPU_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C3H 963 MSR_TBPU_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C4H 964 MSR_TC_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C5H 965 MSR_TC_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C8H 968 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3C9H 969 MSR_IX_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-193

MODEL-SPECIFIC REGISTERS (MSRS)
3CAH 970 MSR_ALF_ESCR0 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CBH 971 MSR_ALF_ESCR1 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CCH 972 MSR_CRU_ESCR2 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3CDH 973 MSR_CRU_ESCR3 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3E0H 992 MSR_CRU_ESCR4 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3E1H 993 MSR_CRU_ESCR5 0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3FOH 1008 MSR_TC_PRECISE
_EVENT

0, 1, 2,
3, 4, 6

Shared See Section 30.9.1, “ESCR MSRs.”

3F1H 1009 MSR_PEBS_ENABLE 0, 1, 2,
3, 4, 6

Shared Precise Event-Based Sampling
(PEBS). (R/W)

Controls the enabling of precise
event sampling and replay tagging.

12:0 See Table A-18.

23:13 Reserved.

24 UOP Tag.

Enables replay tagging when set.

25 ENABLE_PEBS_MY_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 30.10.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is called ENABLE_PEBS in
IA-32 processors that do not
support Intel Hyper-Threading
Technology.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-194 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
26 ENABLE_PEBS_OTH_THR. (R/W)

Enables PEBS for the target logical
processor when set; disables PEBS
when clear (default).

See Section 30.10.3,
“IA32_PEBS_ENABLE MSR,” for an
explanation of the target logical
processor.

This bit is reserved for IA-32
processors that do not support
Intel Hyper-Threading Technology.

63:27 Reserved.

3F2H 1010 MSR_PEBS_MATRIX
_VERT

0, 1, 2,
3, 4, 6

Shared See Table A-18.

400H 1024 IA32_MC0_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC0_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

403H 1027 IA32_MC0_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC0_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC0_STATUS register is
clear.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-195

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

406H 1030 IA32_MC1_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC1_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

407H 1031 IA32_MC1_MISC Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC1_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC1_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-196 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC2_STATUS
register is clear. When not
implemented in the processor, all
reads and writes to this MSR will
cause a general-protection
exception.

40BH 1035 IA32_MC2_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC2_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

40CH 1036 IA32_MC3_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

40DH 1037 IA32_MC3_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

40EH 1038 IA32_MC3_ADDR 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC3_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC3_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-197

MODEL-SPECIFIC REGISTERS (MSRS)
40FH 1039 IA32_MC3_MISC 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC3_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC3_STATUS register is
clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

410H 1040 IA32_MC4_CTL 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.1,
“IA32_MCi_CTL MSRs.”

411H 1041 IA32_MC4_STATUS 0, 1, 2,
3, 4, 6

Shared See Section 15.3.2.2,
“IA32_MCi_STATUS MSRS.”

412H 1042 IA32_MC4_ADDR See Section 15.3.2.3,
“IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is
either not implemented or
contains no address if the ADDRV
flag in the IA32_MC4_STATUS
register is clear.

When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

413H 1043 IA32_MC4_MISC See Section 15.3.2.4,
“IA32_MCi_MISC MSRs.”

The IA32_MC2_MISC MSR is either
not implemented or does not
contain additional information if
the MISCV flag in the
IA32_MC4_STATUS register is
clear.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-198 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
When not implemented in the
processor, all reads and writes to
this MSR will cause a general-
protection exception.

480H 1152 IA32_VMX_BASIC 3, 4, 6 Unique Reporting Register of Basic VMX
Capabilities. (R/O). see Table B-2.

See Appendix G.1, “Basic VMX
Information”

481H 1153 IA32_VMX_PINBASED
_CTLS

3, 4, 6 Unique Capability Reporting Register of
Pin-based VM-execution
Controls. (R/O). see Table B-2.

See Appendix G.3, “VM-Execution
Controls”

482H 1154 IA32_VMX_
PROCBASED_CTLS

3, 4, 6 Unique Capability Reporting Register of
Primary Processor-based
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution
Controls” and see Table B-2.

483H 1155 IA32_VMX_EXIT_CTLS 3, 4, 6 Unique Capability Reporting Register of
VM-exit Controls. (R/O)

See Appendix G.4, “VM-Exit
Controls” and see Table B-2.

484H 1156 IA32_VMX_ENTRY_
CTLS

3, 4, 6 Unique Capability Reporting Register of
VM-entry Controls. (R/O)

See Appendix G.5, “VM-Entry
Controls” and see Table B-2.

485H 1157 IA32_VMX_MISC 3, 4, 6 Unique Reporting Register of
Miscellaneous VMX Capabilities.
(R/O)

See Appendix G.6, “Miscellaneous
Data” and see Table B-2.

486H 1158 IA32_VMX_CR0_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits
in CR0” and see Table B-2.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-199

MODEL-SPECIFIC REGISTERS (MSRS)
487H 1159 IA32_VMX_CR0_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR0 Bits Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits
in CR0” and see Table B-2.

488H 1160 IA32_VMX_CR4_
FIXED0

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 0. (R/O)

See Appendix G.8, “VMX-Fixed Bits
in CR4” and see Table B-2.

489H 1161 IA32_VMX_CR4_
FIXED1

3, 4, 6 Unique Capability Reporting Register of
CR4 Bits Fixed to 1. (R/O)

See Appendix G.8, “VMX-Fixed Bits
in CR4” and see Table B-2.

48AH 1162 IA32_VMX_VMCS_
ENUM

3, 4, 6 Unique Capability Reporting Register of
VMCS Field Enumeration. (R/O).

See Appendix G.9, “VMCS
Enumeration” and see Table B-2.

48BH 1163 IA32_VMX_
PROCBASED_CTLS2

3, 4, 6 Unique Capability Reporting Register of
Secondary Processor-based
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution
Controls” and see Table B-2.

600H 1536 IA32_DS_AREA 0, 1, 2,
3, 4, 6

Unique DS Save Area. (R/W). see
Table B-2.

See Section 30.9.4, “Debug Store
(DS) Mechanism.”

680H 1664 MSR_LASTBRANCH
_0_FROM_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (680H-68FH). This
part of the stack contains pointers
to the source instruction for one
of the last 16 branches,
exceptions, or interrupts taken by
the processor.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-200 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs at 680H-68FH, 6C0H-
6CfH are not available in processor
releases before family 0FH, model
03H. These MSRs replace MSRs
previously located at 1DBH-
1DEH.which performed the same
function for early releases.

See Section 16.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

681H 1665 MSR_LASTBRANCH
_1_FROM_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 680H.

682H 1666 MSR_LASTBRANCH
_2_FROM_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 680H.

683H 1667 MSR_LASTBRANCH
_3_FROM_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 680H.

684H 1668 MSR_LASTBRANCH
_4_FROM_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 680H.

685H 1669 MSR_LASTBRANCH
_5_FROM_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 680H.

686H 1670 MSR_LASTBRANCH
_6_FROM_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 680H.

687H 1671 MSR_LASTBRANCH
_7_FROM_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 680H.

688H 1672 MSR_LASTBRANCH
_8_FROM_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 680H.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-201

MODEL-SPECIFIC REGISTERS (MSRS)
689H 1673 MSR_LASTBRANCH
_9_FROM_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 680H.

68AH 1674 MSR_LASTBRANCH
_10_FROM_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 680H.

68BH 1675 MSR_LASTBRANCH
_11_FROM_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 680H.

68CH 1676 MSR_LASTBRANCH
_12_FROM_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 680H.

68DH 1677 MSR_LASTBRANCH
_13_FROM_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 680H.

68EH 1678 MSR_LASTBRANCH
_14_FROM_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 680H.

68FH 1679 MSR_LASTBRANCH
_15_FROM_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 680H.

6C0H 1728 MSR_LASTBRANCH
_0_TO_LIP

3, 4, 6 Unique Last Branch Record 0. (R/W)

One of 16 pairs of last branch
record registers on the last branch
record stack (6C0H-6CFH). This
part of the stack contains pointers
to the destination instruction for
one of the last 16 branches,
exceptions, or interrupts that the
processor took.

See Section 16.8, “Last Branch,
Interrupt, and Exception Recording
(Processors based on Intel
NetBurst® Microarchitecture).”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-202 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
6C1H 1729 MSR_LASTBRANCH
_1_TO_LIP

3, 4, 6 Unique Last Branch Record 1.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C2H 1730 MSR_LASTBRANCH
_2_TO_LIP

3, 4, 6 Unique Last Branch Record 2.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C3H 1731 MSR_LASTBRANCH
_3_TO_LIP

3, 4, 6 Unique Last Branch Record 3.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C4H 1732 MSR_LASTBRANCH
_4_TO_LIP

3, 4, 6 Unique Last Branch Record 4.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C5H 1733 MSR_LASTBRANCH
_5_TO_LIP

3, 4, 6 Unique Last Branch Record 5.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C6H 1734 MSR_LASTBRANCH
_6_TO_LIP

3, 4, 6 Unique Last Branch Record 6.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C7H 1735 MSR_LASTBRANCH
_7_TO_LIP

3, 4, 6 Unique Last Branch Record 7.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C8H 1736 MSR_LASTBRANCH
_8_TO_LIP

3, 4, 6 Unique Last Branch Record 8.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6C9H 1737 MSR_LASTBRANCH
_9_TO_LIP

3, 4, 6 Unique Last Branch Record 9.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CAH 1738 MSR_LASTBRANCH
_10_TO_LIP

3, 4, 6 Unique Last Branch Record 10.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CBH 1739 MSR_LASTBRANCH
_11_TO_LIP

3, 4, 6 Unique Last Branch Record 11.

See description of
MSR_LASTBRANCH_0 at 6C0H.

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-203

MODEL-SPECIFIC REGISTERS (MSRS)
6CCH 1740 MSR_LASTBRANCH
_12_TO_LIP

3, 4, 6 Unique Last Branch Record 12.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CDH 1741 MSR_LASTBRANCH
_13_TO_LIP

3, 4, 6 Unique Last Branch Record 13.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CEH 1742 MSR_LASTBRANCH
_14_TO_LIP

3, 4, 6 Unique Last Branch Record 14.

See description of
MSR_LASTBRANCH_0 at 6C0H.

6CFH 1743 MSR_LASTBRANCH
_15_TO_LIP

3, 4, 6 Unique Last Branch Record 15.

See description of
MSR_LASTBRANCH_0 at 6C0H.

C000_
0080H

IA32_EFER 3, 4, 6 Unique Extended Feature Enables. see
Table B-2

C000_
0081H

IA32_STAR 3, 4, 6 Unique System Call Target Address.
(R/W)

see Table B-2

C000_
0082H

IA32_LSTAR 3, 4, 6 Unique IA-32e Mode System Call Target
Address. (R/W)

see Table B-2

C000_
0084H

IA32_FMASK 3, 4, 6 Unique System Call Flag Mask. (R/W)

see Table B-2

C000_
0100H

IA32_FS_BASE 3, 4, 6 Unique Map of BASE Address of FS.
(R/W)

see Table B-2

C000_
0101H

IA32_GS_BASE 3, 4, 6 Unique Map of BASE Address of GS.
(R/W)

see Table B-2

C000_
0102H

IA32_KERNEL_
GSBASE

3, 4, 6 Unique Swap Target of BASE Address of
GS. (R/W)

see Table B-2

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
B-204 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.8.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache
The MSRs listed in Table B-14 apply to Intel Xeon Processor MP with up to 8MB level
three cache. These processors can be detected by enumerating the deterministic
cache parameter leaf of CPUID instruction (with EAX = 4 as input) to detect the pres-
ence of the third level cache, and with CPUID reporting family encoding 0FH, model
encoding 3 or 4 (See CPUID instruction for more details.).

NOTES
1. For HT-enabled processors, there may be more than one logical processors per physical unit. If

an MSR is Shared, this means that one MSR is shared between logical processors. If an MSR is
unique, this means that each logical processor has its own MSR.

Table B-14. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_IFSB_BUSQ0 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_IFSB_BUSQ1 3, 4 Shared IFSB BUSQ Event Control
and Counter Register.
(R/W)

107CEH MSR_IFSB_SNPQ0 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table B-13. MSRs in the Pentium 4 and Intel Xeon Processors (Contd.)

Register
Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique1 Bit Description

 Hex Dec
Vol. 3B B-205

MODEL-SPECIFIC REGISTERS (MSRS)
The MSRs listed in Table B-15 apply to Intel Xeon Processor 7100 series. These
processors can be detected by enumerating the deterministic cache parameter leaf of
CPUID instruction (with EAX = 4 as input) to detect the presence of the third level
cache, and with CPUID reporting family encoding 0FH, model encoding 6 (See CPUID
instruction for more details.). The performance monitoring MSRs listed in Table B-15
are shared between logical processors in the same core, but are replicated for each
core.

107CFH MSR_IFSB_SNPQ1 3, 4 Shared IFSB SNPQ Event Control
and Counter Register.
(R/W)

107D0H MSR_EFSB_DRDY0 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EFSB_DRDY1 3, 4 Shared EFSB DRDY Event Control
and Counter Register.
(R/W)

107D2H MSR_IFSB_CTL6 3, 4 Shared IFSB Latency Event Control
Register. (R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D3H MSR_IFSB_CNTR7 3, 4 Shared IFSB Latency Event
Counter Register. (R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

Table B-14. MSRs Unique to 64-bit Intel Xeon Processor MP with
Up to an 8 MB L3 Cache (Contd.)

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description
B-206 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-15. MSRs Unique to Intel Xeon Processor 7100 Series

Register Address

Register Name
Fields and Flags

Model
Avail-
ability

Shared/
Unique Bit Description

107CCH MSR_EMON_L3_CTR_C
TL0

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CDH MSR_EMON_L3_CTR_C
TL1

6 Shared GBUSQ Event Control and
Counter Register. (R/W)

107CEH MSR_EMON_L3_CTR_C
TL2

6 Shared GSNPQ Event Control and
Counter Register. (R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache.”

107CFH MSR_EMON_L3_CTR_C
TL3

6 Shared GSNPQ Event Control and
Counter Register (R/W)

107D0H MSR_EMON_L3_CTR_C
TL4

6 Shared FSB Event Control and
Counter Register. (R/W)

See Section 30.14,
“Performance Monitoring on
64-bit Intel Xeon Processor
MP with Up to 8-MByte L3
Cache” for details.

107D1H MSR_EMON_L3_CTR_C
TL5

6 Shared FSB Event Control and
Counter Register. (R/W)

107D2H MSR_EMON_L3_CTR_C
TL6

6 Shared FSB Event Control and
Counter Register. (R/W)

107D3H MSR_EMON_L3_CTR_C
TL7

6 Shared FSB Event Control and
Counter Register. (R/W)
Vol. 3B B-207

MODEL-SPECIFIC REGISTERS (MSRS)
B.9 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™

DUO PROCESSORS
Model-specific registers (MSRs) for Intel Core Solo, Intel Core Duo processors, and
Dual-core Intel Xeon processor LV are listed in Table B-16. The column
“Shared/Unique” applies to Intel Core Duo processor. “Unique” means each
processor core has a separate MSR, or a bit field in an MSR governs only a core inde-
pendently. “Shared” means the MSR or the bit field in an MSR address governs the
operation of both processor cores.

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec

0H 0 P5_MC_ADDR Unique See Appendix B.12, “MSRs in Pentium
Processors.” and see Table B-2

1H 1 P5_MC_TYPE Unique See Appendix B.12, “MSRs in Pentium
Processors.” and see Table B-2

6H 6 IA32_MONITOR_
FILTER_SIZE

Unique See Section 8.10.5, “Monitor/Mwait Address
Range Determination.” and see Table B-2

10H 16 IA32_TIME_
STAMP_COUNTER

Unique See Section 16.12, “Time-Stamp Counter.” and
see Table B-2

17H 23 IA32_PLATFORM_
ID

Shared Platform ID. (R) see Table B-2

The operating system can use this MSR to
determine “slot” information for the processor
and the proper microcode update to load.

1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and
Location.” and see Table B-2

2AH 42 MSR_EBL_CR_
POWERON

Shared Processor Hard Power-On Configuration.
(R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

2 Response Error Checking Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.
B-208 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
3 MCERR# Drive Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

6: 5 Reserved

7 BINIT# Driver Enable. (R/W)

1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled

10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

11 Reserved

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes

15 Reserved

17:16 APIC Cluster ID. (R/O)

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

26:22 Clock Frequency Ratio. (R/O)

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-209

MODEL-SPECIFIC REGISTERS (MSRS)
3AH 58 IA32_FEATURE_
CONTROL

Unique Control Features in IA-32 Processor. (R/W)

see Table B-2

40H 64 MSR_
LASTBRANCH_0

Unique Last Branch Record 0. (R/W)

One of 8 last branch record registers on the
last branch record stack: bits 31-0 hold the
‘from’ address and bits 63-32 hold the ‘to’
address. See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M
Processors).”

41H 65 MSR_
LASTBRANCH_1

Unique Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

42H 66 MSR_
LASTBRANCH_2

Unique Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_
LASTBRANCH_3

Unique Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_
LASTBRANCH_4

Unique Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_
LASTBRANCH_5

Unique Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_
LASTBRANCH_6

Unique Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_
LASTBRANCH_7

Unique Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

79H 121 IA32_BIOS_
UPDT_TRIG

Unique BIOS Update Trigger Register (W). see
Table B-2

8BH 139 IA32_BIOS_
SIGN_ID

Unique BIOS Update Signature ID (RO). see
Table B-2

C1H 193 IA32_PMC0 Unique Performance counter register. see Table B-2

C2H 194 IA32_PMC1 Unique Performance counter register. see Table B-2

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-210 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
CDH 205 MSR_FSB_FREQ Shared Scaleable Bus Speed. (RO)

This field indicates the scaleable bus clock
speed:

2:0 • 101B: 100 MHz (FSB 400)
• 001B: 133 MHz (FSB 533)
• 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 101B.

166.67 MHz should be utilized if performing
calculation with System Bus Speed when
encoding is 001B.

63:3 Reserved

E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock
Count. (RW). see Table B-2

E8H 232 IA32_APERF Unique Actual Performance Frequency Clock Count.
(RW). see Table B-2

FEH 254 IA32_MTRRCAP Unique see Table B-2

11EH 281 MSR_BBL_CR_
CTL3

Shared

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

7:1 Reserved.

8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not
respond to the WBINVD instruction or the
assertion of the FLUSH# input.

22:9 Reserved.

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-211

MODEL-SPECIFIC REGISTERS (MSRS)
23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

174H 372 IA32_SYSENTER
_CS

Unique see Table B-2

175H 373 IA32_SYSENTER
_ESP

Unique see Table B-2

176H 374 IA32_SYSENTER
_EIP

Unique see Table B-2

179H 377 IA32_MCG_CAP Unique see Table B-2

17AH 378 IA32_MCG_
STATUS

Unique

0 RIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) can be used to
restart the program. If this bit is cleared, the
program cannot be reliably restarted

1 EIPV.

When set, this bit indicates that the
instruction addressed by the instruction
pointer pushed on the stack (when the
machine check was generated) is directly
associated with the error.

2 MCIP.

When set, this bit indicates that a machine
check has been generated. If a second
machine check is detected while this bit is still
set, the processor enters a shutdown state.
Software should write this bit to 0 after
processing a machine check exception.

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-212 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
63:3 Reserved.

186H 390 IA32_
PERFEVTSEL0

Unique see Table B-2

187H 391 IA32_
PERFEVTSEL1

Unique see Table B-2

198H 408 IA32_PERF_STAT
US

Shared see Table B-2

199H 409 IA32_PERF_CTL Unique see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Unique Clock Modulation. (R/W)

see Table B-2

19BH 411 IA32_THERM_
INTERRUPT

Unique Thermal Interrupt Control. (R/W)

see Table B-2

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Unique Thermal Monitor Status. (R/W)

see Table B-2.

See Section 14.5.2, “Thermal Monitor”.

19DH 413 MSR_THERM2_
CTL

Unique

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated
on-die modulation of the stop-clock duty
cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither
TM1 nor TM2 will be enabled.

63:16 Reserved.

1A0 416 IA32_MISC_
ENABLE

Enable Miscellaneous Processor Features.

(R/W) Allows a variety of processor functions
to be enabled and disabled.

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-213

MODEL-SPECIFIC REGISTERS (MSRS)
2:0 Reserved.

3 Unique Automatic Thermal Control Circuit Enable.
(R/W)

see Table B-2

6:4 Reserved

7 Shared Performance Monitoring Available. (R). see
Table B-2

9:8 Reserved

10 Shared FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to
indicate a pending break event within
the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

11 Shared Branch Trace Storage Unavailable. (RO). see
Table B-2

12 Reserved.

13 Shared TM2 Enable. (R/W)

When this bit is set (1) and the thermal sensor
indicates that the die temperature is at the
pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will
reduce the bus to core ratio and voltage
according to the value last written to
MSR_THERM2_CTL bits 15:0.

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-214 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
When this bit is clear (0, default), the
processor does not change the VID signals or
the bus to core ratio when the processor
enters a thermal managed state.

If the TM2 feature flag (ECX[8]) is not set to 1
after executing CPUID with EAX = 1, then this
feature is not supported and BIOS must not
alter the contents of this bit location. The
processor is operating out of spec if both this
bit and the TM1 bit are set to disabled states.

15:14 Reserved

16 Shared Enhanced Intel SpeedStep Technology
Enable. (R/W)

1 = Enhanced Intel SpeedStep Technology
enabled

18 Shared ENABLE MONITOR FSM. (R/W)

see Table B-2

19 Reserved.

22 Shared Limit CPUID Maxval. (R/W)

see Table B-2.

Setting this bit may cause behavior in
software that depends on the availability of
CPUID leaves greater than 3.

33:23 Reserved.

34 Shared XD Bit Disable. (R/W)

see Table B-2

63:35 Reserved.

1C9H 457 MSR_
LASTBRANCH_
TOS

Unique Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the
MSR containing the most recent branch record.

See MSR_LASTBRANCH_0_FROM_IP (at 40H)

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-215

MODEL-SPECIFIC REGISTERS (MSRS)
1D9H 473 IA32_DEBUGCTL Unique Debug Control. (R/W)

Controls how several debug features are used.
Bit definitions are discussed in the referenced
section.

1DDH 477 MSR_LER_FROM_
LIP

Unique Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch
instruction that the processor executed prior
to the last exception that was generated or
the last interrupt that was handled.

1DEH 478 MSR_LER_TO_LIP Unique Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of
the last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was
handled.

1E0H 480 ROB_CR_
BKUPTMPDR6

Unique

1:0 Reserved

2 Fast String Enable bit. (Default, enabled)

200H 512 MTRRphysBase0 Unique

201H 513 MTRRphysMask0 Unique

202H 514 MTRRphysBase1 Unique

203H 515 MTRRphysMask1 Unique

204H 516 MTRRphysBase2 Unique

205H 517 MTRRphysMask2 Unique

206H 518 MTRRphysBase3 Unique

207H 519 MTRRphysMask3 Unique

208H 520 MTRRphysBase4 Unique

209H 521 MTRRphysMask4 Unique

20AH 522 MTRRphysBase5 Unique

20BH 523 MTRRphysMask5 Unique

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-216 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
20CH 524 MTRRphysBase6 Unique

20DH 525 MTRRphysMask6 Unique

20EH 526 MTRRphysBase7 Unique

20FH 527 MTRRphysMask7 Unique

250H 592 MTRRfix64K_
00000

Unique

258H 600 MTRRfix16K_
80000

Unique

259H 601 MTRRfix16K_
A0000

Unique

268H 616 MTRRfix4K_
C0000

Unique

269H 617 MTRRfix4K_
C8000

Unique

26AH 618 MTRRfix4K_
D0000

Unique

26BH 619 MTRRfix4K_
D8000

Unique

26CH 620 MTRRfix4K_
E0000

Unique

26DH 621 MTRRfix4K_
E8000

Unique

26EH 622 MTRRfix4K_
F0000

Unique

26FH 623 MTRRfix4K_
F8000

Unique

2FFH 767 IA32_MTRR_DEF_
TYPE

Unique Default Memory Types. (R/W). see
Table B-2.

See Section 11.11.2.1,
“IA32_MTRR_DEF_TYPE MSR.”

400H 1024 IA32_MC0_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-217

MODEL-SPECIFIC REGISTERS (MSRS)
401H 1025 IA32_MC0_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

402H 1026 IA32_MC0_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC0_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC0_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

404H 1028 IA32_MC1_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

406H 1030 IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC1_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

408H 1032 IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

40AH 1034 IA32_MC2_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the IA32_MC2_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

40CH 1036 MSR_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_
STATUS

Unique See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-218 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
40EH 1038 MSR_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC4_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_
STATUS

See Section 15.3.2.2, “IA32_MCi_STATUS
MSRS.”

412H 1042 MSR_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the
ADDRV flag in the MSR_MC3_STATUS register
is clear. When not implemented in the
processor, all reads and writes to this MSR will
cause a general-protection exception.

413H 1043 MSR_MC3_MISC Unique

414H 1044 MSR_MC5_CTL Unique

415H 1045 MSR_MC5_
STATUS

Unique

416H 1046 MSR_MC5_ADDR Unique

417H 1047 MSR_MC5_MISC Unique

480H 1152 IA32_VMX_BASIC Unique Reporting Register of Basic VMX
Capabilities. (R/O). see Table B-2

See Appendix G.1, “Basic VMX Information”

(If CPUID.01H:ECX.[bit 9])

481H 1153 IA32_VMX_PINBA
SED_CTLS

Unique Capability Reporting Register of Pin-based
VM-execution Controls. (R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-219

MODEL-SPECIFIC REGISTERS (MSRS)
482H 1154 IA32_VMX_PROCB
ASED_CTLS

Unique Capability Reporting Register of Primary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9])

483H 1155 IA32_VMX_EXIT_
CTLS

Unique Capability Reporting Register of VM-exit
Controls. (R/O)

See Appendix G.4, “VM-Exit Controls”

(If CPUID.01H:ECX.[bit 9])

484H 1156 IA32_VMX_
ENTRY_CTLS

Unique Capability Reporting Register of VM-entry
Controls. (R/O)

See Appendix G.5, “VM-Entry Controls”

(If CPUID.01H:ECX.[bit 9])

485H 1157 IA32_VMX_MISC Unique Reporting Register of Miscellaneous VMX
Capabilities. (R/O)

See Appendix G.6, “Miscellaneous Data”

(If CPUID.01H:ECX.[bit 9])

486H 1158 IA32_VMX_CR0_
FIXED0

Unique Capability Reporting Register of CR0 Bits
Fixed to 0. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

487H 1159 IA32_VMX_CR0_
FIXED1

Unique Capability Reporting Register of CR0 Bits
Fixed to 1. (R/O)

See Appendix G.7, “VMX-Fixed Bits in CR0”

(If CPUID.01H:ECX.[bit 9])

488H 1160 IA32_VMX_CR4_FI
XED0

Unique Capability Reporting Register of CR4 Bits
Fixed to 0. (R/O)

See Appendix G.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

489H 1161 IA32_VMX_CR4_FI
XED1

Unique Capability Reporting Register of CR4 Bits
Fixed to 1. (R/O)

See Appendix G.8, “VMX-Fixed Bits in CR4”

(If CPUID.01H:ECX.[bit 9])

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
B-220 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.10 MSRS IN THE PENTIUM M PROCESSOR
Model-specific registers (MSRs) for the Pentium M processor are similar to those
described in Section B.11 for P6 family processors. The following table describes new
MSRs and MSRs whose behavior has changed on the Pentium M processor.

48AH 1162 IA32_VMX_
VMCS_ENUM

Unique Capability Reporting Register of VMCS Field
Enumeration. (R/O).

See Appendix G.9, “VMCS Enumeration”

(If CPUID.01H:ECX.[bit 9])

48BH 1163 IA32_VMX_PROCB
ASED_CTLS2

Unique Capability Reporting Register of Secondary
Processor-based VM-execution Controls.
(R/O)

See Appendix G.3, “VM-Execution Controls”

(If CPUID.01H:ECX.[bit 9] and
IA32_VMX_PROCBASED_CTLS[bit 63])

600H 1536 IA32_DS_AREA Unique DS Save Area. (R/W)

see Table B-2.

See Section 30.9.4, “Debug Store (DS)
Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS
buffer management area.

63:32 Reserved.

C000_
0080H

IA32_EFER Unique see Table B-2

10:0 Reserved.

11 Execute Disable Bit Enable.

63:12 Reserved

Table B-16. MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-Core Intel
Xeon Processor LV (Contd.)

Register
Address Register Name

Shared/
Unique Bit Description

 Hex Dec
Vol. 3B B-221

MODEL-SPECIFIC REGISTERS (MSRS)
Table B-17. MSRs in Pentium M Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.12, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.12, “MSRs in Pentium Processors.”

10H 16 IA32_TIME_STAMP_
COUNTER

See Section 16.12, “Time-Stamp Counter.” and see
Table B-2

17H 23 IA32_PLATFORM_ID Platform ID. (R). see Table B-2

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

2AH 42 MSR_EBL_CR_POWERON Processor Hard Power-On Configuration.

(R/W) Enables and disables processor features. (R)
Indicates current processor configuration.

0 Reserved.

1 Data Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

2 Response Error Checking Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

3 MCERR# Drive Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

4 Address Parity Enable. (R)

0 = Disabled
Always 0 on the Pentium M processor.

6:5 Reserved.

7 BINIT# Driver Enable. (R)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

8 Output Tri-state Enabled. (R/O)

1 = Enabled; 0 = Disabled

9 Execute BIST. (R/O)

1 = Enabled; 0 = Disabled
B-222 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
10 MCERR# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

11 Reserved.

12 BINIT# Observation Enabled. (R/O)

1 = Enabled; 0 = Disabled
Always 0 on the Pentium M processor.

13 Reserved

14 1 MByte Power on Reset Vector. (R/O)

1 = 1 MByte; 0 = 4 GBytes
Always 0 on the Pentium M processor.

15 Reserved.

17:16 APIC Cluster ID. (R/O)

Always 00B on the Pentium M processor.

18 System Bus Frequency. (R/O)

0 = 100 MHz
1 = Reserved
Always 0 on the Pentium M processor.

19 Reserved.

21: 20 Symmetric Arbitration ID. (R/O)

Always 00B on the Pentium M processor.

26:22 Clock Frequency Ratio (R/O)

40H 64 MSR_LASTBRANCH_0 Last Branch Record 0. (R/W)

One of 8 last branch record registers on the last
branch record stack: bits 31-0 hold the ‘from’
address and bits 63-32 hold the to address.

See also:

• Last Branch Record Stack TOS at 1C9H
• Section 16.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

41H 65 MSR_LASTBRANCH_1 Last Branch Record 1. (R/W)

See description of MSR_LASTBRANCH_0.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-223

MODEL-SPECIFIC REGISTERS (MSRS)
42H 66 MSR_LASTBRANCH_2 Last Branch Record 2. (R/W)

See description of MSR_LASTBRANCH_0.

43H 67 MSR_LASTBRANCH_3 Last Branch Record 3. (R/W)

See description of MSR_LASTBRANCH_0.

44H 68 MSR_LASTBRANCH_4 Last Branch Record 4. (R/W)

See description of MSR_LASTBRANCH_0.

45H 69 MSR_LASTBRANCH_5 Last Branch Record 5. (R/W)

See description of MSR_LASTBRANCH_0.

46H 70 MSR_LASTBRANCH_6 Last Branch Record 6. (R/W)

See description of MSR_LASTBRANCH_0.

47H 71 MSR_LASTBRANCH_7 Last Branch Record 7. (R/W)

See description of MSR_LASTBRANCH_0.

119H 281 MSR_BBL_CR_CTL

63:0 Reserved.

11EH 281 MSR_BBL_CR_CTL3

0 L2 Hardware Enabled. (RO)

1 = If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled

4:1 Reserved.

5 ECC Check Enable. (RO)

This bit enables ECC checking on the cache data
bus. ECC is always generated on write cycles.

0 = Disabled (default)
1 = Enabled
For the Pentium M processor, ECC checking on the
cache data bus is always enabled.

7:6 Reserved.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-224 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
8 L2 Enabled. (R/W)

1 = L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond
to the WBINVD instruction or the assertion of the
FLUSH# input.

22:9 Reserved.

23 L2 Not Present. (RO)

0 = L2 Present
1 = L2 Not Present

63:24 Reserved.

179H 377 IA32_MCG_CAP

7:0 Count. (RO)

Indicates the number of hardware unit error
reporting banks available in the processor

8 IA32_MCG_CTL Present. (RO)

1 = Indicates that the processor implements the
MSR_MCG_CTL register found at MSR 17BH.

0 = Not supported.

63:9 Reserved.

17AH 378 IA32_MCG_STATUS

0 RIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) can be used to restart the program. If
this bit is cleared, the program cannot be reliably
restarted

1 EIPV.

When set, this bit indicates that the instruction
addressed by the instruction pointer pushed on
the stack (when the machine check was
generated) is directly associated with the error.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-225

MODEL-SPECIFIC REGISTERS (MSRS)
2 MCIP.

When set, this bit indicates that a machine check
has been generated. If a second machine check is
detected while this bit is still set, the processor
enters a shutdown state. Software should write
this bit to 0 after processing a machine check
exception.

63:3 Reserved.

198H 408 IA32_PERF_STATUS see Table B-2

199H 409 IA32_PERF_CTL see Table B-2

19AH 410 IA32_CLOCK_
MODULATION

Clock Modulation. (R/W). see Table B-2.

See Section 14.5.3, “Software Controlled Clock
Modulation.”

19BH 411 IA32_THERM_
INTERRUPT

Thermal Interrupt Control. (R/W). see Table B-2.

See Section 14.5.2, “Thermal Monitor.”

19CH 412 IA32_THERM_
STATUS

Thermal Monitor Status. (R/W). see Table B-2

See Section 14.5.2, “Thermal Monitor.”

19DH 413 MSR_THERM2_CTL

15:0 Reserved.

16 TM_SELECT. (R/W)

Mode of automatic thermal monitor:

0 = Thermal Monitor 1 (thermally-initiated on-die
modulation of the stop-clock duty cycle)

1 = Thermal Monitor 2 (thermally-initiated
frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is
cleared, TM_SELECT has no effect. Neither TM1
nor TM2 will be enabled.

63:16 Reserved

1A0 416 IA32_MISC_ENABLE Enable Miscellaneous Processor Features.
(R/W)

Allows a variety of processor functions to be
enabled and disabled.

2:0 Reserved.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-226 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
3 Automatic Thermal Control Circuit Enable. (R/W)

1 = Setting this bit enables the thermal control
circuit (TCC) portion of the Intel Thermal
Monitor feature. This allows processor clocks
to be automatically modulated based on the
processor's thermal sensor operation.

0 = Disabled (default).
The automatic thermal control circuit enable bit
determines if the thermal control circuit (TCC) will
be activated when the processor's internal
thermal sensor determines the processor is about
to exceed its maximum operating temperature.

When the TCC is activated and TM1 is enabled, the
processors clocks will be forced to a 50% duty
cycle. BIOS must enable this feature.

The bit should not be confused with the on-
demand thermal control circuit enable bit.

6:4 Reserved.

7 Performance Monitoring Available. (R)

1 = Performance monitoring enabled
0 = Performance monitoring disabled

9:8 Reserved.

10 FERR# Multiplexing Enable. (R/W)

1 = FERR# asserted by the processor to indicate
a pending break event within the processor

0 = Indicates compatible FERR# signaling
behavior

This bit must be set to 1 to support XAPIC
interrupt model usage.

Branch Trace Storage Unavailable. (RO)

1 = Processor doesn’t support branch trace
storage (BTS)

0 = BTS is supported

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-227

MODEL-SPECIFIC REGISTERS (MSRS)
12 Precise Event Based Sampling Unavailable. (RO)

1 = Processor does not support precise event-
based sampling (PEBS);

0 = PEBS is supported.
The Pentium M processor does not support PEBS.

15:13 Reserved.

16 Enhanced Intel SpeedStep Technology Enable.
(R/W)

1 = Enhanced Intel SpeedStep Technology
enabled.

On the Pentium M processor, this bit may be
configured to be read-only.

22:17 Reserved.

23 xTPR Message Disable. (R/W)

When set to 1, xTPR messages are disabled. xTPR
messages are optional messages that allow the
processor to inform the chipset of its priority. The
default is processor specific.

63:24 Reserved.

1C9H 457 MSR_LASTBRANCH_TOS Last Branch Record Stack TOS. (R)

Contains an index (bits 0-3) that points to the MSR
containing the most recent branch record. See also:

• MSR_LASTBRANCH_0_FROM_IP (at 40H)
• Section 16.10, “Last Branch, Interrupt, and

Exception Recording (Pentium M Processors)”

1D9H 473 MSR_DEBUGCTLB Debug Control. (R/W)

Controls how several debug features are used. Bit
definitions are discussed in the referenced section.

See Section 16.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors).”

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-228 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
1DDH 477 MSR_LER_TO_LIP Last Exception Record To Linear IP. (R)

This area contains a pointer to the target of the
last branch instruction that the processor
executed prior to the last exception that was
generated or the last interrupt that was handled.

See Section 16.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 16.11.2, “Last Branch and Last Exception
MSRs.”

1DEH 478 MSR_LER_FROM_LIP Last Exception Record From Linear IP. (R)

Contains a pointer to the last branch instruction
that the processor executed prior to the last
exception that was generated or the last interrupt
that was handled.

See Section 16.10, “Last Branch, Interrupt, and
Exception Recording (Pentium M Processors)” and
Section 16.11.2, “Last Branch and Last Exception
MSRs.”

2FFH 767 IA32_MTRR_DEF_
TYPE

Default Memory Types. (R/W)

Sets the memory type for the regions of physical
memory that are not mapped by the MTRRs.

See Section 11.11.2.1, “IA32_MTRR_DEF_TYPE
MSR.”

400H 1024 IA32_MC0_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

401H 1025 IA32_MC0_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

402H 1026 IA32_MC0_ADDR See Section 14.3.2.3., “IA32_MCi_ADDR MSRs”.

The IA32_MC0_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC0_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

404H 1028 IA32_MC1_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

405H 1029 IA32_MC1_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-229

MODEL-SPECIFIC REGISTERS (MSRS)
406H 1030 IA32_MC1_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC1_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC1_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

408H 1032 IA32_MC2_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

409H 1033 IA32_MC2_STATUS See Chapter 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH 1034 IA32_MC2_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The IA32_MC2_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the IA32_MC2_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

40CH 1036 MSR_MC4_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

40DH 1037 MSR_MC4_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40EH 1038 MSR_MC4_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC4_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC4_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

410H 1040 MSR_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs.”

411H 1041 MSR_MC3_STATUS See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

412H 1042 MSR_MC3_ADDR See Section 15.3.2.3, “IA32_MCi_ADDR MSRs.”

The MSR_MC3_ADDR register is either not
implemented or contains no address if the ADDRV
flag in the MSR_MC3_STATUS register is clear.
When not implemented in the processor, all reads
and writes to this MSR will cause a general-
protection exception.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-230 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.11 MSRS IN THE P6 FAMILY PROCESSORS
The following MSRs are defined for the P6 family processors. The MSRs in this table
that are shaded are available only in the Pentium II and Pentium III processors.
Beginning with the Pentium 4 processor, some of the MSRs in this list have been
designated as “architectural” and have had their names changed. See Table B-2 for a
list of the architectural MSRs.

600H 1536 IA32_DS_AREA DS Save Area. (R/W). see Table B-2

Points to the DS buffer management area, which is
used to manage the BTS and PEBS buffers. See
Section 30.9.4, “Debug Store (DS) Mechanism.”

31:0 DS Buffer Management Area.

Linear address of the first byte of the DS buffer
management area.

63:32 Reserved.

Table B-18. MSRs in the P6 Family Processors

Register
Address

Register Name Bit Description

 Hex Dec

0H 0 P5_MC_ADDR See Appendix B.12, “MSRs in Pentium Processors.”

1H 1 P5_MC_TYPE See Appendix B.12, “MSRs in Pentium Processors.”

10H 16 TSC See Section 16.12, “Time-Stamp Counter.”

17H 23 IA32_PLATFORM_ID Platform ID. (R)

The operating system can use this MSR to
determine “slot” information for the processor and
the proper microcode update to load.

49:0 Reserved.

Table B-17. MSRs in Pentium M Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-231

MODEL-SPECIFIC REGISTERS (MSRS)
52:50 Platform Id. (R)

Contains information concerning the intended
platform for the processor.
52 51 50
0 0 0 Processor Flag 0
0 0 1 Processor Flag 1
0 1 0 Processor Flag 2
0 1 1 Processor Flag 3
1 0 0 Processor Flag 4
1 0 1 Processor Flag 5
1 1 0 Processor Flag 6
1 1 1 Processor Flag 7

56:53 L2 Cache Latency Read.

59:57 Reserved.

60 Clock Frequency Ratio Read.

63:61 Reserved.

1BH 27 APIC_BASE Section 10.4.4, “Local APIC Status and Location.”

7:0 Reserved.

8 Boot Strap Processor indicator Bit.

1 = BSP

10:9 Reserved.

11 APIC Global Enable Bit - Permanent till reset.

1 = Enabled
0 = Disabled

31:12 APIC Base Address.

63:32 Reserved.

2AH 42 EBL_CR_POWERON Processor Hard Power-On Configuration. (R/W)

Enables and disables processor features; (R)
indicates current processor configuration.

0 Reserved.1

1 Data Error Checking Enable. (R/W)

1 = Enabled
0 = Disabled

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-232 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
2 Response Error Checking Enable FRCERR
Observation Enable. (R/W)

1 = Enabled
0 = Disabled

3 AERR# Drive Enable. (R/W)

1 = Enabled
0 = Disabled

4 BERR# Enable for Initiator Bus Requests. (R/W)

1 = Enabled
0 = Disabled

5 Reserved.

6 BERR# Driver Enable for Initiator Internal Errors.
(R/W)

1 = Enabled
0 = Disabled

7 BINIT# Driver Enable. (R/W)

1 = Enabled
0 = Disabled

8 Output Tri-state Enabled. (R)

1 = Enabled
0 = Disabled

9 Execute BIST. (R)

1 = Enabled
0 = Disabled

10 AERR# Observation Enabled. (R)

1 = Enabled
0 = Disabled

11 Reserved.

12 BINIT# Observation Enabled. (R)

1 = Enabled
0 = Disabled

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-233

MODEL-SPECIFIC REGISTERS (MSRS)
13 In Order Queue Depth. (R)

1 = 1
0 = 8

14 1-MByte Power on Reset Vector. (R)

1 = 1MByte
0 = 4GBytes

 15 FRC Mode Enable. (R)

1 = Enabled
0 = Disabled

 17:16 APIC Cluster ID. (R)

19:18 System Bus Frequency. (R)

00 = 66MHz
10 = 100Mhz
01 = 133MHz
11 = Reserved

21: 20 Symmetric Arbitration ID. (R)

25:22 Clock Frequency Ratio. (R)

26 Low Power Mode Enable. (R/W)

27 Clock Frequency Ratio.

 63:28 Reserved.1

33H 51 TEST_CTL Test Control Register.

29:0 Reserved.

30 Streaming Buffer Disable.

31 Disable LOCK#.

Assertion for split locked access.

79H 121 BIOS_UPDT_TRIG BIOS Update Trigger Register.

 88 136 BBL_CR_D0[63:0] Chunk 0 data register D[63:0]: used to write to and
read from the L2

 89 137 BBL_CR_D1[63:0] Chunk 1 data register D[63:0]: used to write to and
read from the L2

 8A 138 BBL_CR_D2[63:0] Chunk 2 data register D[63:0]: used to write to and
read from the L2

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-234 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
8BH 139 BIOS_SIGN/BBL_CR_D3[6
3:0]

BIOS Update Signature Register or Chunk 3 data
register D[63:0].

Used to write to and read from the L2 depending
on the usage model

C1H 193 PerfCtr0 (PERFCTR0)

C2H 194 PerfCtr1 (PERFCTR1)

FEH 254 MTRRcap

 116 278 BBL_CR_ADDR [63:0]

BBL_CR_ADDR [63:32]

BBL_CR_ADDR [31:3]

BBL_CR_ADDR [2:0]

Address register: used to send specified address
(A31-A3) to L2 during cache initialization accesses.

Reserved,

Address bits [35:3]

Reserved Set to 0.

 118 280 BBL_CR_DECC[63:0] Data ECC register D[7:0]: used to write ECC and
read ECC to/from L2

 119 281 BBL_CR_CTL

BL_CR_CTL[63:22]

BBL_CR_CTL[21]

Control register: used to program L2 commands to
be issued via cache configuration accesses
mechanism. Also receives L2 lookup response

Reserved

Processor number2

Disable = 1
Enable = 0
Reserved

BBL_CR_CTL[20:19]

BBL_CR_CTL[18]

BBL_CR_CTL[17]

BBL_CR_CTL[16]

BBL_CR_CTL[15:14]

BBL_CR_CTL[13:12]

BBL_CR_CTL[11:10]

BBL_CR_CTL[9:8]

BBL_CR_CTL[7]

BBL_CR_CTL[6:5]

User supplied ECC

Reserved

L2 Hit

Reserved

State from L2

Modified - 11,Exclusive - 10, Shared - 01, Invalid -
00

Way from L2

Way 0 - 00, Way 1 - 01, Way 2 - 10, Way 3 - 11

Way to L2

Reserved

State to L2

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-235

MODEL-SPECIFIC REGISTERS (MSRS)
BBL_CR_CTL[4:0]

01100
01110
01111
00010
00011
010 + MESI encode
111 + MESI encode
100 + MESI encode

L2 Command

Data Read w/ LRU update (RLU)
Tag Read w/ Data Read (TRR)
Tag Inquire (TI)
L2 Control Register Read (CR)
L2 Control Register Write (CW)
Tag Write w/ Data Read (TWR)
Tag Write w/ Data Write (TWW)
Tag Write (TW)

 11A 282 BBL_CR_TRIG Trigger register: used to initiate a cache
configuration accesses access, Write only with Data
= 0.

 11B 283 BBL_CR_BUSY Busy register: indicates when a cache configuration
accesses L2 command is in progress. D[0] = 1 =
BUSY

11E 286 BBL_CR_CTL3

BBL_CR_CTL3[63:26]

BBL_CR_CTL3[25]

BBL_CR_CTL3[24]

BBL_CR_CTL3[23]

Control register 3: used to configure the L2 Cache

Reserved

Cache bus fraction (read only)

Reserved

L2 Hardware Disable (read only)

BBL_CR_CTL3[22:20]

111
110
101
100
011
010
001
000

BBL_CR_CTL3[19]

BBL_CR_CTL3[18]

L2 Physical Address Range support

64GBytes
32GBytes
16GBytes
8GBytes
4GBytes
2GBytes
1GBytes
512MBytes

Reserved

Cache State error checking enable (read/write)

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-236 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
 BBL_CR_CTL3[17:13

00001
00010
00100
01000
10000

BBL_CR_CTL3[12:11]

BBL_CR_CTL3[10:9]

00
01
10
11

BBL_CR_CTL3[8]

BBL_CR_CTL3[7]

BBL_CR_CTL3[6]

BBL_CR_CTL3[5]

BBL_CR_CTL3[4:1]

BBL_CR_CTL3[0]

Cache size per bank (read/write)

256KBytes
512KBytes
1MByte
2MByte
4MBytes

Number of L2 banks (read only)

L2 Associativity (read only)

Direct Mapped
2 Way
4 Way
Reserved

L2 Enabled (read/write)

CRTN Parity Check Enable (read/write)

Address Parity Check Enable (read/write)

ECC Check Enable (read/write)

L2 Cache Latency (read/write)

L2 Configured (read/write

)

174H 372 SYSENTER_CS_MSR CS register target for CPL 0 code

175H 373 SYSENTER_ESP_MSR Stack pointer for CPL 0 stack

176H 374 SYSENTER_EIP_MSR CPL 0 code entry point

179H 377 MCG_CAP

17AH 378 MCG_STATUS

17BH 379 MCG_CTL

186H 390 PerfEvtSel0 (EVNTSEL0)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-237

MODEL-SPECIFIC REGISTERS (MSRS)
16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0.

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

22 ENABLE.

Enables the counting of performance events in
both counters

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-238 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
187H 391 PerfEvtSel1 (EVNTSEL1)

7:0 Event Select.

Refer to Performance Counter section for a list of
event encodings.

15:8 UMASK (Unit Mask).

Unit mask register set to 0 to enable all count
options.

16 USER.

Controls the counting of events at Privilege levels
of 1, 2, and 3.

17 OS.

Controls the counting of events at Privilege level
of 0

18 E.

Occurrence/Duration Mode Select

1 = Occurrence
0 = Duration

19 PC.

Enabled the signaling of performance counter
overflow via BP0 pin.

20 INT.

Enables the signaling of counter overflow via input
to APIC

1 = Enable
0 = Disable

23 INV.

Inverts the result of the CMASK condition

1 = Inverted
0 = Non-Inverted

31:24 CMASK (Counter Mask).

1D9H 473 DEBUGCTLMSR

0 Enable/Disable Last Branch Records

1 Branch Trap Flag

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-239

MODEL-SPECIFIC REGISTERS (MSRS)
2 Performance Monitoring/Break Point Pins

3 Performance Monitoring/Break Point Pins

4 Performance Monitoring/Break Point Pins

5 Performance Monitoring/Break Point Pins

6 Enable/Disable Execution Trace Messages

31:7 Reserved

1DBH 475 LASTBRANCHFROMIP

1DCH 476 LASTBRANCHTOIP

1DDH 477 LASTINTFROMIP

1DEH 478 LASTINTTOIP

1E0H 480 ROB_CR_BKUPTMPDR6

1:0 Reserved

2 Fast String Enable bit. Default is enabled

200H 512 MTRRphysBase0

201H 513 MTRRphysMask0

202H 514 MTRRphysBase1

203H 515 MTRRphysMask1

204H 516 MTRRphysBase2

205H 517 MTRRphysMask2

206H 518 MTRRphysBase3

207H 519 MTRRphysMask3

208H 520 MTRRphysBase4

209H 521 MTRRphysMask4

20AH 522 MTRRphysBase5

20BH 523 MTRRphysMask5

20CH 524 MTRRphysBase6

20DH 525 MTRRphysMask6

20EH 526 MTRRphysBase7

20FH 527 MTRRphysMask7

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-240 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
250H 592 MTRRfix64K_00000

258H 600 MTRRfix16K_80000

259H 601 MTRRfix16K_A0000

268H 616 MTRRfix4K_C0000

269H 617 MTRRfix4K_C8000

26AH 618 MTRRfix4K_D0000

26BH 619 MTRRfix4K_D8000

26CH 620 MTRRfix4K_E0000

26DH 621 MTRRfix4K_E8000

26EH 622 MTRRfix4K_F0000

26FH 623 MTRRfix4K_F8000

2FFH 767 MTRRdefType

2:0 Default memory type

10 Fixed MTRR enable

11 MTRR Enable

400H 1024 MC0_CTL

401H 1025 MC0_STATUS

15:0 MC_STATUS_MCACOD

31:16 MC_STATUS_MSCOD

57 MC_STATUS_DAM

58 MC_STATUS_ADDRV

59 MC_STATUS_MISCV

60 MC_STATUS_EN. (Note: For MC0_STATUS only, this
bit is hardcoded to 1.)

61 MC_STATUS_UC

62 MC_STATUS_O

63 MC_STATUS_V

402H 1026 MC0_ADDR

403H 1027 MC0_MISC Defined in MCA architecture but not implemented
in the P6 family processors

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
Vol. 3B B-241

MODEL-SPECIFIC REGISTERS (MSRS)
404H 1028 MC1_CTL

405H 1029 MC1_STATUS Bit definitions same as MC0_STATUS

406H 1030 MC1_ADDR

407H 1031 MC1_MISC Defined in MCA architecture but not implemented
in the P6 family processors

408H 1032 MC2_CTL

409H 1033 MC2_STATUS Bit definitions same as MC0_STATUS

40AH 1034 MC2_ADDR

40BH 1035 MC2_MISC Defined in MCA architecture but not implemented
in the P6 family processors

40CH 1036 MC4_CTL

40DH 1037 MC4_STATUS Bit definitions same as MC0_STATUS, except bits 0,
4, 57, and 61 are hardcoded to 1.

40EH 1038 MC4_ADDR Defined in MCA architecture but not implemented
in P6 Family processors

40FH 1039 MC4_MISC Defined in MCA architecture but not implemented
in the P6 family processors

410H 1040 MC3_CTL

411H 1041 MC3_STATUS Bit definitions same as MC0_STATUS

412H 1042 MC3_ADDR

413H 1043 MC3_MISC Defined in MCA architecture but not implemented
in the P6 family processors

NOTES
1. Bit 0 of this register has been redefined several times, and is no longer used in P6 family

processors.
2. The processor number feature may be disabled by setting bit 21 of the BBL_CR_CTL MSR

(model-specific register address 119h) to “1”. Once set, bit 21 of the BBL_CR_CTL may not be
cleared. This bit is write-once. The processor number feature will be disabled until the processor
is reset.

3. The Pentium III processor will prevent FSB frequency overclocking with a new shutdown mecha-
nism. If the FSB frequency selected is greater than the internal FSB frequency the processor will
shutdown. If the FSB selected is less than the internal FSB frequency the BIOS may choose to
use bit 11 to implement its own shutdown policy.

Table B-18. MSRs in the P6 Family Processors (Contd.)

Register
Address

Register Name Bit Description

 Hex Dec
B-242 Vol. 3B

MODEL-SPECIFIC REGISTERS (MSRS)
B.12 MSRS IN PENTIUM PROCESSORS
The following MSRs are defined for the Pentium processors. The P5_MC_ADDR,
P5_MC_TYPE, and TSC MSRs (named IA32_P5_MC_ADDR, IA32_P5_MC_TYPE, and
IA32_TIME_STAMP_COUNTER in the Pentium 4 processor) are architectural; that is,
code that accesses these registers will run on Pentium 4 and P6 family processors
without generating exceptions (see Section B.1, “Architectural MSRs”). The CESR,
CTR0, and CTR1 MSRs are unique to Pentium processors; code that accesses these
registers will generate exceptions on Pentium 4 and P6 family processors.

Table B-19. MSRs in the Pentium Processor

Register
Address

 Hex Dec Register Name Bit Description

0H 0 P5_MC_ADDR See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

1H 1 P5_MC_TYPE See Section 15.10.2, “Pentium Processor Machine-Check
Exception Handling.”

10H 16 TSC See Section 16.12, “Time-Stamp Counter.”

11H 17 CESR See Section 30.17.1, “Control and Event Select Register (CESR).”

12H 18 CTR0 Section 30.17.3, “Events Counted.”

13H 19 CTR1 Section 30.17.3, “Events Counted.”
Vol. 3B B-243

MODEL-SPECIFIC REGISTERS (MSRS)
B-244 Vol. 3B

APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS

This appendix describes the MP initialization process for systems that use multiple P6
family processors. This process uses the MP initialization protocol that was intro-
duced with the Pentium Pro processor (see Section 8.4, “Multiple-Processor (MP)
Initialization”). For P6 family processors, this protocol is typically used to boot 2 or 4
processors that reside on single system bus; however, it can support from 2 to 15
processors in a multi-clustered system when the APIC busses are tied together.
Larger systems are not supported.

C.1 OVERVIEW OF THE MP INITIALIZATION PROCESS
FOR P6 FAMILY PROCESSORS

During the execution of the MP initialization protocol, one processor is selected as the
bootstrap processor (BSP) and the remaining processors are designated as applica-
tion processors (APs), see Section 8.4.1, “BSP and AP Processors.” Thereafter, the
BSP manages the initialization of itself and the APs. This initialization includes
executing BIOS initialization code and operating-system initialization code.

The MP protocol imposes the following requirements and restrictions on the system:
• An APIC clock (APICLK) must be provided.
• The MP protocol will be executed only after a power-up or RESET. If the MP

protocol has been completed and a BSP has been chosen, subsequent INITs
(either to a specific processor or system wide) do not cause the MP protocol to be
repeated. Instead, each processor examines its BSP flag (in the APIC_BASE MSR)
to determine whether it should execute the BIOS boot-strap code (if it is the BSP)
or enter a wait-for-SIPI state (if it is an AP).

• All devices in the system that are capable of delivering interrupts to the
processors must be inhibited from doing so for the duration of the MP initial-
ization protocol. The time during which interrupts must be inhibited includes the
window between when the BSP issues an INIT-SIPI-SIPI sequence to an AP and
when the AP responds to the last SIPI in the sequence.

The following special-purpose interprocessor interrupts (IPIs) are used during the
boot phase of the MP initialization protocol. These IPIs are broadcast on the APIC
bus.
• Boot IPI (BIPI)—Initiates the arbitration mechanism that selects a BSP from the

group of processors on the system bus and designates the remainder of the
processors as APs. Each processor on the system bus broadcasts a BIPI to all the
processors following a power-up or RESET.
Vol. 3B C-1

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
• Final Boot IPI (FIPI)—Initiates the BIOS initialization procedure for the BSP. This
IPI is broadcast to all the processors on the system bus, but only the BSP
responds to it. The BSP responds by beginning execution of the BIOS initialization
code at the reset vector.

• Startup IPI (SIPI)—Initiates the initialization procedure for an AP. The SIPI
message contains a vector to the AP initialization code in the BIOS.

Table C-1 describes the various fields of the boot phase IPIs.

For BIPI messages, the lower 4 bits of the vector field contain the APIC ID of the
processor issuing the message and the upper 4 bits contain the “generation ID” of
the message. All P6 family processor will have a generation ID of 4H. BIPIs will there-
fore use vector values ranging from 40H to 4EH (4FH can not be used because FH is
not a valid APIC ID).

C.2 MP INITIALIZATION PROTOCOL ALGORITHM
Following a power-up or RESET of a system, the P6 family processors in the system
execute the MP initialization protocol algorithm to initialize each of the processors on
the system bus. In the course of executing this algorithm, the following boot-up and
initialization operations are carried out:

1. Each processor on the system bus is assigned a unique APIC ID, based on system
topology (see Section 8.4.5, “Identifying Logical Processors in an MP System”).
This ID is written into the local APIC ID register for each processor.

2. Each processor executes its internal BIST simultaneously with the other
processors on the system bus. Upon completion of the BIST (at T0), each
processor broadcasts a BIPI to “all including self” (see Figure 1).

3. APIC arbitration hardware causes all the APICs to respond to the BIPIs one at a
time (at T1, T2, T3, and T4).

4. When the first BIPI is received (at time T1), each APIC compares the four least
significant bits of the BIPI’s vector field with its APIC ID. If the vector and APIC ID
match, the processor selects itself as the BSP by setting the BSP flag in its

Table C-1. Boot Phase IPI Message Format

Type
Destination
Field

Destination
Shorthand

Trigger
Mode Level

Destination
Mode

Delivery
Mode

Vector
(Hex)

BIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

40 to 4E*

FIPI Not used All including
self

Edge Deassert Don’t Care Fixed
(000)

10

SIPI Used All excluding
self

Edge Assert Physical StartUp
(110)

00 to FF

NOTE:
* For all P6 family processors.
C-2 Vol. 3B

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
IA32_APIC_BASE MSR. If the vector and APIC ID do not match, the processor
selects itself as an AP by entering the “wait for SIPI” state. (Note that in Figure 1,
the BIPI from processor 1 is the first BIPI to be handled, so processor 1 becomes
the BSP.)

5. The newly established BSP broadcasts an FIPI message to “all including self.” The
FIPI is guaranteed to be handled only after the completion of the BIPIs that were
issued by the non-BSP processors.

6. After the BSP has been established, the outstanding BIPIs are received one at a
time (at T2, T3, and T4) and ignored by all processors.

7. When the FIPI is finally received (at T5), only the BSP responds to it. It responds
by fetching and executing BIOS boot-strap code, beginning at the reset vector
(physical address FFFF FFF0H).

8. As part of the boot-strap code, the BSP creates an ACPI table and an MP table and
adds its initial APIC ID to these tables as appropriate.

9. At the end of the boot-strap procedure, the BSP broadcasts a SIPI message to all
the APs in the system. Here, the SIPI message contains a vector to the BIOS AP
initialization code (at 000V V000H, where VV is the vector contained in the SIPI
message).

10. All APs respond to the SIPI message by racing to a BIOS initialization semaphore.
The first one to the semaphore begins executing the initialization code. (See MP
init code for semaphore implementation details.) As part of the AP initialization
procedure, the AP adds its APIC ID number to the ACPI and MP tables as appro-

Figure C-1. MP System With Multiple Pentium III Processors

Pentium III
Processor 0

Pentium III
Processor 1

Pentium III
Processor 2

Pentium III
Processor 3

BIPI.1 BIPI.0 BIPI.3 BIPI.2 FIPI

T0 T1 T2 T3 T4 T5

System (CPU) Bus

APIC Bus

Serial Bus Activity

Processor 1
Becomes BSP
Vol. 3B C-3

MP INITIALIZATION FOR P6 FAMILY PROCESSORS
priate. At the completion of the initialization procedure, the AP executes a CLI
instruction (to clear the IF flag in the EFLAGS register) and halts itself.

11. When each of the APs has gained access to the semaphore and executed the AP
initialization code and all written their APIC IDs into the appropriate places in the
ACPI and MP tables, the BSP establishes a count for the number of processors
connected to the system bus, completes executing the BIOS boot-strap code,
and then begins executing operating-system boot-strap and start-up code.

12. While the BSP is executing operating-system boot-strap and start-up code, the
APs remain in the halted state. In this state they will respond only to INITs, NMIs,
and SMIs. They will also respond to snoops and to assertions of the STPCLK# pin.

See Section 8.4.4, “MP Initialization Example,” for an annotated example the use of
the MP protocol to boot IA-32 processors in an MP. This code should run on any IA-32
processor that used the MP protocol.

C.2.1 Error Detection and Handling During the MP Initialization
Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors
may be transient or permanent and can be caused by a variety of failure mechanisms
(for example, broken traces, soft errors during bus usage, etc.). All serial bus related
errors will result in an APIC checksum or acceptance error.

The MP initialization protocol makes the following assumptions regarding errors that
occur during initialization:
• If errors are detected on the APIC bus during execution of the MP initialization

protocol, the processors that detect the errors are shut down.
• The MP initialization protocol will be executed by processors even if they fail their

BIST sequences.
C-4 Vol. 3B

APPENDIX D
PROGRAMMING THE LINT0 AND LINT1 INPUTS

The following procedure describes how to program the LINT0 and LINT1 local APIC
pins on a processor after multiple processors have been booted and initialized
(as described in Appendix C, “MP Initialization For P6 Family Processors,” and
Appendix D, “Programming the LINT0 and LINT1 Inputs.” In this example, LINT0 is
programmed to be the ExtINT pin and LINT1 is programmed to be the NMI pin.

D.1 CONSTANTS
The following constants are defined:

LVT1EQU 0FEE00350H
LVT2EQU 0FEE00360H
LVT3 EQU 0FEE00370H
SVR EQU 0FEE000F0H

D.2 LINT[0:1] PINS PROGRAMMING PROCEDURE
Use the following to program the LINT[1:0] pins:

1. Mask 8259 interrupts.

2. Enable APIC via SVR (spurious vector register) if not already enabled.

MOV ESI, SVR ; address of SVR
MOV EAX, [ESI]
OR EAX, APIC_ENABLED ; set bit 8 to enable (0 on reset)
MOV [ESI], EAX

3. Program LVT1 as an ExtINT which delivers the signal to the INTR signal of all
processors cores listed in the destination as an interrupt that originated in an
externally connected interrupt controller.

MOV ESI, LVT1
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10, 12, 14 and 16
OR EAX, 700H; Bit 16=0 for not masked, Bit 15=0 for edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 111b for ExtINT

MOV [ESI], EAX; Write to LVT1
Vol. 3B D-1

PROGRAMMING THE LINT0 AND LINT1 INPUTS
4. Program LVT2 as NMI, which delivers the signal on the NMI signal of all processor
cores listed in the destination.

MOV ESI, LVT2
MOV EAX, [ESI]
AND EAX, 0FFFE58FFH; mask off bits 8-10 and 15
OR EAX, 000000400H ; Bit 16=0 for not masked, Bit 15=0 edge

; triggered, Bit 13=0 for high active input
; polarity, Bits 8-10 are 100b for NMI

MOV [ESI], EAX; Write to LVT2
;Unmask 8259 interrupts and allow NMI.
D-2 Vol. 3B

APPENDIX E
INTERPRETING MACHINE-CHECK

ERROR CODES

Encoding of the model-specific and other information fields is different across
processor families. The differences are documented in the following sections.

E.1 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 06H MACHINE ERROR CODES
FOR MACHINE CHECK

Section E.1 provides information for interpreting additional model-specific fields for
external bus errors relating to processor family 06H. The references to processor
family 06H refers to only IA-32 processors with CPUID signatures listed in Table E-1.

These errors are reported in the IA32_MCi_STATUS MSRs. They are reported archi-
tecturally) as compound errors with a general form of 0000 1PPT RRRR IILL in the
MCA error code field. See Chapter 15 for information on the interpretation of
compound error codes. Incremental decoding information is listed in Table E-2.

Table E-1. CPUID DisplayFamily_DisplayModel Signatures for Processor Family 06H
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_09H Intel Pentium M processor

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium III Xeon Processor, Intel Pentium III Processor

06_03H, 06_05H Intel Pentium II Xeon Processor, Intel Pentium II Processor

06_01H Intel Pentium Pro Processor
Vol. 3B E-1

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Model specific
errors

19-24 Bus queue request
type

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error
E-2 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Model specific
errors

27-25 Bus queue error type 000 for BQ_ERR_HARD_TYPE error

001 for BQ_ERR_DOUBLE_TYPE error

010 for BQ_ERR_AERR2_TYPE error

100 for BQ_ERR_SINGLE_TYPE error

101 for BQ_ERR_AERR1_TYPE error

Model specific
errors

28 FRC error 1 if FRC error active

29 BERR 1 if BERR is driven

30 Internal BINIT 1 if BINIT driven for this processor

31 Reserved Reserved

Other
information

32-34 Reserved Reserved

35 External BINIT 1 if BINIT is received from external bus.

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37 Bus BINIT This bit is asserted in IA32_MCi_STATUS if this
component has received a hard error response
on a split transaction one access that has
needed to be split across the 64-bit external
bus interface into two accesses).

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 15-bit ROB
time-out counter carries a 1 out of its high
order bit. 2 The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

Table E-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B E-3

INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the
8-bit PIC timer which is a divide by 128 of the
bus clock the bus clock is 1:2, 1:3, 1:4 of the
core clock). When a carry out of the 8-bit PIC
timer occurs, the ROB counter counts up by
one. While this bit is asserted, it cannot be
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

44 AERR This bit is asserted in IA32_MCi_STATUS if this
component has initiated 2 failing bus
transactions which have failed due to Address
Parity Errors AERR asserted). While this bit is
asserted, it cannot be overwritten.

45 UECC The Uncorrectable ECC error bit is asserted in
IA32_MCi_STATUS for uncorrected ECC errors.
While this bit is asserted, the ECC syndrome
field will not be overwritten.

46 CECC The correctable ECC error bit is asserted in
IA32_MCi_STATUS for corrected ECC errors.

47-54 ECC syndrome The ECC syndrome field in IA32_MCi_STATUS
contains the 8-bit ECC syndrome only if the
error was a correctable/uncorrectable ECC error
and there wasn't a previous valid ECC error
syndrome logged in IA32_MCi_STATUS.

A previous valid ECC error in IA32_MCi_STATUS
is indicated by IA32_MCi_STATUS.bit45
uncorrectable error occurred) being asserted.
After processing an ECC error, machine-check
handling software should clear
IA32_MCi_STATUS.bit45 so that future ECC
error syndromes can be logged.

Table E-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
E-4 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
E.2 INCREMENTAL DECODING INFORMATION: INTEL
CORE 2 PROCESSOR FAMILY MACHINE ERROR CODES
FOR MACHINE CHECK

Table E-4 provides information for interpreting additional model-specific fields for
external bus errors relating to processor based on Intel Core microarchitecture,
which implements the P4 bus specification. Table E-3 lists the CPUID signatures for
Intel 64 processors that are covered by Table E-4. These errors are reported in the
IA32_MCi_STATUS MSRs. They are reported architecturally) as compound errors
with a general form of 0000 1PPT RRRR IILL in the MCA error code field. See Chapter
15 for information on the interpretation of compound error codes.

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.
2. For processors with a CPUID signature of 06_0EH, a ROB time-out occurs when the 23-bit ROB

time-out counter carries a 1 out of its high order bit.

Table E-3. CPUID DisplayFamily_DisplayModel Signatures for Processors Based on
Intel Core Microarchitecture

DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_1DH Intel Xeon Processor 7400 series.

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad
processor Q9650.

06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel
Core 2 Quad, Intel Core 2 Extreme, Intel Core 2 Duo processors,
Intel Pentium dual-core processors

Table E-2. Incremental Decoding Information: Processor Family 06H
Machine Error Codes For Machine Check (Contd.)

Type Bit No. Bit Function Bit Description
Vol. 3B E-5

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model specific
errors

16-18 Reserved Reserved

Model specific
errors

19-24 Bus queue request
type

‘000001 for BQ_PREF_READ_TYPE error

000000 for BQ_DCU_READ_TYPE error

000010 for BQ_IFU_DEMAND_TYPE error

000011 for BQ_IFU_DEMAND_NC_TYPE error

000100 for BQ_DCU_RFO_TYPE error

000101 for BQ_DCU_RFO_LOCK_TYPE error

000110 for BQ_DCU_ITOM_TYPE error

001000 for BQ_DCU_WB_TYPE error

001010 for BQ_DCU_WCEVICT_TYPE error

001011 for BQ_DCU_WCLINE_TYPE error

001100 for BQ_DCU_BTM_TYPE error

001101 for BQ_DCU_INTACK_TYPE error

001110 for BQ_DCU_INVALL2_TYPE error

001111 for BQ_DCU_FLUSHL2_TYPE error

010000 for BQ_DCU_PART_RD_TYPE error

010010 for BQ_DCU_PART_WR_TYPE error

010100 for BQ_DCU_SPEC_CYC_TYPE error

011000 for BQ_DCU_IO_RD_TYPE error

011001 for BQ_DCU_IO_WR_TYPE error

011100 for BQ_DCU_LOCK_RD_TYPE error

011110 for BQ_DCU_SPLOCK_RD_TYPE error

011101 for BQ_DCU_LOCK_WR_TYPE error

100100 for BQ_L2_WI_RFO_TYPE error

100110 for BQ_L2_WI_ITOM_TYPE error
E-6 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Model specific
errors

27-25 Bus queue error type ‘001 for Address Parity Error

‘010 for Response Hard Error

‘011 for Response Parity Error

Model specific
errors

28 MCE Driven 1 if MCE is driven

29 MCE Observed 1 if MCE is observed

30 Internal BINIT 1 if BINIT driven for this processor

31 BINIT Observed 1 if BINIT is observed for this processor

Other
information

32-33 Reserved Reserved

34 PIC and FSB data
parity

Data Parity detected on either PIC or FSB
access

35 Reserved Reserved

36 Response parity error This bit is asserted in IA32_MCi_STATUS if this
component has received a parity error on the
RS[2:0]# pins for a response transaction. The
RS signals are checked by the RSP# external
pin.

37 FSB address parity Address parity error detected:

1 = Address parity error detected
0 = No address parity error

38 Timeout BINIT This bit is asserted in IA32_MCi_STATUS if this
component has experienced a ROB time-out,
which indicates that no micro-instruction has
been retired for a predetermined period of
time.

A ROB time-out occurs when the 23-bit ROB
time-out counter carries a 1 out of its high
order bit. The timer is cleared when a micro-
instruction retires, an exception is detected by
the core processor, RESET is asserted, or when
a ROB BINIT occurs.

Table E-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
Vol. 3B E-7

INTERPRETING MACHINE-CHECK ERROR CODES
The ROB time-out counter is prescaled by the
8-bit PIC timer which is a divide by 128 of the
bus clock the bus clock is 1:2, 1:3, 1:4 of the
core clock). When a carry out of the 8-bit PIC
timer occurs, the ROB counter counts up by
one. While this bit is asserted, it cannot be
overwritten by another error.

39-41 Reserved Reserved

42 Hard error This bit is asserted in IA32_MCi_STATUS if this
component has initiated a bus transactions
which has received a hard error response. While
this bit is asserted, it cannot be overwritten.

43 IERR This bit is asserted in IA32_MCi_STATUS if this
component has experienced a failure that
causes the IERR pin to be asserted. While this
bit is asserted, it cannot be overwritten.

44 Reserved Reserved

45 Reserved Reserved

46 Reserved Reserved

47-54 Reserved Reserved

55-56 Reserved Reserved.

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Table E-4. Incremental Bus Error Codes of Machine Check for Processors Based on
Intel Core Microarchitecture

Type Bit No. Bit Function Bit Description
E-8 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
E.2.1 Model-Specific Machine Check Error Codes for Intel Xeon
Processor 7400 Series

Intel Xeon processor 7400 series has machine check register banks that generally
follows the description of Chapter 15 and Section E.2. Additional error codes specific
to Intel Xeon processor 7400 series is describe in this section.

MC4_STATUS[63:0] is the main error logging for the processor’s L3 and front side
bus errors for Intel Xeon processor 7400 series. It supports the L3 Errors, Bus and
Interconnect Errors Compound Error Codes in the MCA Error Code Field.

E.2.1.1 Processor Machine Check Status Register
Incremental MCA Error Code Definition

Intel Xeon processor 7400 series use compound MCA Error Codes for logging its Bus
internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It defines
incremental Machine Check error types (IA32_MC6_STATUS[15:0]) beyond those
defined in Chapter 15. Table E-5 lists these incremental MCA error code types that
apply to IA32_MC6_STATUS. Error code details are specified in MC6_STATUS
[31:16] (see Section E.2.2), the "Model Specific Error Code" field. The information
in the "Other_Info" field (MC4_STATUS[56:32]) is common to the three processor
error types and contains a correctable event count and specifies the MC6_MISC
register format.

Table E-5. Incremental MCA Error Code Types for Intel Xeon Processor 7400

Processor MCA_Error_Code (MC6_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

B Bus and
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations
Vol. 3B E-9

INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for
MC4_STATUS[15:0].

E.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field

E.2.2.1 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC6_STATUS (bits 31:16)

E.2.2.2 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

Table E-6. Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request
Parity

Parity error detected during FSB request phase

19:17 Reserved

20 FSB Hard Fail
Response

“Hard Failure“ response received for a local transaction

21 FSB Response
Parity

Parity error on FSB response field detected

22 FSB Data Parity FSB data parity error on inbound data detected

31:23 --- Reserved

Table E-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0x0001 Inclusion Error from Core 0

0000_0000_0000_0010 0x0002 Inclusion Error from Core 1

0000_0000_0000_0011 0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100 0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101 0x0005 Inclusion Error from FSB

0000_0000_0000_0110 0x0006 SNP Stall Error from FSB

0000_0000_0000_0111 0x0007 Write Stall Error from FSB
E-10 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
E.3 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_1AH, MACHINE ERROR CODES FOR MACHINE
CHECK

Table E-8 through Table E-12 provide information for interpreting additional model-
specific fields for memory controller errors relating to the processor family with
CPUID DisplayFamily_DisplaySignature 06_1AH, which supports Intel QuickPath
Interconnect links. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC0 and IA32_MC1, incremental error codes for
internal machine check is reported in the register bank IA32_MC7, and incremental
error codes for the memory controller unit is reported in the register banks
IA32_MC8.

0000_0000_0000_1000 0x0008 FSB Arb Timeout Error

0000_0000_0000_1010 0x000A Inclusion Error from Core 2

0000_0000_0000_1011 0x000B Write Exclusive Error from Core 2

0000_0010_0000_0000 0x0200 Internal Timeout error

0000_0011_0000_0000 0x0300 Internal Timeout Error

0000_0100_0000_0000 0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

0000_0101_0000_0000 0x0500 Quiet cycle Timeout Error (correctable)

1100_0000_0000_0010 0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 0xC004 Correctable ECC event on outgoing Core 1 data

1100_0000_0000_1000 0xC008 Correctable ECC event on outgoing Core 2 data

1110_0000_0000_0010 0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 0xE004 Uncorrectable ECC error on outgoing Core 1 data

1110_0000_0000_1000 0xE008 Uncorrectable ECC error on outgoing Core 2 data

 — all other encodings — Reserved

Table E-7. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description
Vol. 3B E-11

INTERPRETING MACHINE-CHECK ERROR CODES
E.3.1 Intel QPI Machine Check Errors

Table E-8. Intel QPI Machine Check Error Codes for IA32_MC0_STATUS and
IA32_MC1_STATUS

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

16 Header Parity if 1, QPI Header had bad parity

17 Data Parity If 1, QPI Data packet had bad parity

18 Retries Exceeded If 1, number of QPI retries was exceeded

19 Received Poison if 1, Received a data packet that was marked as
poisoned by the sender

21-20 Reserved Reserved

22 Unsupported
Message

If 1, QPI received a message encoding it does
not support

23 Unsupported Credit If 1, QPI credit type is not supported.

24 Receive Flit Overrun If 1, Sender sent too many QPI flits to the
receiver.

25 Received Failed
Response

If 1, Indicates that sender sent a failed
response to receiver.

26 Receiver Clock Jitter If 1, clock jitter detected in the internal QPI
clocking

56-27 Reserved Reserved

Status register
validity
indicators1

57-63
E-12 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-9. Intel QPI Machine Check Error Codes for IA32_MC0_MISC and
IA32_MC1_MISC

E.3.2 Internal Machine Check Errors

Table E-10. Machine Check Error Codes for IA32_MC7_STATUS

Type Bit No. Bit Function Bit Description

Model specific
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 QPI Opcode Message class and opcode from the packet with
the error

13-8 RTId QPI Request Transaction ID

15-14 Reserved Reserved

18-16 RHNID QPI Requestor/Home Node ID

23-19 Reserved Reserved

24 IIB QPI Interleave/Head Indication Bit

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

23-16 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

03h - Reset firmware did not complete

08h - Received an invalid CMPD

0Ah - Invalid Power Management Request

0Dh - Invalid S-state transition

11h - VID controller does not match POC
controller selected

1Ah - MSID from POC does not match CPU MSID

56-32 Reserved Reserved

Status register
validity
indicators1

57-63
Vol. 3B E-13

INTERPRETING MACHINE-CHECK ERROR CODES
E.3.3 Memory Controller Errors

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Table E-11. Incremental Memory Controller Error Codes of Machine Check for
IA32_MC8_STATUS

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Memory error format: 1MMMCCCC

Model specific
errors

16 Read ECC error if 1, ECC occurred on a read

17 RAS ECC error If 1, ECC occurred on a scrub

18 Write parity error If 1, bad parity on a write

19 Redundancy loss if 1, Error in half of redundant memory

20 Reserved Reserved

21 Memory range error If 1, Memory access out of range

22 RTID out of range If 1, Internal ID invalid

23 Address parity error If 1, bad address parity

24 Byte enable parity
error

If 1, bad enable parity

Other
information

37-25 Reserved Reserved

52:38 CORE_ERR_CNT Corrected error count

56-53 Reserved Reserved

Status register
validity
indicators1

57-63
E-14 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-12. Incremental Memory Controller Error Codes of Machine Check for
IA32_MC8_MISC

E.4 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY WITH CPUID
DISPLAYFAMILY_DISPLAYMODEL SIGNATURE
06_2DH, MACHINE ERROR CODES FOR MACHINE
CHECK

Table E-8 through Table E-12 provide information for interpreting additional model-
specific fields for memory controller errors relating to the processor family with
CPUID DisplayFamily_DisplaySignature 06_2DH, which supports Intel QuickPath
Interconnect links. Incremental MC error codes related to the Intel QPI links are
reported in the register banks IA32_MC6 and IA32_MC7, incremental error codes for
internal machine check error from PCU controller is reported in the register bank
IA32_MC4, and incremental error codes for the memory controller unit is reported in
the register banks IA32_MC8-IA32_MC11.

Type Bit No. Bit Function Bit Description

Model specific
errors1

NOTES:
1. Which of these fields are valid depends on the error type.

7-0 RTId Transaction Tracker ID

15-8 Reserved Reserved

17-16 DIMM DIMM ID which got the error

19-18 Channel Channel ID which got the error

31-20 Reserved Reserved

63-32 Syndrome ECC Syndrome
Vol. 3B E-15

INTERPRETING MACHINE-CHECK ERROR CODES
E.4.1 Internal Machine Check Errors

Table E-13. Machine Check Error Codes for IA32_MC4_STATUS
Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15 MCACOD

Model specific
errors

19:16 Reserved except for
the following

0000b - No Error

0001b - Non_IMem_Sel

0010b - I_Parity_Error

0011b - Bad_OpCode

0100b - I_Stack_Underflow

0101b - I_Stack_Overflow

0110b - D_Stack_Underflow

0111b - D_Stack_Overflow

1000b - Non-DMem_Sel

1001b - D_Parity_Error

23-20 Reserved Reserved

31-24 Reserved except for
the following

00h - No Error

0Dh - MC_IMC_FORCE_SR_S3_TIMEOUT

0Eh - MC_CPD_UNCPD_ST_TIMOUT

0Fh - MC_PKGS_SAFE_WP_TIMEOUT

43h - MC_PECI_MAILBOX_QUIESCE_TIMEOUT

5Ch - MC_MORE_THAN_ONE_LT_AGENT

60h - MC_INVALID_PKGS_REQ_PCH

61h - MC_INVALID_PKGS_REQ_QPI

62h - MC_INVALID_PKGS_RES_QPI

63h - MC_INVALID_PKGC_RES_PCH

64h - MC_INVALID_PKG_STATE_CONFIG

70h - MC_WATCHDG_TIMEOUT_PKGC_SLAVE

71h - MC_WATCHDG_TIMEOUT_PKGC_MASTER

70h - MC_WATCHDG_TIMEOUT_PKGS_MASTER

7ah - MC_HA_FAILSTS_CHANGE_DETECTED

81h -
MC_RECOVERABLE_DIE_THERMAL_TOO_HOT
E-16 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
56-32 Reserved Reserved

Status register
validity
indicators1

57-63

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

Type Bit No. Bit Function Bit Description
Vol. 3B E-17

INTERPRETING MACHINE-CHECK ERROR CODES
E.4.2 Intel QPI Machine Check Errors

Table E-14. Intel QPI MC Error Codes for IA32_MC6_STATUS and IA32_MC7_STATUS

E.4.3 Integrated Memory Controller Machine Check Errors
MC error codes associated with integrated memory controllers are reported in the
MSRs IA32_MC8_STATUS-IA32_MC11_STATUS. The supported error codes are
follows the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture,”).

E.5 INCREMENTAL DECODING INFORMATION:
PROCESSOR FAMILY 0FH MACHINE ERROR CODES
FOR MACHINE CHECK

Table E-15 provides information for interpreting additional family 0FH model-specific
fields for external bus errors. These errors are reported in the IA32_MCi_STATUS
MSRs. They are reported architecturally) as compound errors with a general form of
0000 1PPT RRRR IILL in the MCA error code field. See Chapter 15 for information on
the interpretation of compound error codes.

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15 MCACOD Bus error format: 1PPTRRRRIILL

Model specific
errors

56-16 Reserved Reserved

Status register
validity
indicators1

57-63
E-18 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-10 provides information on interpreting additional family 0FH, model specific
fields for cache hierarchy errors. These errors are reported in one of the

Table E-15. Incremental Decoding Information: Processor Family 0FH
Machine Error Codes For Machine Check

Type Bit No. Bit Function Bit Description

MCA error
codes1

NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,”

for more information.

0-15

Model-specific
error codes

16 FSB address parity Address parity error detected:

1 = Address parity error detected

0 = No address parity error

17 Response hard fail Hardware failure detected on response

18 Response parity Parity error detected on response

19 PIC and FSB data parity Data Parity detected on either PIC or FSB
access

20 Processor Signature =
00000F04H: Invalid PIC
request

All other processors:

Reserved

Processor Signature = 00000F04H.
Indicates error due to an invalid PIC request
access was made to PIC space with WB
memory):

1 = Invalid PIC request error

0 = No Invalid PIC request error

Reserved

21 Pad state machine The state machine that tracks P and N
data-strobe relative timing has become
unsynchronized or a glitch has been
detected.

22 Pad strobe glitch Data strobe glitch

Type Bit No. Bit Function Bit Description

23 Pad address glitch Address strobe glitch

Other
Information

24-56 Reserved Reserved

Status register
validity
indicators1

57-63
Vol. 3B E-19

INTERPRETING MACHINE-CHECK ERROR CODES
IA32_MCi_STATUS MSRs. These errors are reported, architecturally, as compound
errors with a general form of 0000 0001 RRRR TTLL in the MCA error code field. See
Chapter 15 for how to interpret the compound error code.

E.5.1 Model-Specific Machine Check Error Codes for Intel Xeon
Processor MP 7100 Series

Intel Xeon processor MP 7100 series has 5 register banks which contains information
related to Machine Check Errors. MCi_STATUS[63:0] refers to all 5 register banks.
MC0_STATUS[63:0] through MC3_STATUS[63:0] is the same as on previous genera-
tion of Intel Xeon processors within Family 0FH. MC4_STATUS[63:0] is the main error
logging for the processor’s L3 and front side bus errors. It supports the L3 Errors, Bus
and Interconnect Errors Compound Error Codes in the MCA Error Code Field.

Table E-16. MCi_STATUS Register Bit Definition

Bit Field Name Bits Description

MCA_Error_Code 15:0 Specifies the machine check architecture defined error code for the
machine check error condition detected. The machine check
architecture defined error codes are guaranteed to be the same for
all Intel Architecture processors that implement the machine check
architecture. See tables below

Model_Specific_E
rror_Code

31:16 Specifies the model specific error code that uniquely identifies the
machine check error condition detected. The model specific error
codes may differ among Intel Architecture processors for the same
Machine Check Error condition. See tables below

Other_Info 56:32 The functions of the bits in this field are implementation specific
and are not part of the machine check architecture. Software that is
intended to be portable among Intel Architecture processors should
not rely on the values in this field.

PCC 57 Processor Context Corrupt flag indicates that the state of
the processor might have been corrupted by the error
condition detected and that reliable restarting of the processor may
not be possible. When clear, this flag indicates that the error did not
affect the processor's state. This bit will always be set for MC errors
which are not corrected.

ADDRV 58 MC_ADDR register valid flag indicates that the MC_ADDR register
contains the address where the error occurred. When clear, this flag
indicates that the MC_ADDR register does not contain the address
where the error occurred. The MC_ADDR register should not be
read if the ADDRV bit is clear.
E-20 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
E.5.1.1 Processor Machine Check Status Register
MCA Error Code Definition

Intel Xeon processor MP 7100 series use compound MCA Error Codes for logging its
CBC internal machine check errors, L3 Errors, and Bus/Interconnect Errors. It
defines additional Machine Check error types (IA32_MC4_STATUS[15:0]) beyond
those defined in Chapter 15. Table E-17 lists these model-specific MCA error codes.
Error code details are specified in MC4_STATUS [31:16] (see Section E.5.3), the
"Model Specific Error Code" field. The information in the "Other_Info" field
(MC4_STATUS[56:32]) is common to the three processor error types and contains a
correctable event count and specifies the MC4_MISC register format.

MISCV 59 MC_MISC register valid flag indicates that the MC_MISC register
contains additional information regarding the error. When clear, this
flag indicates that the MC_MISC register does not contain additional
information regarding the error. MC_MISC should not be read if the
MISCV bit is not set.

EN 60 Error enabled flag indicates that reporting of the machine check
exception for this error was enabled by the associated flag bit of
the MC_CTL register. Note that correctable errors do not have
associated enable bits in the MC_CTL register so the EN bit should
be clear when a correctable error is logged.

UC 61 Error uncorrected flag indicates that the processor did not correct
the error condition. When clear, this flag indicates that the
processor was able to correct the event condition.

OVER 62 Machine check overflow flag indicates that a machine check error
occurred while the results of a previous error were still in the
register bank (i.e., the VAL bit was already set in the
MC_STATUS register). The processor sets the OVER flag and
software is responsible for clearing it. Enabled errors are written
over disabled errors, and uncorrected errors are written over
corrected events. Uncorrected errors are not written over previous
valid uncorrected errors.

VAL 63 MC_STATUS register valid flag indicates that the information within
the MC_STATUS register is valid. When this flag is set, the processor
follows the rules given for the OVER flag in the MC_STATUS register
when overwriting previously valid entries. The processor sets the
VAL flag and software is responsible for clearing it.

Table E-16. MCi_STATUS Register Bit Definition (Contd.)

Bit Field Name Bits Description
Vol. 3B E-21

INTERPRETING MACHINE-CHECK ERROR CODES
The Bold faced binary encodings are the only encodings used by the processor for
MC4_STATUS[15:0].

E.5.2 Other_Info Field (all MCA Error Types)

The MC4_STATUS[56:32] field is common to the processor's three MCA error types
(A, B & C):

Table E-17. Incremental MCA Error Code for Intel Xeon Processor MP 7100

Processor MCA_Error_Code (MC4_STATUS[15:0])

Type Error Code Binary Encoding Meaning

C Internal Error 0000 0100 0000 0000 Internal Error Type Code

A L3 Tag Error 0000 0001 0000 1011 L3 Tag Error Type Code

B Bus and
Interconnect

Error

0000 100x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 101x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 110x 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations

0000 1110 0000 1111 Bus and Interconnection Error Type Code

0000 1111 0000 1111 Not used but this encoding is reserved for
compatibility with other MCA
implementations
E-22 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Table E-18. Other Information Field Bit Definition

Bit Field Name Bits Description

39:32 8-bit
Correct
able
Event
Count

Holds a count of the number of correctable events since cold reset.
This is a saturating counter; the counter begins at 1 (with the first
error) and saturates at a count of 255.

41:40 MC4_MI
SC
format
type

The value in this field specifies the format of information in the
MC4_MISC register. Currently, only two values are defined. Valid
only when MISCV is asserted.

43:42 – Reserved

51:44 ECC
syndro
me

ECC syndrome value for a correctable ECC event when the “Valid
ECC syndrome” bit is asserted

52 Valid
ECC
syndro
me

Set when correctable ECC event supplies the ECC syndrome

54:53 Thresh
old-
Based
Error
Status

00: No tracking - No hardware status tracking is provided for the
structure reporting this event.

01: Green - Status tracking is provided for the structure posting the
event; the current status is green (below threshold).

10: Yellow - Status tracking is provided for the structure posting the
event; the current status is yellow (above threshold).

11: Reserved for future use

Valid only if Valid bit (bit 63) is set

Undefined if the UC bit (bit 61) is set

56:55 – Reserved
Vol. 3B E-23

INTERPRETING MACHINE-CHECK ERROR CODES
E.5.3 Processor Model Specific Error Code Field

E.5.3.1 MCA Error Type A: L3 Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

E.5.3.2 Processor Model Specific Error Code Field
Type B: Bus and Interconnect Error

Note: The Model Specific Error Code field in MC4_STATUS (bits 31:16)

Table E-19. Type A: L3 Error Codes

Bit
Num

Sub-Field
Name

Description Legal Value(s)

18:16 L3 Error
Code

Describes the L3
error
encountered

000 - No error

001 - More than one way reporting a correctable
event

010 - More than one way reporting an uncorrectable
error

011 - More than one way reporting a tag hit

100 - No error

101 - One way reporting a correctable event

110 - One way reporting an uncorrectable error

111 - One or more ways reporting a correctable event
while one or more ways are reporting an
uncorrectable error

20:19 – Reserved 00

31:21 – Fixed pattern 0010_0000_000
E-24 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
Exactly one of the bits defined in the preceding table will be set for a Bus and Inter-
connect Error. The Data ECC can be correctable or uncorrectable (the
MC4_STATUS.UC bit, of course, distinguishes between correctable and uncorrectable
cases with the Other_Info field possibly providing the ECC Syndrome for correctable
errors). All other errors for this processor MCA Error Type are uncorrectable.

Table E-20. Type B Bus and Interconnect Error Codes

Bit Num Sub-Field Name Description

16 FSB Request
Parity

Parity error detected during FSB request phase

17 Core0 Addr Parity Parity error detected on Core 0 request’s address field

18 Core1 Addr Parity Parity error detected on Core 1 request’s address field

19 Reserved

20 FSB Response
Parity

Parity error on FSB response field detected

21 FSB Data Parity FSB data parity error on inbound data detected

22 Core0 Data Parity Data parity error on data received from Core 0 detected

23 Core1 Data Parity Data parity error on data received from Core 1 detected

24 IDS Parity Detected an Enhanced Defer parity error (phase A or phase B)

25 FSB Inbound Data
ECC

Data ECC event to error on inbound data (correctable or
uncorrectable)

26 FSB Data Glitch Pad logic detected a data strobe ‘glitch’ (or sequencing error)

27 FSB Address Glitch Pad logic detected a request strobe ‘glitch’ (or sequencing
error)

31:28 --- Reserved
Vol. 3B E-25

INTERPRETING MACHINE-CHECK ERROR CODES
E.5.3.3 Processor Model Specific Error Code Field
Type C: Cache Bus Controller Error

Table E-21. Type C Cache Bus Controller Error Codes

MC4_STATUS[31:16] (MSCE) Value Error Description

0000_0000_0000_0001 0x0001 Inclusion Error from Core 0

0000_0000_0000_0010 0x0002 Inclusion Error from Core 1

0000_0000_0000_0011 0x0003 Write Exclusive Error from Core 0

0000_0000_0000_0100 0x0004 Write Exclusive Error from Core 1

0000_0000_0000_0101 0x0005 Inclusion Error from FSB

0000_0000_0000_0110 0x0006 SNP Stall Error from FSB

0000_0000_0000_0111 0x0007 Write Stall Error from FSB

0000_0000_0000_1000 0x0008 FSB Arb Timeout Error

0000_0000_0000_1001 0x0009 CBC OOD Queue Underflow/overflow

0000_0001_0000_0000 0x0100 Enhanced Intel SpeedStep Technology TM1-TM2 Error

0000_0010_0000_0000 0x0200 Internal Timeout error

0000_0011_0000_0000 0x0300 Internal Timeout Error

0000_0100_0000_0000 0x0400 Intel® Cache Safe Technology Queue Full Error or Disabled-
ways-in-a-set overflow

1100_0000_0000_0001 0xC001 Correctable ECC event on outgoing FSB data

1100_0000_0000_0010 0xC002 Correctable ECC event on outgoing Core 0 data

1100_0000_0000_0100 0xC004 Correctable ECC event on outgoing Core 1 data

1110_0000_0000_0001 0xE001 Uncorrectable ECC error on outgoing FSB data

1110_0000_0000_0010 0xE002 Uncorrectable ECC error on outgoing Core 0 data

1110_0000_0000_0100 0xE004 Uncorrectable ECC error on outgoing Core 1 data

 — all other encodings — Reserved
E-26 Vol. 3B

INTERPRETING MACHINE-CHECK ERROR CODES
All errors - except for the correctable ECC types - in this table are uncorrectable. The
correctable ECC events may supply the ECC syndrome in the Other_Info field of the
MC4_STATUS MSR..

Table E-22. Decoding Family 0FH Machine Check Codes for Cache Hierarchy Errors

Type Bit No. Bit Function Bit Description

MCA error
codes1

0-15

Model
specific error
codes

16-17 Tag Error Code Contains the tag error code for this machine check
error:

00 = No error detected

01 = Parity error on tag miss with a clean line

10 = Parity error/multiple tag match on tag hit

11 = Parity error/multiple tag match on tag miss

18-19 Data Error Code Contains the data error code for this machine check
error:

00 = No error detected

01 = Single bit error

10 = Double bit error on a clean line

11 = Double bit error on a modified line

20 L3 Error This bit is set if the machine check error originated
in the L3 it can be ignored for invalid PIC request
errors):

1 = L3 error

0 = L2 error

21 Invalid PIC Request Indicates error due to invalid PIC request access
was made to PIC space with WB memory):

1 = Invalid PIC request error

0 = No invalid PIC request error

22-31 Reserved Reserved

Other
Information

32-39 8-bit Error Count Holds a count of the number of errors since reset.
The counter begins at 0 for the first error and
saturates at a count of 255.

40-56 Reserved Reserved

Status
register
validity
indicators1

57-63
Vol. 3B E-27

INTERPRETING MACHINE-CHECK ERROR CODES
NOTES:
1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” for

more information.
E-28 Vol. 3B

APPENDIX F
APIC BUS MESSAGE FORMATS

This appendix describes the message formats used when transmitting messages on
the serial APIC bus. The information described here pertains only to the Pentium and
P6 family processors.

F.1 BUS MESSAGE FORMATS
The local and I/O APICs transmit three types of messages on the serial APIC bus: EOI
message, short message, and non-focused lowest priority message. The purpose of
each type of message and its format are described below.

F.2 EOI MESSAGE
Local APICs send 14-cycle EOI messages to the I/O APIC to indicate that a level trig-
gered interrupt has been accepted by the processor. This interrupt, in turn, is a result
of software writing into the EOI register of the local APIC. Table F-1 shows the cycles
in an EOI message.

Table F-1. EOI Message (14 Cycles)

Cycle Bit1 Bit0

1 1 1 11 = EOI

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 V7 V6 Interrupt vector V7 - V0

7 V5 V4

8 V3 V2

9 V1 V0

10 C C Checksum for cycles 6 - 9

11 0 0

12 A A Status Cycle 0

13 A1 A1 Status Cycle 1

14 0 0 Idle
Vol. 3B F-1

APIC BUS MESSAGE FORMATS
The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit
(Bit1:Bit0) logical data values. The carry out of all but the last addition is added to
the sum. If any APIC computes a different checksum than the one appearing on the
bus in cycle 10, it signals an error, driving 11 on the APIC bus during cycle 12. In this
case, the APICs disregard the message. The sending APIC will receive an appropriate
error indication (see Section 10.5.3, “Error Handling”) and resend the message. The
status cycles are defined in Table F-4.

F.2.1 Short Message
Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-up,
ExtINT and lowest-priority-with-focus interrupts. Table F-2 shows the cycles in a
short message.

Table F-2. Short Message (21 Cycles)

Cycle Bit1 Bit0

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination Mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 0 0 Idle
F-2 Vol. 3B

APIC BUS MESSAGE FORMATS
If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC
ID and cycles 13 and 14 are considered don't care by the receiver. If the logical
delivery mode is being used, then cycles 13 through 16 are the 8-bit logical destina-
tion field.

For shorthands of “all-incl-self” and “all-excl-self,” the physical delivery mode and an
arbitration priority of 15 (D0:D3 = 1111) are used. The agent sending the message
is the only one required to distinguish between the two cases. It does so using
internal information.

When using lowest priority delivery with an existing focus processor, the focus
processor identifies itself by driving 10 during cycle 19 and accepts the interrupt.
This is an indication to other APICs to terminate arbitration. If the focus processor
has not been found, the short message is extended on-the-fly to the non-focused
lowest-priority message. Note that except for the EOI message, messages gener-
ating a checksum or an acceptance error (see Section 10.5.3, “Error Handling”)
terminate after cycle 21.

F.2.2 Non-focused Lowest Priority Message
These 34-cycle messages (see Table F-3) are used in the lowest priority delivery
mode when a focus processor is not present. Cycles 1 through 20 are same as for the
short message. If during the status cycle (cycle 19) the state of the (A:A) flags is
10B, a focus processor has been identified, and the short message format is used
(see Table F-2). If the (A:A) flags are set to 00B, lowest priority arbitration is started
and the 34-cycles of the non-focused lowest priority message are competed. For
other combinations of status flags, refer to Section F.2.3, “APIC Bus Status Cycles.”

Table F-3. Non-Focused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bit1

1 0 1 0 1 = normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArbID2 0

4 ArbID1 0

5 ArbID0 0

6 DM M2 DM = Destination mode

7 M1 M0 M2-M0 = Delivery mode

8 L TM L = Level, TM = Trigger Mode

9 V7 V6 V7-V0 = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 V0
Vol. 3B F-3

APIC BUS MESSAGE FORMATS
Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The
processors participating in the arbitration drive their inverted processor priority on
the bus. Only the local APICs having free interrupt slots participate in the lowest
priority arbitration. If no such APIC exists, the message will be rejected, requiring it
to be tried at a later time.

Cycles 29 through 32 are also used for arbitration in case two or more processors
have the same lowest priority. In the lowest priority delivery mode, all combinations
of errors in cycle 33 (A2 A2) will set the “accept error” bit in the error status register
(see Figure 10-9). Arbitration priority update is performed in cycle 20, and is not
affected by errors detected in cycle 33. Only the local APIC that wins in the lowest

13 D7 D6 D7-D0 = Destination

14 D5 D4

15 D3 D2

16 D1 D0

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 A1 A1 Status cycle 1

21 P7 0 P7 - P0 = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 P0 0

29 ArbID3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbID0 0

33 A2 A2 Status Cycle

34 0 0 Idle

Table F-3. Non-Focused Lowest Priority Message (34 Cycles) (Contd.)

Cycle Bit0 Bit1
F-4 Vol. 3B

APIC BUS MESSAGE FORMATS
priority arbitration, drives cycle 33. An error in cycle 33 will force the sender to
resend the message.

F.2.3 APIC Bus Status Cycles
Certain cycles within an APIC bus message are status cycles. During these cycles the
status flags (A:A) and (A1:A1) are examined. Table F-4 shows how these status flags
are interpreted, depending on the current delivery mode and existence of a focus
processor.

Table F-4. APIC Bus Status Cycles Interpretation
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry

EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No

00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 14 Cycle Yes

11: CS_Error XX: XX: No 14 Cycle Yes

10: Error XX: XX: No 14 Cycle Yes

01: Error XX: XX: No 14 Cycle Yes

Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

NMI, SMI, INIT,
ExtINT,
Start-Up

00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No

00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes

00: CS_OK 0X: Accept
Error

XX: No 21 Cycle Yes

11: CS_Error XX: XX: No 21 Cycle Yes

10: Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes
Vol. 3B F-5

APIC BUS MESSAGE FORMATS
Lowest 00: CS_OK,
NoFocus

11: Do Lowest 10: Accept Yes, 20 34 Cycle No

00: CS_OK,
NoFocus

11: Do Lowest 11: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

11: Do Lowest 0X: Error Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

10: End and
Retry

XX: Yes, 20 34 Cycle Yes

00: CS_OK,
NoFocus

0X: Error XX: No 34 Cycle Yes

10: CS_OK,
Focus

XX: XX: Yes, 20 34 Cycle No

11: CS_Error XX: XX: No 21 Cycle Yes

01: Error XX: XX: No 21 Cycle Yes

Table F-4. APIC Bus Status Cycles Interpretation (Contd.)
Delivery
Mode

A Status A1 Status A2 Status Update
ArbID and
Cycle#

Message
Length

Retry
F-6 Vol. 3B

APPENDIX G
VMX CAPABILITY REPORTING FACILITY

The ability of a processor to support VMX operation and related instructions is indi-
cated by CPUID.1:ECX.VMX[bit 5] = 1. A value 1 in this bit indicates support for VMX
features.

Support for specific features detailed in Chapter 21 and other VMX chapters is deter-
mined by reading values from a set of capability MSRs. These MSRs are indexed
starting at MSR address 480H. VMX capability MSRs are read-only; an attempt to
write them (with WRMSR) produces a general-protection exception (#GP(0)). They
do not exist on processors that do not support VMX operation; an attempt to read
them (with RDMSR) on such processors produces a general-protection exception
(#GP(0)).

G.1 BASIC VMX INFORMATION
The IA32_VMX_BASIC MSR (index 480H) consists of the following fields:
• Bits 31:0 contain the 32-bit VMCS revision identifier used by the processor.

Logical processors that use the same VMCS revision identifier use the same size
for VMCS regions (see next item)

• Bits 44:32 report the number of bytes that software should allocate for the
VMXON region and any VMCS region. It is a value greater than 0 and at most
4096 (bit 44 is set if and only if bits 43:32 are clear).

• Bit 48 indicates the width of the physical addresses that may be used for the
VMXON region, each VMCS, and data structures referenced by pointers in a VMCS
(I/O bitmaps, virtual-APIC page, MSR areas for VMX transitions). If the bit is 0,
these addresses are limited to the processor’s physical-address width.1 If the bit
is 1, these addresses are limited to 32 bits. This bit is always 0 for processors that
support Intel 64 architecture.

• If bit 49 is read as 1, the logical processor supports the dual-monitor treatment
of system-management interrupts and system-management mode. See Section
26.15 for details of this treatment.

• Bits 53:50 report the memory type that the logical processor uses to access the
VMCS for VMREAD and VMWRITE and to access the VMCS, data structures
referenced by pointers in the VMCS (I/O bitmaps, virtual-APIC page, MSR areas
for VMX transitions), and the MSEG header during VM entries, VM exits, and in
VMX non-root operation.2

1. On processors that support Intel 64 architecture, the pointer must not set bits beyond the pro-
cessor's physical address width.
Vol. 3B G-1

VMX CAPABILITY REPORTING FACILITY
The first processors to support VMX operation use the write-back type. The
values used are given in Table G-1.

If software needs to access these data structures (e.g., to modify the contents of
the MSR bitmaps), it can configure the paging structures to map them into the
linear-address space. If it does so, it should establish mappings that use the
memory type reported in this MSR.1

• If bit 54 is read as 1, the logical processor reports information in the VM-exit
instruction-information field on VM exits due to execution of the INS and OUTS
instructions. This reporting is done only if this bit is read as 1.

• Bit 55 is read as 1 if any VMX controls that default to 1 may be cleared to 0. See
Appendix G.2 for details. It also reports support for the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, IA32_VMX_TRUE_PROCBASED_CTLS,
IA32_VMX_TRUE_EXIT_CTLS, and IA32_VMX_TRUE_ENTRY_CTLS. See
Appendix G.3.1, Appendix G.3.2, Appendix G.4, and Appendix G.5 for details.

• The values of bits 47:45 and bits 63:56 are reserved and are read as 0.

G.2 RESERVED CONTROLS AND DEFAULT SETTINGS
As noted in Chapter 21, “Virtual-Machine Control Structures”, certain VMX controls
are reserved and must be set to a specific value (0 or 1) determined by the processor.
The specific value to which a reserved control must be set is its default setting.

2. If the MTRRs are disabled by clearing the E bit (bit 11) in the IA32_MTRR_DEF_TYPE MSR, the
logical processor uses the UC memory type to access the indicated data structures, regardless of
the value reported in bits 53:50 in the IA32_VMX_BASIC MSR. The processor will also use the UC
memory type if the setting of CR0.CD on this logical processor (or another logical processor on
the same physical processor) would cause it to do so for all memory accesses. The values of
IA32_MTRR_DEF_TYPE.E and CR0.CD do not affect the value reported in
IA32_VMX_BASIC[53:50].

Table G-1. Memory Types Used For VMCS Access
Value(s) Field

0 Uncacheable (UC)

1–5 Not used

6 Write Back (WB)

7–15 Not used

1. Alternatively, software may map any of these regions or structures with the UC memory type.
(This may be necessary for the MSEG header.) Doing so is discouraged unless necessary as it will
cause the performance of software accesses to those structures to suffer. The processor will
continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with the
exceptions noted.
G-2 Vol. 3B

VMX CAPABILITY REPORTING FACILITY
Software can discover the default setting of a reserved control by consulting the
appropriate VMX capability MSR (see Appendix G.3 through Appendix G.5).

Future processors may define new functionality for one or more reserved controls.
Such processors would allow each newly defined control to be set either to 0 or to 1.
Software that does not desire a control’s new functionality should set the control to
its default setting. For that reason, it is useful for software to know the default
settings of the reserved controls.

Default settings partition the various controls into the following classes:
• Always-flexible. These have never been reserved.
• Default0. These are (or have been) reserved with a default setting of 0.
• Default1. They are (or have been) reserved with a default setting of 1.

As noted in Appendix G.1, a logical processor uses bit 55 of the
IA32_VMX_BASIC MSR to indicate whether any of the default1 controls may be 0:
• If bit 55 of the IA32_VMX_BASIC MSR is read as 0, all the default1 controls are

reserved and must be 1. VM entry will fail if any of these controls are 1 (see
Section 23.2.1).

• If bit 55 of the IA32_VMX_BASIC MSR is read as 1, not all the default1 controls
are reserved, and some (but not necessarily all) may be 0. The CPU supports four
(4) new VMX capability MSRs: IA32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS. See Appendix G.3 through Appendix G.5 for
details. (These MSRs are not supported if bit 55 of the IA32_VMX_BASIC MSR is
read as 0.)

See Section 27.5.1 for recommended software algorithms for proper capability
detection of the default1 controls.

G.3 VM-EXECUTION CONTROLS
There are separate capability MSRs for the pin-based VM-execution controls, the
primary processor-based VM-execution controls, and the secondary processor-based
VM-execution controls. These are described in Appendix G.3.1, Appendix G.3.2, and
Appendix G.3.3, respectively.

G.3.1 Pin-Based VM-Execution Controls
The IA32_VMX_PINBASED_CTLS MSR (index 481H) reports on the allowed settings
of most of the pin-based VM-execution controls (see Section 21.6.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the pin-based VM-execution controls) to be 0 if bit X in the MSR
is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Vol. 3B G-3

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the pin-based VM-execution controls in the default1
class (see Appendix G.2). These are bits 1, 2, and 4; the corresponding bits of
the IA32_VMX_PINBASED_CTLS MSR are always read as 1. The treatment of
these controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any pin-
based VM-execution control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PINBASED_CTLS MSR (see below) reports which of the
pin-based VM-execution controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PINBASED_CTLS MSR (index 48DH) reports on the allowed
settings of all of the pin-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the pin-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_PINBASED_CTLS MSR. (The IA32_VMX_TRUE_PINBASED_CTLS
MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the pin-based VM-execution controls is contained in
the IA32_VMX_TRUE_PINBASED_CTLS MSR. Assuming that software knows that
the default1 class of pin-based VM-execution controls contains bits 1, 2, and 4,
there is no need for software to consult the IA32_VMX_PINBASED_CTLS MSR.

G.3.2 Primary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the allowed
settings of most of the primary processor-based VM-execution controls (see Section
21.6.2):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the primary processor-based VM-execution controls) to be 0 if
bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1, VM entry fails if
control X is 0.
G-4 Vol. 3B

VMX CAPABILITY REPORTING FACILITY
Exceptions are made for the primary processor-based VM-execution controls in
the default1 class (see Appendix G.2). These are bits 1, 4–6, 8, 13–16, and 26;
the corresponding bits of the IA32_VMX_PROCBASED_CTLS MSR are always read
as 1. The treatment of these controls by VM entry is determined by bit 55 in the
IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any of the
primary processor-based VM-execution controls in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_PROCBASED_CTLS MSR (see below) reports which of the
primary processor-based VM-execution controls in the default1 class can be 0
on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_PROCBASED_CTLS MSR (index 48EH) reports on the allowed
settings of all of the primary processor-based VM-execution controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the primary processor-based VM-execution controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the primary processor-based VM-execution controls is
contained in the IA32_VMX_PROCBASED_CTLS MSR. (The
IA32_VMX_TRUE_PROCBASED_CTLS MSR is not supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the processor-based VM-execution controls is contained in the
IA32_VMX_TRUE_PROCBASED_CTLS MSR. Assuming that software knows that
the default1 class of processor-based VM-execution controls contains bits 1, 4–6,
8, 13–16, and 26, there is no need for software to consult the
IA32_VMX_PROCBASED_CTLS MSR.

G.3.3 Secondary Processor-Based VM-Execution Controls
The IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH) reports on the allowed
settings of the secondary processor-based VM-execution controls (see Section
21.6.2). VM entries perform the following checks:
Vol. 3B G-5

VMX CAPABILITY REPORTING FACILITY
• Bits 31:0 indicate the allowed 0-settings of these controls. These bits are always
0. This fact indicates that VM entry allows each bit of the secondary processor-
based VM-execution controls to be 0.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X (bit X of the secondary processor-based VM-execution controls) to be 1
if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is cleared to 0, VM entry
fails if control X and the “activate secondary controls” primary processor-based
VM-execution control are both 1.

The IA32_VMX_PROCBASED_CTLS2 MSR exists only on processors that support the
1-setting of the “activate secondary controls” VM-execution control (only if bit 63 of
the IA32_VMX_PROCBASED_CTLS MSR is 1).

G.4 VM-EXIT CONTROLS
The IA32_VMX_EXIT_CTLS MSR (index 483H) reports on the allowed settings of
most of the VM-exit controls (see Section 21.7.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-exit controls) to be 0 if bit X in the MSR is cleared to 0;
if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-exit controls in the default1 class (see Appendix
G.2). These are bits 0–8, 10, 11, 13, 14, 16, and 17; the corresponding bits of
the IA32_VMX_EXIT_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-exit control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_EXIT_CTLS MSR (see below) reports which of the VM-exit
controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the IA32_VMX_TRUE_EXIT_CTLS
MSR (index 48FH) reports on the allowed settings of all of the VM-exit controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control X to be 1 if bit 32+X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-exit controls:
G-6 Vol. 3B

VMX CAPABILITY REPORTING FACILITY
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_EXIT_CTLS MSR. (The IA32_VMX_TRUE_EXIT_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-exit controls is contained in the
IA32_VMX_TRUE_EXIT_CTLS MSR. Assuming that software knows that the
default1 class of VM-exit controls contains bits 0–8, 10, 11, 13, 14, 16, and 17,
there is no need for software to consult the IA32_VMX_EXIT_CTLS MSR.

G.5 VM-ENTRY CONTROLS
The IA32_VMX_ENTRY_CTLS MSR (index 484H) reports on the allowed settings of
most of the VM-entry controls (see Section 21.8.1):
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X (bit X of the VM-entry controls) to be 0 if bit X in the MSR is cleared to
0; if bit X in the MSR is set to 1, VM entry fails if control X is 0.
Exceptions are made for the VM-entry controls in the default1 class (see
Appendix G.2). These are bits 0–8 and 12; the corresponding bits of the
IA32_VMX_ENTRY_CTLS MSR are always read as 1. The treatment of these
controls by VM entry is determined by bit 55 in the IA32_VMX_BASIC MSR:

— If bit 55 in the IA32_VMX_BASIC MSR is read as 0, VM entry fails if any
VM-entry control in the default1 class is 0.

— If bit 55 in the IA32_VMX_BASIC MSR is read as 1, the
IA32_VMX_TRUE_ENTRY_CTLS MSR (see below) reports which of the
VM-entry controls in the default1 class can be 0 on VM entry.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry fails if bit X
is 1 in the VM-entry controls and bit 32+X is 0 in this MSR.

If bit 55 in the IA32_VMX_BASIC MSR is read as 1,
the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H) reports on the allowed
settings of all of the VM-entry controls:
• Bits 31:0 indicate the allowed 0-settings of these controls. VM entry allows

control X to be 0 if bit X in the MSR is cleared to 0; if bit X in the MSR is set to 1,
VM entry fails if control X is 0. There are no exceptions.

• Bits 63:32 indicate the allowed 1-settings of these controls. VM entry allows
control 32+X to be 1 if bit X in the MSR is set to 1; if bit 32+X in the MSR is
cleared to 0, VM entry fails if control X is 1.

It is necessary for software to consult only one of the capability MSRs to determine
the allowed settings of the VM-entry controls:
• If bit 55 in the IA32_VMX_BASIC MSR is read as 0, all information about the

allowed settings of the VM-entry controls is contained in the
Vol. 3B G-7

VMX CAPABILITY REPORTING FACILITY
IA32_VMX_ENTRY_CTLS MSR. (The IA32_VMX_TRUE_ENTRY_CTLS MSR is not
supported.)

• If bit 55 in the IA32_VMX_BASIC MSR is read as 1, all information about the
allowed settings of the VM-entry controls is contained in the
IA32_VMX_TRUE_ENTRY_CTLS MSR. Assuming that software knows that the
default1 class of VM-entry controls contains bits 0–8 and 12, there is no need for
software to consult the IA32_VMX_ENTRY_CTLS MSR.

G.6 MISCELLANEOUS DATA
The IA32_VMX_MISC MSR (index 485H) consists of the following fields:
• Bits 4:0 report a value X that specifies the relationship between the rate of the

VMX-preemption timer and that of the timestamp counter (TSC). Specifically, the
VMX-preemption timer (if it is active) counts down by 1 every time bit X in the
TSC changes due to a TSC increment.

• If bit 5 is read as 1, VM exits store the value of IA32_EFER.LMA into the “IA-32e
mode guest” VM-entry control; see Section 24.2 for more details. This bit is read
as 1 on any logical processor that supports the 1-setting of the “unrestricted
guest” VM-execution control.

• Bits 8:6 report, as a bitmap, the activity states supported by the implemen-
tation:

— Bit 6 reports (if set) the support for activity state 1 (HLT).

— Bit 7 reports (if set) the support for activity state 2 (shutdown).

— Bit 8 reports (if set) the support for activity state 3 (wait-for-SIPI).
If an activity state is not supported, the implementation causes a VM entry to fail
if it attempts to establish that activity state. All implementations support
VM entry to activity state 0 (active).

• Bits 24:16 indicate the number of CR3-target values supported by the processor.
This number is a value between 0 and 256, inclusive (bit 24 is set if and only if
bits 23:16 are clear).

• Bits 27:25 is used to compute the recommended maximum number of MSRs that
should appear in the VM-exit MSR-store list, the VM-exit MSR-load list, or the
VM-entry MSR-load list. Specifically, if the value bits 27:25 of IA32_VMX_MISC is
N, then 512 * (N + 1) is the recommended maximum number of MSRs to be
included in each list. If the limit is exceeded, undefined processor behavior may
result (including a machine check during the VMX transition).

• If bit 28 is read as 1, bit 2 of the IA32_SMM_MONITOR_CTL can be set to 1.
VMXOFF unblocks SMIs unless IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section
26.14.4).

• Bits 63:32 report the 32-bit MSEG revision identifier used by the processor.
• Bits 15:9 and bits 31:29 are reserved and are read as 0.
G-8 Vol. 3B

VMX CAPABILITY REPORTING FACILITY
G.7 VMX-FIXED BITS IN CR0
The IA32_VMX_CR0_FIXED0 MSR (index 486H) and IA32_VMX_CR0_FIXED1 MSR
(index 487H) indicate how bits in CR0 may be set in VMX operation. They report on
bits in CR0 that are allowed to be 0 and to be 1, respectively, in VMX operation. If
bit X is 1 in IA32_VMX_CR0_FIXED0, then that bit of CR0 is fixed to 1 in VMX opera-
tion. Similarly, if bit X is 0 in IA32_VMX_CR0_FIXED1, then that bit of CR0 is fixed to
0 in VMX operation. It is always the case that, if bit X is 1 in IA32_VMX_CR0_FIXED0,
then that bit is also 1 in IA32_VMX_CR0_FIXED1; if bit X is 0 in
IA32_VMX_CR0_FIXED1, then that bit is also 0 in IA32_VMX_CR0_FIXED0. Thus,
each bit in CR0 is either fixed to 0 (with value 0 in both MSRs), fixed to 1 (1 in both
MSRs), or flexible (0 in IA32_VMX_CR0_FIXED0 and 1 in IA32_VMX_CR0_FIXED1).

G.8 VMX-FIXED BITS IN CR4
The IA32_VMX_CR4_FIXED0 MSR (index 488H) and IA32_VMX_CR4_FIXED1 MSR
(index 489H) indicate how bits in CR4 may be set in VMX operation. They report on
bits in CR4 that are allowed to be 0 and 1, respectively, in VMX operation. If bit X is 1
in IA32_VMX_CR4_FIXED0, then that bit of CR4 is fixed to 1 in VMX operation. Simi-
larly, if bit X is 0 in IA32_VMX_CR4_FIXED1, then that bit of CR4 is fixed to 0 in VMX
operation. It is always the case that, if bit X is 1 in IA32_VMX_CR4_FIXED0, then
that bit is also 1 in IA32_VMX_CR4_FIXED1; if bit X is 0 in IA32_VMX_CR4_FIXED1,
then that bit is also 0 in IA32_VMX_CR4_FIXED0. Thus, each bit in CR4 is either fixed
to 0 (with value 0 in both MSRs), fixed to 1 (1 in both MSRs), or flexible (0 in
IA32_VMX_CR4_FIXED0 and 1 in IA32_VMX_CR4_FIXED1).

G.9 VMCS ENUMERATION
The IA32_VMX_VMCS_ENUM MSR (index 48AH) provides information to assist soft-
ware in enumerating fields in the VMCS.

As noted in Section 21.10.2, each field in the VMCS is associated with a 32-bit
encoding which is structured as follows:
• Bits 31:15 are reserved (must be 0).
• Bits 14:13 indicate the field’s width.
• Bit 12 is reserved (must be 0).
• Bits 11:10 indicate the field’s type.
• Bits 9:1 is an index field that distinguishes different fields with the same width

and type.
• Bit 0 indicates access type.

IA32_VMX_VMCS_ENUM indicates to software the highest index value used in the
encoding of any field supported by the processor:
Vol. 3B G-9

VMX CAPABILITY REPORTING FACILITY
• Bits 9:1 contain the highest index value used for any VMCS encoding.
• Bit 0 and bits 63:10 are reserved and are read as 0.

G.10 VPID AND EPT CAPABILITIES
The IA32_VMX_EPT_VPID_CAP MSR (index 48CH) reports information about the
capabilities of the logical processor with regard to virtual-processor identifiers
(VPIDs, Section 25.1) and extended page tables (EPT, Section 25.2):
• If bit 0 is read as 1, the logical processor allows software to configure EPT

paging-structure entries in which bits 2:0 have value 100b (indicating an
execute-only translation).

• Bit 6 indicates support for a page-walk length of 4.
• If bit 8 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be uncacheable (UC); see Section 21.6.11.
• If bit 14 is read as 1, the logical processor allows software to configure the EPT

paging-structure memory type to be write-back (WB).
• If bit 16 is read as 1, the logical processor allows software to configure a EPT PDE

to map a 2-Mbyte page (by setting bit 7 in the EPT PDE).
• If bit 17 is read as 1, the logical processor allows software to configure a EPT

PDPTE to map a 1-Gbyte page (by setting bit 7 in the EPT PDPTE).
• Support for the INVEPT instruction (see Chapter 6 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3A and Section 25.3.3.1).

— If bit 20 is read as 1, the INVEPT instruction is supported.

— If bit 25 is read as 1, the single-context INVEPT type is supported.

— If bit 26 is read as 1, the all-context INVEPT type is supported.
• Support for the INVVPID instruction (see Chapter 6 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3A and Section 25.3.3.1).

— If bit 32 is read as 1, the INVVPID instruction is supported.

— If bit 40 is read as 1, the individual-address INVVPID type is supported.

— If bit 41 is read as 1, the single-context INVVPID type is supported.

— If bit 42 is read as 1, the all-context INVVPID type is supported.

— If bit 43 is read as 1, the single-context-retaining-globals INVVPID type is
supported.

• Bits 5:1, bit 7, bits 13:9, bit 15, bits 19:17, bits 24:21, bits 31:27, bits 39:33,
and bits 63:44 are reserved and are read as 0.

The IA32_VMX_EPT_VPID_CAP MSR exists only on processors that support the 1-
setting of the “activate secondary controls” VM-execution control (only if bit 63 of the
IA32_VMX_PROCBASED_CTLS MSR is 1) and that support either the 1-setting of the
G-10 Vol. 3B

VMX CAPABILITY REPORTING FACILITY
“enable EPT” VM-execution control (only if bit 33 of the
IA32_VMX_PROCBASED_CTLS2 MSR is 1) or the 1-setting of the “enable VPID” VM-
execution control (only if bit 37 of the IA32_VMX_PROCBASED_CTLS2 MSR is 1).
Vol. 3B G-11

VMX CAPABILITY REPORTING FACILITY
G-12 Vol. 3B

APPENDIX H
FIELD ENCODING IN VMCS

Every component of the VMCS is encoded by a 32-bit field that can be used by
VMREAD and VMWRITE. Section 21.10.2 describes the structure of the encoding
space (the meanings of the bits in each 32-bit encoding).

This appendix enumerates all fields in the VMCS and their encodings. Fields are
grouped by width (16-bit, 32-bit, etc.) and type (guest-state, host-state, etc.)

H.1 16-BIT FIELDS
A value of 0 in bits 14:13 of an encoding indicates a 16-bit field. Only guest-state
areas and the host-state area contain 16-bit fields. As noted in Section 21.10.2, each
16-bit field allows only full access, meaning that bit 0 of its encoding is 0. Each such
encoding is thus an even number.

H.1.1 16-Bit Control Field
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. There is only one such 16-bit field as
given in Table H-1.

H.1.2 16-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-2 enumerates
16-bit guest-state fields.

Table H-1. Encoding for 16-Bit Control Fields (0000_00xx_xxxx_xxx0B)
Field Name Index Encoding

Virtual-processor identifier (VPID)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “enable VPID” VM-execution

control.

000000000B 00000000H

Table H-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding

Guest ES selector 000000000B 00000800H
Vol. 3B H-1

FIELD ENCODING IN VMCS
H.1.3 16-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table H-3 enumerates
the 16-bit host-state fields.

H.2 64-BIT FIELDS
A value of 1 in bits 14:13 of an encoding indicates a 64-bit field. There are 64-bit
fields only for controls and for guest state. As noted in Section 21.10.2, every 64-bit
field has two encodings, which differ on bit 0, the access type. Thus, each such field
has an even encoding for full access and an odd encoding for high access.

Guest CS selector 000000001B 00000802H

Guest SS selector 000000010B 00000804H

Guest DS selector 000000011B 00000806H

Guest FS selector 000000100B 00000808H

Guest GS selector 000000101B 0000080AH

Guest LDTR selector 000000110B 0000080CH

Guest TR selector 000000111B 0000080EH

Table H-3. Encodings for 16-Bit Host-State Fields (0000_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host ES selector 000000000B 00000C00H

Host CS selector 000000001B 00000C02H

Host SS selector 000000010B 00000C04H

Host DS selector 000000011B 00000C06H

Host FS selector 000000100B 00000C08H

Host GS selector 000000101B 00000C0AH

Host TR selector 000000110B 00000C0CH

Table H-2. Encodings for 16-Bit Guest-State Fields (0000_10xx_xxxx_xxx0B)
Field Name Index Encoding
H-2 Vol. 3B

FIELD ENCODING IN VMCS
H.2.1 64-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-4 enumerates the 64-bit
control fields.

Table H-4. Encodings for 64-Bit Control Fields (0010_00xx_xxxx_xxxAb)
Field Name Index Encoding

Address of I/O bitmap A (full) 000000000B 00002000H

Address of I/O bitmap A (high) 000000000B 00002001H

Address of I/O bitmap B (full) 000000001B 00002002H

Address of I/O bitmap B (high) 000000001B 00002003H

Address of MSR bitmaps (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the “use MSR bitmaps”

VM-execution control.

000000010B 00002004H

Address of MSR bitmaps (high)1 000000010B 00002005H

VM-exit MSR-store address (full) 000000011B 00002006H

VM-exit MSR-store address (high) 000000011B 00002007H

VM-exit MSR-load address (full) 000000100B 00002008H

VM-exit MSR-load address (high) 000000100B 00002009H

VM-entry MSR-load address (full) 000000101B 0000200AH

VM-entry MSR-load address (high) 000000101B 0000200BH

Executive-VMCS pointer (full) 000000110B 0000200CH

Executive-VMCS pointer (high) 000000110B 0000200DH

TSC offset (full) 000001000B 00002010H

TSC offset (high) 000001000B 00002011H

Virtual-APIC address (full)2

2. This field exists only on processors that support either the 1-setting of the “use TPR shadow”
VM-execution control.

000001001B 00002012H

Virtual-APIC address (high)2 000001001B 00002013H

APIC-access address (full)3

3. This field exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

000001010B 00002014H

APIC-access address (high)3 000001010B 00002015H

EPT pointer (EPTP; full)4 000001101B 0000201AH

EPT pointer (EPTP; high)4 000001101B 0000201BH
Vol. 3B H-3

FIELD ENCODING IN VMCS
H.2.2 64-Bit Read-Only Data Field
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. There is only one such 64-bit field
as given in Table H-5.(As with other 64-bit fields, this one has two encodings.)

H.2.3 64-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-6 enumerates
the 64-bit guest-state fields.

4. This field exists only on processors that support the 1-setting of the “enable EPT” VM-execution
control.

Table H-5. Encodings for 64-Bit Read-Only Data Field (0010_01xx_xxxx_xxxAb)
Field Name Index Encoding

Guest-physical address (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "enable EPT” VM-execution

control.

000000000B 00002400H

Guest-physical address (high)1 000000000B 00002401H

Table H-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding

VMCS link pointer (full) 000000000B 00002800H

VMCS link pointer (high) 000000000B 00002801H

Guest IA32_DEBUGCTL (full) 000000001B 00002802H

Guest IA32_DEBUGCTL (high) 000000001B 00002803H

Guest IA32_PAT (full)1 000000010B 00002804H

Guest IA32_PAT (high)1 000000010B 00002805H

Guest IA32_EFER (full)2 000000011B 00002806H

Guest IA32_EFER (high)2 000000011B 00002807H

Guest IA32_PERF_GLOBAL_CTRL (full)3 000000100B 00002808H

Guest IA32_PERF_GLOBAL_CTRL (high)3 000000100B 00002809H

Guest PDPTE0 (full)4 000000101B 0000280AH

Guest PDPTE0 (high)4 000000101B 0000280BH
H-4 Vol. 3B

FIELD ENCODING IN VMCS
H.2.4 64-Bit Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table H-7 enumerates
the 64-bit control fields.

Guest PDPTE1 (full)4 000000110B 0000280CH

Guest PDPTE1 (high)4 000000110B 0000280DH

Guest PDPTE2 (full)4 000000111B 0000280EH

Guest PDPTE2 (high)4 000000111B 0000280FH

Guest PDPTE3 (full)4 000001000B 00002810H

Guest PDPTE3 (high)4 000001000B 00002811H

NOTES:
1. This field exists only on processors that support either the 1-setting of the "load IA32_PAT" VM-

entry control or that of the "save IA32_PAT" VM-exit control.
2. This field exists only on processors that support either the 1-setting of the "load IA32_EFER" VM-

entry control or that of the "save IA32_EFER" VM-exit control.
3. This field exists only on processors that support the 1-setting of the "load

IA32_PERF_GLOBAL_CTRL" VM-entry control.
4. This field exists only on processors that support the 1-setting of the "enable EPT" VM-execution

control.

Table H-7. Encodings for 64-Bit Host-State Fields (0010_11xx_xxxx_xxxAb)
Field Name Index Encoding

Host IA32_PAT (full)1

NOTES:
1. This field exists only on processors that support the 1-setting of the "load IA32_PAT" VM-exit

control.

000000000B 00002C00H

Host IA32_PAT (high)1 000000000B 00002C01H

Host IA32_EFER (full)2

2. This field exists only on processors that support the 1-setting of the "load IA32_EFER" VM-exit
control.

000000001B 00002C02H

Host IA32_EFER (high)2 000000001B 00002C03H

Host IA32_PERF_GLOBAL_CTRL (full)3 000000010B 00002C04H

Host IA32_PERF_GLOBAL_CTRL (high)3 000000010B 00002C05H

Table H-6. Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)
Field Name Index Encoding
Vol. 3B H-5

FIELD ENCODING IN VMCS
H.3 32-BIT FIELDS
A value of 2 in bits 14:13 of an encoding indicates a 32-bit field. As noted in Section
21.10.2, each 32-bit field allows only full access, meaning that bit 0 of its encoding
is 0. Each such encoding is thus an even number.

H.3.1 32-Bit Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-8 enumerates the 32-bit
control fields.

3. This field exists only on processors that support the 1-setting of the "load
IA32_PERF_GLOBAL_CTRL" VM-exit control.

Table H-8. Encodings for 32-Bit Control Fields (0100_00xx_xxxx_xxx0B)
Field Name Index Encoding

Pin-based VM-execution controls 000000000B 00004000H

Primary processor-based VM-execution controls 000000001B 00004002H

Exception bitmap 000000010B 00004004H

Page-fault error-code mask 000000011B 00004006H

Page-fault error-code match 000000100B 00004008H

CR3-target count 000000101B 0000400AH

VM-exit controls 000000110B 0000400CH

VM-exit MSR-store count 000000111B 0000400EH

VM-exit MSR-load count 000001000B 00004010H

VM-entry controls 000001001B 00004012H

VM-entry MSR-load count 000001010B 00004014H

VM-entry interruption-information field 000001011B 00004016H

VM-entry exception error code 000001100B 00004018H

VM-entry instruction length 000001101B 0000401AH

TPR threshold1 000001110B 0000401CH

Secondary processor-based VM-execution controls2 000001111b 0000401EH

PLE_Gap3 000010000b 00004020H

PLE_Window3 000010001b 00004022H
H-6 Vol. 3B

FIELD ENCODING IN VMCS
H.3.2 32-Bit Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table H-9 enumerates the 32-bit
read-only data fields.

H.3.3 32-Bit Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-10 enumer-
ates the 32-bit guest-state fields.

NOTES:
1. This field exists only on processors that support the 1-setting of the “use TPR shadow” VM-exe-

cution control.
2. This field exists only on processors that support the 1-setting of the “activate secondary controls”

VM-execution control.
3. This field exists only on processors that support the 1-setting of the “PAUSE-loop exiting”

VM-execution control.

Table H-9. Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxx_xxx0B)
Field Name Index Encoding

VM-instruction error 000000000B 00004400H

Exit reason 000000001B 00004402H

VM-exit interruption information 000000010B 00004404H

VM-exit interruption error code 000000011B 00004406H

IDT-vectoring information field 000000100B 00004408H

IDT-vectoring error code 000000101B 0000440AH

VM-exit instruction length 000000110B 0000440CH

VM-exit instruction information 000000111B 0000440EH

Table H-10. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest ES limit 000000000B 00004800H

Guest CS limit 000000001B 00004802H

Guest SS limit 000000010B 00004804H
Vol. 3B H-7

FIELD ENCODING IN VMCS
The limit fields for GDTR and IDTR are defined to be 32 bits in width even though
these fields are only 16-bits wide in the Intel 64 and IA-32 architectures. VM entry
ensures that the high 16 bits of both these fields are cleared to 0.

Guest DS limit 000000011B 00004806H

Guest FS limit 000000100B 00004808H

Guest GS limit 000000101B 0000480AH

Guest LDTR limit 000000110B 0000480CH

Guest TR limit 000000111B 0000480EH

Guest GDTR limit 000001000B 00004810H

Guest IDTR limit 000001001B 00004812H

Guest ES access rights 000001010B 00004814H

Guest CS access rights 000001011B 00004816H

Guest SS access rights 000001100B 00004818H

Guest DS access rights 000001101B 0000481AH

Guest FS access rights 000001110B 0000481CH

Guest GS access rights 000001111B 0000481EH

Guest LDTR access rights 000010000B 00004820H

Guest TR access rights 000010001B 00004822H

Guest interruptibility state 000010010B 00004824H

Guest activity state 000010011B 00004826H

Guest SMBASE 000010100B 00004828H

Guest IA32_SYSENTER_CS 000010101B 0000482AH

VMX-preemption timer value1 000010111B 0000482EH

NOTES:
1. This field exists only on processors that support the 1-setting of the "activate VMX-preemption

timer" VM-execution control.

Table H-10. Encodings for 32-Bit Guest-State Fields
(0100_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
H-8 Vol. 3B

FIELD ENCODING IN VMCS
H.3.4 32-Bit Host-State Field
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
There is only one such 32-bit field as given in Table H-11.

H.4 NATURAL-WIDTH FIELDS
A value of 3 in bits 14:13 of an encoding indicates a natural-width field. As noted in
Section 21.10.2, each of these fields allows only full access, meaning that bit 0 of its
encoding is 0. Each such encoding is thus an even number.

H.4.1 Natural-Width Control Fields
A value of 0 in bits 11:10 of an encoding indicates a control field. These fields are
distinguished by their index value in bits 9:1. Table H-12 enumerates the natural-
width control fields.

Table H-11. Encoding for 32-Bit Host-State Field (0100_11xx_xxxx_xxx0B)
Field Name Index Encoding

Host IA32_SYSENTER_CS 000000000B 00004C00H

Table H-12. Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B)
Field Name Index Encoding

CR0 guest/host mask 000000000B 00006000H

CR4 guest/host mask 000000001B 00006002H

CR0 read shadow 000000010B 00006004H

CR4 read shadow 000000011B 00006006H

CR3-target value 0 000000100B 00006008H

CR3-target value 1 000000101B 0000600AH

CR3-target value 2 000000110B 0000600CH

CR3-target value 31

NOTES:
1. If a future implementation supports more than 4 CR3-target values, they will be encoded consec-

utively following the 4 encodings given here.

000000111B 0000600EH
Vol. 3B H-9

FIELD ENCODING IN VMCS
H.4.2 Natural-Width Read-Only Data Fields
A value of 1 in bits 11:10 of an encoding indicates a read-only data field. These fields
are distinguished by their index value in bits 9:1. Table H-13 enumerates the
natural-width read-only data fields.

H.4.3 Natural-Width Guest-State Fields
A value of 2 in bits 11:10 of an encoding indicates a field in the guest-state area.
These fields are distinguished by their index value in bits 9:1. Table H-14 enumer-
ates the natural-width guest-state fields.

Table H-13. Encodings for Natural-Width Read-Only Data Fields
(0110_01xx_xxxx_xxx0B)

Field Name Index Encoding

Exit qualification 000000000B 00006400H

I/O RCX 000000001B 00006402H

I/O RSI 000000010B 00006404H

I/O RDI 000000011B 00006406H

I/O RIP 000000100B 00006408H

Guest-linear address 000000101B 0000640AH

Table H-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B)

Field Name Index Encoding

Guest CR0 000000000B 00006800H

Guest CR3 000000001B 00006802H

Guest CR4 000000010B 00006804H

Guest ES base 000000011B 00006806H

Guest CS base 000000100B 00006808H

Guest SS base 000000101B 0000680AH

Guest DS base 000000110B 0000680CH

Guest FS base 000000111B 0000680EH

Guest GS base 000001000B 00006810H

Guest LDTR base 000001001B 00006812H

Guest TR base 000001010B 00006814H

Guest GDTR base 000001011B 00006816H
H-10 Vol. 3B

FIELD ENCODING IN VMCS
The base-address fields for ES, CS, SS, and DS in the guest-state area are defined to
be natural-width (with 64 bits on processors supporting Intel 64 architecture) even
though these fields are only 32-bits wide in the Intel 64 architecture. VM entry
ensures that the high 32 bits of these fields are cleared to 0.

H.4.4 Natural-Width Host-State Fields
A value of 3 in bits 11:10 of an encoding indicates a field in the host-state area.
These fields are distinguished by their index value in bits 9:1. Table H-15 enumer-
ates the natural-width host-state fields.

Guest IDTR base 000001100B 00006818H

Guest DR7 000001101B 0000681AH

Guest RSP 000001110B 0000681CH

Guest RIP 000001111B 0000681EH

Guest RFLAGS 000010000B 00006820H

Guest pending debug exceptions 000010001B 00006822H

Guest IA32_SYSENTER_ESP 000010010B 00006824H

Guest IA32_SYSENTER_EIP 000010011B 00006826H

Table H-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B)

Field Name Index Encoding

Host CR0 000000000B 00006C00H

Host CR3 000000001B 00006C02H

Host CR4 000000010B 00006C04H

Host FS base 000000011B 00006C06H

Host GS base 000000100B 00006C08H

Host TR base 000000101B 00006C0AH

Host GDTR base 000000110B 00006C0CH

Host IDTR base 000000111B 00006C0EH

Host IA32_SYSENTER_ESP 000001000B 00006C10H

Host IA32_SYSENTER_EIP 000001001B 00006C12H

Host RSP 000001010B 00006C14H

Table H-14. Encodings for Natural-Width Guest-State Fields
(0110_10xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
Vol. 3B H-11

FIELD ENCODING IN VMCS
Host RIP 000001011B 00006C16H

Table H-15. Encodings for Natural-Width Host-State Fields
(0110_11xx_xxxx_xxx0B) (Contd.)

Field Name Index Encoding
H-12 Vol. 3B

APPENDIX I
VMX BASIC EXIT REASONS

Every VM exit writes a 32-bit exit reason to the VMCS (see Section 21.9.1). Certain
VM-entry failures also do this (see Section 23.7). The low 16 bits of the exit-reason
field form the basic exit reason which provides basic information about the cause of
the VM exit or VM-entry failure.

Table I-1 lists values for basic exit reasons and explains their meaning. Entries apply
to VM exits, unless otherwise noted.

Table I-1. Basic Exit Reasons
Basic Exit
Reason Description

0 Exception or non-maskable interrupt (NMI). Either:

1: Guest software caused an exception and the bit in the exception bitmap
associated with exception’s vector was 1.

2: An NMI was delivered to the logical processor and the “NMI exiting”
VM-execution control was 1. This case includes executions of BOUND that cause
#BR, executions of INT3 (they cause #BP), executions of INTO that cause #OF,
and executions of UD2 (they cause #UD).

1 External interrupt. An external interrupt arrived and the “external-interrupt
exiting” VM-execution control was 1.

2 Triple fault. The logical processor encountered an exception while attempting to
call the double-fault handler and that exception did not itself cause a VM exit due
to the exception bitmap.

3 INIT signal. An INIT signal arrived

4 Start-up IPI (SIPI). A SIPI arrived while the logical processor was in the “wait-for-
SIPI” state.

5 I/O system-management interrupt (SMI). An SMI arrived immediately after
retirement of an I/O instruction and caused an SMM VM exit (see Section 26.15.2).

6 Other SMI. An SMI arrived and caused an SMM VM exit (see Section 26.15.2) but
not immediately after retirement of an I/O instruction.

7 Interrupt window. At the beginning of an instruction, RFLAGS.IF was 1; events
were not blocked by STI or by MOV SS; and the “interrupt-window exiting”
VM-execution control was 1.

8 NMI window. At the beginning of an instruction, there was no virtual-NMI blocking;
events were not blocked by MOV SS; and the “NMI-window exiting” VM-execution
control was 1.

9 Task switch. Guest software attempted a task switch.

10 CPUID. Guest software attempted to execute CPUID.
Vol. 3B I-1

VMX BASIC EXIT REASONS
11 GETSEC. Guest software attempted to execute GETSEC.

12 HLT. Guest software attempted to execute HLT and the “HLT exiting”
VM-execution control was 1.

13 INVD. Guest software attempted to execute INVD.

14 INVLPG. Guest software attempted to execute INVLPG and the “INVLPG exiting”
VM-execution control was 1.

15 RDPMC. Guest software attempted to execute RDPMC and the “RDPMC exiting”
VM-execution control was 1.

16 RDTSC. Guest software attempted to execute RDTSC and the “RDTSC exiting”
VM-execution control was 1.

17 RSM. Guest software attempted to execute RSM in SMM.

18 VMCALL. VMCALL was executed either by guest software (causing an
ordinary VM exit) or by the executive monitor (causing an SMM VM exit; see
Section 26.15.2).

19 VMCLEAR. Guest software attempted to execute VMCLEAR.

20 VMLAUNCH. Guest software attempted to execute VMLAUNCH.

21 VMPTRLD. Guest software attempted to execute VMPTRLD.

22 VMPTRST. Guest software attempted to execute VMPTRST.

23 VMREAD. Guest software attempted to execute VMREAD.

24 VMRESUME. Guest software attempted to execute VMRESUME.

25 VMWRITE. Guest software attempted to execute VMWRITE.

26 VMXOFF. Guest software attempted to execute VMXOFF.

27 VMXON. Guest software attempted to execute VMXON.

28 Control-register accesses. Guest software attempted to access CR0, CR3, CR4, or
CR8 using CLTS, LMSW, or MOV CR and the VM-execution control fields indicate
that a VM exit should occur (see Section 22.1 for details). This basic exit reason is
not used for trap-like VM exits following executions of the MOV to CR8 instruction
when the “use TPR shadow” VM-execution control is 1.

29 MOV DR. Guest software attempted a MOV to or from a debug register and the
“MOV-DR exiting” VM-execution control was 1.

30 I/O instruction. Guest software attempted to execute an I/O instruction and either:

1: The “use I/O bitmaps” VM-execution control was 0 and the “unconditional I/O
exiting” VM-execution control was 1.

2: The “use I/O bitmaps” VM-execution control was 1 and a bit in the I/O bitmap
associated with one of the ports accessed by the I/O instruction was 1.

Table I-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
I-2 Vol. 3B

VMX BASIC EXIT REASONS
31 RDMSR. Guest software attempted to execute RDMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

read bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

read bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

32 WRMSR. Guest software attempted to execute WRMSR and either:

1: The “use MSR bitmaps” VM-execution control was 0.
2: The value of RCX is neither in the range 00000000H – 00001FFFH nor in the

range C0000000H – C0001FFFH.
3: The value of RCX was in the range 00000000H – 00001FFFH and the nth bit in

write bitmap for low MSRs is 1, where n was the value of RCX.
4: The value of RCX is in the range C0000000H – C0001FFFH and the nth bit in

write bitmap for high MSRs is 1, where n is the value of RCX & 00001FFFH.

33 VM-entry failure due to invalid guest state. A VM entry failed one of the checks
identified in Section 23.3.1.

34 VM-entry failure due to MSR loading. A VM entry failed in an attempt to load
MSRs. See Section 23.4.

36 MWAIT. Guest software attempted to execute MWAIT and the “MWAIT exiting”
VM-execution control was 1.

37 Monitor trap flag. A VM entry occurred due to the 1-setting of the “monitor trap
flag” VM-execution control and injection of an MTF VM exit as part of VM entry.
See Section 22.7.2.

39 MONITOR. Guest software attempted to execute MONITOR and the “MONITOR
exiting” VM-execution control was 1.

40 PAUSE. Either guest software attempted to execute PAUSE and the “PAUSE
exiting” VM-execution control was 1 or the “PAUSE-loop exiting” VM-execution
control was 1 and guest software executed a PAUSE loop with execution time
exceeding PLE_Window (see Section 22.1.3).

41 VM-entry failure due to machine check. A machine check occurred during VM entry
(see Section 23.8).

43 TPR below threshold. The logical processor determined that the value of the TPR
shadow was below that of the TPR threshold VM-execution control field while the
“use TPR shadow” VM-execution control was 1 in one of the following cases:

• After guest software executed MOV to CR8 (see Section 22.1.3).
• As part of a TPR-shadow update (see Section 22.5.3.3).
• After VM entry with the 1-setting of the “virtualize APIC accesses” VM-

execution control (see Section 23.6.7).

Table I-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
Vol. 3B I-3

VMX BASIC EXIT REASONS
44 APIC access. Guest software attempted to access memory at a physical address on
the APIC-access page and the “virtualize APIC accesses” VM-execution control was
1 (see Section 22.2).

46 Access to GDTR or IDTR. Guest software attempted to execute LGDT, LIDT, SGDT,
or SIDT and the “descriptor-table exiting” VM-execution control was 1.

47 Access to LDTR or TR. Guest software attempted to execute LLDT, LTR, SLDT, or
STR and the “descriptor-table exiting” VM-execution control was 1.

48 EPT violation. An attempt to access memory with a guest-physical address was
disallowed by the configuration of the EPT paging structures.

49 EPT misconfiguration. An attempt to access memory with a guest-physical address
encountered a misconfigured EPT paging-structure entry.

50 INVEPT. Guest software attempted to execute INVEPT.

51 RDTSCP. Guest software attempted to execute RDTSCP and the “enable RDTSCP”
and “RDTSC exiting” VM-execution controls were both 1.

52 VMX-preemption timer expired. The preemption timer counted down to zero.

53 INVVPID. Guest software attempted to execute INVVPID.

54 WBINVD. Guest software attempted to execute WBINVD and the “WBINVD exiting”
VM-execution control was 1.

55 XSETBV. Guest software attempted to execute XSETBV.

Table I-1. Basic Exit Reasons (Contd.)
Basic Exit
Reason Description
I-4 Vol. 3B

INDEX FOR VOLUMES 3A & 3B
Numerics
16-bit code, mixing with 32-bit code, 18-1
32-bit code, mixing with 16-bit code, 18-1
32-bit physical addressing

overview, 3-7
36-bit physical addressing

overview, 3-7
64-bit mode

call gates, 5-20
code segment descriptors, 5-5, 9-16
control registers, 2-17
CR8 register, 2-18
D flag, 5-5
debug registers, 2-9
descriptors, 5-5, 5-7
DPL field, 5-5
exception handling, 6-22
external interrupts, 10-46
fast system calls, 5-32
GDTR register, 2-16, 2-17
GP faults, causes of, 6-52
IDTR register, 2-17
initialization process, 2-12, 9-14
interrupt and trap gates, 6-23
interrupt controller, 10-46
interrupt descriptors, 2-7
interrupt handling, 6-22
interrupt stack table, 6-26
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address translation, 3-9
MOV CRn, 2-17, 10-46
null segment checking, 5-9
paging, 2-8
reading counters, 2-33
reading & writing MSRs, 2-33
registers and mode changes, 9-16
RFLAGS register, 2-15
segment descriptor tables, 3-22, 5-5
segment loading instructions, 3-12
segments, 3-6
stack switching, 5-28, 6-25
SYSCALL and SYSRET, 2-10, 5-32
SYSENTER and SYSEXIT, 5-31
system registers, 2-9
task gate, 7-22
task priority, 2-25, 10-46
task register, 2-17
TSS

stack pointers, 7-23
See also: IA-32e mode, compatibility mode

8086
emulation, support for, 17-1

processor, exceptions and interrupts, 17-8
8086/8088 processor, 19-8
8087 math coprocessor, 19-9
82489DX, 19-37

Local APIC and I/O APICs, 10-5

A
A20M# signal, 17-4, 19-46, 20-5
Aborts

description of, 6-7
restarting a program or task after, 6-8

AC (alignment check) flag, EFLAGS register, 2-14,
6-61, 19-8

Access rights
checking, 2-30
checking caller privileges, 5-37
description of, 5-35
invalid values, 19-26

ADC instruction, 8-5
ADD instruction, 8-5
Address

size prefix, 18-2
space, of task, 7-19

Address translation
in real-address mode, 17-3
logical to linear, 3-9
overview, 3-8

Addressing, segments, 1-8
Advanced power management

C-state and Sub C-state, 14-9
MWAIT extensions, 14-9
See also: thermal monitoring

Advanced programmable interrupt controller (see I/O
APIC or Local APIC)

Alignment
check exception, 2-14, 6-60, 19-16, 19-29
checking, 5-39

AM (alignment mask) flag
CR0 control register, 2-14, 2-20, 19-25

AND instruction, 8-5
APIC, 10-58, 10-60
APIC bus

arbitration mechanism and protocol, 10-37, 10-48
bus message format, 10-49, F-1
diagram of, 10-3, 10-4
EOI message format, 10-20, F-1
message formats, F-1
nonfocused lowest priority message, F-3
short message format, F-2
SMI message, 26-3
status cycles, F-5
structure of, 10-5
See also
Vol. 3B Index -1

INDEX
local APIC
APIC flag, CPUID instruction, 10-10
APIC ID, 10-58, 10-64, 10-67
APIC (see I/O APIC or Local APIC)
ARPL instruction, 2-30, 5-38

not supported in 64-bit mode, 2-30
Atomic operations

automatic bus locking, 8-4
effects of a locked operation on internal processor

caches, 8-7
guaranteed, description of, 8-3
overview of, 8-2, 8-4
software-controlled bus locking, 8-5

At-retirement
counting, 30-23, 30-84
events, 30-23, 30-68, 30-70, 30-84, 30-91

Auto HALT restart
field, SMM, 26-18
SMM, 26-18

Automatic bus locking, 8-4
Automatic thermal monitoring mechanism, 14-10

B
B (busy) flag

TSS descriptor, 7-7, 7-13, 7-14, 7-18, 8-4
B (default stack size) flag

segment descriptor, 18-2, 19-45
B0-B3 (BP condition detected) flags

DR6 register, 16-4
Backlink (see Previous task link)
Base address fields, segment descriptor, 3-14
BD (debug register access detected) flag, DR6

register, 16-4, 16-12
Binary numbers, 1-8
BINIT# signal, 2-31
BIOS role in microcode updates, 9-49
Bit order, 1-6
BOUND instruction, 2-7, 6-6, 6-33
BOUND range exceeded exception (#BR), 6-33
BP0#, BP1#, BP2#, and BP3# pins, 16-44, 16-47
Branch record

branch trace message, 16-17
IA-32e mode, 16-26
saving, 16-19, 16-33, 16-40
saving as a branch trace message, 16-17
structure, 16-40
structure of in BTS buffer, 16-24

Branch trace message (see BTM)
Branch trace store (see BTS)
Breakpoint exception (#BP), 6-6, 6-31, 16-13
Breakpoints

data breakpoint, 16-7
data breakpoint exception conditions, 16-12
description of, 16-1
DR0-DR3 debug registers, 16-4
example, 16-7
exception, 6-31

field recognition, 16-6, 16-8
general-detect exception condition, 16-12
instruction breakpoint, 16-7
instruction breakpoint exception condition, 16-10
I/O breakpoint exception conditions, 16-12
LEN0 - LEN3 (Length) fields

DR7 register, 16-6
R/W0-R/W3 (read/write) fields

DR7 register, 16-5
single-step exception condition, 16-12
task-switch exception condition, 16-13

BS (single step) flag, DR6 register, 16-4
BSP flag, IA32_APIC_BASE MSR, 10-11
BSWAP instruction, 19-6
BT (task switch) flag, DR6 register, 16-4, 16-13
BTC instruction, 8-5
BTF (single-step on branches) flag

DEBUGCTLMSR MSR, 16-47
BTMs (branch trace messages)

description of, 16-17
enabling, 16-15, 16-29, 16-30, 16-39, 16-42,

16-45
TR (trace message enable) flag

MSR_DEBUGCTLA MSR, 16-39
MSR_DEBUGCTLB MSR, 16-15, 16-42, 16-45

BTR instruction, 8-5
BTS, 16-22
BTS buffer

description of, 16-22
introduction to, 16-14, 16-18
records in, 16-24
setting up, 16-29
structure of, 16-23, 16-26, 30-32

BTS instruction, 8-5
BTS (branch trace store) facilities

availability of, 16-38
BTS_UNAVAILABLE flag,

IA32_MISC_ENABLE MSR, 16-22, B-181
introduction to, 16-14
setting up BTS buffer, 16-29
writing an interrupt service routine for, 16-31

Built-in self-test (BIST)
description of, 9-1
performing, 9-2

Bus
errors detected with MCA, 15-35
hold, 19-48
locking, 8-4, 19-48

Byte order, 1-6

C
C (conforming) flag, segment descriptor, 5-16
C1 flag, x87 FPU status word, 19-10, 19-20
C2 flag, x87 FPU status word, 19-11
Cache control, 11-30

adaptive mode, L1 Data Cache, 11-26
cache management instructions, 11-25, 11-26
Index-2 Vol. 3B

INDEX
cache mechanisms in IA-32 processors, 19-40
caching terminology, 11-7
CD flag, CR0 control register, 11-15, 19-26
choosing a memory type, 11-12
CPUID feature flag, 11-26
flags and fields, 11-14
flushing TLBs, 11-29
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

internal caches, 11-1
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI protocol, 11-7, 11-13
methods of caching available, 11-8
MTRR initialization, 11-41
MTRR precedences, 11-41
MTRRs, description of, 11-30
multiple-processor considerations, 11-46
NW flag, CR0 control register, 11-18, 19-26
operating modes, 11-17
overview of, 11-1
page attribute table (PAT), 11-48
PCD flag

CR3 control register, 11-19
page-directory entries, 11-19, 11-47
page-table entries, 11-19, 11-47

PGE (page global enable) flag, CR4 control register
, 11-19

precedence of controls, 11-19
preventing caching, 11-24
protocol, 11-13
PWT flag

CR3 control register, 11-19
page-directory entries, 11-47
page-table entries, 11-47

remapping memory types, 11-42
setting up memory ranges with MTRRs, 11-33
shared mode, L1 Data Cache, 11-26
variable-range MTRRs, 11-34, 11-37

Caches, 2-10
cache hit, 11-7
cache line, 11-7
cache line fill, 11-7
cache write hit, 11-7
description of, 11-1
effects of a locked operation on internal processor

caches, 8-7
enabling, 9-8
management, instructions, 2-31, 11-25

Caching
cache control protocol, 11-13
cache line, 11-7
cache management instructions, 11-25
cache mechanisms in IA-32 processors, 19-40
caching terminology, 11-7
choosing a memory type, 11-12
flushing TLBs, 11-29

implicit caching, 11-27
internal caches, 11-1
L1 (level 1) cache, 11-5
L2 (level 2) cache, 11-5
L3 (level 3) cache, 11-5
methods of caching available, 11-8
MTRRs, description of, 11-30
operating modes, 11-17
overview of, 11-1
self-modifying code, effect on, 11-27, 19-41
snooping, 11-8
store buffer, 11-29
TLBs, 11-6
UC (strong uncacheable) memory type, 11-8
UC- (uncacheable) memory type, 11-9
WB (write back) memory type, 11-10
WC (write combining) memory type, 11-9
WP (write protected) memory type, 11-10
write-back caching, 11-8
WT (write through) memory type, 11-10

Call gates
16-bit, interlevel return from, 19-44
accessing a code segment through, 5-22
description of, 5-19
for 16-bit and 32-bit code modules, 18-2
IA-32e mode, 5-20
introduction to, 2-5
mechanism, 5-22
privilege level checking rules, 5-23

CALL instruction, 2-6, 3-11, 5-15, 5-22, 5-29, 7-3,
7-12, 7-13, 18-7

Caller access privileges, checking, 5-37
Calls

16 and 32-bit code segments, 18-4
controlling operand-size attribute, 18-7
returning from, 5-28

Capability MSRs
See VMX capability MSRs

Catastrophic shutdown detector
Thermal monitoring

catastrophic shutdown detector, 14-12
catastrophic shutdown detector, 14-10
CC0 and CC1 (counter control) fields, CESR MSR

(Pentium processor), 30-120
CD (cache disable) flag, CR0 control register, 2-19,

9-8, 11-15, 11-17, 11-19, 11-24, 11-46,
11-47, 19-25, 19-26, 19-40

CESR (control and event select) MSR (Pentium
processor), 30-119

CLFLSH feature flag, CPUID instruction, 9-10
CLFLUSH instruction, 2-21, 8-9, 9-10, 11-26
CLI instruction, 6-10
Clocks

counting processor clocks, 30-95
Hyper-Threading Technology, 30-95
nominal CPI, 30-95
non-halted clockticks, 30-95
non-halted CPI, 30-95
Vol. 3B Index -3

INDEX
non-sleep Clockticks, 30-95
time stamp counter, 30-95

CLTS instruction, 2-29, 5-34, 22-3, 22-16
Cluster model, local APIC, 10-34
CMOVcc instructions, 19-6
CMPXCHG instruction, 8-5, 19-6
CMPXCHG8B instruction, 8-5, 19-6
Code modules

16 bit vs. 32 bit, 18-2
mixing 16-bit and 32-bit code, 18-1
sharing data, mixed-size code segs, 18-4
transferring control, mixed-size code segs, 18-4

Code segments
accessing data in, 5-14
accessing through a call gate, 5-22
description of, 3-16
descriptor format, 5-3
descriptor layout, 5-3
direct calls or jumps to, 5-15
paging of, 2-8
pointer size, 18-5
privilege level checks

transferring control between code segs, 5-14
Compatibility

IA-32 architecture, 19-1
software, 1-7

Compatibility mode
code segment descriptor, 5-5
code segment descriptors, 9-16
control registers, 2-17
CS.L and CS.D, 9-16
debug registers, 2-31
EFLAGS register, 2-15
exception handling, 2-7
gates, 2-6
GDTR register, 2-16, 2-17
global and local descriptor tables, 2-5
IDTR register, 2-17
interrupt handling, 2-7
L flag, 3-16, 5-5
memory management, 2-8
operation, 9-16
segment loading instructions, 3-12
segments, 3-6
switching to, 9-16
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system flags, 2-15
system registers, 2-9
task register, 2-17
See also: 64-bit mode, IA-32e mode

compilers
documentation, 1-11

Condition code flags, x87 FPU status word
compatibility information, 19-10

Conforming code segments
accessing, 5-17
C (conforming) flag, 5-16

description of, 3-18
Context, task (see Task state)
Control registers

64-bit mode, 2-17
CR0, 2-17
CR1 (reserved), 2-17
CR2, 2-17
CR3 (PDBR), 2-8, 2-17
CR4, 2-17
description of, 2-17
introduction to, 2-9
VMX operation, 27-25

Coprocessor segment
overrun exception, 6-41, 19-16

Counter mask field
PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family

processors), 30-6, 30-117
CPL

description of, 5-10
field, CS segment selector, 5-2

CPUID instruction
AP-485, 1-11
availability, 19-6
control register flags, 2-26
detecting features, 19-3
serializing instructions, 8-25
syntax for data, 1-9

CR0 control register, 19-9
description of, 2-17
introduction to, 2-9
state following processor reset, 9-2

CR1 control register (reserved), 2-17
CR2 control register

description of, 2-17
introduction to, 2-9

CR3 control register (PDBR)
associated with a task, 7-1, 7-3
description of, 2-17
in TSS, 7-5, 7-19
introduction to, 2-9
loading during initialization, 9-13
memory management, 2-8
page directory base address, 2-8
page table base address, 2-7

CR4 control register
description of, 2-17
enabling control functions, 19-2
inclusion in IA-32 architecture, 19-24
introduction to, 2-9
VMX usage of, 20-4

CR8 register, 2-9
64-bit mode, 2-18
compatibility mode, 2-18
description of, 2-18
task priority level bits, 2-25
when available, 2-18

CS register, 19-14
state following initialization, 9-6
Index-4 Vol. 3B

INDEX
C-state, 14-9
CTR0 and CTR1 (performance counters) MSRs

(Pentium processor), 30-119, 30-121
Current privilege level (see CPL)

D
D (default operation size) flag

segment descriptor, 18-2, 19-45
Data breakpoint exception conditions, 16-12
Data segments

description of, 3-16
descriptor layout, 5-3
expand-down type, 3-15
paging of, 2-8
privilege level checking when accessing, 5-12

DE (debugging extensions) flag, CR4 control register,
2-23, 19-24, 19-27, 19-28

Debug exception (#DB), 6-10, 6-29, 7-6, 16-9, 16-16,
16-48

Debug store (see DS)
DEBUGCTLMSR MSR, 16-46, 16-48, B-239
Debugging facilities

breakpoint exception (#BP), 16-1
debug exception (#DB), 16-1
DR6 debug status register, 16-1
DR7 debug control register, 16-1
exceptions, 16-9
INT3 instruction, 16-1
last branch, interrupt, and exception recording,

16-2, 16-14
masking debug exceptions, 6-10
overview of, 16-1
performance-monitoring counters, 30-1
registers

description of, 16-2
introduction to, 2-9
loading, 2-30

RF (resume) flag, EFLAGS, 16-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 16-1
TF (trap) flag, EFLAGS, 16-1
virtualization, 28-1
VMX operation, 28-2

DEC instruction, 8-5
Denormal operand exception (#D), 19-13
Denormalized operand, 19-17
Device-not-available exception (#NM), 2-21, 2-30,

6-36, 9-8, 19-15, 19-16
DFR

Destination Format Register, 10-55, 10-60, 10-66
Digital readout bits, 14-21, 14-25
DIV instruction, 6-28
Divide configuration register, local APIC, 10-23
Divide-error exception (#DE), 6-28, 19-29
Double-fault exception (#DF), 6-38, 19-37
DPL (descriptor privilege level) field, segment

descriptor, 3-14, 5-2, 5-5, 5-10

DR0-DR3 breakpoint-address registers, 16-1, 16-4,
16-44, 16-47, 16-48

DR4-DR5 debug registers, 16-4, 19-27
DR6 debug status register, 16-4

B0-B3 (BP detected) flags, 16-4
BD (debug register access detected) flag, 16-4
BS (single step) flag, 16-4
BT (task switch) flag, 16-4
debug exception (#DB), 6-29
reserved bits, 19-27

DR7 debug control register, 16-5
G0-G3 (global breakpoint enable) flags, 16-5
GD (general detect enable) flag, 16-5
GE (global exact breakpoint enable) flag, 16-5
L0-L3 (local breakpoint enable) flags, 16-5
LE local exact breakpoint enable) flag, 16-5
LEN0-LEN3 (Length) fields, 16-6
R/W0-R/W3 (read/write) fields, 16-5, 19-27

DS feature flag, CPUID instruction, 16-21, 16-38,
16-43, 16-45

DS save area, 16-23, 16-25, 16-26
DS (debug store) mechanism

availability of, 30-74
description of, 30-74
DS feature flag, CPUID instruction, 30-74
DS save area, 16-21, 16-25
IA-32e mode, 16-25
interrupt service routine (DS ISR), 16-31
setting up, 16-28

Dual-core technology
architecture, 8-47
logical processors supported, 8-36
MTRR memory map, 8-48
multi-threading feature flag, 8-36
performance monitoring, 30-100
specific features, 19-5

Dual-monitor treatment, 26-27
D/B (default operation size/default stack pointer size

and/or upper bound) flag, segment
descriptor, 3-15, 5-6

E
E (edge detect) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family),
30-5

E (edge detect) flag, PerfEvtSel0 and PerfEvtSel1
MSRs (P6 family processors), 30-116

E (expansion direction) flag
segment descriptor, 5-2, 5-6

E (MTRRs enabled) flag
IA32_MTRR_DEF_TYPE MSR, 11-33

EFLAGS register
identifying 32-bit processors, 19-8
introduction to, 2-9
new flags, 19-7
saved in TSS, 7-5
system flags, 2-12
Vol. 3B Index -5

INDEX
VMX operation, 27-4
EIP register, 19-14

saved in TSS, 7-6
state following initialization, 9-6

EM (emulation) flag
CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8,

12-1, 13-3
EMMS instruction, 12-3
Enhanced Intel SpeedStep Technology

ACPI 3.0 specification, 14-2
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
introduction, 14-1
multiple processor cores, 14-2
performance transitions, 14-1
P-state coordination, 14-2
See also: thermal monitoring

EOI
End Of Interrupt register, 10-56

Error code, E-5, E-11, E-15, E-18
architectural MCA, E-1, E-5, E-11, E-15, E-18
decoding IA32_MCi_STATUS, E-1, E-5, E-11,

E-15, E-18
exception, description of, 6-20
external bus, E-1, E-5, E-11, E-15, E-18
memory hierarchy, E-5, E-11, E-15, E-18
pushing on stack, 19-44
watchdog timer, E-1, E-5, E-11, E-15, E-18

Error signals, 19-14, 19-15
Error-reporting bank registers, 15-3
ERROR#

input, 19-22
output, 19-22

ES0 and ES1 (event select) fields, CESR MSR (Pentium
processor), 30-119

ESR
Error Status Register, 10-57

ET (extension type) flag, CR0 control register, 2-20,
19-9

Event select field, PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 30-4, 30-20,
30-115

Events
at-retirement, 30-84
at-retirement (Pentium 4 processor), 30-68
non-retirement (Pentium 4 processor), 30-68,

A-202
P6 family processors, A-254
Pentium processor, A-272

Exception handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
machine-check exception handler, 15-35
machine-check exceptions (#MC), 15-35
machine-error logging utility, 15-35

procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Exceptions
alignment check, 19-16
classifications, 6-6
compound error codes, 15-27
conditions checked during a task switch, 7-15
coprocessor segment overrun, 19-16
description of, 2-7, 6-1
device not available, 19-16
double fault, 6-38
error code, 6-20
exception bitmap, 28-2
execute-disable bit, 5-47
floating-point error, 19-16
general protection, 19-16
handler mechanism, 6-16
handler procedures, 6-16
handling, 6-15
handling in real-address mode, 17-6
handling in SMM, 26-14
handling in virtual-8086 mode, 17-16
handling through a task gate in virtual-8086 mode

, 17-21
handling through a trap or interrupt gate in

virtual-8086 mode, 17-18
IA-32e mode, 2-7
IDT, 6-12
initializing for protected-mode operation, 9-13
invalid-opcode, 19-7
masking debug exceptions, 6-10
masking when switching stack segments, 6-11
MCA error codes, 15-26
MMX instructions, 12-1
notation, 1-10
overview of, 6-1
priorities among simultaneous exceptions and

interrupts, 6-11
priority of, 19-30
priority of, x87 FPU exceptions, 19-14
reference information on all exceptions, 6-27
reference information, 64-bit mode, 6-22
restarting a task or program, 6-7
segment not present, 19-16
simple error codes, 15-26
sources of, 6-5
summary of, 6-3
vectors, 6-2

Executable, 3-15
Execute-disable bit capability

conditions for, 5-43
CPUID flag, 5-43
detecting and enabling, 5-43
exception handling, 5-47
page-fault exceptions, 6-54
paging data structures, 13-14
protection matrix for IA-32e mode, 5-44
Index-6 Vol. 3B

INDEX
protection matrix for legacy modes, 5-45
reserved bit checking, 5-45

Execution events, A-242
Exit-reason numbers

VM entries & exits, I-1
Expand-down data segment type, 3-15
Extended signature table, 9-41
extended signature table, 9-41
External bus errors, detected with machine-check

architecture, 15-35

F
F2XM1 instruction, 19-18
Family 06H, E-1
Family 0FH, E-1

microcode update facilities, 9-37
Faults

description of, 6-6
restarting a program or task after, 6-7

FCMOVcc instructions, 19-6
FCOMI instruction, 19-6
FCOMIP instruction, 19-6
FCOS instruction, 19-18
FDISI instruction (obsolete), 19-20
FDIV instruction, 19-15, 19-17
FE (fixed MTRRs enabled) flag,

IA32_MTRR_DEF_TYPE MSR, 11-33
Feature

determination, of processor, 19-3
information, processor, 19-3

FENI instruction (obsolete), 19-20
FINIT/FNINIT instructions, 19-10, 19-22
FIX (fixed range registers supported) flag,

IA32_MTRRCAPMSR, 11-32
Fixed-range MTRRs

description of, 11-34
Flat segmentation model, 3-3, 3-4
FLD instruction, 19-18
FLDENV instruction, 19-16
FLDL2E instruction, 19-19
FLDL2T instruction, 19-19
FLDLG2 instruction, 19-19
FLDLN2 instruction, 19-19
FLDPI instruction, 19-19
Floating-point error exception (#MF), 19-16
Floating-point exceptions

denormal operand exception (#D), 19-13
invalid operation (#I), 19-19
numeric overflow (#O), 19-13
numeric underflow (#U), 19-14
saved CS and EIP values, 19-14

FLUSH# pin, 6-4
FNSAVE instruction, 12-4
Focus processor, local APIC, 10-37
FORCEPR# log, 14-20, 14-25
FORCPR# interrupt enable bit, 14-22
FPATAN instruction, 19-18

FPREM instruction, 19-10, 19-15, 19-17
FPREM1 instruction, 19-10, 19-17
FPTAN instruction, 19-11, 19-18
Front_end events, A-242
FRSTOR instruction, 12-4, 19-16
FSAVE instruction, 12-3, 12-4
FSAVE/FNSAVE instructions, 19-16, 19-20
FSCALE instruction, 19-17
FSIN instruction, 19-18
FSINCOS instruction, 19-18
FSQRT instruction, 19-15, 19-17
FSTENV instruction, 12-3
FSTENV/FNSTENV instructions, 19-20
FTAN instruction, 19-11
FUCOM instruction, 19-17
FUCOMI instruction, 19-6
FUCOMIP instruction, 19-6
FUCOMP instruction, 19-17
FUCOMPP instruction, 19-17
FWAIT instruction, 6-36
FXAM instruction, 19-19, 19-20
FXRSTOR instruction, 2-24, 2-25, 9-10, 12-3, 12-4,

12-5, 13-1, 13-3, 13-8
FXSAVE instruction, 2-24, 2-25, 9-10, 12-3, 12-4,

12-5, 13-1, 13-3, 13-8
FXSR feature flag, CPUID instruction, 9-10
FXTRACT instruction, 19-13, 19-19

G
G (global) flag

page-directory entries, 11-19
page-table entries, 11-19

G (granularity) flag
segment descriptor, 3-13, 3-15, 5-2, 5-6

G0-G3 (global breakpoint enable) flags
DR7 register, 16-5

Gate descriptors
call gates, 5-19
description of, 5-18
IA-32e mode, 5-20

Gates, 2-5
IA-32e mode, 2-6

GD (general detect enable) flag
DR7 register, 16-5, 16-12

GDT
description of, 2-5, 3-21
IA-32e mode, 2-5
index field of segment selector, 3-9
initializing, 9-12
paging of, 2-8
pointers to exception/interrupt handlers, 6-16
segment descriptors in, 3-13
selecting with TI flag of segment selector, 3-10
task switching, 7-12
task-gate descriptor, 7-11
TSS descriptors, 7-7
use in address translation, 3-8
Vol. 3B Index -7

INDEX
GDTR register
description of, 2-5, 2-9, 2-16, 3-21
IA-32e mode, 2-5, 2-16
limit, 5-7
loading during initialization, 9-12
storing, 3-21

GE (global exact breakpoint enable) flag
DR7 register, 16-5, 16-12

General-detect exception condition, 16-12
General-protection exception (#GP), 3-17, 5-9, 5-10,

5-16, 5-17, 6-13, 6-19, 6-50, 7-7, 16-2,
19-16, 19-29, 19-46, 19-48

General-purpose registers, saved in TSS, 7-5
Global control MSRs, 15-3
Global descriptor table register (see GDTR)
Global descriptor table (see GDT)

H
HALT state

relationship to SMI interrupt, 26-5, 26-18
Hardware reset

description of, 9-1
processor state after reset, 9-2
state of MTRRs following, 11-30
value of SMBASE following, 26-5

Hexadecimal numbers, 1-8
high-temperature interrupt enable bit, 14-22, 14-26
HITM# line, 11-8
HLT instruction, 2-31, 5-34, 6-39, 22-3, 26-18, 26-19
Hyper-Threading Technology

architectural state of a logical processor, 8-47
architecture description, 8-39
caches, 8-44
counting clockticks, 30-97
debug registers, 8-42
description of, 8-35, 19-5
detecting, 8-51, 8-52, 8-57, 8-58
executing multiple threads, 8-38
execution-based timing loops, 8-73
external signal compatibility, 8-46
halting logical processors, 8-72
handling interrupts, 8-38
HLT instruction, 8-65
IA32_MISC_ENABLE MSR, 8-43, 8-48
initializing IA-32 processors with, 8-37
introduction of into the IA-32 architecture, 19-5
local a, 8-40
local APIC

functionality in logical processor, 8-41
logical processors, identifying, 8-52
machine check architecture, 8-42
managing idle and blocked conditions, 8-65
mapping resources, 8-49
memory ordering, 8-43
microcode update resources, 8-44, 8-48, 9-46
MP systems, 8-39
MTRRs, 8-41, 8-47

multi-threading feature flag, 8-36
multi-threading support, 8-35
PAT, 8-42
PAUSE instruction, 8-66, 8-67
performance monitoring, 30-89, 30-100
performance monitoring counters, 8-43, 8-48
placement of locks and semaphores, 8-74
required operating system support, 8-69
scheduling multiple threads, 8-73
self modifying code, 8-44
serializing instructions, 8-43
spin-wait loops

PAUSE instructions in, 8-69, 8-70, 8-72
thermal monitor, 8-45
TLBs, 8-45

I
IA32, 15-5
IA-32 Intel architecture

compatibility, 19-1
processors, 19-1

IA32e mode
registers and mode changes, 9-16

IA-32e mode
call gates, 5-20
code segment descriptor, 5-5
D flag, 5-5
data structures and initialization, 9-15
debug registers, 2-9
debug store area, 16-25
descriptors, 2-6
DPL field, 5-5
exceptions during initialization, 9-15
feature-enable register, 2-10
gates, 2-6
global and local descriptor tables, 2-5
IA32_EFER MSR, 2-10, 5-43
initialization process, 9-14
interrupt stack table, 6-26
interrupts and exceptions, 2-7
IRET instruction, 6-25
L flag, 3-16, 5-5
logical address, 3-9
MOV CRn, 9-14
MTRR calculations, 11-40
NXE bit, 5-43
page level protection, 5-43
paging, 2-8
PDE tables, 5-44
PDP tables, 5-44
PML4 tables, 5-44
PTE tables, 5-44
registers and data structures, 2-2
segment descriptor tables, 3-22, 5-5
segment descriptors, 3-13
segment loading instructions, 3-12
segmentation, 3-6
Index-8 Vol. 3B

INDEX
stack switching, 5-28, 6-25
SYSCALL and SYSRET, 5-32
SYSENTER and SYSEXIT, 5-31
system descriptors, 3-19
system registers, 2-9
task switching, 7-22
task-state segments, 2-7
terminating mode operation, 9-16
See also: 64-bit mode, compatibility mode

IA32_APERF MSR, 14-2
IA32_APIC_BASE MSR, 8-28, 8-29, 10-8, 10-11,

B-166
IA32_BIOS_SIGN_ID MSR, B-171
IA32_BIOS_UPDT_TRIG MSR, 28-13, B-171
IA32_BISO_SIGN_ID MSR, 28-13
IA32_CLOCK_MODULATION MSR, 8-46, 14-16,

14-17, 14-18, 14-21, 14-32, 14-33,
14-35, 14-36, 14-37, 14-38, B-53, B-73,
B-87, B-140, B-178, B-213, B-226

IA32_CTL MSR, B-172
IA32_DEBUGCTL MSR, 24-34, B-185
IA32_DS_AREA MSR, 16-21, 16-22, 16-25, 16-28,

30-65, 30-88, B-200
IA32_EFER MSR, 2-10, 2-12, 5-43, 24-34, 27-23
IA32_FEATURE_CONTROL MSR, 20-4
IA32_KernelGSbase MSR, 2-10
IA32_LSTAR MSR, 2-10, 5-32
IA32_MCG_CAP MSR, 15-3, 15-36, B-172
IA32_MCG_CTL MSR, 15-3, 15-5
IA32_MCG_EAX MSR, 15-13
IA32_MCG_EBP MSR, 15-13
IA32_MCG_EBX MSR, 15-13
IA32_MCG_ECX MSR, 15-13
IA32_MCG_EDI MSR, 15-13
IA32_MCG_EDX MSR, 15-13
IA32_MCG_EFLAGS MSR, 15-13
IA32_MCG_EIP MSR, 15-13
IA32_MCG_ESI MSR, 15-13
IA32_MCG_ESP MSR, 15-13
IA32_MCG_MISC MSR, 15-13, 15-14, B-175
IA32_MCG_R10 MSR, 15-14, B-176
IA32_MCG_R11 MSR, 15-15, B-177
IA32_MCG_R12 MSR, 15-15
IA32_MCG_R13 MSR, 15-15
IA32_MCG_R14 MSR, 15-15
IA32_MCG_R15 MSR, 15-15, B-178
IA32_MCG_R8 MSR, 15-14
IA32_MCG_R9 MSR, 15-14
IA32_MCG_RAX MSR, 15-14, B-172
IA32_MCG_RBP MSR, 15-14
IA32_MCG_RBX MSR, 15-14, B-173
IA32_MCG_RCX MSR, 15-14
IA32_MCG_RDI MSR, 15-14
IA32_MCG_RDX MSR, 15-14
IA32_MCG_RESERVEDn, B-176
IA32_MCG_RESERVEDn MSR, 15-14
IA32_MCG_RFLAGS MSR, 15-14, B-175
IA32_MCG_RIP MSR, 15-14, B-175

IA32_MCG_RSI MSR, 15-14
IA32_MCG_RSP MSR, 15-14
IA32_MCG_STATUS MSR, 15-3, 15-4, 15-36, 15-38,

24-4
IA32_MCi_ADDR MSR, 15-10, 15-38, B-195
IA32_MCi_CTL MSR, 15-5, B-195
IA32_MCi_MISC MSR, 15-11, 15-12, 15-13, 15-38,

B-195
IA32_MCi_STATUS MSR, 15-6, 15-36, 15-38, B-195

decoding for Family 06H, E-1
decoding for Family 0FH, E-1, E-5, E-11, E-15,

E-18
IA32_MISC_ENABLE MSR, 14-1, 14-12, 16-22, 16-38,

30-65, B-178, B-179
IA32_MPERF MSR, 14-2
IA32_MTRRCAP MSR, 11-32, 11-33, B-171
IA32_MTRR_DEF_TYPE MSR, 11-33
IA32_MTRR_FIXn, fixed ranger MTRRs, 11-34
IA32_MTRR_PHYS BASEn MTRR, B-186
IA32_MTRR_PHYSBASEn MTRR, B-186
IA32_MTRR_PHYSMASKn MTRR, B-186
IA32_P5_MC_ADDR MSR, B-165
IA32_P5_MC_TYPE MSR, B-166
IA32_PAT_CR MSR, 11-49
IA32_PEBS_ENABLE MSR, 30-24, 30-65, 30-88,

A-243, B-194
IA32_PERF_CTL MSR, 14-1
IA32_PERF_STATUS MSR, 14-1
IA32_PLATFORM_ID, B-45, B-66, B-82, B-135,

B-166, B-208, B-222, B-231
IA32_STAR MSR, 5-32
IA32_STAR_CS MSR, 2-10
IA32_STATUS MSR, B-172
IA32_SYSCALL_FLAG_MASK MSR, 2-10
IA32_SYSENTER_CS MSR, 5-31, 5-32, 24-27, B-172
IA32_SYSENTER_EIP MSR, 5-31, 24-34, B-172
IA32_SYSENTER_ESP MSR, 5-31, 24-34, B-172
IA32_TERM_CONTROL MSR, B-53, B-73, B-87,

B-140
IA32_THERM_INTERRUPT MSR, 14-15, 14-18,

14-19, 14-22, B-178
FORCPR# interrupt enable bit, 14-22
high-temperature interrupt enable bit, 14-22,

14-26
low-temperature interrupt enable bit, 14-22,

14-26
overheat interrupt enable bit, 14-22, 14-26
THERMTRIP# interrupt enable bit, 14-22, 14-26
threshold #1 interrupt enable bit, 14-23, 14-27
threshold #1 value, 14-22, 14-26
threshold #2 interrupt enable, 14-23, 14-27
threshold #2 value, 14-23, 14-27

IA32_THERM_STATUS MSR, 14-18, 14-19, B-178
digital readout bits, 14-21, 14-25
out-of-spec status bit, 14-20, 14-25
out-of-spec status log, 14-20, 14-25
PROCHOT# or FORCEPR# event bit, 14-20,

14-24, 14-25
Vol. 3B Index -9

INDEX
PROCHOT# or FORCEPR# log, 14-20, 14-25
resolution in degrees, 14-21
thermal status bit, 14-19, 14-24
thermal status log, 14-19, 14-24
thermal threshold #1 log, 14-20, 14-25
thermal threshold #1 status, 14-20, 14-25
thermal threshold #2 log, 14-21, 14-25
thermal threshold #2 status, 14-21, 14-25
validation bit, 14-21

IA32_TIME_STAMP_COUNTER MSR, B-166
IA32_VMX_BASIC MSR, 21-4, 27-2, 27-7, 27-8, 27-9,

27-17, B-63, B-79, B-99, B-150, B-199,
B-219, G-1, G-3

IA32_VMX_CR0_FIXED0 MSR, 20-5, 27-6, B-63,
B-80, B-99, B-151, B-199, B-220, G-9

IA32_VMX_CR0_FIXED1 MSR, 20-5, 27-6, B-63,
B-80, B-99, B-151, B-200, B-220, G-9

IA32_VMX_CR4_FIXED0 MSR, 20-5, 27-6, B-64,
B-80, B-99, B-151, B-200, B-220, G-9

IA32_VMX_CR4_FIXED1 MSR, 20-5, 27-6, B-64,
B-80, B-99, B-100, B-151, B-200, B-220,
B-221, G-9

IA32_VMX_ENTRY_CTLS MSR, 27-7, 27-8, 27-9,
B-63, B-80, B-99, B-151, B-199, B-220,
G-3, G-7, G-8

IA32_VMX_EXIT_CTLS MSR, 27-7, 27-8, 27-9, B-63,
B-80, B-99, B-151, B-199, B-220, G-3,
G-6, G-7

IA32_VMX_MISC MSR, 21-8, 23-4, 23-16, 26-36,
B-63, B-80, B-99, B-151, B-199, B-220,
G-8

IA32_VMX_PINBASED_CTLS MSR, 27-7, 27-8, 27-9,
B-63, B-79, B-99, B-150, B-199, B-219,
G-3, G-4

IA32_VMX_PROCBASED_CTLS MSR, 21-12, 27-7,
27-8, 27-9, B-63, B-64, B-80, B-99,
B-100, B-150, B-151, B-199, B-220,
B-221, G-3, G-4, G-5, G-6, G-10

IA32_VMX_VMCS_ENUM MSR, B-200, G-9
ICR

Interrupt Command Register, 10-55, 10-60,
10-68

ID (identification) flag
EFLAGS register, 2-15, 19-8

IDIV instruction, 6-28, 19-29
IDT

64-bit mode, 6-23
call interrupt & exception-handlers from, 6-15
change base & limit in real-address mode, 17-7
description of, 6-12
handling NMIs during initialization, 9-11
initializing protected-mode operation, 9-13
initializing real-address mode operation, 9-11
introduction to, 2-7
limit, 19-37
paging of, 2-8
structure in real-address mode, 17-7
task switching, 7-13

task-gate descriptor, 7-11
types of descriptors allowed, 6-14
use in real-address mode, 17-6

IDTR register
description of, 2-17, 6-13
IA-32e mode, 2-17
introduction to, 2-7
limit, 5-7
loading in real-address mode, 17-7
storing, 3-21

IE (invalid operation exception) flag
x87 FPU status word, 19-11

IEEE Standard 754 for Binary Floating-Point
Arithmetic, 19-11, 19-12, 19-13, 19-14,
19-17, 19-19

IF (interrupt enable) flag
EFLAGS register, 2-13, 2-14, 6-9, 6-14, 6-19,

17-6, 17-29, 26-14
IN instruction, 8-23, 19-47, 22-3
INC instruction, 8-5
Index field, segment selector, 3-9
INIT interrupt, 10-5
Initial-count register, local APIC, 10-22, 10-23
Initialization

built-in self-test (BIST), 9-1, 9-2
CS register state following, 9-6
EIP register state following, 9-6
example, 9-19
first instruction executed, 9-6
hardware reset, 9-1
IA-32e mode, 9-14
IDT, protected mode, 9-13
IDT, real-address mode, 9-11
Intel486 SX processor and Intel 487 SX math

coprocessor, 19-22
location of software-initialization code, 9-6
machine-check initialization, 15-24
model and stepping information, 9-5
multiple-processor (MP) bootup sequence for P6

family processors, C-1
multitasking environment, 9-14
overview, 9-1
paging, 9-13
processor state after reset, 9-2
protected mode, 9-11
real-address mode, 9-10
RESET# pin, 9-1
setting up exception- and interrupt-handling

facilities, 9-13
x87 FPU, 9-6

INIT# pin, 6-4, 9-2
INIT# signal, 2-31, 20-6
INS instruction, 16-12
Instruction operands, 1-8
Instruction-breakpoint exception condition, 16-10
Instructions

new instructions, 19-5
obsolete instructions, 19-7
Index-10 Vol. 3B

INDEX
privileged, 5-33
serializing, 8-25, 8-43, 19-21
supported in real-address mode, 17-4
system, 2-10, 2-27

INS/INSB/INSW/INSD instruction, 22-3
INT 3 instruction, 2-7, 6-31
INT instruction, 2-7, 5-15
INT n instruction, 3-11, 6-1, 6-5, 6-6, 16-13
INT (APIC interrupt enable) flag, PerfEvtSel0 and

PerfEvtSel1 MSRs (P6 family processors),
30-6, 30-116

INT15 and microcode updates, 9-55
INT3 instruction, 3-11, 6-6
Intel 287 math coprocessor, 19-9
Intel 387 math coprocessor system, 19-9
Intel 487 SX math coprocessor, 19-9, 19-22
Intel 64 architecture

definition of, 1-3
relation to IA-32, 1-3

Intel 8086 processor, 19-9
Intel Core Solo and Duo processors

model-specific registers, B-208
Intel Core Solo and Intel Core Duo processors

Enhanced Intel SpeedStep technology, 14-1
event mask (Umask), 30-16, 30-18
last branch, interrupt, exception recording, 16-42
notes on P-state transitions, 14-2
performance monitoring, 30-16, 30-18
performance monitoring events, A-2, A-18,

A-125, A-170
sub-fields layouts, 30-16, 30-18
time stamp counters, 16-49

Intel developer link, 1-12
Intel NetBurst microarchitecture, 1-2
Intel software network link, 1-12
Intel SpeedStep Technology

See: Enhanced Intel SpeedStep Technology
Intel VTune Performance Analyzer

related information, 1-11
Intel Xeon processor, 1-1

last branch, interrupt, and exception recording,
16-37

time-stamp counter, 16-49
Intel Xeon processor MP

with 8MB L3 cache, 30-100, 30-105
Intel286 processor, 19-9
Intel386 DX processor, 19-9
Intel386 SL processor, 2-10
Intel486 DX processor, 19-9
Intel486 SX processor, 19-9, 19-22
Interprivilege level calls

call mechanism, 5-22
stack switching, 5-25

Interprocessor interrupt (IPIs), 10-2
Interprocessor interrupt (IPI)

in MP systems, 10-1
interrupt, 6-17
Interrupt Command Register, 10-54

Interrupt command register (ICR), local APIC, 10-26
Interrupt gates

16-bit, interlevel return from, 19-44
clearing IF flag, 6-10, 6-19
difference between interrupt and trap gates,

6-19
for 16-bit and 32-bit code modules, 18-2
handling a virtual-8086 mode interrupt or

exception through, 17-18
in IDT, 6-14
introduction to, 2-5, 2-7
layout of, 6-14

Interrupt handler
calling, 6-15
defined, 6-1
flag usage by handler procedure, 6-19
procedures, 6-16
protection of handler procedures, 6-18
task, 6-20, 7-3

Interrupts
APIC priority levels, 10-41
automatic bus locking, 19-48
control transfers between 16- and 32-bit code

modules, 18-8
description of, 2-7, 6-1
destination, 10-38
distribution mechanism, local APIC, 10-36
enabling and disabling, 6-9
handling, 6-15
handling in real-address mode, 17-6
handling in SMM, 26-14
handling in virtual-8086 mode, 17-16
handling multiple NMIs, 6-9
handling through a task gate in virtual-8086 mode

, 17-21
handling through a trap or interrupt gate in

virtual-8086 mode, 17-18
IA-32e mode, 2-7, 2-17
IDT, 6-12
IDTR, 2-17
initializing for protected-mode operation, 9-13
interrupt descriptor table register (see IDTR)
interrupt descriptor table (see IDT)
list of, 6-3, 17-8
local APIC, 10-1
maskable hardware interrupts, 2-13
masking maskable hardware interrupts, 6-9
masking when switching stack segments, 6-11
message signalled interrupts, 10-49
on-die sensors for, 14-11
overview of, 6-1
priorities among simultaneous exceptions and

interrupts, 6-11
priority, 10-41
propagation delay, 19-36
real-address mode, 17-8
restarting a task or program, 6-7
software, 6-68
Vol. 3B Index -11

INDEX
sources of, 10-1
summary of, 6-3
thermal monitoring, 14-11
user defined, 6-2, 6-68
valid APIC interrupts, 10-20
vectors, 6-2
virtual-8086 mode, 17-8

INTO instruction, 2-7, 3-11, 6-6, 6-32, 16-13
INTR# pin, 6-2, 6-9
Invalid opcode exception (#UD), 2-22, 6-34, 6-65,

12-1, 16-4, 19-7, 19-15, 19-28, 19-29,
26-4

Invalid TSS exception (#TS), 6-42, 7-8
Invalid-operation exception, x87 FPU, 19-15, 19-19
INVD instruction, 2-31, 5-34, 11-25, 19-6
INVLPG instruction, 2-31, 5-34, 19-6, 22-3, 28-5,

28-6
IOPL (I/O privilege level) field, EFLAGS register

description of, 2-13
on return from exception, interrupt handler, 6-18
sensitive instructions in virtual-8086 mode,

17-15
virtual interrupt, 2-14, 2-15

IPI (see interprocessor interrupt)
IRET instruction, 3-11, 6-9, 6-10, 6-18, 6-19, 6-25,

7-13, 8-25, 17-6, 17-29, 22-16
IRETD instruction, 2-14, 8-25
IRR

Interrupt Request Register, 10-56, 10-60, 10-68
IRR (interrupt request register), local APIC, 10-43
ISR

In Service Register, 10-56, 10-60, 10-68
I/O

breakpoint exception conditions, 16-12
in virtual-8086 mode, 17-15
instruction restart flag

SMM revision identifier field, 26-20
instruction restart flag, SMM revision identifier

field, 26-21
IO_SMI bit, 26-15
I/O permission bit map, TSS, 7-6
map base address field, TSS, 7-6
restarting following SMI interrupt, 26-20
saving I/O state, 26-15
SMM state save map, 26-15

I/O APIC, 10-38
bus arbitration, 10-37
description of, 10-1
external interrupts, 6-4
information about, 10-1
interrupt sources, 10-2
local APIC and I/O APIC, 10-3, 10-4
overview of, 10-1
valid interrupts, 10-20
See also: local APIC

J
JMP instruction, 2-6, 3-11, 5-15, 5-22, 7-3, 7-12,

7-13

K
KEN# pin, 11-19, 19-50

L
L0-L3 (local breakpoint enable) flags

DR7 register, 16-5
L1 (level 1) cache

caching methods, 11-8
CPUID feature flag, 11-26
description of, 11-5
effect of using write-through memory, 11-12
introduction of, 19-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13
shared and adaptive mode, 11-26

L2 (level 2) cache
caching methods, 11-8
description of, 11-5
disabling, 11-25
effect of using write-through memory, 11-12
introduction of, 19-40
invalidating and flushing, 11-25
MESI cache protocol, 11-13

L3 (level 3) cache
caching methods, 11-8
description of, 11-5
disabling and enabling, 11-19, 11-25
effect of using write-through memory, 11-12
introduction of, 19-42
invalidating and flushing, 11-25
MESI cache protocol, 11-13

LAR instruction, 2-30, 5-35
Larger page sizes

introduction of, 19-42
support for, 19-26

Last branch
interrupt & exception recording

description of, 16-14, 16-32, 16-33, 16-36,
16-37, 16-39, 16-42, 16-44, 16-46

record stack, 16-20, 16-21, 16-33, 16-38, 16-40,
16-43, 16-45, B-185, B-186, B-200

record top-of-stack pointer, 16-20, 16-33, 16-38,
16-43, 16-45

LastBranchFromIP MSR, 16-47, 16-48
LastBranchToIP MSR, 16-47, 16-48
LastExceptionFromIP MSR, 16-33, 16-41, 16-43,

16-47, 16-48
LastExceptionToIP MSR, 16-33, 16-41, 16-43, 16-47,

16-48
LBR (last branch/interrupt/exception) flag,

DEBUGCTLMSR MSR, 16-16, 16-38, 16-46,
16-48
Index-12 Vol. 3B

INDEX
LDR
Logical Destination Register, 10-60, 10-66, 10-67

LDS instruction, 3-11, 5-12
LDT

associated with a task, 7-3
description of, 2-5, 2-6, 3-21
index into with index field of segment selector,

3-9
pointer to in TSS, 7-6
pointers to exception and interrupt handlers, 6-16
segment descriptors in, 3-13
segment selector field, TSS, 7-19
selecting with TI (table indicator) flag of segment

selector, 3-10
setting up during initialization, 9-12
task switching, 7-12
task-gate descriptor, 7-11
use in address translation, 3-8

LDTR register
description of, 2-5, 2-6, 2-9, 2-16, 3-21
IA-32e mode, 2-16
limit, 5-7
storing, 3-21

LE (local exact breakpoint enable) flag, DR7 register,
16-5, 16-12

LEN0-LEN3 (Length) fields, DR7 register, 16-6
LES instruction, 3-11, 5-12, 6-34
LFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
LFS instruction, 3-11, 5-12
LGDT instruction, 2-29, 5-34, 8-25, 9-12, 19-28
LGS instruction, 3-11, 5-12
LIDT instruction, 2-29, 5-34, 6-13, 8-25, 9-11, 17-7,

19-37
Limit checking

description of, 5-6
pointer offsets are within limits, 5-36

Limit field, segment descriptor, 5-2, 5-6
Linear address

description of, 3-8
IA-32e mode, 3-9
introduction to, 2-8

Linear address space, 3-8
defined, 3-1
of task, 7-19

Link (to previous task) field, TSS, 6-20
Linking tasks

mechanism, 7-16
modifying task linkages, 7-18

LINT pins
function of, 6-2
programming, D-1

LLDT instruction, 2-29, 5-34, 8-25
LMSW instruction, 2-29, 5-34, 22-3, 22-17
Local APIC, 10-55

64-bit mode, 10-46
APIC_ID value, 8-49
arbitration over the APIC bus, 10-37
arbitration over the system bus, 10-37

block diagram, 10-6
cluster model, 10-34
CR8 usage, 10-46
current-count register, 10-23
description of, 10-1
detecting with CPUID, 10-10
DFR (destination format register), 10-34
divide configuration register, 10-23
enabling and disabling, 10-10
external interrupts, 6-2
features

Pentium 4 and Intel Xeon, 19-38
Pentium and P6, 19-38

focus processor, 10-37
global enable flag, 10-12
IA32_APIC_BASE MSR, 10-11
initial-count register, 10-22, 10-23
internal error interrupts, 10-2
interrupt command register (ICR), 10-26
interrupt destination, 10-38
interrupt distribution mechanism, 10-36
interrupt sources, 10-2
IRR (interrupt request register), 10-43
I/O APIC, 10-1
local APIC and 82489DX, 19-37
local APIC and I/O APIC, 10-3, 10-4
local vector table (LVT), 10-16
logical destination mode, 10-33
LVT (local-APIC version register), 10-15
mapping of resources, 8-49
MDA (message destination address), 10-33
overview of, 10-1
performance-monitoring counter, 30-118
physical destination mode, 10-33
receiving external interrupts, 6-2
register address map, 10-8, 10-55
shared resources, 8-49
SMI interrupt, 26-3
spurious interrupt, 10-47
spurious-interrupt vector register, 10-11
state after a software (INIT) reset, 10-15
state after INIT-deassert message, 10-15
state after power-up reset, 10-14
state of, 10-48
SVR (spurious-interrupt vector register), 10-11
timer, 10-22
timer generated interrupts, 10-2
TMR (trigger mode register), 10-43
valid interrupts, 10-20
version register, 10-15

Local descriptor table register (see LDTR)
Local descriptor table (see LDT)
Local vector table (LVT)

description of, 10-16
thermal entry, 14-15

Local x2APIC, 10-45, 10-60, 10-66
Local xAPIC ID, 10-60
Vol. 3B Index -13

INDEX
LOCK prefix, 2-31, 2-32, 6-34, 8-2, 8-4, 8-5, 8-23,
19-48

Locked (atomic) operations
automatic bus locking, 8-4
bus locking, 8-4
effects on caches, 8-7
loading a segment descriptor, 19-27
on IA-32 processors, 19-48
overview of, 8-2
software-controlled bus locking, 8-5

LOCK# signal, 2-32, 8-2, 8-4, 8-5, 8-8
Logical address

description of, 3-8
IA-32e mode, 3-9

Logical address space, of task, 7-20
Logical destination mode, local APIC, 10-33
Logical processors

per physical package, 8-36
Logical x2APIC ID, 10-66
low-temperature interrupt enable bit, 14-22, 14-26
LSL instruction, 2-30, 5-36
LSS instruction, 3-11, 5-12
LTR instruction, 2-29, 5-34, 7-9, 8-25, 9-14
LVT (see Local vector table)

M
Machine check architecture

VMX considerations, 29-15
Machine-check architecture

availability of MCA and exception, 15-24
compatibility with Pentium processor, 15-1
compound error codes, 15-27
CPUID flags, 15-24
error codes, 15-26, 15-27
error-reporting bank registers, 15-2
error-reporting MSRs, 15-5
extended machine check state MSRs, 15-13
external bus errors, 15-35
first introduced, 19-30
global MSRs, 15-2, 15-3
initialization of, 15-24
interpreting error codes, example (P6 family

processors), F-1
introduction of in IA-32 processors, 19-50
logging correctable errors, 15-37, 15-39, 15-45
machine-check exception handler, 15-35
machine-check exception (#MC), 15-1
MSRs, 15-2
overview of MCA, 15-1
Pentium processor exception handling, 15-37
Pentium processor style error reporting, 15-15
simple error codes, 15-26
VMX considerations, 29-12, 29-13
writing machine-check software, 15-35

Machine-check exception (#MC), 6-63, 15-1, 15-24,
15-35, 19-28, 19-50

Mapping of shared resources, 8-49

Maskable hardware interrupts
description of, 6-5
handling with virtual interrupt mechanism, 17-22
masking, 2-13, 6-9

MCA flag, CPUID instruction, 15-24
MCE flag, CPUID instruction, 15-24
MCE (machine-check enable) flag

CR4 control register, 2-24, 19-24
MDA (message destination address)

local APIC, 10-33
Memory, 11-1
Memory management

introduction to, 2-8
overview, 3-1
paging, 3-1, 3-2
registers, 2-15
segments, 3-1, 3-2, 3-3, 3-9
virtualization of, 28-3

Memory ordering
in IA-32 processors, 19-46
out of order stores for string operations, 8-18
overview, 8-8
processor ordering, 8-8
strengthening or weakening, 8-23
write ordering, 8-8

Memory type range registers (see MTRRs)
Memory types

caching methods, defined, 11-8
choosing, 11-12
MTRR types, 11-30
selecting for Pentium III and Pentium 4 processors

, 11-21
selecting for Pentium Pro and Pentium II

processors, 11-20
UC (strong uncacheable), 11-8
UC- (uncacheable), 11-9
WB (write back), 11-10
WC (write combining), 11-9
WP (write protected), 11-10
writing values across pages with different

memory types, 11-23
WT (write through), 11-10

MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
MESI cache protocol, 11-7, 11-13
Message address register, 10-50
Message data register format, 10-51
Message signalled interrupts

message address register, 10-49
message data register format, 10-49

MFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
Microcode update facilities

authenticating an update, 9-48
BIOS responsibilities, 9-49
calling program responsibilities, 9-52
checksum, 9-44
extended signature table, 9-41
family 0FH processors, 9-37
Index-14 Vol. 3B

INDEX
field definitions, 9-37
format of update, 9-37
function 00H presence test, 9-56
function 01H write microcode update data, 9-57
function 02H microcode update control, 9-62
function 03H read microcode update data, 9-63
general description, 9-37
HT Technology, 9-46
INT 15H-based interface, 9-55
overview, 9-36
process description, 9-37
processor identification, 9-41
processor signature, 9-41
return codes, 9-64
update loader, 9-45
update signature and verification, 9-47
update specifications, 9-49
VMX non-root operation, 22-21, 28-12
VMX support

early loading, 28-12
late loading, 28-12
virtualization issues, 28-11

Mixing 16-bit and 32-bit code
in IA-32 processors, 19-45
overview, 18-1

MMX technology
debugging MMX code, 12-6
effect of MMX instructions on pending x87

floating-point exceptions, 12-6
emulation of the MMX instruction set, 12-1
exceptions that can occur when executing MMX

instructions, 12-1
introduction of into the IA-32 architecture, 19-3
register aliasing, 12-1
state, 12-1
state, saving and restoring, 12-4
system programming, 12-1
task or context switches, 12-5
using TS flag to control saving of MMX state,

13-10
Mode switching

example, 9-19
real-address and protected mode, 9-17
to SMM, 26-3

Model and stepping information, following processor
initialization or reset, 9-5

Model-specific registers (see MSRs)
Modes of operation (see Operating modes)
MONITOR instruction, 22-4
MOV instruction, 3-11, 5-12
MOV (control registers) instructions, 2-29, 2-30,

5-34, 8-25, 9-17
MOV (debug registers) instructions, 2-30, 5-34, 8-25,

16-12
MOVNTDQ instruction, 8-9, 11-7, 11-26
MOVNTI instruction, 2-21, 8-9, 11-7, 11-26
MOVNTPD instruction, 8-9, 11-7, 11-26
MOVNTPS instruction, 8-9, 11-7, 11-26

MOVNTQ instruction, 8-9, 11-7, 11-26
MP (monitor coprocessor) flag

CR0 control register, 2-21, 2-22, 6-36, 9-6, 9-8,
12-1, 19-10

MSR, B-202
Model Specific Register, 10-53, 10-54, 10-55

MSRs
architectural, B-2
description of, 9-9
introduction of in IA-32 processors, 19-49
introduction to, 2-9
list of, B-1
machine-check architecture, 15-3
P6 family processors, B-231
Pentium 4 processor, B-44, B-66, B-165, B-205
Pentium processors, B-243
reading and writing, 2-26, 2-33, 2-34
reading & writing in 64-bit mode, 2-33
virtualization support, 27-22
VMX support, 27-22

MSR_ TC_PRECISE_EVENT MSR, A-242
MSR_DEBUBCTLB MSR, 16-15, 16-35, 16-43, 16-45
MSR_DEBUGCTLA MSR, 16-14, 16-21, 16-29, 16-31,

16-38, 30-14, 30-19, 30-23, 30-55, B-185
MSR_DEBUGCTLB MSR, 16-14, 16-42, 16-44, B-57,

B-75, B-90, B-143, B-216, B-228
MSR_EBC_FREQUENCY_ID MSR, B-169, B-171
MSR_EBC_HARD_POWERON MSR, B-166
MSR_EBC_SOFT_POWERON MSR, B-168
MSR_IFSB_CNTR7 MSR, 30-104
MSR_IFSB_CTRL6 MSR, 30-104
MSR_IFSB_DRDY0 MSR, 30-103
MSR_IFSB_DRDY1 MSR, 30-103
MSR_IFSB_IBUSQ0 MSR, 30-101
MSR_IFSB_IBUSQ1 MSR, 30-101
MSR_IFSB_ISNPQ0 MSR, 30-102
MSR_IFSB_ISNPQ1 MSR, 30-102
MSR_LASTBRANCH _TOS, B-185
MSR_LASTBRANCH_n MSR, 16-20, 16-21, 16-40,

B-186
MSR_LASTBRANCH_n_FROM_LIP MSR, 16-20, 16-21,

16-40, 16-41, B-200
MSR_LASTBRANCH_n_TO_LIP MSR, 16-20, 16-21,

16-40, 16-41, B-202
MSR_LASTBRANCH_TOS MSR, 16-40
MSR_LER_FROM_LIP MSR, 16-33, 16-41, 16-43,

B-184
MSR_LER_TO_LIP MSR, 16-33, 16-41, 16-43, B-184
MSR_PEBS_ MATRIX_VERT MSR, A-243
MSR_PEBS_MATRIX_VERT MSR, B-195
MSR_PLATFORM_BRV, B-183
MTRR feature flag, CPUID instruction, 11-32
MTRRcap MSR, 11-32
MTRRfix MSR, 11-34
MTRRs, 8-23

base & mask calculations, 11-38, 11-40
cache control, 11-19
description of, 9-9, 11-30
Vol. 3B Index -15

INDEX
dual-core processors, 8-48
enabling caching, 9-8
feature identification, 11-32
fixed-range registers, 11-34
IA32_MTRRCAP MSR, 11-32
IA32_MTRR_DEF_TYPE MSR, 11-33
initialization of, 11-41
introduction of in IA-32 processors, 19-49
introduction to, 2-9
large page size considerations, 11-47
logical processors, 8-48
mapping physical memory with, 11-31
memory types and their properties, 11-30
MemTypeGet() function, 11-42
MemTypeSet() function, 11-44
multiple-processor considerations, 11-46
precedence of cache controls, 11-19
precedences, 11-41
programming interface, 11-42
remapping memory types, 11-42
state of following a hardware reset, 11-30
variable-range registers, 11-34, 11-37

Multi-core technology
See multi-threading support

Multiple-processor management
bus locking, 8-4
guaranteed atomic operations, 8-3
initialization

MP protocol, 8-27
procedure, C-2

local APIC, 10-1
memory ordering, 8-8
MP protocol, 8-27
overview of, 8-1
SMM considerations, 26-22
VMM design, 27-15

asymmetric, 27-15
CPUID emulation, 27-18
external data structures, 27-17
index-data registers, 27-17
initialization, 27-16
moving between processors, 27-16
symmetric, 27-15

Multiple-processor system
local APIC and I/O APICs, Pentium 4, 10-4
local APIC and I/O APIC, P6 family, 10-4

Multisegment model, 3-5
Multitasking

initialization for, 9-14
initializing IA-32e mode, 9-14
linking tasks, 7-16
mechanism, description of, 7-3
overview, 7-1
setting up TSS, 9-14
setting up TSS descriptor, 9-14

Multi-threading support
executing multiple threads, 8-38
handling interrupts, 8-38

logical processors per package, 8-36
mapping resources, 8-49
microcode updates, 8-48
performance monitoring counters, 8-48
programming considerations, 8-49
See also: Hyper-Threading Technology and

dual-core technology
MWAIT instruction, 22-4

power management extensions, 14-9
MXCSR register, 6-65, 9-10, 13-8

N
NaN, compatibility, IA-32 processors, 19-12
NE (numeric error) flag

CR0 control register, 2-20, 6-58, 9-6, 9-8, 19-10,
19-25

NEG instruction, 8-5
NetBurst microarchitecture (see Intel NetBurst

microarchitecture)
NMI interrupt, 2-31, 10-5

description of, 6-2
handling during initialization, 9-11
handling in SMM, 26-14
handling multiple NMIs, 6-9
masking, 19-36
receiving when processor is shutdown, 6-39
reference information, 6-30
vector, 6-2

NMI# pin, 6-2, 6-30
Nominal CPI method, 30-96
Nonconforming code segments

accessing, 5-16
C (conforming) flag, 5-16
description of, 3-18

Non-halted clockticks, 30-96
setting up counters, 30-96

Non-Halted CPI method, 30-96
Nonmaskable interrupt (see NMI)
Non-precise event-based sampling

defined, 30-68
used for at-retirement counting, 30-85
writing an interrupt service routine for, 16-31

Non-retirement events, 30-68, A-202
Non-sleep clockticks, 30-96

setting up counters, 30-96
NOT instruction, 8-5
Notation

bit and byte order, 1-6
conventions, 1-6
exceptions, 1-10
hexadecimal and binary numbers, 1-8
Instructions

operands, 1-8
reserved bits, 1-7
segmented addressing, 1-8

NT (nested task) flag
EFLAGS register, 2-13, 7-13, 7-16
Index-16 Vol. 3B

INDEX
Null segment selector, checking for, 5-9
Numeric overflow exception (#O), 19-13
Numeric underflow exception (#U), 19-14
NV (invert) flag, PerfEvtSel0 MSR

(P6 family processors), 30-6, 30-116
NW (not write-through) flag

CR0 control register, 2-20, 9-8, 11-17, 11-18,
11-24, 11-46, 11-47, 19-25, 19-26, 19-40

NXE bit, 5-43

O
Obsolete instructions, 19-7, 19-20
OF flag, EFLAGS register, 6-32
On die digital thermal sensor, 14-19

relevant MSRs, 14-19
sensor enumeration, 14-19

On-Demand
clock modulation enable bits, 14-17

On-demand
clock modulation duty cycle bits, 14-17

On-die sensors, 14-11
Opcodes

undefined, 19-7
Operands

instruction, 1-8
operand-size prefix, 18-2

Operating modes
64-bit mode, 2-10
compatibility mode, 2-10
IA-32e mode, 2-10, 2-11
introduction to, 2-10
protected mode, 2-10
SMM (system management mode), 2-10
transitions between, 2-11, 13-17
virtual-8086 mode, 2-11
VMX operation

enabling and entering, 20-4
guest environments, 27-1

OR instruction, 8-5
OS (operating system mode) flag

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 only),
30-5, 30-116

OSFXSR (FXSAVE/FXRSTOR support) flag
CR4 control register, 2-24, 9-10, 13-3

OSXMMEXCPT (SIMD floating-point exception
support) flag, CR4 control register, 2-25,
6-65, 9-10, 13-3

OUT instruction, 8-23, 22-3
Out-of-spec status bit, 14-20, 14-25
Out-of-spec status log, 14-20, 14-25
OUTS/OUTSB/OUTSW/OUTSD instruction, 16-12,

22-3
Overflow exception (#OF), 6-32
Overheat interrupt enable bit, 14-22, 14-26

P
P (present) flag

page-directory entry, 6-54
page-table entry, 6-54
segment descriptor, 3-14

P5_MC_ADDR MSR, 15-15, 15-37, B-45, B-66, B-82,
B-135, B-208, B-222, B-231, B-243

P5_MC_TYPE MSR, 15-15, 15-37, B-45, B-66, B-82,
B-135, B-208, B-222, B-231, B-243

P6 family processors
compatibility with FP software, 19-9
description of, 1-1
last branch, interrupt, and exception recording,

16-46
list of performance-monitoring events, A-254
MSR supported by, B-231

PAE paging
feature flag, CR4 register, 2-23
flag, CR4 control register, 3-7, 19-24, 19-25

Page attribute table (PAT)
compatibility with earlier IA-32 processors, 11-52
detecting support for, 11-48
IA32_CR_PAT MSR, 11-49
introduction to, 11-48
memory types that can be encoded with, 11-49
MSR, 11-19
precedence of cache controls, 11-20
programming, 11-50
selecting a memory type with, 11-50

Page directories, 2-8
Page directory

base address (PDBR), 7-6
introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page directory pointers, 2-8
Page frame (see Page)
Page tables, 2-8

introduction to, 2-8
overview, 3-2
setting up during initialization, 9-13

Page-directory entries, 8-5, 11-6
Page-fault exception (#PF), 4-63, 6-54, 19-29
Pages

disabling protection of, 5-1
enabling protection of, 5-1
introduction to, 2-8
overview, 3-2
PG flag, CR0 control register, 5-2
split, 19-21

Page-table entries, 8-5, 11-6, 11-27
Paging

combining segment and page-level protection,
5-41

combining with segmentation, 3-7
defined, 3-1
IA-32e mode, 2-8
initializing, 9-13
Vol. 3B Index -17

INDEX
introduction to, 2-8
large page size MTRR considerations, 11-47
mapping segments to pages, 4-64
page boundaries regarding TSS, 7-6
page-fault exception, 6-54
page-level protection, 5-2, 5-5, 5-39
page-level protection flags, 5-40
virtual-8086 tasks, 17-10

Parameter
passing, between 16- and 32-bit call gates, 18-8
translation, between 16- and 32-bit code

segments, 18-8
PAUSE instruction, 2-21, 22-4
PBi (performance monitoring/breakpoint pins) flags,

DEBUGCTLMSR MSR, 16-44, 16-47
PC (pin control) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 30-6, 30-116
PC0 and PC1 (pin control) fields, CESR MSR (Pentium

processor), 30-120
PCD pin (Pentium processor), 11-19
PCD (page-level cache disable) flag

CR3 control register, 2-22, 11-19, 19-25, 19-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-19, 11-47, 19-42

PCE (performance monitoring counter enable) flag,
CR4 control register, 2-24, 5-34, 30-72,
30-117

PCE (performance-monitoring counter enable) flag,
CR4 control register, 19-24

PDBR (see CR3 control register)
PE (protection enable) flag, CR0 control register,

2-22, 5-1, 9-13, 9-17, 26-12
PEBS records, 16-26
PEBS (precise event-based sampling) facilities

availability of, 30-88
description of, 30-69, 30-87
DS save area, 16-21
IA-32e mode, 16-26
PEBS buffer, 16-22, 30-88
PEBS records, 16-21, 16-24
writing a PEBS interrupt service routine, 30-88
writing interrupt service routine, 16-31

PEBS_UNAVAILABLE flag
IA32_MISC_ENABLE MSR, 16-22, B-181

Pentium 4 processor, 1-1
compatibility with FP software, 19-9
last branch, interrupt, and exception recording,

16-37
list of performance-monitoring events, A-1,

A-202
MSRs supported, B-44, B-66, B-165, B-205
time-stamp counter, 16-49

Pentium II processor, 1-2
Pentium III processor, 1-2
Pentium M processor

last branch, interrupt, and exception recording,
16-44

MSRs supported by, B-221

time-stamp counter, 16-49
Pentium Pro processor, 1-2
Pentium processor, 1-1, 19-9

compatibility with MCA, 15-1
list of performance-monitoring events, A-272
MSR supported by, B-243
performance-monitoring counters, 30-119

PerfCtr0 and PerfCtr1 MSRs
(P6 family processors), 30-115, 30-117

PerfEvtSel0 and PerfEvtSel1 MSRs
(P6 family processors), 30-115

PerfEvtSel0 and PerfEvtSel1 MSRs (P6 family
processors), 30-115

Performance events
architectural, 30-1
Intel Core Solo and Intel Core Duo processors,

30-1
non-architectural, 30-1
non-retirement events (Pentium 4 processor),

A-202
P6 family processors, A-254
Pentium 4 and Intel Xeon processors, 16-37
Pentium M processors, 16-44
Pentium processor, A-272

Performance state, 14-2
Performance-monitoring counters

counted events (P6 family processors), A-254
counted events (Pentium 4 processor), A-1,

A-202
counted events (Pentium processors), 30-121
description of, 30-1, 30-2
events that can be counted (Pentium processors),

A-272
interrupt, 10-2
introduction of in IA-32 processors, 19-50
monitoring counter overflow (P6 family

processors), 30-118
overflow, monitoring (P6 family processors),

30-118
overview of, 2-10
P6 family processors, 30-114
Pentium II processor, 30-114
Pentium Pro processor, 30-114
Pentium processor, 30-119
reading, 2-32, 30-117
setting up (P6 family processors), 30-115
software drivers for, 30-118
starting and stopping, 30-117

PG (paging) flag
CR0 control register, 2-19, 5-2

PG (paging) flag, CR0 control register, 9-13, 9-17,
19-43, 26-12

PGE (page global enable) flag, CR4 control register,
2-24, 11-19, 19-24, 19-26

PhysBase field, IA32_MTRR_PHYSBASEn MTRR,
11-35, 11-37

Physical address extension
introduction to, 3-7
Index-18 Vol. 3B

INDEX
Physical address space
4 GBytes, 3-7
64 GBytes, 3-7
addressing, 2-8
defined, 3-1
description of, 3-7
guest and host spaces, 28-3
IA-32e mode, 3-8
mapped to a task, 7-19
mapping with variable-range MTRRs, 11-34,

11-37
memory virtualization, 28-3
See also: VMM, VMX

Physical destination mode, local APIC, 10-33
PhysMask

IA32_MTRR_PHYSMASKn MTRR, 11-35, 11-37
PM0/BP0 and PM1/BP1 (performance-monitor) pins

(Pentium processor), 30-119, 30-121
PML4 tables, 2-8
Pointers

code-segment pointer size, 18-5
limit checking, 5-36
validation, 5-34

POP instruction, 3-11
POPF instruction, 6-10, 16-12
Power consumption

software controlled clock, 14-11, 14-16
Precise event-based sampling (see PEBS)
PREFETCHh instruction, 2-21, 11-7, 11-25
Previous task link field, TSS, 7-6, 7-16, 7-18
Priority levels, APIC interrupts, 10-41
Privilege levels

checking when accessing data segments, 5-12
checking, for call gates, 5-22
checking, when transferring program control

between code segments, 5-14
description of, 5-9
protection rings, 5-11

Privileged instructions, 5-33
Processor families

06H, E-1
0FH, E-1

Processor management
initialization, 9-1
local APIC, 10-1
microcode update facilities, 9-36
overview of, 8-1
See also: multiple-processor management

Processor ordering, description of, 8-8
PROCHOT# log, 14-20, 14-25
PROCHOT# or FORCEPR# event bit, 14-20, 14-24,

14-25
Protected mode

IDT initialization, 9-13
initialization for, 9-11
mixing 16-bit and 32-bit code modules, 18-2
mode switching, 9-17
PE flag, CR0 register, 5-1

switching to, 5-1, 9-17
system data structures required during

initialization, 9-11, 9-12
Protection

combining segment & page-level, 5-41
disabling, 5-1
enabling, 5-1
flags used for page-level protection, 5-2, 5-5
flags used for segment-level protection, 5-2
IA-32e mode, 5-5
of exception, interrupt-handler procedures, 6-18
overview of, 5-1
page level, 5-1, 5-39, 5-41, 5-43
page level, overriding, 5-41
page-level protection flags, 5-40
read/write, page level, 5-40
segment level, 5-1
user/supervisor type, 5-40

Protection rings, 5-11
PSE (page size extension) flag

CR4 control register, 2-23, 11-29, 19-24, 19-26
PSE-36 page size extension, 3-7
Pseudo-infinity, 19-12
Pseudo-NaN, 19-12
Pseudo-zero, 19-12
P-state, 14-2
PUSH instruction, 19-8
PUSHF instruction, 6-10, 19-9
PVI (protected-mode virtual interrupts) flag

CR4 control register, 2-14, 2-15, 2-23, 19-24
PWT pin (Pentium processor), 11-19
PWT (page-level write-through) flag

CR3 control register, 2-23, 11-19, 19-25, 19-41
page-directory entries, 9-8, 11-19, 11-47
page-table entries, 9-8, 11-47, 19-42

Q
QNaN, compatibility, IA-32 processors, 19-12

R
RDMSR instruction, 2-26, 2-33, 2-34, 5-34, 16-40,

16-48, 16-50, 19-6, 19-49, 22-5, 22-19,
30-72, 30-115, 30-117, 30-119

RDPMC instruction, 2-32, 5-34, 19-6, 19-24, 19-50,
22-5, 30-71, 30-115, 30-117

in 64-bit mode, 2-33
RDTSC instruction, 2-32, 5-34, 16-50, 19-6, 22-5,

22-20
in 64-bit mode, 2-33

reading sensors, 14-19
Read/write

protection, page level, 5-40
rights, checking, 5-36

Real-address mode
8086 emulation, 17-1
address translation in, 17-3
Vol. 3B Index -19

INDEX
description of, 17-1
exceptions and interrupts, 17-8
IDT initialization, 9-11
IDT, changing base and limit of, 17-7
IDT, structure of, 17-7
IDT, use of, 17-6
initialization, 9-10
instructions supported, 17-4
interrupt and exception handling, 17-6
interrupts, 17-8
introduction to, 2-10
mode switching, 9-17
native 16-bit mode, 18-1
overview of, 17-1
registers supported, 17-4
switching to, 9-18

Recursive task switching, 7-18
Related literature, 1-11
Replay events, A-243
Requested privilege level (see RPL)
Reserved bits, 1-7, 19-2
RESET# pin, 6-4, 19-22
RESET# signal, 2-31
Resolution in degrees, 14-21
Restarting program or task, following an exception or

interrupt, 6-7
Restricting addressable domain, 5-40
RET instruction, 5-15, 5-28, 18-7
Returning

from a called procedure, 5-28
from an interrupt or exception handler, 6-18

RF (resume) flag
EFLAGS register, 2-14, 6-10

RPL
description of, 3-10, 5-11
field, segment selector, 5-2

RSM instruction, 2-31, 8-25, 19-7, 22-5, 26-1, 26-3,
26-4, 26-17, 26-21, 26-25

RsvdZ, 10-58
R/S# pin, 6-4
R/W (read/write) flag

page-directory entry, 5-2, 5-3, 5-40
page-table entry, 5-2, 5-3, 5-40

R/W0-R/W3 (read/write) fields
DR7 register, 16-5, 19-27

S
S (descriptor type) flag

segment descriptor, 3-14, 3-16, 5-2, 5-7
SBB instruction, 8-5
Segment descriptors

access rights, 5-35
access rights, invalid values, 19-26
automatic bus locking while updating, 8-4
base address fields, 3-14
code type, 5-3
data type, 5-3

description of, 2-5, 3-13
DPL (descriptor privilege level) field, 3-14, 5-2
D/B (default operation size/default stack pointer

size and/or upper bound) flag, 3-15, 5-6
E (expansion direction) flag, 5-2, 5-6
G (granularity) flag, 3-15, 5-2, 5-6
limit field, 5-2, 5-6
loading, 19-27
P (segment-present) flag, 3-14
S (descriptor type) flag, 3-14, 3-16, 5-2, 5-7
segment limit field, 3-13
system type, 5-3
tables, 3-20
TSS descriptor, 7-7, 7-8
type field, 3-14, 3-16, 5-2, 5-7
type field, encoding, 3-19
when P (segment-present) flag is clear, 3-15

Segment limit
checking, 2-30
field, segment descriptor, 3-13

Segment not present exception (#NP), 3-14
Segment registers

description of, 3-10
IA-32e mode, 3-12
saved in TSS, 7-5

Segment selectors
description of, 3-9
index field, 3-9
null, 5-9
null in 64-bit mode, 5-9
RPL field, 3-10, 5-2
TI (table indicator) flag, 3-10

Segmented addressing, 1-8
Segment-not-present exception (#NP), 6-46
Segments

64-bit mode, 3-6
basic flat model, 3-3
code type, 3-16
combining segment, page-level protection, 5-41
combining with paging, 3-7
compatibility mode, 3-6
data type, 3-16
defined, 3-1
disabling protection of, 5-1
enabling protection of, 5-1
mapping to pages, 4-64
multisegment usage model, 3-5
protected flat model, 3-4
segment-level protection, 5-2, 5-5
segment-not-present exception, 6-46
system, 2-5
types, checking access rights, 5-35
typing, 5-7
using, 3-3
wraparound, 19-46

SELF IPI register, 10-55
Self-modifying code, effect on caches, 11-27
Serializing, 8-25
Index-20 Vol. 3B

INDEX
Serializing instructions
CPUID, 8-25
HT technology, 8-43
non-privileged, 8-25
privileged, 8-25

SF (stack fault) flag, x87 FPU status word, 19-11
SFENCE instruction, 2-21, 8-9, 8-23, 8-24, 8-26
SGDT instruction, 2-29, 3-21
Shared resources

mapping of, 8-49
Shutdown

resulting from double fault, 6-39
resulting from out of IDT limit condition, 6-39

SIDT instruction, 2-29, 3-21, 6-13
SIMD floating-point exception (#XF), 2-25, 6-65, 9-10
SIMD floating-point exceptions

description of, 6-65, 13-7
handler, 13-3
support for, 2-25

Single-stepping
breakpoint exception condition, 16-12
on branches, 16-16
on exceptions, 16-16
on interrupts, 16-16
TF (trap) flag, EFLAGS register, 16-12

SLDT instruction, 2-29
SLTR instruction, 3-21
SMBASE

default value, 26-5
relocation of, 26-19

SMI handler
description of, 26-1
execution environment for, 26-12
exiting from, 26-4
location in SMRAM, 26-5
VMX treatment of, 26-23

SMI interrupt, 2-31, 10-5
description of, 26-1, 26-3
IO_SMI bit, 26-15
priority, 26-4
switching to SMM, 26-3
synchronous and asynchronous, 26-15
VMX treatment of, 26-23

SMI# pin, 6-4, 26-3, 26-21
SMM

asynchronous SMI, 26-15
auto halt restart, 26-18
executing the HLT instruction in, 26-19
exiting from, 26-4
handling exceptions and interrupts, 26-14
introduction to, 2-10
I/O instruction restart, 26-20
I/O state implementation, 26-15
native 16-bit mode, 18-1
overview of, 26-1
revision identifier, 26-17
revision identifier field, 26-17
switching to, 26-3

switching to from other operating modes, 26-3
synchronous SMI, 26-15
VMX operation

default RSM treatment, 26-24
default SMI delivery, 26-23
dual-monitor treatment, 26-27
overview, 26-2
protecting CR4.VMXE, 26-26
RSM instruction, 26-25
SMM monitor, 26-2
SMM VM exits, 24-1, 26-27
SMM-transfer VMCS, 26-27
SMM-transfer VMCS pointer, 26-27
VMCS pointer preservation, 26-23
VMX-critical state, 26-23

SMRAM
caching, 26-11
description of, 26-1
state save map, 26-6
structure of, 26-5

SMSW instruction, 2-29, 22-20
SNaN, compatibility, IA-32 processors, 19-12, 19-19
Snooping mechanism, 11-8
Software controlled clock

modulation control bits, 14-17
power consumption, 14-11, 14-16

Software interrupts, 6-5
Software-controlled bus locking, 8-5
Split pages, 19-21
Spurious interrupt, local APIC, 10-47
SSE extensions

checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
facilities for automatic saving of state, 13-9,

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 19-3
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE feature flag
CPUID instruction, 13-2

SSE2 extensions
checking for with CPUID, 13-2
checking support for FXSAVE/FXRSTOR, 13-3
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
facilities for automatic saving of state, 13-9,

13-12
initialization, 9-10
Vol. 3B Index -21

INDEX
introduction of into the IA-32 architecture, 19-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
SIMD Floating-point exception (#XF), 6-65
system programming, 13-1
using TS flag to control saving state, 13-10

SSE2 feature flag
CPUID instruction, 13-2

SSE3 extensions
checking for with CPUID, 13-2
CPUID feature flag, 9-10
EM flag, 2-22
emulation of, 13-8
example verifying SS3 support, 8-62, 8-66, 14-3
facilities for automatic saving of state, 13-9,

13-12
initialization, 9-10
introduction of into the IA-32 architecture, 19-4
providing exception handlers for, 13-5, 13-7
providing operating system support for, 13-1
saving and restoring state, 13-8
saving state on task, context switches, 13-9
system programming, 13-1
using TS flag to control saving of state, 13-10

SSE3 feature flag
CPUID instruction, 13-2

Stack fault exception (#SS), 6-48
Stack fault, x87 FPU, 19-11, 19-18
Stack pointers

privilege level 0, 1, and 2 stacks, 7-6
size of, 3-15

Stack segments
paging of, 2-8
privilege level check when loading SS register,

5-14
size of stack pointer, 3-15

Stack switching
exceptions/interrupts when switching stacks,

6-11
IA-32e mode, 6-25
inter-privilege level calls, 5-25

Stack-fault exception (#SS), 19-46
Stacks

error code pushes, 19-44
faults, 6-48
for privilege levels 0, 1, and 2, 5-26
interlevel RET/IRET

from a 16-bit interrupt or call gate, 19-44
interrupt stack table, 64-bit mode, 6-26
management of control transfers for

16- and 32-bit procedure calls, 18-5
operation on pushes and pops, 19-43
pointers to in TSS, 7-6
stack switching, 5-25, 6-25
usage on call to exception

or interrupt handler, 19-44

Stepping information, following processor
initialization or reset, 9-5

STI instruction, 6-10
Store buffer

caching terminology, 11-8
characteristics of, 11-5
description of, 11-7, 11-29
in IA-32 processors, 19-46
location of, 11-1
operation of, 11-29

STPCLK# pin, 6-4
STR instruction, 2-29, 3-21, 7-9
Strong uncached (UC) memory type

description of, 11-8
effect on memory ordering, 8-24
use of, 9-10, 11-12

Sub C-state, 14-9
SUB instruction, 8-5
Supervisor mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

SVR (spurious-interrupt vector register), local APIC,
10-11, 19-37

SWAPGS instruction, 2-10, 27-23
SYSCALL instruction, 2-10, 5-32, 27-23
SYSENTER instruction, 3-11, 5-15, 5-30, 5-31,

27-23, 27-24
SYSENTER_CS_MSR, 5-30
SYSENTER_EIP_MSR, 5-30
SYSENTER_ESP_MSR, 5-30
SYSEXIT instruction, 3-11, 5-15, 5-30, 5-31, 27-23,

27-24
SYSRET instruction, 2-10, 5-32, 27-23
System

architecture, 2-2, 2-3
data structures, 2-3
instructions, 2-10, 2-27
registers in IA-32e mode, 2-9
registers, introduction to, 2-9
segment descriptor, layout of, 5-3
segments, paging of, 2-8

System programming
MMX technology, 12-1
SSE/SSE2/SSE3 extensions, 13-1
virtualization of resources, 28-1

System-management mode (see SMM)

T
T (debug trap) flag, TSS, 7-6
Task gates

descriptor, 7-11
executing a task, 7-3
handling a virtual-8086 mode interrupt or

exception through, 17-21
IA-32e mode, 2-7
in IDT, 6-14
introduction for IA-32e, 2-6
Index-22 Vol. 3B

INDEX
introduction to, 2-5, 2-6, 2-7
layout of, 6-14
referencing of TSS descriptor, 6-20

Task management, 7-1
data structures, 7-4
mechanism, description of, 7-3

Task register, 3-21
description of, 2-17, 7-1, 7-9
IA-32e mode, 2-17
initializing, 9-14
introduction to, 2-9

Task switching
description of, 7-3
exception condition, 16-13
operation, 7-13
preventing recursive task switching, 7-18
saving MMX state on, 12-5
saving SSE/SSE2/SSE3 state

on task or context switches, 13-9
T (debug trap) flag, 7-6

Tasks
address space, 7-19
description of, 7-1
exception-handler task, 6-16
executing, 7-3
Intel 286 processor tasks, 19-51
interrupt-handler task, 6-16
interrupts and exceptions, 6-20
linking, 7-16
logical address space, 7-20
management, 7-1
mapping linear and physical address space, 7-19
restart following an exception or interrupt, 6-7
state (context), 7-2, 7-3
structure, 7-1
switching, 7-3
task management data structures, 7-4

TF (trap) flag, EFLAGS register, 2-12, 6-19, 16-12,
16-15, 16-39, 16-42, 16-44, 16-47, 17-6,
17-29, 26-14

Thermal monitoring
advanced power management, 14-9
automatic, 14-12
automatic thermal monitoring, 14-10
catastrophic shutdown detector, 14-10, 14-12
clock-modulation bits, 14-17
C-state, 14-9
detection of facilities, 14-18
Enhanced Intel SpeedStep Technology, 14-1
IA32_APERF MSR, 14-2
IA32_MPERF MSR, 14-2
IA32_THERM_INTERRUPT MSR, 14-19
IA32_THERM_STATUS MSR, 14-19
interrupt enable/disable flags, 14-15
interrupt mechanisms, 14-11
MWAIT extensions for, 14-9
on die sensors, 14-11, 14-19
overview of, 14-1, 14-10

performance state transitions, 14-14
sensor interrupt, 10-2
setting thermal thresholds, 14-19
software controlled clock modulation, 14-11,

14-16
status flags, 14-14
status information, 14-14, 14-16
stop clock mechanism, 14-11
thermal monitor 1 (TM1), 14-12
thermal monitor 2 (TM2), 14-12
TM flag, CPUID instruction, 14-18

Thermal status bit, 14-19, 14-24
Thermal status log bit, 14-19, 14-24
Thermal threshold #1 log, 14-20, 14-25
Thermal threshold #1 status, 14-20, 14-25
Thermal threshold #2 log, 14-21, 14-25
Thermal threshold #2 status, 14-21, 14-25
THERMTRIP# interrupt enable bit, 14-22, 14-26
thread timeout indicator, E-5, E-11, E-15, E-18
Threshold #1 interrupt enable bit, 14-23, 14-27
Threshold #1 value, 14-22, 14-26
Threshold #2 interrupt enable, 14-23, 14-27
Threshold #2 value, 14-23, 14-27
TI (table indicator) flag, segment selector, 3-10
Timer, local APIC, 10-22
Time-stamp counter

counting clockticks, 30-96
description of, 16-49
IA32_TIME_STAMP_COUNTER MSR, 16-49
RDTSC instruction, 16-49
reading, 2-32
software drivers for, 30-118
TSC flag, 16-49
TSD flag, 16-49

TLBs
description of, 11-1, 11-6
flushing, 11-29
invalidating (flushing), 2-31
relationship to PGE flag, 19-26
relationship to PSE flag, 11-29
virtual TLBs, 28-5

TM1 and TM2
See: thermal monitoring, 14-12

TMR
Trigger Mode Register, 10-45, 10-56, 10-60,

10-68
TMR (Trigger Mode Register), local APIC, 10-43
TPR

Task Priority Register, 10-55, 10-60
TR (trace message enable) flag

DEBUGCTLMSR MSR, 16-15, 16-39, 16-42, 16-45,
16-47

Trace cache, 11-6
Transcendental instruction accuracy, 19-10, 19-20
Translation lookaside buffer (see TLB)
Trap gates

difference between interrupt and trap gates,
6-19
Vol. 3B Index -23

INDEX
for 16-bit and 32-bit code modules, 18-2
handling a virtual-8086 mode interrupt or

exception through, 17-18
in IDT, 6-14
introduction for IA-32e, 2-6
introduction to, 2-5, 2-7
layout of, 6-14

Traps
description of, 6-6
restarting a program or task after, 6-7

TS (task switched) flag
CR0 control register, 2-20, 2-30, 6-36, 12-1,

13-4, 13-10
TSD (time-stamp counter disable) flag

CR4 control register, 2-23, 5-34, 16-50, 19-24
TSS

16-bit TSS, structure of, 7-21
32-bit TSS, structure of, 7-4
64-bit mode, 7-22
CR3 control register (PDBR), 7-5, 7-19
description of, 2-5, 2-6, 7-1, 7-4
EFLAGS register, 7-5
EFLAGS.NT, 7-16
EIP, 7-6
executing a task, 7-3
floating-point save area, 19-16
format in 64-bit mode, 7-22
general-purpose registers, 7-5
IA-32e mode, 2-7
initialization for multitasking, 9-14
interrupt stack table, 7-23
invalid TSS exception, 6-42
IRET instruction, 7-16
I/O map base address field, 7-6, 19-39
I/O permission bit map, 7-6, 7-23
LDT segment selector field, 7-6, 7-19
link field, 6-20
order of reads/writes to, 19-39
pointed to by task-gate descriptor, 7-11
previous task link field, 7-6, 7-16, 7-18
privilege-level 0, 1, and 2 stacks, 5-26
referenced by task gate, 6-20
segment registers, 7-5
T (debug trap) flag, 7-6
task register, 7-9
using 16-bit TSSs in a 32-bit environment, 19-39
virtual-mode extensions, 19-39

TSS descriptor
B (busy) flag, 7-7
busy flag, 7-18
initialization for multitasking, 9-14
structure of, 7-7, 7-8

TSS segment selector
field, task-gate descriptor, 7-11
writes, 19-39

Type
checking, 5-7
field, IA32_MTRR_DEF_TYPE MSR, 11-33

field, IA32_MTRR_PHYSBASEn MTRR, 11-35,
11-37

field, segment descriptor, 3-14, 3-16, 3-19, 5-2,
5-7

of segment, 5-7

U
UC- (uncacheable) memory type, 11-9
UD2 instruction, 19-6
Uncached (UC-) memory type, 11-12
Uncached (UC) memory type (see Strong uncached

(UC) memory type)
Undefined opcodes, 19-7
Unit mask field, PerfEvtSel0 and PerfEvtSel1 MSRs

(P6 family processors), 30-5, 30-7, 30-8,
30-9, 30-10, 30-11, 30-12, 30-13, 30-20,
30-21, 30-22, 30-37, 30-40, 30-50,
30-51, 30-52, 30-116

Un-normal number, 19-12
User mode

description of, 5-40
U/S (user/supervisor) flag, 5-40

User-defined interrupts, 6-2, 6-68
USR (user mode) flag, PerfEvtSel0 and PerfEvtSel1

MSRs (P6 family processors), 30-5, 30-7,
30-8, 30-9, 30-11, 30-12, 30-13, 30-20,
30-21, 30-22, 30-37, 30-40, 30-50,
30-51, 30-52, 30-116

U/S (user/supervisor) flag
page-directory entry, 5-2, 5-3, 5-40
page-table entries, 17-11
page-table entry, 5-2, 5-3, 5-40

V
V (valid) flag

IA32_MTRR_PHYSMASKn MTRR, 11-36, 11-37
Variable-range MTRRs, description of, 11-34, 11-37
VCNT (variable range registers count) field,

IA32_MTRRCAP MSR, 11-32
Vectors

exceptions, 6-2
interrupts, 6-2
reserved, 10-41

VERR instruction, 2-30, 5-36
VERW instruction, 2-30, 5-36
VIF (virtual interrupt) flag

EFLAGS register, 2-14, 2-15, 19-8
VIP (virtual interrupt pending) flag

EFLAGS register, 2-14, 2-15, 19-8
Virtual memory, 2-8, 3-1, 3-2
Virtual-8086 mode

8086 emulation, 17-1
description of, 17-8
emulating 8086 operating system calls, 17-27
enabling, 17-9
entering, 17-11
Index-24 Vol. 3B

INDEX
exception and interrupt handling overview, 17-16
exceptions and interrupts, handling through a task

gate, 17-20
exceptions and interrupts, handling through a trap

or interrupt gate, 17-18
handling exceptions and interrupts through a task

gate, 17-21
interrupts, 17-8
introduction to, 2-11
IOPL sensitive instructions, 17-15
I/O-port-mapped I/O, 17-15
leaving, 17-14
memory mapped I/O, 17-16
native 16-bit mode, 18-1
overview of, 17-1
paging of virtual-8086 tasks, 17-10
protection within a virtual-8086 task, 17-11
special I/O buffers, 17-16
structure of a virtual-8086 task, 17-9
virtual I/O, 17-15
VM flag, EFLAGS register, 2-14

Virtual-8086 tasks
paging of, 17-10
protection within, 17-11
structure of, 17-9

Virtualization
debugging facilities, 28-1
interrupt vector space, 29-4
memory, 28-3
microcode update facilities, 28-11
operating modes, 28-3
page faults, 28-8
system resources, 28-1
TLBs, 28-5

VM
OSs and application software, 27-1
programming considerations, 27-1

VM entries
basic VM-entry checks, 23-2
checking guest state

control registers, 23-10
debug registers, 23-10
descriptor-table registers, 23-15
MSRs, 23-10
non-register state, 23-16
RIP and RFLAGS, 23-15
segment registers, 23-12

checks on controls, host-state area, 23-3
registers and MSRs, 23-8
segment and descriptor-table registers, 23-9
VMX control checks, 23-3

exit-reason numbers, I-1
loading guest state, 23-19

control and debug registers, MSRs, 23-20
RIP, RSP, RFLAGS, 23-22
segment & descriptor-table registers, 23-21

loading MSRs, 23-23
failure cases, 23-23

VM-entry MSR-load area, 23-23
overview of failure conditions, 23-1
overview of steps, 23-1
VMLAUNCH and VMRESUME, 23-1
See also: VMCS, VMM, VM exits

VM exits
architectural state

existing before exit, 24-1
updating state before exit, 24-2

basic VM-exit information fields, 24-5
basic exit reasons, 24-5
exit qualification, 24-6

exception bitmap, 24-1
exceptions (faults, traps, and aborts), 22-14
exit-reason numbers, I-1
external interrupts, 22-14
handling of exits due to exceptions, 27-12
IA-32 faults and VM exits, 22-1
INITs, 22-15
instructions that cause:

conditional exits, 22-3
unconditional exits, 22-2

interrupt-window exiting, 22-15
non-maskable interrupts (NMIs), 22-14
overview of, 24-1
page faults, 22-14
reflecting exceptions to guest, 27-12
resuming guest after exception handling, 27-14
start-up IPIs (SIPIs), 22-15
task switches, 22-15
See also: VMCS, VMM, VM entries

VM (virtual-8086 mode) flag
EFLAGS register, 2-12, 2-14

VMCLEAR instruction, 27-10
VMCS

field encodings, 1-6, H-1
16-bit guest-state fields, H-1
16-bit host-state fields, H-2
32-bit control fields, H-1, H-6
32-bit guest-state fields, H-7
32-bit read-only data fields, H-7
64-bit control fields, H-3
64-bit guest-state fields, H-4, H-5
natural-width control fields, H-9
natural-width guest-state fields, H-10
natural-width host-state fields, H-11
natural-width read-only data fields, H-10

format of VMCS region, 21-3
guest-state area, 21-4, 21-5

guest non-register state, 21-7
guest register state, 21-5

host-state area, 21-4, 21-10
introduction, 21-1
migrating between processors, 21-31
software access to, 21-31
VMCS data, 21-3
VMCS pointer, 21-1, 27-2
VMCS region, 21-1, 27-2
Vol. 3B Index -25

INDEX
VMCS revision identifier, 21-3
VM-entry control fields, 21-4, 21-24

entry controls, 21-24
entry controls for event injection, 21-25
entry controls for MSRs, 21-25

VM-execution control fields, 21-4, 21-11
controls for CR8 accesses, 21-18
CR3-target controls, 21-17
exception bitmap, 21-16
I/O bitmaps, 21-16
masks & read shadows CR0 & CR4, 21-17
pin-based controls, 21-11
processor-based controls, 21-12
time-stamp counter offset, 21-17

VM-exit control fields, 21-4, 21-21
exit controls, 21-21
exit controls for MSRs, 21-23

VM-exit information fields, 21-4, 21-27
basic exit information, 21-27, I-1
basic VM-exit information, 21-27
exits due to instruction execution, 21-30
exits due to vectored events, 21-28
exits occurring during event delivery, 21-29
VM-instruction error field, 21-30

VM-instruction error field, 23-1
VMREAD instruction, 27-2

field encodings, 1-6, H-1
VMWRITE instruction, 27-2

field encodings, 1-6, H-1
VMX-abort indicator, 21-3
See also: VM entries, VM exits, VMM, VMX

VME (virtual-8086 mode extensions) flag, CR4 control
register, 2-14, 2-15, 2-23, 19-24

VMLAUNCH instruction, 27-11
VMM

asymmetric design, 27-15
control registers, 27-25
CPUID instruction emulation, 27-18
debug exceptions, 28-2
debugging facilities, 28-1, 28-2
entering VMX root operation, 27-6
error handling, 27-4
exception bitmap, 28-2
external interrupts, 29-1
fast instruction set emulator, 27-1
index data pairs, usage of, 27-17
interrupt handling, 29-1
interrupt vectors, 29-4
leaving VMX operation, 27-6
machine checks, 29-12, 29-13, 29-15
memory virtualization, 28-3
microcode update facilities, 28-11
multi-processor considerations, 27-15
operating modes, 27-18
programming considerations, 27-1
response to page faults, 28-8
root VMCS, 27-2
SMI transfer monitor, 27-6

steps for launching VMs, 27-10
SWAPGS instruction, 27-23
symmetric design, 27-15
SYSCALL/SYSRET instructions, 27-23
SYSENTER/SYSEXIT instructions, 27-23
triple faults, 29-1
virtual TLBs, 28-5
virtual-8086 container, 27-1
virtualization of system resources, 28-1
VM exits, 24-1
VM exits, handling of, 27-11
VMCLEAR instruction, 27-10
VMCS field width, 27-19
VMCS pointer, 27-2
VMCS region, 27-2
VMCS revision identifier, 27-2
VMCS, writing/reading fields, 27-3
VM-exit failures, 29-11
VMLAUNCH instruction, 27-11
VMREAD instruction, 27-3
VMRESUME instruction, 27-11
VMWRITE instruction, 27-3, 27-10
VMXOFF instruction, 27-6
See also: VMCS, VM entries, VM exits, VMX

VMM software interrupts, 29-1
VMREAD instruction, 27-2, 27-3

field encodings, H-1
VMRESUME instruction, 27-11
VMWRITE instruction, 27-2, 27-3, 27-10

field encodings, H-1
VMX

A20M# signal, 20-5
capability MSRs

overview, 20-3, G-1
IA32_VMX_BASIC MSR, 21-4, 27-2, 27-7,

27-8, 27-9, 27-17, B-63, B-79, B-99,
B-150, B-199, B-219, G-1, G-3

IA32_VMX_CR0_FIXED0 MSR, 20-5, 27-6,
B-63, B-80, B-99, B-151, B-199, B-220,
G-9

IA32_VMX_CR0_FIXED1 MSR, 20-5, 27-6,
B-63, B-80, B-99, B-151, B-200, B-220,
G-9

IA32_VMX_CR4_FIXED0 MSR, 20-5, 27-6,
B-64, B-80, B-99, B-151, B-200, B-220

IA32_VMX_CR4_FIXED1 MSR, 20-5, 27-6,
B-64, B-80, B-99, B-100, B-151, B-200,
B-220, B-221

IA32_VMX_ENTRY_CTLS MSR, 27-7, 27-8,
27-9, B-63, B-80, B-99, B-151, B-199,
B-220, G-3, G-7, G-8

IA32_VMX_EXIT_CTLS MSR, 27-7, 27-8, 27-9,
B-63, B-80, B-99, B-151, B-199, B-220,
G-3, G-6, G-7

IA32_VMX_MISC MSR, 21-8, 23-4, 23-16,
26-36, B-63, B-80, B-99, B-151, B-199,
B-220, G-8
Index-26 Vol. 3B

INDEX
IA32_VMX_PINBASED_CTLS MSR, 27-7, 27-8,
27-9, B-63, B-79, B-99, B-150, B-199,
B-219, G-3, G-4

IA32_VMX_PROCBASED_CTLS MSR, 21-12,
27-7, 27-8, 27-9, B-63, B-64, B-80, B-99,
B-100, B-150, B-151, B-199, B-220,
B-221, G-3, G-4, G-5, G-6, G-10

IA32_VMX_VMCS_ENUM MSR, B-200
CPUID instruction, 20-3, G-1
CR4 control register, 20-4
CR4 fixed bits, G-9
debugging facilities, 28-1
EFLAGS, 27-4
entering operation, 20-4
entering root operation, 27-6
error handling, 27-4
guest software, 20-1
IA32_FEATURE_CONTROL MSR, 20-4
INIT# signal, 20-6
instruction set, 20-3
introduction, 20-1
memory virtualization, 28-3
microcode update facilities, 22-21, 28-11, 28-12
non-root operation, 20-1

event blocking, 22-26
instruction changes, 22-16
overview, 22-1
task switches not allowed, 22-26
see VM exits

operation restrictions, 20-5
root operation, 20-1
SMM

CR4.VMXE reserved, 26-26
overview, 26-2
RSM instruction, 26-25
VMCS pointer, 26-23
VMX-critical state, 26-23

testing for support, 20-3
virtual TLBs, 28-5
virtual-machine control structure (VMCS), 20-3
virtual-machine monitor (VMM), 20-1
vitualization of system resources, 28-1
VM entries and exits, 20-1
VM exits, 24-1
VMCS pointer, 20-3
VMM life cycle, 20-2
VMXOFF instruction, 20-4
VMXON instruction, 20-4
VMXON pointer, 20-4
VMXON region, 20-4
See also:VMM, VMCS, VM entries, VM exits

VMXOFF instruction, 20-4
VMXON instruction, 20-4

W
WAIT/FWAIT instructions, 6-36, 19-10, 19-21
WB (write back) memory type, 8-24, 11-10, 11-12

WB (write-back) pin (Pentium processor), 11-19
WBINVD instruction, 2-31, 5-34, 11-24, 11-25, 19-6
WB/WT# pins, 11-19
WC buffer (see Write combining (WC) buffer)
WC (write combining)

flag, IA32_MTRRCAP MSR, 11-32
memory type, 11-9, 11-12

WP (write protected) memory type, 11-10
WP (write protect) flag

CR0 control register, 2-20, 5-41, 19-25
Write

hit, 11-7
Write combining (WC) buffer, 11-5, 11-11
Write-back caching, 11-8
WRMSR instruction, 2-26, 2-32, 2-33, 2-34, 5-34,

8-25, 16-38, 16-46, 16-50, 19-6, 19-49,
22-21, 30-72, 30-115, 30-117, 30-119

WT (write through) memory type, 11-10, 11-12
WT# (write-through) pin (Pentium processor), 11-19

X
x2APIC ID, 10-58, 10-60, 10-64, 10-67
x2APIC Mode, 10-45, 10-54, 10-55, 10-58, 10-60,

10-64, 10-65, 10-66, 10-67
x87 FPU

compatibility with IA-32 x87 FPUs and math
coprocessors, 19-9

configuring the x87 FPU environment, 9-6
device-not-available exception, 6-36
effect of MMX instructions on pending x87

floating-point exceptions, 12-6
effects of MMX instructions on x87 FPU state,

12-3
effects of MMX, x87 FPU, FXSAVE, and FXRSTOR

instructions on x87 FPU tag word, 12-3
error signals, 19-14, 19-15
initialization, 9-6
instruction synchronization, 19-21
register stack, aliasing with MMX registers, 12-2
setting up for software emulation of x87 FPU

functions, 9-7
using TS flag to control saving of x87 FPU state,

13-10
x87 floating-point error exception (#MF), 6-58

x87 FPU control word
compatibility, IA-32 processors, 19-11

x87 FPU floating-point error exception (#MF), 6-58
x87 FPU status word

condition code flags, 19-10
x87 FPU tag word, 19-11
XADD instruction, 8-5, 19-6
xAPIC, 10-55, 10-58

determining lowest priority processor, 10-36
interrupt control register, 10-30
introduction to, 10-5
message passing protocol on system bus, 10-48
new features, 19-38
Vol. 3B Index -27

INDEX
spurious vector, 10-47
using system bus, 10-5

xAPIC Mode, 10-45, 10-54, 10-60, 10-64, 10-65,
10-66

XCHG instruction, 8-4, 8-5, 8-23
XFEATURE_ENABLED_MASK, 2-25, 13-13, 13-14,

13-15, 13-17, 13-18
XGETBV, 2-25, 2-28, 2-29, 13-13, 13-18
XMM registers, saving, 13-8
XOR instruction, 8-5
XSAVE, 2-25, 13-1, 13-12, 13-13, 13-14, 13-15,

13-16, 13-17, 13-18
XSETBV, 2-25, 2-26, 2-28, 2-34, 13-1, 13-13, 13-17

Z
ZF flag, EFLAGS register, 5-36
-, B-208
Index-28 Vol. 3B

	Chapter 1 About This Manual
	1.1 Processors Covered in this Manual
	1.2 Overview of The SYSTEM PROGRAMMING GUIDE
	1.3 Notational Conventions
	1.3.1 Bit and Byte Order
	1.3.2 Reserved Bits and Software Compatibility
	1.3.3 Instruction Operands
	1.3.4 Hexadecimal and Binary Numbers
	1.3.5 Segmented Addressing
	1.3.6 Syntax for CPUID, CR, and MSR Values
	1.3.7 Exceptions

	1.4 Related Literature

	Chapter 2 System Architecture Overview
	2.1 Overview of the System-Level Architecture
	2.1.1 Global and Local Descriptor Tables
	2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

	2.1.2 System Segments, Segment Descriptors, and Gates
	2.1.2.1 Gates in IA-32e Mode

	2.1.3 Task-State Segments and Task Gates
	2.1.3.1 Task-State Segments in IA-32e Mode

	2.1.4 Interrupt and Exception Handling
	2.1.4.1 Interrupt and Exception Handling IA-32e Mode

	2.1.5 Memory Management
	2.1.5.1 Memory Management in IA-32e Mode

	2.1.6 System Registers
	2.1.6.1 System Registers in IA-32e Mode

	2.1.7 Other System Resources

	2.2 Modes of Operation
	2.3 System Flags and Fields in the EFLAGS Register
	2.3.1 System Flags and Fields in IA-32e Mode

	2.4 Memory-Management Registers
	2.4.1 Global Descriptor Table Register (GDTR)
	2.4.2 Local Descriptor Table Register (LDTR)
	2.4.3 IDTR Interrupt Descriptor Table Register
	2.4.4 Task Register (TR)

	2.5 Control Registers
	2.5.1 CPUID Qualification of Control Register Flags

	2.6 Extended Control Registers (Including XCR0)
	2.7 System Instruction Summary
	2.7.1 Loading and Storing System Registers
	2.7.2 Verifying of Access Privileges
	2.7.3 Loading and Storing Debug Registers
	2.7.4 Invalidating Caches and TLBs
	2.7.5 Controlling the Processor
	2.7.6 Reading Performance-Monitoring and Time-Stamp Counters
	2.7.6.1 Reading Counters in 64-Bit Mode

	2.7.7 Reading and Writing Model-Specific Registers
	2.7.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

	2.7.8 Enabling Processor Extended States

	Chapter 3 Protected-Mode Memory Management
	3.1 Memory Management Overview
	3.2 Using Segments
	3.2.1 Basic Flat Model
	3.2.2 Protected Flat Model
	3.2.3 Multi-Segment Model
	3.2.4 Segmentation in IA-32e Mode
	3.2.5 Paging and Segmentation

	3.3 Physical Address Space
	3.3.1 Intel® 64 Processors and Physical Address Space

	3.4 Logical and Linear Addresses
	3.4.1 Logical Address Translation in IA-32e Mode
	3.4.2 Segment Selectors
	3.4.3 Segment Registers
	3.4.4 Segment Loading Instructions in IA-32e Mode
	3.4.5 Segment Descriptors
	3.4.5.1 Code- and Data-Segment Descriptor Types

	3.5 System Descriptor Types
	3.5.1 Segment Descriptor Tables
	3.5.2 Segment Descriptor Tables in IA-32e Mode

	Chapter 4 Paging
	4.1 Paging Modes and Control Bits
	4.1.1 Three Paging Modes
	4.1.2 Paging-Mode Enabling
	4.1.3 Paging-Mode Modifiers
	4.1.4 Enumeration of Paging Features by CPUID

	4.2 Hierarchical Paging Structures: an Overview
	4.3 32-Bit Paging
	4.4 PAE Paging
	4.4.1 PDPTE Registers
	4.4.2 Linear-Address Translation with PAE Paging

	4.5 IA-32e Paging
	4.6 Access Rights
	4.7 Page-Fault Exceptions
	4.8 Accessed and Dirty Flags
	4.9 Paging and Memory Typing
	4.9.1 Paging and Memory Typing When the PAT is Not Supported (Pentium Pro and Pentium II Processors)
	4.9.2 Paging and Memory Typing When the PAT is Supported (Pentium III and More Recent Processor Families)
	4.9.3 Caching Paging-Related Information about Memory Typing

	4.10 Caching Translation Information
	4.10.1 Process-Context Identifiers (PCIDs)
	4.10.2 Translation Lookaside Buffers (TLBs)
	4.10.2.1 Page Numbers, Page Frames, and Page Offsets
	4.10.2.2 Caching Translations in TLBs
	4.10.2.3 Details of TLB Use
	4.10.2.4 Global Pages

	4.10.3 Paging-Structure Caches
	4.10.3.1 Caches for Paging Structures
	4.10.3.2 Using the Paging-Structure Caches to Translate Linear Addresses
	4.10.3.3 Multiple Cached Entries for a Single Paging-Structure Entry

	4.10.4 Invalidation of TLBs and Paging-Structure Caches
	4.10.4.1 Operations that Invalidate TLBs and Paging-Structure Caches
	4.10.4.2 Recommended Invalidation
	4.10.4.3 Optional Invalidation
	4.10.4.4 Delayed Invalidation

	4.10.5 Propagation of Paging-Structure Changes to Multiple Processors

	4.11 Interactions with Virtual-Machine Extensions (VMX)
	4.11.1 VMX Transitions
	4.11.2 VMX Support for Address Translation

	4.12 Using Paging for Virtual Memory
	4.13 Mapping Segments to Pages

	Chapter 5 Protection
	5.1 Enabling and Disabling Segment and Page Protection
	5.2 Fields and Flags Used for Segment-Level and Page-Level Protection
	5.2.1 Code Segment Descriptor in 64-bit Mode

	5.3 Limit Checking
	5.3.1 Limit Checking in 64-bit Mode

	5.4 Type Checking
	5.4.1 Null Segment Selector Checking
	5.4.1.1 NULL Segment Checking in 64-bit Mode

	5.5 Privilege Levels
	5.6 Privilege Level Checking When Accessing Data Segments
	5.6.1 Accessing Data in Code Segments

	5.7 Privilege Level Checking When Loading the SS Register
	5.8 Privilege Level Checking When Transferring Program Control Between Code Segments
	5.8.1 Direct Calls or Jumps to Code Segments
	5.8.1.1 Accessing Nonconforming Code Segments
	5.8.1.2 Accessing Conforming Code Segments

	5.8.2 Gate Descriptors
	5.8.3 Call Gates
	5.8.3.1 IA-32e Mode Call Gates

	5.8.4 Accessing a Code Segment Through a Call Gate
	5.8.5 Stack Switching
	5.8.5.1 Stack Switching in 64-bit Mode

	5.8.6 Returning from a Called Procedure
	5.8.7 Performing Fast Calls to System Procedures with the SYSENTER and SYSEXIT Instructions
	5.8.7.1 SYSENTER and SYSEXIT Instructions in IA-32e Mode

	5.8.8 Fast System Calls in 64-bit Mode

	5.9 Privileged Instructions
	5.10 Pointer Validation
	5.10.1 Checking Access Rights (LAR Instruction)
	5.10.2 Checking Read/Write Rights (VERR and VERW Instructions)
	5.10.3 Checking That the Pointer Offset Is Within Limits (LSL Instruction)
	5.10.4 Checking Caller Access Privileges (ARPL Instruction)
	5.10.5 Checking Alignment

	5.11 Page-Level Protection
	5.11.1 Page-Protection Flags
	5.11.2 Restricting Addressable Domain
	5.11.3 Page Type
	5.11.4 Combining Protection of Both Levels of Page Tables
	5.11.5 Overrides to Page Protection

	5.12 Combining Page and Segment Protection
	5.13 Page-Level Protection and Execute-Disable Bit
	5.13.1 Detecting and Enabling the Execute-Disable Capability
	5.13.2 Execute-Disable Page Protection
	5.13.3 Reserved Bit Checking
	5.13.4 Exception Handling

	Chapter 6 Interrupt and Exception Handling
	6.1 Interrupt and Exception Overview
	6.2 Exception and Interrupt Vectors
	6.3 Sources of Interrupts
	6.3.1 External Interrupts
	6.3.2 Maskable Hardware Interrupts
	6.3.3 Software-Generated Interrupts

	6.4 Sources of Exceptions
	6.4.1 Program-Error Exceptions
	6.4.2 Software-Generated Exceptions
	6.4.3 Machine-Check Exceptions

	6.5 Exception Classifications
	6.6 Program or Task Restart
	6.7 NonMaskable Interrupt (NMI)
	6.7.1 Handling Multiple NMIs

	6.8 Enabling and Disabling Interrupts
	6.8.1 Masking Maskable Hardware Interrupts
	6.8.2 Masking Instruction Breakpoints
	6.8.3 Masking Exceptions and Interrupts When Switching Stacks

	6.9 Priority Among Simultaneous Exceptions and Interrupts
	6.10 Interrupt Descriptor Table (IDT)
	6.11 IDT Descriptors
	6.12 Exception and Interrupt Handling
	6.12.1 Exception- or Interrupt-Handler Procedures
	6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures
	6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

	6.12.2 Interrupt Tasks

	6.13 Error Code
	6.14 Exception and Interrupt Handling in 64-bit Mode
	6.14.1 64-Bit Mode IDT
	6.14.2 64-Bit Mode Stack Frame
	6.14.3 IRET in IA-32e Mode
	6.14.4 Stack Switching in IA-32e Mode
	6.14.5 Interrupt Stack Table

	6.15 Exception and Interrupt Reference
	Interrupt 0-Divide Error Exception (#DE)
	Interrupt 1-Debug Exception (#DB)
	Interrupt 2-NMI Interrupt
	Interrupt 3-Breakpoint Exception (#BP)
	Interrupt 4-Overflow Exception (#OF)
	Interrupt 5-BOUND Range Exceeded Exception (#BR)
	Interrupt 6-Invalid Opcode Exception (#UD)
	Interrupt 7-Device Not Available Exception (#NM)
	Interrupt 8-Double Fault Exception (#DF)
	Interrupt 9-Coprocessor Segment Overrun
	Interrupt 10-Invalid TSS Exception (#TS)
	Interrupt 11-Segment Not Present (#NP)
	Interrupt 12-Stack Fault Exception (#SS)
	Interrupt 13-General Protection Exception (#GP)
	Interrupt 14-Page-Fault Exception (#PF)
	Interrupt 16-x87 FPU Floating-Point Error (#MF)
	Interrupt 17-Alignment Check Exception (#AC)
	Interrupt 18-Machine-Check Exception (#MC)
	Interrupt 19-SIMD Floating-Point Exception (#XM)
	Interrupts 32 to 255-User Defined Interrupts

	Chapter 7 Task Management
	7.1 Task Management Overview
	7.1.1 Task Structure
	7.1.2 Task State
	7.1.3 Executing a Task

	7.2 Task Management Data Structures
	7.2.1 Task-State Segment (TSS)
	7.2.2 TSS Descriptor
	7.2.3 TSS Descriptor in 64-bit mode
	7.2.4 Task Register
	7.2.5 Task-Gate Descriptor

	7.3 Task Switching
	7.4 Task Linking
	7.4.1 Use of Busy Flag To Prevent Recursive Task Switching
	7.4.2 Modifying Task Linkages

	7.5 Task Address Space
	7.5.1 Mapping Tasks to the Linear and Physical Address Spaces
	7.5.2 Task Logical Address Space

	7.6 16-Bit Task-State Segment (TSS)
	7.7 Task Management in 64-bit Mode

	Chapter 8 Multiple-Processor Management
	8.1 Locked Atomic Operations
	8.1.1 Guaranteed Atomic Operations
	8.1.2 Bus Locking
	8.1.2.1 Automatic Locking
	8.1.2.2 Software Controlled Bus Locking

	8.1.3 Handling Self- and Cross-Modifying Code
	8.1.4 Effects of a LOCK Operation on Internal Processor Caches

	8.2 Memory Ordering
	8.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors
	8.2.2 Memory Ordering in P6 and More Recent Processor Families
	8.2.3 Examples Illustrating the Memory-Ordering Principles
	8.2.3.1 Assumptions, Terminology, and Notation
	8.2.3.2 Neither Loads Nor Stores Are Reordered with Like Operations
	8.2.3.3 Stores Are Not Reordered With Earlier Loads
	8.2.3.4 Loads May Be Reordered with Earlier Stores to Different Locations
	8.2.3.5 Intra-Processor Forwarding Is Allowed
	8.2.3.6 Stores Are Transitively Visible
	8.2.3.7 Stores Are Seen in a Consistent Order by Other Processors
	8.2.3.8 Locked Instructions Have a Total Order
	8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions

	8.2.4 Out-of-Order Stores and Fast-String Operation
	8.2.4.1 Memory-Ordering Model for String Operations on Write-back (WB) Memory
	8.2.4.2 Examples Illustrating Memory-Ordering Principles for String Operations

	8.2.5 Strengthening or Weakening the Memory-Ordering Model

	8.3 Serializing Instructions
	8.4 Multiple-Processor (MP) Initialization
	8.4.1 BSP and AP Processors
	8.4.2 MP Initialization Protocol Requirements and Restrictions
	8.4.3 MP Initialization Protocol Algorithm for Intel Xeon Processors
	8.4.4 MP Initialization Example
	8.4.4.1 Typical BSP Initialization Sequence
	8.4.4.2 Typical AP Initialization Sequence

	8.4.5 Identifying Logical Processors in an MP System

	8.5 Intel® Hyper-Threading Technology and Intel® Multi-Core Technology
	8.6 Detecting Hardware Multi-Threading Support and Topology
	8.6.1 Initializing Processors Supporting Hyper-Threading Technology
	8.6.2 Initializing Multi-Core Processors
	8.6.3 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting Hardware Multi-Threading
	8.6.4 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading

	8.7 Intel® Hyper-Threading Technology Architecture
	8.7.1 State of the Logical Processors
	8.7.2 APIC Functionality
	8.7.3 Memory Type Range Registers (MTRR)
	8.7.4 Page Attribute Table (PAT)
	8.7.5 Machine Check Architecture
	8.7.6 Debug Registers and Extensions
	8.7.7 Performance Monitoring Counters
	8.7.8 IA32_MISC_ENABLE MSR
	8.7.9 Memory Ordering
	8.7.10 Serializing Instructions
	8.7.11 MICROCODE UPDATE Resources
	8.7.12 Self Modifying Code
	8.7.13 Implementation-Specific Intel HT Technology Facilities
	8.7.13.1 Processor Caches
	8.7.13.2 Processor Translation Lookaside Buffers (TLBs)
	8.7.13.3 Thermal Monitor
	8.7.13.4 External Signal Compatibility

	8.8 Multi-Core Architecture
	8.8.1 Logical Processor Support
	8.8.2 Memory Type Range Registers (MTRR)
	8.8.3 Performance Monitoring Counters
	8.8.4 IA32_MISC_ENABLE MSR
	8.8.5 MICROCODE UPDATE Resources

	8.9 Programming Considerations for Hardware Multi-Threading Capable Processors
	8.9.1 Hierarchical Mapping of Shared Resources
	8.9.2 Hierarchical Mapping of CPUID Extended Topology Leaf
	8.9.3 Hierarchical ID of Logical Processors in an MP System
	8.9.3.1 Hierarchical ID of Logical Processors with x2APIC ID

	8.9.4 Algorithm for Three-Level Mappings of APIC_ID
	8.9.5 Identifying Topological Relationships in a MP System

	8.10 Management of Idle and Blocked Conditions
	8.10.1 HLT Instruction
	8.10.2 PAUSE Instruction
	8.10.3 Detecting Support MONITOR/MWAIT Instruction
	8.10.4 MONITOR/MWAIT Instruction
	8.10.5 Monitor/Mwait Address Range Determination
	8.10.6 Required Operating System Support
	8.10.6.1 Use the PAUSE Instruction in Spin-Wait Loops
	8.10.6.2 Potential Usage of MONITOR/MWAIT in C0 Idle Loops
	8.10.6.3 Halt Idle Logical Processors
	8.10.6.4 Potential Usage of MONITOR/MWAIT in C1 Idle Loops
	8.10.6.5 Guidelines for Scheduling Threads on Logical Processors Sharing Execution Resources
	8.10.6.6 Eliminate Execution-Based Timing Loops
	8.10.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory

	Chapter 9 Processor Management and Initialization
	9.1 Initialization Overview
	9.1.1 Processor State After Reset
	9.1.2 Processor Built-In Self-Test (BIST)
	9.1.3 Model and Stepping Information
	9.1.4 First Instruction Executed

	9.2 x87 FPU Initialization
	9.2.1 Configuring the x87 FPU Environment
	9.2.2 Setting the Processor for x87 FPU Software Emulation

	9.3 Cache Enabling
	9.4 Model-Specific Registers (MSRs)
	9.5 Memory Type Range Registers (MTRRs)
	9.6 Initializing SSE/SSE2/SSE3/SSSE3 Extensions
	9.7 Software Initialization for Real-Address Mode Operation
	9.7.1 Real-Address Mode IDT
	9.7.2 NMI Interrupt Handling

	9.8 Software Initialization for Protected-Mode Operation
	9.8.1 Protected-Mode System Data Structures
	9.8.2 Initializing Protected-Mode Exceptions and Interrupts
	9.8.3 Initializing Paging
	9.8.4 Initializing Multitasking
	9.8.5 Initializing IA-32e Mode
	9.8.5.1 IA-32e Mode System Data Structures
	9.8.5.2 IA-32e Mode Interrupts and Exceptions
	9.8.5.3 64-bit Mode and Compatibility Mode Operation
	9.8.5.4 Switching Out of IA-32e Mode Operation

	9.9 Mode Switching
	9.9.1 Switching to Protected Mode
	9.9.2 Switching Back to Real-Address Mode

	9.10 Initialization and Mode Switching Example
	9.10.1 Assembler Usage
	9.10.2 STARTUP.ASM Listing
	9.10.3 MAIN.ASM Source Code
	9.10.4 Supporting Files

	9.11 Microcode Update Facilities
	9.11.1 Microcode Update
	9.11.2 Optional Extended Signature Table
	9.11.3 Processor Identification
	9.11.4 Platform Identification
	9.11.5 Microcode Update Checksum
	9.11.6 Microcode Update Loader
	9.11.6.1 Hard Resets in Update Loading
	9.11.6.2 Update in a Multiprocessor System
	9.11.6.3 Update in a System Supporting Intel Hyper-Threading Technology
	9.11.6.4 Update in a System Supporting Dual-Core Technology
	9.11.6.5 Update Loader Enhancements

	9.11.7 Update Signature and Verification
	9.11.7.1 Determining the Signature
	9.11.7.2 Authenticating the Update

	9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor Microcode Update Specifications
	9.11.8.1 Responsibilities of the BIOS
	9.11.8.2 Responsibilities of the Calling Program
	9.11.8.3 Microcode Update Functions
	9.11.8.4 INT 15H-based Interface
	9.11.8.5 Function 00H-Presence Test
	9.11.8.6 Function 01H-Write Microcode Update Data
	9.11.8.7 Function 02H-Microcode Update Control
	9.11.8.8 Function 03H-Read Microcode Update Data
	9.11.8.9 Return Codes

	Chapter 10 Advanced Programmable Interrupt Controller (APIC)
	10.1 Local and I/O APIC Overview
	10.2 System Bus Vs. APIC Bus
	10.3 The Intel® 82489DX External APIC, The APIC, the xAPIC, AND THE X2APIC
	10.4 Local APIC
	10.4.1 The Local APIC Block Diagram
	10.4.2 Presence of the Local APIC
	10.4.3 Enabling or Disabling the Local APIC
	10.4.4 Local APIC Status and Location
	10.4.5 Relocating the Local APIC Registers
	10.4.6 Local APIC ID
	10.4.7 Local APIC State
	10.4.7.1 Local APIC State After Power-Up or Reset
	10.4.7.2 Local APIC State After It Has Been Software Disabled
	10.4.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI” State)
	10.4.7.4 Local APIC State After It Receives an INIT-Deassert IPI

	10.4.8 Local APIC Version Register

	10.5 Handling Local Interrupts
	10.5.1 Local Vector Table
	10.5.2 Valid Interrupt Vectors
	10.5.3 Error Handling
	10.5.4 APIC Timer
	10.5.4.1 TSC-Deadline Mode

	10.5.5 Local Interrupt Acceptance

	10.6 Issuing Interprocessor Interrupts
	10.6.1 Interrupt Command Register (ICR)
	10.6.2 Determining IPI Destination
	10.6.2.1 Physical Destination Mode
	10.6.2.2 Logical Destination Mode
	10.6.2.3 Broadcast/Self Delivery Mode
	10.6.2.4 Lowest Priority Delivery Mode

	10.6.3 IPI Delivery and Acceptance

	10.7 System and APIC Bus Arbitration
	10.8 Handling Interrupts
	10.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors
	10.8.2 Interrupt Handling with the P6 Family and Pentium Processors
	10.8.3 Interrupt, Task, and Processor Priority
	10.8.3.1 Task and Processor Priorities

	10.8.4 Interrupt Acceptance for Fixed Interrupts
	10.8.5 Signaling Interrupt Servicing Completion
	10.8.6 Task Priority in IA-32e Mode
	10.8.6.1 Interaction of Task Priorities between CR8 and APIC

	10.9 Spurious Interrupt
	10.10 APIC Bus Message Passing Mechanism and Protocol (P6 Family, Pentium Processors)
	10.10.1 Bus Message Formats

	10.11 Message Signalled Interrupts
	10.11.1 Message Address Register Format
	10.11.2 Message Data Register Format

	10.12 Extended XAPIC (x2APIC)
	10.12.1 Detecting and Enabling x2APIC Mode
	10.12.1.1 Instructions to Access APIC Registers
	10.12.1.2 x2APIC Register Address Space
	10.12.1.3 Reserved Bit Checking

	10.12.2 x2APIC Register Availability
	10.12.3 MSR Access in x2APIC Mode
	10.12.4 VM-Exit Controls for MSRs and x2APIC Registers
	10.12.5 x2APIC State Transitions
	10.12.5.1 x2APIC States
	x2APIC After Reset
	x2APIC Transitions From x2APIC Mode
	x2APIC Transitions From Disabled Mode
	State Changes From xAPIC Mode to x2APIC Mode

	10.12.6 Routing of Device Interrupts in x2APIC Mode
	10.12.7 Initialization by System Software
	10.12.8 CPUID Extensions And Topology Enumeration
	10.12.8.1 Consistency of APIC IDs and CPUID

	10.12.9 ICR Operation in x2APIC Mode
	10.12.10 Determining IPI Destination in x2APIC Mode
	10.12.10.1 Logical Destination Mode in x2APIC Mode
	10.12.10.2 Deriving Logical x2APIC ID from the Local x2APIC ID

	10.12.11 SELF IPI Register

	Chapter 11 Memory Cache Control
	11.1 Internal Caches, TLBs, and Buffers
	11.2 Caching Terminology
	11.3 Methods of Caching Available
	11.3.1 Buffering of Write Combining Memory Locations
	11.3.2 Choosing a Memory Type
	11.3.3 Code Fetches in Uncacheable Memory

	11.4 Cache Control Protocol
	11.5 Cache Control
	11.5.1 Cache Control Registers and Bits
	11.5.2 Precedence of Cache Controls
	11.5.2.1 Selecting Memory Types for Pentium Pro and Pentium II Processors
	11.5.2.2 Selecting Memory Types for Pentium III and More Recent Processor Families
	11.5.2.3 Writing Values Across Pages with Different Memory Types

	11.5.3 Preventing Caching
	11.5.4 Disabling and Enabling the L3 Cache
	11.5.5 Cache Management Instructions
	11.5.6 L1 Data Cache Context Mode
	11.5.6.1 Adaptive Mode
	11.5.6.2 Shared Mode

	11.6 Self-Modifying Code
	11.7 Implicit Caching (Pentium 4, Intel Xeon, and P6 Family Processors)
	11.8 Explicit Caching
	11.9 Invalidating the Translation Lookaside Buffers (TLBs)
	11.10 Store Buffer
	11.11 Memory Type Range Registers (MTRRs)
	11.11.1 MTRR Feature Identification
	11.11.2 Setting Memory Ranges with MTRRs
	11.11.2.1 IA32_MTRR_DEF_TYPE MSR
	11.11.2.2 Fixed Range MTRRs
	11.11.2.3 Variable Range MTRRs
	11.11.2.4 System-Management Range Register Interface

	11.11.3 Example Base and Mask Calculations
	11.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support

	11.11.4 Range Size and Alignment Requirement
	11.11.4.1 MTRR Precedences

	11.11.5 MTRR Initialization
	11.11.6 Remapping Memory Types
	11.11.7 MTRR Maintenance Programming Interface
	11.11.7.1 MemTypeGet() Function
	11.11.7.2 MemTypeSet() Function

	11.11.8 MTRR Considerations in MP Systems
	11.11.9 Large Page Size Considerations

	11.12 Page Attribute Table (PAT)
	11.12.1 Detecting Support for the PAT Feature
	11.12.2 IA32_PAT MSR
	11.12.3 Selecting a Memory Type from the PAT
	11.12.4 Programming the PAT
	11.12.5 PAT Compatibility with Earlier IA-32 Processors

	Chapter 12 Intel® MMX™ Technology System Programming
	12.1 Emulation of the MMX Instruction Set
	12.2 The MMX State and MMX Register Aliasing
	12.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87 FPU Tag Word

	12.3 Saving and Restoring the MMX State and Registers
	12.4 Saving MMX State on Task or Context Switches
	12.5 EXCEPTIONS That Can Occur When Executing MMX Instructions
	12.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions

	12.6 Debugging MMX Code

	Chapter 13 System Programming For Instruction Set Extensions And Processor Extended States
	13.1 Providing Operating System Support for SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.2 Checking for SSE/SSE2/SSE3/SSSE3/SSE4 Extension Support
	13.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions
	13.1.4 Initialization of the SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the SSE/SSE2/SSE3/SSSE3/SSE4 Instructions
	13.1.6 Providing an Handler for the SIMD Floating-Point Exception (#XM)
	13.1.6.1 Numeric Error flag and IGNNE#

	13.2 Emulation of SSE/SSE2/SSE3/SSSE3/SSE4 Extensions
	13.3 Saving and Restoring the SSE/SSE2/SSE3/SSSE3/SSE4 State
	13.4 Saving the SSE/SSE2/SSE3/SSSE3/SSE4 State on Task or Context Switches
	13.5 Designing OS Facilities for AUTOMATICALLY Saving x87 FPU, MMX, and SSE/SSE2/SSE3/SSSE3/SSE4 state on Task or Context Switches
	13.5.1 Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE, SSE2, SSE3 SSSE3 and SSE4 State

	13.6 XSAVE/XRSTOR and Processor Extended state management
	13.6.1 XSAVE Header

	13.7 Interoperability of XSAVE/XRSTOR and FXSAVE/FXRSTOR
	13.8 Detection, Enumeration, Enabling Processor Extended State Support
	13.8.1 Application Programming Model and Processor Extended States

	13.9 Intel Advanced Vector Extensions (Intel AVX) and YMM State
	13.10 YMM State Management
	13.10.1 Detection of YMM State Support
	13.10.2 Enabling of YMM State
	13.10.3 Enabling of SIMD Floating-Exception Support
	13.10.4 The Layout of XSAVE Area
	13.10.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
	13.10.6 Processor Extended State Save Optimization and XSAVEOPT
	13.10.6.1 XSAVEOPT Usage Guidelines

	Chapter 14 Power and Thermal Management
	14.1 Enhanced Intel Speedstep® Technology
	14.1.1 Software Interface For Initiating Performance State Transitions

	14.2 P-State Hardware Coordination
	14.3 System Software Considerations and Opportunistic processor Performance operation
	14.3.1 Intel Dynamic Acceleration
	14.3.2 System Software Interfaces for Opportunistic Processor Performance Operation
	14.3.2.1 Discover Hardware Support and Enabling of Opportunistic Processor Operation
	14.3.2.2 OS Control of Opportunistic Processor Performance Operation
	14.3.2.3 Required Changes to OS Power Management P-state Policy
	14.3.2.4 Application Awareness of Opportunistic Processor Operation (Optional)

	14.3.3 Intel Turbo Boost Technology
	14.3.4 Performance and Energy Bias Hint support

	14.4 MWAIT Extensions for Advanced Power Management
	14.5 Thermal Monitoring and Protection
	14.5.1 Catastrophic Shutdown Detector
	14.5.2 Thermal Monitor
	14.5.2.1 Thermal Monitor 1
	14.5.2.2 Thermal Monitor 2
	14.5.2.3 Two Methods for Enabling TM2
	14.5.2.4 Performance State Transitions and Thermal Monitoring
	14.5.2.5 Thermal Status Information
	14.5.2.6 Adaptive Thermal Monitor

	14.5.3 Software Controlled Clock Modulation
	14.5.3.1 Extension of Software Controlled Clock Modulation

	14.5.4 Detection of Thermal Monitor and Software Controlled Clock Modulation Facilities
	14.5.4.1 Detection of Software Controlled Clock Modulation Extension

	14.5.5 On Die Digital Thermal Sensors
	14.5.5.1 Digital Thermal Sensor Enumeration
	14.5.5.2 Reading the Digital Sensor

	14.5.6 Power Limit Notification

	14.6 Package Level Thermal Management
	14.6.1 Support for Passive and Active cooling

	14.7 Platform Specific Power Management Support
	14.7.1 RAPL Interfaces
	14.7.2 RAPL Domains and Platform Specificity
	14.7.3 Package RAPL Domain
	14.7.4 PP0/PP1 RAPL Domains
	14.7.5 DRAM RAPL Domain

	Chapter 15 Machine-Check Architecture
	15.1 Machine-Check Architecture
	15.2 Compatibility with Pentium Processor
	15.3 Machine-Check MSRs
	15.3.1 Machine-Check Global Control MSRs
	15.3.1.1 IA32_MCG_CAP MSR
	15.3.1.2 IA32_MCG_STATUS MSR
	15.3.1.3 IA32_MCG_CTL MSR

	15.3.2 Error-Reporting Register Banks
	15.3.2.1 IA32_MCi_CTL MSRs
	15.3.2.2 IA32_MCi_STATUS MSRS
	15.3.2.3 IA32_MCi_ADDR MSRs
	15.3.2.4 IA32_MCi_MISC MSRs
	15.3.2.5 IA32_MCi_CTL2 MSRs
	15.3.2.6 IA32_MCG Extended Machine Check State MSRs

	15.3.3 Mapping of the Pentium Processor Machine-Check Errors to the Machine-Check Architecture

	15.4 Enhanced Cache Error reporting
	15.5 Corrected Machine Check Error Interrupt
	15.5.1 CMCI Local APIC Interface
	15.5.2 System Software Recommendation for Managing CMCI and Machine Check Resources
	15.5.2.1 CMCI Initialization
	15.5.2.2 CMCI Threshold Management
	15.5.2.3 CMCI Interrupt Handler

	15.6 Recovery of Uncorrected Recoverable (UCR) Errors
	15.6.1 Detection of Software Error Recovery Support
	15.6.2 UCR Error Reporting and Logging
	15.6.3 UCR Error Classification
	15.6.4 UCR Error Overwrite Rules

	15.7 Machine-Check Availability
	15.8 Machine-Check Initialization
	15.9 Interpreting the MCA Error Codes
	15.9.1 Simple Error Codes
	15.9.2 Compound Error Codes
	15.9.2.1 Correction Report Filtering (F) Bit
	15.9.2.2 Transaction Type (TT) Sub-Field
	15.9.2.3 Level (LL) Sub-Field
	15.9.2.4 Request (RRRR) Sub-Field
	15.9.2.5 Bus and Interconnect Errors
	15.9.2.6 Memory Controller Errors

	15.9.3 Architecturally Defined UCR Errors
	15.9.3.1 Architecturally Defined SRAO Errors
	15.9.3.2 Architecturally Defined SRAR Errors

	15.9.4 Multiple MCA Errors
	15.9.5 Machine-Check Error Codes Interpretation

	15.10 Guidelines for Writing Machine-Check Software
	15.10.1 Machine-Check Exception Handler
	15.10.2 Pentium Processor Machine-Check Exception Handling
	15.10.3 Logging Correctable Machine-Check Errors
	15.10.4 Machine-Check Software Handler Guidelines for Error Recovery
	15.10.4.1 Machine-Check Exception Handler for Error Recovery
	15.10.4.2 Corrected Machine-Check Handler for Error Recovery

	Chapter 16 Debugging, Profiling Branches and Time- Stamp Counter
	16.1 Overview of Debug Support Facilities
	16.2 Debug Registers
	16.2.1 Debug Address Registers (DR0-DR3)
	16.2.2 Debug Registers DR4 and DR5
	16.2.3 Debug Status Register (DR6)
	16.2.4 Debug Control Register (DR7)
	16.2.5 Breakpoint Field Recognition
	16.2.6 Debug Registers and Intel® 64 Processors

	16.3 Debug Exceptions
	16.3.1 Debug Exception (#DB)-Interrupt Vector 1
	16.3.1.1 Instruction-Breakpoint Exception Condition
	16.3.1.2 Data Memory and I/O Breakpoint Exception Conditions
	16.3.1.3 General-Detect Exception Condition
	16.3.1.4 Single-Step Exception Condition
	16.3.1.5 Task-Switch Exception Condition

	16.3.2 Breakpoint Exception (#BP)-Interrupt Vector 3

	16.4 Last Branch, Interrupt, and Exception Recording Overview
	16.4.1 IA32_DEBUGCTL MSR
	16.4.2 Monitoring Branches, Exceptions, and Interrupts
	16.4.3 Single-Stepping on Branches
	16.4.4 Branch Trace Messages
	16.4.4.1 Branch Trace Message Visibility

	16.4.5 Branch Trace Store (BTS)
	16.4.6 CPL-Qualified Branch Trace Mechanism
	16.4.7 Freezing LBR and Performance Counters on PMI
	16.4.8 LBR Stack
	16.4.8.1 LBR Stack and Intel® 64 Processors
	16.4.8.2 LBR Stack and IA-32 Processors
	16.4.8.3 Last Exception Records and Intel 64 Architecture

	16.4.9 BTS and DS Save Area
	16.4.9.1 DS Save Area and IA-32e Mode Operation
	16.4.9.2 Setting Up the DS Save Area
	16.4.9.3 Setting Up the BTS Buffer
	16.4.9.4 Setting Up CPL-Qualified BTS
	16.4.9.5 Writing the DS Interrupt Service Routine

	16.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and Intel® Atom™ Processor Family)
	16.5.1 LBR Stack

	16.6 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Nehalem
	16.6.1 LBR Stack
	16.6.2 Filtering of Last Branch Records

	16.7 Last Branch, Interrupt, and Exception Recording for Processors based on Intel® Microarchitecture code name Sandy Bridge
	16.8 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
	16.8.1 MSR_DEBUGCTLA MSR
	16.8.2 LBR Stack for Processors Based on Intel NetBurst® Microarchitecture
	16.8.3 Last Exception Records

	16.9 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	16.10 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
	16.11 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
	16.11.1 DEBUGCTLMSR Register
	16.11.2 Last Branch and Last Exception MSRs
	16.11.3 Monitoring Branches, Exceptions, and Interrupts

	16.12 Time-Stamp Counter
	16.12.1 Invariant TSC
	16.12.2 IA32_TSC_AUX Register and RDTSCP Support

	Chapter 17 8086 Emulation
	17.1 Real-Address Mode
	17.1.1 Address Translation in Real-Address Mode
	17.1.2 Registers Supported in Real-Address Mode
	17.1.3 Instructions Supported in Real-Address Mode
	17.1.4 Interrupt and Exception Handling

	17.2 Virtual-8086 Mode
	17.2.1 Enabling Virtual-8086 Mode
	17.2.2 Structure of a Virtual-8086 Task
	17.2.3 Paging of Virtual-8086 Tasks
	17.2.4 Protection within a Virtual-8086 Task
	17.2.5 Entering Virtual-8086 Mode
	17.2.6 Leaving Virtual-8086 Mode
	17.2.7 Sensitive Instructions
	17.2.8 Virtual-8086 Mode I/O
	17.2.8.1 I/O-Port-Mapped I/O
	17.2.8.2 Memory-Mapped I/O
	17.2.8.3 Special I/O Buffers

	17.3 Interrupt and Exception Handling in Virtual-8086 Mode
	17.3.1 Class 1-Hardware Interrupt and Exception Handling in Virtual-8086 Mode
	17.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap or Interrupt Gate
	17.3.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt or Exception Handler
	17.3.1.3 Handling an Interrupt or Exception Through a Task Gate

	17.3.2 Class 2-Maskable Hardware Interrupt Handling in Virtual-8086 Mode Using the Virtual Interrupt Mechanism
	17.3.3 Class 3-Software Interrupt Handling in Virtual-8086 Mode
	17.3.3.1 Method 1: Software Interrupt Handling
	17.3.3.2 Methods 2 and 3: Software Interrupt Handling
	17.3.3.3 Method 4: Software Interrupt Handling
	17.3.3.4 Method 5: Software Interrupt Handling
	17.3.3.5 Method 6: Software Interrupt Handling

	17.4 Protected-Mode Virtual Interrupts

	Chapter 18 Mixing 16-Bit and 32-Bit Code
	18.1 Defining 16-Bit and 32-Bit Program Modules
	18.2 Mixing 16-Bit and 32-Bit Operations Within a Code Segment
	18.3 Sharing Data Among Mixed-Size Code Segments
	18.4 Transferring Control Among Mixed-Size Code Segments
	18.4.1 Code-Segment Pointer Size
	18.4.2 Stack Management for Control Transfer
	18.4.2.1 Controlling the Operand-Size Attribute For a Call
	18.4.2.2 Passing Parameters With a Gate

	18.4.3 Interrupt Control Transfers
	18.4.4 Parameter Translation
	18.4.5 Writing Interface Procedures

	Chapter 19 Architecture Compatibility
	19.1 Processor Families and Categories
	19.2 Reserved Bits
	19.3 Enabling New Functions and Modes
	19.4 Detecting the Presence of New Features Through Software
	19.5 Intel MMX Technology
	19.6 Streaming SIMD Extensions (SSE)
	19.7 Streaming SIMD Extensions 2 (SSE2)
	19.8 Streaming SIMD Extensions 3 (SSE3)
	19.9 Additional Streaming SIMD Extensions
	19.10 Intel Hyper-Threading Technology
	19.11 Multi-Core Technology
	19.12 Specific Features of Dual-Core Processor
	19.13 New Instructions In the Pentium and Later IA-32 Processors
	19.13.1 Instructions Added Prior to the Pentium Processor

	19.14 Obsolete Instructions
	19.15 Undefined Opcodes
	19.16 New Flags in the EFLAGS Register
	19.16.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors

	19.17 Stack Operations
	19.17.1 PUSH SP
	19.17.2 EFLAGS Pushed on the Stack

	19.18 x87 FPU
	19.18.1 Control Register CR0 Flags
	19.18.2 x87 FPU Status Word
	19.18.2.1 Condition Code Flags (C0 through C3)
	19.18.2.2 Stack Fault Flag

	19.18.3 x87 FPU Control Word
	19.18.4 x87 FPU Tag Word
	19.18.5 Data Types
	19.18.5.1 NaNs
	19.18.5.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats

	19.18.6 Floating-Point Exceptions
	19.18.6.1 Denormal Operand Exception (#D)
	19.18.6.2 Numeric Overflow Exception (#O)
	19.18.6.3 Numeric Underflow Exception (#U)
	19.18.6.4 Exception Precedence
	19.18.6.5 CS and EIP For FPU Exceptions
	19.18.6.6 FPU Error Signals
	19.18.6.7 Assertion of the FERR# Pin
	19.18.6.8 Invalid Operation Exception On Denormals
	19.18.6.9 Alignment Check Exceptions (#AC)
	19.18.6.10 Segment Not Present Exception During FLDENV
	19.18.6.11 Device Not Available Exception (#NM)
	19.18.6.12 Coprocessor Segment Overrun Exception
	19.18.6.13 General Protection Exception (#GP)
	19.18.6.14 Floating-Point Error Exception (#MF)

	19.18.7 Changes to Floating-Point Instructions
	19.18.7.1 FDIV, FPREM, and FSQRT Instructions
	19.18.7.2 FSCALE Instruction
	19.18.7.3 FPREM1 Instruction
	19.18.7.4 FPREM Instruction
	19.18.7.5 FUCOM, FUCOMP, and FUCOMPP Instructions
	19.18.7.6 FPTAN Instruction
	19.18.7.7 Stack Overflow
	19.18.7.8 FSIN, FCOS, and FSINCOS Instructions
	19.18.7.9 FPATAN Instruction
	19.18.7.10 F2XM1 Instruction
	19.18.7.11 FLD Instruction
	19.18.7.12 FXTRACT Instruction
	19.18.7.13 Load Constant Instructions
	19.18.7.14 FSETPM Instruction
	19.18.7.15 FXAM Instruction
	19.18.7.16 FSAVE and FSTENV Instructions

	19.18.8 Transcendental Instructions
	19.18.9 Obsolete Instructions
	19.18.10 WAIT/FWAIT Prefix Differences
	19.18.11 Operands Split Across Segments and/or Pages
	19.18.12 FPU Instruction Synchronization

	19.19 Serializing Instructions
	19.20 FPU and Math Coprocessor Initialization
	19.20.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization
	19.20.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization

	19.21 Control Registers
	19.22 Memory Management Facilities
	19.22.1 New Memory Management Control Flags
	19.22.1.1 Physical Memory Addressing Extension
	19.22.1.2 Global Pages
	19.22.1.3 Larger Page Sizes

	19.22.2 CD and NW Cache Control Flags
	19.22.3 Descriptor Types and Contents
	19.22.4 Changes in Segment Descriptor Loads

	19.23 Debug Facilities
	19.23.1 Differences in Debug Register DR6
	19.23.2 Differences in Debug Register DR7
	19.23.3 Debug Registers DR4 and DR5

	19.24 Recognition of Breakpoints
	19.25 Exceptions and/or Exception Conditions
	19.25.1 Machine-Check Architecture
	19.25.2 Priority of Exceptions
	19.25.3 Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers

	19.26 Interrupts
	19.26.1 Interrupt Propagation Delay
	19.26.2 NMI Interrupts
	19.26.3 IDT Limit

	19.27 Advanced Programmable Interrupt Controller (APIC)
	19.27.1 Software Visible Differences Between the Local APIC and the 82489DX
	19.27.2 New Features Incorporated in the Local APIC for the P6 Family and Pentium Processors
	19.27.3 New Features Incorporated in the Local APIC of the Pentium 4 and Intel Xeon Processors

	19.28 Task Switching and TSs
	19.28.1 P6 Family and Pentium Processor TSS
	19.28.2 TSS Selector Writes
	19.28.3 Order of Reads/Writes to the TSS
	19.28.4 Using A 16-Bit TSS with 32-Bit Constructs
	19.28.5 Differences in I/O Map Base Addresses

	19.29 Cache Management
	19.29.1 Self-Modifying Code with Cache Enabled
	19.29.2 Disabling the L3 Cache

	19.30 Paging
	19.30.1 Large Pages
	19.30.2 PCD and PWT Flags
	19.30.3 Enabling and Disabling Paging

	19.31 Stack Operations
	19.31.1 Selector Pushes and Pops
	19.31.2 Error Code Pushes
	19.31.3 Fault Handling Effects on the Stack
	19.31.4 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate

	19.32 Mixing 16- and 32-Bit Segments
	19.33 Segment and Address Wraparound
	19.33.1 Segment Wraparound

	19.34 Store Buffers and Memory Ordering
	19.35 Bus Locking
	19.36 Bus Hold
	19.37 Model-Specific Extensions to the IA-32
	19.37.1 Model-Specific Registers
	19.37.2 RDMSR and WRMSR Instructions
	19.37.3 Memory Type Range Registers
	19.37.4 Machine-Check Exception and Architecture
	19.37.5 Performance-Monitoring Counters

	19.38 Two Ways to Run Intel 286 Processor Tasks

	Chapter 20 Introduction to Virtual-Machine Extensions
	20.1 Overview
	20.2 Virtual Machine Architecture
	20.3 Introduction to VMX Operation
	20.4 Life Cycle of VMM Software
	20.5 Virtual-Machine Control Structure
	20.6 Discovering Support for VMX
	20.7 Enabling and Entering VMX Operation
	20.8 Restrictions on VMX Operation

	Chapter 21 Virtual-Machine Control Structures
	21.1 Overview
	21.2 Format of the VMCS Region
	21.3 Organization of VMCS Data
	21.4 Guest-State Area
	21.4.1 Guest Register State
	21.4.2 Guest Non-Register State

	21.5 Host-State Area
	21.6 VM-Execution Control Fields
	21.6.1 Pin-Based VM-Execution Controls
	21.6.2 Processor-Based VM-Execution Controls
	21.6.3 Exception Bitmap
	21.6.4 I/O-Bitmap Addresses
	21.6.5 Time-Stamp Counter Offset
	21.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
	21.6.7 CR3-Target Controls
	21.6.8 Controls for APIC Accesses
	21.6.9 MSR-Bitmap Address
	21.6.10 Executive-VMCS Pointer
	21.6.11 Extended-Page-Table Pointer (EPTP)
	21.6.12 Virtual-Processor Identifier (VPID)
	21.6.13 Controls for PAUSE-Loop Exiting

	21.7 VM-Exit Control Fields
	21.7.1 VM-Exit Controls
	21.7.2 VM-Exit Controls for MSRs

	21.8 VM-Entry Control Fields
	21.8.1 VM-Entry Controls
	21.8.2 VM-Entry Controls for MSRs
	21.8.3 VM-Entry Controls for Event Injection

	21.9 VM-Exit Information Fields
	21.9.1 Basic VM-Exit Information
	21.9.2 Information for VM Exits Due to Vectored Events
	21.9.3 Information for VM Exits That Occur During Event Delivery
	21.9.4 Information for VM Exits Due to Instruction Execution
	21.9.5 VM-Instruction Error Field

	21.10 Software Use of the VMCS and Related Structures
	21.10.1 Software Use of Virtual-Machine Control Structures
	21.10.2 VMREAD, VMWRITE, and Encodings of VMCS Fields
	21.10.3 Initializing a VMCS
	21.10.4 Software Access to Related Structures
	21.10.5 VMXON Region

	Chapter 22 VMX Non-Root Operation
	22.1 Instructions That Cause VM Exits
	22.1.1 Relative Priority of Faults and VM Exits
	22.1.2 Instructions That Cause VM Exits Unconditionally
	22.1.3 Instructions That Cause VM Exits Conditionally

	22.2 APIC-Access VM Exits
	22.2.1 Linear Accesses to the APIC-Access Page
	22.2.1.1 Linear Accesses That Cause APIC-Access VM Exits
	22.2.1.2 Priority of APIC-Access VM Exits Caused by Linear Accesses
	22.2.1.3 Instructions That May Cause Page Faults or EPT Violations Without Accessing Memory

	22.2.2 Guest-Physical Accesses to the APIC-Access Page
	22.2.2.1 Guest-Physical Accesses That Might Not Cause APIC-Access VM Exits
	22.2.2.2 Priority of APIC-Access VM Exits Caused by Guest-Physical Accesses

	22.2.3 Physical Accesses to the APIC-Access Page
	22.2.4 VTPR Accesses

	22.3 Other Causes of VM Exits
	22.4 Changes to Instruction Behavior in VMX Non- Root Operation
	22.5 APIC Accesses That Do Not Cause VM Exits
	22.5.1 Linear Accesses to the APIC-Access Page Using Large-Page Translations
	22.5.2 Physical Accesses to the APIC-Access Page
	22.5.3 VTPR Accesses
	22.5.3.1 Treatment of Individual VTPR Accesses
	22.5.3.2 Operations with Multiple Accesses
	22.5.3.3 TPR-Shadow Updates

	22.6 Other Changes in VMX Non-Root Operation
	22.6.1 Event Blocking
	22.6.2 Treatment of Task Switches

	22.7 Features Specific to VMX Non-Root Operation
	22.7.1 VMX-Preemption Timer
	22.7.2 Monitor Trap Flag
	22.7.3 Translation of Guest-Physical Addresses Using EPT

	22.8 Unrestricted Guests

	Chapter 23 VM Entries
	23.1 Basic VM-Entry Checks
	23.2 Checks on VMX Controls and Host-State Area
	23.2.1 Checks on VMX Controls
	23.2.1.1 VM-Execution Control Fields
	23.2.1.2 VM-Exit Control Fields
	23.2.1.3 VM-Entry Control Fields

	23.2.2 Checks on Host Control Registers and MSRs
	23.2.3 Checks on Host Segment and Descriptor-Table Registers
	23.2.4 Checks Related to Address-Space Size

	23.3 Checking and Loading Guest State
	23.3.1 Checks on the Guest State Area
	23.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
	23.3.1.2 Checks on Guest Segment Registers
	23.3.1.3 Checks on Guest Descriptor-Table Registers
	23.3.1.4 Checks on Guest RIP and RFLAGS
	23.3.1.5 Checks on Guest Non-Register State
	23.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

	23.3.2 Loading Guest State
	23.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs
	23.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
	23.3.2.3 Loading Guest RIP, RSP, and RFLAGS
	23.3.2.4 Loading Page-Directory-Pointer-Table Entries
	23.3.2.5 Updating Non-Register State

	23.3.3 Clearing Address-Range Monitoring

	23.4 Loading MSRs
	23.5 Event Injection
	23.5.1 Vectored-Event Injection
	23.5.1.1 Details of Vectored-Event Injection
	23.5.1.2 VM Exits During Event Injection
	23.5.1.3 Event Injection for VM Entries to Real-Address Mode

	23.5.2 Injection of Pending MTF VM Exits

	23.6 Special Features of VM Entry
	23.6.1 Interruptibility State
	23.6.2 Activity State
	23.6.3 Delivery of Pending Debug Exceptions after VM Entry
	23.6.4 VMX-Preemption Timer
	23.6.5 Interrupt-Window Exiting
	23.6.6 NMI-Window Exiting
	23.6.7 VM Exits Induced by the TPR Shadow
	23.6.8 Pending MTF VM Exits
	23.6.9 VM Entries and Advanced Debugging Features

	23.7 VM-Entry Failures During or After Loading Guest State
	23.8 Machine Checks During VM Entry

	Chapter 24 VM Exits
	24.1 Architectural State Before a VM Exit
	24.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
	24.2.1 Basic VM-Exit Information
	24.2.2 Information for VM Exits Due to Vectored Events
	24.2.3 Information for VM Exits During Event Delivery
	24.2.4 Information for VM Exits Due to Instruction Execution

	24.3 Saving Guest State
	24.3.1 Saving Control Registers, Debug Registers, and MSRs
	24.3.2 Saving Segment Registers and Descriptor-Table Registers
	24.3.3 Saving RIP, RSP, and RFLAGS
	24.3.4 Saving Non-Register State

	24.4 Saving MSRs
	24.5 Loading Host State
	24.5.1 Loading Host Control Registers, Debug Registers, MSRs
	24.5.2 Loading Host Segment and Descriptor-Table Registers
	24.5.3 Loading Host RIP, RSP, and RFLAGS
	24.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
	24.5.5 Updating Non-Register State
	24.5.6 Clearing Address-Range Monitoring

	24.6 Loading MSRs
	24.7 VMX Aborts
	24.8 Machine Check During VM Exit

	Chapter 25 VMX Support for Address Translation
	25.1 Virtual Processor Identifiers (VPIDs)
	25.2 The Extended Page Table Mechanism (EPT)
	25.2.1 EPT Overview
	25.2.2 EPT Translation Mechanism
	25.2.3 EPT-Induced VM Exits
	25.2.3.1 EPT Misconfigurations
	25.2.3.2 EPT Violations
	25.2.3.3 Prioritization of EPT-Induced VM Exits

	25.2.4 EPT and Memory Typing
	25.2.4.1 Memory Type Used for Accessing EPT Paging Structures
	25.2.4.2 Memory Type Used for Translated Guest-Physical Addresses

	25.3 Caching Translation Information
	25.3.1 Information That May Be Cached
	25.3.2 Creating and Using Cached Translation Information
	25.3.3 Invalidating Cached Translation Information
	25.3.3.1 Operations that Invalidate Cached Mappings
	25.3.3.2 Operations that Need Not Invalidate Cached Mappings
	25.3.3.3 Guidelines for Use of the INVVPID Instruction
	25.3.3.4 Guidelines for Use of the INVEPT Instruction

	Chapter 26 System Management Mode
	26.1 System Management Mode Overview
	26.1.1 System Management Mode and VMX Operation

	26.2 System Management Interrupt (SMI)
	26.3 Switching Between SMM and the Other Processor Operating Modes
	26.3.1 Entering SMM
	26.3.2 Exiting From SMM

	26.4 SMRAM
	26.4.1 SMRAM State Save Map
	26.4.1.1 SMRAM State Save Map and Intel 64 Architecture

	26.4.2 SMRAM Caching
	26.4.2.1 System Management Range Registers (SMRR)

	26.5 SMI Handler Execution Environment
	26.6 Exceptions and Interrupts Within SMM
	26.7 Managing Synchronous and Asynchronous System Management Interrupts
	26.7.1 I/O State Implementation

	26.8 NMI Handling While in SMM
	26.9 SMM Revision Identifier
	26.10 Auto HALT Restart
	26.10.1 Executing the HLT Instruction in SMM

	26.11 SMBASE Relocation
	26.11.1 Relocating SMRAM to an Address Above 1 MByte

	26.12 I/O Instruction Restart
	26.12.1 Back-to-Back SMI Interrupts When I/O Instruction Restart Is Being Used

	26.13 SMM Multiple-Processor Considerations
	26.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
	26.14.1 Default Treatment of SMI Delivery
	26.14.2 Default Treatment of RSM
	26.14.3 Protection of CR4.VMXE in SMM
	26.14.4 VMXOFF and SMI Unblocking

	26.15 Dual-Monitor Treatment of SMIs and SMM
	26.15.1 Dual-Monitor Treatment Overview
	26.15.2 SMM VM Exits
	26.15.2.1 Architectural State Before a VM Exit
	26.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers
	26.15.2.3 Recording VM-Exit Information
	26.15.2.4 Saving Guest State
	26.15.2.5 Updating Non-Register State

	26.15.3 Operation of an SMM Monitor
	26.15.4 VM Entries that Return from SMM
	26.15.4.1 Checks on the Executive-VMCS Pointer Field
	26.15.4.2 Checks on VM-Execution Control Fields
	26.15.4.3 Checks on VM-Entry Control Fields
	26.15.4.4 Checks on the Guest State Area
	26.15.4.5 Loading Guest State
	26.15.4.6 VMX-Preemption Timer
	26.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
	26.15.4.8 VM Exits Induced by VM Entry
	26.15.4.9 SMI Blocking
	26.15.4.10 Failures of VM Entries That Return from SMM

	26.15.5 Enabling the Dual-Monitor Treatment
	26.15.6 Activating the Dual-Monitor Treatment
	26.15.6.1 Initial Checks
	26.15.6.2 MSEG Checking
	26.15.6.3 Updating the Current-VMCS and Executive-VMCS Pointers
	26.15.6.4 Loading Host State
	26.15.6.5 Loading MSRs

	26.15.7 Deactivating the Dual-Monitor Treatment

	26.16 SMI and Processor Extended State Management

	Chapter 27 Virtual-Machine Monitor Programming Considerations
	27.1 VMX System Programming Overview
	27.2 Supporting Processor Operating Modes in Guest Environments
	27.2.1 Using Unrestricted Guest Mode

	27.3 Managing VMCS Regions and Pointers
	27.4 Using VMX Instructions
	27.5 VMM Setup & Tear Down
	27.5.1 Algorithms for Determining VMX Capabilities

	27.6 Preparation and Launching a Virtual Machine
	27.7 Handling of VM Exits
	27.7.1 Handling VM Exits Due to Exceptions
	27.7.1.1 Reflecting Exceptions to Guest Software
	27.7.1.2 Resuming Guest Software after Handling an Exception

	27.8 Multi-Processor Considerations
	27.8.1 Initialization
	27.8.2 Moving a VMCS Between Processors
	27.8.3 Paired Index-Data Registers
	27.8.4 External Data Structures
	27.8.5 CPUID Emulation

	27.9 32-Bit and 64-Bit Guest Environments
	27.9.1 Operating Modes of Guest Environments
	27.9.2 Handling Widths of VMCS Fields
	27.9.2.1 Natural-Width VMCS Fields
	27.9.2.2 64-Bit VMCS Fields

	27.9.3 IA-32e Mode Hosts
	27.9.4 IA-32e Mode Guests
	27.9.5 32-Bit Guests

	27.10 Handling Model Specific Registers
	27.10.1 Using VM-Execution Controls
	27.10.2 Using VM-Exit Controls for MSRs
	27.10.3 Using VM-Entry Controls for MSRs
	27.10.4 Handling Special-Case MSRs and Instructions
	27.10.4.1 Handling IA32_EFER MSR
	27.10.4.2 Handling the SYSENTER and SYSEXIT Instructions
	27.10.4.3 Handling the SYSCALL and SYSRET Instructions
	27.10.4.4 Handling the SWAPGS Instruction
	27.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

	27.10.5 Handling Accesses to Reserved MSR Addresses

	27.11 Handling Accesses to Control Registers
	27.12 Performance Considerations
	27.13 Use of The VMX-Preemption Timer

	Chapter 28 Virtualization of System Resources
	28.1 Overview
	28.2 Virtualization Support for Debugging Facilities
	28.2.1 Debug Exceptions

	28.3 Memory Virtualization
	28.3.1 Processor Operating Modes & Memory Virtualization
	28.3.2 Guest & Host Physical Address Spaces
	28.3.3 Virtualizing Virtual Memory by Brute Force
	28.3.4 Alternate Approach to Memory Virtualization
	28.3.5 Details of Virtual TLB Operation
	28.3.5.1 Initialization of Virtual TLB
	28.3.5.2 Response to Page Faults
	28.3.5.3 Response to Uses of INVLPG
	28.3.5.4 Response to CR3 Writes

	28.4 Microcode Update Facility
	28.4.1 Early Load of Microcode Updates
	28.4.2 Late Load of Microcode Updates

	Chapter 29 Handling Boundary Conditions in a Virtual Machine Monitor
	29.1 Overview
	29.2 Interrupt Handling in VMX Operation
	29.3 External Interrupt Virtualization
	29.3.1 Virtualization of Interrupt Vector Space
	29.3.2 Control of Platform Interrupts
	29.3.2.1 PIC Virtualization
	29.3.2.2 xAPIC Virtualization
	29.3.2.3 Local APIC Virtualization
	29.3.2.4 I/O APIC Virtualization
	29.3.2.5 Virtualization of Message Signaled Interrupts

	29.3.3 Examples of Handling of External Interrupts
	29.3.3.1 Guest Setup
	29.3.3.2 Processor Treatment of External Interrupt
	29.3.3.3 Processing of External Interrupts by VMM
	29.3.3.4 Generation of Virtual Interrupt Events by VMM

	29.4 Error Handling by VMM
	29.4.1 VM-Exit Failures
	29.4.2 Machine Check Considerations
	29.4.3 MCA Error Handling Guidelines for VMM
	29.4.3.1 VMM Error Handling Strategies
	29.4.3.2 Basic VMM MCA error recovery handling
	29.4.3.3 Implementation Considerations for the Basic Model
	29.4.3.4 MCA Virtualization
	29.4.3.5 Implementation Considerations for the MCA Virtualization Model

	29.5 Handling Activity States by VMM

	Chapter 30 Performance Monitoring
	30.1 Performance Monitoring Overview
	30.2 Architectural Performance Monitoring
	30.2.1 Architectural Performance Monitoring Version 1
	30.2.1.1 Architectural Performance Monitoring Version 1 Facilities

	30.2.2 Additional Architectural Performance Monitoring Extensions
	30.2.2.1 Architectural Performance Monitoring Version 2 Facilities
	30.2.2.2 Architectural Performance Monitoring Version 3 Facilities
	30.2.2.3 Full-Width Writes to Performance Counter Registers

	30.2.3 Pre-defined Architectural Performance Events

	30.3 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
	30.4 Performance Monitoring (Processors Based on Intel® Core™ Microarchitecture)
	30.4.1 Fixed-function Performance Counters
	30.4.2 Global Counter Control Facilities
	30.4.3 At-Retirement Events
	30.4.4 Precise Event Based Sampling (PEBS)
	30.4.4.1 Setting up the PEBS Buffer
	30.4.4.2 PEBS Record Format
	30.4.4.3 Writing a PEBS Interrupt Service Routine
	30.4.4.4 Re-configuring PEBS Facilities

	30.5 Performance Monitoring (Processors Based on Intel® Atom™ Microarchitecture)
	30.6 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Nehalem
	30.6.1 Enhancements of Performance Monitoring in the Processor Core
	30.6.1.1 Precise Event Based Sampling (PEBS)
	30.6.1.2 Load Latency Performance Monitoring Facility
	30.6.1.3 Off-core Response Performance Monitoring in the Processor Core

	30.6.2 Performance Monitoring Facility in the Uncore
	30.6.2.1 Uncore Performance Monitoring Management Facility
	30.6.2.2 Uncore Performance Event Configuration Facility
	30.6.2.3 Uncore Address/Opcode Match MSR

	30.6.3 Intel Xeon Processor 7500 Series Performance Monitoring Facility

	30.7 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Westmere
	30.7.1 Intel Xeon Processor E7 Family Performance Monitoring Facility

	30.8 Performance Monitoring for Processors Based on Intel® Microarchitecture Code Name Sandy Bridge
	30.8.1 Global Counter Control Facilities In Intel® microarchitecture code name Sandy Bridge
	30.8.2 Counter Coalescence
	30.8.3 Full Width Writes to Performance Counters
	30.8.4 PEBS Support in Intel® microarchitecture code name Sandy Bridge
	30.8.4.1 PEBS Record Format
	30.8.4.2 Load Latency Performance Monitoring Facility
	30.8.4.3 Precise Store Facility
	30.8.4.4 Precise Distribution of Instructions Retired (PDIR)

	30.8.5 Off-core Response Performance Monitoring
	30.8.6 Uncore Performance Monitoring Facilities In Intel® Core i7, i5, i3 Processors 2xxx Series
	30.8.6.1 Uncore Performance Monitoring Events

	30.9 Performance Monitoring (Processors Based on Intel NetBurst® Microarchitecture)
	30.9.1 ESCR MSRs
	30.9.2 Performance Counters
	30.9.3 CCCR MSRs
	30.9.4 Debug Store (DS) Mechanism
	30.9.5 Programming the Performance Counters for Non-Retirement Events
	30.9.5.1 Selecting Events to Count
	30.9.5.2 Filtering Events
	30.9.5.3 Starting Event Counting
	30.9.5.4 Reading a Performance Counter’s Count
	30.9.5.5 Halting Event Counting
	30.9.5.6 Cascading Counters
	30.9.5.7 EXTENDED CASCADING
	30.9.5.8 Generating an Interrupt on Overflow
	30.9.5.9 Counter Usage Guideline

	30.9.6 At-Retirement Counting
	30.9.6.1 Using At-Retirement Counting
	30.9.6.2 Tagging Mechanism for Front_end_event
	30.9.6.3 Tagging Mechanism For Execution_event
	30.9.6.4 Tagging Mechanism for Replay_event

	30.9.7 Precise Event-Based Sampling (PEBS)
	30.9.7.1 Detection of the Availability of the PEBS Facilities
	30.9.7.2 Setting Up the DS Save Area
	30.9.7.3 Setting Up the PEBS Buffer
	30.9.7.4 Writing a PEBS Interrupt Service Routine
	30.9.7.5 Other DS Mechanism Implications

	30.9.8 Operating System Implications

	30.10 Performance Monitoring and Intel Hyper- Threading Technology in Processors Based on Intel NetBurst® Microarchitecture
	30.10.1 ESCR MSRs
	30.10.2 CCCR MSRs
	30.10.3 IA32_PEBS_ENABLE MSR
	30.10.4 Performance Monitoring Events

	30.11 Counting Clocks
	30.11.1 Non-Halted Clockticks
	30.11.2 Non-Sleep Clockticks
	30.11.3 Incrementing the Time-Stamp Counter
	30.11.4 Non-Halted Reference Clockticks
	30.11.5 Cycle Counting and Opportunistic Processor Operation

	30.12 Performance Monitoring, Branch Profiling and System Events
	30.13 Performance Monitoring and Dual-Core Technology
	30.14 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
	30.15 Performance Monitoring on L3 and Caching Bus Controller sub-systems
	30.15.1 Overview of Performance Monitoring with L3/Caching Bus Controller
	30.15.2 GBSQ Event Interface
	30.15.3 GSNPQ Event Interface
	30.15.4 FSB Event Interface
	30.15.4.1 FSB Sub-Event Mask Interface

	30.15.5 Common Event Control Interface

	30.16 Performance Monitoring (P6 Family Processor)
	30.16.1 PerfEvtSel0 and PerfEvtSel1 MSRs
	30.16.2 PerfCtr0 and PerfCtr1 MSRs
	30.16.3 Starting and Stopping the Performance-Monitoring Counters
	30.16.4 Event and Time-Stamp Monitoring Software
	30.16.5 Monitoring Counter Overflow

	30.17 Performance Monitoring (Pentium Processors)
	30.17.1 Control and Event Select Register (CESR)
	30.17.2 Use of the Performance-Monitoring Pins
	30.17.3 Events Counted

	Appendix A Performance-Monitoring Events
	A.1 Architectural Performance-Monitoring Events
	A.2 Performance Monitoring Events for Intel® Core™ Processor 2xxx Series
	A.3 Performance Monitoring Events for Intel® Core™i7 Processor Family and Xeon Processor Family
	A.4 Performance Monitoring Events for processors based on Intel® microarchitecture Code Name Westmere
	A.5 Performance Monitoring Events for Intel® Xeon® Processor 5200, 5400 Series and Intel® Core™2 Extreme Processors QX 9000 Series
	A.6 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
	A.7 Performance Monitoring Events for Intel® Atom™ Processors
	A.8 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo Processors
	A.9 Pentium 4 and Intel Xeon Processor Performance-Monitoring Events
	A.10 Performance Monitoring Events for Intel® Pentium® M Processors
	A.11 P6 Family Processor Performance- Monitoring Events
	A.12 Pentium Processor Performance- Monitoring Events

	Appendix B Model-Specific Registers (MSRs)
	B.1 Architectural MSRs
	B.2 MSRs In the Intel® Core™ 2 Processor Family
	B.3 MSRs In the Intel® Atom™ Processor Family
	B.4 MSRs In the Intel® Microarchitecture Code Name Nehalem
	B.4.1 Additional MSRs in the Intel® Xeon® Processor 5500 and 3400 Series
	B.4.2 Additional MSRs in the Intel® Xeon® Processor 7500 Series

	B.5 MSRs In the Intel Xeon Processor 5600 Series (Intel® Microarchitecture Code Name Westmere)
	B.6 MSRs In the Intel Xeon Processor E7 Family (Intel® Microarchitecture Code Name Westmere)
	B.7 MSRs In Intel® Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	B.7.1 MSRs In Second Generation Intel® Core Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)
	B.7.2 MSRs In Next Generation Intel® Xeon Processor Family (Intel® Microarchitecture Code Name Sandy Bridge)

	B.8 MSRs In the Pentium® 4 and Intel® Xeon® Processors
	B.8.1 MSRs Unique to Intel Xeon Processor MP with L3 Cache

	B.9 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
	B.10 MSRs In the Pentium M Processor
	B.11 MSRs In the P6 Family Processors
	B.12 MSRs in Pentium Processors

	Appendix C MP Initialization For P6 Family Processors
	C.1 Overview of the MP Initialization Process For P6 Family Processors
	C.2 MP Initialization Protocol Algorithm
	C.2.1 Error Detection and Handling During the MP Initialization Protocol

	Appendix D Programming the LINT0 and LINT1 Inputs
	D.1 Constants
	D.2 LINT[0:1] Pins Programming Procedure

	Appendix E Interpreting Machine-Check Error Codes
	E.1 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
	E.2 Incremental Decoding Information: Intel Core 2 Processor Family Machine Error Codes For Machine Check
	E.2.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor 7400 Series
	E.2.1.1 Processor Machine Check Status Register Incremental MCA Error Code Definition

	E.2.2 Intel Xeon Processor 7400 Model Specific Error Code Field
	E.2.2.1 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	E.2.2.2 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

	E.3 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_1AH, Machine Error Codes For Machine Check
	E.3.1 Intel QPI Machine Check Errors
	E.3.2 Internal Machine Check Errors
	E.3.3 Memory Controller Errors

	E.4 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_2DH, Machine Error Codes For Machine Check
	E.4.1 Internal Machine Check Errors
	E.4.2 Intel QPI Machine Check Errors
	E.4.3 Integrated Memory Controller Machine Check Errors

	E.5 Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check
	E.5.1 Model-Specific Machine Check Error Codes for Intel Xeon Processor MP 7100 Series
	E.5.1.1 Processor Machine Check Status Register MCA Error Code Definition

	E.5.2 Other_Info Field (all MCA Error Types)
	E.5.3 Processor Model Specific Error Code Field
	E.5.3.1 MCA Error Type A: L3 Error
	E.5.3.2 Processor Model Specific Error Code Field Type B: Bus and Interconnect Error
	E.5.3.3 Processor Model Specific Error Code Field Type C: Cache Bus Controller Error

	Appendix F APIC Bus Message Formats
	F.1 Bus Message Formats
	F.2 EOI Message
	F.2.1 Short Message
	F.2.2 Non-focused Lowest Priority Message
	F.2.3 APIC Bus Status Cycles

	Appendix G VMX Capability Reporting Facility
	G.1 Basic VMX Information
	G.2 Reserved Controls and Default Settings
	G.3 VM-Execution Controls
	G.3.1 Pin-Based VM-Execution Controls
	G.3.2 Primary Processor-Based VM-Execution Controls
	G.3.3 Secondary Processor-Based VM-Execution Controls

	G.4 VM-Exit Controls
	G.5 VM-Entry Controls
	G.6 Miscellaneous Data
	G.7 VMX-Fixed Bits in CR0
	G.8 VMX-Fixed Bits in CR4
	G.9 VMCS Enumeration
	G.10 VPID and EPT Capabilities

	Appendix H Field Encoding in VMCS
	H.1 16-Bit Fields
	H.1.1 16-Bit Control Field
	H.1.2 16-Bit Guest-State Fields
	H.1.3 16-Bit Host-State Fields

	H.2 64-Bit Fields
	H.2.1 64-Bit Control Fields
	H.2.2 64-Bit Read-Only Data Field
	H.2.3 64-Bit Guest-State Fields
	H.2.4 64-Bit Host-State Fields

	H.3 32-Bit Fields
	H.3.1 32-Bit Control Fields
	H.3.2 32-Bit Read-Only Data Fields
	H.3.3 32-Bit Guest-State Fields
	H.3.4 32-Bit Host-State Field

	H.4 Natural-Width Fields
	H.4.1 Natural-Width Control Fields
	H.4.2 Natural-Width Read-Only Data Fields
	H.4.3 Natural-Width Guest-State Fields
	H.4.4 Natural-Width Host-State Fields

	Appendix I VMX Basic Exit Reasons

