PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 17 APRIL 2017. 1

CS 260r Final Project Proposal: Verifying
Information Confidentiality under Optimization in
HotCRP

Richard Cho and Dan Fu

I. INTRODUCTION

HotCRP is a web-based conference submission and
review system [1], [2]. One of its primary features is
a strong search capability: program committee members
can search for papers by title, authors, decision, and other
relevant fields. With such a search capability comes a
number of issues with information flow, however. For
example, program committee members may themselves
submit papers to the conference; in such cases, they
should not be allowed to read reviews or see decisions
about their paper before de-anonymization.

Such information flow issues are compounded by
attempts at query optimization. In particular, information
confidentiality is enforced at the level of the PHP server,
but it is desirable to move query burden from the PHP
server to the database. If done without care, such query
optimization can result in information leakage. Consider
an example of a user searching for all papers that do not
have a positive "accept" decision, for example. The user
should receive a list of all papers that are not written by
the user and have not been accepted, and all the papers
written by the user, regardless of whether the paper has
been accepted or not. A naive optimization might move
the entire query to the SQL layer and return a list of
all papers that have not been accepted. By the time a
server-level information policy has been applied to this
list, it is too late: the user will be able to deduce which
of their papers have been accepted by the absence of
such papers from the returned list.

In this project, we wish to formally verify that query
optimization in the HotCRP system obeys information
confidentiality policies. We will model the database, in-
formation policy, and user queries of HotCRP in the Coq
interactive proof assistant [3]] and show that optimized
and un-optimized versions of the same user query return
the same list of papers, with the same information. We
have yet to name our project, but potential candidates
include HotCRP+Coq, CoqCRP, and HotCoq.

II. APPROACH
A. Capstone Theorem

Let DB be a database of papers, Qs an SQL query
on the database, P a policy filter, v a user, and ;7 a
user query. Qg is a function on DB and returns a list of
papers. P takes a list of papers and a user, and returns
another list, potentially shorter or with information about
certain papers scrubbed out. Qi; takes a list of papers and
further filters it based on the user’s request. The final list
of papers that a user gets from a user query is thus

Qu(P(u,Qs(DB)))

Now, we can formally define the theorem we wish to
prove. Let Q*(-) be a SQL query that returns all the
papers in DB. Let O be an optimization function that
takes a policy, a user, and a user query, and returns
a tuple containing an optimized user query and SQL
query. For a C§iven policy P, user u, and user query
Qu, let Og’“’ * denote the optimized SQL query, and
O?"’Q“ denote the optimized user query. We wish to
prove the following theorem about O, HotCRP’s user
query optimization function:

VU)QUavaB: QU(P(qu*(DB))) =

1
oF @ (p(u, 05" (B)) "

In prose, the HotCRP optimization function splits a user
query into a user query and SQL query. Eq. states
that for any user query, user, policy, and database, the
optimized user query and SQL query return the same list
of papers as the original user query applied with the Q*
SQL query.

B. Design

The statement of (I)) suggests a fairly straightforward
architecture: we need models of papers, the database,
SQL queries, users, user queries, and information poli-
cies. For simplicity, we will model the database as a list
of papers. The complexity of user-paper interactions will
be captured in the fields given to papers and users: each



PREPARED FOR CS260R: PROJECTS AND CLOSE READINGS IN SOFTWARE SYSTEMS, HARVARD UNIVERSITY, 17 APRIL 2017. 2

paper will have an author list (a list of users), as well
as a team. A team is an abstraction for various complex
user groups relevant to the conference context - it can
model a group of people with conflicts of interest, the
group of people reviewing a paper, or many other similar
groups. A user has a list of teams that she belongs to.

As our project develops, we may add more fields to
the definition of team or user; such fields can represent
abstractions such as subject, paper tag, or subfield for
papers, or special privileges such as editorship or field
expertise for users.

C. Stages

We divide our project into stages to make it easier to
make progress:

o Stage 1: Basic user queries, no optimization. For
this stage, we substantiate all the models in our
design. For simplicity, we let user queries be the
same as SQL queries, and we define the policy filter
as a map that is applied to a list of papers to scrub
out sensitive data. Here, the optimization function
is the identity.

e Stage 2: Basic optimization. For this stage, we
define an optimization function hard-coded for the
policy we have written. We prove that this optimiza-
tion function satisfies (but only for the single
policy).

o Stage 3: Policy generalization. For this stage, we
define a generalized model of information poli-
cies and define a function to convert from the
generalized model to a usable map. We construct
optimization functions for certain policies and prove
those correct.

o Stage 4: General optimization. Finally, we define an
optimization function that can optimize any policy
and prove that it satisfies (I). We will also prove
that this optimization function is not just the identity
(potentially via counterexample).

Our general timeline is as follows: we have already
completed stage 1. We wish to complete stage two by
a week from now (though that will mostly be Richard’s
work because Dan has a paper deadline). We wish to
finish stage 3 by halfway through reading period, and
stage 4 by a few days past the end of reading period (in
time to turn the final project in).

D. Division of Labor

Dan did most of stage 1, Richard will do most of stage
2. Dan and Richard will design stages 3 and 4 on white
board/pen and paper. Dan will code up the Coq definition
of general policies for stage 3 and write the optimization

functions for that stage; at the same time, Richard will
write the generalized optimization function per the plan
we came up with. Dan and Richard will help each other
figure out how to prove stage 4.

III. FAILURE CASES

Stages 1 and 2 should go off without a hitch. Stage 3 is
currently slated to be started before stage 4, but finished
up concurrently. If we end up not being able to do stage
4, we will at least have stage 3 and the examples from
stage 3 to fall back on. We suspect that we will be able
to finish stage 4, however.

1V. FUTURE WORK

Since we are working on a model of the HotCRP
system, we are not actually proving that the system that
is running in the wild is correct. One future avenue of
work is taking our generalized policy definition and opti-
mization function and exporting them to PHP/SQL. The
author of HotCRP might then incorporate our exported
code into the actual version running in the wild.

Alternatively, someone could write a version of PHP
that is correct (or at least passes its test suite), or at least
write a formal spec for PHP, and verify that HotCRP
preserves information flow under that formal spec of
PHP.

REFERENCES

[1] E. Kohler. HotCRP. https://hotcrp.com/.

[2] E. Kohler. Hot Crap! Published in WOWCS’08 Proceedings
of the conference on Organizing Workshops, Conferences, and
Symposia for Computer Systems, April 2008.

[3] https://coq.inria.fr/.


https://hotcrp.com/
https://coq.inria.fr/

	Introduction
	Approach
	Capstone Theorem
	Design
	Stages
	Division of Labor

	Failure Cases
	Future Work
	References

