
RoosterFS
CS260 Project Writeup

Rob Bowden, David Holland, Eric Lu

May 8, 2017

Abstract

Formal verification of file systems is critical to
ensure data integrity and file system consistency,
both during regular operation and in the event of
an unexpected crash. While a handful of verified
file systems have been developed in the past few
years, none of them support fully concurrent file
system write operations. In this work, we intro-
duce concurrent crash Hoare logic (CCHL) as a
means of reasoning about system correctness in
the presence of of both concurrency and crashes.
We have implemented the logic in Coq proof as-
sistant and have begun proving it sound accord-
ing to the semantics of an imperative language
with locks, heap, and disk operations. We intend
to use this language to implement a fully con-
current file system that supports buffered writes
and an asynchronous disk, and we will then use
concurrent crash Hoare logic to prove this file
system correct according to specifications that
we have already begun forming.

1 Introduction

File systems that store data persistently are
a critical component of operating systems. As
such, their correctness is fundamental to the in-
tegrity and reliability of operating systems and
thus of all higher-level application software run-
ning on those systems. Data loss and corrup-
tion bugs are regularly found in existing file sys-
tems, even widely used ones [17], and loss of
persistent data is inherently more serious and

has broader ramifications than kernel bugs that
merely require rebooting. Therefore, proving the
functional correctness of file systems is highly
desirable.

Formal verification of software systems is al-
ready a nontrivial task in general1, but for file
systems an additional difficulty arises: file sys-
tems have persistent state on disk, and that state
must remain consistent even in the face of sys-
tem crashes. Strategies like journaling and soft
updates are used to keep crashes from causing
corruption and data loss, but in the absence of
verification bugs can, have, and will continue to
defeat these techniques.

To reason about the correctness of a file
system one must reason both about transient
in-memory state and persistent on-disk state.
Crashes (arising for example from power fail-
ures, hardware faults, or kernel panics in un-
verified components) erase the transient state.
This includes data in the kernel’s buffer cache
and, with modern disks, potentially also unwrit-
ten data cached within the disk itself. This can
happen at any time and after any step of exe-
cution; unlike when reasoning about, for exam-
ple, interrupts (already difficult enough), it is
not possible to block crashes in order to execute
a critical section.

Reasoning about state in the presence of un-
controllable external interrupts needs specific
support in the program logic. This support is pri-
marily useful for reasoning about persistent state
in the presence of system crashes, but it can be

1 “seL4 took twenty person-years!!!”

1

used for other things. For example, one might
use it to reason about (transient) program state
in the presence of imprecise floating point ex-
ceptions.

After a crash, the system reboots, and runs a
procedure known as recovery, whose goal is to
examine the on-disk state and correct it as neces-
sary to resume normal functioning. This also re-
quires support in the program logic, because (in
general) the recovery procedure starts with the
persistent disk state in an otherwise illegal inter-
mediate condition that does not meet the pre-
conditions for any ordinary operation. The pro-
gram logic must splice the conditions enforced
on the persistent state during operation (“crash
conditions”) to the precondition of the recovery
procedure, and the postcondition of the recovery
procedure (“recovery conditions”) to the precon-
ditions for normal operations. The full specifica-
tion of a file system includes recovery conditions
that describe the guarantees made to applica-
tions about the state of files and other file system
objects after a crash occurs.2.

Chen et al. [5] introduced the concept of crash
Hoare logic for reasoning about persistent state
in the presence of arbitrary crashes. This work
introduced the concept of crash conditions, but it
does not have explicit recovery conditions: their
file system (FSCQ) is entirely synchronous (so
no data is buffered past an operation complet-
ing) and their program logic does not support
concurrency, so only one operation can be in
progress at a time and their recovery scheme ei-
ther fully completes or fully aborts it.

While other file systems besides FSCQ have
been formally verified as crash-safe, none to our
knowledge support concurrent execution and
many do not support write-back caching. The
ultimate intended goal of this project was to
develop a file system, or at least a file system
model, that supports both concurrent execution
and write-back caching, and prove it correct in

2 That said, we have not yet gotten to the point of for-
malizing recovery conditions for a concurrent file system in
CCHL

the presence of crashes with a relatively strict
set of post-crash guarantees. The actual contri-
bution of this project so far is, first, to extend
crash Hoare logic into concurrent crash Hoare
logic, to allow for reasoning about concurrent
operations even in the face of crashes, and sec-
ond, to take first steps at proving the logic sound
and provide some simple example code demon-
strating that the logic is also useful. Ultimately,
after having proven the logic sound, we intend
to use the concurrent crash Hoare logic to build
a fully concurrent file system.

In the remainder of this paper we first discuss
related work (Section 2), then introduce the lan-
guage and the small-step operational semantics
we use as a basis (Section 3). In Section 4 we
describe the program logic. Then in Section 5
we discuss our implementation, example, and an
evaluation of the usefulness of the logic. Finally
we discuss future work (Section 6) and in Sec-
tion 7 conclude.

2 Related Work

2.1 Separation logic

Separation logic [14] introduced an intuitive
way to reason locally about programs that up-
date heap values. The program heap is a map-
ping from addresses to values. A judgement on
the heap takes the form h � P . The judgement
holds if h satisfies the assertion P . An exam-
ple assertion is 10 7→ 20, which asserts that ad-
dress 10 contains (maps to) 20 (in other words,
h(10) = 20).

In the classical formulation, the assertion P is
only true if h is exactly the heap described by
P, and nothing more. (In the intuitionistic for-
mulation, satisfying P means h is a superset of
the heap described by P , as opposed to exactly
that heap. This is useful for reasoning about pro-
grams that have automatic garbage collection as
opposed to manual memory management.)

We have a binary separating conjunction op-
erator (∗) and a unit emp (which describes the

2

empty heap) with the following properties3:

h ∗ emp � P → h � P

h � P ∗R↔h1 � P ∧
h2 � R ∧
h = h1 ∪ h2 ∧
h1⊥h2

where h1⊥h2 is true if and only if h1 and h2 are
disjoint heaps.

Using the separating conjunction, we can cre-
ate a judgement of the form:

h � (10 7→ 20) ∗ (15 7→ 5)

This judgement holds if and only if h is exactly
the heap with two allocated addresses, 10 point-
ing to 20 and 15 pointing to 5.

Separation logic extends traditional Hoare
logic [8] with the frame rule:

{P}C {Q}
{P ∗R}C {Q ∗R}

Intuitively, if we think of C as a procedure call
that has P as its heap pre-condition and Q as
the resulting heap, then we can call C by “fram-
ing out” the rest of the heap (R) that C doesn’t
touch, and then framing it back in after the pro-
cedure call.

2.2 Concurrent Separation Logic

The ability to reason locally about the heap nat-
urally led to attempting to reason about shared
state in concurrent programs. This gave rise to
concurrent separation logic [13]. Given a binary
operator C1 || C2 that runs commands C1 and C2

in parallel, we have the rule:

{P}C1 {Q} {P ′}C2 {Q′}
{P ∗ P ′}C1 || C2 {Q ∗Q′}

3 Traditional separation logic also has a separating im-
plication operator (−∗), but our logic does not use it.

We can freely run C1 and C2 concurrently if
the heaps they use are disjoint, because they can-
not interact with one another. But this rule alone
cannot be used to model programs that commu-
nicate or share state.

The original concurrent separation logic had
an atomic with r when b do c control flow oper-
ator, and associated logic rule. This runs com-
mand c atomically (using an implicit lock as-
sociated with r), spinning until condition b be-
comes true. We do not use this model. Instead,
we model locks explicitly, as was done in Hobor
et al.’s work on formulating a concurrent sepa-
ration logic for C [9]. As such, we have rules for
both acquiring and releasing a lock. Loosely, the
rules look like:

{` 7→ R}getlock(`) {(` 7→ R) ∗R}

{(` 7→ R) ∗R}putlock(`) {` 7→ R}

Here, R represents an assertion (a “predicate
on the heap”). What exactly it means for a pred-
icate (something meant to be discussed only by
the logic) to live in the heap and be pointed
to is somewhat problematic. Our logic currently
avoids doing this by not allowing for dynamic
lock creation and deletion. But that issue aside,
intuitively, acquiring a lock allows us to access
new heap addresses referenced inR that the lock
was protecting.

For example, R might look like ∃x, 10 7→ x ∧
isEven(x). After acquiring the lock, we now
can read address 10. We do not know what x
is until we actually perform the read, but we do
know that it is even. (This is all the information
we will ever have when trying to prove some-
thing in the logic, since we cannot directly read
the address to get a concrete value in the logic.)

We can change x arbitrarily while we hold the
lock, but when we release the lock, we must
guarantee x is once again even. Otherwise we
do not meet the pre-condition of putlock, which
includes R.

3

2.3 Other Logics

In parallel with concurrent separation logic,
other methods arose to reason about concurrent
programs. For example, rely-guarantee [10] ex-
plicitly models interference (whereas concurrent
separation logic is premised on the assumption
that most programs rarely interfere). The Views
metaframework [6] is a general framework that
can be used to prove the soundness of various
compositional reasoning strategies for concur-
rent programs, and has been shown to general-
ize both rely-guarantee and concurrent separa-
tion logic.

Most similar to our own efforts, Ntzik et al.
extend the Views framework to allow for concur-
rent fault-tolerant resource reasoning [12]. They
split pre-conditions and post-conditions into sep-
arate volatile (memory-related) and durable
(disk-related) conditions, with separate, frame-
rulable crash invariants. They use their logic to
reason about ARIES [12], a write-ahead logging
recovery algorithm. However, their logic rules
differ from our own, aligning much more closely
with regular concurrent separation logic. Fur-
thermore, they do not demonstrate an actual im-
plementation of their logic or proofs in code. It
is not immediately clear to us how their rules re-
late to our own, and we are interested in looking
into the relationship further.

The Verified Software Toolchain [2] is an on-
going effort to allow for functional verification
of real C code in Coq that can be immediately
compiled by the CompCert [11] verified C com-
piler to machine code. While their separation
logic framework has been used to prove rela-
tively substantial programs written in C, their
fledgling concurrent separation logic does not
yet allow for reasoning about something as com-
plex as a file system. Our concurrent separation
logic does not need to concern itself with the full
semantics of the (supported subset of) the C lan-
guage, nor does it need to adhere to any pre-
existing semantics as VST must do with Com-
pCert. Nevertheless, we were able to reuse VST’s
underlying separation algebra machinery in the

implementation of our logic.
In extending a file system to allow for concur-

rency and buffered writes, we run into a funda-
mental issue with concurrent separation logic:
proving the absence of low-level races is rela-
tively easy, but reasoning about functional cor-
rectness becomes difficult. With multiple concur-
rent operations and updates being buffered, the
state of the file system before and after any one
operation is no longer readily expressible. Blom
et al. argue that this problem may be handled
with the use of traces [3], in a manner similar
to how distributed systems implemented using
the Verdi framework prove functional correct-
ness [16]. This is the approach that VST is fol-
lowing in the beginnings of their concurrent sep-
aration logic, and it is the one we take in our
specifications.

Crash Hoare logic [5] is an extension of Hoare
logic that, in addition to the regular pre- and
post-conditions, has an additional crash condi-
tion that must hold at every step of the execu-
tion. If a given procedure satisfies some crash
condition C, then in the event of a crash, we
are guaranteed that C accurately describes the
state of the world just before the crash. Crash
Hoare logic is used in the correctness proofs of
the FSCQ [5] file system.

2.4 Verified File Systems

FSCQ [5], written in the Coq proof assistant, is
the first file system proven to meet a specifica-
tion that includes crashes, using the aforemen-
tioned crash Hoare logic. The logic makes use of
separation logic to ensure that procedures mod-
ify only the intended data. Using the separat-
ing conjunction (∗), a specification for the write-
block call can be written along the lines of:

{(diskblock b 7→ ?) ∗ otherblocks}
writeblock(b, 10)

{(diskblock b 7→ 10) ∗ otherblocks}

In the above, the appearance of ∗ otherblocks
on both sides of the Hoare triple indicates that

4

the write does not touch the other blocks on
disk. Without separation logic, a write call could
theoretically be allowed to zero out all other
blocks on disk and just not mention that fact in
its Hoare triple.

Our work is directly inspired by FSCQ’s use of
crash Hoare logic, but there are three issues with
FSCQ that we aim to fix. First, it does not sup-
port full concurrency. Chajed [4] extends FSCQ
to allow for asynchronous reads: if a file system
call needs to read from disk, it issues the read
and restarts the entire call, allowing another file
system call to proceed while the first waits for
the disk read to complete. However, extending
FSCQ to fully concurrent file system calls seems
to require fundamental changes to its infrastruc-
ture.

Second, every write operation to disk re-
quires an explicit disk sync before returning4.
Writes are not buffered in memory, and the post-
condition of a write call would not be able to
state anything about the disk containing new
data without a sync.

Finally, related strictly to the logic (and not
a restriction on the actual implementation), the
specification does not seem to be able to make
full use of the power of separation logic. In
the specification for writeblock above, usu-
ally separation logic would allow for leaving out
∗ otherblocks from the pre- and post-conditions,
and it would be up to a caller to frame it out be-
fore making the call. Our logic aims to fix these
three concerns.

Other verified file systems suffer from simi-
lar deficiencies, especially with respect to con-
currency. Cogent [1] is a domain-specific lan-
guage that certifiably compiles to C, which can
be further compiled to machine code by Com-
pCert. Proofs in Cogent are at a higher level than
low-level C code, and thus the verification bur-
den is lowered. Cogent is used to prove (sub-
sets of) two Linux file systems, BilbyFS and ext2,
rewritten in the language. However, Cogent’s se-
mantics is sequential, and thus while it supports

4 In fact, it requires four separate syncs.

asynchronous I/O it does not handle concur-
rency.

Yggdrasil [15] is similarly a higher-level
toolkit for implementing file systems based on
crash refinement. It uses Z3 as its underlying
verifier, removing most of the proof burden from
the developer. Again, file systems implemented
using Yggdrasil are limited to single-threaded
code.

3 Language and Semantics

In order to support concurrency we need a
language where executions can be finely inter-
leaved, and a small-step semantics so that these
interleavings can be formally defined and rea-
soned about. In order to mechanize the logic
and proofs in Coq this means defining an ab-
stract syntax and a semantics, and then writing
our concurrent file system code in the abstract
syntax. (By comparison, in FSCQ, the only steps
involve updating the disk and everything in be-
tween is pure-functional Coq code.)

Our language CHIMP (Concurrent/Crash
Hoare IMP) is basic IMP extended with a
minimal set of features necessary for writing
nontrivial concurrent code:

• procedures and procedure calls/returns;

• a start operation to fork a new thread;

• local variables declared in procedures;

• load and store to access the heap;

• getlock and putlock to handle locks;

• and simple explicit types.

Local variables are private to the procedures
they appear in. Forking a new thread always in-
vokes a procedure with a new set of local vari-
ables.

Expressions are pure so we can have a big-step
semantics for evaluating them. This simplifies a
number of things greatly. Both the load and pro-
cedure call operations always assign the results

5

to a variable directly; they are commands and
not expressions.

Locks can be thought of as safe handles for
global shared objects that live in the heap; the
logic prevents accessing heap variables without
holding the locks that protect them. This is dis-
cussed in Section 4.

The disk, or in fact potentially several disks,
are treated as additional heaps and accessed
via the same load and store operations as in-
memory variables. Disk addresses can be pro-
tected by locks, but locks may not themselves
live on disks.

We do not currently have condition variables.
As seen in e.g. STM Haskell [7], condition vari-
ables are a performance optimization. (It might
be an interesting exercise to formulate a more
sophisticated abstract machine with condition
variables and an explicit concept of sleeping
threads, and prove a refinement.)

3.1 Semantics

As noted above eXpressions are pure (they can
only access local variables, which are not shared,
and are read-only) so the semantics for expres-
sion evaluation can be large-step: an expression
just evaluates to a value. (The supply of ex-
pressions we support is somewhat limited, be-
cause originally program values were arbitrary
Coq values and thus any Coq expression could
be trivially embedded.)

The rest of the language semantics are writ-
ten in four layers: one for ordinary com-
mands/statements (including those that access
the heap), one for the call and return stack, one
for threads (which is currently pass-through but
might not be in the future), and one for the com-
plete machine with threads executing in parallel.
Lock operations happen at the command level,
because (at least for semantic purposes) the lock
state, though separate from heap data, is rolled
in with the heap. This might or might not have
been a mistake. (The semantics of the lock oper-
ations have changed repeatedly to suit the needs
of the logic.) Starting a new thread is effectively

calling a procedure in a new thread context, so
it happens mostly at the stack level: a new stack
is created and this is then reflected up to the
machine level as a new thread. At the machine
level, the machine nondeterministically chooses
a thread to run and steps it once. Acquiring a
lock can only progress if the lock is available,
so threads waiting for locks cannot step. If the
system deadlocks, which the logic does not cur-
rently attempt to prevent, the machine will be-
come unable to step. (This can be construed as a
form of crash.)

3.2 Typing

We originally wanted to use arbitrary Coq values
as program values, for a wide range of reasons.
Doing that while not requiring a separate vari-
able environment for every type requires wrap-
ping up a Coq type and value of that type in-
side a value object; extracting these and using
the values requires proving to Coq that the type
wrapped up in a value is the type it ought to be.
This in turn requires a set of soundness proposi-
tions on the abstract syntax. These propositions
were not a type system in the usual sense, but
they were structurally equivalent to one. Later
on we gave up on using arbitrary Coq values;
the existing soundness propositions became very
similar ones implementing a simple type system.

The motivation for worrying about typing,
and, indeed, proving soundness of the typing in
terms of preservation and progress, was not typ-
ing per se (largely irrelevant to the project goals)
but using the types as a lever for debugging the
semantics. The soundness of the logic is of criti-
cal importance; the logic is sound only with re-
spect to the semantics; and the logic soundness
proofs are far more complicated and harder than
type system proofs. Problems with the semantics
that make the logic proofs just not work can be
detected and understood in the context of the
type system.

The experience of updating the typing proofs
as the abstract syntax and semantics have shifted

6

under the demands of the logic has been valu-
able in its own right, in a long-term sense.

4 Crash Concurrent Separation
Hoare Logic

4.1 Notation

Because our language is imperative, we are able
to take some inspiration from the Verified Soft-
ware Toolchain for the Hoare logic rules. On the
one hand, we are able to simplify, since we do
not have to support the broader C semantics that
VST does. On the other, we need to extend the
logic to support both concurrency and crash con-
ditions.

A Hoare judgement for a statement of our lan-
guage is a septuple of the form:

(Rc, Rr); (Lc, Lr) ` {{CP}} {P} s {Q} {{CQ}}

P and Q are the pre- and post-conditions,
respectively, of the statement s, as in tradi-
tional Hoare logic. CP and CQ, on the other
hand, are the crash pre-condition and crash post-
condition.

Note that these are the pre-form and post-
form of the crash condition (the condition that
must be true when crashing), and in particu-
lar the “crash post-condition” is not the post-
condition of crashing, or of crashing and recov-
ering. This terminology could be construed as
confusing.

The crash condition (which in FSCQ appears
as a single condition) is a statement about invari-
ants. Every step taken must preserve the crash
condition. In particular, the crash pre-condition
demands that every step taken in s preserves the
invariants in CP . The crash post-condition al-
lows s to demand that every step taken after s
completes abides by the invariants in CQ. These
are potentially separate (and different) because
s might do things that affect what crash invari-
ants must be considered.
(Lc, Lr) and (Rc, Rr) are described in the

“Lock rules” subsection (4.2) and and “Proce-

dure rules” subsection (4.5), respectively. We
will write these as just L and R except when di-
rectly discussing the individual components.

4.2 Lock rules

How can a statement take in an invariant that is
supposed to hold at every step of execution, and
ultimately require a different invariant after it ex-
ecutes? Without any additional infrastructure, it
makes sense that s can add further invariants
to CP , such that CQ is ultimately a superset of
CP . However, the logic can only scalably reason
about large programs if we can take invariants
away.

As described in regular concurrent separation
logic, acquiring a lock can pull a resource invari-
ant into the pre-condition of a statement, and re-
leasing a lock can pull a resource invariant out of
the post-condition. Analogously, we model lock
acquisition to pull a separate resource invariant
into the crash pre-condition and lock release to
pull it out of the crash post-condition.

We call the resource invariant pulled into the
regular pre- and post-conditions a weak invari-
ant. The invariant only needs to hold at the time
the lock is acquired and when it is released. In
between lock acquisition and release, the invari-
ant may be violated. We call the (possibly dif-
ferent) resource invariant pulled into the crash
pre- and post-conditions a strong invariant. The
invariant must be true at the time the lock is ac-
quired; it must be true at the time the lock is
released; and it must remain true at each step
of execution in between the acquisition and re-
lease.

In the Hoare septuple above, Lc is a map from
a lock to its associated strong invariant that is
pulled into and out of the crash pre-condition
and post-condition, and Lr is the traditional
map from a lock to its associated weak invari-
ant that is pulled into and out of the regular pre-
condition and post-condition. Given all this, the
rules for lock acquisition and release5 become

5 Notice that we avoid having to discuss the storage of

7

what is written in Figure 1.

4.3 Frame rules

What happens if we try to acquire two com-
pletely independent locks, `1 and `2, in se-
quence? Unfortunately, when we try to ac-
quire `2, we could have a non-empty crash
pre-condition arising from Lc(`1), and as such
would not meet the crash pre-condition of
getlock(`2).

We would like to use a frame rule to “frame
out” Lc(`1) from the crash pre- and post-
conditions before calling getlock(`2). Unfor-
tunately, it cannot be as general as the orig-
inal frame rule of separation logic: here, to
frame constraints out of the crash pre- and post-
conditions, we must also frame knowledge of
the constrained portions of the heap out of the
regular pre- and post-conditions. Otherwise, we
could frame out a strong invariant and retain
the ability to modify the heap in a way that vio-
lates the strong invariant. As such, the additional
frame rule carries some restrictions, as seen in
Figure 2.

Intuitively, if statement s does not rely in any
way whatsoever on lock ` in order to execute,
then we can completely frame everything related
to it out of existence (including the lock itself). s
cannot possibly violate constraint Lc(`), because
everything that the acquisition of ` pulled in has
been framed out.6

invariants in the heap. Instead, analogously to locks in C,
we just need to have a pointer to the lock in our heap in
order to acquire and release it.

6 Note that this implies a constraint on the possible dy-
namic crash conditions that we can support: a crash condi-
tion should only constrain the use of the resource that the
lock protects. It does not make sense for the acquisition of a
lock to insert a strong invariant about some global variable
not protected by that lock, since any thread is in danger of
breaking that invariant when not holding the lock. Further-
more, it is frustrating that we have to specify the mapping
of the lock in the crash conditions. This would appear to
imply that this must always be the mapping of the lock.
We could just indicate that there exists some mapping for
the lock, but that would still imply that the lock is always
allocated. This is fine in our current world where we do

A more granular rule is expected to remain
sound. A strong invariant cannot be violated as
long as the resource it constrains is removed
from the weak invariant. Then, as long as we
simultaneously frame the same referenced ad-
dresses and all constraints on those addresses
out of both the crash and regular conditions, we
do not need to frame everything related to the
lock out at once. With this, we can combine the
two frame rules into one, as seen in Figure 3.

There is one important thing that the weaker
(more granular) rule handles that the stronger
rule cannot. Consider an example of a lock `1
protecting a structure that contains another lock
`2 (for example, in a linked list hand-over-hand
lock coupling program). The crash pre-condition
of getlock(`2) requires everything related to
`1 to have been framed out. But the mapping
a2 7→ `2, which is a part of the statement’s pre-
condition, is itself a resource in the invariants
of `1! The weaker frame rule would allow for
removal of all other resources and constraints,
which still allows for acquisition of the lock.

We intend to switch to (a form of) the alter-
native frame rule, but we currently have im-
plemented the two separate frame rules. See
Section 6 for a discussion of why the frame
rule (and more fundamentally the shape of our
Hoare triple) might still change further, whereas
we expect (but have not yet proven) that our two
current frame rules are sound.

4.4 Rule of consequence

Ignoring separation logic and crash post-
conditions for a moment, if we currently have
crash pre-condition CP ′ = A ∧ B, under what
circumstances can we execute a statement swith
pre-condition CP? We can clearly do so if CP =
CP ′. What if CP = A? Then statement s does
not adhere to invariant B, and we cannot exe-
cute it. On the other hand, if CP = A ∧ B ∧ C,

not have dynamic memory or lock operations, but is an is-
sue once those are added into the language. See the future
work section for a discussion of our proposed solution to
this issue.

8

∀a,R; (Lc, Lr) ` {{a 7→ `}} {a 7→ `}getlock(`) {a 7→ ` ∗ Lr(`)} {{a 7→ ` ∗ Lc(`)}}

∀a,R; (Lc, Lr) ` {{a 7→ ` ∗ Lc(`)}} {a 7→ ` ∗ Lr(`)}putlock(`) {a 7→ `} {{emp}}

Figure 1: Rules for getlock and putlock

∀a,
R; (Lc, Lr) ` {{CP}} {P} s {Q} {{CQ}}

R; (Lc, Lr) ` {{CP ∗ Lc(`)}} {P ∗ a 7→ ` ∗ Lr(`)} s {Q ∗ a 7→ ` ∗ Lr(`)} {{CQ ∗ Lc(`)}}

Figure 2: Frame rule for strong invariants

then s adheres to a superset of the invariants
that we need, and we can proceed. In general,
we can execute s if CP → CP ′.

Now focusing on crash post-conditions, we
have crash post-condition CQ ′ = A ∧ B, and
statement s has crash post-condition CQ . If
CQ = A ∧ B ∧ C, then s requires that future
steps adhere to C, which we do not promise to
adhere to. On the other hand, if CQ = A, then
s requires that all future steps adhere only to A,
which is a subset of what we already intended
to adhere to after this step. In general, we can
execute s if CQ → CQ ′.

The full rule of consequence, combined with
that of traditional Hoare logic, is as shown in
Figure 4. Interestingly, the implications in the
crash rules are the converse of the implications
in the traditional rules!

In traditional Hoare logic, a Hoare triple can-
not be established for a sequence where the
second statement has a pre-condition of False.
(Unless the first statement was able to estab-
lish a post-condition of False.) Similarly, having
proven a Hoare triple with a post-condition of
False means we can sequence with a statement
that has any other pre-condition (and thus prove
anything), because we can use the rule of con-
sequence to change the post-condition to match
whatever pre-condition we like.

What does it mean for a statement’s crash
pre-condition to be True? By the rule of conse-

quence, it means we cannot establish a Hoare
septuple for a sequence to this statement (un-
less the current crash post-condition happens to
also be True). Similarly, a crash pre-condition of
True may be established for any statement, since
any statement’s more precise crash pre-condition
may imply True. Intuitively, a True crash pre-
condition releases the Hoare septuple’s state-
ment from adhering to any invariants; a Hoare
septuple with a True crash pre-condition does
not claim the statement adheres to any invari-
ant.

By similar reasoning, if a statement’s crash
pre-condition is False, then it supports all pos-
sible invariants. For example, an operation that
does not modify any state can have a crash pre-
condition of False.

If a statement’s crash pre-condition is emp,
then that asserts and requires that its heap is per-
manently empty. (The only way we could add
something to the heap is by acquiring a lock,
which would require having access to something
on the heap in the first place.) This could be use-
ful for specifying completely pure functions that
do not touch the heap.

On the other side of the septuple, what about
the crash post-condition (assuming we meet
the pre-conditions)? If a statement’s crash post-
condition is True, then we can sequence to a
statement with any crash pre-condition. Again,
True implies respect for no invariant, and so

9

R;L ` {{CP}} {P} s {Q} {{CQ}}
R;L ` {{CP ∗ CF}} {P ∗ F} s {Q ∗ F} {{CQ ∗ CF}} ∀a, (a 7→ ?) ∈ CF → (a 7→ ?) /∈ P

Figure 3: Alternative frame rule

CP → CP ′ P ′ → P R;L ` {{CP}} {P} s {Q} {{CQ}} Q→ Q′ CQ′ → CQ

R;L ` {{CP ′}} {P ′} s {Q′} {{CQ′}}

Figure 4: Rule of Consequence

if the statement ends without further require-
ments for respected invariants, we can just add
more invariants to get the invariant that the se-
quenced statement promises to respect.

On the other hand, if the statement’s crash
post-condition is False, we can never execute
another statement (unless the next statement’s
crash post-condition is also False).

Finally, if the statement’s crash post-condition
is emp, the heap must remain empty after the
statement returns. This is not strictly permanent,
though, since we could always have framed out
part of the heap prior to executing the state-
ment, and frame it back in after.

Interestingly, even applying the rule of conse-
quence seems to work in the opposite direction
for crash conditions. Take the rule for the skip
statement as an example:

R;L ` {{CP}} {P}skip {P} {{CP}}

If the current state of our judgement looks like:

R;L ` {{True}} {False}skip {Q} {{CQ}}

(which is a very possible state after applying the
Return Rule, described in the next subsection),
how can we use the skip rule to prove this judge-
ment? As described earlier, we can use a crash
pre-condition of True to reach any crash con-
dition, and a regular pre-condition of False to
reach any regular condition.

In this case, we can weaken our regular pre-
condtion from False to Q using the rule of conse-

quence. But to make the crash conditions match,
we go in the opposite direction. We use the rule
of consequence on the crash post-condition to
bring the state from CQ to True. Now we can
apply the skip rule with P = Q and CP = True,
and we are all set.

4.5 Procedure rules

In our language, a statement can call another
procedure and can return from within a proce-
dure. Ultimately, a procedure judgement is of
roughly the form:

L ` {{CP}} {P}proc(s, e) {Q} {{CQ}}

This is to say, a procedure with body s with takes
e as an argument must satisfy the specified pre-
and post-conditions given the (global) lock in-
variants. Notably missing is the return condition,
R, found in the statement judgements. In or-
der to prove the procedure judgement sound, we
just need to prove that statement s satisfies:

(CQ(e), Q(e));L ` {{CP(e)}} {P (e)} s {False} {{True}}

First, the procedure’s conditions are all param-
eterized by the input argument. Second, the pro-
cedure’s post-conditions are pulled into the re-
turn conditions of the body, the post-condition
is False, and the post crash-condition is True.
False and True enforce that the body must al-
ways have a return statement, which, as we will
see, is a rule that can satisfy those constraints

10

(after hitting a return, we should be able to triv-
ially prove the rest of the procedure, which is
often just “skip”).

The return rule takes the form:

Rc(e)→ CP P → Rr(e)

(Rc, Rr);L ` {{CP}} {P}return e {False} {{True}}

(Rc, Rr) came directly from the crash and reg-
ular post-conditions of the procedure. They were
already parameterized by the input argument,
and are now further parameterized by the re-
turn value (such that the input argument and
the return value can be related in the pre- and
post-conditions for the procedure). If the current
crash condition implies the procedure’s crash
post-condition and the current regular condition
implies the procedure’s post-condition (again,
the crash condition is the reverse of the regular
condition), then the judgement is sound.

If the body of the procedure is proven sound
according to the procedure’s pre- and post-
conditions, then in proving the correctness of
any other procedure that calls the proven proce-
dure, assuming that the current pre-conditions
match those of the proven procedure with the
input argument passed in, we can simply drop
in the procedure’s post-conditions, parameter-
ized with both the input argument and the re-
turn value.

4.6 Crash-preserving rules

Ultimately, the only statement of our language
whose corresponding Hoare rule needs to be
checked against the current crash condition is
“store”. In our model, the disk is represented as
a parallel version of the heap that can ultimately
hold arbitrary values. A modern disk’s internal
write-back cache can be represented, for exam-
ple, by storing lists at each disk address, where
the head of the list gives the most recent value
written to disk, and the tail represents poten-
tial values that could appear on disk following a
crash if the disk is not explicitly synced. The list
can be trimmed to the single head element on a

disk-level sync. (This could also be used to han-
dle the operating system buffer cache, but that
is more appropriately modeled explicitly.)

On a store, in addition to the regular concur-
rent separation logic rules requiring that the ad-
dress is currently mapped in our accessible heap,
we just need to be sure that the new value being
stored at the heap address does not violate any
strong invariants associated with that heap ad-
dress in our current crash condition.

4.7 Soundness

We would like to demonstrate that our logic
accurately describes the properties of programs
under the semantics we have given. At a high
level, soundness may be stated as: if we were
able to prove a Hoare septuple about a program,
then if the program is executed under the se-
mantics, it will preserve the stated lock invari-
ants, adhere to the stated crash pre-condition,
and establish the stated normal post-condition
given that the initial state of the heap and lo-
cal variables satisfies the pre-condition. Note
that the crash post-condition is not implicated
in this high-level description of soundness: we
do not check explicitly that requiring adherence
to the crash post-condition that was proven in
a Hoare septuple for some statement s on the
part of the crash pre-conditions of statements
sequenced onto s suffices for continued mainte-
nance of the lock invariants of the Hoare septu-
ple demonstrated for s. This is because showing
that proving a Hoare septuple is enough to guar-
antee a statement’s adherence to the stated lock
invariants means that the logic is already prop-
erly using the crash post-condition in the infer-
ence rule for sequencing to account for which
statements may or may not be sequenced.

As of this writing, we are able to state a par-
tial soundness condition which guarantees that
a heap that contains only a finite list of locks
adheres to the lock invariants for each of these
locks. Intuitively, this is not an onerous restric-
tion: a program certainly should only ever have
a finite list of locks. This is also not a reversion to

11

the pre-declared finite list of locks maintained by
traditional concurrent separation logic, because
these locks may still inhabit the heap, and the
logic might account for growing and shrinking
the list of extant locks when lock allocation and
destruction are added to the language and logic.
The soundness statement is partial because the
logic currently underconstrains the heap, such
that it is possible that an enumeration of the
heaplets pointed to by each lock does not ter-
minate. Future work may lift this restriction by
moving the finite lock list stipulation from the
partial soundness statement into the logic.

Proof of soundness for traditional concur-
rent separation logic proceeds by strengthen-
ing the high-level violation-freeness soundness
statement into an invariant which is demon-
strated to be preserved by the execution seman-
tics. We expect that our proof of soundness will
proceed in similar manner. We expect the result-
ing soundness invariant to be as follows:

We will say that a heap is good with respect
to this Hoare septuple and a state of the local
variables if it meets the following criteria:

1. it adheres to both the crash and normal pre-
conditions of the Hoare septuple (given the
state of the local variables as a parameter);

2. it contains a finite number of locks, which
may be given by a list;

3. it adheres to the lock invariants of all the
unheld locks in this list.

Suppose a statement s satisfies a Hoare septu-
ple. Suppose that we then run s some number
of steps starting from a good heap state h (and
concomitant local variables ρ), reaching a new
state s′, h′, ρ′. Then we stipulate that there exist
new crash and normal pre-conditions such that
a Hoare septuple may be proven for s′. The new
heap state h′ should be good with respect to ρ′.
The new crash pre-condition should additionally
constrain the heap state to adhere to the lock in-
variants of the held locks. (We do not have this
as an assumption of the original heap state be-
cause we should not be able to prove a Hoare

septuple where the preconditions already imply
a violation of the lock invariants.)

We have not yet completed a proof of this
soundness statement. However, the given ex-
pected form of the statement explains some fea-
tures of the logic. For instance, it explains the
converse behavior of the rule of consequence
for crashes. The stipulation that the crash pre-
condition CP should constrain the heap state
to adhere to the lock invariants of held locks
may be written as: ¬(CP =⇒ ¬LC); that is,
we cannot derive a violation of LC given that
CP holds. If CP =⇒ CP ′ then CP ′ will also
meet this stipulation! Similarly, it indicates that
the normal pre-condition should not be strength-
ened using the rule of consequence to the point
that it can prove ¬CP . (Adherence of the nor-
mal pre-condition to the conditions set by the
crash pre-condition is given as a condition on
the heap P ∧ CP , but under the rule of in-
ference “material implication,” we can see that
P ∧ CP corresponds to ¬(P =⇒ ¬CP), simi-
lar to the form of “crash pre-condition adherence
to lock invariants” stated above.) Since the as-
sumptions and conclusions made about the heap
in the soundness execution invariant both con-
strain the heap to obey P ∧ CP , we expect that
P and CP must share a heap footprint. This ex-
plains the form of the more granular frame rule
suggested, which by ensuring that the same ad-
dress is framed out of both the normal and crash
pre-conditions would make certain that the foot-
prints of the crash and normal pre-conditions are
kept in sync.

5 Implementation

Our language, semantics, and logic have been
formalized in the Coq proof assistant. There is
also a type system for the language, as discussed
above.

As of this writing we have partial proofs of
the soundness of the type system (which serves
mostly to validate the semantics), and a proof
outline for the soundness of the logic with re-

12

spect to the semantics, as described above.
We have used CCHL to (mostly) verify a sim-

ple example of a lock protecting a counter. The
lock’s strong invariant requires that the counter
is always even (whenever we store into the
counter, this property is verified). The lock’s
weak invariant requires that the counter is ex-
actly 4 (only on lock release is this property re-
verified). The program acquires the lock, reads
in the counter’s current value, adds two to that
value and stores it back into the counter (thus
respecting the strong invariant but violating the
weak invariant), subtracts two from the new
value and stores it back into the counter (again
respecting the strong invariant and restoring
the weak invariant), and then releases the lock
(which succeeds, since the weak invariant holds
again).

Proving this simple example correct was sur-
prisingly nontrivial. First, the logic had to be ad-
justed several times, not to fix bugs, but rather
to try to write the rules in such a way that made
it easy for Coq to handle. Several rules create
existential variables because of the possibility of
a program variable getting overwritten, and so
the example was rewritten in single static as-
signment (SSA) form to avoid the existentials.
Constructing the correct frame rules is a miser-
able process when the the pre-condition contains
a growing number of assertions (Props) at each
step.

Even with the bit of pre-existing machin-
ery that using VST separation algebra provides,
much more automation (in the form of Ltac) is
necessary before using CCHL will be tolerable.
That said, seeing as how VST has managed to
construct impressive tactics that make proving C
programs relatively painless, we believe that this
should be possible.

6 Future Work

The final goal is to use our concurrent crash
Hoare logic to prove functional correctness and
crash safety of a concurrent file system. But first,

we still need to fully prove the logic sound with
respect to our semantics of our imperative lan-
guage.

That said, our language and logic must be ex-
tended in multiple ways to more fully model a
concurrent file system. First, we need a permis-
sion model to allow for multiple readers of a
heap address. Otherwise key file system objects
that are shared among many or all threads (like
vnodes) cannot be handled properly.

Additionally, our language does not currently
include any dynamic heap allocation, including
malloc, free, lock creation, and lock deletion.
These are necessary to be able to correctly model
operations such as file system mount and un-
mount. A fundamental issue is that, traditionally,
dynamic locks introduce the issue of “predicates
on the heap” mentioned earlier. Once locks are
dynamic and predicates are placed on the heap,
we lose the power to reason about what global
invariants a program must abide by, and as such
can no longer reason about a consistent state for
recovery to act upon.

We have toyed with the idea that a solution to
this problem is to give each lock an explicit type,
and all locks of a given type must share the same
resource invariant, parameterized by the address
of the resource that the lock is protecting. In
fact, this is how we have currently implemented
the map from a lock to its invariant, and it has
worked well in our static-lock language. For ex-
ample, all vnode locks would share the same in-
variant, as applied to the individual vnode they
protect. This seems like a reasonable proposition
from a programming standpoint. In this case,
we no longer have predicates on the heap, and
the (Lc, Lr) mapping to the left of �, parameter-
ized by both lock type and address, once again
contains all possible strong invariants. Here, the
strong invariants associated with each lock type
would constitute the global invariants to which
the overall program adheres.

As mentioned earlier, there is an alterna-
tive frame rule we have not yet implemented
that combines the two frame rules we currently

13

have. A related issue is that any resource pulled
into the pre-condition must also be pulled into
the crash pre-condition, though the actual con-
straints (weak vs. strong) can differ between the
two. Once dynamic memory is implemented, it
seems to make even less sense for something like
∃(x : vnode), 10 7→ x to appear in a strong invari-
ant, since 10 can be deallocated and reallocated.

Our proposed solution to this problem is to
combine the crash conditions into the regular
conditions and maintain only a set of addresses,
each of which would be tagged directly with
both the weak and strong invariants by which
it must abide (according to the lock type that
protects the address). The strong invariant must
be respected whenever we store to that address,
and the weak invariant must be respected when-
ever we attempt to release the lock protecting
that address. Now, we have an even simpler
frame rule that can frame anything out of the
current state, since framing out an address auto-
matically frames out both the strong and weak
invariants associated with it.

An additional set of complications, that per-
tain mostly to the language and not the logic,
is that in order to have abstract compound ob-
jects like vnodes, we need to extend the type
system of our language with at least record types
and maybe other things. Going back to a model
where we can use arbitrary Coq values as pro-
gram values would eliminate this requirement
(and was one of the primary motivations for
wanting to do that), but in the long run we
would like to be able to extract the file sys-
tem written in our language, compile it to C (or
something of the sort) and run it outside of Coq;
that requires not depending directly on Coq in-
ternal phenomena.

7 Conclusions

We have introduced concurrent crash Hoare
logic to modularly reason about system correct-
ness in the presence of both concurrency and
crashes. We still have a long way to go be-

fore we can use it to prove a file system cor-
rect, including developing sufficient tactic sup-
port and proving the logic’s soundness. Nev-
ertheless, our current results are promising. If
and when proven sound, CCHL stands as the
first verified logic for reasoning about the crash-
correctness of concurrent programs.

References

[1] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,
L. O’Connor, J. Beeren, Y. Nagashima, J. Lim,
T. Sewell, et al. Cogent: Verifying high-assurance file
system implementations. In ACM SIGPLAN Notices,
volume 51, pages 175–188. ACM, 2016.

[2] A. W. Appel, R. Dockins, L. Beringer, A. Hobor,
J. Dodds, S. Blazy, X. Leroy, and G. Stewart. Pro-
gram logics for certified compilers. Cambridge Univer-
sity Press, 2014.

[3] S. Blom, M. Huisman, and M. Zaharieva-Stojanovski.
History-based verification of functional behaviour of
concurrent programs. In Software Engineering and
Formal Methods, pages 84–98. Springer, 2015.

[4] T. Chajed. Verifying an I/O-Concurrent File System.
PhD thesis, Massachusetts Institute of Technology,
2017.

[5] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using crash hoare logic
for certifying the fscq file system. In Proceedings of
the 25th Symposium on Operating Systems Principles,
pages 18–37. ACM, 2015.

[6] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkin-
son, and H. Yang. Views: compositional reasoning for
concurrent programs. In ACM SIGPLAN Notices, vol-
ume 48, pages 287–300. ACM, 2013.

[7] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In Proceedings of
the 10th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming (PPoPP ’05), pages
48–60, 2005.

[8] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–
580, 1969.

[9] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle
semantics for concurrent separation logic (extended
version). Technical report, Tech. report, Princeton
University, 2008.

[10] C. B. Jones. Development methods for computer pro-
grams including a notion of interference. Oxford Uni-
versity Computing Laboratory, 1981.

14

[11] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[12] G. Ntzik, P. da Rocha Pinto, and P. Gardner. Fault-
tolerant resource reasoning. In Asian Symposium
on Programming Languages and Systems, pages 169–
188. Springer, 2015.

[13] P. W. Ohearn. Resources, concurrency, and local rea-
soning. Theoretical computer science, 375(1-3):271–
307, 2007.

[14] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Logic in Computer Science,
2002. Proceedings. 17th Annual IEEE Symposium on,
pages 55–74. IEEE, 2002.

[15] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and
X. Wang. Push-button verification of file systems via
crash refinement. In Proceedings of OSDI16: 12th
USENIX Symposium on Operating Systems Design and
Implementation, page 1, 2016.

[16] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi: a
framework for implementing and formally verifying
distributed systems. In ACM SIGPLAN Notices, vol-
ume 50, pages 357–368. ACM, 2015.

[17] J. Yang, C. Sar, and D. Engler. Explode: a lightweight,
general system for finding serious storage system er-
rors. In Proceedings of the 7th symposium on Oper-
ating systems design and implementation, pages 131–
146. USENIX Association, 2006.

15

