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Abstract
Techniques from language-based security, such as se-
curity type systems, often provide protection against
high-level adversaries but cannot guarantee security
against low-level attackers, such as those that can inject
code or inspect memory. We model in Coq a security-
typed calculus that includes an abstract model of en-
claves, and show that it can provide meaningful se-
curity guarantees, even in the face of low-level at-
tackers. We also model a translation scheme from an
enclave-agnostic calculus to an enclave-aware calcu-
lus and show that the scheme ensures that enclaves are
correctly placed, so that a translation of a well-typed
program in the enclave-agnostic calculus results in a
well-typed program in the enclave-aware calculus.1

1. Introduction
Programs that are well-typed under a security-type sys-
tem provably enforce security properties against high-
level attackers, such as ensuring that the program does
not leak sensitive information through either program-
mer error or malicious inputs provided by an adversar-
ial user [11]. However, these guarantees often do not
hold in the presence of low-level attackers like those
that can arbitrarily inject code or inspect memory. We
formalize in Coq a security-type system that can pro-
vide meaningful security guarantees in the face of these
type of attackers by using an abstract model of en-
claves, a hardware mechanism for isolating code and
data.

Our formalization is heavily based on the work of
Gollamudi and Chong [6], who propose a security-
typed enclave-aware calculus (IMPE) and prove that it
is secure against purely passive attackers who observe
program execution and in certain cases, attackers who
1 Our code can be found at https://github.com/aaronbembenek/

verified-auto-enclave.

can modify both enclave and non-enclave code. IMPE
provides security against such low-level attackers by
placing sensitive code and data in enclave memory.
This models Intel SGX-style enclaves [2], which pro-
vide strong hardware-enforced isolation, to the extent
that not even privileged code such as the operating sys-
tem can inspect or modify memory or execution within
an enclave. We model a simplified version of IMPE
(SIMPE) in Coq and provide a machine-checkable
proof that a well-typed program in SIMPE is secure
against both passive and active (code-modifying) at-
tacker models.

Because manual placement of enclaves is potentially
tedious and unintuitive for programmers, Gollamudi
and Chong also propose a constraint-based translation
scheme from IMPS, a calculus that is not enclave-
aware, to IMPE. They prove that any translation that
meets the constraints of this scheme will, given a well-
typed IMPS program, produce a well-typed IMPE pro-
gram that enforces the security policies of the source
program. Since IMPE programs are secure against low-
level attackers, this translation scheme enables pro-
grammers to write programs with low-level security
guarantees without being burdened by details of low-
level hardware mechanisms. We model this translation
scheme in Coq and verify that the constraints are in
fact sufficient for ensuring that a translation will pro-
duce a well-typed IMPE program given a well-typed
IMPS program.

To summarize, we make the following contributions:

• Coq models of the security-typed enclave-aware
calculus (IMPE) from Gollamudi and Chong and
SIMPE, a simplified variant of IMPE (Section 2);

• a Coq proof that a well-typed program in SIMPE
is secure in both a passive and an active (code-
modifying) attacker model (Section 3);
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• a discussion of our experience translating pen-and-
paper proof techniques common in the program-
ming language literature to a machine-checkable en-
vironment (Sections 4); and

• Coq models of the security-typed calculus without
enclaves (IMPS) and the translation scheme from
IMPS to IMPE proposed by Gollamudi and Chong,
as well as a Coq proof that the translation scheme
preserves well-typedness (Section 5).

2. Enclave-Aware Calculus Models
We present an enclave-aware calculus, IMPE, based on
the calculus introduced by Gollamundi and Chong [6]
and SIMPE, a simplified version of IMPE for which we
verify security properties. Both calculi model impor-
tant features of enclaves and support information secu-
rity policies. We first describe IMPE and then explain
how SIMPE simplifies the IMPE model.

The IMPE model can be broken down into three
components: IMPE security policies, IMPE syntax and
semantics, and the typing judgments that define a well-
typed IMPE program.

2.1 Security Policies
Security policies in IMPE support a set of security
levels L = {L,H,⊤}. Level L corresponds to low-
security information that anyone, including an attacker,
is allowed to learn. Security level H is used for high-
security, privileged information that an attacker should
not be able to learn. Finally, security level ⊤ is used to
label information that no one, privileged or otherwise,
is allowed to learn.

A security policy is either a security level policy ℓ
where ℓ ∈ L or an erasure policy ℓ1 ↗cnd ℓ2 where
ℓ1, ℓ2 ∈ L . A security level policy represents a static
policy where information is always at a particular secu-
rity level, while an erasure policy indicates that the se-
curity level of information will change after a condition
cnd is met. For example, the erasure policy H ↗done ⊤
means that information is privileged until condition
done is set, at which point it must not be anywhere in
the system.

2.2 Syntax and Semantics
IMPE supports standard imperative language constructs
such as conditional statements, while loops, command
sequences, variable assignments, memory updates, and

Inductive mode : Type :=
| None : mode

| Encl : enclave → mode.

Inductive exp : Type :=
| Enat : nat → exp

| Evar : var → exp

| Ebinop : exp → exp → (nat → nat → nat) → exp

| Eloc : location → exp

| Ederef : exp → exp

| Eisunset : condition → exp

| Elambda : mode → com → exp

with com : Type :=
| Cskip : com

| Cassign : var → exp → com

| Cdeclassify : var → exp → com

| Cupdate : exp → exp → com

| Coutput : exp → sec_level → com

| Ccall : exp → com

| Cset : condition → com

| Cenclave : enclave → com → com

| Ckill : enclave → com

| Cseq : list com → com

| Cif : exp → com → com → com

| Cwhile : exp → com → com.

Inductive val : Type :=
| Vlambda : mode → com → val

| Vnat : nat → val

| Vloc : location → val.

Definition mem : location → val.
Definition register : variable → val.

Figure 1: IMPE syntax.

function calls. Figure 1 shows the inductive types exp

and com for IMPE expressions and commands.
All observable effects of IMPE are produced using

the output command, which outputs to either the L or
H security channel. Furthermore, the only input to an
IMPE program is the initial memory, so all of a pro-
gram’s sensitive information is contained in its initial
memory.

IMPE adds support for two security features: es-
cape hatches and erasure policies. Intuitively, an es-
cape hatch is a computation over high-security mem-
ory whose result can be output to a low-security chan-
nel. IMPE allows for escape hatches by providing
a declassify command. Erasure policies are imple-
mented using IMPE conditions and condition com-
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mands. The isunset(cnd) expression and set(cnd)

command are used to read and write to conditions.
To model enclaves, IMPE adds the enclave(i,c)

command, the kill(i) command, and provides execu-
tion modes. The enclave(i,c) command executes the
command c inside of enclave i. This corresponds to an
enclave enter instruction provided by hardware which
causes the processor to execute the code in an en-
clave [2]. The only way to enter enclave i is through the
enclave(i,c) command. The kill(i) command kills
enclave i, and the code and data in a killed enclave can
never be accessed.

A mode is used to tag memory locations with the en-
clave to which they belong, if any. A mode can either
be an enclave Encl i or None. A mode-specifying func-
tion δ : location → mode maps memory locations to
the enclave (if any) to which they belong. Function ex-
pressions (Elambda) are parametrized by modes, which
represents the mode of memory in which the function
resides. Entering an enclave through the enclave(i,c)

command changes the execution mode to Encl i. The
IMPE semantics model isolation properties of enclaves
by enforcing that any memory locations belonging to
an enclave are only readable or writable while execut-
ing in that particular enclave mode.

The semantics for IMPE are defined using a large-
step operational semantics. The evaluation judgment
takes an expression or command configuration and pro-
duces a final configuration. An IMPE command config-
uration specifies the command, register state, memory,
and set of killed enclaves. An IMPE expression config-
uration is the same as a command configuration, but
contains an expression instead of a command. A fi-
nal configuration indicates the register state, memory,
and set of killed enclaves after the command has fin-
ished executing. It also includes a trace containing the
observable outputs produced during execution, namely
those values produced by output commands.

Figure 2 gives the definitions for IMPE configura-
tions and semantic judgments. The semantic judgment
is parameterized by a mode of execution, which indi-
cates which enclave, if any, the command is executing
in. The judgment is also parameterized by the global
function δ , which is fixed at the beginning of the pro-
gram’s execution. These parameters are used in the se-
mantics to ensure that code executing in non-enclave
mode None cannot dereference some memory location

Definition exp_config :=
exp * register * mem * set enclave

Definition com_config :=
com * register * mem * set enclave

Definition final_config :=
register * mem * set enclave

Definition trace := list outputs

Parameter δ : location → mode.
Inductive exp_step : mode → exp_config →

value → Prop

Inductive com_step : mode → com_config →
final_config → trace → Prop

Figure 2: IMPE semantic judgments.

loc which is in an enclave (that is, δ(loc) = Encl i for
some i).

IMPE’s semantic judgment for expressions is simi-
lar to that for commands. Instead of producing a final
configuration, the expression evaluates to a value. Eval-
uating an expression does not modify any registers or
memory, kill enclaves, or produce any observable out-
put.

All IMPE programs begin execution in mode None,
with an initial register state reg_init that maps all
variables to the value 0.

2.3 Type System
Every IMPE expression has a given security-type σp,
which includes both the basic type σ and a security
policy p. The variable environment context Γ and the
location environment context Σ track the types of val-
ues in registers and at memory locations, respectively.

Γ is updated with the appropriate types when regis-
ter variables are assigned values in the program. Σ is
fixed at the beginning of the program’s execution: ev-
ery location is assigned a fixed security-type, and any
value at location loc must have the type Σ(loc). Nei-
ther Γ nor Σ can ever map to a type with security level
⊤. Because Σ never changes, we do not include it as an
argument of the typing judgment.

Figure 3 shows the inductive types for expression
and command typing judgments.

The typing judgment com_wt takes as an argument a
set of conditions that are unset when the command com

is executed. This is necessary to determine the current
security level of each location, since a location may
have a erasure security policy.
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Inductive impe_type := Tnat | Tlambda | Tloc

Inductive exp_wt : var_context → exp →
impe_type → Prop

Inductive com_wt : mode → policy → var_context →
set condition → com →
var_context → Prop

Figure 3: IMPE expression and command typing judgments

exp_wt Γ e σp →
com_wt md pcb Γ unsetCnds c Γ′ →
pcb ≥ p ∧ pcb ≥ pc →
com_wt md pc Γ unsetCnds (Cwhile e c) Γ′.

Figure 4: The typing judgment for a Cwhile e c command
that prevents leaks through implicit flows.

if (*password == *guess) output 1 to Low

else output 0 to Low

Figure 5: A program with implicit flows that is not well-typed
when Σ(password) = T natH and Σ(guess) = T natH .

The IMPE type system is designed to provide secu-
rity guarantees about any well-typed IMPE program.
First, no high-security values can be directly exposed
to a low-security channel. Furthermore, information
about high-security values cannot be leaked through
implicit flows. The type system tracks implicit flows
with a program counter security level. All commands
are typed with a given program counter pc, and the type
system ensures that the command cannot output values
to a channel with a security level lower than pc. Any
branch of a conditional command (Cwhile or Cif) must
be well-typed with a program counter pcb that is at least
as secure as the program counter of the conditional
command. In addition, pcb must be at a higher secu-
rity level than the expression that decides the branch of
the conditional: if the expression evaluates to a value
typed with security level p, p must be less than pcb.
Figure 4 shows how the typing judgment for a Cwhile

command ensures that the program counter pcb of the
command inside the conditional is at least as secure as
both p and pc.

Figure 5 shows an example of a program that is
not well-typed because the type system prevents im-
plicit flows. Suppose that Σ(password) = T natH and
Σ(guess)= T natH . The expression *password == *guess

decides the branch of the conditional. This expression

evaluates to a value typed with security level H because
the computation is performed over locations with secu-
rity level H. The output commands performed by each
branch are therefore typed with a program counter H,
and are prevented from outputting to the low channel
by the type system.

The type system also adds enclave-specific guaran-
tees: any high security values must be stored in enclave
memory; enclave memory cannot be accessed by non-
enclave code; and no enclave can be accessed after it
has been killed. These guarantees ensure that an at-
tacker who cannot access enclave memory cannot ac-
cess any high-security values.

Finally, the type system enforces that all escape
hatches compute using only values from memory lo-
cations that are immutable (read-only). Equivalently,
no escape hatch can access mutable memory or reg-
ister values. This ensures that the information used to
compute the escape hatch is contained only the initial
memory, regardless of where the program is in its exe-
cution.

Because expressions do not output values, and change
neither the variable context nor kill set, the typing
judgment for expressions is much simpler and is not
parametrized by a program counter, variable context,
or set of unset conditions.

2.4 SIMPE: Simplified IMPE
SIMPE is a simplified model of IMPE for which we
verify security properties. SIMPE makes the following
simplifications:

1. SIMPE does not support erasure security policies.
As a result, SIMPE also has no notion of conditions,
which are used for erasure policies in IMPE. Fur-
thermore, there is no notion of level ⊤ in SIMPE
because ⊤ is only meaningful in the context of era-
sure policies.

2. SIMPE assumes that all enclaves are always alive,
whereas IMPE has a kill command for killing an
enclave during execution.

3. SIMPE adds the restriction that the initial memory
minit has no locations in it, and that no program can
update memory to contain a location. This elimi-
nates the possibility of nested pointers.

(1) and (2) allow us to simplify IMPE configurations
by removing kill sets, and to simplify the IMPE typing
judgment by removing the set of unset conditions.

4 2017/5/7



3. SIMPE Noninterference Security
We prove any well-typed SIMPE program to be secure
under two attacker models: (1) a passive attacker that
observes the program’s execution and (2) an active at-
tacker that can modify non-enclave code. Both attack-
ers observe the program’s entire execution only on the
low output channel L.

An attacker’s knowledge is intuitively defined as
the locations in memory for which the attacker knows
something about the value there. Thus, if an attacker
has more knowledge, she more precisely knows the
contents of the initial memory.

An attacker’s knowledge derives from the entropy
set of an attacker’s knowledge, which is the set of
memories that the attacker believes could generate the
same output that she observed. The fewer memories the
attacker believes are possible (the lower her entropy),
the more precise her knowledge.

A program is secure if an attacker knows at most
about the contents of the initial memory at locations
that (1) have a low security policy, or (2) are used
to compute escape hatches. Equivalently, a program
is secure if the attacker’s entropy set contains at least
every memory that:

(1) contains the same values as the initial memory at
locations with a low security policy, and

(2) contains values in locations such that all escape
hatches in the program evaluate to the same value
as when evaluated on the initial memory.

3.1 Overview of Security Verification Strategy
Our goal is to prove Theorem 1 (presented in Sec-
tion 3.7), which states that if a SIMPE program is well-
typed, then the SIMPE program is secure under the
passive and active attacker models. Our proof follows
the proof technique of Pottier and Simonet [10], which
Gollamudi and Chong use in their pen-and-paper secu-
rity proof. The Pottier and Simonet technique aids in
reasoning about noninterference and sensitive informa-
tion flows in a program because it turns reasoning about
two executions into reasoning about one.

At a high level, the strategy simultaneously executes
a well-typed SIMPE program on two different initial
memories using a new calculus SIMPE2, which we
describe in the next section. The first memory, mle f t ,
is the initial memory upon which the attacker observes
the SIMPE program execution. The second memory

Inductive val2 : Type :=
| VSingle : val → val2

| VPair : val → val → val2

Definition mem2 := location → val2

Definition reg2 := variable → val2

Definition trace2 (t1 t2: trace) := merge(t1, t2)

Definition exp_config2 := exp * reg2 * mem2

Definition com_config2 := com * reg2 * mem2

Definition final_config2 := reg2 * mem2

Inductive exp_step2 : mode → exp_config2 →
value → Prop

Inductive com_step2 : mode → com_config2 →
final_config2 → trace2 →
Prop

Figure 6: SIMPE2 syntax definitions and large-step judg-
ment.

mright is any memory that must be in the attacker’s
entropy set in order for the program to be secure.

By tracking certain invariants of the SIMPE2 exe-
cution, we prove that the execution of any well-typed
SIMPE program on mle f t produces the same observ-
able output as the program’s execution on mright . This
ensures that the attacker must believe memory mright
is a possible initial memory, so the SIMPE program is
secure by definition.

3.2 SIMPE2

We model a new calculus, SIMPE2, which executes
the same SIMPE command on two different memories
mle f t and mright simultaneously, where mle f t and mright
are the memories described above. SIMPE2 tracks two
sets of SIMPE configurations in the form of pairs of
SIMPE traces, registers, and memories. SIMPE2 sup-
ports pairs of values (VPairs) as a value type for when
the two executions evaluate to different values.

For clarity, we refer to the register, memory, and
trace of the first execution as rle f t , mle f t , and tle f t ,
and the register and memory of the second execution
as rright , mright , and tright . We merge rle f t and rright to
get a reg2, and can project a reg2 value to get back
the values of rle f t and rright (and similarly for memory
and traces). SIMPE2 semantic judgments are simple
extensions of SIMPE semantics. Figure 6 shows the
large-step judgment and definitions of SIMPE2 syntax.

We include inference rules that allow SIMPE2 to
model how a pair of SIMPE executions may perform
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Definition command_secure (c: com) : Prop :=
let mem_init2 = merge(mleft, mright) in

com_step2 None (c, reg_init2, mem_init2)
(r′, m′) t2

→ (∀ loc, Σ(loc) = σL → mleft(loc) = mright(loc))
→ (∀ e ∈ EscapeHatches(c),

exp_step md (e, r, mleft) v ↔
exp_step md (e, r, mright) v)

→ observations_low_channel (project t2 left) =
observations_low_channel (project t2 right).

Figure 7: Secure program definition using SIMPE2.

dividing executions. A dividing execution is when the
two SIMPE executions modeled by SIMPE2 execute
different branches of a conditional, or different function
calls. This occurs when the expression e in a (while e

do c), (if e then c1 else c2), or call(e) command
evaluates to a VPair. Figure 10 in the Appendix shows
an example of our call-div large-step judgment.

The SIMPE2 typing judgments are the same as
SIMPE typing judgments.

With SIMPE2, we can state the definition of a se-
cure program (Figure 7), where mle f t and mright are the
memories described in Section 3.1.

3.3 SIMPE2 Adequacy
We first prove the adequacy of SIMPE2: SIMPE2 is
both sound and complete. This allows us to extend our
reasoning about the pairs of execution traces and values
produced by a SIMPE2 execution to execution traces
and values produced by two SIMPE executions.

LEMMA 1. (Soundness)

com_step2 md (c, r, m) (r′, m′) t →
com_step md (c, project r left, project m left)

(project r′ left, project m′ left)
(project t left) ∧

com_step md (c, project r right, project m right)
(project r′ right, project m′ right)
(project t right)

Soundness ensures that any SIMPE2 large-step exe-
cution corresponds to two individual SIMPE large-step
executions. The proof of soundness follows by straight-
forward induction on the SIMPE2 large-step derivation.

LEMMA 2. (Completeness)

com_step md (c, rleft, mleft)
(rleft′, mleft′) tleft →

com_step md (c, rright, mright)

config2_wt : mode → policy → var_context →
com_config2 → var_context → Prop :=
com_wt md pc Γ c Γ′

∧ (∀ x, r(x) = VPair v1 v2 ∧ Γ(x) = σsl
→ sl = H ∧ md ̸= None)

∧ (∀ loc, m(loc) = VPair v1 v2 ∧ Σ(loc) = σsl
→ sl = H ∧ δ (loc) ̸= None).

finalconfig2_wt : mode → policy →
var_context → final_config2 → Prop.

Figure 8: Typing judgments for SIMPE2 configurations and
final configurations.

(rright′, mright’) tright →
com_step2 md

(c, merge(rleft, rright), merge(mleft, mright))
(merge(rleft′, rright′), merge(mleft′, mright′))
merge(tleft′, tright′).

Completeness ensures that any two SIMPE large-
step executions can be represented as a single SIMPE2

large-step execution by merging configurations to-
gether. The proof of completeness follows by induc-
tion on one of the SIMPE large-step derivations, and
inversion on the other large-step derivation.

3.4 SIMPE2 Well-Typed Configuration Invariants
We need to show that SIMPE2 configurations always
maintain certain invariants in order to make claims
about how and when observable differences between
the two SIMPE registers and memories tracked by an
SIMPE2 execution occur. We use a new configuration
typing judgment config2_wt to capture these invari-
ants; the definition is shown in Figure 8. A configu-
ration is well-typed (config2_wt) when:

(a) The command in the configuration c is well-typed.

(b) If rle f t and rright contain different values for the
same variable, then that variable is typed with a
high security policy and the current mode of exe-
cution is in an enclave.

(c) If mle f t and mright contain different values at the
same location, then that location is typed with a
high security policy and the memory location be-
longs to an enclave.

A final configuration is well-typed if invariants (b)
and (c) hold. The signature for the corresponding judg-
ment is shown in Figure 8.
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Intuitively, invariants (b) and (c) ensure that all val-
ues that differ between rle f t and rle f t , and mle f t and
mright are typed as high-security values and accessed
only in an enclave. This will allow us to prove that an
attacker who cannot modify enclave code cannot alter
the code in any way to cause SIMPE2 to produce a pair
of traces with different values.

3.5 Configuration Type Preservation
We prove two lemmas about configuration type preser-
vation. Given a well-typed initial configuration, Lemma 3
asserts that the final configuration is well-typed, and
Lemma 4 asserts that intermediate configurations of
the execution are well-typed. Lemma 4 also ensures
that intermediate configurations are executed with a
program counter that has security at least as high as the
initial configuration.

LEMMA 3. (Final Configuration Invariant Preservation)

config2_wt md pc Γ cconfig2 Γ′ →
com_step2 md cconfig2 finalcconfig2 t2 →
finalconfig2_wt md pc Γ finalcconfig2.

LEMMA 4. (Intermediate Configuration Invariant Preser-
vation)

config2_wt md pc Γ cconfig2 Γ′ →
com_step2 md cconfig2 finalcconfig2 t2 →
intermediate_config (cconfig2im) (cconfig2) →
com_step2 md (cconfig2im) (finalcconfig2im) (t2im) →
∃ pcim, Γim, Γ′

im,
config2_wt md pcim Γim cconfig2im Γ′

im ∧ pcim ≥ pc.

The proof of both Lemma 3 and Lemma 4 proceeds
by induction on the large-step semantics (com_step2).
Adequacy of SIMPE2 is necessary to extend typing
judgments from SIMPE to SIMPE2 and assert state-
ments about a well-typed command executing in the
SIMPE2 calculus.

The key observation used to prove these two preser-
vation lemmas is Lemma 5, which states that if an ex-
pression e evaluates to a VPair, e is typed with high
security and executes in an enclave.

LEMMA 5. (Expression Pair Invariants)

exp_step2 md (e, r, m) (VPair v1 v2) →
val_wt Γ e σsl →
sl = H ∧ md ̸= None.

Proving this helper lemma requires that we extend
expression types to value types. To do so, we prove

the additional lemma of value type preservation, where
val_wt is defined similarly to exp_wt.

LEMMA 6. (Value Type Preservation)

exp_step2 md (e, r, m) v ∧ exp_wt Γ e σsl →
val_wt Γ v σsl .

Lemma 5 allows us to verify that an assignment of a
VPair value to a register, or an update of a memory lo-
cation with a VPair value, only occurs when the value
has a security level H, and that the update or assign-
ment happens in an enclave. We consider two cases:

• e in update(loc,e) or in assign(x,e) evaluates to
a VPair. Lemma 5 ensures that the value put at
location loc or assigned to x is high-security, and
the update/assignment occurs in an enclave.

• e in (while e do c), (if e then c1 else c2), or
call(e) command evaluates to a VPair. Lemma 5
ensures that the type of e is high security. As de-
scribed in Section 2.3, the type system ensures that
the subcommands must all be executed with security
at least as high as that of e and in the same mode as
e. Thus any assignment or update performed by the
subcommand must assign or update in enclave mode
with values of high security.

The next step is to prove that only assignments and up-
dates introduce VPair values into registers or memory.
The only other way that a register or memory location
can be modified is via the declassify(x,e) command,
which assigns x the result of evaluating escape hatch e.
We prove that, by definition, an escape hatch can never
evaluate to a VPair, and therefore a declassify com-
mand cannot introduce a VPair into a register.

Because registers and memories gain VPair values
only through an assignment or an update, Lemma 5
allows us to prove that invariants (b) and (c) (from
Section 3.4) hold throughout the execution of any well-
typed configuration. The type system guarantees that,
throughout a command’s execution, invariant (a) holds.

3.6 Observational Equivalence
Using the two lemmas about invariant preservation, we
prove observational equivalence. Observational equiv-
alence states that a well-typed SIMPE program pro-
duces equivalent output traces on the low channel when
executing on mle f t and mright , where mle f t is the initial
memory upon which the attacker observes the SIMPE
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program execution, and mright is any memory that must
be in the attacker’s entropy set.

LEMMA 7. (Observational Equivalence)

config2_wt md pc Γ cconfig2 Γ′ →
com_step2 md cconfig2 final_config2 t2 →
observations_low_channel (project_trace t2 left) =
observations_low_channel (project_trace t right).

The proof of observational equivalence proceeds by
induction on the large-step semantics (com_step2).

The base case is the output(e, sl) command, which
produces the only observable effects of the program’s
execution. If the program never outputs a VPair to the
low channel, then the observable effects of the program
executing on mle f t are equivalent to the observable ef-
fects of the program executing on mright . The preserva-
tion lemmas state that throughout execution, any VPair

in a register or memory location must be high-security
and accessible only when in an enclave. Because e is
well-typed (which follows from config2_wt), we know
that if e evaluates to a VPair, e has a high-security type
and sl ̸= L. Otherwise, the value output to sl is not
a VPair, and the attacker observes either no value if
sl = H or the same value.

The other cases of interest are those in which an ex-
pression e causes a dividing execution. From Lemma 5,
we know e must be typed with high-security. This im-
plies that the conditional branch commands, or the
called function command, must be well-typed with a
high-security program counter. Lemma 8 asserts that
a well-typed command with a high-security program
counter cannot output any values to a low-security
channel. This allows us to prove that when the execu-
tion of SIMPE2 diverges on mle f t compared to mright ,
the execution produces no observable differences.

LEMMA 8. (Secure program counter execution produces no
observable output)

com_wt md pc Γ c Γ′ ∧ pc = H →
com_step2 md (c, r, m) (r’, m’) t2 →
observations_low_channel t2 = [].

3.7 Noninterference Security
From observational equivalence, our final security the-
orem follows: a well-typed SIMPE program is secure
in the presence of both a passive attacker who either
simply observes the program’s execution, and an active
attacker who can modify non-enclave code.

THEOREM 1. (Well-typed Programs are Secure)

com_wt None L Γ c Γ′ → command_secure c.

If c is well-typed, then the configuration (c,reg_init2,

mem_init2), where reg_init2 is a pair of registers ini-
tialized to all 0 values, and mem_init2 = merge(mleft,

mright) is well-typed:

config2_wt None L Γ (c, reg_init2, mem_init2) Γ′

Lemma 7 asserts that the execution on mle f t produces
the same observable output as the execution on mright .
We therefore conclude that mright is in the attacker’s
entropy set. Thus, a well-typed SIMPE command is
secure for a passive attacker.

We next extend our reasoning to the active attacker
model, in which the attacker can modify non-enclave
code. We need to show that an active attacker’s edited
program cannot produce different observable outputs
when it executes on mle f t than when it executes on
mright . An active attacker can read, modify, and out-
put any non-enclave memory without regard for the se-
curity policy on the memory location, or the security
policy on the value at that memory location. An active
attacker can also output any register’s value when not
executing code in an enclave. Our proof of config2_wt
preservation ensures if execution on mle f t ever contains
a value in a register or in memory that differs from that
of the execution on mright , then the execution is taking
place in an enclave. This ensures that an active attacker
cannot output any register or memory value that would
be different in an execution on mle f t from an execu-
tion on mright , because an active attacker cannot access
memory in an enclave, nor modify enclave code.

4. Security Verification Experience
When specifying the IMPE and SIMPE calculi, we
make slight modifications to Gollamudi and Chong’s
original IMPE model to aid verification. These modi-
fications follow a common theme of making implicit
assumptions explicit.

We make explicit that the location context Σ is con-
stant through execution. We introduce Σ as a global pa-
rameter to the model, rather than threading the context
through the program’s typing judgment.2 By explicitly
specifying that Σ does not change, we are able to elimi-
nate concepts from the original model, such as the secu-
2 Gollamudi and Chong have a single typing context for both vari-
ables and locations. We separate this context into two contexts, Γ
and Σ, to better model that the location context is fixed and the
variable context changes during execution.
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rity specification (which maps memory locations to se-
curity policies) and to simplify proofs. For example, we
do not need to assume that Σ and this security specifica-
tion are consistent at every step. In addition, we do not
need to prove the preservation of well-typed location
contexts (which states that all locations at high security
belong in an enclave); we assume that Σ is well-typed
before the execution begins, and therefore it remains
well-typed through the execution.

We also instrument the command execution to pro-
duce ghost output events in the trace whenever an up-
date to a memory location, or assignment to a register,
has occurred, and make explicit any updates or assign-
ments performed during execution. This allows us to
determine exactly when a register or memory location
changes value.

4.1 Simplifications from IMPE to SIMPE
We verify the security of a simplified version of the
IMPE calculus, which we call SIMPE. Removing era-
sure policies allows us to simplify reasoning about the
current security level of each value. Our proofs track
only a static security level for each value, which elim-
inates the need to thread the set of unset conditions
throughout the proofs. Removing erasure policies (and
security level ⊤) also allows us to ignore killed en-
claves: killed enclaves allow us to have values typed
with security ⊤, but do not provide other relevant se-
mantics for the sake of our security proof.

We also simplify the attacker model by requiring that
the attacker observe the program’s execution from the
start of execution; Gollamudi and Chong allow the at-
tacker to begin observing the execution after the pro-
gram has already executed partway. Our simplification
allows us to make statements about the entire trace pro-
duced by the program’s execution, rather than an arbi-
trary portion of the trace.

4.2 Axioms
Here we describe the parts of the SIMPE and SIMPE2

model that we specified using axioms, and our reasons
for doing so.

The first is the subsumption typing rule, which al-
lows a command well-typed at high security to be well-
typed at a lower security level. Because subsumption is
an axiom instead of a typing rule, each distinct com-
mand has only one typing judgment that makes it well-
typed, and an inversion on com_wt produces only one
possible constructor.

AXIOM 1. (Subsumption Typing Rule)

com_wt md pc1 Γ1 c Γ′
1 →

pc2 ≤ pc1 ∧ Γ2 ≤ Γ1 ∧ Γ′
1 ≤ Γ′

2 →
com_wt md pc2 Γ2 c Γ′

2.

We also include an axiom that there are no point-
ers in memory, which allows us to eliminate the pos-
sibility of nested pointers. This allows us to define a
well-typed escape hatch. One of the key properties of
an escape hatch is that all values in the escape hatch
derive from immutable locations. If the initial memory
contains nested pointers, a value in an immutable loca-
tion used by the escape hatch computation may point to
a mutable location, and cause the escape hatch to eval-
uate to different values at different points of the execu-
tion. Gollamudi and Chong assume the existence of a
AllLocImmutable(e) function, but do not clarify how to
compute the “locations in e.” To avoid checking for all
reachable locations in an escape hatch, which requires
recursing on nested location types, we specify that the
memory of an SIMPE program contains no pointers.

AXIOM 2. (No Pointers)

∀ loc, m(loc) ̸= Vloc loc′

Axioms 3 and 4 assert properties about the initial
program state. Axiom 3 ensures that all values in the
initial memory are well-typed, and that their types cor-
respond to the types fixed by the location context Σ.
We require this to make any assertion about the well-
typeness of values derived from a dereference of mem-
ory during execution. Gollamudi and Chong do not
state this guarantee about initial state, which we found
to be essential to proving any properties about well-
typed expressions and values.

AXIOM 3. (Initial Memory Well-Formed)

∀ loc, match minit l with

| Vlambda c ⇒ Σ(l) = Tlambdasl ∧
com_wt md pc Γm c Γp

| Vloc l ⇒ False

| Vnat n ⇒ Σ(l) = Tnatsl
end.

Axiom 4 connects all register and memory state pro-
duced during the program execution to the initial reg-
ister and memory state: all registers and memories can
be derived by executing some command starting from
the initial state. This allows us to make claims about
the execution’s history.

9 2017/5/7



AXIOM 4. (Connection to Initial State)

∀ reg, ∀ mem,
com_step None (c, reg_init, mem_init) (reg, mem) tr.

Axiom 5 states that if a register ever contains either
a function or location value, then there must have been
a well-typed expression Elambda or Eloc that evaluated
to that value (and this expression must have occurred
within an assignment command). Similarly, if a func-
tion is in memory, then the function already was con-
tained in the initial memory, or there was a well-typed
expression that evaluated to that value.

AXIOM 5. (Presence of Values in Registers and Memory)

reg(x) = Vlambda c ∧ Γ(x) = Tlambdasl
↔ exp_type md′ Γ (Elambda c) Tlambdasl′

reg(x) = Vloc loc ∧ Γ(x) = Tlocsl
↔ exp_type md′ Γ (Eloc loc) Tlocsl′ ∧ δ (l) = md’

mem(loc) = Vlambda c ∧ Γ(x) = Tlambdasl
↔ (exp_type md′ Γ (Elambda c) Tlambdasl′

∨ (mem_init(loc) = Vlambda c))

Axiom 5 follows from Axiom 4. We know that any
function or location value comes from one of three
sources: (1) an expression Elambda or Eloc, (2) another
register, or (3) a memory location. We know that the
initial registers start out with value 0, and the initial
memory is mem_init which is well-formed. In cases (2)
and (3), we can consider how the value was placed in
the register or memory location. Again, we have that
the value placed into the register or memory location
must have come from one of the same three sources.
Axiom 4 guarantees that eventually this reasoning will
terminate, because we will either reach the initial state
of the program or find that the value comes from a basic
expression Elambda or Eloc.

We present Axiom 5 as an axiom instead of a lemma
because the reasoning described above requires instru-
menting our semantic judgments to record the history
of the execution. For example, adding a counter to
com_step will allow easy backward reasoning (each
step in the execution increments the counter, and when
the counter is 0, the execution is in its initial state).
However, this requires reworking our entire model and
proof infrastructure.

The connection between register and memory state
at an arbitrary point in a command’s execution, and
the initial reg_init and mem_init state, is implicitly as-

sumed throughout the proof presented by Gollamudi
and Chong. We attribute our difficulty in proving Ax-
iom 5 to the fact that this assumption must be made
explicit in Coq, which we realized too late in the proof
process.

The same logic used to justify Axiom 5 justifies the
only axiom we make in modeling SIMPE2:

AXIOM 6. (Well-Formed VPairs)

v = VPair v1 v2 ↔
v1 ̸= v2 ∧
(( v1 = Vnat n1 ∧ v2 = Vnat n2) ∨
(v1 = Vlambda c1 ∧ v2 = Vlambda c2)).

This axiom claims that no pair is a pair of the same
value, and that pairs always contain values of the same
type. To prove this axiom, we need to step back through
the derivation to the initial state, and prove that only
well-formed pairs are produced by an SIMPE2 execu-
tion.

4.3 Evaluating the Pen-and-Paper Proof
During the verification process, we discovered a few in-
correctly stated assumptions in Gollamudi and Chong’s
pen-and-paper proof of IMPE security. Gollamudi and
Chong have conflicting specifications of the subtyping
relation between contexts (i.e., when Γ1 ≤ Γ2). We are
able to prove Lemma 3 using this definition of the sub-
typing relation:

∀ x, Γ1(x) = σsl ∧ Γ2(x) = σsl′ → sl ≤ sl′

Gollamudi and Chong require that the domains of Γ1
and Γ2 be equivalent, whereas we require only that the
domain of Γ2 be at least as large as that of Γ1. This
change is necessary to use the subsumption rule in the
proof of Lemma 3; it also appears that Gollamudi and
Chong use this relaxed definition in their presentation
of the proof their corresponding lemma.

Gollamudi and Chong also assume Lemma 5 in their
proofs of security against the passive attacker model,
whereas we provide an explicit proof of this lemma.

We also found several mistakes and typos in the pen-
and-paper proof. One of the more significant was an
incorrect statement of the while-div rule for SIMPE2.
Gollamudi and Chong state that a (while e do c) com-
mand is equivalent to executing either a skip command
or the command c. This does not allow a while com-
mand to execute c more than once. We discovered this
incorrect specification while attempting to prove the
adequacy of SIMPE2.
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Other errors included using incorrect variable names
in a judgment, and copy-paste errors from incorrectly
copying a very similar proof from one inductive case
to another. Given the number of inductive cases in each
proof, we found it rewarding to do the proof in Coq,
where simple errors are caught automatically. However,
as shown by our verification, the general intuition be-
hind the pen-and-paper proof was correct.

In general, we found that while it is sufficient for
a pen-and-paper proof to assert that a lemma holds
“by straightforward induction,” proving such lemmas
in Coq may require potentially hours of work. Further-
more, intuitive reasoning about simple concepts, such
as how assignments affect registers, are written in one
sentence on paper, but require hundreds of lines in Coq
to prove.

4.4 Evaluating the SIMPE2 Proof Technique
We also evaluate how the Pottier and Simonet tech-
nique for proving noninterference translates to a Coq
setting. Modeling SIMPE2 essentially amounts to copy-
pasting the SIMPE model with minor changes, but
is ultimately useful because we induct on a single
com_step2 instead of performing dual induction on two
com_steps.

The drawback of the SIMPE2 technique is that an
entirely new SIMPE2 must be created, and the same
adequacy and preservation lemmas proved, if SIMPE’s
typing judgments or semantics are even slightly modi-
fied. This technique does not lend itself well to modular
changes or extensions. Because our Coq proofs rely on
induction and inversions on semantic and typing judg-
ments, it would be difficult to design proofs that could
be efficiently reused for any new SIMPE2 model.

5. Automatic Enclave Placement
The placement of code and data into enclaves is a te-
dious process that can be effectively automated. We
model a constraint-based translation scheme developed
by Gollamudi and Chong. This scheme guarantees that
any translation that meets the scheme’s constraints will
produce a well-typed IMPE program given a well-typed
input program written in a security-typed, but enclave-
agnostic calculus IMPS. Since IMPE programs are se-
cure against certain low-level attackers, this means that
a programmer can write code in a relatively high-level
calculus and get low-level security guarantees.

Fundamentally, the constraints work by forcing the
translation to place sensitive code and data in enclaves.
What makes the scheme more interesting, and more in-
teresting to verify, is that it gives the translation flexi-
bility about how to manage the enclaves, both in terms
of how to distribute code and data between different
enclaves, and when to kill enclaves. For example, one
translation might place all code and data in a single en-
clave to reduce the performance cost incurred by en-
tering and exiting enclaves, while another translation
might minimize the size and lifespan of enclaves to re-
duce the possibility of an adversary accessing sensitive
information through a vulnerability in enclave code.

In the following subsections we discuss IMPS, the
translation scheme, and how we verified the correct-
ness of the scheme. For the purposes of presentation,
we simplify the model of IMPS, the translation scheme,
and IMPE in this discussion. In particular, we omit the
program counter security policy, the set of unset con-
ditions (used for enforcing erasure policies), and typ-
ing contexts from the judgments for the translation and
the two calculi, as they are irrelevant to what makes
the scheme interesting and clutter the notation. Deter-
mined readers can refer to our Coq implementation for
the full, unrefined model.

5.1 Modeling IMPS
The IMPS calculus is very similar to IMPE, except that
it has no notion of enclaves.3 As a result, it does not
have modes, kill sets, or enclave or kill commands.
The IMPS syntax is given in Figure 11. Unlike in IMPE,
a sequence of commands is not itself considered a com-
mand. Instead, it is considered a seq, a distinct syn-
tactic category. This guarantees the absence of nested
sequences of commands. Additionally, every “subcom-
mand” of an IMPS expression or command is a seq,
instead of an arbitrary command, and a top-level IMPS
program is also a seq. This syntactic structure is im-
portant because the translation rule for sequences of
commands determines the placement and destruction
of enclaves and thus drives the entire translation.

Typing judgments for IMPS expressions and com-
mands are modeled by the following inductive types:

exp_wt : exp → type → deriv → Prop

3 Where there is potential ambiguity, we distinguish between IMPS
and IMPE material in our pseudocode by treating the former as
coming from module S and the latter from module E (e.g., S.exp_wt
versus E.exp_wt).

11 2017/5/7



com_wt : com → deriv → Prop

The typing judgment seq_wt has the same signature as
com_wt. The judgments are effectively simplified ver-
sions of the IMPE typing judgments, except that we add
a new term of type deriv. This term captures informa-
tion about the derivation of the typing judgment that is
otherwise lost. For instance, consider the definition of
the IMPS typing judgment for the output command:

exp_wt e t drv →
com_wt (S. Coutput e chan) (Deriv t drv)

The Deriv t drv term represents that during the deriva-
tion of the typing judgment, the subexpression e had
type t and derivation drv, which in turn constrains the
hypotheses we get by inverting on the typing judgment.
Although this was not part of the model of Gollamudi
and Chong, we found that it was essential to explicitly
pass derivation information between typing judgments
and translation judgments to prove that the translation
scheme preserves well-typedness.

5.2 Modeling the translation scheme
The goal of the translation scheme is to ensure that
any translation that meets its constraints produces well-
typed (and therefore secure) IMPE code. Intuitively,
this means guaranteeing that if a translation satisfies the
constraints of the scheme, then it correctly places sen-
sitive code and memory in enclaves. The constraints for
the translation scheme are modeled via three mutually
inductive types: exp_trans, com_trans, and seq_trans.
An exp_trans judgment has the form

exp_trans e t drv md δ e′ t′

and indicates that the IMPS expression e with type t

and derivation drv translates to the IMPE expression
e’ with type t’. Additionally, the translation constrains
the mode (md) for the expression (which determines
whether the expression needs to run in a particular en-
clave) and the distribution of memory locations be-
tween normal memory and enclaves (δ ).

A command translation judgment in the form

com_trans c drv md δ K1 c′ K2

represents that IMPS command c with derivation drv

translates to IMPE command c′, where md and δ are
defined as in the translation judgment for expressions.
K1 is the set of killed enclaves before c′ and K2 is the set
of killed enclaves after c′.

Most of the constraints for translating expressions
and commands are straightforward. Consider, for in-
stance, the translation scheme judgment for the output

command:

exp_trans e t drv md δ e′ t′ ∧ ∼In md K →
com_trans (S. Coutput e chan) (Deriv t drv) md δ

K (E. Coutput e′ chan) K

This judgment (1) constrains e′ to be the translation of
e, (2) constrains the set of killed enclaves K before the
command E.Coutput e′ chan to not include the mode
md that the command will run under, and (3) constrains
the set of killed enclaves after the command to be the
same as the set before the command.

The heart of the translation scheme lies in the defini-
tion of seq_trans, which has a single constructor given
in Figure 9. The translation constraints take the form of
constraints between members of various lists: the list
of IMPS commands (scoms), a list of IMPE commands
(ecoms), a list of modes (mds), and three lists of kill sets
(K1, K2, and K3). For relevant i, the first premise of the
constructor makes the following requirements:

1. The ith member of scoms translates to the ith mem-
ber of ecoms, which runs in mode mdsi with initial
kill set K1i and finishes with kill set K2i.

2. K1i+1 is the union of K2i and K3i. Since K2i is the kill
set immediately after ecomsi finishes and K1i+1 is the
kill set immediately before ecomsi+1, this premise
allows the translation to insert kill commands be-
tween ecomsi and ecomsi+1 that destroy the enclaves
in K3i, a set which is underspecified (although sub-
ject to restrictions given in the following premises).

3. K2i and K3i are disjoint.

4. If the sequence runs in an enclave, then each sub-
command must run in the same enclave.

5. If two consecutive commands in ecoms run in the
same enclave, then no kill commands can be in-
serted between them.

The second premise of the constructor involves
process_seq, which is a function that consumes a list
of IMPE commands ecoms, an overall mode md, a list
of modes mds, and a list of kill sets K3s, and produces
a new sequence of commands ecoms′ in which enclave

and kill commands have been placed appropriately. A
key decision was to model this function as an inductive
type that also ranges over the extra parameters K1s, K2s,
and Ksout, which are all lists of kill sets. Ksout allows
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Inductive seq_trans := TRseq :(
∀ 0 ≤ i < length scoms,
com_trans scoms[i] drvs[i] mds[i] δ K1s[i]
ecoms[i] K2s[i] ∧

K1s[i + 1] = K2s[i] ∪ K3s[i] ∧
K2s[i] ∩ K3s[i] = /0 ∧
(md ̸= None → mds[i] = md) ∧
(mds[i] ̸= None ∧ mds[i] = mds[i+1] →
K3s[i] = /0)

)
→

process_seq ecoms md mds K1s K2s K3s ecoms′ Ksout →
seq_trans (S. Cseq scoms) (Derivseq drvs) md δ

(hd Ksout) (E. Cseq ecoms′) (last Ksout)

Figure 9: The unique constructor for the seq_trans type.

us to track the kill sets before and after each command
in ecoms′, and therefore more easily prove that each
command is each well-typed.

A proposition in the form

process_seq ecoms md mds K1s K2s K3s ecoms′ Ksout

is constructed in one of three ways (see Figure 13 in the
Appendix for the pseudocode):

1. The first constructor applies when every mode in
mds is the same as md and the kill sets in K3s are all
empty. This just “returns” the original sequence of
commands ecoms. This is the only constructor that
applies when md is not normal.

2. The second constructor applies when md is None and
the mode of the first command c of ecoms is also
None. It constructs the output sequence of commands
ecoms′ by sticking together c, kill commands that
kill the enclaves specified by the first member of
Ks3, and the result of recursing on the remaining
commands.

3. The third constructor applies when md is None and
the first m commands in ecoms need to run in some
particular enclave. It places these commands in the
appropriate enclave, performs the kills specified by
the mth member of Ks3, and then recurses on the
remaining commands.

The constructors also refer to a helper process_kill

(Figure 12 in the Appendix). If the judgment

process_kill K2 K3 kcoms Ksout

holds, then kcoms is a sequence of kill commands
destroying the enclaves in the kill set K3, and K2 is the
set of enclaves that are already killed. Once again, the

Ksout term is included to track the kill sets before and
after each kill command in sequence kcoms.

5.3 Translation Verification
The ultimate goal is to prove that every translation
that meets the constraints of the translation scheme
produces a well-typed IMPE program when given a
well-typed IMPS program:

THEOREM 2. (Translation Soundness)

S. seq_wt c drv →
seq_trans c drv md δ K1 c′ K2 →
E. com_wt md δ K1 c′ K2.

The proof precedes by mutual induction on the seq_trans,
com_trans, and exp_trans judgments. Most of the cases
are straightforward; we focus on the seq_trans case.

In this case, we need to prove that the command
E.Cseq ecoms′ is well-typed when the first member of
Ksout is the set of killed enclaves before E.Cseq ecoms′

runs and the last member of Ksout is the set of killed
enclaves after the command runs. Since ecoms′ and
Ksout are artifacts of the process_seq judgment, it is
helpful to frame this goal as a helper lemma specifically
about process_seq:

LEMMA 9. (Process Sequence is well-typed)

(∀ 0 ≤ i < length ecoms,
E. com_wt md δ K1s[i] ecoms[i] K2s[i]) →

... (* premises from seq_trans *) ...
process_seq ecoms md mds K1s K2s K3s ecoms′ Ksout →
E. com_wt md δ (hd Ksout) (E. Cseq ecoms′) (last Ksout).

The first premise corresponds to the induction hypoth-
esis generated during the seq_trans case of the proof
of Theorem 2 (for brevity we omit many premises that
come from the seq_trans constructor).

We use two lemmas to prove this helper:

LEMMA 10. (Process Kill is well-typed)

K2 ∩ K3 = /0 ∧ process_kill K2 K3 kcoms Ksout →
∀ 0 ≤ i < length kcoms,

E. com_wt md δ Ksout[i] kcoms[i] Ksout[i+1].

LEMMA 11. (Process Sequence is well-typed (2))

(∀ 0 ≤ i < length ecoms,
E. com_wt md δ K1s[i] ecoms[i] K2s[i]) →

... (* premises from seq_trans *) ...
process_seq ecoms md mds K1s K2s K3s ecoms′ Ksout →
∀ 0 ≤ i < length ecoms′,

E. com_wt md δ Ksout[i] ecoms′[i] Ksout[i+1].
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The Ksout term is key to both these lemma statements.
The claim we are making is that, in both the case of
process_kill and process_seq, the ith command in
the output sequence is well-typed when preceded by
the ith kill set of Ksout and followed by the (i+ 1)th
kill set of Ksout. While the definitions of process_seq

and process_kill do not require such a Ksout term to
specify the required functionality, we included it in the
judgments as a ghost variable to make the correctness
property easier to state and prove.

Proving Lemma 10 amounts to proving that a se-
quence of kill commands is well-typed, and is straight-
forward given the hypothesis that K2 and K3 are dis-
joint and the definition of process_kill. The proof for
Lemma 11 uses Lemma 10 as a helper lemma and
is substantially more involved. The proof proceeds by
induction on the process_seq judgment and involves
showing that an arbitrary command of the output se-
quence is well-typed in each of the three cases cor-
responding to the three constructors. Since the com-
mand might be one of the original commands, a new
enclave command that houses a subsequence of the
original commands, a new kill command, or the out-
put of the recursive call to process_seq on a suffix of
the input sequence of commands, there are many cases
to cover in the proof. Nonetheless, the proof is concep-
tually straightforward overall.

6. Related Work
6.1 Verification of enclave security
Moat [13] uses BoogiePL [4] to verify confidentiality
properties of applications using SGX enclaves. Moat
models a havocing adversary who is able to modify
and observe all non-enclave memory, similar to our ac-
tive attacker. The key theorem verified in their work
also shows that well-typed programs guarantee confi-
dentiality of enclave code and data, which is analo-
gous to our Theorem 1. Moat’s enclave model is spe-
cific to the Intel SGX and the x86 instruction set model,
while we use Gollamudi and Chong’s [6] more abstract
model. The key difference between our work and Moat
is that we extend our confidentiality guarantees to an
enclave-agnostic language through a verified transla-
tion. This means that programmers need not be aware
of the instruction-level details of enclaves to write se-
cure code.

Ferraiuolo et al. [5] use SecVerilog [15], a hardware
description language which verifies security properties

of hardware, to verify the implementation of a proces-
sor with TrustZone-like [1] enclave support. This work
is complementary to ours: we assume that memory en-
claves function according to our specification.

6.2 Verification of information flow properties
There is a large body of work on language-based ap-
proaches to information-flow control [11]. More recent
work has used machine-checked proofs both to ver-
ify information flow properties of existing systems and
to create new systems with verified information-flow
guarantees. Hedin and Sabelfield [7] prove information-
flow security for a core subset of JavaScript and formal-
ize part of their proof in Coq [8]. Schwarz et al. [12]
present a framework for automatically verifying non-
inference at the instruction level. Swamy et al. [14]
propose a new, security-typed language, FINE, and use
Z3 [3] to prove the soundness of the type system.

Like Moat [13], an important contribution of our
work is that we extend verified information-flow guar-
antees to a setting where infrastructure such as the op-
erating system or virtual machine monitor is untrusted.

7. Future Work
Future work includes computational type-checkers for
both IMPE and IMPS, and a proof that these computa-
tional implementations adhere to our specification and
therefore ensure the security properties proven. Future
work can also extend our security proof to the full
IMPE model rather than just our SIMPE calculus. Com-
bining a proof of IMPE type-soundness with the proof
for IMPS to IMPE translation will lead to a proof that
a well-typed IMPS program, translated to a well-typed
IMPE program, is secure.

Far-future work includes verifying a security-aware
compiler pass for CompCert [9] that automatically in-
serts enclaves with a given security policy. This will
require a significantly more complex model than our
model of simple calculi such as IMPS and IMPE. Com-
bining this with verification of enclave hardware such
as done by Ferraiuolo et al. [5] would provide end-to-
end security guarantees from a high-level language to
the hardware implementation.
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A. Additional Figures

Cstep2_call_div:
exp_step2 md (e, r, m)

(VPair (Vlambda cleft) (Vlambda cright)) →
com_step md

(cleft, project r left, project m left)
(rleft, mleft) tleft →

com_step md

(cright, project r right, project m right)
(rright, mright) tright →

com_step2 md (c, r, m)
(merge(rleft, rright), merge(mleft, mright))
(merge(tleft, tright))

Figure 10: The while-div call-step judgment.

Inductive exp : Type :=
| Enat : nat → exp

| Evar : var → exp

| Ebinop : exp → exp → (nat → nat → nat) → exp

| Eloc : location → exp

| Ederef : exp → exp

| Eisunset : condition → exp

| Elambda : seq → exp

with com : Type :=
| Cskip : com

| Cassign : var → exp → com

| Cdeclassify : var → exp → com

| Cupdate : exp → exp → com

| Coutput : exp → sec_level → com

| Ccall : exp → com

| Cset : condition → com

| Cif : exp → seq → seq → com

| Cwhile : exp → seq → com

with seq: Type :=
| Cseq : list com → seq.

Figure 11: The IMPS grammar.

Inductive process_kill :
set enclave → set enclave → list E.com →
list (set enclave) → Prop :=

| PKnil : forall K2,
process_kill K2 [] [] [K2]

| PKcons : forall K2 K K3 kcoms Ksout,
process_kill (K :: K2) K3 kcoms

(( K :: K2) :: Ksout) →
process_kill K2 (K :: K3) (E. Ckill K :: kcoms)

(K2 :: (K :: K2) :: Ksout).

Figure 12: The process_kill inductive type.

Inductive process_seq (ecoms: list E. com)
(md: E. mode) (mds: list E. mode)
(K1s K2s K3s: list (set enclave))
(ecoms′: list E. com) (Ksout: list (set enclave)) :=

| PSO0 :
Forall (fun mdi ⇒ mdi= md) mds →
Forall (fun K3 ⇒ K3 = []) K3s →
ecoms = ecoms′ →
Ksout = (hd Ks) :: K2s →
process_seq ecoms md mds K1s K2s K3s

ecoms′ Ksout
| PSO1:

md = None →
mds = None :: mds′ →
ecoms = c :: ecoms′′ →
K1s = K1 :: K1′ :: K1s′ →
K2s = K2 :: Ks2′ →
K3s = K3 :: Ks3′ →
process_kill K2 K3 kcoms pk_Ks →
process_seq ecoms′′ md mds′

(K1′ :: K1s′) Ks2′ Ks3′

ecoms′ (K1′ :: Ksout′) →
ecoms′ = c :: kcoms ++ ecoms′′ →
Ksout = K1 :: pk_Ks ++ Ksout′ →
process_seq ecoms md mds K1s K2s K3s

ecoms′ Ksout
| PSO2:

md = None →
mds = mds1 ++ mds2 →
Forall (fun mdi ⇒ mdi = Encl j) mds1 →
hd mds2 ̸= Encl j →
coms = coms1 ++ coms2 →
length coms1 = length mds1 →
K1s = K1 :: K1s′ ++ K1′ :: K1s′′ →
K2s = K2s′ ++ K2 :: K2s′′ →
K3s = K3s′ ++ K3 :: K3s′′ →
length (K1 :: K1s′) = length mds1 →
length (K2s′ ++ [K2]) = length mds1 →
length (K3s′ ++ [K3]) = length mds1 →
c = E. Cenclave j (E. Cseq coms1) →
process_kill K2 K3 kcoms pk_Ks →
process_seq coms2 md mds2 (K1′ :: K1s′′)

K2s′ K3s′ ecoms′′ (K1′ :: Ksout′) →
ecoms′ = c :: kcoms ++ ecoms′′ →
Ksout = K1 :: pk_Ks ++ Ksout′ →
process_seq ecoms md mds K1s K2s K3s

ecoms′ Ksout.

Figure 13: The process_seq inductive type.
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