
STO Verification

Hao Bai
Harvard University

Jingmei Hu
Harvard University

Xueyuan Michael Han
Harvard University

1 Introduction

Transactional memory is an appealing alternative
to lock-based synchronization mechanisms. It pro-
vides in-memory operations with transaction ab-
straction analogous to database systems. Despite
recent works on exploring different implementation
strategies of software transactional memory, little
attention has been paid to verify their correctness.
In this work, We aim to verify in Coq the correct-
ness of a particular software transactional memory
system, namely STO. While opacity is deemed as a
better candidate of correctness criterion for transac-
tional memory, for the purpose of this project, we
only verify that STO’s implementation guarantees
serializability, a weaker correctness criterion than
opacity. We prove that all execution traces gen-
erated by STO’s commit protocol are serializable.
That is, there is always an equivalent serial trace
whose execution result is the same as that of the
original trace. Currently, our problem is that our
Coq inductive types and definitions become increas-
ingly complex as we strictly follow STO’s commit
protocol. We are concerned that usch complexity
might indicate a bad design and thus leads to in-
tractable proofs later on. While we strive to prove
the serializability theorem, we might end up turn-
ing to simpler theorems (e.g., deadlock-free), if the
serializability proof cannot be constructed.

2 Approach

Our first step is to prove serializability of a low
level implementation of STO that concerns only one

memory location. We mandate, for ease of con-
structing proofs, that only two memory-related op-
erations are allowed on the location: reading and
writing a value. We propose an inductive type
action (Appendix A) that describes all possible
operations within a transaction. Since we assume
that many transactions are being executed simulta-
neously, with each one having its operations (possi-
bly) interleave with those in other transactions, we
define a trace to be a list of operations in all under-
going transactions. When one transaction executes
an operation, we append this operation, along with
the ID of the transaction, to this trace. An example
trace with two transactions would look like this

[(1,start txn);(1,read item 0);

(2,start txn);(2,read item 0);

(1, try commit txn);(1,validate read item True);

(1,seq point);(1,commit txn 0);(2,write item 4);

(2, try commit txn);(2, lock write item);

(2,validate read itemTrue);(2,complete write item 1);

(2,seq point);(2,commit txn 1)]

We call this kind of traces STO traces and use an
inductive type (Appendix B) to generate legal STO
traces. We will explain what constitutes a legal STO
trace by describing the inductive type sto trace in
detail in Section 2.1.

We also define a serial trace to be a trace that
groups all operations of a successfully committed
transaction together. For example, a serial trace of

STO Verification
the above example trace would be

[(1,start txn);(1,read item 0);

(1, try committxn);(1,validate read item True);

(1,seq point);(1,commit txn 0);(2,start txn);

(2,read item 0);(2,write item 4);

(2, try committxn);(2, lock write item);

(2,validate read item True);(2,complete write item 1);

(2,seq point);(2,commit txn 1)]

To prove the correctness of this transactional
memory setting (i.e., with only one memory loca-
tion), we need to prove that a STO trace composed
of multiple transactions is serializable. That is, we
must prove that

Theorem 1 ∀ traces t, if t is sto trace, then ∃ a
reordering of t, t ′, such that t ′ is a sto trace and a
serial trace, and that the output of both traces
(i.e., the final state of the machine) is identical.

In Coq, this capstone theorem can be stated as

f o r a l l t : s t o t r a c e , e x i s t s t ’ ,
i s s t o t r a c e t ’ −>
i s s e r i a l t r a c e t ’ −>
e q u a t e t t ’ .

2.1 Creating STO Traces

We will explain in this section each operation in
sto trace. Please refer to Appendix B for the cor-
responding Coq code.

empty step is the base case in our inductive type.
start txn step signifies the beginning of a trans-

action. We ensure that the tid associated with this
transaction is unique.

read item step is a read item operation. This
operation must follow a start txn action, another
read item action, or a write item action, of the
same transaction ID. To be able to read from the
memory location, we must also ensure that this lo-
cation is not locked by another transaction ready
to commit. read item action must also record the
version number of the memory location for later val-
idation purpose.

write item step is a write item operation. This
operation must follow a start txn action, another

read item action, or a write item action, of the
same transaction ID.

try commit txn step must follow either a
read item operation or a write item operation.
We consider only meaningful transactional memory
traces. Therefore, we consider it illegal to have a
transaction with no reads or writes.

lock write item step is a step before a transac-
tion is ready to commit; therefore, it must follow
try commit txn operation. A transaction is al-
lowed to lock the memory location only if it has
writes in it. In addition, it is only allowed to lock
the location if there is no lock already placed on that
location.

validate read item step must also follow
try commit txn operation. However, when
there are writes in a transaction, a transaction
must lock the memory location before validating
its reads. Therefore, this operation must follow
lock write item action if it exists in the transaction.
Validating reads involves checking the version
number associated with the memory location.

abort txn step occurs when the
validate read item action fails. If the trans-
action contains writes (i.e., it holds a lock on the
memory location), this step will also release the
lock so that other transactions can perform writes.
An aborted transaction is considered ‘dead’. That
is, the traditional roll-back can occur, but it will be
considered a new transaction by and of itself.

If a lock is successfully obtained (if necessary),
and if read validation also succeeds, then a com-
plete write item step operation will proceed to in-
crement the version number of the memory location
by one. Other transactions in the trace that read the
memory location with a different version number
(i.e., a smaller version number) will therefore fail
their validation.

Once writes are completed and reads are suc-
cessfully validated, commit txn step will proceed
to complete the transaction. However, before each
transaction commits, (in this case, there is only one
memory location affected by the commit of a trans-
action) we first record the sequence of the trans-
actions using seq point step operation so that
we can easily generate a correct serial trace cor-
responding to the STO trace. we will prove the
correctness as in our capstone theorem. We make

2

STO Verification
sure that seq point step is always followed by
the first commit txn action if there are multiple
commit txn actions (to commit multiple memory
locations) in a transaction.

3 Project Schedule and Division of Labor

Since it is crucial to make sure that our implementa-
tion is correct before proceeding to proofs, all team
members meet frequently to collaborate on writing
implementation code. However, once implementa-
tion is complete and all lemmas and theorems are
defined, each team member will take charge of prov-
ing a portion of the lemmas. Currently, we have ba-
sically finished a low-level implementation of STO
in Coq. Our next step is to prove that this low-level
implementation is correct (serializable). After that
we plan to work on either writing a high-level im-
plementation of STO and constructing a refinement
proof, or extending our current implementation to
allow transactions to access the entire memory. Ta-
ble 1 lists our proposed schedule for this work.

Date Task

End of April 15th One memory location implementation
End of April 22th One memory location proof
End of April 29th Refinement OR multi-memory location implementation
End of May 8th Refinement OR multi-memory locationn proof

Table 1: Project Schedule

4 Future Work

We have not taken data structures into considera-
tion when deciding whether it is necessary to abort
a transaction when possible conflicts arise. How-
ever, this is the essence of STO. STO improves the
efficiency of transactional memory by taking into
account the data structure located in the memory.
Hence, future work involves, for example, proving
the correctness of transactional memory that hosts
a specific data structure (e.g., red-black tree and
linked list). We believe one can reuse many of our
definitions, lemmas, and theorems to prove such
correctness. For instance, one only needs to slightly
modify the inductive type action to include oper-
ations such as checking whether aborting is needed
even when there is an invalid read.

5 Conclusion

A Inductive Type of action

I n d u c t i v e a c t i o n :=
| dummy : a c t i o n
| s t a r t t x n : a c t i o n
| r e a d i t e m : v e r s i o n −> a c t i o n
| w r i t e i t e m : v a l u e −> a c t i o n
| t r y c o m m i t t x n : a c t i o n
| l o c k w r i t e i t e m : a c t i o n
| v a l i d a t e r e a d i t e m : Prop −>

a c t i o n
| a b o r t t x n : a c t i o n
| c o m p l e t e w r i t e i t e m : v e r s i o n −>

a c t i o n
| commi t txn : v e r s i o n −> a c t i o n
| s e q p o i n t : a c t i o n .

B Inductive Type of sto trace

I n d u c t i v e s t o t r a c e : t r a c e −>
Prop :=

| e m p t y s t e p : s t o t r a c e []
| s t a r t t x n s t e p : f o r a l l t t i d ,

t r a c e t i d l a s t t i d t = dummy
−> s t o t r a c e t
−> s t o t r a c e ((t i d , s t a r t t x n) : :

t)
| r e a d i t e m s t e p : f o r a l l t t i d v a l

o l d v e r ,
t r a c e t i d l a s t t i d t = s t a r t t x n
\ / t r a c e t i d l a s t t i d t =

r e a d i t e m o l d v e r
\ / t r a c e t i d l a s t t i d t =

w r i t e i t e m v a l
−> c h e c k l o c k o r u n l o c k t
−> s t o t r a c e t
−> s t o t r a c e ((t i d , r e a d i t e m (

t r a c e c o m m i t l a s t t)) : : t)
| w r i t e i t e m s t e p : f o r a l l t t i d

o l d v a l v a l ver ,
t r a c e t i d l a s t t i d t = s t a r t t x n
\ / t r a c e t i d l a s t t i d t =

r e a d i t e m v e r
\ / t r a c e t i d l a s t t i d t =

w r i t e i t e m o l d v a l
−> s t o t r a c e t

3

STO Verification
−> s t o t r a c e ((t i d , w r i t e i t e m

v a l) : : t)
| t r y c o m m i t t x n s t e p : f o r a l l t

t i d v e r va l ,
t r a c e t i d l a s t t i d t = r e a d i t e m

v e r
\ / t r a c e t i d l a s t t i d t =

w r i t e i t e m v a l
−> s t o t r a c e t
−> s t o t r a c e ((t i d ,

t r y c o m m i t t x n) : : t)
| l o c k w r i t e i t e m s t e p : f o r a l l t

t i d ,
t r a c e t i d l a s t t i d t =

t r y c o m m i t t x n
/\ ˜ t r a c e n o w r i t e s t i d t
−> c h e c k l o c k o r u n l o c k t
−> s t o t r a c e t
−> s t o t r a c e ((t i d ,

l o c k w r i t e i t e m) : : t)
| v a l i d a t e r e a d i t e m s t e p : f o r a l l

t t i d ,
(t r a c e t i d l a s t t i d t =

t r y c o m m i t t x n /\
t r a c e n o w r i t e s t i d t)

\ / t r a c e t i d l a s t t i d t =
l o c k w r i t e i t e m

−> s t o t r a c e t
−> s t o t r a c e ((t i d ,

v a l i d a t e r e a d i t e m (
c h e c k v e r s i o n (
r e a d v e r s i o n s t i d t i d t) (
t r a c e c o m m i t l a s t t))) : : t)

| a b o r t t x n s t e p : f o r a l l t t i d ,
t r a c e t i d l a s t t i d t =

v a l i d a t e r e a d i t e m F a l s e
−> s t o t r a c e t
−> s t o t r a c e ((t i d ,

a b o r t t x n) : : t)
| c o m p l e t e w r i t e i t e m s t e p : f o r a l l

t t i d ,
t r a c e t i d l a s t t i d t =

v a l i d a t e r e a d i t e m True (∗
v a l i d r e a d ∗)

/\ ˜ t r a c e n o w r i t e s t i d t
−> s t o t r a c e t
−> s t o t r a c e ((t i d ,

c o m p l e t e w r i t e i t e m (S (

t r a c e c o m m i t l a s t t))) : : t)
| s e q p o i n t s t e p : f o r a l l t t i d ver

,
(t r a c e t i d l a s t t i d t =

v a l i d a t e r e a d i t e m True
/\ t r a c e n o w r i t e s t i d t)

\ / (t r a c e t i d l a s t t i d t =
c o m p l e t e w r i t e i t e m v e r

/\ ˜ t r a c e n o w r i t e s t i d t
)

−> t r a c e n o c o m m i t s t i d t
−> s t o t r a c e t
−> s t o t r a c e ((t i d , s e q p o i n t)

: : t)
| c o m m i t t x n s t e p : f o r a l l t t i d ,

t r a c e t i d l a s t t i d t = s e q p o i n t
−> s t o t r a c e t
−> s t o t r a c e ((t i d , commi t txn (

t r a c e c o m m i t c o m p l e t e l a s t t)
) : : t) .

4

	Introduction
	Approach
	Creating STO Traces

	Project Schedule and Division of Labor
	Future Work
	Conclusion
	Inductive Type of action
	Inductive Type of sto_trace

