
Verifying Reference Counting Implementations?

Michael Emmi1, Ranjit Jhala2, Eddie Kohler1, and Rupak Majumdar1

1 University of California, Los Angeles, {mje,kohler,rupak}@cs.ucla.edu
2 University of California, San Diego, jhala@cs.ucsd.edu

Abstract. Reference counting is a widely-used resource management idiom
which maintains a count of references to each resource by incrementing the count
upon an acquisition, and decrementing upon a release; resources whose counts
fall to zero may be recycled. We present an algorithm to verify the correctness of
reference counting with minimal user interaction. Our algorithm performs com-
positional verification through the combination of symbolic temporal case split-
ting and predicate abstraction-based reachability. Temporal case splitting reduces
the verification of an unbounded number of processes and resources to verifi-
cation of a finite number through the use of Skolem variables. The finite state
instances are discharged by symbolic model checking, with an auxiliary invariant
correlating reference counts with the number of held references. We have imple-
mented our algorithm in Referee, a reference counting analysis tool for C pro-
grams, and applied Referee to two real programs: the memory allocator of an OS
kernel and the file interface of the Yaffs file system. In both cases our algorithm
proves correct the use of reference counts in less than one minute.

1 Introduction

Reference counting is a widely-used resource management idiom where the references
to each resource unit (e.g., memory cell, file handle, device structure) are counted. The
programmer increments the count when acquiring a resource and decrements it when
releasing. A resource may be recycled when its reference count reaches zero.

Despite its ubiquity, reference counting is difficult to implement correctly. Ensuring
a resource is not accessed after its count reaches zero requires precisely reasoning about
shared heap objects in concurrent programs with a statically unknown number of shar-
ers. In the most benign case, errors in reference counting cause resource leaks: when the
last reference to an object is removed but the reference count is not decremented to zero.
More dangerous errors can allow unprivileged read or write access to critical regions of
memory that have been inappropriately reclaimed and recycled, possibly compromising
sensitive information.

We show how predicate-abstraction based software model checking can be extended
with compositional reasoning techniques to enable the static verification of the correct-
ness of reference counting implementations (i.e., that accessed objects have positive
counts). The problem is difficult as such programs are unbounded in several dimensions;
first, an unbounded number of objects may be dynamically allocated, second, each unit
may be accessed concurrently by an unbounded number of sharers, and hence, third,
? This research was sponsored in part by the NSF grants CCF-0546170 and CCF-0702743.

the reference count for each individual object may grow without bound. These compli-
cations prohibit the direct application of finite-state techniques such as model checking,
to verify reference counting. Furthermore, standard program analysis abstractions that
summarize an unbounded number of dynamic objects (e.g., clients, resources) are too
imprecise since they do not count the objects they summarize.

Our approach for verifying reference counting implementations follows the follow-
ing strategy. As a first step, we perform compositional reasoning to reduce the verifica-
tion problem to a number of finite-state verification problems whose combined validity
implies the original program’s [22]. One possible verification strategy is to tag each re-
source with a handle, and ensure that clients only access resources to which they have
handles. Correctness then follows separately from the correctness of handling each re-
source, and each handling process. This first step is called temporal case splitting: we
check validity for a particular tracked resource and a particular accessee in an environ-
ment that abstracts all other resources and accessors.

Temporal case splitting trades the original complex verification problem for an infi-
nite number of separate simpler verification obligations. However, using symmetry, we
observe that discharging the proof obligation for an arbitrary symbolically identified
resource, and an arbitrary symbolically identified client, implies discharging each of
the infinitely many obligations induced by case splitting. Thus, as a second step, we
use Skolem variables to name single, but arbitrary, resources and clients. The Skolem
variables induce a natural finite abstraction of the system which distinguishes only the
fixed resources bound to Skolem variables (and abstracts all other resources). Similarly,
instead of tracking every client, the abstraction tracks only the fixed clients bound to
Skolem variables, abstracting the effects of other clients. Skolemization enables strong
updates on the tracked resources: we can follow each increment or decrement to the
tracked resource precisely; all updates to the other resources are weak: their effects are
unknown.

Unfortunately, the strategies given so far are still insufficient; we must also deal
with unbounded reference count values. On the one hand, abstracting a counter’s incre-
ments and decrements by untracked clients results in a loss of the precise counter value,
and a proof is generally not possible. On the other hand, the abstract domain remains
infinite (with a different value for each counter value) if we track each of these writes
precisely. To solve this problem we observe that correctness follows from knowing a
unit’s count is positive if and only if it is referenced by some client. To prove this, as
a third step, we introduce a reference predicate, specifying the meaning of referencing
a unit, and automatically insert an auxiliary variable whose value, by construction (i.e.
instrumentation) equals the number of client mappings satisfying the reference pred-
icate. An auxiliary invariant enforces a positive valued auxiliary counter whenever a
client satisfies the reference predicate.

With these steps, we reduce proving an object’s real reference count positive to
checking that (1) the tracked client satisfies the reference predicate, and (2) the real ref-
erence count equals the auxiliary count. As (1) follows by precisely tracking the truth
value of the reference predicate for the tracked client, and (2) follows from reasoning
about the equality of program variables, the resulting obligation can be discharged using
well-established techniques: either through specially designed abstract domains [6] that

can prove linear relationships among variables, or, as we implement, through predicate
abstraction and counterexample-guided refinement [11, 5, 1, 13] based model checking.
The meta-argument used for the auxiliary invariant is manually proved sound outside
of the program analysis, and can be reused to verify any program that implements ref-
erence counting, once the reference predicate is specified. The meta-argument used for
the auxiliary invariant is manually proved sound outside of the program analysis, and
can be instantiated with different reference predicates to verify any program that imple-
ments reference counting. Moreover, the soundness of our approach is independent of
the choice of reference predicate: an invalid predicate yields a failed proof, since either
(1) or (2) will fail to hold.

In summary, our analysis combines four ingredients:

Temporal case splitting to reduce the (infinite state) verification goal over infinitely
many objects to infinitely many (finite state) subgoals over individual objects,

Skolemization to reduce infinitely many verification subgoals over different objects,
into a single verification goal over an arbitrary object,

Auxiliary state to provide a finite representation of unbounded execution history
i.e., the unbounded reference count for a given object, and

Model checking to discharge the finite state verification goals induced by the use of
temporal case splitting, skolemization and auxiliary state.

While the general techniques have been known [22], we have not seen them successfully
applied in software model checking so far, and believe that our implementation is an
interesting application of compositional verification to a relevant systems problem.

We have implemented these ideas in a static analyzer for verifying sound reference
counting in C programs. Given a program, and a user-specified set of Skolem variables,
our tool instruments the program with auxiliary state and auxiliary invariant instantia-
tion, and performs model checking on the instrumented program abstracted by Skolem-
and predicate-abstraction. The model checking engine of our tool is based on the soft-
ware model checker BLAST [13], and uses an iterative refinement of the abstract transi-
tion relation based on counterexample traces [12, 15]. Our technique is not completely
automatic, and requires that the user identify reference counted datatypes as well as
which variables to perform case-splits on. In our experiments, we have found the iden-
tification of reference counted datatypes and case-split variables can be performed with
a limited knowledge of the program. Our analysis relieves the programmer of the diffi-
cult burden of providing precise inductive assertions at function and loop boundaries, a
task which is readily performed by the model checker.

We have applied our tool to two case studies: the virtual memory subsystem of the
JOS operating system kernel [17], and the file handle interface routines of the YAFFS
file system [23]. In each case, the soundness argument depends on precise reasoning
about arbitrarily many clients acquiring and releasing resources. These modules (each
of a few hundred lines) encapsulate reference counting; sound counting within them
implies sound counting for the entire systems. Each example can be verified by our tool
within a minute.

Acknowledgments. We thank the anonymous referees and Alessandro Cimatti for help-
ful comments.

2 Verification Technique

We now formalize our verification technique and illustrate with an example.

Preliminaries: Programs and Safety. For our formal presentation, we assume an
abstract representation of programs by transition systems [21]. A program P =
〈X,L, `0, R〉 consists of a set X of variables, a set L of control locations, an initial
location `0 ∈ L, and a transition relation R. Variables in X have values over integers or
functions. (Functions are used to model (unbounded) arrays by mapping natural num-
bers, i.e., the “indices”, to values.) A transition 〈`, ρ, `′〉 ∈ R is a move from control
location ` to location `′, satisfying ρ, a constraint over free variables from X ∪ X ′.
The variables from X denote values at location `, and the variables from X ′ denote the
values of variables from X at location `′. The sets of locations and transitions naturally
define a directed graph, called the program’s control-flow graph (CFG).

A data state of the program P is a valuation of the variables from X; the set of all
data states is denoted Σ. We use constraints to represent sets of data states. For a con-
straint ρ overX∪X ′ and a valuation 〈s, s′〉 ∈ Σ×Σ′, we write 〈s, s′〉 � ρ if the valua-
tion satisfies the constraint ρ. A state 〈`, s〉 consists of a location ` ∈ L and a data state s.
A computation of the program P is a sequence of states 〈`0, s0〉, 〈`1, s1〉, . . . , 〈`k, sk〉 ∈
(L × Σ)∗, where `0 is the initial location and for each i ∈ {0, . . . , k − 1}, there is a
transition 〈`i, ρ, `i+1〉 ∈ R such that 〈si, si+1〉 � ρ. A data state s is reachable at loca-
tion ` if 〈`, s〉 appears in some computation. A state 〈`, s〉 is reachable if the data state s
is reachable at location `. Let ϕ be a set of states. A program P is safe w.r.t. ϕ iff all
reachable states of P are contained in ϕ.

Example. Figure 1 shows an abstraction of a shared memory system in which an arbi-
trary number of processes (syntactically identified with pid) share an unbounded num-
ber of resources, indexed by g, and reference counted by the array count. For readabil-
ity, we present programs in a C-like syntax instead of as tuples. All reference counts are
initially zero. Each process first chooses a resource (line 1), then acquires the resource
while incrementing its reference count (line 2), performs some task, then releases the re-
source while decrementing its reference count (line 5). We assume lines 2 and 5 execute
atomically. Although implicit, the system may “recycle” a resource when its reference
count reaches 0; to ensure the system does not recycle live resources, we seek to verify
the validity of the assertion on line 3. The simple reference count example is “obviously
correct”. However, consider a modified version where the acquire of the resource and
the increment of the reference count are not performed atomically, but in distinct steps.
This implementation is buggy: between the resource acquisition and the reference count
increment, the resource can be freed, if another process happens to hold the only other
reference to the same resource, and calls decref. It follows that the incref operation
can read and write on freed (or worse, reallocated) memory. Similar bugs have been
found in Windows device drivers [24].

For this simple example the assertion always holds because the current process at
line 3 holds a reference to resource g, and hence count[g]≥1. The assertion is an in-
stance of a safety property, and can be checked by ensuring that no reachable program
state violates it. Unfortunately, there are infinitely many reachable states of the system

Initially

c o u n t [g] = 0 f o r a l l g

Process pid

1 choose g ;
2 r e f [p i d] ← g ; i n c r e f c o u n t [g] ;
3 a s s e r t (c o u n t [g] > 0) ;
4 do work
5 r e f [p i d] ← −1; d e c r e f c o u n t [g] ;

Fig. 1. Abstract reference counting

1 atomic {
2 i t em ← acqu ire (0) ;
3 i n c r e f (i t em) ;
4 }
5 r ep ea t {
6 choose g ;
7 atomic {
8 new_item ← acqu ire (g) ;
9 d e c r e f (i t em) ;

10 i t em ← new_item ;
11 i n c r e f (i t em) ;
12 }
13 }

Fig. 2. Buggy reference counting

Initially

c o u n t [g] = 0 f o r a l l g
xΠ [g] = 0 f o r a l l g

Process pid

1 choose g ;

2 r e f [p i d] ← g ; i n c r e f c o u n t [g] ;

u p d a t e _ a u x (xΠ [g] , r e f [p i d]= g)

3 a s s e r t (p i d =P ⇒ g=G ⇒ c o u n t [g] >0) ;

4 do work ; u p d a t e _ a u x (xΠ [g] , r e f [p i d]= g)

5 r e f [p i d] ← −1; d e c r e f c o u n t [g] ;

u p d a t e _ a u x (xΠ [g] , r e f [p i d]= g)

Fig. 3. Abstract reference counting, after
Skolemization and Auxiliary Instrumenta-
tion. The programmer manually identifies
the Skolem variables P and G. The system
automatically inserts the auxiliary variables and
instrumentation.

as the set of resources, processes, and counter values are all unbounded. Hence we must
perform reachability analysis over an abstraction of the system.

Here the usual abstraction techniques for arrays [1, 13], such as merging all ele-
ments into a single element, are too imprecise; they prohibit the analysis from per-
forming strong updates (i.e., precisely tracking information about a resource), and from
distinguishing individual resources. Similarly, to prove the assertion we would require
an abstract domain that could distinguish the infinitely many states where count[g] has
different values. For example, a predicate abstraction [11] based domain would have to
track an unbounded number of predicates of the form count[g]=n for each index g and
each integer value n that can be stored in count[g].

Step 1: Temporal Case Splitting

Temporal case splitting [22] is a proof technique that decomposes the proof of a pro-
gram property into sub-proofs, one for each value in the domain of a particular variable.
It is based on the following observation.

Lemma 1. (Case Splitting) Let x be a variable of program P , and ϕ a set of states.
Then P is safe w.r.t. ϕ iff for each c in the domain of x, the program P is safe w.r.t.
(x = c) ⇒ ϕ.

Temporal case splitting can be nested: in order to check safety w.r.t. (x = i) ⇒ ϕ,
we can further case split on a second variable, and so on.

Example. For the example of Figure 1, we may split the assertion on line 3 into an
infinite number of assertions assert (g=0 ⇒ count[g]>0), assert (g=1 ⇒ count[g]>0),
and so on, one for each resource. By the same reasoning, we can case
split further over the process identifier into an infinite number of assertions
assert (pid=0 ⇒ g=0 ⇒ count[g]>0), assert (pid=1 ⇒ g=0 ⇒ count[g]>0), and so
on, one for each process and resource pair. Temporal case splitting is sound in that
if each subgoal is true, then the original safety property is also true. However, by itself
it is not very useful, as it introduces an infinite number of sub-goals.

Step 2: Skolemization

Though case splitting introduces infinitely many sub-goals, the sub-goals are symmetric
as each process behaves in a manner similar to the others, and the resources are distinct
copies of the same entity. Instead of checking each concrete process and resource sepa-
rately, we can perform a single check for an arbitrary process and an arbitrary resource.
If we prove this goal, then the assertion is valid for all processes and all resources. To
name the arbitrary (but fixed) process and resource, require that the programmer iden-
tify Skolem variables. These are fresh variables, distinct from the original program vari-
ables, that are non-deterministically initialized with an arbitrary value from a possibly
unbounded range, and not modified subsequently.

Formally, we introduce Skolem variables as follows. Let P = 〈X,L, `0, R〉 be
a program, and let S be a set of Skolem variables disjoint from X . We denote by
P [S] = 〈X ∪ S,L, `0, R[S]〉 the program P augmented with Skolem variables S,
where 〈`, ρ′, `′〉 ∈ R[S] iff there is a transition 〈`, ρ, `′〉 ∈ R and ρ′ ≡ ρ∧

∧
s∈S s

′ = s.
An extended data state is a valuation to X ∪ S, an extended state consists of a location
` and an extended data state. To distinguish states of P from states of P [S] (which
additionally contain valuations to the Skolem variables), we qualify states with the pro-
grams by writing P -state, or P [S]-state. By definition, the Skolem variables do not alter
the program’s behavior; they exist solely for the purpose of the proof and need not be
maintained at runtime.

Lemma 2. (Skolemization) Let x be a variable of program P , ϕ a set of P -states, S a
set of Skolem variables, and s ∈ S. P is safe w.r.t. ϕ iff P [S] is safe w.r.t. (x = s) ⇒ ϕ.

Proof. First of all, P is safe w.r.t ϕ iff P [S] is. By Lemma 1 P [S] is safe w.r.t. ϕ iff
P [S] is safe w.r.t. (x = c) ⇒ ϕ for each c in the domain of x. Since the set of states
(x = c) ⇒ ϕ is equal to (x = s ∧ s = c) ⇒ ϕ (s is not assigned to in P [S]), and
thus equal to (s = c) ⇒ (x = s) ⇒ ϕ, P [S] is safe w.r.t. ϕ iff P [S] is safe w.r.t.
(s = c) ⇒ (x = s) ⇒ ϕ for each c in the domain of x, and again by Lemma 1, iff P [S]
is safe w.r.t. (x = s) ⇒ ϕ.

Example. For the program of Figure 1, we (manually) identify two Skolem variables
corresponding to the unbounded arrays of processes and resources: P corresponds to
an arbitrary process, and G corresponds to an arbitrary resource. Since G and P are
never assigned to (they do not even exist in the original program), the infinite number of
assertions assert (pid=i ⇒ g=j ⇒ count[g] > 0), one for each i and j, are equivalent to

the single assertion assert (pid=P ⇒ g=G ⇒ count[g]>0), because G=0 ∨ G=1 ∨ · · ·,
and P=0 ∨ P=1 ∨ · · · are both valid formulæ.

The key benefit of the Skolem variables is that they induce a sound finite abstraction
on the state space. Instead of a possibly unbounded number of processes, we (strongly)
track the single process whose identifier is equal to P, and effectively merge all the other
processes (whose identifiers are different from P) into one abstract “summary” process.
Similarly, instead of an unbounded number of indices of the count array, we strongly
track the resource at index G, and merge the cells whose index is different from G into
a single summary cell. For example, using predicate abstraction, we would track the
predicate ref [P]=G, rather than ref [p1]=G, ref [p2]=G, . . . , effectively dividing these
process-specific facts into the fact at P, and those in any other untracked process.

Example. Consider the following C program:

1: for (i = 0; i < N; i++) a[i] = 0;
2: for (i = 0; i < N; i++) assert(a[i] == 0);

To verify the assert on Line 2, the analysis must infer that the loop on Line 1 initializes
all the cells with indices between 0 and N-1 with the value 0. Instead of reasoning about
an unbounded number of cells, suppose the programmer introduces a skolem variable
S, that represents an arbitrary index into the array. Case splitting w.r.t. S replaces the
assertion on Line 2 with assert(i==S => a[i]==0). That is, the verification is re-
duced to an assertion over the single array cell S and all others are ignored. Finally,
notice that predicate abstraction over predicates 0≤i, i<N, 0≤S, S<N, S<i, S=i, S>i,
and a[S]=0 suffices to prove the reduced assertion. Using these predicates, the analy-
sis infers that at Line 1, the invariant (a): (0≤S ∧ S<N ∧ S<i) ⇒ a[S]=0 holds, using
which it it infers that at Line 2, the invariant (b): (0≤S ∧ S<N) ⇒ a[S]=0 holds. Fi-
nally, it infers that at the assert, (0≤i ∧ i<N), which with (b) proves the assert. By the
choice of predicates, we made the analysis precisely track the cell indexed by S, while
merging (i.e., ignoring) the values of all other cells.

The choice of Skolems affects the precision but not the soundness of our technique.
A poor choice can yield an abstraction that is too coarse for verification. A simple
heuristic is to choose a Skolem for each unbounded object (e.g. processes, array in-
dices).

Step 3: Auxiliary Variables and Invariants

We need one more step before applying model checking: strengthening the program
transition relation using auxiliary invariants.

Formally, let P = 〈X,L, `0, R〉 be a program, S a set of Skolem variables for
P , Y be a set of auxiliary variables disjoint from X ∪ S, and for each y ∈ Y , an
auxiliary update function φy mapping current and next values of X ∪ S and cur-
rent values of Y to a value in the domain of y. A monitored program P [S, Y, φ] =
〈X ∪ S ∪ Y, L, `0, R[S, Y]〉 has a transition relationR[S, Y] such that 〈`, ρ, `′〉 ∈ R[S]
iff 〈`, ρ′, `′〉 ∈ R[S, Y] where ρ′ ⇔ ρ ∧

∧
y∈Y y

′ = φy(x, x′, s, s′, y). In other words,
the transition relation is extended by updating the auxiliary variables in Y according to

both the current and next values of variables in X ∪ S and the current values of vari-
ables in Y (using the functions φy). Like Skolem variables, the values stored in auxiliary
variables do not alter program behavior: P is safe w.r.t. property ϕ iff P [S, Y, φ] is.

Intuitively, the auxiliary variables, also known as monitors [21], ghost variables,
or spec variables [22, 8, 2, 18], are additional variables whose values depend on the
program state, but do not affect the values of other program variables. The auxiliary
state is solely a proof device (i.e., they are not maintained during program execution)
and are used to explicate implicit program invariants.

For program P = 〈X,L, `0, R〉 and predicate ψ over X ∪X ′, define the ψ-reduced
program Pψ = 〈X,L, `0, Rψ〉, where 〈`, ρ, `′〉 ∈ R iff 〈`, ρ ∧ ψ, `′〉 ∈ Rψ . An auxil-
iary invariant for P [S, Y, φ] is a predicate ψ over X ∪ S ∪ Y ∪X ′ ∪ S′ ∪ Y ′ such that
the transition relation of P [S, Y, φ] restricted to the reachable states is a subset of ψ.

Lemma 3. (Auxiliary Invariant) Let P be a program and ϕ a set of states of P . For
Skolem variables S, auxiliary variables Y , and auxiliary update functions φ, if ψ is an
auxiliary invariant for P [S, Y, φ] and P [S, Y, φ]ψ is safe w.r.t. ϕ, then P is safe w.r.t. ϕ.

Auxiliary Invariants via Reference Predicates. Even after Skolemization we are left
with verification obligations over unbounded state spaces, as the reference counts are
unbounded. To solve this problem, we introduce an auxiliary invariant relating a re-
source’s reference count with the number of references to it. A reference predicate is a
quantifier-free predicate Π over program variables, that is parameterized by two vari-
ables, a source i and target j. A reference predicate Π defines, for each source i, a
reference (target) set

Π(i) ·= {j | Π(i, j)}
For each reference predicate, we automatically add auxiliary variables that track the
cardinality of Π(i), by instrumenting the program with an unbounded auxiliary array
xΠ that maps the domain of sources to the domain of targets. Assume that: (A1) in the
initial state, the reference predicate is false for all sources and targets, and, (A2) each
transition affects only a finite, named set of sources and targets. The first assumption
is semantic, and depends on the choice of the reference predicate. The second assump-
tion can be syntactically enforced. Under these assumptions, we can automatically in-
strument the program with auxiliary transitions that (1) initialize xΠ [i] with 0, and,
(2) increment (resp. decrement) the auxiliary counter xΠ [i] whenever for some j, a
program transition turns Π(i, j) toggles from false to true (resp. from true to false).
This auxiliary instrumentation ensures “by construction” the invariant: xΠ [i] = |Π(i)|,
i.e., that xΠ [i] equals the cardinality of the reference target set Π(i). Finally, we instru-
ment the program (i.e., conjoin the set of reachable states) with the auxiliary invariant
Π(i, j) ⇒ xΠ [i] > 0 for all syntactic sources and targets i and j. This invariant follows
from the meta-theorem that if for some i, j, the reference predicate Π(i, j) holds, then
the reference set Π(i) is non-empty, and hence its cardinality xΠ [i] is positive.

This strategy addresses the unboundedness of the reference counts as follows. First,
it uses a semantic notion of reference (the reference predicate) to instrument the pro-
gram with a “correct-by-construction” reference counter. Second, in the program re-
duced w.r.t. the auxiliary invariant, we have replaced the global check that the imple-
mented reference count is positive with the local check that the implemented reference

count equals the auxiliary reference count. Though the auxiliary counter xΠ is an un-
bounded array, we can apply case splitting and Skolemization to this array as with the
original program variables. Notice, that strategy only assumes the simple, enforceable,
requirements A1, A2 about the reference counts and program. In particular, it does not
assume that the program performs correct reference counting.

Example. The reference relationship for the program in Figure 1 is captured by the
predicate:

Π(g, pid) ·=(ref[pid]=g)

which states that there is a reference to the source object g from a target process pid iff
ref[pid]=g. For this reference predicate, xΠ is the auxiliary correct-by-construction
reference count array such that xΠ[g] equals the number of processes that have a
reference to g. Our tool automatically instruments the program so that each element
of xΠ is initially 0. Further, transitions are added to increment (resp. decrement) an
element of xΠ whenever the resource corresponding to the element is acquired (resp.
released). This instrumentation is performed by the function update_aux in Figure 3,
which takes as input the counter xΠ[g] and the predicate ref[pid]=g and increments
(resp. decrements) the counter if the predicate toggles from false to true (resp. true to
false) in executing the transition. Figure 3 shows the program instrumented with the
case splits induced by the Skolem variables (line 3), the auxiliary variable xΠ , and
the auxiliary update function update_aux. Finally, our tool automatically strengthens
the program with the auxiliary invariant ref[pid]=g ⇒ xΠ[g]>0 that follows from
the instrumentation and the meta-theorem described above. Thus, our technique uses
the manually specified reference predicate to instrument the program with correct-by-
construction counters, following which the verification task is reduced to proving, that
for each g, we have count[g] = xΠ[g] (which, conjoined with the auxiliary invariant
proves the reference count assertion on at Line 3). Finally, note that via Skolemization,
the above reduces to proving count[G] = xΠ[G] for an arbitrary object G.

Step 4: Model Checking

Once we have introduced Skolem variables and auxiliary invariants, we can apply a soft-
ware model checker such as SLAM or BLAST to discharge the assertion. Algorithm 1
shows a worklist based abstract model checking algorithm using an auxiliary invariant.
Its soundness is standard. The procedure PredAbs on Line 8 computes an abstraction
of the concrete transition relation relative to an abstract domain (in our implementation,
predicate abstraction with transition refinement [11, 13, 15]). Notice that the abstrac-
tion assumes that the auxiliary invariant holds along each transition. (Techniques to
automatically find appropriate predicates [5, 12] are orthogonal, and can be combined
with our algorithm.)

Lemma 4. (Soundness) If Algorithm 1 returns SAFE and ψ is an auxiliary invariant of
P , then P is safe w.r.t. ϕ.

Example. In our example, the model checker runs a program consisting of an un-
bounded number of processes each executing the code, where each instruction in the
code (each line in the example) is considered atomic. Consider the predicates:

Algorithm 1: Symbolic Model Checking
Input: Program P = 〈X,L, `0, R〉, States ϕ, Predicates Π , Auxiliary Invariant ψ
Result: SAFE or UNSAFE

Data: Queue worklist, Incremental per-location invariant η

worklist← [〈`0, true〉];1
η ← λ`.false;2
while worklist is not empty do3

remove 〈`, ŝ〉 from worklist;4
if ŝ⇒ η(`) is not valid then5

η ← η[` 7→ ŝ ∨ η(`)];6
foreach 〈`, ρ, `′〉 ∈ R do7

add 〈`′,PredAbs(ŝ ∧ ρ ∧ ψ,Π)〉 to worklist;8
end9

end10

end11
if ∀`. η(`)⇒ ϕ(`) then return SAFE else return UNSAFE12

location abstract states
scheduler true

1 a ā
2 ab ab̄ āb āb̄
3 abcd ab̄d̄ ābc āb̄
4 abcd ab̄d̄ ābc āb̄
5 abcd ab̄d̄ ābc āb̄

exit abd̄ ab̄d̄ āb āb̄

invariant: ef

Fig. 4. The reachable abstract program states of the program in
Figure 3 at each program location w.r.t. the predicates (a)–(f) given
above. A string of (possibly barred) predicates indicates a par-
tial valuation where each non-barred predicate is true, each barred
predicate is false, and each unmentioned predicate may be either
true or false. (Conceptually the partial valuation is a disjunction of
(total) valuations.) The predicates (e) and (f) hold universally, and
the string ef is implicitly appended to each valuation. The sched-
uler is responsible for deciding which process pid executes.

(a) pid=P, (b) g=G, (c) count[G]>0,
(d) ref[P]=G, (e) xΠ[G]=count[G], (f) count[G]≥0.

Predicates (a) and (b) allow us to strongly track facts of the “interesting” array indices.
(c) and (d) track whether the (arbitrary) process P references a resource with a positive
count. Predicate (e) tracks whether the auxiliary and actual counters agree on the ref-
erence counts, and (f) is needed to derive (c) when the counts is incremented. These
predicates are sufficient for our model checker to synthesize the inductive invariant

xΠ[G]=count[G] ∧ (ref[P]=G ⇒ count[G]>0)

describing an over-approximation of the reachable program states (Figure 4 shows this
calculation), which suffices to prove the case-split assertion at line 3 of Figure 3. Though
the first two predicates do not appear in the invariant, they are essential for its derivation
as they enable strong updates on the Skolemized cells of count, ref, and xΠ .

Temporal case splitting on the Skolem variables reduces the infinite number of pro-
cesses and resources to a finite set. Similarly, the auxiliary invariant and counter ensure
that we need only to track the relationship between the auxiliary and actual counters,

and whether the former is positive, instead of precisely tracking an unbounded counter.
It is the combination of these techniques that allows the model checker to prove such a
complex property of an unbounded system.

Example: Buggy Reference Counting. Figure 2 shows a reference count implemen-
tation that is contains a bug that arises from aliasing. The program is motivated by
an actual bug in an implementation of the Python language [28]. Each client works
atomically in a loop, acquiring a new resource and releasing the old resource in each
iteration. The error occurs when the old resource in item is the same as the new re-
source in new_item, and the resource has reference count of 1 (i.e., the client holds
the only reference to this resource). The decref on line 9 then decreases the reference
count to 0, and frees the resource. However, the client still holds a reference to the same
resource in new_item (from line 8), so the incref at line 11 erroneously writes to
freed memory, possibly corrupting it. Our tool does find an error trace for this buggy
program. Furthermore, our technique is able to prove safe the correct version of the
program, where the reference count is incremented before the decrement on line 9.

Limitations. One limitation of our approach is that the Skolem variables necessary for
verification are not mechanically determined; this is left for the user of our analysis
tool. In our experience with reference counting we have found the number to be small
(one, or two, per structure) and easy to find, but the search for appropriate Skolems can
be hard in general. Second, our approach is constrained by the invariants that can be
expressed by the abstract domain, and the design of an appropriate domain can be hard
for complicated invariants, especially with rich quantifier structures. Our technique only
checks that when a resource is accessed, it has a positive reference count. This property
by itself does not guarantee the absence of memory leaks, for example, those caused by
cyclic structures of references that are not reachable from any program variable.

3 Case Studies

In addition to the simple examples from Section 2, we have applied our tool to two case
studies of reference counting in real systems code: a page allocator derived from the
JOS kernel [17], and the YAFFS file system [23].

We use a logical memory model: memory is represented as an unbounded array
Mem of elements large enough to hold any structure allocated in the program. Each
memory cell is annotated with a valid bit, initially each with value 0. Pointers are
modeled as indices to the Mem array, and index 0 denotes null. Our implementation
of malloc nondeterministically chooses an index i such that Mem[i].valid = 0,
sets Mem[i].valid to 1, and returns i. Our implementation of free(i) ensures that
Mem[i].valid = 1, and resets Mem[i].valid to 0.

We model concurrency by calling the top-level procedures, which are considered
atomic, inside of a loop which nondeterministically chooses a process/thread identifier
pid and a procedure proc and executes proc as pid.

JOS Memory Mapping. In JOS [17], a simple operating system used as an educa-
tional aid, memory is organized as an array of physical pages, to which user processes

typedef struct env {
int env_mypp;
int env_pgdir[NVPAGES];
struct env *env_prev;
struct env *env_next;

} env_t;

int pages[NPPAGES];
int page_protected[NPPAGES];
env_t *envs = NULL;

Fig. 5. Environment data structures in JOS.

int page_alloc(env_t *env, int vp) {
int pp = page_getfree();
if (pp < 0) return -1;
if (env->env_pgdir[vp] >= 0)

pages[env->env_pgdir[vp]]--;
env->env_pgdir[vp] = pp;
pages[pp]++;
return 0;

}
int page_unmap(env_t *env, int vp) {

if (env->env_pgdir[vp] >= 0) {
pages[env->env_pgdir[vp]]--;
env->env_pgdir[vp] = -1;

}
}
int page_map(env_t *srcenv, int srcvp,

env_t *dstenv, int dstvp) {
if (srcenv->env_pgdir[srcvp] < 0)

return -1;
pages[srcenv->env_pgdir[srcvp]]++;
if (dstenv->env_pgdir[dstvp] >= 0)

pages[dstenv->env_pgdir[dstvp]]--;
dstenv->env_pgdir[dstvp] =

srcenv->env_pgdir[srcvp];
return 0;

}

Fig. 6. Page directory manipulation in JOS.
page_getfree returns the index to an unused
page, if one is exists, and -1 otherwise.

env_t *env_alloc(void) {
env_t *env;
int i, env_pp = page_getfree();
if (env_pp < 0) return NULL;
env = (env_t *) malloc(sizeof(env_t));
env->env_mypp = env_pp;
for (i = 0; i < NVPAGES; i++)

env->env_pgdir[i] = -1;

/* put on list */
env->env_next = envs;
env->env_prev = NULL;
if (envs) envs->env_prev = env;
envs = env;
pages[env_pp]++;
page_protected[env_pp] = 1;
return env;

}

void env_free(env_t *env) {
int i;
for (i = 0; i < NVPAGES; i++)

if (env->env_pgdir[i] >= 0)
pages[env->env_pgdir[i]]--;

page_protected[env->env_mypp] = 0;
pages[env->env_mypp]--;

/* take off list */
if (env->env_next)

env->env_next->env_prev =
env->env_prev;

if (env->env_prev)
env->env_prev->env_next =

env->env_next;
else envs = env->env_next;
free(env);

}

Fig. 7. Environment (de)allocation in JOS.

(or environments) hold virtual page mappings (see Figures 5–7). The environment struc-
ture (env_t) stores the index of a protected physical page (env_mypp), a virtual page
table (env_pgdir), and pointers used for the kernel’s doubly linked list of environ-
ments (env_prev, env_next). The pages array maintains the number of virtual page
mappings to each physical page, or 1 for protected pages (i.e., the env_mypp of some
environment, explicitly marked by the page_protected array). The kernel ensures
that an env_pgdir entry is not protected.

To verify that every live env_pgdir entry has a positive reference count we intro-
duce: a single physical page Skolem variable, one auxiliary counter variable for each
page, and an auxiliary invariant insisting mapped pages’ auxiliary counters are positive.
Model checking ensures the auxiliary counters are equal to JOS’s reference counters.
Given the Skolems and the auxiliary invariant, our tool proves the correct use of ref-

int yaffs_open(...) {
...
h = yaffsfs_GetHandlePointer(...);
obj = yaffsfs_FindObject(...);
...
h->obj = obj; obj->inUse++;
...

}

void yaffs_close(...) {
...
h = yaffsfs_GetHandlePointer(...);
if (h && h->inUse) {

h->obj->inUse--;
if (h->obj->inUse <= 0)

yaffs_DeleteFile(h->obj);
h->obj = 0;

}
}

Fig. 8. YAFFS reference counting, simplified.

erence counts for any number of pages and environments. (Memory leak freedom is
proved by ensuring the values of the actual and auxiliary counters coincide.) The reach-
ability analysis requires 17 predicates and 29 seconds.

Yaffs File Object Management. The YAFFS log-structured filesystem for flash mem-
ory [23] represents files with heap-allocated yaffs_Object structures, each contain-
ing a reference counting inUse field (Figure 8 shows fragments of a simplified version,
although we have verified the actual implementation). Users access objects indirectly
through the obj field of a yaffs_Handle pointer. The handles are stored in a fixed-
sized array, indexed by an integer file handle descriptor.

File read and write operations access yaffs_Objects under the assumption that
their reference counts are positive. To verify, we introduce a single file object Skolem
variable. As done for JOS, we also introduce auxiliary state to track handle-object
(un)mappings, and equate that state with actual object reference counts by symbolic
model checking. Assuming that each file operation occurs atomically, our tool is able
to prove the sound use of reference counts for any number of handles and objects. The
reachability analysis requires 34 predicates and 36 seconds.

4 Related Work

Compositional Verification. Our use of temporal case splitting with Skolem variables
is inspired by similar approaches in hardware verification [22], where a hardware de-
sign is decomposed into units of work and the finite instantiations verified using a
BDD-based model checker. Our work differs from the above in two respects. First,
we consider C programs where heap locations are allocated dynamically, and need not
have static names. Second, by using predicate abstraction over more expressive theories
(e.g., equality, arithmetic, arrays) we may track relationships between variables, which
is generally required to prove sound reference counting.

A restricted use of Skolem variables to separate a safety verification problem into
sub-problems has been suggested before [30, 4]. However, an analysis with a dataflow
analysis back-end [30] merges states at join points, and cannot perform case splits over
the abstract domain used in our examples. There the benefits of separation were re-
stricted to syntactically disjoint choices (for example, where there were separate as-
sertions on two arrays, and the abstraction would first prove the assertion for the first
array while abstracting the second, and then prove it separately for the second). We, on

the other hand, perform case splitting on the temporal behavior of the program, thus
correlating the choice of a Skolem at one point in the execution to a subsequent check.
Predicate Abstraction. Skolem variables have been used with predicate abstraction to
infer universally quantified invariants over the program state [9, 19, 20]. However, the
properties considered thus far have been limited, for the most part, to simple intrapro-
cedural reasoning about arrays. We believe that one reason for this is that fast Cartesian
predicate abstraction, implemented as the default in software model checkers such as
SLAM or BLAST, is too coarse for reasoning about array and pointer variables. Our
work builds on the interpolant-based transition relation refinement [15] that lazily re-
fines the Cartesian abstraction to the required precision, and our reachability engine
uses this refinement for scalability. The use of quantified predicates in model checking
based on predicate abstraction [27, 7] has, for similar reasons, been limited to small
and abstract encodings of complicated procedures (e.g., garbage collectors). In these
applications quantifiers are instantiated by matching heuristics implemented in the the-
orem prover, or manually. In contrast, our use of Skolems, while less powerful than full
quantification, is more predictable, and does not rely on matching heuristics. While we
concentrate on the technique of using predicate abstraction with Skolems and auxiliary
state in reachability analysis, techniques to infer quantified predicates [20] are orthogo-
nal, and can be combined with our algorithm to find such predicates. Finally, auxiliary
invariants have been used in software model checking, e.g., to approximate the shape of
the heap using alias analysis [1, 13], or to infer polyhedral invariants in a prepass before
applying predicate abstraction [14].
Shape Analysis. Shape analysis [26] and separation logic [25, 3] are powerful frame-
works for reasoning about heap manipulating programs. While our techniques can be
simulated inside shape analysis, our advantage is the use of already developed efficient
and scalable predicate abstraction and manipulation engines (from BLAST) to reason
about heap properties on large programs. Shape analysis has also been used to verify
concurrent programs with an unbounded number of threads through the use of man-
ually supplied instrumentation predicates [29]. Skolemization and case splitting are
orthogonal—once they are performed, three valued logic based analyses can be used
to discharge the reduced model checking tasks.

Work on canonical abstraction of arrays [10, 16] is close to our work: there, an (un-
bounded) array is abstracted with respect to an iterator into the portion of the array
before, at, and after the iterator; these portions are summarized with respect to the pred-
icates that hold on them. In contrast, our technique abstracts an array into the locations
indexed by Skolems, and all other locations; additional refinements are introduced with
additional Skolems and predicate relationships between values at the Skolem indices.
Instead of a specialized dataflow analysis, we perform path-sensitive model checking
that can then correlate data at Skolem locations. Our experience is that for properties
that depend on an arbitrary element of the array, Skolemization and case splitting pro-
vides a more natural (and often, a more succinct) abstraction of the program.

References
1. T. Ball and S.K. Rajamani. The SLAM project: debugging system software via static analy-

sis. In POPL, 2002.

2. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS. 2004.

3. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular automatic assertion check-
ing with separation logic. In FMCO, 2005.

4. D. Beyer, A.J. Chlipala, T.A. Henzinger, R. Jhala, and R. Majumdar. The Blast query lan-
guage for software verification. In SAS, 2004.

5. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In CAV. 2000.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In POPL, 1977.

7. S. Das and D.L. Dill. Counter-example based predicate discovery in predicate abstraction.
In FMCAD, 2002.

8. C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. In PLDI, 2002.

9. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In POPL, 2002.
10. D. Gopan, T.W. Reps, and S. Sagiv. A framework for numeric analysis of array operations.

In POPL, 2005.
11. S. Graf and H. Saïdi. Construction of abstract state graphs with PVS. In CAV. 1997.
12. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from proofs. In

POPL, 2004.
13. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL, 2002.
14. H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. Using statically computed invari-

ants inside the predicate abstraction and refinement loop. In CAV, 2006.
15. R. Jhala and K.L. McMillan. Interpolant-based transition relation approximation. In CAV,

2005.
16. R. Jhala and K.L. McMillan. Array abstractions from proofs. In CAV. 2007.
17. JOS. Jos: An operating system kernel. http://pdos.csail.mit.edu/6.828/2005/overview.html.
18. V. Kuncak, P. Lam, K. Zee, and M.C. Rinard. Modular pluggable analyses for data structure

consistency. IEEE Trans. Software Eng., 32(12):988–1005, 2006.
19. S.K. Lahiri and R.E. Bryant. Constructing quantified invariants via predicate abstraction. In

VMCAI, 2004.
20. S.K. Lahiri and R.E. Bryant. Indexed predicate discovery for unbounded system verification.

In CAV, 2004.
21. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, 1995.
22. K.L. McMillan. A methodology for hardware verification using compositional model check-

ing. Sci. Comput. Program., 37:279–309, 2000.
23. Aleph One. Yaffs file system. http://www.yaffs.net/.
24. S. Qadeer and D. Wu. KISS: Keep it simple, sequential. In PLDI, 2004.
25. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.
26. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In POPL,

1999.
27. N. Shankar. Combining theorem proving and model checking through symbolic analysis. In

CONCUR, 2000.
28. G. van Rossum. Debugging reference count problems.

http://www.python.org/doc/essays/refcnt/.
29. E. Yahav. Verifying safety properties of concurrent java programs using 3-valued logic. In

POPL, 2001.
30. E. Yahav and G. Ramalingam. Verifying safety properties using separation and heteroge-

neous abstractions. In PLDI, 2004.

