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Abstract
Soil contains vast ecosystems that play a key role in the

Earth’s water and nutrient cycles, but scientists cannot cur-
rently collect the high-resolution data required to fully un-
derstand them. In this paper, we present Suelo, an embed-
ded networked sensing system designed for soil monitoring.
An important challenge for Suelo is that many soil sensors
are inherently fragile and often produce invalid or uncali-
brated data. Therefore Suelo is an assisted sensing system:
it actively requests the help of a human when necessary to
validate, calibrate, repair, or replace sensors. This approach
allows us to use available sensors without sacrificing data in-
tegrity, while minimizing the human resources required. We
tested our system in multiple real soil monitoring deploy-
ments and demonstrate that, using human assistance, Suelo
produced 91% fewer false negatives and false positives than
common fault detection solutions on these datasets.
Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-time and Embedded Systems
General Terms

Reliability
Keywords

Fault Detection, Fault Diagnosis, Soil Monitoring
1 Introduction

Throughout history, few things have mattered more to hu-
man civilization than soil, and nearly every plant and animal
depends on soil ecosystems for nutrients, food, and water.
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However, soil ecosystems are complex, elusive, and still not
well understood, and are considered by many to be the “final
frontier” in science [12,20]. Today a scientific understanding
of soil is more important than ever as agricultural and indus-
trial practices have an increasing effect on the Earth’s water
and nutrient cycles. For example, tens of millions of people
in the Ganges Delta continue to drink groundwater that is
dangerously contaminated with arsenic, in what is perhaps
the largest environmental poisoning in history. If consump-
tion of contaminated water continues, the prevalence of ar-
senicosis and skin cancer in Bangladesh alone is estimated
to reach 2,000,000 and 100,000 cases per year respectively,
with deaths reaching 3,000 cases per year [39].

The current state-of-the-art measurement technique is
called an observation well, which is a slotted tube inserted
into the ground that allows water samples to be brought to
the surface using pumps. These samples are then transported
to laboratories or analyzed using a field kit. Observation
wells require substantial human effort for each data read-
ing, and their spatio-temporal sensing resolution is therefore
limited; a single person who must read from 25 observation
wells could collect at most several readings from each lo-
cation a week, and samples are more often collected once
a month. However, soil properties can be affected by tem-
perature, photosynthesis, rainfall and other factors that can
change on a daily or even hourly basis, and much higher
spatio-temporal resolution is needed.

In this paper, we present Suelo, an embedded networked
sensing system (ENS) designed to monitor soil with high
spatio-temporal resolution. The key challenge for Suelo is
data integrity: chemical soil sensors are inherently fragile
and need frequent calibration and maintenance. For exam-
ple, in a one week lab experiment we calibrated a set of
sensors daily and found that calibration does not change lin-
early with time, nor does it change in a constant direction.
But sensors cannot be regularly or easily removed from the
ground for maintenance because doing so would disturb the
soil, which can require several days or months to settle back
into the original structure. At the same time, it is difficult
to know from the data alone when a sensor needs repairs



or re-calibration; few sites have existing models of data that
could be used for automatic data verification, and a sensing
system generates too much data to verify each point manu-
ally. Furthermore, deploying redundant sensors and checking
for consistency would not be a suitable solution because soil
properties can change every few inches, and having too many
sensors in one area would alter the structure, and therefore
the behavior, of the soil properties being measured.

To overcome these challenges, Suelo was designed for
human-assisted sensing: it actively requests the help of a
human when necessary to validate, calibrate, repair, or re-
place sensors, and it learns from the human’s actions and
responses. Suelo is a complete end-to-end embedded net-
worked sensing system that includes a suite of robust net-
working protocols (described in a more complete version of
this paper [28]. In this paper we focus on the two aspects of
the design that were important for human interaction. First,
we converted high-maintenance sensors that were originally
designed for a laboratory into an in-situ sensing platform
called the Javelin that facilitates frequent maintenance while
minimizing soil disturbance. Second, we created the Suelo
Fault Detection System (SFDS). SFDS is a data integrity
service that is initialized with expert knowledge about the
sensors, that requests actions from the user when necessary,
and that learns from the user’s actions and responses. This
two-pronged approach to assisted sensing allowed us to ex-
plore and discover new phenomena using unreliable sensors
and hardware, without sacrificing data integrity, and while
minimizing the human resources required.

Suelo was designed for exploratory studies, in which sci-
entists might deploy sensors for approximately a week be-
fore moving to a new location. Every deployment is differ-
ent and the nature of the data and physical relationships is not
known in advance. The Suelo Fault Detection System there-
fore uses human assistance in two ways. First, for each new
deployment it re-learns how to differentiate valid data from
faulty data using human feedback, thereby reducing its de-
pendence on carefully tuned parameters. This is particularly
important for Suelo because many soil monitoring deploy-
ments are currently exploratory. Second, once the system
learns to identify error states it requests repairs and main-
tenance from the user when necessary. In-field repairs and
maintenance are necessary when using unreliable sensors,
and the Suelo design facilitates this process.

All deployments must deal with faults. Given the current
state of soil sensing hardware and the inescapable character-
istics of soil environments, soil deployments encounter faults
earlier and more frequently than many other deployments.
However, we believe that many ENS deployments in the near
and far future will be using early-generation hardware pro-
totypes that will have reliability problems, and will be de-
ployed in exploratory studies. Many of these deployments
could potentially benefit from the assisted sensing principles
and mechanisms used in the design of Suelo.

We evaluate Suelo in three soil monitoring deployments:
the Ganges delta in Bangladesh, a forest in the James Re-
serve, and the junction between the Merced and San Joaquin
rivers in California. The following key results are demon-
strated in our evaluation:

• With human assistance, the Suelo Fault Detection Sys-
tem produced 91% fewer false negatives and false posi-
tives than common solutions that do not leverage human
interaction.

• In our final deployment 93% of data collected by Suelo
was usable, and the SFDS and hardware design allowed
an estimated 10% of otherwise faulty or mis-classified
data to be salvaged or correctly classified by requesting
human intervention at the right time.

Our deployments required substantial human assistance, but
they produced over 100 times more usable data points than
scientists collected using observation wells.

2 Motivation
In this section, we explain why soil monitoring is impor-

tant, why manual data collection techniques are insufficient
for scientific demands, and why soil monitoring presents a
particularly ominous set of challenges for remote sensing.

Soil monitoring is an important sensing application that
will help answer many open scientific questions. For exam-
ple, one group of scientists that we worked with has been
studying the factors controlling the mobilization of arsenic
into ground water near the Ganges Delta region in the Mun-
shiganj district of Bangladesh for the past 10 years. Their re-
cently confirmed hypothesis, published in Nature [23], states
that bacteria that live in the soil and sediment are the cause.
Arsenic, originally from the Himalayas, sticks to rust parti-
cles. The particles are buried several feet under ground, cre-
ating an environment with no oxygen. In such an anoxic en-
vironment, the bacteria resort to a respiration process that
takes in rust and arsenic. This process transforms the arsenic
into a form that dissolves in water, and ultimately is mobi-
lized into the groundwater (Figure 1. To test this hypothesis,
the scientists have been monitoring the levels of organic mat-
ter, arsenic, and a number of other chemical concentrations
in the ground over a several square kilometer rice field once
during the monsoon season and once during the dry season.

Another application of soil monitoring is to measure the
effect when two rivers of very different water quality flow to-
gether. Agricultural runoff, such as pesticides, is suspected to
infiltrate groundwater at the confluence of two distinctly dif-
ferent rivers: the Merced River (relatively low salinity) and
the agricultural drainage-impacted San Joaquin River (rel-
atively high salinity) [24]. A group of scientists based at
UC Merced has been studying this phenomena to understand
how the agricultural runoff that pollutes the San Joaquin river
impacts the Merced river and riverbed just past the conflu-
ence. This study is important in designing monitoring and
remediation efforts for the Merced river [13].

Soil monitoring deployments are not restricted to only
instrumenting the soil, and many soil monitoring deploy-
ments measure parameters both inside and outside of the soil.
In one of our deployments, scientists deploy PAR sensors,
which measure photosynthetically active radiation, in order
to aid in calculating the exchange of carbon between the soil
and the atmosphere. SFDS has been successfully applied to
detect faults in PAR and other non-soil sensors as well.



Figure 1. The Bangladesh deployment is designed to test
the relationship between irrigation runoff and arsenic in
drinking water. The hypothesis is that bacteria feeding on
organic matter in the irrigation water break down bonds
between iron and arsenic, allowing the arsenic to seep
into groundwater aquifers.

2.1 State-of-the-art in Soil Monitoring
The current state-of-the-art subsurface sampling tech-

nique is called an observation well, which is a slotted PVC
tube inserted into the ground that allows water samples to
be brought to the surface using pumps. Each well is used to
collect water from a single depth. These samples are then
processed in an additional 10 to 20 steps, such as adding so-
lutions and waiting or mixing the new solution for precisely-
timed periods, and then they are transported to a laboratory
or analyzed in the field using a mobile kit. This technique
requires substantial human effort for each sample, which
makes it difficult to collect data at the spatio-temporal res-
olution required to observe the daily or even hourly effects
of temperature, photosynthesis, rainfall and other factors.

The composition of water samples collected from an
observation well can be analyzed through the use of ion-
selective electrodes (ISEs), which measure the concentration
of a specific ion in a solution. Combination ISEs report the
electric potential between an internal reference voltage pro-
vided by a gel probe and the ions that permeate through a
selectively permeable membrane. An ISE must be calibrated
by exposing it to a range of known ion concentrations and
creating a function that relates the concentration levels to the
output voltages of the sensor. An idealized curve for the to-
tal detection range (TDR) of an ISE is shown in Figure 2.
The TDR can be divided into the linear detection range
(LDR), which is the linear portion at the center of the cal-
ibration curve, and the non-linear detection range (NLDR).
Data values in the NLDR (i.e. outside of the LDR but in-
side the TDR) may be valid, but are less reliable than data
measured in the LDR because the NLDR has a smaller slope
than the LDR, i.e. a change in ion concentration will produce
a smaller change in voltage in the NLDR than the LDR.
2.2 Challenges for Unattended Soil Monitor-

ing
ISEs are poorly matched with the demands of a long-term

sensing deployment because they require frequent mainte-

Figure 2. ISE sensors generally have a linear response
to increasing concentrations of an ion (the LDR), but
for extreme values they have a non-linear response (the
NLDR). Values from the NLDR may need to be manu-
ally validated.

nance and calibration. The calibration coefficients of an ISE
can change over time, or the membrane can become dirty,
at which point it must be cleaned and reconditioned to re-
gain sensitivity [30]. Thus, an ISE must be calibrated and
checked frequently to measure sensitivity, to perform main-
tenance when necessary, and to eliminate faulty sensors [4].
In an embedded sensing scenario, frequent calibration dis-
turbs the soil. Each time the soil is disturbed, it requires time
for air pockets to work themselves out and the soil to com-
pact back to the original structure. Soil settling times can
take from several days to several months. But it is neces-
sary to wait, because the presence of air and other abnormal-
ities present in unsettled soil can significantly affect the data
collected. Unfortunately, at several hundred dollars a sensor,
ISEs are one of the few reasonably priced sensors. There-
fore, manual calibration of ISEs is important, but should be
done as infrequently as possible to keep soil disturbance to a
minimum.

In some instances, denser deployments of supplemental
sensors can aid in the manual calibration process. The chal-
lenge with deploying additional sensors in soil is that of-
ten the signals being measured are spatially discontinuous
and can produce substantially different measurements at lo-
cations separated by only a few feet or even a few inches.
Thus, the use of dense sampling to validate sensors and their
calibration coefficients often require an impractically high
density of redundant sensors to be effective. Not only would
it be costly, but too many sensors can also disturb the signal
that is being measured. For example a soil moisture sensor
computes saturation levels using the change in frequency of
a low powered RF signal transmitted by the sensor; multiple
sensors in close proximity could interfere with neighboring
readings. Another challenge is that high-resolution sensing
of soil properties has only been recently possible, so there are
limited pre-existing models of the stimulus that can be used
to verify or calibrate the sensors. Indeed, the high-resolution
data collected by the sensing deployments we describe in this
paper uncovered diurnal trends that were not expected by the
domain scientists and previously unknown.

Manual validation of some data is possible using physical
samples, but most sensing deployments produce too much



data to manually verify and check for calibration drift. The
deployments we describe later in the paper collected data
from 50 sensors, four times an hour. This is too much data
to manually verify with traditional approaches using obser-
vation wells.

A combination of manual calibration, validation, and
dense sampling can aid in improving the quantity and qual-
ity of data collected in a soil monitoring deployment, and are
complementary solutions that can be used with Suelo. Our
goal was to explore what else could be done to improve soil
sensing deployments.

3 Related Work
Many recent ENS deployments have used unreliable sen-

sors [4] and hardware [1, 18]. For example, a deployment in
the redwoods of California, 8 out of 33 temperature sensors
fail [35]. The authors of the Life Under Your Feet deploy-
ment discuss their experiences with data faults, highlighting
the need for fault detection algorithms, similar to the Suelo
Fault Detection System, that can be customized based on
sensing modalities, and trained in the field to discern impor-
tant events from actual faults [12]. These experiences are not
uncommon, and will only increase, as people push the limits
of sensor technology and deployment possibilities [38]. Data
fidelity is critical if data is to be used for scientific purposes.
In this section, we review several techniques that people have
previously used to deal with unreliable sensing systems.

Several studies have used predictive models to identify
when a sensor begins to produce faulty or uncalibrated data.
Some use theoretical or mathematical models of the soil or
physical phenomena to identify faults [9, 17]. Several stud-
ies have shown that correlations between nearby nodes can
be used for in-situ sensor calibration or on-line fault detec-
tion. For example, Whitehouse et al. used distance relation-
ships to formulate constraints on the calibration coefficients
of speakers and microphones in a network of neighboring
nodes [37]. Ganeriwal et al. built a web of trust between
neighboring nodes that sense the same phenomenon to detect
security attacks or faulty nodes [11]. Larkey et al. [19] and
Nath et al. [21] use Naive Bayes classifiers to estimate the
spatial distributions of data in order to identify faulty nodes.
However, spatially discontinuous signals in soil make it dif-
ficult to apply calibration or fault detection techniques that
rely on known correlations or constraints between spatially
proximate sensors. Additionally, solutions such as Larkey et
al., or Nath et al., assume that faults are not common, and
are therefore anomalies. This has not been the case in ours’
or others’ experiences.

Many machine learning algorithms rely on labelled
datasets as training data to perform clustering, classification,
or outlier detection [7, 8, 10, 16]. Other approaches use his-
torical traces captured from the system when it is known to
be operating correctly to build models for different types of
behavior [2,15]. These approaches, however, can only be ap-
plied once domain scientists have collected enough data to
create models or training data sets. Additionally, many of
these systems assume that training data contains few or no
faults, and that training data accurately represents expected
behavior.

Many ENS applications – including the soil monitoring
deployments described in this paper – are exploratory in the
sense that the data has never been collected and the domain
scientists do not know what to expect. SFDS’ assisted feed-
back makes it easy for users to modify the system’s assump-
tions and algorithms even after the deployment has begun,
enabling the system to better adapt to previously uncharac-
terized environments.

User driven segmentation is a common practice in data
mining and exploration that utilizes expert knowledge re-
garding the importance of certain sub-domains in a space [3].
It differs from unsupervised learning processes like cluster-
ing in that it leverages the user’s knowledge to partition data
into similar groups. Ramel et al. describe a system similar
to SFDS that is applied to the classification of images taken
from historical books [29]. The system maintains a set of
rules that are updated by the user to classify each book into
four possible categories. The use of rules for user driven seg-
mentation is complementary to SFDS.

Online supervised learning systems build a model in real
time, instead of relying on a labeled dataset provided in ad-
vance. Bohus et al. describe an online supervised learning
system to improve spoken language interfaces [5]. When the
voice recognition software either mis-understands or does
not understand what the user said, the system can rephrase
the question or ask the user to repeat their answer. Such sys-
tems are often best when the system can distinguish the dif-
ference between success and failure immediately and with-
out human feedback. But in general online supervised learn-
ing techniques are also complementary to SFDS.

4 The Suelo Platform Design
Suelo is an end-to-end embedded networked sensing sys-

tem that includes a suite of robust, autonomous networking
protocols that provide link-layer reliability, a delay-tolerant
networking layer (DTN), and an automated network mon-
itoring system. Despite link failures and base station out-
ages, the system still recovered 91% of the expected packets,
which is high relative to other real-world ENS deployments.

We do not discuss the networking protocols due to space
limitations. Instead, we focus on the two aspects of the de-
sign that were important for human interaction. First, the
hardware was designed specifically to enable human in-
tervention while minimizing soil disturbance when sensors
need to be validated, calibrated, repaired, or replaced. Sec-
ond, we designed an on-line data analysis tool that would ac-
tively handle sensor faults by requesting and learning from
human intervention.

4.1 Hardware Platforms
To monitor chemical concentrations in soil, we converted

ion-selective electrodes (ISEs) into sensing platforms that
could be inserted into the ground and would transmit read-
ings over a wireless connection in real time. We built two
different hardware platforms for the two different types of
sensor applications: the TapRoot and the Javelin. The Tap-
Root was the first-generation design that focused on electri-
cal and wireless requirements. After our first deployment,
however, we found that the unreliable nature of the ISEs
also introduces requirements for human interaction during



deployment, validation, calibration, and repairs. This moti-
vated our second-generation design called the Javelin. We
describe the TapRoot design in Section 4.1.1, the require-
ments for human interaction in Section 4.1.2, and the Javelin
design in Section 4.1.3

4.1.1 1st Generation: The TapRoot
The TapRoot sensing platform was designed for scientists

studying the mobilization of arsenic into ground water near
the Ganges River in Bangladesh. These scientists need three
types of data:

1. ammonium, calcium, chloride, nitrate, and carbon-
ate concentrations

2. pH of the ground water

3. oxidation-reduction potential (ORP) of the soil

Ammonium and calcium concentrations are important be-
cause previous work has shown that they correlate with ar-
senic concentrations in the Ganges delta region [14]. Thus,
they serve as proxy measurements for arsenic concentrations,
for which no off-the-shelf sensors exist. The ORP sensor re-
sponds to changes in organic matter, and is therefore used
to detect when organic-rich irrigation water flows through.
Because ORP is not always a reliable measure, nitrate and
carbonate sensors are also deployed to further characterize
the organic matter. Chloride ions can interfere with nitrate
measurements, so we measured chloride; pH is a measure of
the acidity of the water, which controls the form that an ion
will take (for example as pH increases nitrogen particles will
shift from ammonium, NH+

4 , to ammonia, NH3).
The TapRoot used seven different models of ion-selective

electrodes (ISE) purchased from Sentek to produce these
measurements. The output from ISEs is temperature de-
pendent and must be calibrated for temperature using the
Nernst equation [30], so the TapRoot also includes ther-
mistors purchased from Digikey to measure the temperature
of the soil. ISEs are designed for measuring water chem-
istry and not necessarily for soil environments, but we ex-
perimentally demonstrated in the laboratory that ISEs can
be used for soil monitoring when saturation levels are high
enough. Therefore, we also deployed moisture sensors pur-
chased from Decagon in each TapRoot and 2 pressure trans-
ducers (not integrated with the TapRoot because they had
local logging capabilities) to interpret the output of the ISEs.

At each sensing location, the entire sensor suite of 8 sen-
sors was deployed at 3 different depths to characterize the
chemistry above, below, and in middle of an iron band that
the domain scientists believed to source the arsenic mobi-
lization. Thus a total of up to 24 sensors was deployed with
each TapRoot platform.

The TapRoot uses a PVC enclosure that can house 4
mica2 motes and the corresponding ADC boards needed to
convert the analog sensor inputs to digital readings. Each
ADC board could support up to six sensors, so up to four
mica2 nodes were required in a TapRoot when deploying the
maximum of 24 sensors at a site. The mica2 motes periodi-
cally sample the sensors and transmit the data to a basesta-
tion. The mica2 enclosure sits on top of a column as shown
in Figure 3(a) in order to elevate the radio to avoid RF atten-

uation due to ground water.
Cables run from the enclosure into the ground to the sen-

sors, which are placed directly in the ground. To deploy the
sensors, we dug three holes per depth to accommodate a full
suite of sensors: 4 ISEs in one hole, 3 ISEs in another, and the
moisture sensor in a separate hole so that their electromag-
netic radiation would not interfere with the electric potential
measured by the ISEs. Thus, to deploy at three depths, 10
holes needed to be dug, including one for the column to hold
the PVC enclosure. Sensors were deployed directly into the
mud for maximum contact (Figure 3(a)).

To sample from an ISE sensor, the mote collects 15 read-
ings at one second intervals, drops the first five readings, and
averages the last 10 readings in order to minimize the noise
from the sensor. This approach was derived from experimen-
tation in the lab to reduce noise in the ISE readings.
4.1.2 Human-oriented Hardware Requirements

Our experience with the TapRoot generated three design
principles for a sensing platform using unreliable ISE sen-
sors. The hardware platform should:

1. facilitate the extraction of physical samples near sensors
for data validation;

2. support in-situ calibration, testing and replacement of
individual sensors; and

3. be quick to deploy or re-deploy, and should minimize
the impact on the soil to keep soil settling times at a
minimum.

During our deployment more than 10% of our data (pri-
marily from the nitrate and chloride sensors) needed to be
manually verified by collecting and analyzing a supplemen-
tal water sample. This would have been easier and increased
our confidence in the data if the TapRoot were designed to fa-
cilitate sample extraction from the immediate location where
the sensor was deployed.

We also observed a number of faulty sensors in
Bangladesh. For example, within the first several days, we
were sure that at least one calcium sensor, and possibly all of
the oxidation reduction potential sensors, were not working.
We wanted to be able to remove the sensors to test them in
the mobile chemistry lab we had set up in a tent. However,
the TapRoot package was not designed to facilitate mainte-
nance or redeployment. Replacing a sensor required pulling
all 24 sensors out of the ground. (Re)deploying an entire Tap-
Root took all day because we had to dig individual holes
for each pair of sensors. Moreover, the weight and unman-
ageable length of extra cable that is required make a fully
loaded TapRoot extremely difficult to maneuver, especially
when tromping through knee deep mud. Deploying and re-
deploying the TapRoot was too difficult to repair or replace
even a single sensor.
4.1.3 2nd Generation: The Javelin

The Javelin platform was designed to address the prob-
lems of the TapRoot. The basic design is a single 1.25 inch
PVC tube that houses all sensors and communication hard-
ware, as shown in Figure 3(b). The Javelin narrows at the
bottom so that it can be driven into the ground, minimizing
the impact on the soil and avoiding the need to dig holes for
the sensors or for the pylon structure itself. A pole pounder



(a) The TapRoot platform, as used in Bangladesh, 2006 (b) The Javelin platform, as used in San Joaquin, 2007

Figure 3. The first-generation TapRoot platform is unwieldy to carry and difficult to deploy, requiring multiple holes
to be dug. The second-generation Javelin platform makes it easier to validate, calibrate, repair or replace the sensors
by putting all sensors into a single column that is easily driven into and removed from the ground, minimizing soil
disturbance.

is used to drive the outer PVC pipe into the ground. Once
the pipe is at the correct depth, the Javelin is slid into the
pipe, which serves as a sleeve, and the pipe is pulled out. De-
ploying a Javelin takes under an hour in harder soils; in the
soft mud of Bangladesh it would take much less. A Javelin
is small and is not designed to handle more than 5 sensors,
making it easy to maneuver.

The Javelin has slits around the circumference of the tube
to allow moisture in, but keep out soils and other particles
that may damage the sensor membranes. It also contains
Teflon tubes that extend from the top of the pylon down to
each sensor. These Teflon tubes act as observation wells, and
can be used to extract physical samples from near the tip
of the sensor in order to validate questionable data. Thus,
the Javelin combines automatic yet unreliable sensing using
ISEs with labor-intensive yet reliable manual sensing using
observation wells. The result is an automatic yet verifiable
data stream. These Teflon tubes can also be used for in-situ
calibration by dropping known solutions into the tubes, es-
sentially running the observation well in reverse.

The main limitation of the Javelin is that it would not
perform well in environments that are not moisture satu-
rated, since the sensors are shielded by the column and would
not come into contact with sufficient moisture. In saturated
soils such as those we studied in Bangladesh or the San
Joaquin River, or even semi-saturated soils, the Javelin per-
forms well.

We built the Javelin for scientists studying the impacts of
agricultural run-off near the Merced and San Joaquin rivers
in California. Therefore, each Javelin contained up to 2 am-
monium sensors, 2 nitrate sensors, and 2 temperature sen-
sors. Nitrate is one of the chief ions present in the agricultural
pollutants, and ammonium is a different form of nitrate. We
deployed sensors for both of these ions to identify the pres-
ence of recent or past agricultural pollutants. The Javelin has
since been used in Bangladesh and with numerous other de-
ployments.

Figure 4. SFDS uses a feature space transform defined
by an expert user to identify faulty data, and suggests
actions to the user based on the region in feature space
where a point falls. User feedback helps the system im-
prove its fault detection parameters and action recom-
mendations.

4.2 Human-assisted Data Assurance
A key component of Suelo is the Suelo Fault Detection

System. The SFDS automatically analyzes data and notifies
the human assistant when a sensor needs to be validated, cal-
ibrated, repaired, or replaced. The overall architecture of this
system is illustrated in Figure 4. The system is first initial-
ized by an expert, who defines features of the data that are
likely to correlate with sensor failures. Sensors transmit data
at periodic intervals to a base station over their wireless ra-
dio. Upon the arrival of new sensor data, SFDS extracts the
features from each data point and maps the resulting feature
vector to a feature space. An outlier detection algorithm dif-
ferentiates between valid and faulty system states in the fea-
ture space. The location of a feature vector in the feature
space is also used to identify a recommended action for the
human assistant. Suelo notifies the assistant of the action to
take in real-time. Once the assistant takes an action, they can
provide feedback about data validity or sensor repairs, which



SFDS incorporates into the data assurance system to improve
future recommendations. These mechanisms are discussed in
more detail in the following sections.
4.2.1 Initializing with Expert Knowledge

The data assurance system must be initialized by an ex-
pert with domain knowledge pertinent to the specific sen-
sors and environment being analyzed. Specifically, the expert
must define a feature space transform that will help identify
invalid data points. A feature space transform is a set of func-
tions that can be called on a data point or set of data points
to help elucidate certain properties about the data. Domain
experts in soil monitoring and ISEs helped to define the fol-
lowing feature space transform from (vi, ti) to (xi,yi,zi) for
data coming from soil sensors:

xi = |(vi − vi−1)/(ti − ti−1)| (1)
yi = max(vi −LDRupper,LDRlower − vi,0) (2)
zi = max(vi −T DRupper,T DRlower − vi,0) (3)

where (vi, ti) are the value and time-stamp for the i’th data
point, and (LDRupper,LDRlower) and (T DRupper,T DRlower)
are the upper and lower bounds of the linear detection range
and total detection range, respectively, for a particular sensor,
as determined through the calibration process or by looking
at the sensor’s specifications sheet.

Each feature or combination of these features captures a
potentially different type of error that might occur. The GRA-
DIENT feature, defined as x, is the discrete derivative, which
is calculated as the change in value over one time step. This
feature captures the intuition that diffusion phenomena obey
physical limits and readings should not change very quickly.
The DISTANCE LDR feature, defined as y, is the distance be-
tween a data point and the sensor’s LDR. This feature cap-
tures the intuition that data points become less reliable as
they are farther from the linear detection range of the sensor,
and may need to be manually verified. The DISTANCE TDR
feature, defined as z, is the distance between a data point and
the sensor’s TDR. This feature captures the intuition that data
points outside the detection range of the sensor likely indi-
cate a problem with the calibration or the sensor itself.

SFDS requires the domain scientists to create the feature
space transform such that faulty data have large feature val-
ues, and therefore fall far from the origin of the feature space,
and non-faulty data have small feature values, and therefore
fall close to the origin of the feature space. In other words,
as the feature value increases, the probability that the sen-
sor producing that value is faulty also increases. The expert
must also provide a scaling function for each feature so that,
by convention, a value of 0 represents non-faulty data, and a
value of 10 or more represents almost certainly faulty data.
Given a transform with these properties, SFDS can detect
faults using a simple outlier detection algorithm that identi-
fies points that lie too far from the origin. The scaling func-
tions need not be exact, and the outlier detection algorithm
is robust to a large range of scaled values. The primary func-
tion of the scaling function is to help with system initializa-
tion. With the help of domain scientists, we defined a scaling
function f (n) = max(log2 n/S,0). f (n) is applied to the three
feature values (x,y,z). S is chosen for each feature such that

Dimension Feature Scaling
x GRADIENT max(0, log2(n/16))
y DISTANCE LDR max(0, log2(n))
z DISTANCE TDR log2(n)

Figure 5. An expert user defines a scaling function for
each dimension of the feature space so that SFDS can
differentiate between good and faulty data during the ini-
tialization period.

log2 n < S for most non-faulty data points. The scaling func-
tion for each feature is listed in the right column of Figure 5.

Finally, the user must initialize the system with an action
or set of actions that should be taken when a faulty point is
detected in each region of the feature space. SFDS divides
the feature space into 27 equal sized regions. Each region is
labelled with an action that an assistant should take if a data
point is mapped to that region in the feature space. The same
label is assigned to all points in a region. The rationale is that
faulty points that lie close together are likely remedied by
the same action. We used the expertise of domain scientists
to assign one of four possible labels to each region:

1. validate questionable sensor data

2. check the sensor/environment

3. re-calibrate a sensor

4. replace a sensor

For example, a point that maps to the feature vector (9, 1,
1) has a high value for the GRADIENT feature, and low val-
ues for the other two features. This means that the sensor re-
ported a sudden and dramatic change in value, but is still re-
porting data within the expected range. The domain expert’s
intuition tells us that the environment should be checked for
a recent event (e.g. perhaps the field is being irrigated), or the
sensor should be checked to find a fault (e.g. maybe the sen-
sor cable was disconnected). Therefore, the expert assigns
the region containing this point the action: ”check the sen-
sor/environment”. Because certain actions, such as recalibra-
tion or validating questionable data, are more labor intensive,
the expert is careful in assigning labels. These labels can also
be updated by the assistant in real-time, as described below.

4.2.2 Requesting Human Assistance
The data assurance system applies an outlier detection al-

gorithm to the feature space to identify faulty data points. It
then uses the data point’s location in feature space to recom-
mend some action to the human assistant.

To identify faulty data points, when the system receives
a data point from a sensor it calculates the feature vector as
described above. It then calculates the magnitude of the new
feature vector:

di =
√

x2
i + y2

i + z2
i (4)

Initially, for some initialization period P, all points i for
which di > 5 are identified as faulty and all other points are
non-faulty. Over time, the system estimates a distribution of
non-faulty points according to the following equations:



µi = (1−α)di +α ·µi−1 (5)

σ
2
i = (1−α)(di −µi)2 +α ·σ2

i−1 (6)

σi =
√

σ2
i (7)

In other words, SFDS uses an EWMA-based Gaussian
estimator to estimate the parameters (µi,σi) of non-faulty
data points as a Normal distribution at time i. After the ini-
tialization period P is over, SFDS identifies all values with
di > µi + 2σi as faulty. The default value for P is set to 300;
the default value for α is set to 0.9.

Once a data point has been identified as an outlier, SFDS
uses the point’s location in the feature space to suggest an ac-
tion the user should take to address the problem. Each feature
vector maps to some region in the space. SFDS looks up the
region to which the feature vector maps, and notifies the user
of the label associated with that region. The human assis-
tant might either be available at the site or working remotely.
Most exploratory deployments have at least one human who
is always at hand. The assistant can take an action, if they are
present at the deployment site.

This feature space, outlier detection algorithm, and label-
ing system were designed to make it easy for an expert to ini-
tialize, define actions, and provide feedback over time. Note
that this is only one of many outlier detection algorithms pos-
sible, and many different outlier detection algorithms are cur-
rently being explored. For example, stream clustering-based
outlier detection algorithms can be initialized and can be
given feedback from the user, but the user cannot necessarily
associate actions with a cluster because the cluster sizes, lo-
cation, and contents may change over time. The contribution
of this section is not the outlier detection algorithm itself, but
rather the use of outlier detection to manage human resources
during a deployment with unreliable sensors.
4.2.3 Learning from Human Responses

An onsite or remote human assistant can provide infor-
mation to SFDS at any time in two ways. First, the user can
provide information about the validity of data. Although the
feature space makes fault detection simple, instances arise
when data that fall far from the origin are not faulty, or vice
versa. For example, an unusually heavy rain may lead to un-
expectedly low concentrations of certain ions in the soil. In
order to tell the system about such occurrences, the user re-
quests a snapshot of the feature space using the command
line interface. The output is printed to the screen. A small
sample of this output is shown in Figure 6. Each region in
the space is represented by the feature vector located at the
region’s center, the label associated with that region, and ad-
ditional metadata. Below each region, the snapshot includes
a list of the most recent data points associated with that re-
gion. Using the command line interface, users can update a
label or fault state associated with a region. This information
can be applied to all future data that is associated with that
region, or with data from a specific sensor. For example, on
one particularly windy day, wildly waving tree branches cast
quickly moving shadows on the PAR sensors, which mea-
sure light. As a result, most of the PAR data was extremely

Figure 6. Suelo responds to queries with an output of the
status of the feature space as shown above. Each region
in the feature space is represented by a feature vector, the
fault status for that region, and the label (outlined in red
in the figure). The set of points located in each region,
printed below the region header, is represented by a fea-
ture vector, the sensor data, timestamp, and sensor type
(outlined in black in the figure). The figure is a snapshot
of the status for two regions.

noisy that day, and was classified in two regions in the feature
space with high rate of change values. Suelo notified the re-
searchers to check the PAR sensors. After returning from the
field, using the command line interface the researchers up-
dated the feature space to classify PAR data as not faulty in
the two regions with high rate of change values. We evalu-
ate the impact of user feedback on detection accuracy in our
evaluation.
5 Evaluation

We performed three deployments with Suelo in
Bangladesh, the James Reserve, and the San Joaquin
river. We evaluate this system in two ways. First, we show
that the number of misclassified data points are lower with
the Suelo Fault Detection System than with two baseline
systems that do not leverage human interaction: threshold-
based fault detection, and rule-based fault detection. Second,
we demonstrate that much the reason for this improvement
is due to human actions requested by the system.

To compare these systems, we need to know what data
is truly faulty, what data is truly not faulty, and when any
faults occurred. In other words, we need access to ground
truth. In a simulation, ground truth is precise because we can
inject a known fault at a known time into the simulation.
Attaining ground truth in the field, especially for environ-
mental data, is not as straightforward. Our exploratory sens-
ing deployments collected data about environments where
little is known about the exact chemistry and daily biologi-
cal reactions. In these instances, an approximation to ground
truth is achieved using a combination of manual analysis by
domain experts, results of physical samples that were ex-
tracted during the deployment and analyzed in a lab, and
post-deployment analysis and calibration of sensors. We treat
the results of this analysis as ground truth when evaluating
accuracy for environmental sensor faults.
5.1 Deployments and Data Collection

This evaluation uses data sets collected from three de-
ployments. The first data, which we refer to as Bang, was



Figure 7. The TapRoot was used in Bangladesh to mea-
sure soil at multiple depths. Each sensor was buried in-
dividually, requiring many cables and making it difficult
to perform maintenance during deployment without dis-
turbing the soil.

collected from a deployment undertaken in a rice paddy
in Bangladesh in January, 2006 to help scientists evaluate
the relationship between irrigation and arsenic contamina-
tion in the groundwater [25]. The experiment was designed
and deployed with scientists and civil engineers from the
Bangladesh University of Engineering and Technology and
MIT. Our field site in Bangladesh consisted of a series of rice
paddies separated by irrigation troughs built of mud and clay
from the field. This deployment has been described through-
out the paper, so is not described again here. The layout is
shown in Figure 7. The network collected 26,000 measure-
ments over a period of 12 days from 42 ISE and temperature
sensors.

The second dataset, which we refer to as JR, was col-
lected from a deployment at the James Reserve in Septem-
ber, 2007. The purpose of this deployment was to explore
the spatial and temporal scales at which sub-surface mea-
surements should be taken, and to study the relationship be-
tween soil CO2 fluxes, moisture and temperature conditions
in the soil, and to study the relationship between micro-
scale and macro-scale ecological processes. Above ground,
air temperature, relative humidity, barometric pressure, and
photo-synthetic active radiation (PAR) are measured. Below
ground, temperature, moisture, and CO2 concentration mea-
surements are taken at depths of 2 cm, 8 cm, and 16 cm in
the soil. These sensors, connected to Hobo dataloggers with
a wired upload channel, have been in the ground collecting
data since October, 2005. Before our deployment, scientists
would collect data by connecting a laptop to the dataloggers
once every month or two. We connected the Hobo datalog-
gers to wireless Mica2 motes so that scientists could collect
the data in real time, and more importantly, identify and fix
faults. The sensing system spans approximately 80 m and
consists of 10 sites, with 13 sensors at each site. We collected
35,000 measurements during our 1 day field visit.

The third dataset, which we refer to as SJR, was collected
from a deployment at the junction of the San Joaquin River
and the Merced River in February, 2007. This deployment
was described in Section 2. We deployed 14 ammonium
and nitrate ion-selective electrodes and 7 temperature sen-
sors connected to Mica2 motes. 12,000 measurements were

collected over this 5 day deployment. We systematically val-
idated data collected from all 21 sensors to ensure that SFDS
did not miss any faults, and did not direct us to take any un-
necessary actions in the field. We took two steps to validate
data collected from sensors. First, we deployed a second set
of sensors to shadow the scientist’s main deployment. How-
ever, as already described, the heterogeneous nature of soil
makes it virtually impossible to provide true measurement
redundancy in these environments. We periodically extracted
water samples from the Teflon tube at each Javelin to obtain
an independent measurement of the ammonium and nitrate
concentrations. Water samples were analyzed using a Hach
Kit, which is a mobile spectrometer designed to analyze sam-
ples in the field. Because pollutant concentrations can vary
during the day, we extracted samples at the beginning and
end of each of the five days from all seven sampling sites.
Extracting and analyzing even a single sample requires two
people working in parallel for half an hour, so our six person
team spent most of the deployment either validating sensor
data, deploying sensors, or testing sensors.

We execute SFDS on the data from each of these deploy-
ments.
5.2 Baseline Solutions for Comparison

We compare SFDS to two baseline solutions that might
otherwise have been used to detect faults in a stream data
from of ISE sensors: a generalized thresholding scheme and
a more complex set of classification rules. Thresholding is
perhaps the most common technique used to identify the
presence of faulty sensors, and has been used by several
ENS deployments in the past [32,33,35]. We implement two
common thresholding techniques. The first approach applies
static ranges to data values: Rangeupper = θ · rangeupper, and
Rangelower = θ · rangelower. The second approach dynami-
cally calculates a range using running estimates of the mean
(µ) and standard-deviation (σ): Rangeupper = µ + θ ·σ, and
Rangelower = µ −θ ·σ. For each algorithm, we identify the
θ that produces the highest accuracy, and only show the re-
sults for the best performing algorithm. The first algorithm
performed best for JR (with a parameter setting of θ = 2),
The second algorithm performed best for Bang (θ = 0) and
SJR (θ = 3).

Of course, thresholding systems cannot detect all types of
faults, and after several deployments a domain expert may
be able to generate a more sophisticated system to identify
faulty data. Indeed, Bertrand-Krajewski et al. [4] develop a
set of seven criteria derived from physical processes under-
lying the data and measurement system to determine valid-
ity of data collected from ISEs. These criteria are: automatic
status report from the sensor, detection range for the sen-
sor, expected range given local phenomena, duration since
last maintenance, discrete derivative, physical sensor redun-
dancy, and expectations calculated from a model. If a data
point fails a single criterion, the point is considered unreli-
able.

As Bertrand-Krajewski et al.state in their paper, not all
of the rules apply to all of our datasets. Because the deploy-
ments were exploratory, we did not have a model or a method
to calculate an expected range; our sensors did not provide
status reports; we do not have a model for sensor degradation
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Figure 8. When tested on empirical data from three dif-
ferent soil monitoring deployments, SFDS produces 91%
fewer false negatives and false positives than common so-
lutions.

Bang JR SJR

#Sensors 33 21 130
#Data 14854 35414 9775
#Faults 8000 3832 705
True Negatives 98% 100% 100%
True Positives 94% 100% 100%
Number of updated labels 2 4 0

Figure 9. SFDS was used on several deployments with
very different sensors, sizes, durations, and fault rates,
and SFDS performed well in each of these situations.

over time. Independently of that work, we identified a com-
plete list of the fault types that were common in our deploy-
ments [22]. Then, we adapted a subset of the rules described
by Bertrand-Krajewski et al. to detect each of the following
fault types:

1. Invalid Data Range: when a value exceeds some pre-
defined maximum or minimum value

2. Rapid Change: when a value changes too quickly

3. Noise: detect a fault when a standard deviation grows
by some factor

4. Uncertain Data Range: when a value is in the non-linear
detection range

This set of rules was actually an early version of the SFDS
design, and was thus designed with rigor and completeness.
We stopped developing and refining these rules when they
ultimately decided that a rule-based system would never suf-
fice for on-line assistance of unreliable sensors like ISE, for
reasons described and demonstrated later in this evaluation.

During the evaluation, we optimized the parameters for
the rules and threshold system using the same data that it
would be tested on, i.e. we choose the set of parameters that
provide the best total classification rates over all three de-
ployments.

5.3 Results: Data Classification Accuracy
We define classification failures to be the number of data

points that are classified incorrectly. This includes good data
that are incorrectly labelled as faulty (false positives) and
faulty data that are incorrectly labelled good (false nega-
tives). Classification failure is the sum false positives and
false negatives. The goal of SFDS is to reduce classification
failures.

We compared SFDS to baseline solutions by running each
of the three algorithms on the data sets produced by each of
our three deployments.

The results are summarized for all three algorithms in
Figure 8, and shown in detail for SFDS in Figure 9. Our
results show that SFDS produces fewer misclassified data
points than either basic thresholding techniques or a spe-
cially designed set of rules. The threshold system mis-
classified 11,300 points. The rule based system generally
performed better than the threshold system, and only mis-
classified 6350 points. This is because the rule based sys-
tem could identify faults where the noise levels or the val-
ues changed quickly, and uses thresholds informed by expert
knowledge. However, SFDS consistently outperformed both
baseline solutions, mis-classifying only 580 points in total,
which is 91% fewer false negatives and false positives than
the rule-based solution. However, SFDS does not detect any
class of errors that is not explicitly targeted by the rule-based
fault detection system. They both detect two basic types of
errors: those where the value is out of a particular range,
and those where the value or noise changes very quickly.
Thus, the question arises: why does SFDS outperform the
rule-based system.

5.4 Analysis: The Effect of Human Assistance
There are two ways in which human assistance improves

the system accuracy: a human either takes an action in the
field or provides feedback to Suelo. Sometimes both types
of actions are needed together; in one instance a scientist ex-
tracted a sample to verify questionable nitrate readings, and
then updated Suelo that the nitrate data was actually good.
We evaluate the impact of both types of human assistance in
the next two subsections, respectively. In the remaining sub-
sections, we provide examples of each type of action that the
user performed in the real deployment.

5.4.1 The Effect of Human Feedback
Our analysis shows that human feedback after manual

data validation is a key reason why SFDS outperforms the
baseline fault detection solutions. Figure 10 shows the results
of SFDS as the amount of user feedback increases. With-
out any user feedback, SFDS performs very similar to the
rule-based system; the rules even perform slightly better than
Suelo for data from James Reserve (center bar in the figure).
However, once user feedback is incorporated, the accuracy
of SFDS increases as well.

SFDS leverages the user feedback to tune parameters dur-
ing the deployment, reducing its sensitivity to initial parame-
ters and even allowing it to use different parameters for each
node when the environment demands. In all of our exper-
iments, SFDS uses the same set of initial parameters. In a
more complete version of this paper, we show through an
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Figure 10. SFDS does not initially perform better than
the rule-based solution. However, once the user updates
the labels in the data assurance system, as shown in the
text in the graph, the performance improves. For exam-
ple, once the user verifies the chloride data by taking a
sample, they notify the data assurance system that chlo-
ride data in a certain region is not faulty. This updated
label reduces the number of misclassified points by al-
most 1000.

extensive sensitivity analysis that SFDS’ results are robust
to scaling factors, the initialization distance and training du-
ration dI and P, and the number of regions used to divide the
feature space [28]. Further, SFDS does not impose assump-
tions on the frequency of faults. However, there is a depen-
dence on where the faulty feature vectors lie in the feature
space.

In contrast, the baseline solutions are highly sensitive to
the initial parameters and we needed to optimize the param-
eters of the rules and thresholding systems for each deploy-
ment in order to obtain comparable results.
5.4.2 The Effect of Human Actions in the Field

In our deployments, scientists took actions such as re-
calibrating sensors, validating questionable data, and fixing
broken sensors. Suelo’s goal is to direct users to take only the
actions necessary to maximize the amount of good data re-
ceived. Figure 11 shows the percent that the amount of good
data increases after the first two actions scientists took in
each deployment. Just these first two actions in the field in-
creased the amount of good data across all three deployments
by 8.2%.

When Suelo recommends an action, it does so for almost
all faults immediately: for SJR and Bang it detects all faults
immediately; for JR it detects all but 3 faults immediately
(the remaining 3 faults are detected within 600 seconds, the
data transmission periodicity). One reason for Suelo’s rapid
response in these deployments it that the features rely on at
most one point in the past, and so of those faults that are de-
tected, the detection occurs quickly. This latency analysis is
not complete because low network yields will impact the true
detection latency, and these issues will not show up in this
analysis because such data never arrives at the base-station.

In the following sections, we provide anecdotes that de-
pict the types of actions a human might be asked to perform,
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Figure 11. The X-axis is the number of times Suelo re-
quested human assistance in the field and action was
taken. The Y-axis is the increase in good data, repre-
sented as a percentage of the total amount of data, after
the action was taken. The user actions to calibrate, repair,
or replace sensors improved the amount of good, usable
data for all three deployments.

and explain the consequences. SFDS can differentiate be-
tween validation, calibration, and repair actions based on a
fault’s location in the feature space and feedback from the
user about previous faults that had the same feature space
signature.
5.4.3 Manual Data (In)validation

One of the key actions that Suelo requests is that a human
validates or invalidates data. Feedback from these processes
is used to dynamically adjust the parameters by which the
system differentiates between valid and suspicious data. To
validate sensor readings, water samples are drawn, delivered,
and tested in the lab.

The top graph in Figure 12 is a graph of nitrate data col-
lected from 3 sensors in Bangladesh. Almost all of the data
is outside of the linear detection range, an indication that the
data is likely faulty. In order to determine if the data were
usable, the scientists we were working with in Bangladesh
extracted several physical soil samples for lab analysis. We
used the results from this analysis in conjunction with a com-
puter model of the soil chemistry for that region to con-
firm that the levels for nitrate and chloride were good, even
though they were in the NLDR of the sensor. The nitrate con-
centration was simply lower than the sensitivity of the sensor,
so the readings appeared within the NLDR of the sensor. As
a result of this lab analysis, the scientists were able to use this
data. Of the 3400 data points recorded in the NLDR of a sen-
sor, 1700 of these points are from either nitrate or chloride
sensors; i.e. half of the data in the NLDR are from sensors
measuring concentrations that we expect to fall in this range.

In other cases, however, data in the NLDR is in fact faulty.
The bottom graph in Figure 12 shows chloride data collected
from 1 sensor in Bangladesh that exhibits diurnal variations
similar to those of other non-faulty sensors. The main differ-
ence is that the data produced is in the NLDR instead of the
LDR. Suelo indicated that the sensor needed validation and
after analyzing soil samples in the lab, scientists determined
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Figure 12. Data that appears faulty and is good or vice
versa. LDR region is white, NLDR is shaded light gray,
and outside the TDR is shaded dark gray. Top: Nitrate
data taken from three different locations; potentially
faulty but lab analysis reveals sensor is good. Bottom:
Chloride data taken from a single location; Regular di-
urnal variations lead scientists to believe data is poten-
tially good, but lab analysis reveals data is likely faulty.
In all graphs containing sensor data, the white regions in-
dicate the linear detection range (high-precision range),
the lightly shaded region indicates the nonlinear detec-
tion range (lower-precision range), and the dark region
indicates the remaining space.

that this data was in fact faulty.
Across all three deployments, Suelo requested 14 vali-

dation actions. 5 of them validated data from sensors that
would have otherwise been classified as faulty; 9 of them
confirmed the initial classification that the data was faulty.
This feedback from the user resulted in 1700 readings be-
coming classified correctly that otherwise would have been
misclassified.

5.4.4 Manual Calibration
The calibration coefficients of ISEs can drift over time as

the membrane becomes dirty, and capturing this drift is nec-
essary to interpret data. However, there are conflicting in-
terests that make it difficult to decide when to recalibrate a
sensor. In a one-week lab experiment we calibrated a set of
sensors daily and found that calibration does not change lin-
early with time, nor does it change in a constant direction.
This experiment argues for calibrating sensors as frequently
as possible in order to capture calibration parameters. How-
ever, calibration itself is labor-intensive and causes soil dis-
turbances that can can last from days to months. This argues
for performing calibration as infrequently as possible.

In a particularly bad example, sensors connected to mote
11 in our Bangladesh deployment averaged a change in the
calibration offset of 100 mV when comparing calibration
equations obtained before and after the deployment. Given
the average operational range for a sensor of 300 mV, an off-
set change of 100 mV is a significant change. Scientists had
to discard all of the data from these sensors because the cal-
ibration had changed so significantly.
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Figure 13. The calibration coefficients of an ISE sensor
can drift, causing erroneous data. One of these CO2 sen-
sor in James Reserve gradually dips below the minimum
concentration of 0.

The top and bottom panels in Figure 13 are each plots of
three CO2 sensors buried at 2, 8, and 16 cm. The CO2 sen-
sor’s operational range is defined as concentrations above 0
ppm (indicated by the horizontal line on the graph). The top
panel is representative of readings taken from 9 of the 10
locations where CO2 sensors were deployed, which remain
above this threshold. The bottom panel contains data col-
lected from one node in the deployment where the sensors
at 2 and 8 cm were good, but the readings from the sensor
at 16 cm slowly dip below this line between December 2005
and March of the following year. This steady trend is not
characteristic of a faulty sensor, and likely indicates that the
calibration for the sensor was gradually drifting. Without fur-
ther measurements taken during the time of drift, it is nearly
impossible to identify the change in calibration parameters.

Across all three deployments, Suelo requested 42 calibra-
tion actions. Based on post-calibration results of the sensors
after the deployments, 32 of the sensors identified by Suelo
should have been calibrated earlier. However we could not
remove these sensors and calibrate them because they were
part of the TapRoot platform, which could not be modified
in the middle of the deployment.

5.4.5 Manual Sensor Repairs
Many times, a sensor is physically broken and needs to be

manually repaired or replaced. This is particularly common
with exploratory deployments with first or second generation
hardware platforms, and in harsh environments such as soils.

The top and bottom graphs in Figure 14 are taken from
the same ammonium sensor at two different times. The top
graph is of data collected in Bangladesh where a fault is ap-
parent towards the end of the deployment. In order to repro-
duce the fault we deployed the sensors after returning (bot-
tom graph) and monitored the data using an early version of
SFDS. We discovered the cause of the problem to be a short
in the wiring. Data readings revert to within range temporar-
ily after we adjusted the wire at those times indicated by ©
on the graph.

Suelo also notified us of a fault on a temperature sen-
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Figure 14. Actions in the field reveal source of fault.
Top and bottom graphs contain data from the same
ammonium sensor. Data in top graph was collected in
Bangladesh, and data in bottom graph was collected af-
ter returning. Circles in the bottom graph indicate points
in time when we checked the sensor and fixed the wiring.
Top graph taken from a previous paper [26].

sor located next to the site where we were working. The
sensor was reporting temperature 10 degrees higher than
the surrounding sensors. After checking on the sensor, we
immediately discovered that it had become unearthed and
was exposed to direct sunlight. This fault was likely an un-
intended consequence of our work at the neighboring site,
and the real-time response of Suelo helped us fix and repair
this problem before leaving the site, and before a significant
amount of data was lost.

Across all three deployments, Suelo requested 191 check
sensor actions. In 75 instances, we later found that the sensor
required calibration or further validation.

Many of the true positives could possibly have been fixed
if the authors had the hardware resources available to replace
or repair the sensors that were identified as being faulty.
Thus, SFDS could potentially have a bigger effect than is
shown in Figure 8.

6 Scientific Value
The most surprising discovery from this deployment was

the diurnal variations observed in ammonium (representa-
tive data from one ammonium sensor shown in top graph
in Figure 14). While data flattened around day 7 as a re-
sult of a scheduled irrigation event (and a sensor fault in this
specific ammonium sensor), the diurnal trends (also seen in
hydraulic parameters) indicate that diurnal, possibly plant-
induced, processes may be important in the mobilization of
arsenic. The scientists have returned to this field site twice
each year to further study this phenomenon. They have re-
cently validated the hypothesis that arsenic is mobilized near
the surface [23], but still do not know what, if any, role diur-
nal phenomena play in this process.

Interestingly, the most surprising discovery at San
Joaquin was also diurnal trends, though this time in nitrate
data. The scientists are unsure about what could be caus-
ing these trends, especially because a second array of sen-

sors just a few meters away showed no such fluctuations.
Others have noticed similar patterns in river nitrate and sug-
gested that this may have been caused by photosynthetic ac-
tivity [31]. However, the diurnal behavior here is in the sedi-
ments beneath the river and the peaks are synchronized, sug-
gesting that a sudden fluctuation in river water concentra-
tions is not the cause.
7 Future Work: In-Situ Calibration

We are experimenting with in-situ calibration in order
to capture changing calibration parameters while the sensor
is buried in the soil. A Teflon tube is attached to a sensor,
with one opening of the tube positioned just above the sen-
sor membrane and the other end exposed above ground. Pe-
riodically, the sensor is spiked through this tube with sev-
eral milliliters of a standard solution. The solution concen-
tration is chosen to be higher than that of the environment
so that a pulse can be seen in the sensor data as the solution
is delivered and then absorbed into the environment. Signifi-
cant changes in the amplitude or slope of this resulting pulse
across spikes could be used as an indication that the sensor is
drifting and should be re-calibrated. Preliminary results are
encouraging.
8 Conclusions

Human-assisted sensing falls on a spectrum, where au-
tonomous ENS deployments [32, 35, 36] on one end are de-
signed to operate with minimal or no human intervention,
and participatory sensing deployments [6] on the other end
require humans as the vehicle for data collection. Assisted
sensing systems are in the middle of this spectrum, and con-
sist of packaging, hardware and software components, and
deployment algorithms that are designed to engage humans
when necessary, but operate autonomously when possible.
Some systems engage humans when the network begins to
fail [27, 34], Suelo goes one step further by engaging a hu-
man when sensors begin to fail.

We explicitly design our system to have a human in the
loop for manual data verification and filtering, sensor re-
calibration, and replacing of broken sensors. Instead of try-
ing to build a system that can automatically identify and fix
faulty data, our system notifies a human when verification or
repairs are needed. It also learns to make better suggestions
based on feedback from the user. The Suelo Fault Detection
System uses two simple mechanisms to learn parameters in
exploratory environments: the EWMA incorporates the sen-
sor characteristics of the deployment into the distance thresh-
old that separates valid and faulty data; the labels for regions
can be updated by users at any point to teach SFDS to iden-
tify new behavior. Both operations are extremely low over-
head, making it possible to update the system parameters as
often as necessary.
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